
Towards Verification of the
Pastry Protocol using TLA+

Tianxiang Lu Stephan Merz
Christoph Weidenbach

MPI–I–2011–MPI-I-2011-RG1-002
June 2011

Authors’ Addresses

Christoph Weidenbach
Max-Planck-Institut für Informatik
Campus E 1 4

D-66123 Saarbrücken

Stephan Merz
INRIA Nancy & LORIA
615, rue du Jardin Botanique

F-54602 Villers-lès-Nancy, France

Tianxiang Lu
Max-Planck-Institut für Informatik
Campus E 1 4

D-66123 Saarbrücken

Publication Notes

This report is an extended version of an article published elsewhere.

Abstract

Pastry is an algorithm that provides a scalable distributed hash table over
an underlying P2P network. Several implementations of Pastry are available
and have been applied in practice, but no attempt has so far been made to
formally describe the algorithm or to verify its properties. Since Pastry com-
bines rather complex data structures, asynchronous communication, concur-
rency, resilience to churn and fault tolerance, it makes an interesting target
for verification. We have modeled Pastry’s core routing algorithms and com-
munication protocol in the specification language TLA+. In order to validate
the model and to search for bugs we employed the TLA+ model checker tlc
to analyze several qualitative properties. We obtained non-trivial insights in
the behavior of Pastry through the model checking analysis. Furthermore,
we started to verify Pastry using the very same model and the interactive
theorem prover tlaps for TLA+. A first result is the reduction of global
Pastry correctness properties to invariants of the underlying data structures.

Keywords

formal specification, model checking, verification methods, network protocols

Contents

1 Introduction 2

2 The Join Protocol 5

3 A First Formal Model of Pastry 7
3.1 Static Model . 7
3.2 Dynamic Model . 12
3.3 Validation By Model Checking 14
3.4 Correct Key Delivery . 14

4 Refining the Join Protocol 17
4.1 Lease Granting Protocol . 17
4.2 Symmetry of Leaf Sets . 33
4.3 Validation . 33

5 Theorem Proving 38

6 Conclusion and Future Work 48

1

1 Introduction

Pastry [15, 4, 8] is an overlay network protocol that implements a distributed
hash table. The network nodes are assigned logical identifiers from an Id
space of naturals in the interval [0, 2M − 1] for some M . The Id space is
considered as a ring, i.e., 2M − 1 is the neighbor of 0. The Ids serve two
purposes. First, they are the logical network addresses of nodes. Second,
they are the keys of the hash table. An active node is in particular respon-
sible for keys that are numerically close to its network Id, i.e., it provides
the primary storage for the hash table entries associated with these keys.
Key responsibility is divided equally according to the distance between two
neighbor nodes. If a node is responsible for a key we say it covers the key.

The most important sub-protocols of Pastry are join and lookup. The
join protocol eventually adds a new node with an unused network Id to the
ring. The lookup protocol delivers the hash table entry for a given key. An
important correctness property of Pastry is Correct Key Delivery, requiring
that there is always at most one node responsible for a given key. This
property is non-trivial to obtain in the presence of spontaneous arrival and
departure of nodes. Nodes may simply drop off, and Pastry is meant to be
robust against such changes, i.e., churn. For this reason, every node holds
two leaf sets of size l containing its closest neighbors to either side (l nodes
to the left and l to the right). A node also holds the hash table content of
its leaf set neighbors. If a node detects, e.g. by a ping, that one of its direct
neighbor nodes dropped off, the node takes actions to recover from this state.
So the value of l is relevant for the amount of “drop off” and fault tolerance
of the protocol.

A lookup request must be routed to the node responsible for the key.
Routing using the leaf sets of nodes is possible in principle, but results in
a linear number of steps before the responsible node receives the message.
Therefore, on top of the leaf sets of a node a routing table is implemented
that enables routing in a logarithmic number of steps in the size of the ring.

Pastry routes a message by forwarding it to nodes that match progres-

2

Figure 1.1: Pastry Routing Example

sively longer prefixes with the destination key. In the example of Figure 1.1,
node 18 received a lookup message for key 95. The key is outside node 18’s
coverage and furthermore, it doesn’t lie between the leftmost node and the
rightmost node of its leaf sets. Querying its routing table, node 18 finds node
58, whose identifier matches the longest prefix with the destination key and
then forwards the message to that node. Node 58 repeats the process and
finally, the lookup message is answered by node 65, which is the closest node
to the key 95, i.e., it covers key 95. In this case, we say that node 65 delivers
the lookup request for key 95 (see also Figure 3.2).

The first challenge in modeling Pastry was to determine an appropriate
level of abstraction. As a guiding principle, we focused the model toward
supporting detailed proofs of the correctness properties. We abstracted from
an explicit notion of time because it does not contribute to the verification
of correctness properties. For example, time-triggered periodic maintenance
messages exchanged between neighbors are modeled by non-deterministic
sending of such messages. In contrast, we developed a detailed model for the
address ring, the routing tables, the leaf sets, as well as the messages and
actions of the protocol because these parts are central to the correctness of
Pastry.

The second challenge was to fill in needed details for the formal model that
are not contained in the published descriptions of Pastry. Model checking was

3

very helpful for justifying our decisions. For instance, it was not explicitly
stated what it means for a leaf set to be “complete”, i.e., when a node
starts taking over coverage and becoming an active member on the ring.
It was not stated whether an overlap between the right and left leaf set is
permitted or whether the sets should always be disjoint. We made explicit
assumptions on how such corner cases should be handled, sometimes based
on an exploration of the source code of the FreePastry implementation [13].
Thus, we implemented an overlap in our model only if there are at most 2l
nodes present on the entire network, where l is the size of each leaf set. A
complete leaf set only contains less than l nodes, if there are less than l nodes
on the overall ring.

A further challenge was to formulate the correctness property; in fact, it
is not stated explicitly in the literature [15, 4, 8]. The main property that we
are interested in is that the lookup message for a particular key is answered
by at most one “ready” node covering the key. We introduced a more fine-
grained status notion for nodes, where only “ready” nodes answer lookup
and join requests. The additional status of a node being “ok” was added
in the refined model described in Section 4 to support several nodes joining
simultaneously between two consecutive “ready” nodes.

The report is organized as follows. In Section 2 we explain the basic
mechanisms behind the join protocol of Pastry. This protocol is the most
important part of Pastry for correctness. Key aspects of our formal model
are introduced in Section 3. Here we show the TLA+ formal model at the
corresponding places where we introduce them in the text. To the best of
our knowledge, we present the first formal model covering the full Pastry
algorithm. A number of important properties are model checked, subsec-
tions 3.3–3.4 and subsections 4.2–4.3, and the results are used to refine our
model in case the model checker found undesired behavior. In addition to
model checking our model, we have also been able to prove an important re-
duction property of Pastry. Basically, the correctness of the protocol can be
reduced to the consistency of leaf sets, as we show in Section 5, Theorem 3.
The report ends with a summary of our results, related work, and future
directions of research in Section 6.

4

2 The Join Protocol

The most sophisticated part of Pastry is the protocol for a node to join the
ring. In its simplest form, a single node joins between two “ready” nodes
on the ring. The new node receives its leaf sets from the “ready” nodes,
negotiates with both the new leaf sets and then goes to status “ready”.

The join protocol is complicated because any node may drop off at any
time, in particular while it handles a join request. Moreover, several nodes
may join the ring concurrently between two adjacent “ready” nodes. Still,
all “ready” nodes must agree on key coverage.

Figure 2.1 presents a first version of the join protocol in more detail,
according to our understanding from [15] and [4]. We will refine this protocol
in Sect. 4 according to the description in [8].

Figure 2.1: Overview of the join protocol.

5

Node j announces its interest in joining the ring by performing a Join
action. At this point, its status is “wait”. Its join request will be routed
to the closest “ready” node i just like routing a lookup message, treating j
as the key. Node i replies to j by performing a join reply, JReply action,
transmitting its current leaf sets to enable node j to construct its own leaf
sets. Then the node j probes all nodes in its leaf sets in order to confirm
their presence on the ring. A probe reply, action PReply, signals j that the
respective leaf set node received the probe message from j and updated its
local leaf set with j . The reply contains the updated leaf set. Each time
the node j receives a probe reply message, it updates the local information
based on the received message and checks if there are outstanding probes. If
no outstanding probe exists anymore or a timeout occurs, it checks whether
its leaf set is complete. If it is, it finishes the join phase and goes to status
“ready”. Otherwise, any fault case is summarized in Figure 2.1 by Repair.
For example, if a probe eventually fails, the probed node needs to be removed
from the leaf set. Then the node j probes the most distant nodes (leftmost
and rightmost) in its leaf sets to get more nodes, retrying to complete its leaf
set.

6

3 A First Formal Model of
Pastry

We modeled Pastry as a (potentially infinite-state) transition system in TLA+ [9].
Although there are of course alternative logics and respective theorem provers
for modeling Pastry, TLA+ fits protocol verification quite nicely, because its
concept of actions matches the rule/message based definition of protocols.
Our model is available on the Web1. We explain those parts of the model
that are used later on for model checking and for proving the reduction the-
orem.

3.1 Static Model

Several parameters define the size of the ring and of the fundamental data
structures. In particular, M ∈ N defines the space I = [0, 2M−1] of node and
key identifiers, and l ∈ N indicates the size of each leaf set. The following
definition introduces different notions of distances between nodes or keys that
will be used in the model.

Definition 1 (Distances). Given x, y ∈ I :

Dist(x , y)
∆
=


x − y + 2M−1 if x − y < −2M−1

x − y − 2M−1 if x − y > 2M−1

x − y , else

AbsDist(x , y)
∆
= |Dist(x , y)|

CwDist(x , y)
∆
=

{
AbsDist(x , y) if Dist(x , y) < 0

2M − AbsDist(x , y) else

1http://www.mpi-inf.mpg.de/~tianlu/software/PastryModelChecking.zip

7

The sign of Dist(x , y) is positive if there are fewer identifiers on the counter-
clockwise path from x to y than on the clockwise path; it is negative other-
wise. The absolute value AbsDist(x , y) gives the length of the shortest path
along the ring from x to y . Finally, the clockwise distance CwDist(x , y)
returns the length of the clockwise path from x to y .

-------------------------- MODULE Ring ------------------------

EXTENDS

TLC, * To enable the pretty print

FiniteSets,* To understand IsFiniteSet()

Integers * To resolve the operators, e.g. <, \div etc.

CONSTANTS

I, * Identifiers (ID) for a node or a key

A, * The initial ready nodes

B, * For defining the base of ID in routing table

M, * The maximal allowed exponents of 2,

* which won’t cause an overflow of natural number

L * The parameter l in paper, max. length of each leafset

ASSUME IsFiniteSet(I)

ASSUME I \in SUBSET Nat

ASSUME A \in SUBSET I

ASSUME B < M /\ M % B = 0

ASSUME L >0

ASSUME Cardinality(A)>0

Base == 2^B

RingCap == 2^M * Identifier space

Dist(x, y) ==

LET

diff == x - y

half == 2^(M-1)

IN IF diff < 0-half

THEN diff + RingCap

ELSE IF diff > half THEN diff - RingCap ELSE diff

AbsDist(x, i) ==

LET hd == Dist(x, i) IN IF hd<0 THEN 0-hd ELSE hd

CwDist(x, i) ==

IF Dist(x, i) < 0

THEN RingCap - AbsDist(x, i)

ELSE AbsDist(x, i)

========================end of module Ring==========================

8

The leaf set data structure ls of a node is modeled as a record with three
components ls .node, ls .left and ls .right . The first component contains the
identifier of the node maintaining the leaf set, the other two components are
the two leaf sets to either side of the node. The following operations access
leaf sets.

Definition 2 (Operations on Leaf Sets).

