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Abstract

We consider the problem of computing a maximum cardinality popular match-
ing in a bipartite graph G = (A ∪B,E) where each vertex u ∈ A ∪B ranks its
neighbors in a strict order of preference. This is the same as an instance of the
stable marriage problem with incomplete lists. A matching M∗ is said to be pop-
ular if there is no matching M such that more vertices are better off in M than in
M∗.

Popular matchings have been extensively studied in the case of one-sided pref-
erence lists, i.e., only vertices of A have preferences over their neighbors while
vertices in B have no preferences; polynomial time algorithms have been shown
here to determine if a given instance admits a popular matching or not and if so,
to compute one with maximum cardinality. It has very recently been shown that
for two-sided preference lists, the problem of determining if a given instance ad-
mits a popular matching or not is NP-complete. However this hardness result
assumes that preference lists have ties. When preference lists are strict, it is easy
to show that popular matchings always exist since stable matchings always exist
and they are popular. But the complexity of computing a maximum cardinality
popular matching was unknown. In this paper we show an O(mn) algorithm for
this problem, where n = |A |+ |B| and m = |E|.
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1 Introduction
Our input is a bipartite graph G = (A∪B,E) where each vertex ranks its neighbors in a strict
order of preference. Each vertex u ∈ A ∪B seeks to be assigned to one of its neighbors and
u’s preference is given by the ordering in its preference list. Preferences can be incomplete,
which means that each vertex may rank only a subset of vertices on the other side. (We
assume without loss of generaility that a belongs to b’s list if and only if b belongs to a’ list.)
Note that this is the same as an instance of the stable marriage problem with incomplete lists
and it is customary to call the two sides of the graph men and women respectively. We use V
to denote the entire vertex set A ∪B and n for the number of vertices and m for the number
of edges in G. We assume that no vertex is isolated, so m ≥ n/2.

A matching M is a set of edges no two of which share an endpoint. An edge (u,v) is
said to be a blocking edge for a matching M if by being matched to each other, both u and v
are better off than their respective assignments in M: that is, u is either unmatched in M or
prefers v to M(u) and similarly, v is either unmatched in M or prefers u to M(v). A matching
that admits no blocking edges is called a stable matching. It is known that every instance
G admits a stable matching [9] and such a matching can be computed in linear time by a
straightforward generalization [5] of the Gale-Shapley algorithm [3] for complete lists.

1.1 Popular Matchings
For any two matchings M and M′, we say that vertex u prefers M to M′ if u is better off in
M than in M′ (i.e., u is either matched in M and unmatched in M′ or prefers M(u) to M′(u)).
We say that M is more popular than M′, denoted by M � M′, if the number of vertices that
prefer M to M′ is more than the number of vertices that prefer M′ to M.

Definition 1. A matching M is popular if there is no matching that is more popular than M.

Popularity is an attractive notion of optimality as a majority vote cannot force a migration
from a popular matching. Gardenfors introduced the notion of popularity in the context of
stable matchings.

Popular matchings have been studied extensively during the last few years in the case
where only vertices in A have preferences while vertices in B have no preferences. Thus
each edge e = (a,b) in G has a rank associated with it (the rank that a assigns to b). There are
simple examples of instances in the one-sided preference lists domain that admit no popular
matching; Abraham et al. [1] gave efficient algorithms to determine if a given instance
admits a popular matching or not and if so, to compute one with maximum cardinality. In
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fact, for one-sided preference lists (both for strict lists and for lists with ties), they gave a
structural characterisation of instances that admit popular matchings.

In the case of two-sided preference lists with ties, it has recently been shown by Biró,
Irving, and Manlove [2] that the problem of deciding if an instance admits a popular match-
ing or not is NP-complete. It is important to have ties in preference lists for the NP-hardness
result because in the absence of ties (i.e., when all the preference lists are strict), a stable
matching is popular.

While comparing a stable matching S to any matching M, note that for any edge e ∈ M,
both the endpoints of e cannot prefer M to S - if they do, then it contradicts the stability of
S. Hence if one endpoint of e prefers M to S, then the other has to prefer S to M. Thus the
number of votes in favor of M is at most the number of votes in favor of S, hence M cannot
be more popular than S. Thus popular matchings always exist in the world of two-sided strict
preference lists. But not all popular matchings are stable as shown by this simple example:
let A = {a1,a2} and B = {b1,b2} and let the preference lists be as shown below:

a1 : b1, b2, a2 : b1, b1 : a1, a2, and b2 : a1.

