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1 Introduction

Motivation. Recent projects such as DBpedia [3], YAGO [28, 18], free-
base.com, wolframalpha.com, trueknowledge.com, KnowlItAll [4], and others have
successfully constructed semantic knowledge bases of large scale. Factual
knowledge is typically represented in RDF, the W3C standard for Semantic-
Web contents. RDF data can be seen as a graph whose nodes are entities
(e.g., persons, companies, movies, locations) and whose edges are relation-
ships (e.g., bornOnDate, isCEOof, actedIn). These knowledge bases can be
queried using the W3C-endorsed SPARQL [33] language.

Yet, a knowledge base about entities can never be fully complete or always
up to date. With the ANGIE system [23], we have shown that Web services
can step in to fill this gap. Web services lend themselves to the extension
of knowledge bases, because they deliver structured data. This eliminates
the need for noisy information extraction techniques. Furthermore, there
are Web services that offer a wide repertoire of data of good quality, well
maintained and up to date. This makes Web services an interesting device
for complementing knowledge bases. The ANGIE system incorporates Web
services as follows: When a user asks a query, ANGIE tries to find the answer
in the local knowledge base and resorts to Web services whenever the local
knowledge base is not sufficient. ANGIE composes Web services and data
from the local knowledge base on the fly, so that the user does not notice
that some of the data was not present in the knowledge base before. For
example, assume that the user asks for all songs by Canadian singers:

nationality(7x,Canadian), sings(?x,?y)

Then ANGIE could find, e.g., the bindings for 7z and some bindings
for 7y in the local knowledge base, and more bindings for 7y by calling an
external Web service. One possible answer is ?x=LeonardCohen, ?y=Halleluja.

This approach, however, is bound by the limitations of the APIs of the
Web services. For example, there may be a Web service W that returns all
songs for a given singer, but no Web service that returns all singers of a



given song. Then, the system cannot directly use W to answer a query for
all singers who covered the song Halleluja. W does contain all the necessary
information, but its API just does not allow us to query it in the right way.
We call this the problem of Web service asymmetry.

Formally, a relation R is asymmetric with respect to a Web service API
if it allows querying for one argument of R but not for the other one. Even
among the most prominent data providers, many relations are asymmet-
ric. We have examined the services isbndb.org, librarything.com, and abe-
books.com for books, internetvideoarchive.com for movies, musicbrainz.org, last.fm,
discogs.com, and lyricWiki.org for music. Figure 1.1 lists relations in these ser-
vices that can be queried for the second argument, but not for the first.

citizenOf(pers,country) | rating(movie,r)
bornln(pers,year) graduatedFrom(pers,univ)
livesIn(pers,place) published (book,year)
hasWon (pers,award) published By (book,editor)

Figure 1.1: Asymmetric relations in popular Web services.

One naive way of dealing with asymmetric Web services is to try out all
possible input values until the Web service delivers the desired output value.
For example, to find all singers of Halleluja, we can call the Web service W
with all singers we know of, and remember those for which the Web service
returns Halleluja. Obviously, this approach quickly becomes infeasible. The
first limitation is runtime, with Web service calls taking up to 1 second to
complete. Trying out the thousands of singers that a knowledge base such
as YAGO [28] contains could easily take hours. The second limitation is the
data provider itself, which most likely restricts aggressive querying from the
same [P address.

The problem is even more challenging, because it is not trivial to deter-
mine whether Web service asymmetry is going to be a problem for a given
query or not. Assume, e.g., a Web service sings, which, given the id of a
singer, returns his name and his songs. This Web service is asymmetric,
because it does not allow using the name of the singer as an input. That
means that if the user asks for all the songs by Leonard Cohen, sings cannot
be called directly. However, this asymmetry does not pose a problem, if there
is another service getld, which, given a singer name, returns his id. We can
first call getld(Leonard Cohen) and then feed the result into sings. Thus, we can
always try rewrite the query so that it avoids an asymmetric call. In general,
however, there can be infinitely many rewritings for a given query under a
given set of services [20]. This means that the system might spend an infinite
amount of time searching for an alternative rewriting without asymmetry.



This leaves us with Web service asymmetry as a problem that does not
only drastically restrict the queries we can answer, but that is also not obvi-
ous to detect. This limitation applies not just to ANGIE, but to any system
that wishes to answer arbitrary queries by combining Web services. Query
rewriting approaches that are designed for views with limited binding pat-
terns do not take into account such asymmetry. This is because their goal
is to compute the maximal number of answers with no bound on the num-
ber of service calls. In order not to miss answers they produce all possible
rewritings. When dealing with Web services, in contrast, one usually has a
limited number of calls and cannot afford trying out all rewritings.
Contribution. In this paper, we propose a solution to the problem of Web
service asymmetry. We propose to use information extraction on the fly to
“guess” the right input values for the asymmetric Web services. For example,
to find all singers of Halleluja, we issue a keyword query “singers Halleluja”
to the search engine. We extract promising candidates from the result pages
(say, Bon Jovi, Espen Lind, and Elvis Presley). Next, we use the existing Web
service to validate these candidates. In the example, we would ask W whether
Bon Jovi, Espen Lind, or Elvis Presley sang Halleluja. This confirms the first two
singers and discards the last one. This way, we can use an asymmetric
Web service as if it allowed querying for an argument that its API does not
support.