GetLSetContent(ls)
∆
= ls .left ∪ ls .right ∪ {ls .node}

LeftNeighbor(ls)
∆
=



ls .node if ls .left = {}

n ∈ ls .left : ∀p ∈ ls .left :

CwDist(p, ls .node)

≥ CwDist(n, ls .node) else

RightNeighbor(ls)
∆
=



ls .node if ls .right = {}

n ∈ ls .right : ∀q ∈ ls .right :

CwDist(ls .node, q)

≥ CwDist(ls .node, n) else

LeftCover(ls)
∆
= (ls .node + CwDist(LeftNeighbor(ls), ls .node)÷ 2)%2M

RightCover(ls)
∆
= (RightNeighbor(ls) +

CwDist(ls .node,RightNeighbor(ls))÷ 2 + 1)%2M

Covers(ls , k)
∆
= CwDist(LeftCover(ls), k)

≤ CwDist(LeftCover(ls),RightCover(ls))

In these definitions, ÷ and % stand for division and modulo on the natural
numbers, respectively2. We also define the operation AddToLSet(A, ls) that
updates the leaf set data structure with a set A of nodes. More precisely,
both leaf sets in the resulting data structure ls ′ contain the l nodes closest
to ls .node among those contained in ls and the nodes in A, according to the
clockwise or counter-clockwise distance.

2Note that they are in fact only applied in the above definitions to natural numbers.

9

-------------------------- MODULE LS -----------------------

EXTENDS Ring

LSet == {ls \in [node: I, left: SUBSET I, right: SUBSET I]:

/\ ls.node \notin ls.left

/\ ls.node \notin ls.right

/\ Cardinality(ls.left) =< L

/\ Cardinality(ls.right) =< L}

GetLSetContent(ls) == ls.left \cup ls.right \cup {ls.node}

RemoveFromLSet(delta, ls) ==

[node |-> ls.node,

left |-> ls.left \ delta,

right |-> ls.right \ delta]

AddToLSet(delta, set) ==

LET

i == set.node

left == ((set.left) \cup delta) \ {i}

right == ((set.right) \cup delta) \ {i}

newleft ==

IF Cardinality(left) =< L

THEN left

ELSE CHOOSE subsetleft \in SUBSET left:

/\ Cardinality(subsetleft) = L

/\ \A out \in (left \ subsetleft),

in \in subsetleft:

CwDist(in,i) < CwDist(out,i)

newright ==

IF Cardinality(right) =< L

THEN right

ELSE CHOOSE subsetright \in SUBSET right:

/\ Cardinality(subsetright) = L

/\ \A out \in (right \ subsetright),

in \in subsetright:

CwDist(i,in) < CwDist(i,out)

IN [node |-> i, left |-> newleft, right |-> newright]

10

LeftMost(ls)==(*find the leftmost node in lset wrt. I*)

IF ls.left = {}

THEN ls.node

ELSE CHOOSE n \in ls.left:

\A m \in ls.left: Dist(m, n) < 0 \/ n = m

RightMost(ls)==(*find the rightmost node in lset wrt. I*)

IF ls.right = {}

THEN ls.node

ELSE CHOOSE n \in ls.right:

\A m \in ls.right: Dist(n, m) < 0 \/ n = m

LeftNeighbor(ls) ==

IF ls.left = {}

THEN ls.node

ELSE CHOOSE n \in ls.left:

\A p\in ls.left: CwDist(p,ls.node)>=CwDist(n,ls.node)

RightNeighbor(ls) ==

IF ls.right = {}

THEN ls.node

ELSE CHOOSE n \in ls.right:

\A p\in ls.right: CwDist(ls.node, p)>=CwDist(ls.node, n)

IsComplete(ls)==

/\Cardinality(ls.left) = L

/\Cardinality(ls.right) = L

InitLS(i) == AddToLSet(A, [node |-> i, left|-> {}, right|-> {}])

EmptyLS(i) == [node |-> i, left|-> {}, right|-> {}]

Overlaps(ls) == ls.left \cap ls.right # {}

Lenth(s)== Cardinality(s)

======================== end of module LS =========================

--------------------- MODULE RT (simlified)------------------------

EXTENDS LS

RTable == SUBSET I

InitRTable == {}*Empty routing table

GetRTableContent(rt) == rt

AddToTable(newSet, rt, i) == rt \cup newSet

RemoveFromTable(set, rt, index) == rt \ set

======end of module RT

11

3.2 Dynamic Model

vars
∆
= 〈receivedMsgs , status , lset , probing , failed , rtable〉

Init
∆
= ∧ receivedMsgs = {}
∧ status = [i ∈ I 7→ if i ∈ A then “ready” else “dead”]

∧ lset = [i ∈ I 7→ if i ∈ A

then AddToLSet(A,EmptyLS (i))

else EmptyLS (i)]

∧ probing = [i ∈ I 7→ {}]
∧ failed = [i ∈ I 7→ {}]
∧ rtable = [i ∈ I 7→ if i ∈ A

then AddToTable(A, InitRTable, i)

else AddToTable({i}, InitRTable, i)]

Next
∆
= ∃i , j ∈ I : ∨ Deliver(i , j)

∨ Join(i , j)

∨ JReply(i , j)

∨ Probe(i , j)

∨ PReply(i , j)

∨ . . .
Spec

∆
= Init ∧�[Next]vars

Figure 3.1: Overall Structure of the TLA+ Specification of Pastry.

Figure 3.1 shows the high-level outline of the transition model specifi-
cation in TLA+. The overall system specification Spec is defined as Init ∧
�[Next]vars , which is the standard form of TLA+ system specifications. It
requires that all runs start with a state that satisfies the initial condition
Init , and that every transition either does not change vars (defined as the
tuple of all state variables) or corresponds to a system transition as defined
by formula Next . This form of system specification is sufficient for prov-
ing safety properties. If we were interested in proving liveness properties of
our model, we should add fairness hypotheses asserting that certain actions
eventually occur.

The variable receivedMsgs holds the set of messages in transit. Our model
assumes that messages are never modified. However, message loss is implic-
itly covered because no action is ever required to execute. The other variables
hold arrays that assign to every node i ∈ I its status, leaf set, the set of nodes
it is currently probing, the set of nodes it has determined to have dropped
off the ring and routing table. The predicate Init is defined as a conjunction

12

Deliver(i , k)
∆
=

∧ status [i] = “ready”

∧ ∃m ∈ receivedMsgs : ∧ m.mreq .type = “lookup”

∧ m.destination = i

∧ m.mreq .node = k

∧ Covers(lset [i], k)

∧ receivedMsgs ′ = receivedMsgs \ {m}
∧ unchanged 〈status , rtable, lset , probing , failed〉

Figure 3.2: TLA+ specification of action Deliver .

that initializes all variables; in particular, the model takes a parameter A
indicating the set of nodes that are initially “ready”.

The next-state relation Next is a disjunction of all possible system ac-
tions3. for all pairs of identifiers i , j ∈ I . Each action is defined as a TLA+

action formula, which is a first-order formula containing unprimed as well
as primed occurrences of the state variables, which refer respectively to the
values of these variables at the states before and after the action. As an ex-
ample, Figure. 3.2 shows the definition of action Deliver(i , k) in TLA+. The
action is executable if the node i is “ready”, if there exists an unhandled
message of type “lookup” addressed to i , and if k , the ID of the requested
key, falls within the coverage of node i (cf. Definition 2). Its effect is here
simply defined as removing the message m from the network, because we are
only interested in the execution of the action, not in the answer message that
it generates. The other variables are unchanged (in TLA+, unchanged e is
a shorthand for the formula e ′ = e).

-------------------------- MODULE Msg -------------------------

EXTENDS RT

JReq == [type : {"JoinRequest"}, rtable: RTable, node: I]

JRpl == [type : {"JoinReply"}, rtable: RTable, lset: LSet]

Prb == [type : {"LSProbe"}, node: I,

lset: LSet, failed: SUBSET I]

PRpl == [type : {"LSProbeReply"}, node: I,

lset: LSet, failed: SUBSET I]

Look == [type : {"Lookup"}, node: I]

NoLR == [type : {"NoLegalRoute"}, key: I]

3In this chapter, we only show the needed actions for demonstrating the counter ex-
ample in section 3.4, other actions can be found later in section 4.1.

13

MReq == JReq \cup JRpl \cup Prb \cup PRpl

\cup Look \cup NoLR

DMsg == [destination: I, mreq: MReq]

======================== end of module Msg====================

3.3 Validation By Model Checking

We used tlc [17], the TLA+ model checker, to validate and debug our model.
It is all too easy to introduce errors into a model that prevent the system from
ever performing any useful transition, so we want to make sure that nodes can
successfully perform Deliver actions or execute the join protocol described in
Section 2. We used the model checker by asserting their impossibility, using
the following formulas.

Property 1 (NeverDeliver and NeverJoin).

NeverDeliver
∆
= ∀i , j ∈ I : �[¬Deliver(i , j)]vars

NeverJoin
∆
= ∀j ∈ I \ A : �(status [j] 6= “ready”)

The first formula asserts that the Deliver action can never be executed,
for any i , j ∈ I . Similarly, the second formula asserts that the only nodes
that may ever become “ready” are those in the set A of nodes initialized to
be “ready”. Running the model checker on our model, it quickly produced
counter-examples to these claims, which we examined to ensure that the runs
look as expected. (Section 4.3 summarizes the results for the model checking
runs that we performed.)

We validated the model by checking several similar properties. For exam-
ple, we defined formulas ConcurrentJoin and CcJoinDeliver whose violation
yielded counter-examples that show how two nodes may join concurrently in
close proximity to the same existing node, and how they may subsequently
execute Deliver actions for keys for which they acquired responsibility.

3.4 Correct Key Delivery

As the main correctness property of Pastry, we want to show that at any
time there can be only one node responsible for any key. This is formally
expressed as follows.

14

Property 2 (Correct Key Delivery).

CorrectDelivery
∆
= ∀i , k ∈ I :

enabled Deliver(i , k)

⇒ ∧ ∀n ∈ I : status [n] = “ready”⇒ AbsDist(i , k) ≤ AbsDist(n, k)

∧ ∀j ∈ I \ {i} : ¬enabled Deliver(j , k)

For an action formula A, the state formula enabled A is obtained by ex-
istential quantification over all primed state variables occurring in A; it is
true at a state s whenever there exists some successor state t such that A
is true for the pair (s , t), that is, when A can execute at state s . Thus,
CorrectDelivery asserts that whenever node i can execute the Deliver action
for key k then (a) node i has minimal absolute distance from k among all
the “ready” nodes and (b) i is the only node that may execute Deliver for
key k .4

Figure 3.3: Counter-example leading to a violation of CorrectDelivery .

4Observe that there can be two nodes with minimal distance from k , to either side
of the key. The asymmetry in the definition of LeftCover and RightCover is designed to
break the tie and ensure that only one node is allowed to deliver.

15

When we attempted to verify Property 2, the model checker produced
a counter-example, which we illustrate in Figure 3.3. The run starts in a
state with just two “ready” nodes c and d that contain each other in their
respective leaf sets (the actual size of the leaf sets being 1). Two nodes a and
b concurrently join between nodes c and d . According to their location on
the ring, a’s join request is handled by node c, and b’s request by d . Both
nodes learn about the presence of c and d , and add them to their leaf sets,
then send probe requests to both c and d in order to update the leaf sets.
Now, suppose that node d is the first to handle a’s probe message, and that
node c first handles b’s probe. Learning that a new node has joined, which is
closer than the previous entry in the respective leaf set, c and d update their
leaf sets with b and a, respectively (cf. Figure 3.3), and send these updated
leaf sets to b and a. Based on the reply from d , node a will not update its
leaf set because its closest left-hand neighbor is still found to be c, while it
learns no new information about the neighborhood to the right. Similarly,
node b maintains its leaf sets containing c and d . Now, the other probe
messages are handled. Consider node c receiving a’s probe: it learns of the
existence of a new node to its right closer to the one currently in its leaf set
(b) and updates its leaf set accordingly, then replies to a. However, node a
still does not learn about node b from this reply and maintains its leaf sets
containing c and d . Symmetrically, node d updates its leaf set to contain b
instead of a, but b does not learn about the presence of a. At the end, the
leaf sets of the old nodes c and d are correct, but a and b do not know about
each other and have incorrect leaf set entries.

