
A Shaped Temporal Filter
Camera

Martin Fuchs, Tongbo Chen, Oliver

Wang, Ramesh Raskar, Hans-Peter

Seidel, and Hendrik P. A. Lensch

MPI–I–2009–4–003 June 2009



Authors’ Addresses

Martin Fuchs
Max-Planck-Institut für Informatik
Saarbrücken, Germany

Tongbo Chen
USC ICT
Marina del Rey, CA, USA

Oliver Wang
UC Santa Cruz
Santa Cruz, CA, USA

Ramesh Raskar
MIT Media Lab
Cambridge, MA, USA

Hans-Peter Seidel
Max-Planck-Institut für Informatik
Saarbrücken, Germany

Hendrik P. A. Lensch
Ulm University
Ulm, Germany

Acknowledgements

This work has been partially funded by the DFG Emmy Noether fellow-
ship (Le 1341/1-1) and the Max Planck Center for Visual Computing and
Communication (BMBF-FKZ01IMC01).



Abstract

In the time domain, movie cameras typically perform a discrete sampling of

real-world imagery. While the effect of discrete sampling in the spatial domain

is well understood, the effect on temporal sampling during acquisition has been

rarely addressed in the past, partially due to the lack of configurable hardware.

In this article, we investigate the effect of different temporal sampling kernels

as prefilters and show that extended, overlapping kernels can mitigate aliasing

artifacts. Further, NPR effects, such as enhanced motion blur, can be achieved.

In addition, online Fourier transforms in the temporal domain provide a novel

tool for analyzing and visualizing time dependent effects. An integrated system,

consisting of a 500 Hz high speed camera and a desktop computer with an off-the-

shelf GPU, performs the necessary filtering or analysis in real-time and outputs

the filtered result at video rates. We demonstrate the effect of different sampling

kernels in creating enhanced movies and stills of fast motion.

Keywords

computational videography, computational photography, real-time, sam-
pling, temporal filtering
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1 Introduction

Today’s cameras are able to capture scenes at frame rates far exceeding human

visual requirements. These high-speed cameras have so far been used mainly

for machine vision applications, but now gain prevalence as consumer devices.

We feel that there is a new opportunity to use these cameras for computational

videography. Specifically, we show that even if the output is intended for a human

audience, we can exploit the captured high frequency signal to present improved

videos at common frame rates (≈ 60Hz).
Since the dawn of cinematography, video and film cameras have performed

a rather similar temporal filtering: each single frame integrates the exposure of

a different, non-overlapping time period. Depending on the shutter shape and its

movement characteristics (as in rolling shutters), the recorded video will create

a different viewing experience. The most prominent temporal artifacts are the

wagon-wheel effect and non-continuous motion of fast moving objects. These

effects can only be removed if temporal prefiltering is applied prior to sampling

the animation.

In this paper, we will discuss the construction of an optimal sampling filter

given the characteristics of the output device. Furthermore, we will present a

novel computational imaging system which allows for temporal pre-filtering to

dampen temporal aliasing in real-time. The system allows for temporally overlap-

ping filters, which are a prerequisite for successful anti-aliasing. As the shape and

extent of the temporal filter in our system can be chosen arbitrarily, we can per-

form different filtering operations, e.g. optimally pre-filtering for a given output

kernel or artistically emphasizing or modulating motion blur. Furthermore, we

can apply specialized filter banks for analyzing the signal in the Fourier domain,

in order to understand and enhance video content based on its temporal behavior,

e.g. emphasizing or deemphasizing motion.

Our system consists of a high speed camera coupled to a high performance

GPU. We demonstrate online recording and processing of 500 Hz input video

at 1 MPixel mapped to a 60 Hz output. While the necessary compute power is

currently provided by a GPU, FPGAs in consumer cameras are already close to
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Figure 1.1: Processing pipeline of the proposed camera system.

being able to perform the proposed filtering inside a single device.

Our main contributions are:

• a discussion of temporal sampling with pre-filtering and reconstruction for
videography (Section 3),

• a prototype system that performs real-time temporal filtering with overlap-
ping kernels of arbitrary shapes (Section 4), and

• a Fourier camera that can perform online image processing in the temporal
Fourier domain (Section 5) such as frequency analysis and motion enhance-

ment.

