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Abstract

The systematic accumulation of gene expression data,

although revolutionary, is insufficient in itself for an

understanding of system-level physiology. In the post-

genomic era, the next cognitive step is linking genes to

biological processes and assembling a mosaic of data

into global models of biosystem function. A dynamic

network of informational flows in Arabidopsis plants

perturbed by sulphur depletion is presented here. With

the use of an original protocol, the first biosystem

response network was reconstructed from a time series

of transcript and metabolite profiles, which, on the one

hand, integrates complex metabolic and transcript data

and, on the other hand, possesses a causal relationship.

Using the informational fluxes within this reconstruc-

tion, it was possible to link system perturbation to

response endpoints. Robustness and stress tolerance,

as consequences of scale-free network topology, and

hubs, as potential controllers of homeostasis mainten-

ance, were revealed. Communication paths of propa-

gating system excitement directed to physiological

endpoints, such as anthocyanin accumulation and en-

forced root formation were dissected from the network.

An auxin regulatory circuit involved in the control of

a hypo-sulphur stress response was uncovered.

Key words: Auxin, causality, metabolome, network, network

topology, plait concept, scale-free network, sulphur metab-

olism, systems biology, transcriptome.

Introduction

Living organisms are complex multi-elemental, multi-

functional systems existing in ever-changing environments.

The viability of the system is provided via flexible and effect-

ive control circuits of multiple informational fluxes inter-

connecting in a dense network. This hierarchically organized

network of negative feedback stimuli subordinate to superior

positive feedback is so fundamental that it has been proposed

as a minimal but sufficient definition of life (Korzeniewski,

2001). Unravelling such networks will allow global models

of biosystem function to be characterized.
Network reconstruction and analysis are starting to be

widely used to characterize and predict biosystem behav-

iour, giving rise to a new branch of biological knowledge,

‘network genomics’ (Forst, 2002). Until recently, such

analyses have been limited to one level of manifestation

of the genetic information, i.e. transcript networks (Thieffry

et al., 1998, Shen-Orr et al., 2002; Rosenfeld et al., 2002;
Featherstone and Broadie, 2002) or metabolic networks

(Schuster et al., 2002; Fiehn and Weckwerth, 2003). How-

ever, changes in transcript levels are transferred to changes in

metabolite levels and thereby to physiological endpoints via

adaptations of physiology and homeostasis. Therefore, pro-

gressive system characterization involves integrating multiple

levels of realization of the genetic information, for example,

by superimposing transcript, protein, and metabolite profiles.
In a recent study, correlation analysis between the yeast

transcriptome and proteome revealed that yeast sequesters
sulphur during Cd2+ detoxification (Fauchon et al., 2002).
Attempts to combine transcript and metabolic data in
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a correlation analysis have been undertaken by Askenazi
et al. (2003), revealing pair-wise associations between fun-
gal genes and two metabolites important for bioengineering,
and by Urbanczyk-Wochniak et al. (2003), revealing genes
correlating reliably to nutritionally important metabolites.
As another approach to integrate transcriptome and

metabolome, data are mapped on known metabolic path-
ways (Grosu et al., 2002; Hirai et al., 2004). Among
software tools suitable for such visualizations, AraCyc
(http://www.arabidopsis.org/tools/aracyc/, Mueller et al.,
2003) and MapMan (http://gabi.rzpd.de/projects/MapMan/,
Thimm et al., 2004) are designed especially for Arabidopsis.
The latter approach, however, is based on legacy and static
metabolic data, so it generally does not allow previously
unknown biochemical or regulatory pathways to be identi-
fied. The elucidation of informational fluxes linking input
signals with response endpoints must be possible from
a network which integrates transcriptional and metabolic
changes in an unbiased way. In the course of the study
presented here, an unbiased gene-metabolite network of
correlations was reconstructed from transcript and metabolite
profiles and the resulting informational fluxes controlling the
systems response to sulphur deprivation in Arabidopsiswere
analysed.