Finally, a lookup message arrives for key k , which lies between a and
b, but closer to a. This lookup message may be routed to node b, which
incorrectly believes that it covers key k (since k is closer to b than to c,
which b believes to be its left-hand neighbor), and delivers the key.

The counter-example shows that our model of the join protocol may lead
to inconsistent views of “ready” nodes about their neighborhoods on the ring,
and is therefore insufficient. Indeed, after the initial publication of Pastry,
Haeberlen et al. [8] presented a refined description of Pastry’s join protocol,
without providing an explicit motivation. We believe that the above counter
example explains the refinement of [8], which we model and analyze in the
sequel.

16

4 Refining the Join Protocol

In contrast to the join protocol described in Section 2, the refined join proto-
col requires an explicit transfer of coverage from the “ready” neighbor nodes
before a joining node can become “ready” and answer lookup requests. In
the case of the counter-example shown in Figure 3.3, node a would request
grants from the nodes c and d , which it believes to be its neighbors. Node d
would refuse this request and instead inform node a of the presence of node
b, enabling it to rebuild its leaf sets. Similarly, node b would learn about
the presence of node a. Finally, the two nodes grant each other a lease for
the nodes they cover. We now describe the extended protocol as we have
understood and modeled it, and our further verification efforts. In fact, our
formal model is also inspired by the implementation in FreePastry [13], where
nodes periodically exchange their leaf sets to spread information about nodes
dropping off and arriving.

4.1 Lease Granting Protocol

Figure 4.1 depicts the extension to the join protocol as described in Section 2
(cf. Figure 2.1). After node i has built complete leaf sets, it reaches status
“ok”. It sends messages to its neighbors ln and rn (the two closest nodes
in its current leaf sets), requesting a lease for the keys it covers. A node
receiving a lease request from a node that it considers to be its neighbor
grants the lease, otherwise it returns its own leaf sets to the requesting node.
The receiving node will update its own leaf sets accordingly and request a
lease from the new neighbor(s). Only when both neighbors grant the lease
will node i become “ready”.

Moreover, any node that is “ok” or “ready” may non-deterministically re-
run the lease granting protocol at any time. In the actual implementation,
this happens periodically, as well as when a node suspects its neighbor to
have left the ring.

17

Figure 4.1: Extending the Join Protocol by Lease Granting.

We amended our TLA+ model to reflect this extended join protocol and
reran tlc on the extended model. Whereas the results for the properties used
to validate the model (cf. Section 3.3) were unchanged, the model checker no
longer produced a counter-example to Property 2. However, we were unable
to complete the model checking run and killed tlc after it had been running
for more than a month.

The extended TLA+ model has two more variables (cf. Figure 4.2), lease
stores the nodes from which it has already got the leases and grant stores
the nodes to which it has granted its leases. The message type has been
extended with LReq for sending the lease request and BLS for broadcasting
the leaf set and at the same time granting the lease if applicable (cf. TLA+

module Msg).

-------------------------- MODULE Msg -------------------------

......

LReq == [type : {"LeaseRequest"}, node: I]

BLS == [type : {"BroadcastLSet"}, lset: LSet, grant: BOOLEAN]

MReq == ... \cup LReq \cup BLS

================= end of extended module of Msg ===============

18

vars
∆
= 〈receivedMsgs , status , lset , probing , failed , rtable, lease,grant〉

Init
∆
= ∧ ...

∧ lease = [i ∈ I 7→ {}]
∧ grant = [i ∈ I 7→ {}]

Next
∆
= ∃i , j ∈ I : ∨ ...

∨ RequestLease(i) ∨ReceiveLReq(i) ∨ReceiveBLS(i)

∨ LeaseExpired(i, j) ∨DeclareDead(i, j)

Spec
∆
= Init ∧�[Next]vars

Figure 4.2: Extension of overall structure shown in Figure 3.1.

Here we show the formal TLA+ model of Pastry routing protocol. In the
module InitialStates we define the type invariants and initialization of the
variables.

In the module Actions we define the actions a node will execute. An
action consist of preconditions and effects. The primed variables stand for
the changes of the variables as effects of the actions. In the following, we
explain in particular those actions in detail that are crucial for the properties
studied in the paper. The prefix Receive of many action names denotes that
those actions are reactive on the message it received, which has the same
name as the postfix of the action name. For example, one of the precondition
of action ReceiveLSProbe is that a node i received a message of type LSProbe
and its destination is i .

------------------------ MODULE InitialStates -----------------

EXTENDS Msg

VARIABLE

receivedMsgs, status, lease, grant,

rtable, lset, probing, failed

Init ==

/\ receivedMsgs = {}

/\ status = [i \in I |-> IF i \in A THEN "ready" ELSE "dead"]

/\ rtable = [i \in I |-> IF i \in A

THEN AddToTable(A, InitRTable, i)

ELSE AddToTable({i}, InitRTable, i)]

/\ lset = [i \in I |-> IF i \in A

THEN AddToLSet(A, EmptyLS(i))

ELSE EmptyLS(i)]

/\ probing= [i \in I |-> {}]

/\ failed = [i \in I |-> {}]

19

/\ lease = [i \in I |-> IF i \in A THEN A ELSE {}]

/\ grant = [i \in I |-> IF i \in A THEN A ELSE {}]

TypeInvariant ==

/\ receivedMsgs \in SUBSET DMsg

/\ status \in [I -> {"ready", "ok", "wait", "dead"}]

/\ lease \in [I -> SUBSET I] * from which nodes does a node got lease

/\ grant \in [I -> SUBSET I] * to which nodes does a node grant the lease

/\ rtable \in [I -> RTable]

/\ lset \in [I -> LSet] /\ \A i \in I: lset[i].node = i

/\ probing\in [I -> SUBSET I]

/\ failed \in [I -> SUBSET I]

=====================end of module IntialStates========================

20

---------------------- MODULE Actions ----------------------

EXTENDS InitialStates

Lookup(i, k) ==

/\ ~\E m \in receivedMsgs:

/\ m.destination = i

/\ m.mreq.type = "Lookup"

/\ m.mreq.node = k

/\ receivedMsgs’ = receivedMsgs \cup

{[destination |-> i,

mreq |-> [type |-> "Lookup", node |-> k]]}

/\ UNCHANGED <<status, rtable, lset, probing,

failed, lease, grant>>

Join(i, seed) ==

/\ i # seed

/\ ~\E m \in receivedMsgs:

/\ m.mreq.type = "JoinRequest"

/\ m.mreq.node = i

/\ status[i] = "dead"

/\ status[seed] ="ready"

/\ lset[i] = EmptyLS(i)

/\ receivedMsgs’= receivedMsgs \cup

{[destination |-> seed,

mreq |-> [type |-> "JoinRequest",

rtable |-> InitRTable,

node |-> i]]}

/\ status’ = [status EXCEPT ![i]="wait"]

/\ UNCHANGED <<rtable, lset, probing,

failed, lease, grant>>

Deliver(i, k) ==

/\ status[i] = "ready"

/\ \E m \in receivedMsgs:

/\ m.mreq.type = "Lookup"

/\ m.destination = i

/\ m.mreq.node = k

/\ Covers(lset[i], k)

/\ receivedMsgs’ = (receivedMsgs \{m\})

/\ UNCHANGED <<status, rtable, lset, probing,

failed, lease, grant>>

21

We define the following function FindNext ∈ I × I 7→ I to find the next
hop for routing. We modeled the liveness checking of a node c (via Ping)
by reading the value of status [c] if it is “dead” or not. A node could leave
the network or the communication of its channel could be blocked, by these
situation, its status is “dead”. We omitted the routing table look up, because
we don’t use the model to prove any property of the routing table.

FindNext(k, i) ==

LET

lsCan == {c \in GetLSetContent(lset[i]) \ failed[i]:

status[c] # "dead"}

canrelax ==

{can \in (GetLSetContent(lset[i])

\cup GetRTableContent(rtable[i])) \ failed[i]:

/\ AbsDist(k, can) < AbsDist(k, i)

/\ status[can] # "dead"}

IN IF /\ (\/ Overlaps(lset[i])

\/ CwDist(LeftMost(lset[i]), i)

=< CwDist(LeftMost(lset[i]), RightMost(lset[i])))

/\ ~ lsCan = {}

THEN CHOOSE n \in lsCan: \A m \in lsCan:

AbsDist(n, k) =< AbsDist(m, k)

ELSE IF ~canrelax = {}

THEN CHOOSE can \in canrelax: \A m \in canrelax:

AbsDist(can, k) =< AbsDist(m, k)

ELSE i

RouteLookup(i, k) ==

/\ status[i] = "ready"

/\ \E m \in receivedMsgs:

/\ m.destination = i

/\ m.mreq.type = "Lookup"

/\ m.mreq.node = k

/\ ~Covers(lset[i], k)

/\ LET nh == FindNext(k, i)

IN receivedMsgs’= (receivedMsgs \{m\}) \cup

IF nh # i

THEN {[destination |-> nh, mreq |-> m.mreq]}

ELSE {[destination |-> i, mreq |->

[type|->"NoLegalRoute", key|->k]]}

/\ UNCHANGED <<status, rtable, lset, probing,

failed, lease, grant>>

22

RouteJoinRequest(i, k) ==

/\ status[i] = "ready"

/\ \E m \in receivedMsgs:

/\ m.destination = i

/\ m.mreq.type = "JoinRequest"

/\ m.mreq.node = k

/\ ~k \in GetLSetContent(lset[i])

* to avoid the case that a node left and

* rejoin before its neighbor deleted it from their leaf set

/\ ~Covers(lset[i], k)

/\ LET nh == FindNext(k, i)

IN

receivedMsgs’= (receivedMsgs \{m\}) \cup

IF nh # i

THEN {[destination |-> nh, mreq |->

[type |-> "JoinRequest",

rtable |-> AddToTable(GetRTableContent(rtable[i]),

m.mreq.rtable, i),

node |-> k]]}

ELSE {[destination |-> i, mreq |->

[type |-> "NoLegalRoute", key |-> k]]}

/\ UNCHANGED <<status, rtable, lset, probing, failed, lease, grant>>

ReceiveJoinRequest(i) ==

/\ status[i] = "ready"

/\ \E m \in receivedMsgs:

/\ m.mreq.node # i

/\ m.destination = i

/\ m.mreq.type = "JoinRequest"

/\ ~m.mreq.node \in GetLSetContent(lset[i])

* to avoid the case that a node left and

*rejoin before its neighbor deleted it from their leaf set

/\ CwDist(LeftCover(lset[i]), m.mreq.node)

=< CwDist(LeftCover(lset[i]), RightCover(lset[i]))

/\ LET newmjr == [type |-> "JoinReply",

rtable |-> m.mreq.rtable,

lset |-> lset[i]]

newmj == [destination |-> m.mreq.node,

mreq |-> newmjr]

IN receivedMsgs’= (receivedMsgs \{m\}) \cup {newmj}

/\ UNCHANGED <<status, rtable, lset, probing, failed, lease, grant>>

23

The precondition of action ReceiveJoinReply(i) requires that the node not to
be “dead”, because receiving a JoinReply message as a “dead” node has obvi-
ously no effect. It requires probing to be empty because a received JoinReply
is a precondition of probing and according to the nature of the protocol, a
node could receive at most only one JoinReply at each time slot.

The received JoinReply message is removed, the node updates its leaf set
with the received leaf set and send LSProbe message to the new members in
its new leaf set.