Here a1’s top choice is b1 and second choice is b2 while a2 has a single neighbor b1.
The vertex b1’s top choice is a1 and second choice is a2 while b2 has a single neighbor a1.
In this instance, the matching {(a1,b1)} is the only stable matching, while the matching
{(a1,b2),(a2,b1)} is popular but unstable.

Our problem.
Stability is an important and well-accepted notion of optimality while computing a matching
in G = (A ∪B,E) with 2-sided strict preference lists. Since {popular matchings} ⊇ {stable
matchings}, stability is a stronger concept. But there are many problems, where blocking
edges may be permitted as long as there is no majority of vertices who are better-off in an-
other matching, for instance in allocating training positions to trainees or projects to students.
In such problems popularity becomes a natural optimality criterion.

Also, popularity scores over stability with respect to the size of the maximum matching
possible under this optimality criterion. As seen in the above example, the given instance
could have popular matchings whose size is strictly larger than the size of a stable matching.
It is known that all stable matchings in G = (A ∪B,E) have the same size and match exactly
the same set of vertices ([5], Section 4.5.2). Thus in problems that seek to match as many
vertices as possible under this weaker notion of stability that M is acceptable if there is
no matching where more vertices are better off compared to M, what we seek is a maximum
cardinality popular matching. We consider this problem in this paper and show the following
result.

Theorem 1. A maximum cardinality popular matching in a bipartite graph G = (A ∪B,E)
with 2-sided strict preference lists can be computed in O(mn) time, where m is the number
of edges and n is the number of vertices in G.

In order to construct such a matching in G, we show a sufficient condition for a matching
to be a maximum cardinality popular matching. We need the following definition first:
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Definition 2. For any vertex u ∈ A ∪B and neighbors x and y of u, define u’s vote between
x and y as follows:

voteu(x,y) =


1 if u prefers x to y
−1 if u prefers y to x
0 otherwise (i.e., x = y).

Our approach. Suppose we partition the vertex set A ∪B into L and R = V \L and reor-
ganize the graph G by placing all the vertices of L on the left and all the vertices of R on the
right. Note that L and R need not be independent sets. Thus we could have edges between
vertices of L and similarly, edges between vertices of R. Let M be a matching in L×R, i.e.,
every edge of M has one endpoint in L and the other endpoint in R.

Definition 3. Call a matching M ⊆ L×R good with respect to (L,R) if the following two
properties are satisfied:

(1) There is no edge (a,b) ∈ L×R such that votea(b,M(a)) = 1 and voteb(a,M(b)) = 1.

(2) If (a,b) ∈ L×L, then votea(b,M(a)) =−1 and voteb(a,M(b)) =−1.

Note that in case u is unmatched in M, then voteu(v,M(u)) = 1 for any neighbor v of u,
since every vertex prefers being matched to being unmatched.

Property (1) of goodness states that there is no unstable edge in L×R for M. Property (2)
of goodness states that for every e in L×L, each endpoint of e prefers its partner in M to the
other endpoint of e. Our main theorem is the following.

Theorem 2. Let M be a matching that is good with respect to some partition (L,R) of V . If
every vertex of R is matched in M, then M is a maximum cardinality popular matching.

We build such a matching M in our algorithm. The vertices in R can be viewed as the
“sought-after” vertices since they are all matched in M and the vertices in L are the vertices
that seek partners in R. Our algorithm is iterative: each iteration involves 2 invocations of a
Gale-Shapley type of proposal-disposal algorithm between the current L and R. Throughout
the algorithm, we maintain the invariant that our matching is good with respect to the current
partition (L,R). We show that termination (every vertex in the current R getting matched)
has to happen within the first n iterations, thus the running time of our algorithm will be
O(mn).

1.2 Background
Subsequent to the work in [1] on one-sided popular matchings, there have been several vari-
ants of the popular matchings problem considered in the domain of one-sided preference
lists. One line of research has been on generalizations of the popular matchings problem
while the other direction has been to deal with instances that do not admit any popular match-
ings. The generalizations include the capacitated version studied by Manlove and Sng [11],
the weighted version studied by Mestre [14] and random popular matchings considered by
Mahdian [10]. Kavitha and Nasre [8] as well as McDermind and Irving [13] independently
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studied the problem of computing an optimal popular matching for strict instances where the
notion of optimality is specified as a part of the input. For instances that do not admit popular
matchings, McCutchen [12] considered the problem of computing a least unpopular match-
ing and showed this problem to be NP-hard while Kavitha, Mestre, and Nasre [7] showed
the existence of popular mixed matchings and efficient algorithms for computing them.