More precisely, our scenario is as follows: We are given an RDF knowledge
base and a set of pre-specified Web services and a limited number of calls.
As in [23], our goal is to answer a SPARQL query on the knowledge base
by combining local knowledge and results from Web service calls. Our paper
makes the following contributions:

e A precise characterization of a class of queries which cannot be processed
or cannot be processed in practice by existing mediator-based solutions
for Web services. This includes an algorithm to detect such queries.

e A novel approach to answer such queries, where input values for the
Web services are extracted on-the-fly from Web pages found by keyword
queries. This includes information extraction algorithms that are tailored
to our task, considering both full text and HTML tables.

e An experimental evaluation of our approach, for a representative set of
queries, using real settings. We integrate the APIs of a variety of high-
quality Web services, and compare our approach to existing query an-
swering algorithms.

Our methods are fully implemented in the SUSIE! system, which is integrated
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with our previous work ANGIE [23]. The rest of this paper is structured as
follows: Section 2 discusses related work. Section 3 presents our computa-
tional model. Section 4 explains how asymmetric relations can be detected
and Section 5 explains how they can be treated using information extraction.
Section 6 explains the architecture of our system, before Section 7 presents
experiments and Section 8 concludes.



2 Related Work

Query Answering. We deal with knowledge bases that are extended on the
fly during query evaluation by information from Web services — a scenario
that was introduced in ANGIE [23]. We consider a subset of the SPARQL
query language where the queries can be written as conjunctive queries and
where the Web services can be seen as parametrized queries expressed using
the same language.

As values for the inputs are required in order to execute a Web call, a
Web service can be seen as a view with limited access patterns [25]. The
problem of answering queries using views with limited access patterns was
first studied by Rajamaran, Sagiv, and Ullman in [25]. The approach consists
in rewriting the initial query into a set of queries where some are executed
at the remote data sources publishing the Web services. In [25], the authors
show that for a conjunctive query over a global schema and a set of views
over the same schema, determining whether there exists a conjunctive query
plan over the views that is equivalent to the original query is NP-complete
in the size of the query. The result is based on the observation that one may
just keep the subgoals that either are mapped to one of the subgoal of the
query, or provide an initial binding for one of the variables of the queries.
Hence, the size of a query plan can be bounded by the size of the query.
However, although the query plan consists of a bounded number of views
(functions), there may be no bound on the length of the recursive chains
of function calls [20]. This has drastical impact on the response time. The
same problem has been studied in an extended setting where constraints are
added to the set of views [8].

There are two main differences between the problem we address in this
work and the problem of answering queries using views [25]. Unlike query
answering approaches that aim at computing the set of all logical expressions
that might return answers (maximal contained rewritings), we consider a
limited number of calls since the Web service providers limit the number of
calls that a client is allowed to issue. This changes the approach to solve the



problem. In order to insure the completeness, solutions based on Datalog-
bottom up [10, 11, 17] are preferred over top-down Datalog. However, in our
setting it is simply impossible to enumerate all Web service results, because
most Web services restrict the number of calls coming from an IP address.

Secondly, unlike query rewritings approaches and unlike our work [23],

the goal of this work is to detect the class of impractical query evaluations
and to propose an alternative to solve them. This alternative consists in
suggesting the introduction of new functions. Furthermore, by detecting the
class of impractical evaluations, we can prioritize them. This contrasts our
work with query rewriting solutions that treat all possible rewritings with
answers as equally important in the evaluation. In order to prioritize the
calls, we introduce a condition and show that the input values satisfying this
condition are better candidates than arbitrary values.
Information Extraction. Quite a number of approaches [3, 28, 34] focus
on extracting knowledge from Wikipedia. Others extract knowledge from
Wikipedia for query answering on the fly (e.g. [31]). The goal of the present
work, however, is to go beyond Wikipedia and tap Web services. Therefore,
we regard IE as complementary to our work. Our work uses IE only as a
vehicle to find candidate entities that can be submitted to Web services. We
briefly review some prominent IE approaches and show where our scenario
differs, referring the reader to [26] for a more comprehensive overview of the
field.

Named Entity Recognition (NER) approaches such as [35, 21, 7] aim to
detect interesting entities in text documents. They can be used to generate
candidates for SUSIE. The first approach implemented in this work is a
particular simple instantiation of NER, detecting only entities that are known
to the knowledge base — thus circumventing the classical challenges in NER.

A second approach we consider is extracting structured information from
Web tables. Unlike [5, 12], our algorithm is not limited to HTML lists and
tables, but rather detects arbitrary repetitive structures that could contain
tabular information. [15] present a slightly different approach based on the
visual features of a page.

An array of solutions such as Wrapper Induction [19], fact extraction [1,
4, 29] or entity extraction [7, 36] could be also considered, but they are less
practical in our scenario since they require training data.
Complementary Work. In the present work, we assume that the mapping
between the schema of the Web Services and the schema of the knowledge
base is given. The (semi) automatic creation of schema mappings has been
addressed in a large corpus of works, as detailed in the survey [6]. Further-
more, we are not concerned with entity disambiguation and data fusion in
this paper. Data fusion is an important component of our system, and it has



been vividly addressed in previous work (e.g., [2]).
Other Web service related problems. A number of works address the
problem of automatic composition (or orchestration) of the Web services
carrying out complex interactions between Web applications [9]. Other work
concerns the composition of Web services that can answer a parameterized
user query [30], or return objects of a given type [24]. These approaches do
not address the problem of Web service asymmetry.

In contrast to the mash-up approaches [27, 16], our system acts like a
mediator system, where the query dynamically combines data from local
and external sources, on demand.



3 Computational Model

This section will introduce the problem of query answering on knowledge
bases with Web services [23].