Materials and methods

Physiological experimenting: transcript and

metabolite profiling

For sulphur-starvation experiments, Arabidopsis thaliana genotype
Col-0 plants were grown on a solidified agarose medium in sterile
Petri dishes (half-normal Murashige-Skoog salts for control sulphur-
sufficient medium, 89% less sulphur for sulphur-depleted medium).
Sulphur depletion was applied as constitutive stress (germination and
growth on sulphur-deficient medium for 10 d or 13 d) and induced
stress (germination on normal medium for 8 d, then the transfer of
seedlings to a sulphur-deficient medium for 6 d or 10 d); seedlings
grown on sulphur-sufficient medium were used as the four corres-
ponding controls. Material for each of eight experimental points was
collected as whole seedlings, in five repetitive pools, containing
500–600 plants in each pool. The experiment is described in detail
previously (Nikiforova et al., 2003). The same plant material was
used for RNA isolation followed by the transcript profiling technique,
as well as for metabolite profiling, elemental sulphur, thiol, and
anthocyanin measurements (using GC-MS, HPLS, ICP-AES, and
spectrophotometry). As a result of these studies, a sulphur-deficient
transcriptome (Nikiforova et al., 2003) and metabolome (Nikiforova
et al., 2005) was described, providing a basis for the reconstruction of
an integrated gene-metabolite network.

Network reconstruction protocol

To reconstruct a causal gene-metabolite network of statistically
significant correlations, the original algorithm was elaborated (de-
scribed and discussed in detail below). A condensed overview on
the applied techniques is provided here. First, the transcript and
metabolite profiles were combined in dataset 1 which consisted of
6454 non-redundant genes and 81 non-redundant chemical com-
pounds, or ‘metabolites’, all containing relative concentration levels
at eight experimental points. Then, the following step-by-step pro-

tocol was used to reconstruct the response gene-metabolite network
from the transcript and metabolite profiles.

(i) From dataset 1 those genes were selected which correlated to
sulphur and sulphur-responding metabolites (Fig. 1A). For this:
(a) a Pearson correlation coefficient r between each of the
sulphur-responding metabolites and the whole set of genes
from dataset 1 was calculated. (b) The gene expression part of
dataset 1 was shuffled 1000 times. (c) With the produced 1000
shuffled datasets step (i, a) was repeated 1000 times for each of
the sulphur-responding metabolites. Distributions of r for the
original and shuffled datasets were analysed. (d) Genes, corre-
lating reliably to sulphur-responding metabolites, were deter-
mined from the comparisons of r distributions in the original and
shuffled datasets, if they appeared in a histogram bin, that
contains at least two times more genes from the original dataset
than from shuffled datasets (Fig. 1A, lower graph).

(ii) Transcript levels for a set of genes, purified from noise in step (i),
were combined with a dataset of 81 metabolites into dataset 2.

(iii) The Pearson correlation coefficient (r) distance matrix and the
mutual information (MI) distance matrix of dataset 2 were
calculated, transformed for compatibility (tr and tMI), and
plotted (Fig. 1B, blue dots).

(iv) Dataset 2 was shuffled.
(v) r distance matrix and MI distance matrix of shuffled dataset 2

were calculated, transformed for compatibility (tr and tMI),
and plotted (Fig. 1B, purple dots).

(vi) tr and tMI distance matrices of the original dataset 2 were
overlaid with tr and tMI distance matrices of the shuffled
dataset 2 (Fig. 1B).

(vii) Noise correlations were cut off by setting graphically a thresh-
old for overlaid matrices (Fig. 1B, dotted lines) in a border of
the area strongly covered by associations from the shuffled
dataset; as a result significant pair associations, gene/gene,
gene/metabolite, or metabolite/metabolite, that were accept-
able for network reconstruction were determined (Fig. 1B,
shadowed area).

(viii) A response gene-metabolite network was formed by pair-wise
connection of genes or/and metabolites from all significant
associations.

Equations and algorithms

To make calculations of Student’s t-test and the Pearson correlation
coefficient r, an algorithm incorporated into the Microsoft Excel 2000
software program was used.
To calculate mutual information (MI), the algorithm described by

Steuer et al. (2002) was used, incorporated into the MetaGeneAlyse
web tool (Daub et al., 2003), and improved with B-spline functions
(Daub et al., 2004).
To threshold noise correlations, original datasets were shuffled

with an over-sampling rate of 1000 with the use of an original
algorithm, incorporated into the MetaGeneAlyse web tool (Daub
et al., 2003).
To produce compatible correlation matrices, equations for r andMI

calculations were transformed in a way to have the strongest
correlations approaching 0 (tMI for transformed MI and tr for
transformed r), according to the following equations, incorporated
into the MetaGeneAlyse web tool was used:

tr =
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ð1� jrjÞ

p
ð1Þ

tMI = 1�MI=MImax ð2Þ

To visualize the reconstructed network, the Pajek computer
program for large network analysis (http://vlado.fmf.uni-lj.si/pub/
networks/pajek/; Batagelj and Mrvar, 1998) was used.