The problem of computing popular matchings and its variants in the domain of two-
sided preference lists has not received much attention so far. To the best of our knowledge,
the only works dealing with popular matchings in instances with two-sided preference lists
are by Gardenfors [4], who originated the notion of popular matchings, and by Biró et al.
[2] who showed NP-hardness results for the problems of computing an arbitrary popular
matching and a maximum cardinality popular matching for preference lists with ties. It was
shown in [2] that the problem of determining if a given bipartite graph G admits a maximal
matching of size k ∈ Z can be reduced to the problem of deciding if an augmented version
of G with ties in preference lists admits a popular matching. As the former problem is NP-
hard, so is the latter problem. It was not known so far if the maximum cardinality popular
matching problem admits a polynomial time algorithm.

Organization of the paper. Section 2 contains the proof of Theorem 2 and Section 3 has
our algorithm and its proof of correctness. We conclude in Section 4.
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2 Our sufficient condition
Section 2.1 contains the proof of Theorem 2 and Section 2.2 briefly discusses our method to
construct a good matching that satisfies the condition given in Theorem 2.

2.1 Proof of Theorem 2
We need to show that if M is a matching that is good with respect to some partition (L,R) of
V and M matches all the vertices of R, then M is a maximum cardinality popular matching.
Let M′ be any matching in G. Define ∆(M′,M) as follows:

∆(M′,M) = ∑
u∈A∪B

voteu(M′(u),M(u)).

Thus ∆(M′,M) is the difference between the votes that M′ gets and the votes that M gets.
Note that M(u) or M′(u) can be also the state of being unmatched, which is the least preferred
state for any u.

We will show that ∆(M′,M) ≤ 0 for any matching M′ and in particular, if |M′| > |M|,
then ∆(M′,M) < 0. This implies that M is popular and every matching whose size is more
than |M| is unpopular. In other words, there is no popular matching in G whose size is more
than |M|.

Let ρ be any connected component in M⊕M′. Since ∆(M′,M)= ∑ρ ∑u∈ρ voteu(M′(u),M(u)),
we will compute ∑u∈ρ voteu(M′(u),M(u)) for any ρ ∈ M ⊕M′ now. Note that each ρ ∈
M⊕M′ is either a cycle or a path.

Lemma 3. If ρ is a cycle, then ∑u∈ρ voteu(M′(u),M(u))≤ 0.

Proof. Let us pair the vertices of ρ along the edges of M′ ∩ ρ. We partition the edges of
M′∩ρ into three categories: L×R edges, R×R edges, and L×L edges. First, for every edge
e of M′∩ρ that is in L×R, the sum of votes of the endpoints of e for M′ vs M is at most 0
since M is good (Definition 3, property (1)).

Next, since M uses only edges of L×R and because every vertex in ρ is matched in M,
the number of L vertices in ρ equals the number of R vertices in ρ. Hence if M′ ∩ ρ has
k edges of R×R (call these e1, . . . ,ek), then M′ ∩ ρ also has k edges of L× L (call these
e′1, . . . ,e

′
k).

By property (2) of the goodness of M, every endpoint u of an L×L edge (u,v) votes −1
for v = M′(u) vs M(u). Hence the sum of votes of the endpoints of e′1, . . . ,e

′
k (for M′ vs M)
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is −2k. Thus even if every endpoint of the edges e1, . . . ,ek votes +1 for M′ (vs M), the total
sum of votes of the endpoints of e1, . . . ,ek and the endpoints of e′1, . . . ,e

′
k is at most 0. Thus

∑u∈ρ voteu(M′(u),M(u))≤ 0.

Lemma 4. If ρ is a path, then ∑u∈ρ voteu(M′(u),M(u))≤ 0.

Proof. As done in Lemma 3, here also we will sum the votes of the vertices in ρ by grouping
them as the endpoints of L×R edges, the endpoints of L× L edges, and the endpoints of
R×R edges. Depending on whether |ρ∩M′| is larger than/equal to/smaller than |ρ∩M|, we
have the following three claims:

Claim 1. If |ρ∩M′|> |ρ∩M|, then ∑u∈ρ voteu(M′(u),M(u)) < 0.

Every vertex of the path ρ is matched in M′. Thus ρ is an augmenting path with respect to
M. Since M leaves no vertex of R unmatched, both the endpoints of ρ have to be L vertices;
so ρ has t vertices of R and t +2 vertices of L, where t = |ρ∩M|.

