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Abstract

Many pathogenic bacteria cause local infections but occasionally invade into the blood stream, often with fatal outcome.
Very little is known about the mechanism underlying the switch from local to invasive infection. In the case of Neisseria
gonorrhoeae, phase variable type 4 pili (T4P) stabilize local infection by mediating microcolony formation and inducing anti-
invasive signals. Outer membrane porin PorBIA, in contrast, is associated with disseminated infection and facilitates the
efficient invasion of gonococci into host cells. Here we demonstrate that loss of pili by natural pilus phase variation is a
prerequisite for the transition from local to invasive infection. Unexpectedly, both T4P-mediated inhibition of invasion and
PorBIA-triggered invasion utilize membrane rafts and signaling pathways that depend on caveolin-1-Y14 phosphorylation
(Cav1-pY14). We identified p85 regulatory subunit of PI3 kinase (PI3K) and phospholipase Cc1 as new, exclusive and
essential interaction partners for Cav1-pY14 in the course of PorBIA-induced invasion. Active PI3K induces the uptake of
gonococci via a new invasion pathway involving protein kinase D1. Our data describe a novel route of bacterial entry into
epithelial cells and offer the first mechanistic insight into the switch from local to invasive gonococcal infection.

Citation: Faulstich M, Böttcher J P, Meyer TF, Fraunholz M, Rudel T (2013) Pilus Phase Variation Switches Gonococcal Adherence to Invasion by Caveolin-1-
Dependent Host Cell Signaling. PLoS Pathog 9(5): e1003373. doi:10.1371/journal.ppat.1003373

Editor: Xavier Nassif, Faculté de Médecine Paris Descartes Necker, France

Received September 25, 2012; Accepted April 5, 2013; Published May 23, 2013

Copyright: � 2013 Faulstich et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits
unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

Funding: This work was supported by ERA-NET PathoGenoMics 2 to TFM and to TR (BMBF/PTJ FKZ 0315435B) and SFB630 to TR. The funders had no role in study
design, data collection and analysis, decision to publish, or preparation of the manuscript.

Competing Interests: The authors have declared that no competing interests exist.

* E-mail: thomas.rudel@biozentrum.uni-wuerzburg.de

Introduction

The human-specific Gram-negative bacterium Neisseria gonor-

rhoeae is the cause of the sexually-transmitted disease gonorrhea.

With more than 106 million infections per year (source: WHO) it

presents a serious threat to world health. Moreover, the current

global dramatic spread of multi-resistant gonococci and the

predicted impact of untreatable gonorrhea on HIV transmission

[1] has alarmed the WHO and initiated the release of a global

action plan in 2012 to control the spread and impact of multi-

resistant gonococci (http://www.who.int/en). Besides causing

local infections, gonococci may also spread within the host. These

systemic disseminated gonococcal infections (DGI) lead to serious

conditions such as dermatitis, sepsis, endocarditis, and arthritis

[2,3].

N. gonorrhoeae strains possess the ability to form type IV pili

(T4P), which establish an initial contact and adherence to the host

cell. Subsequently, gonococci utilize Opacity-associated (opa)

proteins to intimately bind to and invade into host cells

[4,5,6,7]. Within the 11 members of the Opa protein family, the

Opa50 protein binds to heparan sulfate proteoglycans (HSPG)

[8,9] or fibronectin and integrins [10] whereas all other Opa

proteins (Opa51-60) target members of the carcinoembryonic

antigen-related cellular adhesion molecules (CEACAM; for review

see [11]). Another route to enter primary cervical epithelial cells

requires the cooperative binding of the major outer membrane

protein PorB, pili and lipooligosaccharide to the complement

receptor type 3 [12,13]. Finally, entry of N. gonorrhoeae into non-

professional phagocytes is mediated by PorB subtype A (PorBIA).

By contrast, the closely related subtype B (PorBIB) does not confer

internalization [10,14]. This invasion mechanism is phosphate-

sensitive and independent of pili and Opa-proteins. We recently

resolved the structure of PorBIA and identified Arg/His92 as

critical for phosphate binding and invasion [15]. Exchange of

Arg/His92 highly conserved in PorBIA from DGI strains for Ser,

the respective amino acid found invariantly in all PorBIB subtypes,

leads to the loss of the invasive phenotype via this otherwise fully

functional porin [15]. This high degree of structural conservation

of invasive versus non-invasive PorB from strains associated with

disseminated versus local infection, respectively, support a role of

PorBIA in DGI. Low-phosphate conditions are found in the blood

stream and may thus allow the unmasking of a receptor-

interacting region in PorBIA [15]. While strains expressing PorBIB

can occasionally disseminate, PorBIA-expressing gonococci are

clearly overrepresented in systemic infections (20% in all versus

80% in DGI strains) [16,17,18]. Our statistical analysis revealed a

highly significant correlation of the presence of PorBIA with

disseminated gonococcal infection in different countries (see Data

Set S1). Although also other mechanism like serum resistance are

of high importance during DGI [19,20], the PorBIA-dependent

invasion mechanism is suggested to be highly clinically relevant as

a means to initiate invasive gonococcal diseases.

We have previously shown that gonococci engage the scavenger

receptor expressed by endothelial cells (SREC-I) to invade epithelial cells

in a PorBIA-dependent manner [21]. Scavenger receptors (SR)

represent a heterogenic group of membrane receptors belonging to

the pattern recognition receptors. SREC-I, like other scavenger

receptors, has been defined as receptor for modified lipoproteins
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including oxidized and acetylated low-density lipoprotein (LDL)

but it recognizes also other proteins like Gp96, calreticulin and

heat shock protein 90 (HSP90) that are no lipoproteins. The

involvement of SREC-I in PorBIA-dependent neisserial host cell

invasion is thus far the only example of a bacterial pathogen

exploiting SREC-I. The signaling cascade leading to PorBIA-

triggered bacterial uptake into epithelial cells involves Rho

GTPases and actin but, in contrast to Opa-dependent invasion,

not microtubules, acidic sphingomyelinase, myosin light chain

kinase, and Src-kinases [14].

Very little is known about the cellular signaling underlying the

switch from local to disseminated infection. Our recent data

demonstrate that Vav2- and RhoA-dependent accumulation of

actin at membrane rafts actively block invasion of piliated

gonococci [22]. Here, we investigated the mechanism of the

clinically important SREC-I/PorBIA-dependent invasion of gon-

ococci under low phosphate conditions. To our surprise, the

signaling that initiates invasion and anti-invasion of gonococci

expressing PorBIA and pili both depend on the formation of

membrane rafts and caveolin-1 phosphorylation. We identified the

p85 regulatory subunit of PI3K/Akt as a new and critical

interaction partner of phosphorylated caveolin-1 that is recruited

to membrane rafts in a SREC-I-dependent manner during

PorBIA-dependent invasion. This interaction leads to the activa-

tion of a novel bacterial invasion pathway involving the serine

threonine kinase D1 (PKD1/PKCm). Thus, components identified

in the present study might aid in identification of novel drug

targets for invasive gonococcal diseases.

