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ABSTRACT

Motivation:Visualizingandanalysing thepotential non-linear structure

of a dataset is becoming an important task in molecular biology. This is

even more challenging when the data have missing values.

Results: Here, we propose an inverse model that performs non-linear

principal component analysis (NLPCA) from incomplete datasets.

Missing values are ignored while optimizing the model, but can be

estimated afterwards. Results are shown for both artificial and experi-

mentaldatasets. Incontrast to linearmethods,non-linearmethodswere

able to give better missing value estimations for non-linear structured

data.

Application:We applied this technique to a time course of metabolite

data from a cold stress experiment on the model plant Arabidopsis

thaliana, and could approximate the mapping function from any time

point to the metabolite responses. Thus, the inverse NLPCA provides

greatly improved information for better understanding the complex

response to cold stress.

Contact: scholz@mpimp-golm.mpg.de

1 INTRODUCTION

Non-linear principal component analysis (NLPCA) is generally

seen as a non-linear generalization of standard linear principal com-

ponent analysis (PCA) (Jolliffe, 1986; Diamantaras and Kung,

1996). The principal components are generalized from straight

lines to curves. Here, we focus on a neural network based NLPCA,

the auto-associative neural network (Kramer, 1991; DeMers and

Cottrell, 1993; Hecht-Nielsen, 1995; Kirby and Miranda, 1996;

Malthouse, 1998). It is successfully applied in the fields of atmo-

spheric and oceanic sciences (Hsieh, 2004; Monahan et al., 2003),
in astronomy and even in biomedical research. In Scholz andVigário

(2002) a hierarchically extended version of NLPCA was applied to

spectral data from stars and to electromyographic (EMG) recordings

for different muscle activities.

There is a wide variety of methods for visualizing data and

extracting meaningful components (also termed features, factors

or sources) in a non-linear way. Locally linear embedding (LLE)

(Roweis and Saul, 2000; Saul and Roweis, 2004) and Isomap

(Tenenbaum et al., 2000) were developed to visualize high

dimensional data by projecting (embedding) them into a two- or

low-dimensional space. A mapping function as a non-linear model

is not explicitly given. Principal curves (Hastie and Stuetzle, 1989)

and self-organizing maps (SOM) (Kohonen, 2001) are useful for

detecting non-linear curves and two-dimensional non-linear planes.

Both methods are limited to extraction of two components at most,

due to high computational costs. Kernel PCA (Schölkopf et al.,
1998), when used as pre-processing, can improve classification

results.

Here, we consider the neural network approach. It provides a

non-linear model of the mapping function and we will show that

it can be applied to incomplete datasets by modelling only the

second part of the auto-associative network, the reconstruction or

generation part. The difficulty is to estimate both the model weights

and the inputs which are now the required components.

For this approach Hassoun and Sudjianto (1997) optimized the

weights and the inputs in two alternate steps by minimization of an

error function which is equivalent to maximum likelihood. A similar

approach was also used by Oh and Seung (1998). As the inputs can

be represented by weights, we propose to optimize the inputs and

weights simultaneously.

The same network architecture is also used by Valpola for a non-

linear factor analysis (NFA) and a non-linear independent factor

analysis (NIFA) (Lappalainen and Honkela, 2000; Honkela and

Valpola, 2005), also applicable to incomplete datasets (Raiko and

Valpola, 2001). The weights and inputs are optimized by Bayesian

learning. The inputs (components) are explicitly modelled by a plain

Gaussian distribution in NFA and a mixture of Gaussian distribution

in NIFA. Although Bayesian inference in NFA and maximum like-

lihood in NLPCA often lead to similar results, their conceptual basis

is rather different. Maximum likelihood attempts to find a single

set of values for the network weights and inputs. In contrast, in the

Bayesian approach the weights and inputs are described by posterior

probability distributions which lead to a good regularisation. There

are some relations: the Gaussian prior distribution for the weights

corresponds to the use of a weight-decay regularizer in the max-

imum likelihood approach. Minimization of a mean square error

function is equivalent to one maximum a posteriori (MAP) with

additive Gaussian observation noise. In the proposed inverse�To whom correspondence should be addressed.

