Labelled Splitting

Arnaud Fietzke and Christoph
Weidenbach

MPI-1-2008-RG1-001 September
2008

Authors’ Addresses

Arnaud Fietzke
Max-Planck-Institut fir Informatik
Stuhlsatzenhausweg 85

66123 Saarbriicken

Germany

Christoph Weidenbach
Max-Planck-Institut fir Informatik
Stuhlsatzenhausweg 85

66123 Saarbriicken

Germany

Abstract

We define a superposition calculus with explicit splitting and an explicit, new
backtracking rule on the basis of labelled clauses. For the first time we show
a superposition calculus with explicit backtracking rule sound and complete.
The new backtracking rule advances backtracking with branch condensing
known from SPASS. An experimental evaluation of an implementation of the
new rule shows that it improves considerably the previous SPASS splitting
implementation. Finally, we discuss the relationship between labelled first-
order splitting and DPLL style splitting with intelligent backtracking and
clause learning.

Keywords

Superposition, Splitting, Labels

Contents

1 Introduction

2 Labelled Splitting
2.1 Preliminaries

2.2 Labelled Calculus
2.2.1 Backtracking 0oL
2.3 Correctness
2.3.1 Satisfiability of Labelled Clause Sets
2.3.2 Some Derivation Invariants
2.3.3 Label-validity
2.3.4 Path-validity
2.3.5 Soundness
2.3.6 Completeness

3 Experiments and Related Work

3.1 Experiments .

3.2 Related Work

4 Conclusion

1 Introduction

Splitting is an inference rule for case analysis. It is well-known from the
Davis-Putnam-Logemann-Loveland (DPLL) [6] decision procedure for propo-
sitional logic, where a propositional clause set IV is split into the clause sets
N U{A} and N U {—=A} for some propositional variable A occurring in N.
Obviously, N is satisfiable iff one of the two split clause sets is satisfiable.
Furthermore, both split clause sets are simpler than N in the sense that any
clause from N containing A can be removed, and in all other clauses from N
any occurrence of =A can be removed for the split clause set N U {A} (ac-
cordingly for N U {—=A}). The DPLL decision procedure does not consider
the two split clause sets in parallel by duplicating N, but traverses the even-
tual tree generated by splitting and backtracking in a depth-first way. By
appropriate implementation mechanisms, backtracking then becomes quite
cheap. As any split set is a subset of subclauses after reduction with the
split variable, updates can be made my marking and there is no need to
generate new clause objects'. Nieuwenhuis et al. [15] presented the DPLL
procedure performing depth-first search by an abstract calculus. One contri-
bution in this paper is to perform the same exercise for the first-order case
and splitting.

In first-order logic the DPLL splitting style does typically not make sense,
because for a given first-order atom A there exist infinitely many ground in-
stances Ao of A and it is not known which instances eventually contribute
to a proof or model. Furthermore, in case of models having infinite domains,
such a style of splitting won’t terminate. Therefore, for many superposition
based decidability results of first-order logic fragments, e.g., [3], a different
style of splitting is used. Given a clause C' € N that can be decomposed into
two non-trivial variable disjoint subclauses C7, Cs, we split into the clause
sets N U {Cy} and N U {Cy}. Very often the rule is further restricted to
require that both C; and C5 contain at least one positive literal, i.e., we split

!Learning clauses is a separate issue.

into clause sets that are closer to Horn. The rationale behind this restric-
tion is that for Horn clause sets decidability results are typically “easier” to
establish and more efficient algorithms exist. For example, satisfiability of
propositional Horn clause sets can be decided in linear time, whereas satisfi-
ability of arbitrary propositional clause sets is an NP-complete problem.