Semantic Graph. In tune with recent work [28, 3, 18], we represent our
knowledge base in the RDF standard [32] as a semantic graph. A semantic
graph over a set Ent of entities and a set Rel C Ent of relation names is a
graph G C Ent X Rel x Ent. Thus, a semantic graph is a set of triples, where
each triple expresses a fact. We denote a triple by R(x,y), where R is the
relation and x,y are the participating entities. Figure 3.1 shows an excerpt
of a semantic graph. In RDFS, there is a distinction between individual
entities (such as Leonard Cohen) and class entities (such as the class Singer).
Individuals are linked by the type relationship to their class. For example,
Leonard Cohen is linked to the class Singer by an edge type(Leonard Cohen,
Singer). The classes themselves form a hierarchy. More general classes (such
as Person) include more specific classes (such as Singer). This hierarchy is
expressed in the semantic graph by edges with the subclassOf relationship,
e.g. subclassOf(Singer, Person).

Person

subclassOf
Country Singer
type type | type

@citizenOf Leonard Grammy
anada Cohen Award

Figure 3.1: A semantic graph fragment.

Query Language. As query language, we consider a subset of the standard
RDFS query language SPARQL [33]. Technically, a query over a set of
variables Var for a semantic graph G C Ent X Rel x Ent is a connected
semantic graph Q C (Ent U Var) x (Rel UVar) x (Ent U Var).



Figure 3.2 (left) shows two sample queries: The query )y asks for citizens
of Canada. @2 asks for citizens of Canada who won the Grammy Award.

. citizenOf
o

Qs @cmzenOf@wonAward GArivj:gy input u(?p\ wonAward o

Figure 3.2: Two sample queries (left) and the function getAwards® (?p,?x)
(right).

The answer to a query @) is a graph homomorphism ¢ : Q = 09 € G

that preserves the entity and relation names, and substitutes the variables in
@ with entities and relationships names from G. In the example, an answer
to Q1 on the sample semantic graph is the substitution ¢ = {?z — Leonard
Cohen}, because o(Q;)={citizenOf(Leonard Cohen, Canada)} is a sub-graph of
the semantic graph. Query (o does not have an answer in the sample graph,
because the fact that Leonard Cohen won the Grammy Award is not known
to the knowledge base.
Functions. A Web service is an API that can be called over the Internet.
Given some input values, it returns as output a semi-structured document,
usually XML. Using existing tools [13], mappings can be predefined in the
system so that the XML fragments in the results can be translated to RDF-
style graphs in the schema of the knowledge base. This allows us to see a
Web service as a function on RDF graphs, as follows.

A function (of a Web service) is a query, where the set of variables is
partitioned into input variables. The input variables have to be bound before
the function can be called.

Example. The function getAwards in Figure 3.2 (right) takes as input a value
for 7p and returns the corresponding awards (binding values for 7).
Views with binding patterns The functions can be seen as views with
binding patterns [25]. To compare to the existing techniques we revert, when
necessary, to the Datalog notation and terminology where a conjunctive query
has the form:

Q(X) <— T1<X1), TQ(XQ), . rn(Xn)

where ¢ and 71,7, ...7, are predicate names. The predicate names refer to
database relations. The atom g(X) is called the head of the query, and refers
to the answer relation. The tuples X;, X5, ...X,, contain either variables or
constants. The query must be safe, i.e., X C X;, Xs,... X, (every variable

in the head must also appear in the body).



In order to model the input and the output parameters of the views,
adornments attached to queries have been introduced in [25]. If the head of
the query has n attributes, then an adornment consists of a string of length
n composed of the letters b and f. The meaning of b is that a binding value
must be provided for the variable in that position. For example, the function
in Figure 3.2 (right), can be written as follows:

getAwards(?xz,7y)% < wonAward(?z,?y), Singer(?z), Award(?y)

where the adornment bf says that 7z must be bound (input variable) and 7y
is free (output variable).

10



4 Answering queries

For a given SPARQL query formulated in terms of the YAGO schema, the
goal is to output a query expression formulated in terms of data sources. The
resulting expression is called a rewriting. Since, in SUSIE, data sources are
accessible by function calls, the rewriting is a sequence of function calls. As
we assume limited access to data sources, the focus is on efficiently ordering
the list of calls. For the beginning, we consider the problem of computing
answers for a single query edge, where one node value is known. Even this
simple case may require call compositions. In [20], it is shown that there
may be no bound on the size of the rewriting. As an example, consider the
following functions (adapted from [10]):

getAwards(?s,7a)? < wonAward(?s,?a),Singer(?s),Award(?a)
getSimTo(?s1,752)% < similarTo(?sy,7s2),Singer(?s1),Singer(?s2)

and let Q be the following query:

Q%7 (?a) <+ wonAward(Leonard_Cohen,?a)

For this query, the call getAwards(Leonard_Cohen) will return the bindings for
?a. Now, consider the following query:

Q7?(?p) < wonAward(?p, Grammy_Award)

Since the function getAwards(?s,?a)®/ requires its input to be bound it
cannot be called directly. One way to get solutions is to issue a call to the
function getAwards for all the singers in the local base. By calling the function
getSimTo, more singer names can be found. Even more singer names can be
obtained by recursively calling getSimTo. Thus, the role of getSimTo is simply
to generate all elements in the class Singer (that can be obtained by the
means of function calls). Indeed, for such cases, in [10], the authors propose
to construct a new intermediate relation Singers whose extension is the set of
all singers that are reachable by computing chains of getSimTo calls.