� The Author 2005. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oxfordjournals.org

The online version of this article has been published under an open access model. Users are entitled to use, reproduce, disseminate, or display the open access
version of this article for non-commercial purposes provided that: the original authorship is properly and fully attributed; the Journal and Oxford University
Press are attributed as the original place of publication with the correct citation details given; if an article is subsequently reproduced or disseminated not in its
entirety but only in part or as a derivative work this must be clearly indicated. For commercial re-use, please contact journals.permissions@oxfordjournals.org

 at M
PI M

olec Plant Physiology on January 28, 2013
http://bioinform

atics.oxfordjournals.org/
D

ow
nloaded from

 

http://bioinformatics.oxfordjournals.org/


NLPCA model a single error function is minimized. The model

weights and inputs (components) are optimized simultaneously

and the model is extended to be applicable to incomplete datasets.

There are many methods for estimating missing values (Little and

Rubin, 2002). Here, we focus on detecting non-linear components

from incomplete datasets, so our approach involves ignoring

missing values not a priori estimating them. However, once the

non-linear mapping is effectively modelled, the missing values

can then be estimated as well. This is shown for an artificial dataset

and for experimental data. Estimation results were compared with

results of state-of-the-art estimation techniques. There are two PCA

based linear techniques: the recently published Bayesian missing

value estimation method for gene expressions (Oba et al., 2003)
which is based on Bayesian principal component analysis (BPCA)

(Bishop, 1999) and probabilistic PCA (PPCA) (Verbeek et al.,
2002) based on Roweis, (1997). Furthermore, there are the k-nearest
neighbour based approach, KNNimpute (Troyanskaya et al., 2001),
and a non-linear estimation by SOM.

There are many other approaches which are not further

considered; for example, there are methods based on non-linear

regression among variables (Zhou et al., 2003) or on modelling a

dynamical system (Simeka and Kimmel, 2003). The latter takes the

time information into account. It belongs, therefore, to supervised

methods where it is much more difficult to avoid over-fitting than in

the previously mentioned unsupervised methods.

Cold stress to the cell can cause rapid changes in metabolite

levels. Here, we have analysed the temporal metabolite response

to cold stress in the model plant Arabidopsis thaliana. The proposed
inverse NLPCA model was applied to these, partly incomplete,

metabolite data (Kaplan et al., 2004). Thus, we model the cold

stress adaptation by a mapping function from a given time point

to the metabolite responses. For each time point we are able to give

the metabolites in the order of importance, i.e. the metabolites are

ranked by the relative change in their concentration level. This

procedure is analogous to ranking in PCA by the eigenvector values

(also termed loadings or weights).

The observed experimental time information is not used in this

unsupervised model. Thus, the risk of over-fitting is much lower

than in a supervised regression model. Furthermore, the response

time and developmental state of plant individuals in any experiment

differs from the exact physical time measurement. Hence we cannot

absolutely trust the physical experimental time for the description of

biological experiments. An unsupervised model will be superior in

accommodating the unavoidable individual variability of biological

samples such as plants.

2 AUTO-ASSOCIATIVE NEURAL NETWORKS

The NLPCA, proposed by Kramer (1991), is based on a multi-layer

perceptron (MLP) with an auto-associative topology, also known

as an autoencoder, replicator network, bottleneck or sand glass type

network. A good introduction to multi-layer perceptrons can be

found in Bishop (1995), Haykin (1998).

The auto-associative network performs the identity mapping, the

output x̂ has to be equal to the input x, by minimizing the square

error kx� x̂k2.
This is no trivial task, as there is a ‘bottleneck’ in the middle,

a layer of fewer nodes than at input or output, where the data have

to be projected or compressed into a lower dimensional space

Z, (Fig. 1).
The network can be divided into two parts: the first part represents

the extraction function Fextr : X !Z, whereas the second part

represents the inverse function, the generation or reconstruction

function Fgen : Z!X̂X . A hidden layer in each part enables the

network to perform non-linear mapping functions.