Probe(i, ls, f, toprob) ==

{[destination |-> j,

mreq |-> [type |-> "LSProbe",

node |-> i,

lset |-> ls,

failed |-> f

]

]: j\in toprob}

ReceiveJoinReply(i) ==

/\ status[i] # "dead"

/\ probing[i] = {}

/\ lset[i] = EmptyLS(i)

/\ \E m \in receivedMsgs:

/\ m.destination = i

/\ m.mreq.type = "JoinReply"

/\ LET

newrtable== AddToTable(GetLSetContent(m.mreq.lset)

\cup GetRTableContent(m.mreq.rtable),

rtable[i], i)

newlset == AddToLSet(GetLSetContent(m.mreq.lset), lset[i])

toprob == GetLSetContent(newlset) \ {i}

probmsgs== Probe(i, newlset, {}, toprob)

IN

/\ rtable’ = [rtable EXCEPT ![i] = newrtable]

/\ lset’ = [lset EXCEPT ![i] = newlset]

/\ probing’= [probing EXCEPT ![i] = toprob]

/\ failed’ = [failed EXCEPT ![i] = {}]

/\ receivedMsgs’= (receivedMsgs \ {m}) \cup probmsgs

/\ UNCHANGED <<status, lease, grant>>

24

The precondition of the actions ReceiveLSProbe or ReceiveLSProbeReply re-
quires the leaf set of the node not to be empty, if the node has the status
of “wait”, which means that it has sent the JoinRequest some time in the
past and has not yet completed its leaf set. This precondition ensures that
this action can be executed only after a node has already executed the action
ReceiveJoinReply .

When receiving LSProbe or LSProbeReply , the node will add the sender
ID into its leaf set. If the received message m contains new candidates to be
member of i ’s leaf set, then i will send LSProbe to them.

By receiving an LSProbe, the node will send the LSProbeReply back with
its updated leaf set. Here the prb1 stands for the leaf set members from which
the sender j believes they are failed. The node i will then check them itself.
The prb2 stands for potential new leaf set members after adding received leaf
set and not yet probed.

ReceiveLSProbe(i) ==

/\ status[i] # "dead"

/\ status[i] = "wait" => lset[i] # EmptyLS(i)

/\ \E m \in receivedMsgs:

/\ m.destination = i

/\ m.mreq.type = "LSProbe"

/\ m.mreq.node = m.mreq.lset.node

/\ m.mreq.node # i

/\ LET j == m.mreq.node

fi == failed[i] \ {j}

ls1 == IF j \in GetLSetContent(lset[i])

THEN lset[i]

ELSE AddToLSet({j}, lset[i])

lprim == GetLSetContent(

AddToLSet(

(GetLSetContent(m.mreq.lset) \ fi), ls1))

prb1 == GetLSetContent(ls1) \cap m.mreq.failed

prb2 == lprim \ GetLSetContent(ls1)

prb == (prb1 \cup prb2) \ (probing[i] \cup fi)

newm == [type |-> "LSProbeReply",

node |-> i,

lset |-> ls1,

failed |-> fi]

IN

/\failed’ = [failed EXCEPT ![i]=fi]

/\rtable’ = [rtable EXCEPT ![i] =

25

AddToTable({j}, @, i)]

/\lset’ = [lset EXCEPT ![i] = ls1]

/\probing’= [probing EXCEPT ![i] = @ \cup prb]

/\receivedMsgs’ = (receivedMsgs \ {m})

\cup { [destination |-> j,

mreq |-> newm]}

\cup Probe(i, ls1, fi, prb)

/\ UNCHANGED <<lease, status, grant>>

By receiving LSProbeReply , only the message from the nodes it is currently
probing are handled, to avoid garbage message making any confusion. Here
the prb3 stands for the overall nodes to probe or being probed. The status of
the node will become “ok”, if (i) the node is still “wait”; (ii) prb3 is empty,
meaning for all nodes it has probed, it has got a reply and there is no more
node need to probe; (iii) each of the leaf set has the length of L or the left
and right leaf set have common members.

ReceiveLSPrRpl(i) ==

/\ status[i] # "dead"

/\ status[i] = "wait" => lset[i] # EmptyLS(i)

/\ \E m \in receivedMsgs:

/\ m.destination = i

/\ m.mreq.type = "LSProbeReply"

/\ m.mreq.node \in probing[i]

/\ m.mreq.node # i

/\LET j== m.mreq.node

Ls == m.mreq.lset

fi == failed[i] \ {j}

ls1 == IF j \in GetLSetContent(lset[i])

THEN lset[i]

ELSE AddToLSet({j}, lset[i])

lprim == GetLSetContent(

AddToLSet((GetLSetContent(Ls) \ fi), ls1))

prb1 == (GetLSetContent(ls1) \cap m.mreq.failed)

\ (probing[i] \cup fi)

prb2 == lprim \ (GetLSetContent(ls1) \cup probing[i]

\cup fi \cup prb1)

prb3 == ((probing[i] \cup prb1 \cup prb2)

\ failed[i]) \ {j}

26

shouldBeOK== /\ status[i] = "wait"

/\ prb3={}

/\ Overlaps(ls1)\/IsComplete(ls1)

IN

/\ rtable’ = [rtable EXCEPT ![i] =

AddToTable({j}, @, i)]

/\ lset’ = [lset EXCEPT ![i] = ls1]

/\ failed’ = [failed EXCEPT ![i] =

IF prb3={} /\ IsComplete(ls1) THEN {} ELSE fi]

/\ probing’= [probing EXCEPT ![i] = prb3]

/\ status’ = [status EXCEPT ![i] =

IF shouldBeOK THEN "ok" ELSE @]

/\ receivedMsgs’ = (receivedMsgs \ {m})

\cup Probe(i, ls1, fi, prb1)

\cup Probe(i, ls1, fi, prb2)

/\ UNCHANGED <<lease, grant>>

The following actions are involved to handle the case, when a node has
left and how the other nodes react on it. For the moment we assume only
“ready” nodes can leave, and we assume that no nodes will leave the network
if there is less than L + 1 nodes working.

NodeDied(i) ==

/\ status[i] = "ready"

/\ Cardinality({k \in I: status[k] = "ready"})> L + 1

/\ status’ = [status EXCEPT ![i] = "dead"]

/\ rtable’ = [rtable EXCEPT ![i] = AddToTable({i}, InitRTable, i)]

/\ lset’ = [lset EXCEPT ![i] = EmptyLS(i)]

/\ probing’= [probing EXCEPT ![i] = {}]

/\ failed’ = [failed EXCEPT ![i] = {}]

/\ lease’ = [lease EXCEPT ![i]= {}]

/\ grant’ = [grant EXCEPT ![i]= {}]

/\ UNCHANGED <<receivedMsgs>>

When a node dies, the nearby nodes might non-deterministically suspect it
to be faulty and hence probe it. It doesn’t make sense for a waiting node to
suspect any dead node.

SuspectFaulty(i, j) ==

/\ status[i] \in {"ready", "ok"}

/\ status[j]= "dead"

/\ i # j

27

/\ j \in GetLSetContent(lset[i])

/\ j \notin probing[i]

/\ j \notin failed[i]

/\ receivedMsgs’= receivedMsgs \cup Probe(i, lset[i], failed[i], {j})

/\ probing’ = [probing EXCEPT ![i]= @\cup {j}]

/\ UNCHANGED <<rtable, lset, failed, lease, grant, status>>

We simulate the timeout as followed. Here we delete all the garbage probe
messages from i to j , since we are sure no one will get a reply any more.
Notice that only if someone from the current leaf set of i has left the network,
i will change its status. One can only handle the non-responding node, after
its lease is expired.

ProbeTimeOut(i, j)==

/\ status[i]# "dead"

/\ \/ status[j] = "dead"

\/ /\ status[j] = "wait"

/\ lset[j] = EmptyLS(j)

/\ j \in probing[i]

/\ failed’ = [failed EXCEPT ![i] = @\cup {j}]

/\ probing’ = [probing EXCEPT ![i] = @ \ {j}]

/\ lset’ = [lset EXCEPT ![i] =

IF ~(j \in grant[i]) /\ j \in GetLSetContent(@)

THEN RemoveFromLSet({j},@)

ELSE @]

/\ receivedMsgs’ = receivedMsgs \

IF \E m \in receivedMsgs: m.mreq.type = "LSProbe"

/\ m.mreq.node = i

/\ m.destination = j

THEN {m \in receivedMsgs: m.mreq.type = "LSProbe"

/\ m.mreq.node = i

/\ m.destination = j}

ELSE {}

/\ status’ = [status EXCEPT ![i] =

IF /\ ~(j \in grant[i])

/\ j \in GetLSetContent(lset[i])

THEN "wait" ELSE @]

/\ lease’ = [lease EXCEPT ![i] = @ \ {j}]

/\ UNCHANGED <<rtable, grant>>

28

RequestLease(i) ==

/\ status[i] = "ok"

/\ lset[i] # EmptyLS(i)

/\ LET ln == LeftNeighbor(lset[i])

rn == RightNeighbor(lset[i])

IN receivedMsgs’ = (receivedMsgs

\cup IF ~ (ln \in lease[i])

THEN {[destination |-> ln,

mreq |-> [type |-> "LeaseRequest",

node |-> i]]}

ELSE {})

\cup IF ~ (rn \in lease[i])

THEN {[destination |-> rn,

mreq |-> [type |-> "LeaseRequest",

node |-> i]]}

ELSE {}

/\ UNCHANGED <<status, lset, rtable, probing,

failed, lease, grant>>

ReceiveLReq(i) ==

/\ status[i] \in {"ready", "ok"}

/\ lset[i] # EmptyLS(i)

/\ \E m \in receivedMsgs:

/\ m.destination = i

/\ m.mreq.type = "LeaseRequest"

/\ grant’ = [grant EXCEPT ![i] =

IF m.mreq.node

\in {LeftNeighbor(lset[i]),

RightNeighbor(lset[i])}

THEN @ \cup {m.mreq.node}

ELSE @]

/\ receivedMsgs’ = (receivedMsgs \ {m})

\cup {[destination |-> m.mreq.node,

mreq |-> [type |-> "BroadcastLSet",

lset |-> lset[i],

grant|->

m.mreq.node \in

{LeftNeighbor(lset[i]),

RightNeighbor(lset[i])}]]}

/\ UNCHANGED <<status, rtable, lset, probing, failed, lease>>

29

ReceiveBLS(i) ==

/\ status[i] \in {"ready", "ok"}

/\ lset[i] # EmptyLS(i)

/\ IsComplete(lset[i])

/\ \E m \in receivedMsgs:

/\ m.destination = i

/\ m.mreq.type = "BroadcastLSet"

/\ m.mreq.lset.node # i

/\ LET

ls == AddToLSet(

GetLSetContent(m.mreq.lset)

\failed[i] , lset[i])

ln == LeftNeighbor(ls)

rn == RightNeighbor(ls)

newlease == [lease EXCEPT ![i] =

IF /\ m.mreq.lset.node \in {ln, rn}

/\ m.mreq.grant = TRUE

THEN @ \cup {m.mreq.lset.node}

ELSE @]

shouldBeReady== /\ ln \in newlease[i]

/\ rn \in newlease[i]

/\ ln = LeftNeighbor(lset[i])

/\ rn = RightNeighbor(lset[i])

IN /\ lset’ = [lset EXCEPT ![i] = ls]

/\ lease’ = newlease

/\ status’ = [status EXCEPT ![i]=

IF shouldBeReady THEN "ready" ELSE @]

/\ receivedMsgs’ = (receivedMsgs \ {m})

/\ UNCHANGED <<rtable, probing, failed, grant>>

LeaseExpired(i, j) ==

/\ status[i] \in {"ready", "ok"}

/\ i # j

/\ j \in lease[i]

/\ lease’ = [lease EXCEPT ![i] = @ \{j\}]

/\ status’ = [status EXCEPT ![i] =

IF /\ j \in {LeftNeighbor(lset[i]),

RightNeighbor(lset[i])}

/\ @ = "ready"

THEN "ok" ELSE @]

/\ UNCHANGED <<receivedMsgs, rtable,

lset, probing, failed, grant>>

30

GrantExpired(i, j) ==

/\ i # j

/\ status[i] \in {"ready", "ok"}

/\ j \in grant[i] /\ ~ (i \in lease[j])

/\ grant’= [grant EXCEPT ![i] = @ \ {j}]

/\ UNCHANGED <<receivedMsgs, status,

lease, lset, probing, failed, rtable>>

DeclareDead(i,j) ==

/\ status[i] \in {"ready", "ok"}

/\ j \in failed[i] * After i has put j in failed for a while.