We demonstrate the following real-time applications: suppression of temporal

aliasing in video sequences, non-photo realistic motion blur for videos and still

images, and real-time Fourier-space processing.
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2 Related Work

Motion Blur. In the context of rendering, temporal effects have been analyzed to

remove aliasing by distributed sampling [7, 17], to speed up the computation of

animation sequences by frame-less rendering [3], and to faithfully create motion

blur with photon mapping [5], to name a few. They can be synthesized using the

accumulation buffer [11].

For video cameras, a simple way to create motion blur is to blend successive

frames. However, this reconstruction kernel is not optimal. Brostow and Essa [4]

proposed a method to add motion blur to stop motion animations by estimating the

optical flow between the two images and then smearing the pixel colors along the

trajectories. The analysis of optical flow and image alignment has been further

used to correlate the acquired image samples over time, reducing noise in low-

light conditions [1, 21], and to estimate and extend the motion in a scene [13].

Hardware solutions for online spatio-temporal filtering for noise reduction using

a spatio-temporal bilateral filter over a small window have been proposed as well.

All these techniques are based on a regularly sampled video stream without al-

tering the temporal filtering characteristic of the camera. The generated output

significantly depends on the performance of the optical flow estimation. In our

setup, we change the temporal filter kernel in order to produce the desired effect

rather than relying on image-space computer vision algorithms.

Techniques for temporal filtering. The temporal filtering characteristics of a

camera can be changed in a couple of different ways: One of the earliest controlled

temporal filtering techniques made use of stroboscopes to create multi-exposure

images of high-speed motion inside a single frame, e.g. [6]. In Section 4.3, we will

demonstrate that we can obtain a similar effect with he help of an appropriately

chosen filter kernel, without influencing the illumination of the scene in any way.

Recently, at a very small time scale, the photorefractive effect in photonic crys-

tals has been used to implement a temporal high or low-pass filter for rather short

time intervals [10, 26]. Shechtman et al. [20] combined a set of video cameras

to produce space-time super resolution videos which allowed for off-line tempo-

ral filtering. Bennett and McMillan [2] perform filtering on standard frame-rate
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video to create time-lapse output. The propose a virtual shutter for additional

effects. We will present an online system that requires only a single high-speed

camera.

Wilburn et al. [25] employed a multi-camera array, to compose an image

where the length of the temporal filter can be chosen adaptively to the scene con-

tent. In our application we will process the video stream of a single high-speed

camera to perform temporal filtering.

To fight motion blur, Raskar et al. [18] augmented a traditional camera with

a high-speed ferro-electric LCD shutter. The time sequence of the shutter imple-

ments a broad band filter kernel that allows for reconstructing of sharp images of

moving objects. This setup can in principle be used to shape the temporal filter

in a fashion similar to strobe illumination in an on-and-off exposure sequence.

However, it is inherently restricted to non-negative filter functions. In addition, as

the integration will still be done within a single frame only, shaped overlapping

filters are not possible.

Another interesting way to alter the spatio-temporal filtering is to move the

camera, which Levin et al. demonstrated successfully for removing the effects of

motion blur [12]. In their setup, the shape of the temporal filter through motion

cannot be arbitrarily controlled.

Smart Cameras. The design of our system relies on a tight coupling of the

recording high speed camera and a high-performance compute platform. This

design is rather similar to smart cameras for motion capturing, which record at

a very high frame rate and then detect markers inside the camera [23, 15, 16].

However, they do not deliver a video stream as output but rather a compact rep-

resentation of the marker trajectories. Smart cameras operating at standard video

frame rates (e.g.[8, 24]) offer real-time video manipulation but typically do not

provide additional means to control the temporal filtering. Recently, the first con-

sumer cameras appeared (e.g. Casio Exilim Pro EX-F1) that provide high speed

capture capabilities at rather low resolution. Specialized hardware compresses the

video stream in real-time indicating that the necessary compute power for online

temporal filtering within a consumer camera is within reach.

5



3 Temporal Prefiltering

Let us first address the problem of avoiding temporal aliasing by optimal filtering

in the temporal domain.

Due to recording with finite exposure times, every digital camera already per-

forms some pre-filtering as part of the image capture. Conversely, every display

device for time-variant data creates a time-continuous signal by means of a recon-

struction filter. In this article, we take the properties of the monitor, including its

sampling rate, as given, and investigate the choices for the camera’s pre-filter de-

pending on possible reconstruction filters on the monitor side. Before we discuss

the relationship between these filters with the help of sampling theory, we will

now summarize a mathematical model for image formation in a digital camera.