3 INVERSE NLPCA MODEL

The inverse model of NLPCA extracts the required components by

only modelling the generation function Fgen : Z!X̂X of the auto-

associative network. It is the inverse function to the component

extraction function Fextr :X !Z.

The inverse model presents a set of advantages; we only have to

train the second part of the auto-associative network, which is more

efficient than training both parts. Also, we model the natural pro-

cess, which has generated the observed samples, hence we can be

sure that such a function exists, which is not necessarily the case for

the extraction model. And, most importantly, the inverse NLPCA

can be extended to handle incomplete datasets, as we do not need

the sample data as input, the data are needed only as required output.

As the desired components are now unknown inputs, the blind

inverse problem is to estimate both the inputs and the parameters

of the model by only given outputs. This makes sense only with the

additional constraint of a lower dimensional input.

The output x̂ depends on the input z and the network weights

w2W3, W4, as illustrated in Figure 2,

x̂x ¼Fgen w‚zð Þ¼W4g W3zð Þ

The non-linear activation function g (e.g. tanh) is applied element-

wise. Biases are not explicitly considered; however, they can be

included by introducing an extra unit, or input, with activation fixed

at one. The mean square error depends on z and w as well:

E w‚zð Þ¼ 1

dN

XN
n

Xd

i

xn
i �

Xh

j

wijg
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wjkzn
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 !" #2
‚

d is the dimensionality of the data (the number of metabolites), N is

the number of samples.

W1 W2 W3 W4

extraction generation

Φextr : X → Z Φgen : Z → X̂

x1

x2

x3

z1

x̂1

x̂2

x̂3

Fig. 1. The standard auto-associative neural network. The network output x̂
is required to be equal to the input x. Illustrated is a [3-4-1-4-3] network

architecture. Biases have been omitted for clarity. Three-dimensional sam-

ples x are compressed (projected) to one component z by the extraction part.

The inverse generation part reconstructs x̂ from z. The sample x̂ is usually a

noise-reduced representation of x.
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The error can be minimized by a gradient optimization algorithm.

e.g. conjugate gradient descent (Hestenes and Stiefel, 1952; Press

et al., 1992). The gradients are obtained by propagating the partial

errors sn
i back to the input layer. For the input gradients it is simply

one step further than usual. The gradients of the weights wij2W4,

wjk2W3 and inputs zn
k are the partial derivatives:

@E

@wij
¼
X

n

sn
i gðan

j Þ; sn
i ¼ x̂xin� xn

i

@E

@wjk
¼
X

n

sn
j zn

k ; sn
j ¼ g0ðan

j Þ
P

i wijs
n
i

@E

@zn
k

¼sn
k ; sn

k ¼
P

j

wkjs
n
j

For the bias, additional weights wi0 and wj0 can be used, with

associated constants z0¼ 1 and g(a0)¼ 1. The weights w and the

inputs z can be optimized simultaneously, by considering (w, z)
as one vector to optimize with given gradients. This would be

equivalent to an approach where an additional input layer is rep-

resenting the components z as weights, and new inputs are given

by a (sample x sample) identity matrix, as illustrated in Figure 2.

However, this layer is not needed for implementation. The purpose

of the additional input layer is only to explain that the inverse

NLPCA model can be converted to a conventionally trained

multi-layer perceptron, with known inputs and simultaneously

optimized weights, including the weights z, representing the desired
components. Hence, an alternating approach as done by Hassoun

and Sudjianto (1997) is unnecessary. Beside a more efficient

optimization, it also avoids the risk of oscillating while training

in an alternating approach.

A disadvantage of such an inverse approach is that there is no

mapping functionX !Z, required for new data x. However, we can
approximate the mapping by searching for an optimal input z to a

given new sample x. For that, the network weights w have to be fixed

and the input z has to be optimized to minimize the square error

kx� x̂ (z)k2. This is only a line search (in case of one component)

or low dimensional optimization with given gradients, efficiently

done by a gradient optimization algorithm.