11



In this scenario, the chance that one service call returns a desired entity
is proportional to the ratio of elements of the domain that have the desired
property. In our example, the chance that a single service call returns a
singer that won the Grammy Award is the number of singers that won the
Grammy Award divided by the total number of singers. This is usually an
insignificant number (we show in the experiments that this ratio is around
1%). This means that most service calls will happen in vain (on average, 99%
of the service calls are in vain). This query evaluation strategy is complete,
but it is not feasible in reality, because the Web service provider restricts the
number of permitted calls. In the example, if we limit the calls to 15, we will
most likely not get any answer.

If appropriate functions are available, there can be a rewriting that does
not enumerate the domain. For example, if we had the function getPerson-
ForAward, then there would exist a rewriting of the above query that does
not enumerate the domain. If all possible rewritings of a query edge under
a given set of functions require enumerating a domain, we call the edge an
impractical query edge. Since the number of rewritings can be infinite, it is
not trivial to determine whether a query edge is impractical. The goal of the
present section is to develop an algorithm that can detect the impractical
edges of a query. Section 5 will then discuss how to handle impractical query
edges.

The remaining of this section we introduce the concept of recursive rewrit-
ings and we show that only a finite number of rewritings need to be considered
in order to determine whether a query edge is impractical. We also consider
rewritings for entire conjunctive queries.

4.1 Recursive Rewritings

We consider a single query edge q. Without loss of generality, we assume
that the first argument of ¢ is bound, i.e. ¢ = RY(c,?y). Our goal is to
determine whether ¢ is impractical, i.e., whether all possible rewritings of ¢
will require the enumeration of a domain. For simplicity, let us consider first
the case where functions have only one input. We distinguish 4 cases:

(A) Simple case: There is a function f of the form
[ (22, 2y, ) < R(x, ?y), ...

where f may contain more than one variable and its body may contain
more than one relation. In this case, ¢ can be answered by calling f.
Hence, ¢ is not impractical.

12



(B) Recursive case: Case (A) does not apply, and there is a
function f that has a path from the input value 7x; to the query edge
that does not contain the edge matching the query R(c, 7y):

fo (P, )= B2y, 2w)s ooy Ry 1 (P01, ?20), Ru(P2n, 72), R(?72, 7).

In this case, we can answer ¢ by calling f, if we find a value for 7z,
that binds 7z to c¢. Finding this value means first finding an ?x,,, such
that x = ¢ and thus R,,(?x,,c). Then one has to find an appropriate
?x,_1 and so forth. Hence, the problem is recursively reduced to de-
termining whether these query edges are impractical. Note that there
can be multiple cases (B) for the same function f, because there can
be multiple paths from 7z, to the query edge.

(C) Impractical case: Cases (A) and (B) do not apply, but there
exist functions that can return relationships R. Such functions must
have one of the following forms:

(1) (22,7, ...) + R(?x, 7y), ...
(2) [l (2w, .) < Ri(Paq, 710), ooy Ry 1 (P01, 220) R(?an,y), R(72, 7y)...

The first form is the impractical case that requires enumerating the
entire domain for the inputs 7z. The second form induces a vicious
circle: In order to compute the good inputs 7z that generate solutions
for R(7z,?y), we would have to find 7y first so that R(c, 7y). Thus, the
recursion does not reduce the problem.

(D) Impossible case:  None of the functions returns relationships
R. In this case, the query edge cannot be answered at all.

Thus, a naive algorithm for determining whether a query edge is imprac-
tical consists of recursively checking all 4 cases. This will build up a tree
structure of rewritings. If all rewritings involve case (C), then the edge is
impractical. Unfortunately, however, there may be an infinite number of
rewritings. We will therefore try to cut some of the branches of the rewrit-
ing tree. For this purpose, let us look at the case (B). We define the query
precondition:

Definition 1 (Query Precondition) A precondition for a query q =
R (c,7y), and a function f returning R relationships is a query Prec, ; that
consists of a path in f from the input value of f to the node that matches c.

13



f1 =getSingerInfo®#7(?id, ?s, ?a)

mput Leonard_Cohen
Q" (Leonard_Cohen Honer 7id 75
%/—/
Precgpr g,

Figure 4.1: Query precondition example

For instance, consider the query Q% and the function f, =getSingerlnfo in
Figure 4.1. The precondition for Q% and getSingerlnfo is the query:

Precgys j, (Leonard_Cohen,?id)" < singerld/®(?id, Leonard_Cohen)

Every possible query precondition constitutes one way of answering the query
edge with the function. That is, every possible query precondition will give
rise to one instance of case (B) above. If a function has multiple input values,
then the notion of the query precondition needs to be modified to include all
input nodes. All other considerations still apply also in the general case.

4.2 Avoiding Infinite Rewritings

Let us consider computing rewritings for a given single query edge ¢ =
R (c,?y). ¢ will fall into one of the above cases, (A), (B), (C), or (D).
In the cases (A), (C), and (D), no further rewritings are necessary. Let us
therefore consider case (B). A rewriting corresponding to the case (B) will, in
the next recursive step, give rise to finding the rewritings of e = R (a1, c)/?.
Figure 4.2 illustrates this scenario. If this edge e has ever appeared in the
rewriting before, with the same relation name and with the first argument
free and the second one bound, but with any constant in place of ¢, then
e is impractical iff the other edge is impractical. Hence we do not have to
deal recursively with the same problem again. The same applies if an edge
appears with the inverse relation and the first argument bound and the sec-
ond one free. Therefore, we do not need to rewrite e at all. If there is no
such similar edge, we have to rewrite e. For this new sub-goal, we can have
again one of the cases (A), (B), (C) or (D). In case (A), (C), or (D), we are
done and no more rewritings are required. Let us therefore consider the case
(B) for RL(x}, ). This will give rise to a new sub-goal R? (22, c)/®. Again,
this edge does not require any rewriting if a similar edge exists already some-
where. Otherwise, the edge will again fall into one of the cases (A), (B), (C)

14



input Precg, f1

C

Figure 4.2: Recursive steps. Step 1 (left): f; might return R(c, 7y) if answers
for Precpy, can be computed. Step 2 (right): fo might return Ri(z',c¢) if
answers for Precg: s, can be computed.

or (D). This procedure continues until case (B) has been encountered for all
relations with both possible binding distributions, bf and fb.