A further major difference between first-order splitting and propositional
splitting is that in the first-order case effective theorem proving typically
relies on the generation of new clauses, either via inferences or reductions.
Therefore, the bookkeeping for backtracking of a depth-first approach to
splitting gets more involved, because marking algorithms on existing clauses
are no longer sufficient to track changes. We need to extend the labels used in
the abstract DPLL calculus that are sequences of decision and propagation
literals, to a sequence of split elements, called the split stack, holding in
particular the potential second part of the split clause and all clauses that
became redundant in the course of splitting and may have to be reactivated.

Our starting point is the splitting approach as it was implemented in
SPASS [20, 19]. On the basis of this calculus we develop the labelled split-
ting calculus that in particular refines the previous one with an improved
backtracking rule (Chapter 2). We show the labelled splitting calculus to be
sound and complete where we introduce a new notion of fairness, taking into
account an infinite path in the split tree. Labelled splitting is implemented
in SpAsS (http://spass-prover.org/) and improves significantly on the
previous implementation (Chapter 3). We compare the calculus to other
approaches to splitting, in particular, to the DPLL approach with intelli-
gent backtracking and clause learning (Chapter 3). The report ends with a
summary of the achieved results and directions for future work (Chapter 4).

2 Labelled Splitting

2.1 Preliminaries

We employ the usual notions and notations of first-order logic and superpo-
sition in a way consistent with [19]. When traversing the tree generated by
successive applications of the splitting rule (the split tree), the conclusions
of splits that were used in deriving a clause determine the clause’s scope in
the tree, i.e., those parts of the tree in which the clause may participate in
proof search. In order to capture this information, we identify each case of a
splitting application on a given path through the tree with a unique integer,
its split level, and label each clause with a set of integers, representing all
splits that contributed to the derivation of the clause.

Formally, a labelled clause L: C' consists of a finite set L C N and a clause
C =T — A where I' and A contain the negatively and positively occurring
atoms, respectively. The empty clause with label L is denoted by L: O. We
call the greatest element in L the split level of the clause. We say that L: C'
depends on [if | € L. We extend the usual notions about clause sets to sets
of labelled clauses in the natural way: for example, we will say that a set N
of labelled clauses entails some formula ¢ (written N |= ¢) if and only if the
corresponding set of unlabelled clauses entails ¢. Similarly we extend clause
orderings [19] to labelled clauses by abstracting from labels.

A labelled clause set is of the form W : N where N is a set of labelled
clauses and W is the split stack. Split stacks are sequences ¥ = (¢, ..., 1)
of length n > 0 (¥ = () if n = 0) and correspond to paths in the split tree.
The v; are tuples ¥; = (I;, By, D;, ;) called splits, where [; € N is the split
level, B; is the set of blocked clauses, D; is the set of deleted clauses and
v, € {@,{L}} with L C N, is the leaf marker which records which splits
were involved in refuting a branch. This information is exploited during
backtracking to get rid of unnecessary splits. Splitting a clause results in
a new split being put onto the stack, which can be thought of as entering
the corresponding left branch of the split tree. Once the branch has been

4

refuted, the split is removed and possibly replaced by a split representing the
right branch of the splitting step. Splits corresponding to left branches will
be assigned odd levels, while splits corresponding to right branches will have
even levels. Therefore we define two predicates, left and right, as follows:
left(l) = true iff Imod2 = 1 and right(l) = true iff Imod2 = 0. We call
v = (I,B,D,p) a left split if left(l), and a right split otherwise. In a left
split, the set B will contain clauses to be reinserted when entering the right
branch. In the present framework, B will always consist of just the second
split clause. However using a set allows for additional clauses to be added
to the right branch, for example the negation of the first split clause in case
it is ground. Furthermore, the reason why split levels are made explicit
(instead of taking the split level of ¥, to be k, for example) is that because
of branch condensation, split removal during backtracking is not limited to
toplevel splits and hence "holes” may appear in the sequence of split levels.
This will become clear when we discuss backtracking. For better readability,
we will use the notation ¢[z := v] where z is one of I, B, D,y to denote
a split identical to ¢ up to component z, which has value v. We write
Wlry = v1, 29 1= vo] instead of Y[z := vq][xs 1= vyl
For the definition of the labelled calculus we distinguish inference rules