1888 Nikiforova et al.
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Results and discussion

Integrating transcript and metabolite profiles into
one dataset

For an integrated analysis, total RNA and hydrophilic
metabolites were isolated from the same samples (five
repetitions each; each repetition a pool of 500–600 seed-
lings) and used to obtain transcript profiles by array
hybridization (Nikiforova et al., 2003) and metabolite
profiles by gas chromatography-mass spectrometry (GC-
MS) analysis (Nikiforova et al., 2005). Relative transcript
amounts for 6454 non-redundant genes and relative con-
centrations of 81 non-redundant chemical compounds (78
detected by GC-MS plus sulphur, glutathione, and antho-
cyanins measured using other methods) were determined at
eight experimental points under conditions of constitutive
and induced sulphur starvation, which lasted for 6–13 d.
The entire compilation of these experimental data points is
subsequently called dataset 1.

Reconstructing a statistically significant response
network

During the developing hypo-sulphur stress, concentration
levels of sulphur-responding genes and metabolites
changed differentially in a time-dependent manner, forming
distinct alteration patterns. Assuming that the more similar
the pattern, the shorter the distance between genes and
metabolites in the communication network, existing in

a plant as a biosystem, the combined gene/metabolite
distance matrix was calculated for dataset 1 using Pearson
correlation coefficient r.

For the number of transcripts (6454) and metabolites (81)
determined, the number of all possible pair-wise correl-
ations, constituting a correlation matrix, is very large
((6454+81)2/2 equals about 21.4 million). Inherently this
contains a correspondingly large noise component. To
decrease dataset 1 by its putative noise component, only
those genes which correlate reliably to sulphur and sulphur-
related metabolites glutathione, anthocyanins, allantoin, O-
acetyl-serine, putrescine, raffinose, serine, tryptophan, and
uric acid (assigned as being significantly altered by sulphur
depletion) were kept for further analysis. To detect these
genes, the original dataset 1 was first shuffled (or random-
ized). From the shuffling of the dataset and recalculation of
a distance matrix based on the shuffled dataset it is possible
to estimate a significance threshold. The smallest distance
calculated from the shuffled dataset can be regarded as the
upper significance threshold for the unshuffled case. The
applied shuffling algorithm of the MetaGeneAlyse tool
(Daub et al., 2003) works on a dataset row by row. Within
each row two values are randomly chosen and exchanged.
For n values in a row an over-sampling rate of o exchanges
n3o pairs of values. For dataset 1, where each row
represented one gene or metabolite with corresponding
eight values, an over-sampling rate of 1000 was used. The
distribution of values within a row was conserved. By this
procedure, 1000 shuffled datasets were generated and

Fig. 1. Response network reconstruction. (A) Determining genes correlating reliably to serine as an example of sulphur-responding metabolites. The
upper graph: distribution of Pearson correlation coefficient r for genes from original (thick dark-blue curves) and shuffled (thin curves) datasets; error
bars are standard deviations calculated from 1000 shufflings. The lower graph: histograms showing the distribution of Pearson correlation coefficient r.
Those bins containing at least two times more genes from the original dataset than from shuffled datasets are shadowed; numbers of genes in these bins
are depicted. Genes appeared in these bins were combined in a new dataset 2. (B) Scatter plot of associations, gene/gene, gene/metabolite, or metabolite/
metabolite, plotted as dots with corresponding values for transformed Pearson correlation coefficient (tr) and transformed mutual information (tMI), for
the original (blue) and shuffled (red) datasets. Arrows indicate the increasing correlation strength, with the strongest correlations approaching 0 (due to
transformation). Threshold limits are depicted with dotted lines. The shaded area contains associations selected for network reconstruction.
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assumed to contain no sense information except noise.
Then, correlation matrices were calculated from these 1000
shuffled datasets and compared with the correlation matrix
of the original dataset (step 1 of the ‘Network reconstruc-
tion protocol’ above). A case example is shown in Fig. 1A.
There, the correlation of serine with respect to all genes is
shown as a function of the number of genes displaying
a certain correlation coefficient. As expected, the vast
majority of genes displays low r-values between �0.8 and
0.8. Distance matrices of all shuffled datasets, although not
identical, produced highly similar distributions of r, which,
however, were clearly different from those produced by
original distance matrices, derived from the experimental
data (Fig. 1A, upper graph). This observation was taken as
an important argument for the robustness of the method
with respect to noise.
Now, in order to filter the genes correlating reliably to