Thus if the number of R×R edges in ρ∩M′ is k, then the number of L×L edges in ρ∩M′

is k +1 because every vertex in ρ is matched by M′. Hence ∑u∈ρ voteu(M′(u),M(u)) < 0 by
partitioning this sum into the endpoints of L×R edges (their sum of votes is at most 0), the
endpoints of L×L edges (their sum of votes is −2k− 2), and the endpoints of R×R edges
(their sum of votes is at most 2k).

Claim 2. If |ρ∩M′|= |ρ∩M|, then ∑u∈ρ voteu(M′(u),M(u)) < 0.

Let t = |ρ∩M|. So ρ has length 2t. Thus ρ has 2t + 1 vertices, of which one is left
unmatched in M and the remaining 2t are matched in M. Since it is given that M matches all
the vertices of R, the path ρ has t vertices of R and t +1 vertices of L (the 2t vertices of the
L×R edges of M and the one unmatched vertex of L).

So the number of L-vertices of ρ that are matched in M′ is at least t and the number
of R-vertices of ρ matched in M′ is at most t. Hence if the number of R×R edges in ρ∩
M′ is k, then the number of L× L edges in ρ∩M′ is at least k. It is now immediate that
∑u∈ρ voteu(M′(u),M(u))≤ 0, by partitioning ∑u∈ρ voteu(M′(u),M(u)) into the endpoints of
L×R edges, the endpoints of L×L edges, and the endpoints of R×R edges.

In fact, ∑u∈ρ voteu(M′(u),M(u)) < 0 since there is also a vertex v in ρ that is unmatched
in M′ and v votes −1 for M′ (vs M) since v is matched in M.

Claim 3. If |ρ∩M′|< |ρ∩M|, then ∑u∈ρ voteu(M′(u),M(u))≤ 0.

Every vertex of ρ is matched in M and thus ρ has t vertices of R and t vertices of L, where
t = |ρ∩M|. Thus if the number of R×R edges in ρ∩M′ is k, then the number of L×L edges
in ρ∩M′ is at least k−1.

If the number of L×L edges in ρ∩M′ is k or more, then the same argument as in the
proofs of Claims 1 and 2 holds here too and thus ∑u∈ρ voteu(M′(u),M(u)) ≤ 0. In case
the number of L× L edges in ρ∩M′ is k− 1, then the sum of votes (for M′ vs M) of the
vertices of ρ matched in M′ is at most 2; also, there are 2 vertices of L that are matched in
M and are left unmatched in M′ and they contribute 2 votes of −1 each for M′ vs M. So
∑u∈ρ voteu(M′(u),M(u))≤ 0.

This finishes the proof of Lemma 4.
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Since Lemmas 3 and 4 hold for every ρ in M⊕M′, it follows that ∆(M′,M)≤ 0. Thus M
is popular. We have also shown that if |M′| > |M|, then ∆(M′,M) < 0 (by Claim 1), that is,
M is more popular than M′. In other words, any matching of size more than M is unpopular,
thus M is a maximum cardinality popular matching. This finishes the proof of Theorem 2.

The following is an interesting corollary that follows from the proof of Theorem 2.

Corollary 5. Suppose there exists a matching M that is good with respect to some parti-
tion (L,R) and M matches all the vertices of R. Then every maximum cardinality popular
matching in G matches the same vertices as M.

Proof. Suppose M′⊕M contains a path, call it ρ.

• If |ρ∩M′| ≥ |ρ∩M|, then M′ is unpopular (by Claims 1 and 2).

• If |ρ∩M′|< |ρ∩M|, then |M′|< |M|, so M′ cannot be a maximum cardinality popular
matching.

Hence if M′ is also a maximum cardinality popular matching, then M′⊕M has to be a set of
cycles, that is, M′ matches the same vertices as M.

2.2 Implementing our sufficient condition
The main question to be answered now is: does there always exist a matching that is good
with respect to some (L,R) that matches all the vertices in R? We answer this question
positively in the next section by constructing such a matching. In this section we give some
intuition.

Let S be a stable matching in G = (A ∪B,E). We assume that S does not match all the
vertices of A ∪B . (If it does, then S is the matching that we seek.)

Let A0 ⊂ A and B0 ⊂ B be the set of men and women, respectively, that are unmatched
in S. Let L1 = A0 ∪B0 and let R1 be V \L1 (thus R1 is the set of vertices that are matched
in S). Let us first construct a matching M1 that is good with respect to the partition (L1,R1).
How do we ensure property (1) of the definition of goodness? The answer lies in computing
M1 as a matching where vertices of L1 propose to the vertices of R1 and vertices of R1
dispose. That is, we run Gale-Shapley algorithm on the “bipartite” graph obtained by placing
L1 on the left and R1 on the right and the edge set restricted to E ∩ (L1 × R1). For the
sake of completeness, we present the Gale-Shapley proposal-disposal algorithm between
any L ⊂ A ∪B and R = V \L below in Figure 2.1.