Results

Cytoplasmic domain of SREC-I is not required for
gonococcal invasion

We previously demonstrated that PorBIA mediates invasion of

gonococci independent of Opa adhesins and T4P by interacting

with the SREC-I receptor [14,21]. Expression of SREC-I in

naturally SREC-I-deficient Chinese hamster ovary (CHO) cells

reconstitutes invasion of strain MS11 N927 (PorBIA) under low-

phosphate conditions, whereas gonococcal strains expressing

PorBIB are not internalized. Since internalization signals for

scavenger receptors have not been identified so far, we speculated

that the 388 amino acids long SREC-I cytoplasmic domain (CD)

and phosphorylation of amino acid residues might play a role in

signal transduction processes leading to the engulfment of PorBIA-

expressing gonococci. Because kinase inhibitor studies revealed a

role of the tyrosine kinase Abl1 in PorBIA-dependent invasion (see

below), we first searched for relevant motifs in the CD domain of

SREC-I. A computational analysis using NetworkKIN (http://

networkin.info) identified Tyr818 (consensus sequence

RXXEXXY818) as a potential Abl1 phosphorylation site. We

generated different SREC-I expression constructs fused to GFP

(SREC-I-GFP) for the transient expression in CHO cells. Surface

exposition of SREC-I wt and truncated SREC-I constructs was

similar as demonstrated by FACS-analysis (Fig. S1A). Intracellular

bacteria associated with the transfected cells were then quantified

by immunofluorescence staining. A Y818A mutant of SREC-I-

GFP was similarly efficient as the wildtype derivative in mediating

invasion of strain N927 (PorBIA, Opa2, P2) into CHO cells in the

absence of phosphate (Fig. 1A,B), suggesting that Y818 phosphor-

ylation is not required for PorBIA-mediated uptake of N927. We

then generated a SREC-I mutant lacking the entire cytoplasmic

domain of SREC-I ranging from amino acids 453 to 830 (SREC-

IDAA453-830; SRECIDCD). To our surprise, invasion was not

prevented in CHO cells expressing SREC-IDCD (Fig. 1A,B). Thus

we conclude that the cytoplasmic domain of SREC-I is not

required for PorBIA-mediated uptake of gonococci into epithelial

cells.

SREC-I-mediated gonococcal invasion depends on
caveolae

Receptors may transmit extracellular signals independent of

their CD by associating with ordered assemblies of proteins and

lipids called membrane rafts [23]. To test whether the association

with membrane rafts is required for gonococcal invasion, CHO

SREC-I and CHO SREC-IDCD transfected cells were treated

with the membrane raft-disrupting agent nystatin before infection

with N927 (PorBIA, P2, Opa2). Nystatin pretreatment led to a

drastic (Fig. 1C) and dose-dependent (Fig. S2B) reduction of

invasion compared to untreated control cells. These results were

confirmed in Chang conjunctiva cells (Fig. S2A). A similar strong

inhibition of invasion could be achieved by depleting cholesterol

from host cell membranes with methyl-b-cyclodextrin (MbCD,

Fig. S2D). Washout of MbCD and recovery of cholesterol [24]

restored invasion of N927 (PorBIA, P2, Opa2). Neither Nystatin

nor MbCD affected bacterial (not shown) or cell viability (Fig. S7)

or SREC-I surface exposure (Fig. S8). Also, SREC-I co-localised

with gonococci in infected Chang cells whereas disruption of lipid

microdomains by nystatin treatment interfered with gonococci-

SREC-I co-localisation (Fig. S2C) despite an increased surface

exposure of SREC-I (Fig. S8). These data together demonstrated a

role of membrane rafts for the uptake of PorBIA-expressing

gonococci via SREC-I.

Membrane raft-dependent internalization of cargo is frequently

associated with caveolae, variably sized pits that form in the

plasma membrane and are enriched in the major structural

protein caveolin-1 (Cav1) [25]. To elucidate the involvement of

Cav1 in the uptake of N927, the Cav1-negative gastric cancer cell

line AGS and a corresponding Cav1-expressing AGS transgenic

line (AGS-Cav1) were infected with N927 (PorBIA, Opa2, P2).

Whereas N927 failed to efficiently invade AGS cells, we detected

gonococci in AGS-Cav1 cells (Fig. 2A), suggesting that Cav1 is

involved in uptake of PorBIA gonococci. Caveolin phosphorylation

Author Summary

Neisseria gonorrhoeae is a human-specific bacterial path-
ogen causing gonorrhea. With over 100 million infections
per year it is among the most prevalent sexually-
transmitted diseases worldwide. Whereas most infections
are localized, occasionally N. gonorrhoeae invades the
blood stream. The resulting disseminated infections often
lead to serious conditions such as dermatitis, sepsis,
endocarditis, and arthritis. Gonorrhea causes particular
concern due to the currently ongoing dramatic spread of
multi-resistant bacteria, which might render the disease
untreatable in the future. Here, we describe molecular
events that lead to the switch from local to invasive
gonococcal infections. Whereas pili constitute adhesive
structures leading to localized infections, the natural loss
of piliation unblocks a hitherto unidentified signaling
cascade initiated by the interaction of an outer membrane
porin and a eukaryotic scavenger receptor. We show that
in both cases the different infection outcomes rely on
distinct signaling molecules, which are either recruited to
or displaced from caveolae. Furthermore, we unravel the
signaling network which activates cytoskeletal rearrange-
ments that ultimately lead to the porin/scavenger recep-
tor-triggered invasion of the host cell.

A Switch to Invasive Neisseria Infections
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at tyrosine 14 has previously been linked to raft internalization

[26]. We therefore examined whether phosphorylation of Cav1 at

Tyr14 is required for invasion via SREC receptors by the

expression of the phosphorylation defective mutant Cav1-Y14F in

AGS cells (Fig. 2B). Uptake of N927 was inhibited in AGS cells

expressing Cav1-Y14F (Fig. 2C, 2D, S3A), demonstrating an

important role for phosphorylation at Tyr14 for SREC-I-

dependent invasion.

An involvement of Cav1 in gonococcal invasion was unexpected

since we recently showed that Cav1 is required to prevent uptake

of piliated gonococci into epithelial cells [22]. In this case, Cav1 is

recruited to attachment sites of piliated PorBIB gonococci,

phosphorylated at Tyr14 and interacts with Vav2 and its substrate

the small GTPase RhoA, which then leads to the establishment of

stress fibers beneath the microcolonies thereby impeding bacterial

uptake [22]. The finding that PorBIA or PorBIB/P+ gonococci in

an isogenic background either induce or prevent their uptake via

Cav1-dependent mechanism thus illustrates specific differences in

Cav1-mediated signaling of both processes.

In contrast to pilus-mediated adherence PorBIA-triggered

invasion depends on a low-phosphate environment. Therefore

we tested the influence of the invasion medium on the infection

outcome and whether non-piliated PorBIA-expressing or piliated

PorBIB-expressing gonococci interact with SREC-I under low

phosphate conditions. Chang cells were infected with either N927

(PorBIA, P2) or N138 (PorBIB, P+), an isogenic strain possessing

PorBIB instead of the SREC-I-interacting PorBIA porin. In SREC-

I immunofluorescence studies SREC-I frequently co-localized with

N927 (43%), but rarely with N138 (7%) (Fig. 2E), suggesting that

SREC-I recruitment is exclusive for PorBIA-expressing strains. By

gentamicin protection assays we compared the invasion efficiencies

of either strain under phosphate free conditions. Contrary to

N927, N138 failed to invade Chang cells (Fig. S3D). Further, we

observed the formation of actin aggregates (Fig. S3B) and bacterial

Figure 1. Deletion of the SREC-I cytoplasmic domain does not prevent gonococcal uptake. CHO cells were transfected with pEGFPN1
(control) and constructs overexpressing wildtype SREC-I-GFP (SREC-I), SREC-IY818A-GFP (SREC-IY818A), and SREC-I-GFP lacking the cytoplasmic
domain (SREC-IDCD). (A) 24 h post transfection these cells were infected with N927 (PorBIA, P2) at a MOI of 50. Invasive bacteria were enumerated by
confocal microscopy from 50 randomly chosen cells using differential immunostaining. (B) Whole-cell lysates were analyzed by western blotting
using an anti-GFP and anti-Actin antibody. (C) CHO cells transfected with plasmid encoding SREC-I (white bars) or SREC-IDCD (black bars) were either
left untreated (-) or treated with 25 mg/ml Nystatin for 1 h and infected with N927 (PorBIA, P2) at a MOI of 50. Invasive bacteria were counted from 50
randomly chosen cells using differential immunostaining. The graphs show the mean 6 SD of two independent experiments. p,0.05: *; p,0.01: **.
doi:10.1371/journal.ppat.1003373.g001

A Switch to Invasive Neisseria Infections
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microcolonies (Fig. S3C) for N138 infection but not for N927. This

strongly suggests that not the low-phosphate conditions but rather

the specific interaction with the SREC-I receptor trigger the

uptake of gonococci.