/\ j \in GetLSetContent(lset[i])

/\ j = LeftNeighbor(lset[i]) => ~ j \in grant[i]

/\ j = RightNeighbor(lset[i])=> ~ j \in grant[i]

/\ lset’ = [lset EXCEPT ![i] = RemoveFromLSet({j},@)]

/\ status’= [status EXCEPT ![i] = "wait"]

/\ UNCHANGED <<receivedMsgs, rtable,

lease, probing, failed, grant>>

Further, we modeled the following actions to repair the leaf set when half of
the leaf set members of a node drop off the network.

ResignNode(i) ==

/\ status[i] = "wait"

/\ probing[i] = {}

/\ Lenth(lset[i].left) = 0 \/ Lenth(lset[i].right) = 0

/\ ~\E m \in receivedMsgs:

m.mreq.type = "JoinReply" /\ m.destination = i

/\ \E n \in I: n#i /\ status[n] = "ready"

/\ rtable’ = [rtable EXCEPT ![i] = AddToTable({i},InitRTable,i)]

/\ lset’ = [lset EXCEPT ![i] = EmptyLS(i)]

/\ probing’= [probing EXCEPT ![i] = {}]

/\ lease’ = [lease EXCEPT ![i] = {}]

/\ grant’ = [grant EXCEPT ![i] = {}]

/\ failed’ = [failed EXCEPT ![i] = {}]

/\ receivedMsgs’ = receivedMsgs \cup

{[destination |-> n,

mreq |-> [type |-> "JoinRequest",

rtable |-> InitRTable,

node |-> i]]}

31

Recover(i)==

/\ status[i] = "wait"

/\ probing[i] = {}

/\ Lenth(lset[i].left) = 0 \/ Lenth(lset[i].right) = 0

/\ ~\E n \in I: status[n] \in {"ready", "ok"}

/\ ~(Lenth(lset[i].left) = 0 /\ Lenth(lset[i].right) = 0)

/\ LET

pe == IF Lenth(lset[i].left) = 0

THEN RightMost(lset[i])

ELSE LeftMost(lset[i])

IN

/\ probing’ = [probing EXCEPT ![i] =

probing[i] \cup {pe}]

/\ receivedMsgs’ = receivedMsgs

\cup Probe(i, lset[i], failed[i], {pe})

/\ UNCHANGED <<lset, rtable, failed, lease, status, grant>>

LSRepair(i) ==

/\ status[i] = "wait"

/\ probing[i] = {}

/\ ~IsComplete(lset[i])

/\ Lenth(lset[i].left) # 0 /\ Lenth(lset[i].right) # 0

/\ LET

lm == {LeftMost(lset[i])}

rm == {RightMost(lset[i])}

newprob == IF /\ Lenth(lset[i].left) < L

/\ Lenth(lset[i].right) < L

THEN lm \cup rm

ELSE IF /\ Lenth(lset[i].left) < L

/\ Lenth(lset[i].right) = L

THEN lm ELSE rm

IN

/\ probing’ = [probing EXCEPT ![i]=probing[i] \cup newprob]

/\ receivedMsgs’ = receivedMsgs

\cup Probe(i, lset[i], failed[i], newprob)

/\ UNCHANGED <<lset, rtable, failed, lease, status, grant>>

====================end of module action=========================

32

Examples Time Depth # states Counter Example

NeverDeliver 1” 5 101 yes

NeverJoin 1” 9 19 yes

ConcurrentJoin 3’53” 21 212719 yes

CcJoinDeliver 23’16” 23 1141123 yes

Symmetry 17” 17 19828 yes

Neighbor 5’35” 16 278904 yes

NeighborProp > 1 month 31 1331364126 no

CorrectDeliver > 1 month 21 1952882411 no

Table 4.1: tlc result with four nodes, leaf set length l = 1

4.2 Symmetry of Leaf Sets

Based on the counter-example shown in Section 3.4, one may be tempted to
assert that leaf set membership of nodes should be symmetrical in the sense
that for any two “ready” nodes i , j it holds that i appears in the leaf sets of
j if and only if j appears in the leaf sets of i .

Property 3 (Symmetry of leaf set membership).

Symmetry
∆
=

∀i , j ∈ I : status [i] = “ready” ∧ status [j] = “ready”

⇒ (i ∈ GetLSetContent(lset [j])⇔ j ∈ GetLSetContent(lset [i]))

However, the above property is violated during the execution of the join
protocol and tlc yields the following counter-example: a node k joins be-
tween i and j . It finishes its communication with i getting its coverage set
from i , but its communication with j is not yet finished. Hence, i and j are
“ready” whereas k is not. Furthermore, i may have removed j from its leaf
set, so the symmetry is broken.

4.3 Validation

Table 4.1 summarizes the model checking experimentswe have described so
far, over the extended model. tlc was run with two worker threads (on two
CPUs) on a 32 Bit Linux machine with Xeon(R) X5460 CPUs running at
3.16GHz with about 4 GB of memory per CPU. For each run, we report
the running time, the number of states generated until tlc found a counter-
example (or, in the case of Property 2, until we killed the process), and the

33

largest depth of these states. Since the verification of Property 2 did not
produce a counter-example, we ran the model checker in breadth-first search
mode. We can therefore assert that if the model contains a counter-example
to this property, it must be of depth at least 21.

All properties except Neighbor and NeighborProp were introduced in pre-
vious sections. The property Neighbor is inspired by the counter-example
described in Section 3.4. It is actually the NeighborClosest property relaxed
to “ok” and “ready” nodes. It asserts that whenever i , j are nodes that are
“ok” or “ready”, then the left and right neighbors of node i according to its
leaf set contents must be at least as close to i than is node j . This property
does not hold, as the counter-example of Section 3.4 shows, but it does if node
i is in fact “ready”, which corresponds the NeighborClosest property. The
NeighborProp property is the conjunction HalfNeighbor ∧ NeighborClosest ,
see the next section (or the TLA+ formal model attached below).

--------------------------MODULE MCMSPastry---------------------

EXTENDS Actions

vars == <<receivedMsgs, status, rtable,

lset, probing, failed, lease, grant>>

MCI == {17, 18, 65, 95} * We model check 4 nodes system

MCA == {18} * Initial READY node is 18

MCB == 4 * base is 2^4

MCM == 8 * ID space is 2^8

MCL == 1

LightNext == \E i, j \in I:

\/ RouteLookup(i, j)

\/ RouteJoinRequest(i, j)

\/ Deliver(i, j)

\/ ReceiveLSProbe(i)

\/ ReceiveLSPrRpl(i)

\/ ReceiveJoinRequest(i)

\/ ReceiveJoinReply(i)

\/ RequestLease(i)

\/ ReceiveLReq(i)

\/ ReceiveBLS(i)

*\/ Lookup(i, j)

*\/ Join(i, j)

\/ LeaseExpired(i, j)

\/ GrantExpired(i, j)

\/ NodeLeft(i)

\/ SuspectFaulty(i, j)

34

\/ ProbeTimeOut(i, j)

\/ DeclareDead(i, j)

\/ LSRepair(i)

\/ Recover(i)

\/ Restart(i)

\/ ResignNode(i)

NodesOK == {i \in I : status[i] = "ok"}

NodesReady == {i \in I : status[i] = "ready" }

ReadyOK == NodesOK \cup NodesReady

MCALookup == {17, 18, 65}

LookupNext == \/ Lookup(18, 95)

\/ LightNext

SpecSuccessLookup ==

/\ Init

/\ [][LookupNext]_vars

NeverDeliver == [][\A i, j \in I: ~Deliver(i, j)]_vars

--

JoinNext == \/ Join(95, 18)

\/ LightNext

SpecSuccessJoin ==

/\ Init

/\ [][JoinNext]_vars

NeverJoin == [](\A j \in I \ A: status[j]#"ready")

ConcJoinNext == \/ Join(95, 18)

\/ Join(17, 18)

\/ LightNext

SpecConcJoin ==

/\ Init

/\ [][ConcJoinNext]_vars

ConcurrentJoin == []~(status[95] = "ready"

/\status[17] = "ready"

/\status[18]= "ready")

CcJoinDeliverNext == \/ Join(95, 18)

\/ Join(17, 18)

\/ Lookup(95, 65)

\/ LightNext

35

SpecCcJoinDeliver ==

/\ Init

/\ [][CcJoinDeliverNext]_vars

CcJoinDeliver ==[][~\E i, j \in I: Deliver(i, j)

/\status[95]= "ready"

/\status[17]= "ready"

/\status[18]= "ready"]_vars

--

SymmNext == \/ Join(95, 18)

\/ Join(17, 18)

\/ Join(65, 95)

\/ LightNext

SpecSym ==

/\ Init

/\ [][SymmNext]_vars

Symmetry ==

\A i, j \in I:

/\ status[i] = "ready"

/\ status[j] = "ready"

=> (j \in GetLSetContent(lset[i])

<=> i \in GetLSetContent(lset[j]))

MCANCF == {17, 18}

NCFNext == \/ Join(95, 17)

\/ Join(65, 18)

\/ LightNext

SpecNCF ==

/\ Init

/\ [][NCFNext]_vars

Neighbor ==

\/ Cardinality(ReadyOK) =< 1

\/ \A x, y \in ReadyOK:

~(x = y) =>

/\ CwDist(LeftNeighbor(lset[x]), x) =< CwDist(y, x)

/\ CwDist(x, RightNeighbor(lset[x])) =< CwDist(x, y)

NeighborClosest ==

\/ Cardinality(NodesReady) =< 1

\/ \A x, y \in NodesReady:

~(x = y) =>

/\ CwDist(LeftNeighbor(lset[x]), x)=< CwDist(y, x)

/\ CwDist(x, RightNeighbor(lset[x])) =< CwDist(x, y)

36

HalfNeighbor ==

\/ \A k \in ReadyOK :

/\ RightNeighbor(lset[k]) # k

/\ LeftNeighbor(lset[k]) # k

\/ \E k \in ReadyOK:

/\ ReadyOK = {k}

/\ LeftNeighbor(lset[k]) = k

/\ RightNeighbor(lset[k]) = k

NeighborProp == HalfNeighbor /\ NeighborClosest

--

CorrectDelivery == \A i,k \in I:

ENABLED Deliver(i, k)

=> /\ \A n \in I: status[n] = "ready"

=> AbsDist(i, k) =< AbsDist(n, k)

/\ \A j \in I\{i}: ~ENABLED Deliver(j, k)

==================end of module MCMSPastry==================

------------Configuration File: MCMSPastry.cfg--------------

CONSTANTS

I <- MCI

A <- MCA

* A <- MCANCF

B <- MCB

M <- MCM

L <- MCL

*SPECIFICATION SpecSuccessLookup

*PROPERTY NeverDeliver

*SPECIFICATION SpecSuccessJoin

*PROPERTY NeverJoin

*SPECIFICATION SpecConcJoin

*PROPERTY ConcurrentJoin

*SPECIFICATION SpecCcJoinDeliver

*PROPERTY CcJoinDeliver

SPECIFICATION SpecSym

*INVARIANTS Symmetry

*SPECIFICATION SpecNCF

*INVARIANTS Neighbor

*INVARIANTS NeighborClosest

*INVARIANTS HalfNeighbor

*INVARIANTS NeighborProp

PROPERTY CorrectDelivery

=====================end configuration File==================

37

5 Theorem Proving

Having gained confidence in our model, we now turn to formally proving
the main correctness Property 2, using the interactive TLA+ proof system
(tlaps) [6]. Our full proofs are available on the Web1.

The intuition gained from the counter-example of Section 3.4 tells us
that the key to establishing Property 2 is that the leaf sets of all nodes
participating in the protocol contain the expected elements. We start by
defining a number of auxiliary formulas.