VN L11F1—>A1 LnFn—>An
v N’ K 11— A

7z

and reduction rules

R v:N L:I''—=4Ay ... L;:T,—A,
v N Ki: 1l — A4
Kka—>Ak

The clauses L;: I'; — A; are called the premises and the clauses K;: Il;) —
Ay the conclusions of the respective rule. A rule is applicable to a labelled
clause set U: N if the premises of the rule are contained in N. In the case of
an inference, the resulting labelled clause set is ¥': (N’ U {K: Il — A}). In
the case of a reduction, the resulting labelled clause set is W': (N'\ {L;: T'; —
A |1 <i<n}U{K;Il; = A;|1<j<k}). Furthermore, we say that a
ground clause C'is redundant in N if it follows from smaller clauses in N, and
a ground inference is redundant in NV, if its conclusion follows logically from
clauses in N that are smaller than its maximal premise. A general clause C'
is redundant in N if all its ground instances C'o are redundant with respect
to all ground instances of clauses in N. A general inference is redundant if
all its ground instances are redundant with respect to all ground instances
of clauses in V.

2.2 Labelled Calculus

We present a basic set of inference and reduction rules which together yield
a sound and refutationally complete calculus for first-order logic without
equality. The emphasis of this paper lies on the modelling of the splitting
process, hence more advanced rules like those discussed in [19] have been
omitted, since their presentation here would not add to the understanding of
splitting-specific issues. Such rules can be integrated to the present setting
in a straightforward way and are contained in our implementation. For the
same reason we omit the usual ordering restrictions and selection strategies.

Definition 1 (Splitting). The inference

v:N L F17F2—>A1,A2

A
N L: T, — A

where U = (¢, ..., 1) (ly=0ifn=0), lpo1 =2[2]+1, L' = LU {l,s1},
L” =LU {ln+1 +].}, \I// == <¢n+17¢n7 N ,¢1> with 1/}71—&—1 = (ln+1, {L”I Fg —
Ao}, @,), vars(Ty — Ar)Nvars(Ty — Ag) = &, and Ay # & and Ay # &
is called splitting.

Splitting creates a new split representing the left branch I'y — A; on
the stack. The remainder is kept in the new split’s blocked clause set to be
restored upon backtracking. The split level [, is the smallest odd number
larger than [, (hence left(l,+1) holds) and the blocked clause has [,,+1 + 1
added to its label (right(l,+1 + 1) holds). Furthermore, note that splitting
is an inference and the parent clause I'1, A; — I's, Ay is not removed from
the clause set. A concrete proof strategy may require to apply subsumption
deletion to the parent clause immediately after each splitting step (and after
each backtracking step, when the corresponding right branch was entered),
thus turning splitting into a reduction. In the current SPASS implementation,
splitting is a reduction rule in this sense.

In case the first split part L': I'y — A; is ground, the clauses resulting
from its negation can be added to the set of blocked clauses, i.e., the right
branch. With this modification, the above splitting rule is as powerful as the
DPLL splitting rule concerning proof complexity.

Definition 2 (Resolution). The inference

v:N Lll F1—>A1,A Lgl F2,B—>A2

A
v:N L1UL23 (Fl,FQHAl,Ag)U

where o is the most general unifier of A and B is called resolution.

Definition 3 (Factoring). The inference

v:N L:IT'—-A AB
U:N L (I' - A/A)o

7z

where o is the most general unifier of A and B is called factoring.

Definition 4 (Subsumption Deletion). The reduction

v: N Lll F1—>A1 LQI F2—>A2

R N Li: T — A4

where I'y — Ay is subsumed by I'y — Ay, Ly, = max(Ly), by, = maz(Ls),
U= (n,...,0m,,...01), and

|\ if mip = meo
(Uny ooy [D := Dy U{La: 9 — Ao}, ... 11) otherwise

15 called subsumption deletion.