3.1 Image Formation Model

Consider a digital image I . The image value I(x, y) at pixel position (x, y) cor-
responds to some amount of energy accumulated in the sensor over the exposure

time. It can be expressed as an integration over time t of the flux Φ(x, y, t) ar-
riving at that pixel, and a measurement kernel m(t, x, y) encoding the temporally
varying response:

I(x, y) =

∫

∞

−∞

Φ(x, y, t) · m(t, x, y) dt. (3.1)

With mechanical shutters, there is always a non-trivial dependence of m on
(x, y), as the shutter moves with a finite speed across the sensor. Unless used for
artistic effect, these are undesired properties not present in many digital cameras

that use an electrical shutter. We will therefore disregard the dependence ofm on
(x, y), and treat it as one-dimensional.
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3.2 Imaging and Sampling Theory

Equation 3.1 can in fact be interpreted as temporal sampling of a time-variant

signal, so we can apply sampling theory considerations on its shape. As all pixels

(x, y) are treated independently, we can focus on a single pixel, and call its time-
variant signal s(t). A digital movie camera is then a device that generates a set of
samples cτ at discrete points in time, so that

cτ =

∫

∞

−∞

s(t) · m(t − τ) dt (3.2)

Correspondingly, a monitor or digital display device takes the discrete pixel sam-

pling cτ , and generates a continuously defined output approximation

s̃(t) =
∑

τ

cτ · r(t − τ) (3.3)

of the input signal with a reconstruction kernel r(t).
We know from the work of Shannon [19], that, should s(t) be band-limited

with a frequency of 1
2
ν, i.e., the signal does not contain any energy in any higher

frequency band, it can be completely represented by sampling it with a rate of ν,
yielding a discrete representation (ct)t∈Z from which a perfect reconstruction is

possible. Shannon’s observations tell us that a perfect reconstruction

s(t) =
∑

τ

cτ · r(t − τ) =
∑

τ

∫

∞

−∞

s(t) · m(t − τ) dt · r(t − τ) (3.4)

is possible for the choice of

r(t) = m(t) = sinc(t · ν) for sinc(x) =
sin(x)

πx
.

Prefiltering by convolution with sinc(t) of the appropriate sampling frequency
(multiplication with a box function in Fourier space) effectively removes all fre-

quencies beyond the Nyquist limit. Shannon’s theorem guarantees that the filtered

signal can be reconstructed from the sampled sequence, but when capturing mo-

tion, almost arbitrary frequencies can occur in single pixels due to occlusions and

dis-occlusions. If they are strictly filtered out, the output will contain ringing ar-

tifacts. Even worse, the sinc kernel has infinite support: even if the frequencies

were limited, we would have to integrate over the entire video.

Meanwhile, as sampling theory has progressed [22], the relationship between

m(t) and r(t) is much better understood. Overall, we want to approximate s(t)
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as close as possible with some function s̃ (see Equation 3.3). In the least squares
sense, this is a projection into the function space spanned by the (rτ )τ∈Z,

rτ (t) := r(t − τ). (3.5)

Unser [22] describes techniques to compute the kernelm(t) that approximate this
equation. He also discusses the theoretical relationships in far greater depth than

would be appropriate in this article.

We observe that the shape of the display reconstruction kernel r(t) is crucial
for a smooth reconstruction; in cases where it contains frequencies above ν

2
, re-

constructing with r(t) will introduce spurious frequencies into s̃ that in general
no pre-filtering on the input-signal can prevent. These spurious frequencies cause

so-called aliasing artifacts in the reconstruction.

3.3 Kernel Shapes for Optimal Pre-Filtering

Wewill now discuss typical reconstruction functions r(t) of the output device with
increasing smoothness. Specifically, we will look at the B-spline basis functions,

and the accordingly least-squares optimal kernel shape m(t) for pre-filtering. We
perform an experiment and provide a synthetic scene with a spinning five-pointed

star (see Figure 3.1). We discretize each sampling interval T = 1
ν

= 1 into
32 steps for simulation purposes. For each of the choices of r(t), sampling is
performed with the corresponding L2-optimal pre-filtering kernel m(t). The sup-
plemental video shows the results; we invite the reader to determine which one

suits the reconstruction by his/her monitor best.