Since every ` ∈ L proposes in decreasing order of preference and every r ∈ R improves
in the choice of its partner whenever M(r) gets reassigned, the following claim is straight-
forward.

Claim 4. If M is the matching returned by the above algorithm, then there is no edge (`,r)
in L×R such that vote`(r,M(`)) = 1 and voter(`,M(r)) = 1.

Hence if M1 is the matching obtained by the proposal-disposal algorithm between L1 and
R1, then M1 is good with respect to the partition (L1,R1). This is because property (1) of
goodness holds by the very nature of the proposal-disposal algorithm and property (2) of the
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– M = /0.
while there is some u ∈ L unmatched in M who has not yet been rejected by all its neigh-
bors in R do

– u proposes to its most preferred neighbor v ∈ R that has not rejected u.
if v prefers u to M(v) then

– v assigns M(v) = u. {so the vertex that was v’s previous partner in M is now
rejected by v}

else
– v rejects u.

end if
end while
– Return M.

Figure 2.1: Computing a matching M ⊆ L×R with L proposing and R = V \L disposing

goodness of any matching M1 ⊆ L1 ×R1 is vacuously true, since L1 is an independent set.
Recall that L1 = A0∪B0 is the set of vertices left unmatched in the stable matching S, hence
there is no edge with both endpoints in L1.

Thus if M1 matches all the vertices of R1, then we have our desired matching. Other-
wise, we enter the second stage of the first iteration. In the second stage, we move all the
unmatched men from R1 to L1 and run the proposal-disposal algorithm between the new L1
and the new R1 to compute M′

1. It can be shown that M′
1 is good with respect to the new

left-right partition.
If M′

1 matches all the vertices on the right, then this is the desired matching. Otherwise
let B1 denote the set of unmatched vertices on the right who are not matched by M′

1. We set
L2 = L1∪B1 and R2 = R1 \B1 and move to the next iteration of the algorithm.

Note that the men who moved from right to left at the end of the first stage are back on
the right now in R2. It is important to move them back to R2 to ensure that the new matching
M2 that will be obtained in the first stage of the next iteration will be good with respect to
(L2,R2). Nevertheless, it was important to first move them to the left to identify B1. The
fact that B1 was unmatched on the right in spite of the presence of these men on the left will
be crucial in maintaining the invariant that the future matchings that we compute during the
course of the algorithm will be good. As soon as we have a matching that matches all the
vertices on the right, the algorithm terminates.
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3 The Algorithm
Our algorithm to find a matching M that fulfils the conditions given in Theorem 2 is given in
Fig. 3.1. Recall that these conditions are:

• M is good with respect to some partition (L,R) and

• M matches all the vertices of R.

Algorithm 1 Input: G = (A ∪B,E) with strict preference lists
1. Let S be the stable matching obtained by the proposal-disposal algorithm

on (A ,B). {That is, men propose and women dispose.}
2. Set L1 = vertices left unmatched in S and R1 = V \L1.
3. i = 1.

4. while true do
5. compute a matching Mi by the proposal-disposal algorithm on (Li,Ri).
6. if Mi matches all of Ri then return Mi.

7. let Ai ⊂ A be the men in Ri who are unmatched in Mi.
8. set L′i = Li∪Ai and R′i = V \L′i.

9. compute a matching M′
i by the proposal-disposal algorithm on (L′i,R

′
i).

10. if M′
i matches all of R′i then return M′

i .

11. let Bi be the vertices of R′i left unmatched by M′
i .

12. set Li+1 = Li∪Bi and Ri+1 = V \Li+1.
13. i = i+1.
14. end while

Figure 3.1: Our algorithm for computing a maximum cardinality popular matching.
We will show in the next section that our algorithm maintains the following invariants:

• Mi is good with respect to (Li,Ri).

• M′
i is good with respect to (L′i,R

′
i).

Our initialization step in Fig. 3.1 sets (A0∪B0,V \ (A0∪B0)) as our left-right partition to
begin with, where A0 is the set of men unmatched in S and B0 is the set of women unmatched
in S. At the start of the i-th iteration, we have a partition (Li,Ri) of V .
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• If the matching Mi that results from the proposal-disposal algorithm on (Li,Ri) matches
all the vertices of Ri, then Mi is the desired matching.