sulphur and sulphur-related metabolites, the following
discrimination criterion was introduced: the correlations
were assumed to be reliable if the number of correlating
genes in an analytical bin in a histogram of the distribution
of analytical and virtual distances (Fig. 1A, lower graph) is
at least 2 times higher than in a virtual bin of the shuffled
dataset. Based on this assumption, those bins which were
shaded in Fig. 1A were considered to contain reliably
correlating items. Genes fulfilling these selection criteria
were combined within a new noise-free dataset (dataset 2),
which was used for response network reconstruction.
However, uneven distribution of the measured values of

sulphur and some metabolites resulted in a weak relevance
based on the Pearson correlation coefficient. Therefore, in
addition, new distance matrices were calculated for the
same dataset 2 (original and shuffled), using mutual in-
formation (MI) as another correlation measure, independent
of the uneven value distribution (Butte and Kohane, 2000;
Steuer et al., 2002; Daub et al., 2004). Finally, to identify
significantly correlating associations acceptable for net-
work reconstruction, it was necessary to estimate the
threshold for correlation reliability by superimposing the
distance matrices obtained for both approaches (i.e. Pearson
correlation r andMI, for original and shuffled datasets) with
the idea to consider only those associations for which both
methods pointed to a reliable correlation. However, differ-
ent maxima for the strongest correlations calculated with
the use of r andMI prevented the direct comparison of both
matrices. Therefore, to produce compatible matrices, the
equations for r and MI calculations were transformed (see
‘Equations and algorithms’ above). After transformation,
high correlations resulted in small values for both matrices,
with the strongest correlations approaching 0 (tr for trans-
formed r, equation 1, and tMI for transformedMI, equation
2). Now, by overlaying the calculated analytical tMI and tr
matrices (Fig. 1B, blue dots) and virtual tMI and trmatrices
of the shuffled dataset (Fig. 1B, purple dots), the threshold
for correlation reliability was estimated graphically. The

peak with tMI around 0.5, which is present in both original
and shuffled datasets, contains associations with outlying
values, which would be detected falsely as positive using
the Pearson correlation coefficient alone. From the over-
laying matrices, the area strongly covered by associations
from the shuffled dataset was cut off. As a result, acceptable
values for correlations to be considered in the network
reconstruction were finally found as follows: tr<0.45 (|r| >
0.9) and tMI<0.3 (Fig. 1B, shaded area).

Now, based on the central assumption on item co-
behaviour as introduced above (i.e. the more similar the
pattern, the shorter the distance between genes and metab-
olites in the communication network), a response commu-
nication network was reconstructed by establishing
a connecting link between paired elements, gene/gene,
gene/metabolite, or metabolite/metabolite, if an association
of these two elements appears among those defined as
significantly correlated (shaded area in Fig. 1B). Under the
chosen connectivity thresholds, the reconstructed network
contained 541 elements (vertices) and 5212 associations
(edges).

Global properties of the reconstructed response
network suggest robustness and stress tolerance
of the underlying biological system

The systems response develops by propagating through the
network of informational flows reconstructed in the course
of the present study. The key aspects of network function-
ality can be predicted directly from its structure (Albert
et al., 2000; Jeong et al., 2000; Stelling et al., 2002). The
network connectivities k (6.6 in average) were distributed
extremely non-homogeneously. The distribution probabil-
ity N(k) had a linear tail for large k, following a power law
N(k); k�c, with the exponent c=2.27 (Fig. 2A). This value
lies within the c range found for large networks of different
nature, that is, between 2.1 and 4 (Barabasi and Albert,
1999). Such non-homogeneously-wired networks, called
‘scale-free networks’ (Barabasi and Albert, 1999), possess
a number of universal characteristics. One of them is high
tolerance to errors due to high robustness (Albert et al.,
2000). Local errors/changes rarely lead to the loss of the
global information-carrying ability of the network, as was
demonstrated for both in silico and in vivo mutagenesis
studies for the E. coli metabolic network (Edwards and
Palsson, 2000). However, highly connected nodes (hubs)
are the sites of system vulnerability in scale-free networks
(McCabe, 2002; Clipsham et al., 2002). Critically import-
ant for network stability, hubs can be considered as
putative controllers of homeostasis maintenance. In Table
1, vertices with the highest number of connectors (20–32)
are listed. When analysing which of the different functional
categories of genes shows the highest number of connectors
(Table 2), it becomes clear that nucleotide metabolism,
protein destination, and intracellular transport are the three
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most hub-rich functional categories. This finding resembles
gene expression networks in E. coli (Thieffry et al., 1998),
where the largest group of hubs is represented by protein
synthesis and destination genes. By contrast, genes in-
volved in protein synthesis and subclass translation dis-
played the lowest overall connectivity (2.5), which may
result from the precise adjustment of the enzymes involved
in the regulation of translation, whereas ribosomal proteins,
which are able to associate with a variety of proteins,
provide higher than average connectivity in the network
(8.1) (Table 2).