The inverse NLPCA is able to extract components of higher non-

linear complexity than the standard NLPCA, even self-intersecting

components can be modelled. This is shown in Figure 3 for a

circular structure in two dimensions, generated from a uniformly

distributed factor t (the angle) and a helical structure embedded in

three dimensions, generated from a Gaussian distributed factor t.
For the uniformly distributed 100 circular data points (plus noise),

a [1-3-2] network is trained in 3000 iterations. The noisy helical

structure of 1000 Gaussian distributed data points, is modelled with

a [1-8-3] network in 10 000 iterations.

The inverse NLPCA is not restricted to one component. It can be

extended to m components by increasing the number of units in the

input layer, the component layer z, to m. With an additional hier-

archical error function (Scholz and Vigário, 2002), the non-linear

components 1, . . . ,m can be extracted in a hierarchical order, which

is a natural non-linear extension to the hierarchical ordered

components of the standard linear PCA.

3.1 Regularization

As we usually have a large number of dimensions (metabolites)

and a relatively small number of samples, a regularization of the

non-linear model is very important.

Standard methods for regularization in neural networks reduce

the number of hidden units or add a weight decay term to the error

function. Furthermore, auto-associative neural networks have a kind

of self-regularization, caused by the fact that for each mapping

function the inverse function has to be estimated as well. A complex

function has usually a much more complex inverse function or the

inverse function does not even exist. Therefore, the auto-associative

neural network is constrained to keep the functions as simple as

possible. A similar effect is observed when extracting non-linear

components in a hierarchical order, where subsequent components

are extracted in respect to the previous components. A complex first

component would strongly increase the complexity of the second or

later components. Thus, the network is constrained to generate very

smooth first components.

4 MISSING VALUE ESTIMATION

The inverse NLPCA model can be easily extended to be applicable

to incomplete datasets. If the ith element xn
i of the nth sample vector

xn is missing, the partial error sn
i is set to zero before

Z
W3 W4

I

additional
input layer generation

Φgen : Z → X̂
0
0
0
1
0

0

z4
1

x̂4
1 σ4

1 = x4
1 − x̂4

1

x̂4
2 σ4

2 = 0 (? − x̂4
2)

x̂4
3 σ4

3 = x4
3 − x̂4

3

Fig. 2. The proposed inverse NLPCA model as [1-4-3] network. Only the

generation part (black) of the auto-associative network (Fig. 1) is used. The

inputs z can be optimized by propagating the partial errors back to the input

layer z. This is equivalent to the illustrated prefixed input layer (grey), where
the weights are representing the component values z. The input is now a

(sample x sample) identity matrix I. For the 4th sample (n¼ 4),

as illustrated, all inputs are zero except the 4th, which is one. On the right,

the second element x42 of the 4th sample x4 is missing. Therefore, the partial

error s4
2 is set to zero, identical to ignoring or non-back-propagating.
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Fig. 3. Approximation of a circular (left) and a helical (right) structure by the

proposed inverse NLPCAmodel. The noisy data x (dots) are projected onto a

one-dimensional non-linear component (line). The projection or de-noised

reconstruction x̂ is marked by a circle. Note that an inverse model is able to

extract self-intersecting components (left).
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back-propagating; hence this error is ignored, and it has no con-

tribution to the gradients. Thus, the non-linear components are

extracted from all the available observations. With these compon-

ents the original data can be reconstructed, including the missing

values. The network output xn
i gives the estimation of the missing

element xi
n.

4.1 Missing data: artificial data

The inverse NLPCA approach was first applied to an artificial

dataset and the results were compared with other missing value

estimation techniques, the linear techniques BPCA1 and PPCA2,

the k-nearest neighbour based approach KNNimpute3, and the

non-linear SOM4. The data x lie on a one-dimensional manifold

(a helical loop) embedded in three dimensions, plus Gaussian noise

with standard deviation 0.05, see Figure 4. 1000 samples x were

generated from an uniformly distributed factor t over the range

[�1, 1], t represents the angle:

x1 ¼ sin ptð Þ
x2 ¼ cos ptð Þ
x3 ¼ t:

From each three-dimensional sample, one value is randomly

removed and is regarded as missing. This gives a high missing

value rate of 33.3 percent. However, if the non-linear component

(the helix) is known, the estimation of a missing value is given

exactly by the two other coordinates, except at the first and last

positions of the helix loop, where in the case of missing vertical

coordinate x3, the sample can be assigned either to the first or to

the last position. There are two possible optimal solutions; con-

sequently, missing value estimation is not always unique in the

non-linear case.