N927 invasion depends on Cav1-interacting proteins
Abl1 and PLCc1

Recently, we identified several Cav1 pTyr14 interacting

proteins, by screening microarrays of recombinant human SH2

Figure 2. Caveolin is required for N927 invasion. (a) AGS cells (AGS) and a transgenic AGS cell line expressing caveolin-1 (AGS Cav1wt) were
infected with N927 (PorBIA, P2) at MOI 50. Adherent (adh.) and intracellular (inv.) bacteria were quantified by gentamicin protection assays. The
number of adherent and invasive bacteria of AGS cells was taken as 100%. The graph shows mean values 6 SD of three independent experiments
done in duplicates. White bars: adherent bacteria; black bars: intracellular bacteria p,0.01: ** (b) AGS cell expressing an HA-tagged wt (AGS Cav1wt)
or mutant (AGS Cav1Y14F) caveolin were analyzed by Western blot using an HA antibody. (c) Intracellular N927 (PorBIA, P2) of the experiment shown
in figure (D) were quantified by differential immunofluorescence. p,0.01: **. (D) AGS cells were transiently transfected with HA-tagged Cav1 (AGS-
Cav1) or Cav1Y14F (AGS-Cav1Y14F) and infected with N927 at MOI 25. Adherent (pink) and intracellular (red; white arrows) bacteria were detected by
differential immunofluorescence. Caveolin expression was visualized with an HA antiserum and a Cy2-conjugated secondary antibody (green). Scale
bar: 10 mm (E) SREC-I is recruited to N927 (PorBIA, P2)(white arrows), but not N138 (PorBIB, P+). Chang cells were infected with SNARF-labeled bacteria
at an MOI 25. SREC-I was detected with a polyclonal serum against SREC-I and a Cy2-conjugated secondary antibody. Co-localisation of SREC-I and
gonococci was analyzed by confocal fluorescence microscopy. Scale bar: 10 mm.
doi:10.1371/journal.ppat.1003373.g002

A Switch to Invasive Neisseria Infections
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and other phosphotyrosine binding (PTB) domains. High affinity

interaction partners included Abl family kinases as well as

phospholipase Cc1 (PLCc1) and Vav2 [22]. Of these, only Vav2

turned out to play a major role in pilus-mediated inhibition of

gonococcal invasion [22]. We therefore tested if either Abl1 or

PLCc1 are required for the invasion of PorBIA gonococci (N927;

PorBIA, P2). Imatinib, a selective inhibitor for the tyrosine kinase

Abl1, reduced internalization of N927 by more than 70% (Fig. 3A)

whereas adherence was not affected suggesting that Abl1 is

required for invasion. To test whether PLCc1 is involved in N927

invasion, several PLCc1 knock-down cell lines were tested for their

ability to engulf N927 bacteria. Invasion was reduced in all these

cell lines (Fig. 3B, S4A). Furthermore the PLCc1 inhibitor U73122

efficiently prevented the uptake of N927, corroborating a role of

PLCc1 activity in the signaling cascade leading to uptake of

gonococci via SREC-I (Fig. 3C).

We then tested whether PLCc1 specifically interacts with Cav1

in cells infected with N927. Pull-down experiments of endogenous

proteins demonstrated that PLCc1 interacted with Cav1 in cells

either infected with N927 and non-infected cells, but not in cells

infected with N138 (Fig. 3D), suggesting that PLCy1 is a

constitutive partner in Cav1-containing complexes.

Identification of Cav1-pY14 interaction partners
So far our data demonstrated that Abl1 and PLCc1 are

required for PorBIA-dependent invasion whereas at least PLCc1 is

dispensable for pili-induced prevention of bacterial uptake [22].

Since PLCc1 seemed to be part of a constitutive protein complex

with Cav1 we reasoned that an unknown host factor determines

the specific fate of N927 (PorBIA, P2) and N138 (PorBIB, P+).

Therefore, a biochemical assay was developed to identify native

Cav1-pY14 signaling partners (Text S1). Biotin-labeled, phos-

phorylated or non-phosphorylated Cav1 peptides comprising

amino acid residues 7–21 of Cav1 were used as bait in pull-down

assays. Interacting proteins from Cav1-negative AGS cells were

captured and subsequently analyzed by Maldi-MS/MS (Fig. 4A;

numbered arrows; Table 1). Most interestingly, p85, the regulatory

subunit of the phosphoinositide 3-kinase (PI3K-p85), was identi-

fied as a novel interaction partner of the Cav1-pY14 phosphopep-

tide (Figure 4A, arrow No. 7). Additionally, myosin IB, myosin ID,

non-muscle myosin heavy chain IIA, cytokeratin 1, b-actin and

splicing factor proline/glutamine rich (SFPQ/PSF) were identified

as possible Cav1-pY14 binding partners (Fig. 4A numbered arrows

and Table 1).

Binding of PI3K-p85 and PLCc1 to biotinylated Cav1-pY14

peptides was confirmed by streptavidin-agarose pull-down-assays

from cell lysates and Western blot detection. PLCc1, p85 and also

p110, the catalytic subunit of PI3K, bound exclusively to the

phosphorylated Cav1 peptide (Fig. 4B), confirming these proteins

as targets of phosphorylated Cav1.

PI3K is required for invasion of disseminated gonococci
To investigate the physiological relevance of PI3K for invasion

of N927 (PorBIA, P2), endogenous Cav1 was immunoprecipitated

from infected and non-infected cells and co-immunoprecipitation

of PI3K-p85 was demonstrated by Western blot analysis.

Interestingly, a strong interaction was demonstrated in N927,

but not in N138 (PorBIB, P2) infected cells (Fig. 4C,D). Interaction

of Cav1 depended on PLCc1 activity indicating that lipid second

messengers generated by PLCc1 are involved in PI3K-p85

recruitment to Cav1 (Fig. 4 E,F). Pilus-mediated invasion

inhibition depends on the interaction of Vav2 with Cav1-pY14

leading to RhoA activation and actin accumulation below the

gonococcal microcolony [22]. In cells infected with N927 (PorBIA,

P2), however, less (50%) Vav2 was present in endogenous

caveolin-1 complexes than in cells infected with N138 (99%,

PorBIB, P+) or even non-infected cells (100%, Fig. 4 G,H). Small

amounts of Vav2 in pulldowns of Cav1 from the cells infected with

N927 (PorBIA, P2) may thus originate from a small population of

non-infected cells since not all cells are infected under the used

conditions. A role of Vav2 for PorB-mediated invasion can

unambiguously be excluded, since suppression of Vav2 expression

in HeLa cells had no effect on invasion of N927 (PorBIA, P2) (Fig.

S4B,C). These data indicate that the displacement of Vav2 and the

recruitment of PI3K-p85 shift the signaling cascade at the level of

Cav1 from invasion inhibition to invasion.

Recruitment of PI3K-p85 upon infection with N927, but not

with the isogenic strain N138 induced the activation of the kinase,

as determined by Western blot analysis with an antibody that

detects the active phosphorylated form of Akt (Fig. 5A), a

downstream target of PI3K. Activation of PI3K also depended

on the presence of Cav1 since Akt phosphorylation was detected in

AGS-Cav1 upon N927 infection, but not in AGS cells deficient in

Cav-1 expression. In line with the selective recruitment of PI3K-

p85 to Cav1 upon N927 infection, infection of AGS-Cav1 cells

with N138 did not increase PI3K activity (Fig. S5A,B). In addition

PI3K was not activated upon infection with either N313 (PorBIB,

Opa57), a gonococcal strain interacting with all CEACAM

receptors [27], or N931 (PorBIB, Opa50), which interacts with

the HSPG receptor [8,9] (Fig. S5C,D). This demonstrated that

PI3K invasion signaling occurs specifically in PorBIA-expressing

gonococcal infections.

Inhibitor studies were performed to test whether PI3K is

required for PorBIA-dependent invasion. The number of internal-

ized bacteria was decreased in presence of the specific PI3K

inhibitors LY294002 and wortmannin, whereas bacterial adher-

ence was unchanged (Fig. 5B), demonstrating a crucial role of

PI3K for invasion of N927. The specific activation of PI3K upon

infection with N927 (PorBIA, P2), but not with N138 (PorBIB, P+)

as well as the requirement of PI3K activity for N927 invasion were

confirmed in End1 cells (Fig. S5E,F), demonstrating the presence

of this entry route for PorBIA gonococci in non-transformed cells.