Yeast’s general ability to compensate for individual
mutations has been proposed to be largely a result of
the scale-free properties of its gene expression network
(Featherstone and Broadie, 2002). This conclusion has been
extended here to a gene-metabolite communication net-
work of a multicellular organism maintaining homeostasis
during nutritional stress. The scale-free network topology
suggests that the stability of the newly formed homeo-
stasis under sulphur-limiting conditions is due to a high
redundancy of gene/metabolite communication paths, trig-
gered by critical changes in non-redundant excitement-
accumulating hubs.

Implementing a causal relationship to the
reconstructed response network

The characteristic feature for both applied methods of
calculating correlation distance matrices (the Pearson
correlation coefficient and mutual information) is non-
causality: nothing in the definition of correlation implies
that the relation between two variables is one of cause and
effect. For the network reconstructed from these matrices,
this implies that the direction of informational flows
between elements is not defined (Fig. 2B). However, it is
assumed here from a priori knowledge of the primary cause
of system excitement, i.e. depletion of sulphate from the
medium, that the changed sulphur level is the starting point,
or excitation, for the response development. In keeping

Fig. 2. Global properties of the reconstructed network. (A) Inhomogeneous distribution of vertex connectivities; the average number of links per vertex
is depicted with an arrow. On the embedded graph the probability distribution function N(k) of k connectivities (log-log scale, base 10) has a power-
law tail with an exponent c=2.27 (the slope of the dashed line). (B) Original response network profile; (C) network profile with centralized S provides
‘cause-to-effect’ relationship.

Table 1. List of network elements (vertices) with the highest
number of connectors

Network
element

Number of
connections

Functional annotation (for genes)a

At4g02080 32 SAR1/GTP-binding secretory factor
Sulphur 31
At3g49580 30 Putative protein
At4g36760 29 Aminopeptidase-like protein
At5g63600 28 1-Aminocyclopropane-1-carboxylic

acid oxidase-like
At5g48000 28 Cytochrome P450-like protein
At5g25890 28 IAA28
At5g13800 27 Hydrolase, alpha/beta fold family

(http://www.tigr.org)
Serine 27
At3g01420 27 Feebly-like protein
At3g14210 27 Myrosinase-associated protein, putative
At1g36370 26 Putative hydroxymethyltransferase
At2g17190 26 Putative ubiquitin-like protein
At3g05160 25 Putative sugar transporter
At2g27530 25 60S ribosomal protein L10A
At5g64350 25 Immunophilin
At2g05840 24 20S proteasome subunit (PAA2)
At2g47650 23 Putative nucleotide-sugar dehydratase
At4g11320 23 Drought-inducible cysteine proteinase

RD21A precursor
At5g11670 22 NADP dependent malic enzyme-like

protein
At4g29040 22 26S proteasome subunit 4-like protein
At2g27710 22 60S acidic ribosomal protein P2
At5g52240 22 Progesterone-binding protein-like
At5g37600 21 Glutamate–ammonia ligase
At1g02000 21 Nucleotide sugar epimerase, putative
At3g27830 21 50S ribosomal protein L12-A
At5g67560 21 ADP-ribosylation factor-like protein
At5g55190 21 Small Ras-like GTP-binding protein
At4g13930 20 Hydroxymethyltransferase
At5g19440 20 Cinnamyl-alcohol dehydrogenase-like

protein
At5g53350 20 ATP-dependent Clp protease regulatory

subunit CLPX
At2g21870 20 Putative ATP synthase
At1g75270 20 GSH-dependent dehydroascorbate

reductase 1, putative

a Gene annotations were derived from the Arabidopsis thaliana
database (MATDB) at the server of Munich Information Center for
Protein Sequences (MIPS, http://mips.gsf.de/proj/thal/db).
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with this assumption, by centralizing the vertex ‘sulphur’,
a general ‘cause-to-effect’ directionality of information
fluxes along network paths from sulphur to distant elements
has been implemented (Fig. 2C).

Mining the reconstructed network 1: combination with
legacy data

In addition to its general topology and characteristics,
which are indicative for properties of the given biological
system, a network such as that shown in Fig. 2C contains
important biological information relating to individual
pathways. In this network, sulphur itself is a typical hub
with a close to maximal number of direct connectors—31
(Table 1), and an even higher number of second order
connectors (those which connect to direct connectors),
about 200. To extract indicative routes of informational
fluxes, which are directed to sulphur-responding metabo-
lites, from such an interlaced net certain branches of
connectivity were selected with the following procedure.