/

The subsumption deletion rule is presented here as one prominent ex-
ample of a reduction rule, of which many more exist [19]. They all have
in common that a clause is simplified (or removed), either because of some
property inherent to the clause itself (e.g., tautology deletion), or because of
the presence of another clause (as with subsumption deletion). In the first
case, no particular precautions are needed with respect to splitting. In the
second case however, we must account for the possibility that the reducing
(here: subsuming) clause will eventually be removed from the clause set, e.g.,
because a split that the clause depends on is removed during backtracking.
This is why we store the subsumed clause at the subsuming clause’s level
on the split stack. As an example, consider the clauses {1,6} : P(z) and
{1,3}: P(a). Applying subsumption deletion would cause {1,3}: P(a) to be
removed from the clause set and added to the deleted set at the split with
level 6. On the other hand, if both the subsumer and the subsumee have
the same split level, then there always remains a subsuming clause in the
current clause set as long as the corresponding split is not deleted, hence we
can remove and forget the subsumed clause.

2.2.1 Backtracking

We will now define rules that formalize backtracking. In particular, we focus
our attention on the deletion of splits from the split stack to ensure that
all the bookkeeping is done correctly. We denote by maxr(¥) := maz({1 <
i < n | right({;)} U {0}) the last right split in ¥. For any given split stack

7

U, we define the set levels(V) to be the set of split levels occurring in ¥,
ie., levels(V) :={ly,...,l,} for U = (¢,,...,11). Finally, for any labelled
clause set N and set of split levels X' C N we define N|x := {L: T' — A €
N|LCK} and N|g:={L. - AeN|LNK =g}

When removing a split ¢, from the stack, we have to take care to undo
all reductions that involved a clause depending on (the level of) . In
particular, if a clause C; depending on v, was used to reduce some other
clause Cs, then C5 must be reinserted into the current clause set. The reason
is that 'y will be removed from the current clause set, and Cs may then no
longer be redundant. If C5 was reduced by C7, then Cy will be in the set
of deleted clauses at the level of C;. Note that although we know that C}
depends on v, C; may also depend on other splits and thus have a split
level higher than [;. Our goal is to reinsert the deleted clauses at C}’s split
level. But C itself, after having reduced C'5, may have been reduced by some
clause (3, hence C] will not necessarily be in the current clause set, but in
the deleted set at the level of C3. This means that we need to reinsert all
deleted clauses from split levels of clauses depending on 1. So let ¥: N be
an arbitrary labelled clause set with ¥ of length n, and 1 < k£ < n. Now
define

D(k):=|JD: and R(k):={j|L:C e NUD(k), l; =max(L), I € L}.
ik

The set R(k) describes the splits corresponding to all levels of clauses that

depend on vy, both in N and any deleted set D;. It follows that the set

U ieR(k) D; contains all clauses that may have been reduced by a clause in

N depending on 1. The reason for excluding Dy from D(k) is that Dy will

always be reinserted when deleting v, as the following definition shows:

Definition 5 (Delete Split). We define delete(V : N, k) := W' : N' where
U= < ;17 s 7¢]/g+17¢]/g—17 s a¢i>7 and N' = (N U Dk U UjER(k) Dj)|levels(\ll’)

with
v {W = 2] if j € R(k)

i Y [D={L:T —AeD;|l, €L} otherwise
which remowes split 1y, all clauses depending on 1y, and reinserts all clauses
reduced by a clause depending on split V.

Note that reinserting all clauses in D; with [; € R(k) is an over-approximation,
since not every clause in D; was necessarily reduced by a clause depending
on 9. In fact, it may well be that no clause in D; was reduced by a clause
depending on v. If we wanted to reinsert only clauses reduced by clauses

8

depending on v, we would have to record which clause was used in each re-
duction step, not only the reducing clause’s split level. It is not clear whether
that additional effort would pay off in practice.