As shown above membrane raft domains are involved in

PorBIA-triggered invasion processes. Therefore we speculated that

bacterial uptake is initiated after accumulation of signaling

molecules in these microdomains. We thus investigated whether

SREC-I and PI3K are recruited to membrane rafts during

infection. By sucrose gradient centrifugation SREC-I and PI3K-

p85 were found to be enriched in Cav1- and flotillin-rich fractions

of cells infected with N927, but not in cells infected with N138

(Fig. 5C), supporting the requirement of membrane rafts in SREC-

I-dependent recruitment of PI3K.

Treatment of CHO cells transfected with SREC-I expression

constructs, but not control cells responded with the activation of

PI3K either upon infection with PorBIA gonococci or upon

stimulation with acLDL (Fig. 5D), a known trigger of SREC-I

endocytic uptake [28]. These data demonstrate that stimulation of

SREC-I is sufficient to activate PI3K.

PKD1 as novel mediator of PorBIA-dependent invasion
The function of PLCc1 in SREC-mediated invasion of N927

(PorBIA, P2) suggested the involvement protein kinase C family

members (PKC), since PLCc1 generates lipid second messengers

activating certain PKCs. PKCs are classified as conventional (a,

b1, b2, c), novel (d, e, g, h, m), and atypical (f, l) isozymes. As

inhibitor studies indicated a role for PKD1 (PKCm) in PorBIA/

SREC-I based invasion (not shown), we conducted siRNA

experiments thereby selectively knocking down PKD1. Invasion

A Switch to Invasive Neisseria Infections
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was reduced by approx. 60% in PKD1 knock-down Chang cells

when compared to cells treated with a control siRNA (Fig. 6A,B).

PKD1 activation is dependent on the phosphorylation of two

activation loop sites at Ser744 and Ser748 [29]. As demonstrated

with Western Blots using phospho-specific antibodies infection

with N927 but not with N138 activated PKD1 (Fig. 6C,D). This

indicates that the activation of PKD1 is exclusive for PorBIA-

gonococci infection.

The PorBIA/SREC-I invasion signaling pathway
We have previously shown that a hitherto unidentified Rho

GTPase family member is required for PorBIA-mediated invasion

[14]. Here, we made use of NSC23766, a cell-permeable

pyrimidine compound that specifically inhibits Rac1, without

affecting Cdc42 and RhoA activation [30]. Inhibition of Rac1 in

Chang epithelial cells completely blocked invasion of N927

(PorBIA, P2), whereas adherence was unaltered as was determined

by gentamicin protection assays (Fig. 7A) and differential

immunostaining (not shown). Hence Rac1 is the Rho GTPase

involved in low phosphate dependent invasion.

To delineate the hierarchy of the PorBIA/SREC-I invasion

signaling pathway, we applied inhibitors of the identified

components and assayed the activation of PI3K via Akt

phosphorylation as well as Rac1 upon infection with N927.

Inhibition of Abl1 prevented Akt phosphorylation. This is in line

with Abl1 being located upstream of PI3K in this signaling

pathway. The pAkt signal completely disappeared after treatment

with the PI3K inhibitor LY294002 (Fig. 7B). Treatment of host

cells with the PKD1 inhibitor, Gö6976, had no effect on the

infection-induced activation of PI3K, placing PKD1 downstream

of PI3K (Fig. 7B). Interestingly, PLCc1 activity (Fig. 7C,D) was

required for Akt phosphorylation, whereas even basal levels of

active PI3K disappeared upon destruction of membrane rafts by

Nystatin (Fig. 7C). Since the inhibition of Rac1 by NSC failed to

interfere with PI3K activation (Fig. 7C) and activation of Rac1 was

prevented by all other inhibitors (Fig. 7E), Rac1 must be localized

at the end of the investigated signaling cascade. In its entirety,

PorBIA/SREC-I-dependent gonococcal invasion in epithelial cells

thus constitutes a novel invasion pathway involving caveolae

(Cav1), Abl1 kinase, PLCc1, PI3K, PKD1 and Rac1.

Figure 3. Abl1 and PLCc1 are essential for N927 invasion. (A)
Chang cells were pretreated for 1 h with the Abl1 inhibitor Imatinib
(10 mM) and subsequently infected with N927 (PorBIA, P2) at an MOI 10 for
30 min. Adherence (white bars) and invasion (black bars) were quantified
by gentamicin protection assays. The number of adherent (adh.) and
invasive (inv.) bacteria of untreated control cells was set to 100%. The bar
chart shows mean percentages 6 SD of three independent experiments
each performed in duplicate. (B) shRNA-mediated downregulation of
PLCc1 in Hela cells results in decreased internalization of N927 (PorBIA, P2).
Control cells (shLuci) as well as shPLCc1 cells (shPLCy1-1, shPLCy1-2) were
infected with strain N927 (MOI 10, 30 min) and adherence (white bars) as
well as invasion (black bars) were analyzed by gentamicin protection
assays. The numbers of adherent and invasive bacteria of control cells
(shLuci) were set to 100%. Shown are mean percentages 6 SD of three
independent experiments performed in duplicate. (C) Chang cells were
either left untreated (-) or pretreated for 30 min with PLCc1 inhibitor
U73122 (10 mM) and infected with N927 (MOI 10, 30 min). Adherence
(white bars) and invasion (black bars) were quantified by gentamicin
protection assays. The numbers of adherent (adh.) and invasive (inv.)
bacteria of untreated control cells were set to 100%. The graph shows
mean values 6 SD of three independent experiments performed in
duplicates. (D) PLCc1 co-precipitates with Cav1 in N927-infected cells and
untreated cells. Chang cells were infected with either N927 (PorBIA,P2) or
N138 (PorBIB,P+) MOI 20 for 1 h. Endogenous Cav1 was precipitated from
infected and not infected control (no inf) cells and co-precipitated PLCc1
was detected by Western blot. p,0.01: **.
doi:10.1371/journal.ppat.1003373.g003
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Pili interfere with PorBIA-dependent invasion
The role of pilus phase variation during invasion and

transcytosis of epithelial cells is still controversial [31,32]. Since

pilus-mediated prevention of invasion and PorBIA-triggered

invasion were dependent on highly similar signaling pathways,

we asked whether PorBIA expression could override the anti-

invasive signaling by pili and thus permit invasion of piliated

bacteria into epithelial cells. We therefore generated N2009 (P+,

PorBIA) in strain MS11 and N2010 (P2, PorBIA), a non-piliated

derivative of N2009 and performed gentamicin protection assays

under low phosphate conditions. Whereas adherence was similar

between the piliated and non-piliated derivative under the chosen

condition, invasion was reduced about 4-fold for the piliated strain

N2009 (Fig. 8A). Since pilus expression is phase variable, we

monitored the pilus phenotype of the input strain and bacteria

recovered after the gentamicin protection assay. Less than 5% of

the colonies of the inoculum were non-piliated when viewed under

a stereomicroscope or analyzed by electron microscopy (Fig. S9A).

By contrast 80.5% of the recovered bacteria had a P2 phenotype

(Fig. 8B). We obtained a similar result with the immortalized

endocervical cell line End1, supporting a role of pili in the switch

from an adherent to an invasive phenotype also in non-

transformed cells (Fig. S 9B). Our observation suggested that only

non-piliated variants were able to invade host cells and that pilus

expression effectively blocked PorBIA-dependent invasion. Expres-

sion of pili can be frequently switched ‘ON’ and ‘OFF’ by RecA-

dependent recombination between silent and expression pil loci

(frequency about 1023) or by less frequent (frequency about 1026)

RecA-independent in- and out-of-frame switches in the pilus

assembly gene pilC. To test the hypothesis that the non-piliated,

invasive variants arise as a consequence of the natural switch-off in

pilus expression a recA mutant defective in pilE recombination [33]

was generated in a piliated PorBIA expressing strain. N2013 (recA,

P+, PorBIA) failed to invade Chang cells (Fig. 8C) consistent with a

role of pilus phase variation in the transition from an anti-invasive

to an invasive phenotype. In contrast, N2015 (recA, P2, PorBIA), a

non-piliated recA derivative, invaded into Chang cells (data not

shown), ruling out recombination events other than those leading

to pilus variation to be involved in PorB-dependent invasion.