In the upper region with regard to a certain metabolite (i.e.
between sulphur and the metabolite) only those links
belonging to a path ‘sulphur—the metabolite’ were left;
in the lower region all existing links were left (Fig. 3A).

Applying the same unravelling procedure, another, now
hormone-related fragment was isolated from the network
(Fig. 3B).

Mining the extracted fragments provided examples of
where the reconstructed network confirms and extends
existing data, or leads to new knowledge. For a case in
point, the positions of O-acetyl-serine (OAS), an important
indicator of sulphate deprivation in plants (Nikiforova
et al., 2003; Hirai et al., 2003), and N-acetyl-serine
(NAS) were investigated. NAS is derived from OAS by
non-enzymatic intramolecular O- to N-acyl migration
(Flavin and Slaughter, 1965). Their relative concentrations
are highly interdependent, and so both metabolites have
to show coupled alterations in relative concentration levels,
as is indeed reflected in their close network positioning:
OAS and NAS appear in the network as closely connected
vertices, equally distant from sulphur (connectors of the
2nd order, marked with green, Fig. 3A).

As another illustration, the flows of information process-
ing regarding tryptophan were examined. In a previous
study, it was suggested that the increase in tryptophan
observed in sulphur-deprived plants could be explained
by assuming that the reduced level of cysteine leads to
a surplus in serine, which is subsequently converted into
tryptophan (Nikiforova et al., 2003). It has to be empha-
sized that this hypothesis was based on legacy data regard-
ing biochemical pathways (for an overview of amino acid
biosynthesis in plants, see Coruzzi and Last, 2000). In this
respect, it is remarkable that the reconstructed network
which was created solely on ungoverned analysis of co-
behaviour of genes and metabolites displays only one path
from sulphur to tryptophan, and this path runs via serine
(Fig. 3A), therefore corroborating the hypothesis raised
previously. Further, it is worth mentioning that the causal
directionality ‘sulphur–serine–tryptophan’ could only be
detected due to the centralized position of sulphur, which
was implemented to the reconstructed network as a priori
knowledge of the system exciter. This example was
regarded as a striking case for the usefulness of the
reconstructed network as a concept tool for identifying
biological paths of communication.

Mining the reconstructed network 2: finding paths from
system exciter to physiological endpoints

The systemic response of plants to sulphur deprivation
results in several endpoints of biochemical pathways and
physiological reactions, such as increased root formation
and accumulation of anthocyanins (Nikiforova et al.,
2003). Alhough both physiological events are typical
reactions to stress (Malamy and Ryan, 2001; Steyn et al.,

Table 2. Average numbers of connections for genes from
the reconstructed network, belonging to different functional
categories

Functional category class/subclassa Average number
of connections

Metabolism (01) 6.9
Amino-acid metabolism (01.01) 6.2
Nitrogen and sulphur metabolism (01.02) 4.8
Nucleotide metabolism (01.03) 17.4
Phosphate metabolism (01.04) 6.4
C-compound and carbohydrate
metabolism (01.05)

6.5

Lipid, fatty-acid and isoprenoid
metabolism (01.06)

5.7

Secondary metabolism (01.20) 8.1
Energy (02) 8.3
Electron transport and energy
conservation (02.11)

8.9

Respiration (02.13) 8.0
Cell growth, cell division and dna synthesis (03) 6.2
DNA synthesis and replication (03.16) 4.0
Cell cycle control and mitosis (03.22) 6.5

Transcription (04) 5.9
rRNA processing (04.01.04) 4.0
mRNA transcription (04.05) 5.7

Protein synthesis (05) 6.9
Ribosomal proteins (05.01) 8.1
Translation (initiation, elongation
and termination) (05.04)

2.5

Protein destination (06) 11.0
Protein folding and stabilization (06.01) 9.2
Protein targeting, sorting and
translocation (06.04)

9.4

Assembly of protein complexes (06.10) 11.8
Proteolysis (06.13) 12.5

Transport facilitation (07) 5.9
Ion transporters (07.04) 4.4

Intracellular transport (08) 9.9
Intracellular signal transduction (10.01.01) 6.8

a Genes were assigned to functional categories automatically using the
Arabidopsis thaliana database (MATDB) at the server of Munich
Information Center for Protein Sequences (MIPS, http://mips.gsf.de/
proj/thal/db).
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2002; Lopez-Bucio et al., 2003), both do develop in
sulphur-starved plants and thus they were traced in the
reconstructed network.