Ready
∆
= {i ∈ I : status [i] = “ready”}

ReadyOK
∆
= {i ∈ I : status [i] ∈ {“ready”, “ok”}}

HalfNeighbor
∆
=

∨ ∀i ∈ ReadyOK : RightNeighbor(lset [i]) 6= i ∧ LeftNeighbor(lset [i]) 6= i

∨ ∧ Cardinality(ReadyOK) ≤ 1

∧ ∀i ∈ ReadyOK : LeftNeighbor(lset [i]) = i ∧ RightNeighbor(lset [i]) = i

NeighborClosest
∆
= ∀i , j ∈ Ready :

i 6= j ⇒ ∧ CwDist(LeftNeighbor(lset [i]), i) ≤ CwDist(j , i)

∧ CwDist(i ,RightNeighbor(lset [i])) ≤ CwDist(i , j)

Sets Ready and ReadyOK contain the nodes that are “ready”, resp. “ready”
or “ok”. Formula HalfNeighbor asserts that whenever there is more than
one “ready” or “ok” node i , then the left and right neighbors of every such
node i are different from i . In particular, it follows by Definition 2 that no
leaf set of i can be empty. The formula NeighborClosest states that the left
and right neighbors of any “ready” node i lie closer to i than any “ready”
node j different from i .

1The appendix at the end of this chapter shows the TLA+ proof of es-
sential lemmas illustrated below. There are hundreds of sub lemmas involved,
which are properties of the data-structures, mathematic operations and ring cal-
culations. All of them could be found in our full proofs available on the Web
http://www.mpi-inf.mpg.de/~tianlu/software/PastryTheoremProving.zip

38

We used tlc to verify NeighborProp
∆
= HalfNeighbor ∧NeighborClosest .

Running tlc for more than a month did not yield a counter-example. Using
tlaps, we have mechanically proved that NeighborProp implies Property 2.
In order to prove this, we have first proved the following two lemmas.

The lemma 1 shows that, assuming NeighborProp, then for any two
“ready” nodes i , n, with i 6= n and key k , if node i covers k then i must be
at least as close to k as is n.

Lemma 1 (Coverage Lemma).

HalfNeighbor ∧ NeighborClosest

⇒ ∀i , n ∈ Ready : ∀k ∈ I : i 6= n ∧ Covers(lset [i], k)

⇒ AbsDist(i , k) ≤ AbsDist(n, k)

Proof. For the sake of a contradiction, assume that k is covered by i but that
there exists another “ready” node n 6= i , which is closer to k . There are two
cases to consider: n and i could be on the same side of k , hence n lies between
i and k , or nodes i and n could lie on opposite sides of the key k , but n is
closer. Further distinguishing between the left and right neighborhoods of k ,
we obtain four cases, of which we sketch two (the others being symmetrical).

Suppose first that n and i are both to the left of k . Assumption NeighborClosest
implies that the distance between i and its right neighbor rn is at most as
large as the distance between i and n. Using the definition of Cover (Def-
inition 2), we show that the clockwise distance from i to its right cover is
strictly smaller than the clockwise distance from i to rn. By assumption
HalfNeighbor , and since there are two “ready” nodes, we know that rn 6= i .
Moreover, by the assumption that n is closer to k than i , and using again
the definition of Cover , we prove that the clockwise distance from i to n
is less than to its right cover. By transitivity, it follows that the distance
from i to n is smaller than that to rn, obtaining a contradiction against our
assumption at the beginning that rn is at most as far as n to i .

Now suppose that i is to the left and n to the right of k . Since i covers
k , we know that the distance between node i and k is at most as large as
the distance between i and the right cover of i , which is half the distance
between i and its right neighbor rn, hence (by assumption NeighborClosest)
at most half the distance between i and n. Therefore, k is closer to i than
to n, and again a contradiction is reached.

The lemma 2 shows, under the same hypotheses, that if i covers k then
n cannot cover k .

39

Lemma 2 (Disjoint Covers).

HalfNeighbor ∧ NeighborClosest

⇒ ∀i , n ∈ Ready : ∀k ∈ I : i 6= n ∧ Covers(lset [i], k)

⇒ ¬Covers(lset [n], k)

Proof. We prove the lemma by contradiction. Assume that both nodes i
and n cover key k . By Lemma 1 it follows that the distances of i and n to
k are the same, i.e. k lies in the middle between i and n, w.l.o.g. assume
that i is to the left of n. Let rn denote the right neighbor of i (because i
and n are both “ready”, HalfNeighbor implies that rn 6= i). By assumption
NeighborClosest we know that no “ready” node can lie between a node and
its direct neighbor, so the distance from i to n must be at least that from i
to rn. By the assumption that i covers k and the definition of coverage, the
distance from i to rn is at least twice the distance from i to k , which is by
the above just the distance from i to n, so we must have rn = n.

Now we have proved that n is the right neighbor of i . Since the asymmet-
rical definitions of LeftCover and RightCover imply that no two neighbors
may cover a node, we then arrive at a contradiction against the assumption
at the beginning of this proof.

Theorem 3 (Reduction). HalfNeighbor∧NeighborClosest ⇒ CorrectDeliver .

Proof. Taking together Lemma 1 and Lemma 2, Theorem 3 follows easily by
the definitions of the property CorrectDeliver (Property 2) and the action
Deliver (cf. Figure 3.2).

In order to complete the proof that our model of Pastry satisfies Prop-
erty 2, it is enough by Theorem 3 to show that every reachable state satisfies
properties HalfNeighbor and NeighborClosest . We have embarked on an in-
variant proof and have defined a predicate that strengthens these properties.
We are currently in the process of showing that it is indeed preserved by all
actions of our model.

40

-----------------------MODULE ProofProp ---------------------------

NodesOK == {i \in I : status[i] = "ok"}

NodesReady == {i \in I : status[i] = "ready" }

NodesWait == {i \in I : status[i] = "wait" }

ReadyOK == NodesOK \union NodesReady

NonDead == {i \in I : status[i] # "dead" }

THEOREM CoverageLemma ==

TypeInvariant /\ Invariant =>

\A i, k, n \in I:

/\ status[i] = "ready"

/\ status[n] = "ready"

/\ Covers(lset[i], k)

=> AbsDist(i, k) =< AbsDist(n, k)

<1>1.SUFFICES

ASSUME NEW i \in I,

NEW k \in I,

NEW n \in I,

TypeInvariant,

Invariant,

status[i] = "ready",

status[n] = "ready",

Covers(lset[i], k),

~(AbsDist(i, k) =< AbsDist(n, k))

PROVE FALSE

BY DEF Covers

<1>2. CASE n = i

<2>1. AbsDist(i, k) = AbsDist(n, k)

BY <1>2

<2>2. ~(AbsDist(i, k) = AbsDist(n, k))

BY <1>1, Unequality6, AbsDistType, IisNat

<2>9. QED BY <2>1,<2>2

<1>3. CASE ~(n = i)

<2>. lset[i] \in LSet

BY TypeInvariant DEF TypeInvariant

<2>01. ~RightNeighbor(lset[i]) = i /\~LeftNeighbor(lset[i]) = i

BY status[i] = "ready", status[n] = "ready", <1>3,

NoPartition, Invariant, TypeInvariant

<2>1. CASE AbsDist(i, k) = CwDist(i, k) /\ AbsDist(n, k) = CwDist(n, k)

<3>1. CwDist(n, k) < CwDist(i, k)

BY <1>1, <2>1, Unequality2, CwDistType, IisNat

41

<3>3. CwDist(i, n) =< CwDist(i, k)

BY <3>1, CwDistPropCo, IisNat

<3>4. CwDist(i, k) =< CwDist(i, RightCover(lset[i]))

BY <2>1, Covers(lset[i], k), CoverSemmanticCoRight, TypeInvariant

<3>5. CwDist(i, n) =< CwDist(i, RightCover(lset[i]))

BY <3>3, <3>4, TransLEQ, CwDistType, RightCoverType, IisNat

<3>6. CwDist(i, RightCover(lset[i])) < CwDist(i, RightNeighbor(lset[i]))

BY <1>3, NoPartition, <1>1, NeighborConventionRight, Invariant

<3>7. CwDist(i, n) < CwDist(i, RightNeighbor(lset[i]))

BY <3>5, <3>6, CwDistType, IisNat, RightNeighborType,

RightCoverType, TransLESS

<3>8. ~(CwDist(i, n) < CwDist(i, RightNeighbor(lset[i])))

BY status[i] = "ready", status[n] = "ready", Neighborhood,

StatusDuality, <1>3,

CwDistType, RightNeighborType, IisNat, TypeInvariant, Invariant

<3>9. QED BY <3>8, <3>7

<2>2. CASE AbsDist(i, k) = CwDist(i, k) /\ AbsDist(n, k) = CwDist(k, n)

<3>7. CwDist(i, k) > CwDist(k, n)

BY ~(AbsDist(i, k) =< AbsDist(n, k)), <2>2,

Unequality2, LessGreaterDuality, CwDistType, IisNat

<3>8. CwDist(i, k) =< CwDist(k, n)

<4>1. CwDist(i, n) = CwDist(i, k) + CwDist(k, n)

<5>1. Distance(n, k) < 0

BY <2>2, AbsDistRightSide, IisNat

<5>2. Distance(k, i) < 0

BY <2>2, AbsDistLeftSide, IisNat

<5>4. CwDist(i, n) = CwDist(i, k) + CwDist(k, n)

BY <1>3, <5>1, <5>2, RingAddProp, IisNat

<5>9. QED BY <5>4

<4>2. CwDist(i, k) =< CwDist(i, n) \div 2

<5>1. CwDist(i, RightNeighbor(lset[i])) =< CwDist(i, n)

<6>1. CASE RightNeighbor(lset[i]) = n

BY <6>1, Unequality6, IisNat,

RightNeighborType, CwDistType

<6>2. CASE ~ (RightNeighbor(lset[i]) = n)

<7>2. ~CwDist(i, n) < CwDist(i, RightNeighbor(lset[i]))

BY <1>1, Neighborhood, StatusDuality, <1>3

<7>3. CwDist(i, n) >= CwDist(i, RightNeighbor(lset[i]))

BY <7>2, Unequality22, CwDistType,

IisNat, RightNeighborType

<7>9. QED BY <7>3, LessGreaterDuality2,

42

IisNat, RightNeighborType, CwDistType

<6>9. QED BY <6>1, <6>2

<5>2. CwDist(i, RightCover(lset[i]))

=< CwDist(i, RightNeighbor(lset[i])) \div 2

BY <2>01, NeighborCoverageCoRight, IisNat,

RightCoverType, RightNeighborType, TypeInvariant

<5>3. CwDist(i, RightCover(lset[i])) =< CwDist(i, n) \div 2

<6>1. CwDist(i, RightNeighbor(lset[i])) \div 2

=< CwDist(i, n) \div 2

BY <5>1, <5>2, MonotonyDiv,CwDistType,

IisNat, RightNeighborType

<6>2. QED BY <6>1, <5>2, TransLEQ,

DivType, CwDistType, RightNeighborType, RightCoverType,IisNat,

TypeInvariant DEF TypeInvariant

<5>4. CwDist(i, k) =< CwDist(i, RightCover(lset[i]))

BY <2>2, Covers(lset[i], k), CoverSemmanticCoRight,

TypeInvariant

<5>9. QED BY <5>4, <5>3, TransLEQ, CwDistType,

RightCoverType, IisNat, DivType

<4>9. QED BY <4>1, <4>2, Unequality5, CwDistType, IisNat

<3>9. QED BY <3>7,<3>8, Unequality3, CwDistType, IisNat

<2>3. CASE AbsDist(k, i) = CwDist(k, i) /\ AbsDist(k, n) = CwDist(k, n)

* i and n lie right to k

* Proof sketch: symmetry to the <2>1

<3>1. CwDist(k, n) < CwDist(k, i)

BY <2>3, <1>1, Unequality2, IisNat, CwDistType, AbsCommutativity

<3>3. CwDist(n, i) =< CwDist(k, i)

BY <3>1, CwDistProp, IisNat, SideDuality

<3>4. CwDist(k, i) =< CwDist(LeftCover(lset[i]), i)

BY <2>3, Covers(lset[i], k), CoverSemmanticCoLeft, TypeInvariant

<3>5. CwDist(n, i) =< CwDist(LeftCover(lset[i]), i)