Discussion

The initial interaction of gonococci with their host is mediated

by the type 4 pili leading to highly efficient colonization and

microcolony formation at the surface of the epithelium of the

urogenital tract. We show here that both, pilus-dependent

microcolony formation and PorBIA-dependent invasion, engage

caveosomes although in an antagonistic fashion.

Although the PorBIA-triggered invasion requires SREC-I, we

were intrigued that the cytoplasmic C-terminal domain of the

receptor is dispensable for invasion of strain N927 (PorBIA, P2).

This is reminiscent of endocytosis of modified LDL by SREC-I

which is independent of the C-terminal domain [34]. Other

receptors such as CEACAM-1 also trigger the uptake of bacteria

in the absence of a cytoplasmic domain via membrane rafts [23].

We therefore hypothesize that SREC-I oligomerization following

PorBIA-dependent binding of N. gonorrhoeae is sufficient for receptor

recruitment to membrane rafts and initiation of invasion signaling.

In the present work SREC-I was found to be selectively

recruited to detergent-resistant microdomains in cells infected with

PorBIA invasive gonococci. In line with the localisation of SREC-I

to membrane rafts [35], we found that intact membrane rafts and

caveolin-1 are required for the uptake of gonococci via PorBIA and

SREC-I. Although membrane rafts and caveolin-1 have been

implicated in the invasion of bacteria before [36], their role for

PorBIA gonococci invasion was unexpected since we previously

demonstrated that caveolin-1 aggregation at adhesion sites of

piliated gonococci causes a block of invasion [22]. Intriguingly,

AGS cells naturally defective for caveolin-1 expression [37] were

only efficiently invaded by N927 (exhibiting the PorBIA allele) if

caveolin-1 was expressed as a transgene (Fig. 2) whereas isogenic

piliated gonococci invaded AGS cells but not the isogenic AGS-

Cav1 line [22]. The key question therefore arose how caveolin-1

exerts this dual function as an invasion promoter or an inhibitor.

Since both, invasion promotion (Fig. 2B–D) and inhibition [22],

depended on the phosphorylation of caveolin at Tyr14, we first

tested Cav-Y14P interacting proteins [22] for a role in strain N927

(PorBIA, P2) invasion. PLCc1 turned out to be a constitutive

partner of endogenous Cav1 protein complexes in host cells.

PLCc1 activity, however, is required for the uptake of N927

whereas it is not involved in the anti-invasive signaling of piliated

gonococci [22]. Interestingly, PLCc1 activity was required for the

recruitment of the p85 regulatory subunit of PI3K identified as a

novel caveolin-interacting protein in the present work. Intriguing-

ly, PI3K-p85 was selectively recruited to caveolin-1 complexes in

cells infected with strain N927 leading to kinase activation and Akt

phosphorylation. By contrast, Vav2 was depleted from these

complexes (Fig. 4 G,H). Since the Cav-pY14 interacting exchange

factor Vav2 plays a critical role for the invasion block mediated by

piliated gonococci [22], our data strongly suggested that the

selective recruitment of either Vav2 or PI3K-p85 determines the

extra- or intracellular fate of gonococci, respectively.

Using the A431 tumor cell line, Lee et al. have previously

demonstrated a role of PI3K for the invasion of piliated gonococci

[38]. Since we did not detect significant invasion of piliated

gonococci in the two different tumor lines (Chang, ME-180) and

the non-transformed End1 cells it is possible that differences in the

infection protocol and/or special features of the A431 line account

for these contradictory observations.

Additionally, our data clearly demonstrated the involvement of

PKD1 in the invasion of N927 (PorBIA, P2). This is, to our

knowledge, the first report on an involvement of this novel PKC in

the invasion of pathogenic bacteria. PKD1 has previously been

implicated in the control of actin reorganisation and tumor cell

migration [39]. Known activators for PKD1 are classical PKCs,

phospholipase Cc, diacylglycerol and PI3 kinase [40]. We ruled

out an activation of PKD1 via classical PKCs because Gö6983, a

potent inhibitor of these PKCs, did not affect invasion at

physiologically relevant concentrations (not shown). It is very

likely, that second messengers generated by PLCc1 and PI3K are

critically involved in the activation of PKD1 in the course of N927

infection. There are also indications that Abl1 can activate PKD1,

since Abl1 phosphorylates PKD1 at Tyr463. This phosphorylation

is known to facilitate the phosphorylation of Ser738/Ser742,

which in turn leads to the activation of PKD1 [41].

Activation of PKD1, critical for the uptake of PorBIA-expressing

gonococci, is not involved in invasion of Opa-expressing bacteria

via CEACAM-receptors on Chang cells (Fig. S6A,B) and

inhibition of PI3K activity did not prevent invasion via

CEACAM3 [42,43], indicating the usage of alternative infection

routes by these phase-variable bacteria. Interestingly, PKD1

knockdown prevented the uptake of Opa50-positive gonococci

via HSPG receptor (Fig. S6A,B). A not further characterized PKC

member has previously been linked to invasion via HSPG [44].

Thus, it is likely that PKD1 represents this protein kinase. Apart

from the activity of PKD1 we ruled out further similarities

between the SREC-I- and HSPG-mediated uptake processes [14].
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Several studies have shown that formation of pili is necessary for

efficient adherence of gonococci [4,7] and that PorBIA-expression

is associated with serious systemic infections [17,18]. Our finding

that the absence of pili in otherwise isogenic backgrounds is

decisive for invasion thus has important implications for the

development of invasive gonococcal disease. A pilus-dependent

mechanism has recently been proposed for dissemination of N.

meningitidis. In this case posttranslational modification of pilin

determines whether meningococci colonize or invade host tissue

[45]. Based on our data we propose that piliated gonococci

expressing the PorBIA allele remain extracellular by stabilizing a

caveolin-pY14-Vav2 complex followed by the activation of RhoA

and the formation of actin aggregates underneath gonococcal

microcolonies. Natural pilus phase variation leads to the formation

of non-piliated variants. Loss of piliation favors the displacement

of Vav2 and the recruitment of PI3K-p85 to the caveolin-pY14 in

a SREC-I and PLCc1-dependent manner which overrides the

invasion inhibition. As a consequence, PI3K is activated and a

unique signaling pathway leading to the activation of PKD1 and

Rac1-dependent invasion is initiated. The concept emerging from

our data suggests a role of lipid microdomains as signaling

platforms for invasion inhibition and promotion dependent on the

presence or absence of phase-variable pili. This unexpected

mechanistic interdependence of local and invasive infection also

suggests a new role of pilus phase variation in PorBIA-expressing

gonococci as a stochastic event that controls the molecular switch

to invasive gonococcal disease. Moreover, pilus expression in N.

gonorrhoeae can irreversibly be lost [46,47], a phenotype that – in

the context of the PorBIA allele – would favor the occurrence of

invasive gonococcal infection.

Materials and Methods

Neisseria strains
N. gonorrhoeae MS11 derivatives used in this study are listed in

table 2. N927 is a derivative of N138 with the porBIA gene of strain

VP1 flanked by antibiotics resistance cassettes cat and ermC

integrated into the porB locus. N927 in addition carries a deletion

in the pilE1 expression locus (non-revertible P2: Pn) [21]. N2009

(PorBIA, Opa2, P+) is a piliated variant of N138 expressing PorBIA

from N927. N2010 is a revertible non-piliated derivative of N2009

(PorBIA, Opa2,P+). N2013 was generated by transforming the

PorBIA expression cassette from strain N927 [21] into strain N503

(inducible recA, ermC). Gonococci were routinely grown on GC

agar base plates (Oxoid) supplemented with 1% vitamin mix for

14–18 h at 37uC in 5% CO2 in a humidified atmosphere. Opa

and pili negative phenotypes were monitored by colony morphol-

ogy under a stereo microscope or by immunoblotting.