In Figure 4 and Table 1 it is shown that even if the datasets are

incomplete for all samples, the inverse NLPCA model is able to

detect the non-linear component and gives a very good missing
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Fig. 4. Artificial datawere generated to test differentmissing value algorithms. The samples forma helical loop. Fromeach of the three-dimensional samples, one

value is removed and then estimated by each missing value algorithm. The known complete samples are plotted as dots and the estimated values as circle.

Above: the inverse NLPCA is able to extract the non-linear component from this highly incomplete dataset, and hence it can give a very good estimation of the

missing values. SOM also gives a reasonably good estimation, but the linear approaches BPCA and PPCA, as well as the k-nearest neighbour based approach

KNNimpute, fail with this non-linear dataset, see also Table 1.

Table 1. MSE of missing value estimation

Noise Noise-free

NLPCA.inv 0.0021 0.0013

SOM 0.0405 0.0384

KNNimpute 0.4435 0.4429

BPCA 0.4191 0.4186

PPCA (k¼ 3) 0.4354 0.4347

Mean 0.4429 0.4422

Mean square error (MSE) of differentmissing value estimation techniques, applied to the

helical data (Fig. 4). The inverse NLPCA model gives a very good estimation of the

missing values. Although themodel was trainedwith noisy data, the noise-free data were

better represented than the noisy data, confirming the de-noising ability of the model.

Also SOMgives a good estimation, but the linear techniquesBPCAand PPCA, aswell

as KNNimpute are not able to give good estimations, the results are similar to the results

of naive substitution by the mean over the residuals of one variable.

1http://hawaii.aist-nara.ac.jp/~shige-o/tools/
2http://carol.science.uva.nl/~jverbeek/software/
3http://smi-web.stanford.edu/projects/helix/pubs/impute/
4http://www.cis.hut.fi/projects/somtoolbox/
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value estimation. The SOM also gives a reasonably good estimation,

but the linear approaches BPCA and PPCA, as well as the k-nearest
neighbour based approach KNNimpute, fail with this non-linear

dataset.

4.2 Missing data: metabolite data

The performance of the missing value estimation techniques was

also assessed using a real experimental dataset. For that we used a

completely available set of 140 metabolites from our cold stress

experiment, see section 5 for more details. Different percentages of

values were randomly removed and regarded as missing for the

estimation techniques. A good overall missing value estimation

is obtained for up to 50 percent missing values. This unexpectedly

high rate might be caused by the high redundancy in the data,

possibly due to high connectivity or dependency among the meta-

bolites. By comparing the different techniques, we first found that

BPCA gives the best average over all 140 metabolites, (Fig. 5). But

instead of a good average we are interested in a good estimation of

the most important metabolites. As our data values are ratios,

see section 5.1, a high variance indicates an important metabolite.

Therefore, we compared the performance on the first n metabolites

of highest variance which mostly also show a strong non-linear

behaviour. Now the results are different, (Fig. 6). The inverse

NLPCA and SOM, which perform almost equally well, give the

best result at the first five most important metabolites, and perform

almost as equally well as the result of PPCA with the remaining

metabolites.

4.3 Missing data: gene expression data

To obtain a fair and comprehensive comparison, we also tested the

performance of the missing data estimation using a larger set of

gene expression data obtained from the same cold stress experiment.

The data were again transformed to log2 ratios, relative to the

median of control samples at time zero. In total, 16 996 genes

were reduced to 1000 of highest log ratio variance. These genes

are expected to be most important as they show the largest relative

expression change. Twenty-one samples were measured at seven

different time points.