We now define a reduction® relation ¥: N — ¥’ : N’ on labelled clause
sets to capture the structural transformations of the stack taking place during
backtracking. The reduction relation is defined by the following four rules,
where we assume that U: N is a labelled clause set and V¥ is of length n.

Definition 6 (Backjump). Ifn >0, L: O € N and max(L) < l,,, then
U: N — delete(V:N,n).

The Backjump rule removes the toplevel split if it did not contribute to
the empty clause L: O. Applying Backjump exhaustively yields a split stack
that is either empty (if L = @) or has a toplevel split with a split level [€ L.

Definition 7 (Branch-condense). Ifn >0, L: O € N, max(L) = [, left(l,)
and kpqr = max {k | maxr(V) < k <n and I, & L} ezists, then
U:N — delete(V: N, ko)

The rule Branch-condense removes an inner (i.e., non-toplevel) split if it
did not contribute to the empty clause. However, only splits up to the last
right split are considered. Dropping this restriction results in an unsound
procedure, since the splits used to close a left branch (represented by the leaf
marker) must be taken into consideration when analyzing the dependencies of
the corresponding right branch. This analysis is performed by the following
rule.

Definition 8 (Right-collapse). If n > 0, Ly: O € N, max(Ly) = [, and
right(l,,), and v, = {L1}, then

U:N — V(N U{L: O}),
where W': N' = delete(V: N,n) and L = Ly U Ly \ {l,, — 1,1,}.

The Right-collapse rule analyzes the dependencies involved in refuting left
and right branches and computes a newly labelled empty clause by removing
complementary split levels. The rule improves upon previous backracking
mechanisms (see [21]) by allowing consecutive sequences of Backjump steps
(interleaved by applications of Right-collapse) to take place within a single
Backtracking step, thus possibly pruning larger parts of the split tree.

Definition 9 (Enter-right). If n > 0, L: O € N, max(L) = [, left(l,) and
I € L for all k with maxr(V) < k < n, then ¥': N" := delete(V:N,n) and

U:N — VN,
where V' = (I, + 1,2, 0,{L}), ¥} _,,...,¥}) and N' = N"U B,.

Not to be confused with reduction rules for clause sets. See [1] for a discussion of
abstract reduction systems.

Finally, Enter-right replaces a toplevel left split by a right split represent-
ing the second case of the corresponding splitting step.

As shown in Lemma 12, any labelled clause W: N arising in a derivation
and containing at most one empty clause has a unique normal form with
respect to —, written W: N| .

Definition 10 (Backtracking). The reduction

v:N L: O

R ww

where N' ={L': C € N | C # 0O} U{L: O} is called backtracking.

Since we have not placed any restrictions on when to apply backtracking,
there may be more than one empty clause in ¥ : N. Choosing one and
removing all others before applying stack reductions ensures that the result
of backtracking is uniquely defined (see Lemma 12). In a practical system,
one would typically choose the most general empty clause for backtracking,
i.e., the one whose label represents a minimal scope in the split tree. The
following example shows the stack reduction rules in action.

Example 11. Consider the clause set

{—P(a), Q(b); P(x)=P(f(x)), B(c); P(f(f(a))) —;
—Q(z),5(y); Q(z), P(x)—;
—R(a), R(b); S(z), P(x)—}
where we omit empty labels. Figure 11 shows the development of the split tree
over three backtracking steps. Bold line segments indicate the current path in
the split tree, and numbers next to branches correspond to split levels. The
split stack representing the first tree is