BY <3>3, <3>4, TransLEQ, CwDistType, LeftCoverType, IisNat

<3>6. CwDist(LeftCover(lset[i]), i) < CwDist(LeftNeighbor(lset[i]), i)

BY <1>1, <1>3, NeighborConventionLeft, TypeInvariant, NoPartition

<3>7. CwDist(n, i) < CwDist(LeftNeighbor(lset[i]), i)

BY <3>5, <3>6, CwDistType, IisNat, LeftNeighborType,

LeftCoverType, TransLESS

<3>8. ~(CwDist(n, i) < CwDist(LeftNeighbor(lset[i]), i))

BY status[i] = "ready", status[n] = "ready", Neighborhood,

StatusDuality, <1>3, TypeInvariant, Invariant

<3>9. QED BY <3>7,<3>8

43

<2>4. CASE AbsDist(i, k) = CwDist(k, i) /\ AbsDist(n, k) = CwDist(n, k)

<3>7. CwDist(k, i) > CwDist(n, k)

BY ~(AbsDist(i, k) =< AbsDist(n, k)), <2>4,

Unequality2, LessGreaterDuality, CwDistType, IisNat

<3>8. CwDist(k, i) =< CwDist(n, k)

<4>1. CwDist(n, i) = CwDist(n, k) + CwDist(k, i)

<5>1. Distance(k, n) < 0

BY <2>4, AbsDistLeftSide, IisNat

<5>2. Distance(i, k) < 0

BY <2>4, AbsDistRightSide, IisNat

<5>4. CwDist(n, i) = CwDist(n, k) + CwDist(k, i)

BY <5>1, <5>2, RingAddProp, IisNat, <1>3

<5>9. QED BY <5>4

<4>2. CwDist(k, i) =< CwDist(n, i) \div 2

<5>1. CwDist(LeftNeighbor(lset[i]), i) =< CwDist(n, i)

<6>1. CASE LeftNeighbor(lset[i]) = n

BY <6>1, Unequality6, IisNat, LeftNeighborType, CwDistType

<6>2. CASE ~ (LeftNeighbor(lset[i]) = n)

<7>2. CwDist(n, i) >= CwDist(LeftNeighbor(lset[i]), i)

BY <1>1, Neighborhood, Unequality22, <1>3,

StatusDuality, CwDistType, IisNat, LeftNeighborType

<7>9. QED BY <7>2, LessGreaterDuality2,

IisNat, LeftNeighborType, CwDistType

<6>9. QED BY <6>1, <6>2

<5>2. CwDist(LeftNeighbor(lset[i]), i) \div 2

= CwDist(LeftCover(lset[i]), i)

BY <2>01, NeighborCoverageCoLeft, IisNat,

LeftCoverType,LeftNeighborType, TypeInvariant

<5>3. CwDist(LeftCover(lset[i]), i) =< CwDist(n, i) \div 2

<6>1. CwDist(LeftNeighbor(lset[i]), i) \div 2

=< CwDist(n, i) \div 2

BY <5>1, <5>2, MonotonyDiv, CwDistType,

IisNat, LeftNeighborType

<6>2. QED BY <6>1, <5>2

<5>4. CwDist(k, i) =< CwDist(LeftCover(lset[i]), i)

BY <2>4, Covers(lset[i], k), CoverSemmanticCoLeft,

TypeInvariant, AbsCommutativity, IisNat

<5>9. QED BY <5>4, <5>3, TransLEQ, CwDistType,

LeftCoverType, IisNat, DivType

<4>9. QED BY <4>1, <4>2, CommutativityAdd, Unequality5,

CwDistType, IisNat

44

<3>9. QED BY <3>7,<3>8, Unequality3, CwDistType, IisNat

<2>9. QED BY <2>1, <2>2, <2>3, <2>4, AbsIsLeftOrRight,

AbsCommutativity, IisNat

<1>9. QED BY <1>2, <1>3

THEOREM ConsistentInv ==

TypeInvariant /\ Invariant =>

\A x, y, k \in I:

(status[x] = "ready"

/\ Covers(lset[x], k)

/\ status[y] = "ready"

/\ Covers(lset[y], k)

)

=> x = y

<1>1. SUFFICES ASSUME NEW x \in I,

NEW y \in I,

NEW k \in I,

status[x] = "ready",

status[y] = "ready",

Covers(lset[x], k),

Covers(lset[y], k),

TypeInvariant,

Invariant,

~(x = y)

PROVE FALSE

BY DEF Covers

<1>. \A i \in I: lset[i] \in LSet

BY TypeInvariant DEF TypeInvariant

<1>11. ~Covers(lset[x], y) /\ ~Covers(lset[y], x)

BY <1>1, NotCovers

<1>2. AbsDist(x, k) =< AbsDist(y, k)

BY <1>1, CoverageLemma

<1>3. AbsDist(y, k) =< AbsDist(x, k)

BY <1>1, CoverageLemma

<1>4. AbsDist(x, k) = AbsDist(y, k)

BY <1>2,<1>3, Antisymmetry, AbsDistType, IisNat

<1>5. CASE AbsDist(x, k) = CwDist(x, k) /\ AbsDist(y, k) = CwDist(y, k)

BY <1>5, <1>4, CwDistInjectivity, ~(x = y), IisNat

<1>6. CASE AbsDist(x, k) = CwDist(x, k) /\ AbsDist(y, k) = CwDist(k, y)

<2>1. CwDist(x, y) = CwDist(x, k) + CwDist(k, y)

<3>1. Distance(k, x) < 0 /\ Distance(y, k) < 0

45

BY <1>6, AbsDistRightSide, AbsDistLeftSide, IisNat

<3>2. QED BY <3>1, ~(x=y), RingAddProp, IisNat

<2>2. RightNeighbor(lset[x]) = y

<3>1. SUFFICES ASSUME NEW z \in I,

RightNeighbor(lset[x]) = z,

~(z = y)

PROVE FALSE

BY IisNat, RightNeighborType

<3>11. x # z

BY <1>1, <3>1, NoPartition

<3>2. CwDist(x, k) < CwDist(x, LeftCover(lset[z]))

BY CoverDisjointnessCo, <3>11, RightNeighbor(lset[x]) = z, <1>6,

Covers(lset[x], k), TypeInvariant

<3>3. CwDist(x, z) < CwDist(x, y)

<4>6. ~(CwDist(x, z) = CwDist(x, y))

BY ~(z = y), RightDistInjectivity, IisNat

<4>8. ~(CwDist(x, z) > CwDist(x, y))

<5>2. ~(CwDist(x, y) < CwDist(x, z))

BY <1>1, Neighborhood, Invariant,

RightNeighbor(lset[x]) = z, StatusDuality

<5>3. QED BY <5>2, LessGreaterDuality, CwDistType, IisNat

<4>9. QED BY <4>6, <4>8, Unequality23, CwDistType, IisNat

<3>4. CwDist(x, LeftCover(lset[z])) =< CwDist(x, LeftCover(lset[y]))

BY CoverMonotony, <3>3, RightNeighbor(lset[x]) = z,

status[x] = "ready", status[y] = "ready", ~x=y, z#y,

TypeInvariant, Invariant

<3>5. CwDist(x, k) < CwDist(x, LeftCover(lset[y]))

BY <3>2,<3>4,TransLESS, CwDistType, LeftCoverType, IisNat

<3>6. CwDist(y, k) > CwDist(y, RightCover(lset[y]))

<4>7. CwDist(y, k) >= CwDist(y, x)

BY CwDistSideProp, <1>6, IisNat, LessGreaterDuality2

<4>8. CwDist(y, x) > CwDist(y, RightCover(lset[y]))

BY <1>11, CoverSemmanticCo, TypeInvariant

<4>9. QED BY <4>7, <4>8, TransGEATER, CwDistType,

RightCoverType, IisNat

<3>7. CwDist(k, y) > CwDist(LeftCover(lset[y]), y)

BY <3>5, <1>11, CoverSemmanticCo, CwDistPropAddCo,

LeftCoverType, CwDistType, IisNat, TypeInvariant

<3>8. ~Covers(lset[y], k)

BY <3>7, <3>6, CoverSemmanticCo, TypeInvariant

<3>9. QED BY <3>8, <1>1

46

<2>10. QED BY <1>1, <2>2, RightNeighborCoverageDis

<1>7. CASE AbsDist(x, k) = CwDist(k, x) /\ AbsDist(y, k) = CwDist(y, k)

* symmetric to <1>6, simply switch x and y, change <1>6 to <1>7.

* complete proof see

* http://www.mpi-inf.mpg.de/~tianlu/software/PastryTheoremProving.zip

OMITTED

<1>8. CASE AbsDist(x, k) = CwDist(k, x) /\ AbsDist(y, k) = CwDist(k, y)

* symmetric to <1>5

BY <1>8, <1>4, RightDistInjectivity, ~(x = y), IisNat

<1>9. QED BY <1>5, <1>6,<1>7,<1>8, AbsIsLeftOrRight

THEOREM CoverDisjoint ==

TypeInvariant/\ Invariant => \A i, j, k \in I:

/\status[i]= "ready"

/\status[j]= "ready"

/\ Covers(lset[i], k)

/\ ~(j=i)

=> ~Covers(lset[j], k)

BY ConsistentInv

============end of main reduction proof in module ProofProp=============

47

6 Conclusion and Future Work

In this report we have presented a formal model of the Pastry routing pro-
tocol, a fundamental building block of P2P overlay networks. To the best of
our knowledge, this is the first formal model of Pastry, although the applica-
tion of formal modeling and verification techniques to P2P protocols is not
entirely new. For example, Velipalasar et al. [16] report on experiments of ap-
plying the Spin model checker to a model of a communication protocol used
in a P2P multimedia system. More closely related to our topic, Borgström et
al. [2] present initial work toward the verification of a distributed hash table
in a P2P overlay network in a process calculus setting, but only considered
fixed configurations with perfect routing information. As we have seen, the
main challenge in verifying Pastry lies in the correct handling of nodes joining
the system on the fly. Bakhshi and Gurov [1] model the Pure Join protocol
of Chord in the π-calculus and show that the routing information along the
ring eventually stabilizes in the presence of potentially concurrent joins. Nu-
merous technical differences aside, they do not consider possible interferences
between the join and lookup sub-protocols, as we do in our model.

Pastry is a reasonably complex algorithm that mixes complex data struc-
tures, dynamic network protocols, and timed behavior for periodic node up-
dates. We decided to abstract from timing aspects, which are mainly im-
portant for performance, but otherwise model the algorithm as faithfully as
possible. Our main difficulties were to fill in details that are not obvious from
the published descriptions of the algorithm, and to formally state the cor-
rectness properties expected from Pastry. In this respect, the model checker
helped us understand the need for the extension of the join protocol by lease
granting, as described in [8]. It was also invaluable to improve our under-
standing of the protocol because it allowed us to state “what-if” questions
and refute conjectures such as the symmetry of leaf set membership (Prop-
erty 3). The building of the first overall model of Pastry in TLA+ took us
about 3 months. Almost two third of it was devoted to the formal develop-
ment of the underlying data structures, such as the address ring, leaf sets or

48

routing tables.
After having built up confidence in the correctness of our model, we

started full formal verification using theorem proving. In particular, we have
reduced the correctness Property 2 to a predicate about leaf sets that the
algorithm should maintain, and have defined a candidate for an inductive
invariant. Future work will include full verification of the correctness proper-
ties. Afterward, we will extend the model by considering liveness properties,
which obviously require assumptions about the ring being sufficiently stable.
We also intend to study which parts of the proof are amenable to automated
theorem proving techniques, as the effort currently required by interactive
proofs is too high to scale to more complete P2P protocols.

49

Bibliography

[1] R. Bakhshi and D. Gurov. Verification of peer-to-peer algorithms: A
case study. Electr. Notes Theor. Comput. Sci., 181:35–47, 2007.

[2] J. Borgström, U. Nestmann, L. O. Alima, and D. Gurov. Verifying a
structured peer-to-peer overlay network: The static case. In Priami and
Quaglia [12], pages 250–265.