Again, instead of a good averaged missing value estimation over

all genes, we are interested in a good estimation of the most

important genes, those of highest relative variance. Therefore,

the cumulative mean square error (MSE) for the first 30 genes of

highest ratio variance is shown (Fig. 7). The results differ from those

on the metabolite dataset in Figure 6. All methods give quite similar,

but significantly better, results than naive substitution by the mean

of the residual values of each gene. However, BPCA which was

developed for this kind of high-dimensional datasets, gave the best

result for both the averaged estimation (not shown) and the estima-

tion for the first n genes as shown in Figure 7. BPCA is successful

because it uses principal components in the lower dimensional data

space given by the small number of samples and not by the genes.

Similar results can therefore also be obtained by the similar tech-

nique of PPCA when applied to the transposed dataset. However,

the advantage of BPCA is that no parameter k, the number of used

components, has to be chosen as is necessary with PPCA. The

results of NLPCA were also improved when applied to the trans-

posed matrix, and with the use of more than one non-linear com-

ponent (k¼ 4). However, there might be no advantage of a

non-linear technique applied to the transposed dataset as a non-

linear data structure in gene data space does not necessarily lead

to a non-linear structure in sample space (where genes are data

points).

Consequently, for estimating missing values in large gene expres-

sion datasets BPCA is a good choice. In datasets with a smaller

number of variables, as is typical for metabolite or protein datasets,

other methods are more suitable. These include non-linear tech-

niques, such as NLPCA or SOM, when the data are non-linearly

distributed. Both the gene expression and metabolite datasets, are
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Fig. 6. In contrast to Figure 5 we have considered only the top n metabolites

of highest variance, n¼ 1, . . . , 20, at a fixedmissing value rate of 10%.As the

dataset contains ratios, a metabolite with a high variance is assumed to be

important. The results differ from those in Figure 5. Here, BPCA gives no

very good result, but still better than KNNimpute (k¼ 10 neighbours). The

best result of PPCA was given with k¼ 5 components. However, at the first

five metabolites, this result could still be outperformed by the non-linear

techniques, the inverse NLPCA and SOM, which perform almost equally

well. All techniques show an abrupt rise at the 9th metabolite (citramalic

acid), caused by badly distributed data.
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available at http://nlpca.mpimp-golm.mpg.de. However, our major

objective is to detect non-linear components in incomplete datasets.

As these components should explain the experimental factors in

the data space given by genes (where samples are data points) a

transposed matrix is of no use.

5 APPLICATION

The proposed inverse NLPCA model was used to analyse the meta-

bolite response of A.thaliana to cold stress at 4�C. This gives us an
approximation of the mapping function from a given time point ti

to the metabolite responses x, and hence we obtain a ‘noise-free’

model of the biological cold stress response.

5.1 Data acquisition

We have used gas chromatography/mass spectrometry (GC/MS)

to measure 497 metabolites at seven different time points, at 0,1,

4,12,24,48 and 96 h, time point zero represents the control samples;

Only 140 metabolites had available measurements for all samples,

these metabolites were used in the previous section 4.2 to test the

different methods for missing value estimation. In this experimental

section the inverse NLPCA is applied to all metabolites which have

<1/3 missing values. After removing 109 metabolites, the final

dataset contains 388 metabolites (140 complete, 248 incomplete)

and 52 samples at seven different time points (7–8 samples per time

point).

The data are transformed to log fold changes (log ratios).

All measurements of each metabolite xi¼ x1i ‚ . . . ‚ x52i

� �T
are divided

by the median of the control samples at time point zero. Con-

sequently, we are analysing ratios of metabolite concentrations

with respect to a control time point. The logarithm log2 is used

to get symmetric changes: xnormed¼ log2
�

x
median xcontrolð Þ

�
.

5.2 Model parameters

As inverse NLPCA model, we have used a network with a [3-20-

388] architecture. This means we have extracted three non-linear

components; 20 non-linear hidden units were used to perform the
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non-linear transformation, and 388 metabolites were approximated.

The training was done in 300 iterations. To limit the complexity of

the model we also added a weight decay term to the error function

Etotal ¼E+ nð
P

i w2
i +
P

j z2j Þ with n¼ 0.001 and we have extracted

the second and third component in a hierarchical order (Scholz and

Vigário, 2002), which stabilizes the first component.