This means that case (B) can only appear 2n times, where n is the number
of relation names. Since the number of relation names is finite, the number
of functions is finite and the number of call preconditions is finite, this means
that the total number of required rewritings is finite, too. This means that
it can be determined in finite time whether a query edge is impractical.

4.3 Query evaluation

Consider the evaluation of a query () that contains at least one constant c.
Since () is a connected graph, there is at least one left-to-right evaluation

RY (¢, 720) A RY (21, 723) ... A RV (2, _y, 7,)

where Rq,..., R, represent the query edges in () and c is a constant. We
consider the computation R? as a particular case of the computation of
RY . At step i, answers for RY (¢, 721) A RY (21, ?x5) ... RY (721, 72;) are
produced. Hence, at step ¢ the variables ?xq, 7z5...7x; are bound to values.
These values could be further used if necessary as inputs to Web calls in
order to evaluate Rfil(?xi, ?Tii1).

Thus, answering the query is possible if there exists a left-to-right eval-
uation that (i) respects the input conditions and that (i7) does not contain
an impractical edge. The first requirement can be checked by the known
algorithm [23]. The second requirement can be checked by the recursive
evaluation given in Section 4.2. This algorithm is complete (i.e., it will de-
liver all possible answers to the query) iff the functions allow computing the

15



entire set of query preconditions. This is unlikely in practice, as it is with all
data integration approaches.

Now let us consider the case where the query contains an impractical
query edge. This is the case where all query rewritings contain (C), i.e.,
where we need the inverse of an existing function f. In this case, we propose
to introduce the inverse function f~!. Thereby, the query edge is no longer
impractical. We will discuss in the next Section how we can introduce f~1.

16



5 Bindings from the Web

We will now discuss how we can construct the inverse function of an asym-
metric Web service, in order to eliminate an impractical edge in a query
rewriting. As an example, assume that the impractical query edge is won-
Award(?z, Grammy Award). Assume that we only have the inverse function
wonAward®/ (?x, 5), which requires a person as input and returns the awards
of that person as output.

SUSIE will construct a virtual function wonAward/®(?z, y). Whenever
this function is called, SUSIE will do the following: It will issue calls of the
form “List of person won 3" to a Web search engine such as Google. Then,
SUSIE will extract possible candidates for x from the Web page. Last, SUSIE
will call the real Web service wonAward® (?z, y) to check which candidates
return the desired y. These candidates are returned as output to the call to
the virtual function. Thereby, the virtual function acts just like a real Web
service function.

We will now discuss two subtasks of this endeavor: (1) the task of finding
suitable Web pages and (2) the task of extracting candidates from the Web
pages. Even though a high precision and a high recall are desirable for the
two sub-tasks, they are not strictly necessary. If the precision is low, this
will result in more Web service calls, but not in diminished precision of the
final query answers because all answers are checked by the Web service. If
recall this low, this will result in fewer answers. Fewer answers, however, are
better than trying out all possible input values for the function, which may
result in no answer at all due to the limited call budget.

Web Search. We first note that a relation in RDF typically comes with a
domain and a range (this is the case in YAGO [28]). Thereby, we already
know the type of the candidate values (the target type). In the example
of wonAward, we know that the domain is Person and hence we know that
we are looking for instances of the class Person. Since the names of the
relationships, as defined in the database schema, are usually less suitable to
be used in keyword search queries, we manually map each relation name to

17



a search string. For example, the relation wonAwards with a second bound
argument y is mapped to the string “List of persons won award y”. If the
first argument x is bound, we map it to “x list of awards”.

We submit the query to a common Internet search engine and collect the
top ten result Web pages. It is close to impossible to evaluate systematically
with the dozens of relationships and millions of constants that YAGO con-
tains that the Web pages obtained in this manner contain the good candidate
entities. Still, experience from our experiments indicates that information of
common interest is often publicly available on the Web. Furthermore the
same information appears in several of the returned pages. This increases
the chances of an IE algorithm to extract the required entities.
Information Extraction. Once the Web pages have been retrieved, it
remains to extract the candidate entities. Information extraction is a chal-
lenging endeavor, because it often requires near-human understanding of the
input documents. Our scenario is somewhat simpler, because we are only in-
terested in extracting the entities of a certain type from a set of Web pages.
We have implemented two simple yet effective information extraction algo-
rithms as a proof of concept.

String Matching Algorithm. For this algorithm, we are only interested in
entities that are already known to the knowledge base. This is a reasonable
focus in our case, because our knowledge base YAGO feeds from Wikipedia
and thus already contains a large number of entities of common interest.
Using a trie [14] that contains all entities of the target type, we extract all
entities of the target type from the Web pages. This processing can be done
in time O(n) in the best case and in time O(m - n) in the worst case, where
n is the total number of characters in the Web pages and m is the number of
characters in the longest entity name. These entities are returned as output
of the virtual function.