As shown in Fig. 3A, vertex ‘anthocyanins’ displays
only two links, and both are upstream-positioned. Among
all the metabolites, this was the only one that did not
possess any link to parallel or downstream vertices. Such
positioning is considered as a path leading from the system
exciter to a communication endpoint, in agreement with the
identification of anthocyanins as a physiological endpoint
of stress response.

As an example of new biological information resulting
from the reconstructed network analysis, a path to another
physiological endpoint is presented, i.e. enhanced root
formation, represented by an auxin spindle (Fig. 3B).

Starting from sulphur, several interlacing redundant paths
pass nitrilase 3 and a putative myrosinase-associated pro-
tein, both involved in auxin biosynthesis, and then lead via
the auxin signal transduction factor calmodulin 3 to the
hub-forming node IAA28, an auxin-related transcriptional
factor, known to be mainly expressed in roots (Rogg et al.,
2001). Analysis of IAA28 expression history in the
Stanford Microarray Database (http://www.stanford.edu/
microarray; Gollub et al., 2003) provided experimental
evidence that IAA28 is, first, involved in the auxin signal
transduction cascade, and second, in a conditional manner:
the IAA28 gene was significantly over-expressed after
exogenous auxin treatment only in the background of the
Arabidopsis IAA24 mutant (described in Przemeck et al.,
1996; Hardtke and Berleth, 1998; Berleth et al., 2000)

Fig. 3. Extracted fragments of the gene-metabolite response network, visualized with the Pajek computer program for large network analysis (http://
vlado.fmf.uni-lj.si/pub/networks/pajek/). Gene vertices are depicted as circles, metabolite vertices as squares. Vertices of different distance from sulphur
(cyan) are marked with different colours: direct connectors are yellow, the connectors of the next orders are lime-green, then red, then blue. (A) A
network fragment containing paths from sulphur to sulphur-responding metabolites. (B) A hormone-related network fragment. The jasmonate-related
path and the discussed auxin-related spindle are shown with dotted arrows.
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(experiment IDs 26716-26717, experimenter T Berleth). It
should be stressed that this distinction has not been
articulated before, even though the array data have long
been publicly available. With this example, it was demon-
strated that a hypothesis created by reconstructed networks
can seed specific searches for verification in array data-
bases. In this case, the data specifically derived from the
IAA24 mutant profiles are in full agreement with the
supposed role of IAA28 in auxin signalling. It is important
to emphasize that, with the increasing growth of publicly
available databases, such experimental verification of
network-derived hypotheses, arising from, for example,
mutants, will become of increasing importance.
The detected auxin spindle extends previous observa-

tions regarding auxin-related signalling (Fig. 4). Sulphur-
deficient homeostasis causes a surplus metabolic flux via
auxin and the activation of auxin-induced genes (Hirai
et al., 2003; Nikiforova et al., 2003). The altered auxin
content triggers changes in free calcium levels in plant cells
(Felle, 1988; Gehring et al., 1990; Kalra and Bhatla, 1999),
which are sensed by calmodulin. The interaction between
auxin and calmodulin has been confirmed experimentally
(Naren et al., 1995; Okamoto et al., 1995; Choi et al., 1996;
Yang and Poovaiah, 2000), thus proving the relevance of
this part of the path derived from the network. As a novel
finding extending this path it is proposed that activated
calmodulin influences the expression of the IAA28 gene,
based on their relative positions within the reconstructed
sulphur response network. In turn, IAA28 represses the

transcription of auxin-induced genes, as shown by a gain-
of-function mutation in IAA28 (Rogg et al., 2001). Thus,
by incorporating the network-derived interaction between
calmodulin and IAA28 the auxin signalling path has been
extended to a closed circuit (Fig. 4), thus providing a new
example of the feedback control of multiple informational
fluxes, and new evidence for the fundamental principle of
a living system as a network of inferior negative feedback
subordinate to a superior positive feedback.

At first sight, transcriptional repression of auxin-induced
genes under conditions of depleted nutrient supply, which
fosters exploitation of new soil layers by enhanced root
growth, seems difficult to reconcile. However, the meta-
bolic overflow to auxin caused by sulphur deficiency via the
path ‘sulphur–serine–tryptophan’ (proposed by Nikiforova
et al., 2003, and detected as an information flux in the
reconstructed hypo-sulphur response network, present
study) may well require negative feedback control over
the expression of auxin-induced genes, which can be
provided via the activity of IAA28. For the overall survival
strategy of a plant as a system, feedback auxin regulation
can serve as a way to save resources under conditions in
which further root enforcement leads to fatal resource
expenditure and, as a result, the inability to set seeds for
a new generation.