Infection conditions and gentamicin protection assay
26105 Chang cells were infected at an MOI 10, all other cells at

an MOI 50 to achieve similar infection efficiency. Gentamicin

protection assay was conducted as described [14]. Briefly, Chang

cells were infected with the gonococcal strains at a confluency of

80–90%. To quantify total cell associated bacteria, cells were lysed

with 1% saponin for 7 min. Suitable dilutions were plated on GC

agar plates and CFU were determined 24 h later. For quantifi-

cation of intracellular viable bacteria monolayers were incubated

with 50 mg/ml gentamicin in HEPES medium for 2 h at 37uC and

5% CO2, prior to lysis in 1% saponin and plating. In general, 25–

50% of the bacteria adhered to the cells (about 0.5–16105

Figure 4. Identification of new Cav1 pTyr14 interaction partners. (a) Pull-down of Cav1-pY14 interaction partners. Biotin-labeled Cav1
peptides either with (Cav1 pY14 peptide) or without (Cav1 peptide) phosphorylated Tyr14 were used as baits to precipitate interacting proteins from
AGS cell lysates using a streptavidin-agarose pulldown assay. Precipitates were separated by SDS-PAGE and proteins visualized by silver staining. The
proteins enriched in the Cav1 pY14 pulldown (indicated by numbers; see also table 1) were identified by Maldi-MS/MS. (b) Western blot analysis of
proteins precipitated from ME-180 cells using either biotin-labeled phosphorylated or non-phosphorylated Cav1 peptides as bait. PLCy1 as well as the
regulatory p85 and catalytic p110 subunit of PI3K, are only detected in precipitates of the phosphorylated peptide with the respective primary
antibodies. (c) PI3K-p85 interacts with Cav1 in N927 infected cells. Chang cells were infected with either N927 (PorBIA, P2) or N138 (PorBIB, P+) at an MOI
20 for 1 h or not infected (no inf). Endogenous Cav1 was precipitated and co-precipitated proteins were detected by Western blot with antibodies
specific for Cav1 or PI3K-p85. (D) Relative amount of PI3 kinase quantified from (C). The bars represent the mean values 6 SD of three independent
experiments. (E) PI3 kinase recruitment to caveolin depends on activity of PLCy1. The experiment was performed as described in (C). 30 min prior to
infection the PLCy1 inhibitor U73122 (10 mM) was added to the cells. (F) Relative amount of p85 quantified from three independent experiments. Shown
are the mean values 6 SD. (G) Interaction of Cav1 with Vav2 tested under conditions as described in (C). (H) Relative amount of Vav2 quantified from the
experiment shown in (G). The bar graph shows the mean value of three independent experiments 6 SD. p,0.05: *; p,0.01: **.
doi:10.1371/journal.ppat.1003373.g004

Table 1. Phospho-Tyr14-Cav1 binding partners identified by MALDI-TOF/TOF after streptavidin pulldown of biotin-labeled Tyr14-
Cav1 peptides.

Band No.: Identified protein: Mascot Score Sequence coverage (%)
NCBI Protein
Database No.

NCBI
Gene ID

1,2,3,4,5,7 non muscle myosin heavy chain IIA 260,455,155142,81,46 25,28,18,19,14,9 12667788 4627

5 myosin IB 45 13 44889481 4430

6 splicing factor proline/glutamine rich
(SFPQ/PSF)

168 25 23956214 6421

6 myosin ID 59 15 119600629 4642

7 PI3K, regulatory subunit p85a 75 17 32455248 5295

8 cytokeratin 1 242 31 11935049 3848

9 b-actin 345 61 15277503 60

10 Chain A, Streptavidin Mutant 332 38 34811425 -

doi:10.1371/journal.ppat.1003373.t001
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Figure 5. PI3 kinase is required for N927 invasion and is recruited to caveolae. (A) Activation of PI3K shown by phosphorylation of Akt.
Whole cell lysates of Chang cells infected with either N927 (PorBIA, P2) or N138 (PorBIB, P+) at an MOI 50 for 30 min were subjected to SDS PAGE and
Western blot using anti-phospho-Akt, anti-Akt and anti-Actin antibodies. (B) Chang cells were pretreated for 1 h with PI3K inhibitors LY294002 (LY,
10 mM) or Wortmannin (WM, 1 mM) and infected with N927 (MOI 10, 30 min). Adherence (white bars) and invasion (black bars) were quantified by
gentamicin protection assay. The number of adherent and invasive bacteria of untreated control cells was set as 100%. The graph shows mean values
6 SD of three independent experiments performed in duplicates. p,0.01: ** (C) Distribution of signaling molecules in membrane rafts of infected
cells. Chang cells were subjected to subcellular fractionation after infection either with N927 (PorBIA, P2) or N138 (PorBIB, P+) (MOI 20) for 1 h (see Text
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gonococci per infection) and 10 and 20% of adherent PorBIA-

expressing gonococci invaded the cells (1–26104 gonococci per

infection).

Immunoprecipitations
Active Rac1 was precipitated as described [48]. Briefly, cell

lysates (56106 cells/each sample) were prepared in IP lysis buffer

(50 mM Tris-HCl pH 7.5, 150 mM NaCl, 1% (v/v) Triton-X-

100, 10% (v/v) glycerol, 2 mM EDTA, 25 mM NaF, and 2 mM

NaH2PO4) containing protease and phosphatase inhibitor cock-

tails (Roche). Samples were incubated with 500 ng of anti-active-

Rac1 monoclonal antibody (New East Bioscience) over night.

Protein G Agarose (GE Healthcare) was added for 2 h. Caveolin

was precipitated from lysates prepared in cell lysis buffer (20 mM

Tris, 150 mM NaCl, 1 mM EDTA, 1 mM EGTA, 1% (v/v)

Triton-X-100, 2.5 mM Sodiumpyrophosphate, 1 mM b-Glycero-

phosphate, pH 7.5) containing PhosStop Phosphatase Inhibitor

and Complete Protease Inhibitor (Roche). The lysates were

incubated with 2 mg bait antibody (anti-Caveolin, BD Transduc-

tion) overnight. Protein G-magnetic beads (Dynabeads, Invitro-

gen) were subsequently added for 4 h to precipitate antigen-

antibody complexes. After extensive washing, the precipitate was

eluted by heating to 95uC in SDS loading buffer and the individual

proteins separated by SDS-PAGE. Western blotting was used to

assess the precipitate.

Western blotting
Cell lysates were resolved by 8–12% sodium dodecyl sulfate

(SDS)-polyacrylamide gel electrophoresis. Proteins were trans-

ferred to polyvinylidene difluoride membranes (GE Healthcare)

and blocked with Tris-buffered saline containing 0.1% Tween 20

and 3% bovine serum albumin. The following primary antibodies

were used: anti-Flotillin, anti-PI3K (p85), anti-PI3K (p110), anti-

pAKT, anti-Akt, anti-HA anti-PKD1, anti-pPKD1, anti-Vav2

(Cell Signaling), anti-Caveolin (BD Transduction), anti-SREC-I,

anti-GST, anti-GFP, anti-PLCy1, anti-Tubulin (Santa Cruz

S1). Flotillin was detected as marker for the membrane raft fraction (fraction 4–5) separated from most cellular proteins (fraction 8–12). Caveolin,
SREC-I (multiple bands represent differentially glycosylated forms), Flotillin and PI3K, were detected by Western blot analysis. (D) CHO cells stably
transfected with either SREC-I WT (CHO-SREC-I) or empty vector control (CHO-pEGFP-N1) were infected with N927 (PorBIA, P2) at an MOI of 50 or
treated with 2 mg/ml acLDL (Invitrogen) for 5 min. Whole cell lysates were subjected to SDS-PAGE and Western blot analysis using anti-phospho-Akt
and anti-Tubulin antibodies. (E) Graphical representation of SREC-I gonococci interaction in Caveolae. Upon infection with N927 SREC-I localizes in
cholesterol, sphingolipid and caveolin-1 rich membrane rafts. PLCy1 and PI3K are recruited to phosphorylated Cav1 (Tyrosin 14) and initiate the
signaling cascade leading to endocytic uptake of the gonococci. Adapted from [25].
doi:10.1371/journal.ppat.1003373.g005