[3] M. Caesar, M. Castro, E. B. Nightingale, G. O’Shea, and A. Rowstron.
Virtual ring routing: network routing inspired by DHTs. SIGCOMM
Comput. Commun. Rev., 36(4):351–362, 2006.

[4] M. Castro, M. Costa, and A. I. T. Rowstron. Performance and depend-
ability of structured peer-to-peer overlays. In International Conference
on Dependable Systems and Networks (DSN 2004), pages 9–18, Florence,
Italy, 2004. IEEE Computer Society.

[5] K. Chaudhuri, D. Doligez, L. Lamport, and S. Merz. A TLA+ proof
system. In Workshop on Knowledge Exchange: Automated Provers and
Proof Assistants (KEAPPA), volume CEUR Workshop Proceedings 418,
pages 17–37, 2008.

[6] K. Chaudhuri, D. Doligez, L. Lamport, and S. Merz. Verifying safety
properties with the TLA+ proof system. In Giesl and Hähnle [7], pages
142–148.

[7] J. Giesl and R. Hähnle, editors. Automated Reasoning, 5th International
Joint Conference, IJCAR 2010, Edinburgh, UK, July 16-19, 2010. Pro-
ceedings, volume 6173 of Lecture Notes in Computer Science. Springer,
2010.

[8] A. Haeberlen, J. Hoye, A. Mislove, and P. Druschel. Consistent key
mapping in structured overlays. Technical Report TR05-456, Rice Uni-
versity, Department of Computer Science, August 2005.

50

[9] L. Lamport. Specifying Systems, The TLA+ Language and Tools for
Hardware and Software Engineers. Addison-Wesley, 2002.

[10] T. Lu, S. Merz, and C. Weidenbach. Towards verification of the Pas-
try routing protocol using TLA+. In R. Bruni and J. Dingel, editors,
Proceeding of IFIP International Conference on Formal Techniques for
Distributed Systems (FORTE 2011), Reykjavik, Iceland, 2011. Springer.
Accepted.

[11] S. Merz. The specification language TLA+. In D. Bjrner and M. C.
Henson, editors, Logics of Specification Languages, Monographs in The-
oretical Computer Science, pages 401–451. Springer, Berlin-Heidelberg,
2008.

[12] C. Priami and P. Quaglia, editors. Global Computing, IST/FET Interna-
tional Workshop, GC 2004, Rovereto, Italy, March 9-12, 2004, Revised
Selected Papers, volume 3267 of Lecture Notes in Computer Science.
Springer, 2005.

[13] Rice University and Max-Planck Institute for Software Systems. Pastry:
A substrate for peer-to-peer applications. http://www.freepastry.

org/.

[14] R. Rodrigues and P. Druschel. Peer-to-peer systems. Commun. ACM,
53(10):72–82, 2010.

[15] A. Rowstron and P. Druschel. Pastry: Scalable, distributed object loca-
tion and routing for large-scale peer-to-peer systems. In IFIP/ACM In-
ternational Conference on Distributed Systems Platforms (Middleware),
pages 329–350, Nov. 2001.

[16] S. Velipasalar, C. H. Lin, J. Schlessman, and W. Wolf. Design and verifi-
cation of communication protocols for peer-to-peer multimedia systems.
In IEEE Intl. Conf. Multimedia and Expo (ICME 2006), pages 1421–
1424, Toronto, Canada, 2006. IEEE.

[17] Y. Yu, P. Manolios, and L. Lamport. Model checking TLA+ specifi-
cations. In L. Pierre and T. Kropf, editors, Correct Hardware Design
and Verification Methods (CHARME’99), volume 1703 of Lecture Notes
in Computer Science, pages 54–66, Bad Herrenalb, Germany, 1999.
Springer.

51

Below you find a list of the most recent research reports of the Max-Planck-Institut für Informatik. Most
of them are accessible via WWW using the URL http://www.mpi-inf.mpg.de/reports. Paper copies
(which are not necessarily free of charge) can be ordered either by regular mail or by e-mail at the address
below.

Max-Planck-Institut für Informatik

– Library and Publications –

Campus E 1 4

D-66123 Saarbrücken

E-mail: library@mpi-inf.mpg.de

MPI-I-2012-RG1-001 M. Suda, C. Weidenbach Labelled superposition for PLTL

MPI-I-2011-5-002 B. Taneva, M. Kacimi, G. Weikum Finding images of rare and ambiguous entities

MPI-I-2011-4-005 A. Berner, O. Burghard, M. Wand,
N.J. Mitra, R. Klein, H. Seidel

A morphable part model for shape manipulation

MPI-I-2011-4-001 M. Granados, J. Tompkin, K. In Kim,
O. Grau, J. Kautz, C. Theobalt

How not to be seen inpainting dynamic objects in
crowded scenes

MPI-I-2010-RG1-001 M. Suda, C. Weidenbach,
P. Wischnewski

On the saturation of YAGO

MPI-I-2010-5-008 S. Elbassuoni, M. Ramanath,
G. Weikum

Query relaxation for entity-relationship search

MPI-I-2010-5-007 J. Hoffart, F.M. Suchanek,
K. Berberich, G. Weikum

YAGO2: a spatially and temporally enhanced
knowledge base from Wikipedia

MPI-I-2010-5-006 A. Broschart, R. Schenkel Real-time text queries with tunable term pair indexes

MPI-I-2010-5-005 S. Seufert, S. Bedathur, J. Mestre,
G. Weikum

Bonsai: Growing Interesting Small Trees

MPI-I-2010-5-004 N. Preda, F. Suchanek, W. Yuan,
G. Weikum

Query evaluation with asymmetric web services

MPI-I-2010-5-003 A. Anand, S. Bedathur, K. Berberich,
R. Schenkel

Efficient temporal keyword queries over versioned text

MPI-I-2010-5-002 M. Theobald, M. Sozio, F. Suchanek,
N. Nakashole

URDF: Efficient Reasoning in Uncertain RDF
Knowledge Bases with Soft and Hard Rules

MPI-I-2010-5-001 K. Berberich, S. Bedathur, O. Alonso,
G. Weikum

A language modeling approach for temporal
information needs

MPI-I-2010-1-001 C. Huang, T. Kavitha Maximum cfardinality popular matchings in strict
two-sided preference lists

MPI-I-2009-RG1-005 M. Horbach, C. Weidenbach Superposition for fixed domains

MPI-I-2009-RG1-004 M. Horbach, C. Weidenbach Decidability results for saturation-based model building

MPI-I-2009-RG1-002 P. Wischnewski, C. Weidenbach Contextual rewriting

MPI-I-2009-RG1-001 M. Horbach, C. Weidenbach Deciding the inductive validity of ∀∃∗ queries

MPI-I-2009-5-007 G. Kasneci, G. Weikum, S. Elbassuoni MING: Mining Informative Entity-Relationship
Subgraphs

MPI-I-2009-5-006 S. Bedathur, K. Berberich, J. Dittrich,
N. Mamoulis, G. Weikum

Scalable phrase mining for ad-hoc text analytics

MPI-I-2009-5-005 G. de Melo, G. Weikum Towards a Universal Wordnet by learning from
combined evidenc

MPI-I-2009-5-004 N. Preda, F.M. Suchanek, G. Kasneci,
T. Neumann, G. Weikum

Coupling knowledge bases and web services for active
knowledge

MPI-I-2009-5-003 T. Neumann, G. Weikum The RDF-3X engine for scalable management of RDF
data

MPI-I-2009-5-002 M. Ramanath, K.S. Kumar, G. Ifrim Generating concise and readable summaries of XML
documents

MPI-I-2009-4-006 C. Stoll Optical reconstruction of detailed animatable human
body models

MPI-I-2009-4-005 A. Berner, M. Bokeloh, M. Wand,
A. Schilling, H. Seidel

Generalized intrinsic symmetry detection

MPI-I-2009-4-004 V. Havran, J. Zajac, J. Drahokoupil,
H. Seidel

MPI Informatics building model as data for your
research

MPI-I-2009-4-003 M. Fuchs, T. Chen, O. Wang,
R. Raskar, H.P.A. Lensch, H. Seidel

A shaped temporal filter camera

MPI-I-2009-4-002 A. Tevs, M. Wand, I. Ihrke, H. Seidel A Bayesian approach to manifold topology
reconstruction

MPI-I-2009-4-001 M.B. Hullin, B. Ajdin, J. Hanika,
H. Seidel, J. Kautz, H.P.A. Lensch

Acquisition and analysis of bispectral bidirectional
reflectance distribution functions

MPI-I-2008-RG1-001 A. Fietzke, C. Weidenbach Labelled splitting

MPI-I-2008-5-004 F. Suchanek, M. Sozio, G. Weikum SOFI: a self-organizing framework for information
extraction

MPI-I-2008-5-003 G. de Melo, F.M. Suchanek, A. Pease Integrating Yago into the suggested upper merged
ontology

MPI-I-2008-5-002 T. Neumann, G. Moerkotte Single phase construction of optimal DAG-structured
QEPs

MPI-I-2008-5-001 G. Kasneci, M. Ramanath, M. Sozio,
F.M. Suchanek, G. Weikum

STAR: Steiner tree approximation in
relationship-graphs

MPI-I-2008-4-003 T. Schultz, H. Theisel, H. Seidel Crease surfaces: from theory to extraction and
application to diffusion tensor MRI

MPI-I-2008-4-002 D. Wang, A. Belyaev, W. Saleem,
H. Seidel

Estimating complexity of 3D shapes using view
similarity

MPI-I-2008-1-001 D. Ajwani, I. Malinger, U. Meyer,
S. Toledo

Characterizing the performance of Flash memory
storage devices and its impact on algorithm design

MPI-I-2007-RG1-002 T. Hillenbrand, C. Weidenbach Superposition for finite domains

MPI-I-2007-5-003 F.M. Suchanek, G. Kasneci,
G. Weikum

Yago : a large ontology from Wikipedia and WordNet

MPI-I-2007-5-002 K. Berberich, S. Bedathur,
T. Neumann, G. Weikum

A time machine for text search

MPI-I-2007-5-001 G. Kasneci, F.M. Suchanek, G. Ifrim,
M. Ramanath, G. Weikum

NAGA: searching and ranking knowledge

MPI-I-2007-4-008 J. Gall, T. Brox, B. Rosenhahn,
H. Seidel

Global stochastic optimization for robust and accurate
human motion capture

MPI-I-2007-4-007 R. Herzog, V. Havran, K. Myszkowski,
H. Seidel

Global illumination using photon ray splatting

MPI-I-2007-4-006 C. Dyken, G. Ziegler, C. Theobalt,
H. Seidel

GPU marching cubes on shader model 3.0 and 4.0

MPI-I-2007-4-005 T. Schultz, J. Weickert, H. Seidel A higher-order structure tensor

MPI-I-2007-4-004 C. Stoll, E. de Aguiar, C. Theobalt,
H. Seidel

A volumetric approach to interactive shape editing

MPI-I-2007-4-003 R. Bargmann, V. Blanz, H. Seidel A nonlinear viseme model for triphone-based speech
synthesis

MPI-I-2007-4-002 T. Langer, H. Seidel Construction of smooth maps with mean value
coordinates

MPI-I-2007-4-001 J. Gall, B. Rosenhahn, H. Seidel Clustered stochastic optimization for object recognition
and pose estimation

MPI-I-2007-2-001 A. Podelski, S. Wagner A method and a tool for automatic veriication of region
stability for hybrid systems

MPI-I-2007-1-003 A. Gidenstam, M. Papatriantafilou LFthreads: a lock-free thread library

MPI-I-2007-1-002 E. Althaus, S. Canzar A Lagrangian relaxation approach for the multiple
sequence alignment problem

MPI-I-2007-1-001 E. Berberich, L. Kettner Linear-time reordering in a sweep-line algorithm for
algebraic curves intersecting in a common point

MPI-I-2006-5-006 G. Kasnec, F.M. Suchanek,
G. Weikum

Yago - a core of semantic knowledge