• Else let Ai be the set of men in Ri who are unmatched in Mi. We run the proposal-
disposal algorithm on (Li ∪Ai,Ri \Ai). If the resulting matching M′

i matches all the
vertices on the right, then M′

i is the desired matching.

• Else let Bi be the unmatched vertices on the right (all these vertices will be women).
We set Li+1 = Li∪Bi and Ri+1 = Ri \Bi; the next iteration begins.

Lemma 6. For every i, the set Bi ⊆ B .

Proof. The set Bi is the set of vertices of R′i = Ri\Ai that are unmatched in M′
i . The matching

M′
i is the result of vertices in L′i = Li∪Ai proposing and vertices in R′i disposing. Note that

every vertex of R′i that was matched in Mi with vertices in Li proposing, will remain matched
in M′

i with L′i = Li∪Ai proposing to R′i = Ri \Ai.
Thus every man in Ri who was matched in Mi will remain matched in M′

i . Since we
moved all the unmatched men of Ri (this is the set Ai) away from Ri to form R′i = Ri \Ai,
every vertex of R′i that is unmatched in M′

i has to be a woman. That is, the set Bi of vertices
of Ri that are unmatched in M′, is a subset of B .

Termination of the algorithm. We now show that the while loop in Algorithm 1 runs for
at most |B| iterations. This implies that the running time of our algorithm is O(mn) as it is
easy to see that every iteration takes O(m) time.

Lemma 7. The number of while-loop iterations in Algorithm 1 is at most |B|.

Proof. To show that termination has to happen within the first |B| iterations is simple. This
is because if termination does not happen in the i-th iteration, then Li+1 ⊃ Li because Bi 6= /0

(otherwise termination would have happened in the i-th iteration). Once a woman moves
to the left side of the graph, she never moves back to the right side again. Thus there is
an iteration k, for some 1 ≤ k ≤ |B|, where either Mk matches all the vertices of Rk or M′

k
matches all the women in R′k (in other words, M′

k matches all the vertices of R′k). Thus the
termination condition gets satisfied, thus the algorithm terminates in the k-th iteration, for
some k ≤ |B|.

3.1 Correctness of Algorithm 1
We will now show that for every 1≤ i≤ number of iterations in our algorithm, the matchings
Mi and M′

i are good with respect to their left-right partitions. Note that for all the matchings
Mi and M′

i computed in our algorithm, property (1) of goodness is obvious since these match-
ings are obtained by the proposal-disposal algorithm between the left side and the right side
(see Claim 4). What we need to show now is that property (2) of goodness is also obeyed by
them.

We know that M1 is good with respect to (L1,R1) (see Section 2.2). This is because L1 is
an independent set and so property (2) of goodness is vacuously true. The next lemma shows
that M′

1 obeys property (2) of goodness.
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Lemma 8. If (a,b) ∈ L′1×L′1, then votea(b,M′
1(a)) =−1 and voteb(a,M′

1(b)) =−1.

Proof. Let e = (a,b) be any edge in L′1 × L′1. Since L′1 = A0 ∪B0 ∪A1 where A0 ∪B0 is
an independent set, the vertex a has to be in A1. Observe that every vertex of A1 will be
matched in M′

1 by virtue of the fact that the other vertices in L′1 comprise the set of vertices
unmatched in any stable matching of G. It is easy to see that a ∈ A1 gets a partner in M′

1
that is at least as good as S(a), where S is the stable matching that results from vertices in A
proposing to vertices in B . Recall that B0 is the set of women unmatched in S, so a regards
S(a) better than any neighbor in B0. Thus a prefers M′

1(a) to all his neighbors in B0, hence
votea(b,M′

1(a)) =−1.
Now we show that voteb(a,M′

1(b)) =−1. Recall that each man in A1 was left unmatched
in M1: so b ∈ B0 prefers M1(b) to all her neighbors in A1. Observe that no vertex b of B0
gets dislodged from M1(b) (a man) by the presence of A1 in L′1 since vertices of A1 propose
to women. Thus M′

1(b) = M1(b) and so voteb(a,M′
1(b)) =−1. This finishes the proof of the

lemma.

This proves that M′
1 is good with respect to (L′1,R

′
1). Now consider any i≥ 2. We assume

by induction hypothesis on i that the matching M′
i−1 ⊆ L′i−1×R′i−1 is good with respect to

(L′i−1,R
′
i−1).

Lemma 9 shows that then Mi ⊆ Li×Ri will be good with respect to (Li,Ri).

Lemma 9. If (a,b) ∈ Li×Li, then votea(b,Mi(a)) =−1 and voteb(a,Mi(b)) =−1.