Figure 6. PKD1 is required for invasion of N927. (A) Chang cells were transfected with siRNAs against PKD1 (siPKD1) and luciferase (siLuc) as
control. The cells were infected with N927 (PorBIA, P2; MOI 10) for 30 min 72 h after transfection of siRNAs. Intracellular (inv., black bars) and adherent
(adh., white bars) bacteria were quantified by gentamicin protection assay and the number of adherent or invasive bacteria of control cells (siLuc) was
set to 100%. Shown are the means 6 SD of three independent experiments performed in duplicates. p,0.01: ** (B) Knock down of PKD1 in Chang
cells was verified by Western blotting. b-tubulin was used as loading control. (C) Endogenous levels of phosphorylated PKD1 (pPKD1) were assayed
after infection with N927 (MOI 100) or treatment with the known activator 12-O-Tetradecanoylphorbol 13-acetate (TPA, 0.2 mM) for 30 min. Whole
cell lysates were analyzed by immunoblotting using phospho-specific PKD1 antibody (detects pSer744 and pSer748). (D) PKD1 was overexpressed by
transfection of PKD-HA expression construct (Addgene; [41]) in Chang cells and phosphorylation was detected as described in (C).
doi:10.1371/journal.ppat.1003373.g006
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Bioscience) and anti-Actin (Sigma Aldrich). Proteins were detected

with peroxidase-coupled secondary antibodies using the ECL

system (Pierce) and a Intas Chem HR 16-3200 reader and

quantified by ImageJ software.

Immunofluorescence staining
CHO cells or AGS cells were seeded onto cover slides,

transfected with the indicated plasmids and 24 h after transfection

infected under phosphate free conditions with N927 MOI 50 for

2 h. After extensive washing steps cells were fixed with 4%

Paraformaldehyd for 15 min. For differentiating extra- from

intracellular bacteria the staining method was used as described

before [14]. Briefly, extracellular bacteria were detected with

primary antibody, polyclonal rabbit anti-N. gonorrhoeae and

subsequently samples were incubated with a Cy5 conjugated

secondary anti-rabbit antibody. Cells were then permeabilized

Figure 7. Signaling cascades leading to Akt phosphorylation and Rac1 activation. (A) Involvement of Rac1 in N927 (PorBIA, P2) invasion.
Chang cells were pretreated for 1 h with the Rac1 inhibitor NSC23766 and subsequently infected with N927 (MOI 10; 30 min). Adherence (white bars)
and invasion (black bars) were quantified by gentamicin protection assay. Shown are the mean values 6 SD of three independent experiments
performed in duplicates. The number of adherent (adh.) and intracellular (inv.) bacteria recovered from untreated control cells was set to 100%.
p,0.01: **. (B,C) Chang cells were pretreated with kinase inhibitors (B) or inhibitors for other signaling factors (C) for 1 h, infected with N927 (PorBIA,
P2) at MOI 50 for 30 min. Whole cell lysates were separated by SDS-PAGE and transferred to PVDF membranes. Blots were probed with antibodies
against pAKT, as a readout for PI3K activity, AKT and either b-tubulin or actin as loading control. Inhibitors: Gö6976 for PKD1, LY294002 for PI3K,
Imatinib for Abl1, NSC for Rac1, Nystatin for membrane rafts, U73122 for PLCy1. (D) PI3K is localized downstream of PLCc1. Control cells (shLuci) as
well as shPLCc1 cells were infected with N927 (MOI 50; 30 min) and PI3K activity was assessed by detection of Akt phosphorylation as described in
(B). (E) A novel signaling cascade leading to Rac activation after infection with N927. Chang cells were pretreated with the individual inhibitors for 1 h
and infected with N927 at MOI 50 for 30 min. Active Rac1 was precipitated from cell lysates as described in Experimental Procedures. Western Blots
were developed with an anti-Rac antibody.
doi:10.1371/journal.ppat.1003373.g007
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Figure 8. Pili interfere with PorBIA-dependent invasion. (A) Chang cells were infected with N2009 (PorBIA, P+) or N2010 (PorBIA, P2) at MOI 10 for 1 h
and then analyzed by gentamicin protection assays. The number of adherent (white bars) and invasive (black bars) bacteria of the strain N2010 was taken as
100%. The graph shows mean values 6 SD of two independent experiments performed in duplicates. (B) Intracellular N2009 are highly enriched for non-
piliated variants. Piliated (white bars, Pili+) and non-piliated (black bars, Pili2) gentamicin resistant N2009 gonococci recovered from the experiment shown
in (A) were quantified for their pilus phenotype with a steromicroscope. (C) Chang cells were infected at an MOI of 10 for 30 min with N927 (PorBIA, P2) or
with N2013 (recAi, PorBIA, P+), a recA mutant which cannot undergo pilE recombination. The bar chart shows the results of a gentamicin protection assay as
the mean values 6 SD of three independent experiments done in duplicates. The number of adherent (white bars) and invasive (black bars) bacteria of
N927 was set to 100%. p,0.01: ** (D) Model of the molecular events underlying the switch from local to invasive gonococcal infection.
doi:10.1371/journal.ppat.1003373.g008
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with 0.1% Triton-X-100 for 15 min. Staining of the extracellular

and intracellular bacteria were subsequently performed as

described above using a Cy3 conjugated secondary anti-rabbit

antibody. Actin staining was carried out using Phalloidin-647

(MFP) 100 nM. Bacteria were stained before infection with the

fluorescent dye SNARF (Invitrogen) for 20 min and washed

several times with infection medium before infection.

Supporting Information

Dataset S1 Supporting data set. This data set shows the

result of a statistical analysis on the basis of published data to

demonstrate the association of PorBIA-expressing strains with

DGI.

(RTF)

Figure S1 Surface expression of SREC-I and truncated
SREC-I on CHO cells. Surface exposed SREC-I on CHO cells

transfected with empty vector control (pEGFP-N1), SREC-I wt or

truncated SREC-I constructs was detected via FACS analysis by

incubation with monoclonal anti-SREC-I antibody and an anti-

mouse Cy5-conjugated antibody. The APC-A axis indicates

surface exposed SREC-I fluorescence. Data are representative

for three independent experiments.

(TIF)

Figure S2 Interaction of SREC-I with N927 requires
intact membrane rafts. (A) Chang cells were either left

untreated (-) or were pretreated for 1 h with 50 mg/ml Nystatin

and then infected with N927 at an MOI of 10 for 30 min.

Intracellular (white bars inv) and adherent (black bars adh)

bacteria were quantified by gentamicin protection assays and the

number bacteria recovered from untreated control cells was set to

100%. Shown is the mean 6 SD of three independent

experiments each performed in duplicate. p,0.01: ** (B) Chang

cells were pretreated for 1 h with 25 mg/ml or 50 mg/ml Nystatin

and then infected with N927 at an MOI of 10 for 30 min. Analysis

was performed as described in (B). (C) Reduced recruitment of

SREC-I by N927 after membrane raft disruption. Chang cells

were treated with 50 mg/ml Nystatin for 1 h before infection with

N927 (PorBIA, P2) at MOI 25. Bacteria were visualized by

SNARF-1 staining and SREC-I was detected with a polyclonal

serum against SREC-I (Imagenex) and a Cy2-conjugated

secondary antibody. Co-localization of SREC-I and gonococci

(white arrows) was analyzed by confocal immunofluorescence

microscopy. Scale bar: 10 mm. (D) Chang cells were treated or not

with 5 mg/ml Methyl-b-cyclodextrin (MbCD). Cells were either

infected for 30 min immediately after the 30 min MbCD

treatment or 3 h after replacement of MbCD by regular growth

medium (wash out). The number of adherent and intracellular

bacteria was determined by gentamicin protection assay and the

number of adherent and invasive bacteria of the untreated control

was set to 100%. Experiments were performed four times each in

duplicates. p,0.01: **, p,0.05: *.