((7.{{8}: R(0)}, 2,9), (5,{{6}: R(b)},2,2),
(3, {{4}: R(0)}, 2,9), (1,{{2}:Q(b)},2,9))

which is obtained in seven steps from the initial clause set: (1) clause —
P(a),Q(b) is split, (2) resolution is applied to P(a) and P(x) — P(f(x)), R(c),
(3) the resulting clause {1}:— P(f(a)), R(c) is split, (4) clause — R(a), R(b)
is split, (5) resolution is applied to {1,3}: P(f(a)) and P(x) — P(f(z)), R(c),
resulting in {1,3}:— P(f(f(a))), R(c), which is again split (6), finally the
empty clause {1,3,7}: O is derived by resolving {1,3,7} : P(f(f(a))) and
P(f(f(a))) — (7). The third split did not contribute to the contradiction, so
it is removed by Branch-condense in step 1, followed by Enter-right, which

10

produces (8,5, &, {{1,3,7}}) as toplevel split. The clause — Q(x),S(y) is
then split, resolution is applied to {1} : P(a) and Q(z), P(z) — to derive
{1}: Q(x) —, which is resolved with {9}: Q(x) to yield {1,9}: O. Enter-right
is applied (step 3), producing toplevel split (10,2, @, {{1,9}}), and the empty
clause {1,10}: O is derived using clauses {1,10} : S(y) and S(z), P(x) —
and {1} : P(a). In step 4, the clause labels {1,9} and {1,10} are collapsed
into {1}. Finally, two Backjump steps followed by Enter-right yield the last
tree, which corresponds to the split stack ((2,,2,{{1}})). Observe how the
empty clause generated in step 4 allows us to skip branch 4 and jump directly
to branch 2, which would not be possible without the Right-collapse rule.

1

Branch-
condense

{1,3,7}: D

1 2
3 4 3

7 8 Enter- 7
Q(z) 9 /\ 10 S(y) right

{1,950

5 1/\2 6 1/\ 2 7 1\ 2
Backjump 3 4 Backjump {1}: O Enter-
{ 1 }: O I‘lght

Figure 2.1: Split Tree Development over 3 Backtracking Steps

11

2.3 Correctness

In this section, we introduce the concept of satisfiability of labelled clause
sets, we establish some important properties of derivations in the labelled
calculus, and we show that all the transformations of the stack presented in
Section 2.2 maintain labelled clause set satisfiability, which implies soundness
of the labelled calculus. Finally, we give a completeness result.

A derivation in the labelled calculus is a sequence of labelled clause sets

D=Wy:Ng D> Vi:Ny > Wy:Ny > ...

such that ¥y = (), Ny is the initial labelled clause set and for each i > 1,
the labelled clause set W, : N; is the result of applying a rule of the calculus
to W;,_q : N;_1. We call the step ¥;_1: N;_1 > W, : N; the ith step of D.
We write U : N >* U': N’ to indicate that ¥’ : N’ is obtained from ¥ : N
by zero or more applications of calculus rules. We use superscripts to make
explicit that a split belongs to a particular split stack in a derivation: for
example, we write ¢} for the jth split of ¥;, and D’ for the deleted set of 1.
Furthermore, we write D' for (J;_; D}, where n is the length of W;.

Each 1), is the result of a unique splitting step of a clause F{, Fg — A{, Ag
into components I} — A7 and I, — AJ, since the splitting rule is the only
rule extending the stack. For a given stack ¥, we denote those components
by si(j) and s%(j), respectively, and the "active” component by

su(f) == sy (g) if left(l;)
v {S%IJ(J) if right(l;).

In the following, we omit the subscript whenever W is clear from the context.

Lemma 12 (Existence of normal forms). A labelled clause set W: N has a
unique normal form W : N| wunder stack reduction rules, if (1) N contains
at most one empty clause and that empty clause is label-valid, and (2) ¥ is
of finite size.