Mining the reconstructed network 3: check on reliability

The implemented causal directionality allows hub input
(upstream positioned) and output (downstream positioned)
signals to be distinguished. If a hub is formed by a gene
involved in transcriptional regulation, then in comparative
promoter analysis hub output genes are expected to contain
common motifs in their promoter regions. This expectation
comes solely from the network topology analysis and
therefore can serve as a check for reliability in network
reconstruction. As an example, statistical motif analysis
was undertaken in promoter sequences of IAA28 input and
output genes, as hub-forming IAA28 possesses the highest
number of the direct connectors among the genes with
annotated transcription factor activities (Table 1). Using the
tool for motif analysis available at the TAIR web page
(http://www.arabidopsis.org/tools/bulk/motiffinder/index.
jsp), twice as many common motifs were found in the
queried output, than input, promoters. This result fits the
expectation from our network topology, and thus supports
causal directionality of the reconstructed network.

Hub-containing networks support the plait concept

The reconstructed response network also highlights the
distinctions between specific and common parts of response
routes. According to the plait concept first proposed
by Nikiforova et al. (2003), the transduction of specificity
during stress responses within a non-specific signall-
ing stream is provided by the specific interlacing of

Fig. 4. The model depicts the uncovered auxin signalling circuit on the
route from sulphur as system exciter to the physiological endpoint of the
response development. Parts shown with plain arrows are based on legacy
data, while the dashed segment of the, now closed, circuit resulted from
the network analysis.
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biosynthetic pathways. In the example of the auxin-related
spindle (Fig. 3B), one can follow the specific interlacing of
correlation paths, some of which pass calcium-sensing
calmodulin. Calcium-related signalling systems are well
known to be redundant (Bowler and Fluhr, 2000; Yang and
Poovaiah, 2002), and involvement of calcium as an in-
termediate signalling molecule in responses to diverse
stresses necessitates its interactions in a combinatorial
fashion, resulting in a dense network of interactions.
Thus, calcium among other intermediate signalling mole-
cules can be considered as an element of the main non-
specific signalling stream. Such an intermediate positioning
in a signal transduction cascade may lead to cross-tolerance
against multiple stresses (Bowler and Fluhr, 2000). How-
ever, a specific signal should first reach the general non-
specific stream. As strands of hair interlace into a plait,
biological specificity at the beginning of the signalling path
connects with multiple (environmental) signals at the end,
thus providing the most effective, specific reaction. End
responses are connected by a non-specific main signalling
stream, which contains common signalling molecules, like
calcium or activated oxygen species (discussed by Bowler
and Fluhr, 2000), and which probably provides multiple
crosstalk connections between pathways, as described in
plants (Genoud and Metraux, 1999). The analysis of the
reconstructed response network showed that, besides
biosynthetic pathways, other correlation paths of either
known, or of as yet unknown, natures provide a flow of
information from initial excitement to physiological end-
points. As an extension of the plait concept, those sulphur-
specific elements belonging to the upper non-interlaced part
of the plait can now be dissected. In the network, these are
probably the vertices between sulphur and calmodulin, and
among them nitrilase 3 was indeed shown to be highly
specific for sulphur stress response (Kutz et al., 2002; Hirai
et al., 2003; Nikiforova et al., 2003).

Concluding remarks

The described approach for reconstructing gene-metabolite
communication networks with implemented causality opens
many research opportunities on systems behaviour. Indis-
pensability of the hubs for information processing suggests
examining alternative networks in which hub genes are
knocked out. In the search for response specificity, the
comparison of response networks of, for example, other
nutritional stresses, will allow the identification of nutrient-
specific response elements.

High-precision molecular tracking of resolved informa-
tional fluxes provides potential gains in the understanding
of many responses, including stress, disease, and therapeu-
tic effects. The advantages of this innovative approach can
be demonstrated as applied to stress biology or biomedicine.
When a stress/disease agent is known, tracing of signalling

pathways to response endpoints through the reconstructed
network as a whole, and the identification of control hubs
through the analysis of network topology will highlight
potential control points and lead to target drug discovery. If
the stress/disease agent is unknown, causality can be
implemented from downstream effects (endpoint reactions)
and may lead to the identification of the agent. Taken
together, reconstruction of the gene/metabolite network
with implemented causal directionality provides an exten-
sion towards a consistent development of systems biology.
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