The inverse NLPCA model gives us a non-linear transformation

from three estimated non-linear components to a 388 dimensional

metabolite dataset. This is shown in Figure 8 for the top three

metabolites of highest variance.

5.3 Results

The extracted first non-linear component is directly related to the

experimental time factor, see Figure 9. This means that the global or

main information, represented by variance, is the metabolite change

over time. This time trajectory clearly has a non-linear behaviour,

see Figure 10. The time component gives a strong curve in the

original metabolite data space. It can be seen as a noise-reduced

representation of the cold stress response. The inverse model gives

us a mapping function R1!R388 from a time point t to the

response x of all considered 388 metabolites x¼(x1, . . . , x388)
T.

Thus, we can analyse the approximated response curves for each

metabolite, shown in Figure 11. The cold stress is reflected in almost

all metabolites; however, the response behaviour is quite different.

Some metabolites have a very early positive or negative response,

e.g. maltose and raffinose, whereas other metabolites show only

a moderate increase.

In classical PCA we can select the metabolites that are most

important to a specific component by a rank order of the absolute

values from the corresponding eigenvector, also termed loadings or

weights. As the components are curves in non-linear PCA, no global

ranking is possible. The rank order is different for different positions

on the curved component, hence different at different time points in

our case. However, we can give a rank order for each individual

time point by computing the gradient qi¼ dxi

dt on the non-linear time

curve at this time point. The rank order of the top 20 metabolites is

shown in Table 2 for an early time point t1 and a late time point t2.
The influence values q̂qi are the l2-normalized gradients qi,P

i ðq̂qiÞ2¼1. The gradient curves over time are shown in

Figure 11. We found that even at the last time point of the experi-

ment, 96 hours, there are still some metabolites with significant

changes in their concentrations.

6 CONCLUSIONS

NLPCA was achieved by an inverse neural network model that was

applicable to incomplete datasets. With this inverse NLPCA we

were able to extract non-linear (curved) components from datasets

with a large number of missing values. These extracted components

can be used, together with the model, to reconstruct the original

data, including the missing values. We have shown that in the case

of non-linearly structured datasets, both non-linear techniques, the

inverse NLPCA and SOM, can improve the missing value estima-

tion performance on the most important metabolites. We have

shown that in the case of non-linearly structured datasets, both

non-linear techniques, the inverse NLPCA and SOM, can improve

the missing value estimation performance for the most important

metabolites of the lower dimensional metabolite dataset. In the

P
ro

lin
e

R
af

fin
os

e
S

uc
ro

se
S

uc
ci

na
te

Maltose

S
or

bi
to

l

Proline Raffinose Sucrose Succinate

 0
 1h
 4h
12h
24h
48h
96h

Fig. 10. Scatter plot of six selectedmetabolites of highest relative variance. The extracted time component (non-linear PC 1) ismarked by a curve, which shows a

strong non-linear behaviour.

Non-linear PCA: a missing data approach

3893

 at M
PI M

olec Plant Physiology on January 28, 2013
http://bioinform

atics.oxfordjournals.org/
D

ow
nloaded from

 

http://bioinformatics.oxfordjournals.org/


larger gene expression dataset the best missing data estimations

were obtained by BPCA and PPCA.

Applied to our cold stress experiment, the first non-linear com-

ponent was directly related to the experimental time factor. Thus,

the inverse NLPCA model gives us the continuous metabolite

response over the time frame of the experiment. This trajectory

over time is helpful to get a better understanding of the cold stress

response. For each time point, including interpolated time points,

we are able to give a ranked list of the most important metabolites,

analogous to a global ranking in PCA.

The cold stress response clearly showed a non-linear behaviour

over time, at the metabolite level (Kaplan et al., 2004). A similar

non-linear behaviour was also found in gene expression data from

the same cold stress experiment (data not shown). This non-linear

analysis can therefore be done in the same way for such data.

Non-linearities are not restricted to temporal experiments, they

can also be caused by other continuously changing factors, e.g.

different temperatures at a fixed time point. Even natural pheno-

types often take the form of a continuous range (Fridman et al.,
2004), where non-linearities could exist.
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