Proof. The set Li = A0∪B0∪B1∪ ·· ·∪Bi−1. Let e = (a,b) ∈ Li×Li. So a has to be in A0
and b ∈ B0∪·· ·∪Bi−1. We need to show that every a ∈ A0 prefers Mi(a) to his neighbors in
B0∪·· ·∪Bi−1 and every b ∈ B0∪·· ·∪Bi−1 prefers Mi(b) to her neighbors in A0.

By induction hypothesis, we know that M′
i−1 is good with respect to (L′i−1,R

′
i−1), where

the set L′i−1 = A0∪B0∪ ·· · ∪Bi−2∪Ai−1. So for every edge (a,b) ∈ L′i−1×L′i−1, we know
that a prefers M′

i−1(a) to any neighbor b in B0∪ ·· ·∪Bi−2. It is easy to see that any a ∈ A0
gets at least as good as partner in Mi as in M′

i−1 because Li = (L′i−1 \Ai−1)∪Bi−1.

• The presence of Bi−1 in Li does not hurt the men in A0 when they propose to women
in Ri because Bi−1 is the set of women who were unmatched on the right when then
men in A0 were proposing in (L′i−1,R

′
i−1).

• Also, the absence of Ai−1 on the left helps the men in A0 as they are the only men
proposing on the left now in (Li,Ri) in comparison with (L′i−1,R

′
i−1).

Thus for any a ∈ A0 and a’s neighbor b ∈ B0∪ ·· · ∪Bi−2, votea(b,Mi(a)) = −1. Also, for
any a ∈ A0 and neighbor b ∈ Bi−1, we know that votea(b,M′

i−1(a)) = −1 since the vertices
of Bi−1 were unmatched in M′

i−1, hence votea(b,Mi(a)) =−1.
Now we show that for every (a,b) ∈ Li×Li, the vertex b also votes −1 for a vs Mi(b).

First, there are no edges between B0 and A0. So b∈ B1∪·· ·∪Bi−1. Each woman in B1∪·· ·∪
Bi−1 is matched in any stable matching of G. Hence when they propose to men in A \A0, each
woman in B1∪·· ·∪Bi−1 gets matched to a man that she considers better than her neighbors
in A0. Thus for any b ∈ B1∪·· ·∪Bi−1 and b’s neighbor a ∈ A0, voteb(a,Mi(b)) =−1. This
finishes the proof of this lemma.
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Suppose Mi does not match all the vertices in Ri, then we run the second stage of the i-th
iteration, where all the men of Ri who were left unmatched by Mi (call this set Ai) are moved
to the left. Thus L′i = Li∪Ai. That is, L′i = A0∪B0∪·· ·∪Bi−1∪Ai.

The proposal-disposal algorithm between L′i and R′i results in the matching M′
i . We will

now show that property (2) of goodness also holds for M′
i . By induction hypothesis on i, we

know that the matching M′
i−1 is good with respect to (L′i−1,R

′
i−1). The following claim will

be helpful to us.

Claim 5. The set Ai ⊆ Ai−1, where Ai−1 is the set of men in Ri−1 left unmatched in Mi−1.

Proof. The set Ai−1 was the set of men in Ri−1 left unmatched in Mi−1. Note that every vertex
that was matched in Ri−1 with Li−1 = A0∪B0∪ ·· · ∪Bi−2 proposing, will remain matched
with Li−1∪Ai−1 proposing to Ri−1 \Ai−1. Thus every man in Ri−1 who was matched Mi−1
will remain matched in M′

i−1 with the women in B0∪·· ·∪Bi−2 proposing on the left. At the
start of the i-th iteration, the set Ai−1 goes back to the right and the set Bi−1 moves to the left.
With the women in B0∪ ·· · ∪Bi−1 proposing, all the men who were matched in the second
stage of the previous iteration, continue to remain matched and some of Ai−1 also possibly
get matched. So the set of men in Ri who are unmatched in Mi is a subset of Ai−1, that is,
Ai ⊆ Ai−1.

We will now show that for any (a,b)∈L′i×L′i, votea(b,M′
i(a))=−1 and voteb(a,M′

i(b))=
−1 in Lemmas 10 and 11, respectively.

Lemma 10. If (a,b) ∈ L′i×L′i, then votea(b,M′
i(a)) =−1.