(TIF)

Figure S3 PorBIA-triggered invasion depends on Cav1
pY14 and the switch-off of pilus production. (A)

Depiction of figure 2D from the main manuscript presented

with separate channels. AGS Cav1 or AGS Cav1Y14F were

infected with N927 at MOI 25. Adherent (blue and red) and

intracellular (red) bacteria were detected by differential

immunofluorescence assay. Caveolin expression was visualized

with an HA antibody and a Cy2-conjugated secondary antibody

(green). (B) Cytoskeletal rearrangements after infection: Chang

cells were infected with either N927 (PorBIA, P2) or N138

(PorBIB, P+) at an MOI of 25 for 30 min under phosphate free

conditions. Cells were fixed and actin was stained with

Phalloidin 647 (MFP, green). (C) Only piliated gonococci form

microcolonies. Cells were infected as under (B) and gonococci

(red) were additionally stained with anti-Ngo rabbit IgG (US

Biological) and secondary Cy3 anti-rabbit antibody. (D) N138

fails to invade Chang cells. Chang cells were infected at an MOI

of 10 for 30 min with either N927 or N138. Adherence (white

bars) and invasion (black bars) was analyzed by gentamicin

protection assays. The number of adherent and invasive

bacteria of the strain N927 was set to 100%. Experiments were

performed three times each in duplicates. p,0.01: **.

(TIF)

Figure S4 PLCc1 but not Vav2 is essential for N927
invasion. (A) Validation of PLCc1 silencing. shRNA-mediated

downregulation of PLCc1 in HeLa cells was quantified by

Western blot. (B) shRNA-mediated downregulation of Vav2 in

Hela cells has no effect on internalization of N927 (PorBIA, P2).

Control cells (shLuci) as well as shVav2 cells (shVav2) were

infected with strain N927 (MOI 10; 30 min) and adherence (white

bars) as well as invasion (black bars) were analyzed by gentamicin

protection assay. The number of adherent and invasive bacteria of

control cells (shLuci) was set to 100%. Shown are mean values 6

SD of three independent experiments done in duplicates. (C)

Knock down of Vav2 in Hela cells was verified by Western

blotting. Actin was detected as loading control.

(TIF)

Figure S5 Infection-induced activation of PI3K. (A) Cav1-

deficient AGS cells as well as Cav1-expressing transgenic AGS

cells were either infected with N927 (PorBIA, P2) or N138 (PorBIB,

P+) at an MOI of 50 for 30 min. PI3K activity was analyzed by

immunoblotting using anti-pAKT antibody. (B) Relative amount

of pAKT quantified from the experiment shown in (A). (C) Chang

cells were infected with strains N931 (PorBIB, P2, Opa50), N313

(PorBIB, P2, Opa57), N924 (PorBIB, P2, Opa2) and N927 (PorBIA,

P2, Opa2) at an MOI of 75 for 30 min and PI3K activity was

determined by immunoblotting using anti-pAKT antibody. (D)

The strains used for infection in (C) were tested for the PorB

subtype. Gonococci were lysed, separated by SDS-Page and

Table 2. Neisseria MS11 derivatives.

Strains Phenotypea Genotypeb, plasmid Source

N927 PorBIA, Pn, P2, Opa2 DpilE1/2, cat,porBIA, .ermC [21]

N138 PorBIB, P+, Opa2 [49]

N503 PorBIB, P+, Opa2 DpilE2, recAI, ermC [50]

N2013 PorBIA, P+, Opa2 recAI This study

N2015 PorBIA, P2, Opa2 recAI This study

N2009 PorBIA, P+, Opa2 cat,porBIA, .ermC This study

N2010 PorBIA, P2, Opa2 cat,porBIA, .ermC This study

N924 PorBIB, Pn, P2, Opa2 pTH6 [21]

N313 PorBIB, Pn, P2, Opa57 pTH6 (opa57) [27]

N931 PorBIB, Pn, P2, Opa50 pTH6 (opa50) [51]

aPn, non-revertible loss of piliation; P+, piliated; P2, non-piliated; Opa2, no
detectable Opa expression;
bShown are the genes and their orientation introduced into the genome of
strain MS11; The plasmid pTH6 (with or without opa genes) are integrated into
the Neisseria ptetM25.2 plasmid. Arrowheads indicate 59 end (. or ,) and 59 to
39 orientation (.) of genes.
doi:10.1371/journal.ppat.1003373.t002
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analyzed by Coomassie staining. As PorB is the major outer

membrane protein a prominent band is visible at 35 kDa (PorBIB

subtype) or at 34 kDa (PorBIA subtype). (E) End1 cells were

pretreated for 1 h with PI3K inhibitor LY294002 (LY, 10 mM))

and infected with N927 (MOI 50) for 30 min. Adherence (white

bars) and invasion (black bars) were quantified by gentamicin

protection assay. The number of adherent and invasive bacteria of

untreated control cells was set to 100%. The graph shows mean

values 6 SD of three independent experiments performed in

duplicates. p,0.01: ** (F) Activation of PI3K shown by

phosphorylation of Akt. Whole cell lysates of End1 cells infected

with either N927 or N138 at MOI 50 were subjected to SDS

PAGE and Western blotting using anti-phospho-Akt, anti-Akt and

anti-Actin antibodies.

(TIF)

Figure S6 PKD1 is involved in PorBIA- and Opa50-
mediated invasion. (A,B) Chang cells were transfected with

siRNAs against PKD1/PKCm and luciferase as control. The cells

were infected with N927 (PorBIA, P2, Opa2 MOI 10), N931

(PorBIB, P2, Opa50 MOI 50) and N313 (PorBIB, P2, Opa57 MOI

50) for 120 min under low phosphate conditions 72 h after siRNA

transfection. Adherent (A) and intracellular (B) bacteria were

quantified by gentamicin protection assay. Shown are the means

6 SD of three independent experiments done in duplicates.

Invasion in and adherence to control cells transfected with siLuc

was set to 100%. p,0.01: **.

(TIF)

Figure S7 Cytotoxic effect of chemical inhibitors tested
under assay conditions. Cytotoxicity of inhibitors was tested in

Chang cells by propidium iodide uptake assay. Chang cells were

treated with the different inhibitors at the indicated concentrations

(Nystatin 50 mg/ml, U73122 10 mM, LY294002 10 mM, Imatinib

10 mM, NSC23766 100 mM, Gö6976 3 mM, MbCD 5 mg/ml) for

1 h. Triton (0.1%) was used as positive control and was added

5 min before analysis. Flow cytometry analysis was performed

after staining with PI. The FL2-A axis indicates PI fluorescence.

(TIF)

Figure S8 SREC-I surface expression after inhibitor
treatment. SREC-I was detected on Chang cells by incubation

with an anti-SREC-I antibody or an isotype control after

treatment with the respective inhibitors (A) dissolved in water,

(B) dissolved in DMSO or (C) in Hepes medium. As secondary

antibody Cy2-labeled anti-mouse antibody was used. Graphs show

the mean fluorescence and represent means 6 SD of three

independent experiments. P-values refer to untreated control cells.

(TIF)

Figure S9 Piliation affects invasion. (A) Piliation status of

N2009 was verified by electron micrographs. Photographs were

taken at 12,500- or 20,000-fold magnifications. (B) N2009 (PorBIA,

P+) failed to efficiently invade End1 cells. End1 cells were infected

at an MOI of 10 for 30 min with either N2010 (PorBIA, P2) or

N2009. Adherent (white bars) and intracellular bacteria (black

bars) were counted from 50 randomly chosen cells using

differential immunostaining and confocal microscopy. Shown is

the mean 6 SD of three independent experiments. The number of

adherent and invasive bacteria of strain N2010 was set to 100%.

p,0.01: **.

(TIF)

Text S1 Supplementary materials and methods. Addi-

tional information on cell culture and transfection, infection at low

phosphate concentrations, DNA constructs, peptide synthesis and

streptavidin-agarose pull-down, generation of stable PLCc1

knockdown cell lines, detection of surface exposed SREC-I on

CHO cells by FACS-analysis, electron microscopy, purification of

caveolin-rich membrane fractions and a Cytotoxicity assay.

Supplementary Table S1: Primary antibodies for immunoblotting

(IB), immunofluorescence (IF), immunoprecipitation (IP) or flow

cytometry (FACS) are listed.

(RTF)
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