Proof. For any given L: O € ¥ : N, at most one stack reduction rule is
applicable in W: N, since the preconditions are mutually exclusive. Thus by
condition (1), there is a unique sequence of reductions from W: N. Further-
more, for all rules except ENTER-RIGHT, applying the rule to a label-valid
L: O reduces the stack size by one, whereas ENTER-RIGHT removes the empty
clause. Thus by condition (2), the sequence of reductions terminates. O]

12

2.3.1 Satisfiability of Labelled Clause Sets

In order to prove soundness and completeness results for our labelled cal-
culus, we need to extend the notion of satisfiability from clause sets to
labelled clause sets. Since we are exploring a tree whose branches repre-
sent alternatives of successive case distinctions, we associate a clause set
with each unexplored branch on the stack. Formally, for any derivation
Wo:Ng > Wi: Ny > WUy: Ny > ... and any labelled clause set ¥;: N; ocurring
in it, we define the following set of clause sets:

N, = {(N;UuD")|,, UBy | k€{1,...,n}, Ly = {li, ..., lx_1} and left(I)}.

We use the notation N¥ to denote the set (N; U D%)|; U By, € N;. We call N;
the active clause set of U;: N;, and N the set of inactive clause sets of ¥;: N;.

Definition 13 (Satisfiability of labelled clause sets). We say that W, : N; is
satisfiable, if and only if

e N, is satisfiable, or
e some NF € N is satisfiable.

Our goal is to show that the rules of the labelled calculus preserve satisfi-
ability of labelled clause sets, i.e., for each step ¥;_{: N,y > V¥, : N; in a
derivation, W;_;:N;_; is satisfiable if and only if U;: N; is satisfiable.

2.3.2 Some Derivation Invariants

Lemma 14 (Existence of leaf markers). Let W, : N; be an arbitrary labelled
clause set in a derivation, and let j € {1,...,n} be arbitrary. Then ¢; = @
whenever left(l;), and @; = {L} for some L, whenever right(l;).

Proof. 1t is easy to see that the stack reduction rules maintain this property,
since leaf markers are set to {L} by ENTER-RIGHT and not modified by any
other rules. For the calculus rules, the only relevant case is the splitting rule,
which only produces left splits with ¢ = @. m

Next we show that clause labels are correctly inherited throughout deriva-
tions:

13

Lemma 15 (Label monotonicity). Let D be a derivation, V;: N; an arbitrary
labelled clause set in D, and | € levels(V;), and let k be mazimal such that
k <1 and the splitting rule was applied at step k of D with [as the split level
of the conclusion. Furthermore, let L be the label of the premise at step k.
Then for any L': C € N; U D' with |l € L', we have L C L.

Proof. 1t is easy to see that the property is maintained by all stack reduction
rules, since no new clauses are added, except for rule RIGHT-COLLAPSE, in
which case the statement easily follows from the definition of the new empty
clause’s label. Now consider the calculus rules. The only interesting case is
resolution, but again, it is easy to see that the property is maintained by the
definition of the label of the conclusion. O

2.3.3 Label-validity

A basic property we require of all labelled clause sets is label validity, which
expresses that clause labels only refer to existing splits. The fact that label-
validity is invariant in all derivations justifies our use of the notation /; when
referring to an element of a clause label or leaf marker (in the sense that it
guarantees the existence of split ¢; with split level ;).

Definition 16 (Label-validity). Let W;: N; be a labelled clause set.

1. We say that the active set N; is label-valid, if L C levels(V) for every
LT — AeN;

2. we say that some inactive set NF € N is label-valid, if L C {l,...,lx}
for every L: T — A € NF;

3. finally, we say that a leaf-marker ¢; = {L} is label-valid, of L C
{ll, R 7lj_1, lj —]_}
We call the labelled clause set W; : N; label-valid, if its active set, all its

mactive sets and all its leaf markers are label-valid.

Lemma 17 (Split deletion and label-validity). Let ¥ : N be an arbitrary
labelled clause set, let m € {1,...,n} be arbitrary and assume that for all

J > m, the parent clause of split j does not depend on l,,, and that p; = &.
Then W' : N' := delete(V: N, m) is label-valid if V: N is label-valid.