Proof. We know from Claim 5 that Ai ⊆ Ai−1. Now Bi−1 is the set of women left unmatched
in R′i−1 when A0∪Ai−1 was proposing on the left in the second stage of the (i−1)-th iteration.
Hence each man a∈A0∪Ai−1 prefers M′

i−1(a) to any neighbor b∈Bi−1. Each man in A0∪Ai
gets at least as good a neighbor in M′

i as in M′
i−1 because

• there are fewer men proposing now than in the second stage of the (i−1)-th iteration
as A0∪Ai ⊆ A0∪Ai−1 and

• it is only the unmatched women who moved away from R′i−1. Hence all women who
belong to {M′

i−1(a) : a ∈ A0∪Ai−1} are still present in R′i for A0∪Ai to propose to.

We know from the induction hypothesis that M′
i−1 is good with respect to (L′i−1,R

′
i−1).

Hence each a∈A0∪Ai−1 prefers M′
i−1(a) to any neighbor in B0∪·· ·∪Bi−2. Also, we just ar-

gued that a∈A0∪Ai−1 prefers M′
i−1(a) to any neighbor in Bi−1. Since Ai ⊆Ai−1 and because

M′
i(a) is at least as good as M′

i−1(a) for all a ∈ A0∪Ai, it follows that votea(b,M′
i(a)) =−1

for any edge (a,b) where a ∈ A0∪Ai and b ∈ B0∪·· ·∪Bi−2∪Bi−1.

Lemma 11. If (a,b) ∈ L′i×L′i, then voteb(a,M′
i(b)) =−1.

Proof. Since L′i = A0∪B0∪·· ·∪Bi−1∪Ai, for any (a,b) ∈ L′i×L′i, the vertex a ∈ A0∪Ai.
Case 1: Suppose a ∈ Ai. Since Ai is the set of men in Ri who are unmatched in Mi, it
follows that each of b ∈ B0 ∪ ·· · ∪Bi−1 prefers Mi(b) to any neighbor in Ai. Also for any
b ∈ B0∪·· ·∪Bi−1, we have M′

i(b) = Mi(b), since it is only unmatched men that moved from
Ri to the left side to form L′i. Thus voteb(a,M′

i(b)) =−1.
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Case 2: Suppose a ∈ A0. Consider any edge between a man in A0 and a woman b ∈ B0 ∪
·· ·∪Bi−1. In the first place, b has to be in B1∪·· ·∪Bi−1 since A0∪B0 is an independent set.
Every b ∈ B1∪·· ·∪Bi−1 prefers her partner M′

i(b) to any neighbor in A0, since A0 is the set
of unmatched men in any stable matching of G. Thus voteb(a,M′

i(b)) =−1.
Hence for any b∈B0∪·· ·∪Bi−1, and any neighbor a∈A0∪Ai, we have voteb(a,M′

i(b))=
−1.

Thus property (2) of goodness is true for M′
i . We have thus shown that for every i, where

1 ≤ i ≤ number of iterations in our algorithm, Mi is good with respect to (Li,Ri) and M′
i is

good with respect to (L′i,R
′
i). Thus as soon as we find an Mi or an M′

i that matches all the
vertices on the right, we have a good matching that matches all the vertices on the right.

We know by Lemma 7 that within the first |B| iterations of the while loop, there is an
iteration k such that either Mk or M′

k matches all the vertices on the right. Thus Algorithm 3.1
always returns a maximum cardinality popular matching (by Theorem 2). This completes the
proof of correctness of our algorithm. Since the running time of Algorithm 3.1 is O(mn),
Theorem 1 stated in Section 1 follows.

14



4 Conclusions
We showed that a maximum cardinality popular matching in G = (A ∪B,E) with strict
preference lists can be computed in O(mn) time, where m is the number of edges in G and n
is the number of vertices in G. Our algorithm computes a matching M and a partition (L,R)
of A ∪B such that M is good with respect to (L,R) and M matches all the vertices in R. Our
main theorem (Theorem 2) shows that such a matching is a maximum cardinality popular
matching in G. The existence of such a matching also implies (by Corollary 1) that the every
maximum cardinality popular matching in G matches the same vertices.

An open problem is the complexity of determining if a non-bipartite graph G = (V,E)
with strict preference lists admits a popular matching or not. Note that there is a polynomial
time algorithm [6] to decide if such an input (also known as the roommates problem) admits
a stable matching or not. Any stable matching is popular but it could very well be the case
that G has no stable matching but it has a popular matching (a simple example of such an
instance can be found in [2]). Another open problem is the complexity of finding a maximum
cardinality popular matching in a roommates problem that admits a popular matching. Note
that Theorem 2 holds for non-bipartite graphs too, however non-bipartite graphs need not
always admit such a matching.
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