Quasi-Table Fxtraction. The String Matching Algorithm has the disad-
vantage that it can only find entities that appear in YAGO. If we wish to
venture beyond this limitation and find new entities, we may exploit that
many result Web pages will have a structured form. Typically, tables repre-
sent a natural way to organize sets of relationships in Web pages. However,
as shown in [15], only a small fraction of the Web tables are encoded using
the <table> markup in HTML. In many cases, they are encoded using lists
or loosely repetitive structures. We call such structures quasi-tables.

One way of detecting many quasi-tables is identifying structures of repeti-
tive rows, where each row contains items that are separated by special strings
or tags that re-appear in each row. Furthermore, the items in one column are
of the same syntactic type (numbers, strings or dates). This definition sub-
sumes standard tables and standard lists. We have developed an algorithm
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that can detect such structures. By comparing the elements of each column
with the instances of the target type in YAGO, our algorithm finds the col-
umn that constitutes most likely the answers to the query. The elements of
this column are returned as outputs of the virtual function.

We note that these are just two straight-forward implementations. They
can be replaced by more sophisticated implementations [12, 5].
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6 System architecture

The overall architecture of our system is illustrated in Figure 6.1. The sys-
tem uses the existing YAGO knowledge base [28], which consists of 2 million
entities and 20 million facts extracted from encyclopedic Web sources. In ad-
dition, we extended the knowledge with a built-in collection of function defi-
nitions for the following Web services: MusicBrainz, LastFM, LibraryThing,
ISBNdDb, AbeBooks, and IVA (Internet Video Archive). In our envisioned long-
term usage, the function definitions would either be automatically acquired
from a Web-service broker /repository or they could be semi-automatically
generated by a tool, e.g., [13].

Interface || Backend

Query
Query Translation
Module

]

RDF—3X | Inputs Informat.lon Top-K
Processor | for Calls Extraction Pages
Module
RDF triples Web calis
Mapping XML/ Web
Tool Services
(Mediator)

Function Eeﬁnitions RDF triples
Knowledge Base

Figure 6.1: System architecture.

The core of the present work is implemented in the Query Translation
Module. This module takes as input a user query, and translates it into
a sequence of function compositions. This module also detects impractical
query edges. For each such edge, it creates a virtual Web service.
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The translation module continuously sends SPARQL queries with embed-
ded Web service calls to the RDF-3X processor [22]. The RDF-3X processor
has been modified to accommodate Web service calls. It is responsible for
scheduling the execution of the function calls, and integrating the results
in the processing of the input query. The calls are executed via the Map-
ping Tool, which is in charge of remote invocation. The Mapping Tool also
translates the answer of the Web service call back into RDF, according to
a predefined mapping. It responds to the processor with the list of RDF
triples representing the answers of the calls. The RDF-3X processor combines
the triples from the local knowledge base and the triples received from the
mapping tool to produce a uniform output. The query translation and the
query execution are interleaved.
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7 Performance evaluation

We conducted 2 types of experiments. We first evaluate exclusively the
performance of the information extraction algorithms. Then, we evaluate
the actual performance of SUSIE on real-world queries.

7.1 Information Extraction

To evaluate our IE algorithms independently of the queries and the function
compositions, we constructed test sets of Web pages and extracted the target
entities manually from these pages. We then ran the extraction algorithms
and measured their performance with respect to the manually extracted gold
standard. We targeted three query types: Queries that ask for actors with
a certain birth year, for actors with a certain nationality and for authors
who received a certain prize. For each query type, we choose 10 arbitrary
property values (10 birth years, 10 nationalities and 10 literature prizes).
For each property value, we generated the keyword query that SUSIE would
generate for the query, sent it to Google and retrieved the top 10 pages. For
example, for the query “actors born in 1970”, we issued the query “List of
actors born in 1970”. This gave us 100 pages for each test set. The pages
are quite heterogeneous, containing lists, tables, quasi-tables and full-text
listings of entities. We then ran the extraction algorithms. Figures 7.1 and
7.2 show our results. We compare the results to the results that we would
achieve without information extraction. For this purpose, we report the
number of entities of the target type in the YAGO database that have the
desired property. For example, for the query “actors born in 1970”, we report
the proportion of actors in YAGO that are born in 1970 (among those actors
that have a birth date).

The precision and recall are nearly always in a healthy range between 30%
and 75%. A precision of 30% means that, for every 3 queries that are sent to
the Web service, 2 are sent in vain. We find this acceptable. A recall of 30%
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Country #E SMA QTE YAGO
Prec Rec Prec Rec Prec

Australia 15 | 37% 82 % | 51 % 66 % 11%
Canada 51 28% 92% | 40% 50 % 20%
England 46 46 % 85 % 71 % 74 % 0%
France 153 | 48 % 42% | 50 % 64 % 2 %
Germany 45 | 50 % 57 % | 51 % 99 % 2 %
Greece 26 | 38% 58 % 2% 14 % 0 %
Italy 138 29 % 54 % 42 % 59 % 0%
Mexico 25 44 % 52 % 51 % 78 % 0%
South Africa 12 | 29% 76 % | 29% 63 % 0%
Spain 24 | 54 % 63% | 67% 94 % 0 %
47 38 % 65 % 46 % 63 % 3.5 %

All numbers averaged over 10 pages per line #E = Average number of entities per page

Figure 7.1: Information Extraction Results for “Actors of nationality X”