The selected output filters mimic different behaviors that can be observed in

real displays:

Box function (zero-order-hold) with width T and height 1, i.e. r(t) = rect(t).
The discretized reconstruction filter rτ forms an orthonormal system, and the L2-

optimal pre-filteringm(t) and r(t) actually are the same functions.
Triangle function with width 2 · T and height 1, i.e. r(t) = tri(t) = rect(t) ∗
rect(t). This implies that the output device performs a linear interpolation of the
sample values. The reconstruction suggests a more continuous rotation; however,

the appearance of the frames differs strongly (T = 0 vs. T = 1
2
). Due to the

multitude of peaks in the pre-filterm(t), ringing becomes apparent.
Higher-order B-splines, i.e. r(t) = βi(t), i ≥ 2. For the higher-order B-spline
basis functions, obtained by convolving rect(t) i times with itself, we can observe
that the consistency between in-between and sampled frames increases. At the

same time, the broad support of these kernels largely reduces the contrast between

foreground and background.
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Figure 3.1: Filtering results for a spinning star. From top to down: shape of the

pre-filter (green) and the reconstruction kernel (red), intensity profile for a single

pixel, and reconstructed images for individual time steps (t ∈ 0, 1/4, 1/2, 3/4
clockwise starting top left) within one frame.
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Sinc: r(t) = sinc(t) is the optimal pre-filter as it suppresses frequencies beyond
half the sampling limit most effectively. In the simulation, the sinc is windowed to

an interval [−12.5, 12.5]. The reconstruction shows overly dark areas for T = 1
2

where the reconstructed signal was actually negative due to ringing. As in the

rect(t) case, the rτ form again an orthonormal system, andm(t) and r(t) coincide.
Transient In most physical systems a transition from one state to another follows

an exponential function, e.g. as dampened by a capacitor. The filter

r(t) =







e−λt if 0 ≤ t < 1
1 − e−λ(t+1) if − 1 ≤ t < 0
0 otherwise

(3.6)

describes another possible time dependence of a digital monitor, simulated in our

case with λ = 5. It stands out from the other discussed functions as being asym-
metric; it further has the remarkable property that it yields an in-between image for

T = 3
4
which is sharper than the images at the sampled positions for T ∈ {0, 1}.

Common Observations

In the examples above, the optimal pre-filter for all but the box kernel extend

over a period of two samples or more. Following Shannon’s argument, a camera

implementing any reasonable pre-filter kernel needs to accumulate the data of

several frames worth of exposure into a single output frame. This can in the

general case be realized computationally, but for most kernels it requires the same

sub-exposure to be counted towards several distinct frames with different weights.

The pre-filtering in most digital cameras comes close to a rectangular kernel

m(t) = rect(t/w) with width w. In the case that the kernel spans the entire dura-
tion between two frames (w = 1), and assuming an unrealistic output device with
r(t) = rect(t), this sampling kernel would be L2-optimal. Most often, the expo-

sure time is however much shorter than the frame duration to avoid saturation, and

the system produces severe aliasing effects such as “wagon-wheel moving back-

wards” illusion or jagged, discontinuous motion (see the supplemental video).

Another aliasing effect that is quite apparent in all filters with extended support

is ringing. The ringing is an effect of a windowed filter kernel in the Fourier

domain that manifests itself as an overshooting signal in the spatial domain. In our

example, it is due to the unbounded frequency of the input. These high frequencies

are not necessarily sufficiently suppressed by the L2-optimal pre-filters.
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Figure 3.2: Excerpt from a simulated sequence of a spinning star and the gener-

ating kernels (bottom).

3.4 Evaluation of Further Kernel Types

In the following paragraphs, we will discuss a selection of other ad-hoc kernel

shapes and their effects. Unlike in the previous discussion we will not take the

reconstruction into account and only perform a shaped exposure filtering for visu-

ally pleasing results. Figure 3.2 demonstrates the results for two successive frames

of the rotating star sequence; the entire sequence is visualized in the supplemental

video. The selected filters provide relatively little ringing.

The kernel types point, halfbox and fullbox correspond to point sampling

and rectangular kernels of width w = T

2
and w = T , respectively. They represent

the results achievable with a traditional camera. While the convolution for w =
T produces at the least some overlap between successive frames, the first two
cases skip some in-between sub-frames completely, yielding a stuttering, jagged

appearance in the video.

The triangle and Gaussian kernels are perceptually close in appearance, pro-

viding a smooth, continuous transition between subsequent frames. Each individ-

ual output frame however looks probably too smooth.

In their work on reconstruction filters [14],Mitchell and Netravali proposed a

class of piece-wise cubic filters for reconstructing point sampled data and demon-

strated their effectiveness with a user study. The results of using these filters,

for parameters (B,C) = (1
3
, 1

3
) and (B,C) = (3

2
,−1

4
), respectively, yield also

smooth transitions between dark and bright pixels, but seem less fuzzy than the

Gaussian and the triangle filters.

For a non-photorealistic (NPR) effect, we simply took a non-linear exponen-

tial function m′(t) = e(−1+t)·2 and blurred it slightly. It highlights a sharp ex-

posure, but pulls a trail of continuously falling pixel values behind, akin to the

afterglow of an exponential decay process. In order to emphasize the effect, we

have extended the filter width to 4 frames.

Finally, the strobe kernel simulates an illumination with a stroboscope. The

stills of different positions in time add up to an overlay image. In contrast to a

stroboscope illumination, though, we can achieve the effect without influencing

the scene illumination by choosing an appropriate filter kernel.
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These example kernels demonstrate a range of possible temporal filtering char-

acteristics. The best choice is dependent of the desired effect. In the following

section, we will study their behavior in a real-world scenario.
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4 Real-Time Processing System

We will now introduce the design aspects of our hardware and software prototype.

4.1 Hardware Configuration

In order to approximate arbitrarily shaped filters on a continuous signal we sample

at a much higher frame rate than the final display. Using a Basler A504kc camera,

we capture at 480Hz at a resolution of 1000× 1024 or 500Hz at 240× 256 for the
Fourier analysis in the next section. We stream the captured frames to an NVIDIA

GeForce GTX 280 graphics card. The temporal filtering is implemented in Cuda.

The system is capable of performing the necessary processing for the high

speed video stream in real-time, continuously generating an output video at 60Hz.
As an alternative capturing device, we employ a Casio Exilim Pro EX-F1 camera

to record high speed video at 300Hz.

4.2 Temporal Filtering Pipeline

The incoming frames are transformed into a smaller number of output frames.

Each output frame is obtained by convolving the corresponding input frames with

the filter kernel. As the filter kernels for adjacent frames can overlap, input frames

can contribute to more than one output frames.

In order to minimize the required bandwidth we stream color-filter-array im-

ages towards the GPU and perform all operations on these single-channel images.

Only for display, we run demosaicing by bi-linear interpolation and subtract the

black frame at 60Hz.
Given a specific frame rate reduction, the maximum filter length is only bounded

by the processing speed and local bandwidth on the GPU.

13
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Figure 4.1: Various filters applied to the video of a spinning fan at two different

velocities. Aliasing effects are visible in the accompanying video for all filters

except for the MN filter.

4.3 Results for Rigid Body Motion

Figure 4.1 shows the effect of different filtering kernels on the repeating motion

of a rotating fan. Using a single point sample results in a jaggy motion with a

strong wagon-wheel effect when the fan spins up or down. This aliasing effect is

still present for the box filter but removed in the Mitchell-Netravali filter.

4.4 Results for Stochastic Processes

In Figure 4.2 we visualize the effect of temporal filtering on stochastic motion with

repeating patterns. Point sampling freezes the motion in time and renders rather

sharp images. Note how the water stream is composed of individual droplets.

At the same time the still frame hardly conveys the associated motion any more.

In the output video, point sampling leads to the appearance of a rather random

sampling. Using a box instead, all droplets are smeared into streaks, but the se-

quence still contains too high frequencies to render the sequence attractively. The

Mitchell-Netravali (MN) filter on the other hand is too smooth. The vividness of

the water and the flames is significantly dampened.

In our NPR filter we combined the spatial detail – however slightly filtered –

with the motion direction information close to the MN filter. We argue that in the

stills, this NPR filter summarizes the characteristics of the two stochastic effects

better than any other filter. In addition, the video is crisp but far less random

compared to the point sampling.
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Figure 4.2: Filtering results for stochastic processes. Depending on the applied

filter individual particles or the motion direction is visible. The non-linearly in-

creasing filter combines the details of the point filter while indicating the motion

direction.

In the fire sequence, the strobe filter nicely shows the propagation of the reac-

tion surfaces over time. While for reflecting objects this can be obtained using a

strobe illumination, we can visualize this effect in real-time even for self-emitting

media.
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5 Fourier Camera

The ability to perform the convolution of high speed video material in real-time

makes it possible to visualize periodic or non-periodic movement in a novel way:

by performing a discrete per-pixel temporal Fourier transform on the input. Per-

pixel oscillations can be observed in different frequency-bands, with the zero-

band displaying the temporal average, and higher bands showing the oscillations

at different frequencies.

Implementation The frequency analysis is performed by computing a sliding dis-

crete Fourier transform over 32 frames captured at 500Hz. We compute 9 bands
with a resolution of 240 × 256 each at 50Hz. A different Fourier transform is
calculated for each frame.