Award #E SMA QTE YAGO
Prec Rec Prec Rec Prec

Franz Kafka 2 120% 7% | 13% 34 % N/A
Golden Pen 9 |1 36% 33% | 29% 56 % N/A
Jerusalem 6| 23% 52% | 69% 24% N/A
National Book 69 | 38% 59% | 45% 76 % 0.9 %
Nobel Prize 44 | 41 % 29% | 46 % 40 % 2.9 %
Phoenix 4 47 % 71 % 18 % 76 % N/A
Prix Decembre 4| 29% 6% | 18% 25% N/A
Prix Femina 21 31 % 13 % 32 % 32 % 0.6 %
Prix Goncourt 73| 63 % 46 % 7% 1% 1.12%
Pulitzer 42 | 8% 19 % | 60% 46 % 2.0 %
27 | 43% 44 % | 34 % 35 % 1.5%

Figure 7.2: IE Results for “Authors who won prize X”

Year #E SMA QTE YAGO
Prec Rec Prec Rec Prec

1940 2 2 % 73 % 1% 80 % 0.8 %
1945 1 2% 96 % 1% 100 % 1.0 %
1950 2 2% 81 % 1% 83 % 1.2 %
1955 2 6% 39% 3% 56 % 1.2 %
1960 18 12% 60 % 6 % 2% 1.3 %
1965 8 17 % 72 % 14 % 1% 1.5 %
1970 41 20% 96 % 1% 66 % 1.7 %
1975 2 8% 91 % 1% 67 % 1.6 %
1980 6 8 % 52 % 4 % 90 % 1.6 %
1985 2 8 % 56 % 0% 43 % 1%
5 9 % 71 % 3% 74 % 1.3 %

Figure 7.3: IE Results for “Actors born in year X”

means that we can find one third of the entities that the user is potentially
interested in. Only the precision on the birth year queries is disappointing,
with values below 10% (Figure 7.1). This is because the Google queries
returned lists of all actors, not just of the ones born in a certain year. Thus,
the extraction algorithms find far too many irrelevant entities in the pages.
The QTE algorithm, with its slightly higher recall, suffers particularly for
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No. Query Constants
1 type (?person, Writer) P No. Query Constants
wonAward (?person, p) 7 type (?person, Actor) c
2 type (?person, Writer) | p, ¢ isFamousActor (?person, True)
wonAward (?person, p) isCitizenOf (?person, c)
isCitizenOf (?person, c) 8 type (?person, Actor) c
3 type (?person, Writer) | p isFamousActor (?person, True)
wonAward (?person, p) isCitizenOf (?person, c)
wrote (?person, ?book) actedIn (?person, ?Tmovie)
4 type (?person, Writer) | p, ¢ 9 type (?person, Actor ) P
wonAward (?person, p) wonAward (?movie, p)
isCitizenOf (?person, c) actedIn (?person, ?movie)
wrote (?person, ?book) 10 type (?person, Actor) p
5 type (?person, Writer) | p, y wonAward (?movie, p)
wonAward (?person, ?prize) producedIn (?movie, ?country)
isTitled (?prize, p) actedIn (?person, ?movie)
awardedInYear  (?prize, y) 11 type (?person, Singer) D,y
6 type (?person, Writer) | p sang (?person, 7song)
wrote (?person, ?book) wonAward (?person, ?prize)
wonAward (?person, ?prize) isTitled (?prize, p)
isTitled (?prize, p) awardedInYear  (7prize, y)
awardedInYear  (?prize, y)

Figure 7.4: Query templates

the precision. We record this as a case where the information extraction
approach is less practical, because the Internet does not provide the lists of
entities that the approach needs.

Still, we note that, in all cases, our approach outperforms the naive ap-
proach of sending all entities of the target type to the Web service. In general,
the proportion of entities that have the desired property is very low. The
percentages for writer awards are already an overestimation, because they
consider only those writers that did win an award, while many writers do
not win any award at all in their life. So let us e.g. assume that 1% of the
entities have the desired property. This means that an expected 100 calls
would have to be sent to the Web service before finding one of them. This
number of calls is already above the budget we are considering, meaning that
the user would likely not get any response at all. Thus, even in the cases
with lower precision, our approach allows answering queries that would be
impossible to answer otherwise.

7.2 Real-world Queries

We compare the SUSIE algorithm with two competitors, the algorithms DF
and F-RDF presented in [23]. The DF algorithm implements a Prolog-style
backtracking strategy. The F-RDF improves over the DF algorithm since
it chooses as bindings for the input parameters values from the local base
that satisfy already some of the constrains in the query. Hence, they have
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Empty Database YAGO Database
Q Constants First [ Last First Result Last Result
SUSIE SUSIE F-RDF DF SUSIE F-RDF DF