5.1 Fourier Domain Applications

Figure 5.1 shows a screen capture of the power spectrum of a real-time decompo-

sition of a spinning fan sequence into separate frequency bands. The fan rotates

at three different velocities, thus generating clearly distinct distributions across

the bands. By analyzing this data, we can perform frequency-based segmentation

quite easily (Figure 5.2). Note however, that the result of the Fourier transform

will be influenced by both the actual motion as well as the texture of the moving

object.

As the computational performance of the proposed system is high, we can

also compute the inverse Fourier transform, which makes editing in Fourier space

possible. One possible application is the selective emphasis of some frequencies,

as illustrated in Figure 5.3. In comparison to a standard Gaussian filter kernel,

simple edits reveal movement structures: if the zero-order (DC) band is removed

from the reconstruction, only moving scene parts can be seen, a selective frequen-

cies boost triggers a motion trail effect; the spatial extent and visual contrast is

influenced by the selected frequencies.

Figure 5.4 shows the frequency boosting effect on thin plant leaves moving

16



stationary spinning up slow speed high speed

Figure 5.1: Screen shots of the online temporal Fourier transform. Each window

shows the first nine bands of the power spectrum, with increasing frequency from

top left to bottom right. As the fan accelerates, the energy moves to higher bands.

Figure 5.2: Color-coded maximum frequency of the fan of Figure 5.1 spinning at

four different velocities.
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Figure 5.3: Modified appearance of a video sequence in Fourier space: standard

Gaussian filter (top left), absolute values after removing the DC band (top right),

boosting low frequencies (bottom left), and boosting high frequencies (bottom

right).
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Figure 5.4: In contrast to a plain Gaussian filter kernel (left), boosting frequency

components emphasizes the motion.

in wind. Here, the perceived motion is enhanced by the frequency edit – without

analyzing or even tracking the motion behavior of individual scene components.

The effect is similar to previous work [9] in introducing subtle ringing that creates

a perceived motion effect.

Such simple, multiplicative edits correspond to appropriately chosen convo-

lutions in the primal domain, where there is also more flexibility on the choice

of the reconstructing kernel, as put forth in Section 3. However, these operations

have more intuitive control in the Fourier domain; they may be understood as a

video signal equivalent of an equalizer (EQ) circuit, which is a staple component

of acoustic signal processing.
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6 Limitations

Performing temporal pre-filtering by starting from a super-sampled sequence comes

at a cost. As each sub-frame is exposed for a very short period (< 2ms), the num-
ber of recorded photons is limited. The signal to noise ratio is weaker compared

to a single exposure for the entire frame. On the other hand, techniques such

as [1, 21] as well as our own footage successfully show that the after integration

of the recorded frame this effect is significantly reduced.

A limiting factor of our system is the available bandwidth both when transfer-

ring the camera data to the GPU which we only managed at 1000× 1024@500Hz
compared to the maximum resolution of the camera (1280 × 1024) and on the
GPU when integrating into multiple output frames.

20



7 Conclusion

In this paper we have presented a computational videography system that allows

for freely controlling the shape of the temporal filter that is applied when recording

an animation. The system exploits the capabilities of a high speed camera aug-

mented with sufficient compute power, a configuration that will become available

in consumer cameras in the near future.

We argue that in order to prevent severe temporal aliasing it is paramount to

perform an integration over the duration of several output frames, which requires

to accumulate each incoming frame to more than one output frame, weighted by

its relative position in the filter kernel.

In the accompanying video we demonstrated the effectiveness of the proposed

temporal filters on producing artifact reduced videos as well as more expressive

stills for stochastic motion events such as water falls or flames. A user study

would be necessary to objectively determine an optimal filter kernel.

Some of the filters could be approximated using a video camera operating at

standard frame rates and a flash, the intensity of the latter being modulated over

the duration of a frame. Our setup does not necessitate casting any additional

light into the scene, and supports overlapping integration periods natively. In

addition, it is flexible enough to perform even more complicated processing on

the input frames in real-time, such as the simulated motion trails from [2], shown

in Figure 7.1.

As our system allows to freely change and control the shape of the temporal

Figure 7.1: A single frame of a video q enhanced in real-time with motion trails.
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filter during online recording, it can not only be optimized for the target display

characteristics, but can also contribute an additional means of artistic expression.

Thus, it introduces a temporal equivalent of the bokeh – the appearance change in

photography caused by the choice of the aperture shape – to videography.
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