call |anws |call |anws |call Janws |call Janws [call |anws [call lanws [call |lanws [call [anws
1 Nobel Prize in Literature 3 1|55 14 0 | 103 0 | 103 0 | 103 0 | 103 0 | 103 0 | 103
Golden Pen Award 4 1|16 11 4 1 0 0|16 11 0 0
Franz Kafka Prize 4 1 8 5 4 1 0 0 8 5 0 0
American Book Medal 3 1|18 16 3 1 0 0|18 16 0 0
Jerusalem Prize 3 1|21 11 3 1 0 0|21 11 0 0
2 France, Nobel Prize Literature 2 1 9 5 0 6 0 6 2 6 8 9 |90 6 2 6
UK, Franz Kafka Prize 2 1 2 1 2 1 0 0 2 1 0 0
3 Nobel Prize Literature 43 15 |100 | 198 0 | 234 0 | 234 | 15 | 234 | 94 | 457 (120 | 453 | 45 | 235
Golden Pen Award 18 13 | 87 228 6 1 0 0 |99 226 0 0
Franz Kafka Prize 19 9 |97 132 5 14 0 0 |92 181 0 0
American Book Medal 19 18 | 97 | 296 3 3 0 0 [111 | 522 0 0
Jerusalem Prize 22 6 | 90 | 220 4 1 0 0|91 233 0 0
4 France, Nobel Prize Literature 11 12 | 89 144 0 2 0 2 2 2 (107 133 132 74 (113 61
UK, Franz Kafka Prize 3 19 | 63 79 3 18 0 0 | 61 70 0 0
5 Nobel Prize Literature 2004 2 1 2 1 2 1 0 0 2 1 0 0
Golden Pen Award 2006 2 1 2 1 2 1 0 0 2 1 0 0
Franz Kafka Prize 2006 2 1 2 1 2 1 0 0 2 1 0 0
American Book Medal 2 1 2 1 2 1 0 0 2 1 0 0
Jerusalem Prize 1981 2 1 2 1 2 1 0 0 2 1 0 0
6 Nobel Prize in Literature 2004 3 9 |51 31 3 9 0 0 | 51 31 0 0
Golden Pen Award 2006 3 12 | 52 57 3 12 0 0 |51 64 0 0
Franz Kafka Prize 2006 3 10 | 59 61 2 14 0 0 | 59 89 0 0
American Book Medal 3 18 | 75 7 2 | 139 0 0 | 85 | 243 0 0
Jerusalem Prize 1981 3 16 | 71 60 2 17 0 0 | 69 90 0 0
7 United States Of America 5 1|20 7 5 1 0 0 |20 7 0 0
United Kingdom 3 1|26 7 3 1 0 0 |26 7 0 0
8 United States Of America 5 46 | 40 | 309 5 48 0 0 |40 | 330 0 0
United Kingdom 3 32 | 52 | 213 3 36 0 0 | 66 | 234 0 0
9 Academy Award Best Picture 2 4 | 56 85 2 14 0 0 | 88 | 187 0 0
10 | Academy Award Best Picture 2 4 |16 79 2 5 0 0 |94 | 212 0 0
11 Grammy Awards 2009 69 31 | 75 | 110 | 69 14 0 0 |75 | 377 0 0

Figure 7.5: Results for the SUSIE algorithm

better chances to lead to a solution. The SUSIE algorithm was developed as
an extension of the F-RDF algorithm. All experiments use the YAGO [28§]
knowledge base.

Testbed and Methodology

FEvaluated Methods. We have implemented every algorithm as part of the
query answering component of our prototype system. The fully functional
system is implemented in Java. For all the algorithms, we set the budget
to 15 for the number of calls to one service and to 100 for the total number
of calls. As performance metrics, we measured the total number of answers
output by each algorithm.

Data sources. We ran experiments for two distinct settings. In the first
setting, we use an empty knowledge base. We use YAGO only to determine
the type of a candidate value. In the second scenario we use the full YAGO
knowledge base. We shall see that for a variety of queries the classical an-
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swering query approaches produce no answers due to the asymmetry of Web
services. We integrated data from different domains via Web services: is-
bndb.org, librarything.com, and abebooks.com for books, internetvideoarchive.com
for movies, musicbrainz.org, last.fm, discogs.com, and lyricWiki.org for music. All
these Web sites allow users to query their data through Web services. For
each Web service, we manually defined mapping functions from the XML
output into the schema of YAGO.

Queries. We selected a variety of query templates, which can be orga-
nized in the following classes (Figure 7.4): star queries with constants at the
endpoints (Q1-Q2, Q7), star queries with variables and constants at the end-
points (Q3-Q4, Qs-Q10), and chain queries with constants at the endpoints
(Qs-Qs, Qu)-

For every query template, we evaluate a set of similar queries by vary-

ing the constants. As we shall see in the next paragraph, such queries are
impractical using only Web services and no answers can be obtained if the
local base is empty. Most of the queries have different alternative ways of
composing function instantiations. Usually, this leads to a high number of
Web service calls.
Results. Figure 7.5 shows the results for the queries in Figure 7.4. The
table reports the number of answers as well as the number of calls that
were necessary in the evaluation for two moments in time: (i) when the first
results are output (i) when the last result is output. We omit the number of
calls for the cases where no answer is ever output. Since all the algorithms
use the same number of calls, the total number of answers returned by each
serves as comparison metric. For the case where the local base is empty, only
the answers for the SUSIE algorithm are reported as all the other algorithms
using only the Web service interfaces return no answers. For the second case,
the YAGO database offers already some query answers. However, obtaining
new answers is in the majority of cases unlikely to happen.

We observe that, for all queries, SUSIE returns more answers than her
competitors or an equal number. For instance, for the query ()4, SUSIE
(F-IE) outputs almost twice as many answers than F-RDF outputs with a
number of calls that is 30% less than the number of calls used by F-RDF.
Figure 7.6 shows the distribution of the results at different moments of the
evaluation.
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8 Conclusion

This paper has introduced the problem of asymmetric Web services. We have
shown that a considerable number of real-world Web services allow asking
for only one variable of a binary relationship, but not for the other. We
have shown how one can determine whether a query will suffer from the
problem of Web service asymmetry. We have proposed to use information
extraction to guess bindings for the variable and then validate this binding
by the Web service. Through this approach, a whole new class of queries has
become tractable. We have implemented our system, SUSIE, and showed
the validity of our approach on real data sets.

Our current implementation uses naive information extraction algorithms
that serve mainly as a proof of concept. Future work will explore new algo-
rithms that could step in. We also aim to automize the discovery of new
Web services and their integration into the system. Furthermore, the idea of
using information extraction to circumvent API restrictions is not limited to
Web services: The exploration of other services with restricted access pat-
terns, such as for example Deep Web forms, could also benefit from guessing
input values with information extraction.
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