Proof. 1. Label-validity of N' = (NUDUU, c g D;)lievels(w) is immediate.

14

2. Let k € {1,...,n— 1} \ {m} be arbitrary. Splitting is the only rule
extending the blocked set B;, and by definition of the splitting rule, all
clauses in By, have the label LU {l;}, where L is the label of the parent

clause of split k. Hence by assumption, no clause in B, depends on I,,.
Therefore N = (N" U D) |ieyeiscwry U By, is label-valid.

3. Let k€ {1,...,n— 1} \ {m} again be arbitrary. If k& < m, then ¢} is
label-valid by assumption. If k& > m, then ¢} = @ by assumption, and

hence ¢’ is trivially label-valid.
O

Lemma 18 (Stack reductions maintain label-validity). Let W; : N; be an
arbitrary labelled clause set in a derivation, and assume that W,: N; — W.: N/.
Then W.: N/ is label-valid if V;: N; is label-valid.

Proof. Assume ¥, : N; is label-valid. We distinguish which rule was applied
to obtain W;: N].

Backjump: Follows directly with Lemma 17.

BRANCH-CONDENSE: Follows again with Lemma 17. Note that the as-
sumptions of Lemma 17 are fulfilled: Since [, is the greatest split level
(below the last backtracking level) that the empty clause doesn’t depend on,
it follows by Lemma 15 that the parent clauses of all splits below k., don’t
depend on [, . either. Furthermore, since for all j > k4., it holds that
left(1;), we know by Lemma 14 that p; = @.

RIGHT-COLLAPSE: Like in the BACKJUMP-case, Lemma 17 guarantees
label-validity of all clauses, except the new empty clause L: O. Hence we
need to show that L C levels(V’). But this is obvious, since by assumption,
both L; and Ly are subsets of levels(¥), and by the definition of L, both
l,—1¢Landl, &L

ENTER-RIGHT: We again use Lemma 17, and note that the new leaf
marker is label-valid, since the empty clause L: O was label-valid by assump-
tion. O

We now show that label-validity is an invariant of any derivation.

Proposition 19 (Label-validity in derivations). Any labelled clause set in
any derivation 1s label-valid.

Proof. Let Wy : Ny > ¥y : Ny > ... be an arbitrary derivation. We show
that any W; : N; is label-valid by induction over the derivation. Clearly,
Uy : Ny is label-valid, since ¥y is empty. For the inductive case, we assume
W, 1 :N;_q is label-valid and distinguish which calculus rule was applied to
obtain W;: N;. For backtracking, the result follows with Lemma 18. In the

15

case of splitting, we know by induction hypothesis that L C levels(¥;_4),
hence also L' C levels(¥;) and therefore N; is label-valid since N;_; is label-
valid by induction hypothesis. Label-validity of the N and the leaf markers
is obvious. For resolution, note that the union of two valid labels is again
valid. Finally, the subsumption deletion and factoring cases are trivial. [

2.3.4 Path-validity

We now define a property of labelled clause sets, path-validity, which states
that the clauses in the active and deleted sets follow logically from the initial
clause set and all active split clauses, and that the initial clause set together
with the active split clauses described by a leaf marker is unsatisfiable.

Definition 20 (Path-validity). Let W;: N; be a labelled clause set in a deriva-
tion. We call ¥;: N; path-valid, if

1. NyU U s(j) | C for every L: C € N; U D', and

ljeL

2. NgU U s(j) U U s'(j) | L for every o = {L}.

ljeL\{ly—1} ljeLn{l,—1}

Lemma 21 (Stack reductions maintain path-validity). Let ¥; : N; be an
arbitrary labelled clause set in a derivation, and assume that W,;: N; — W.: N/.
Then W : N/ is path-valid if all ¥;: N; are path-valid, for j € {0,... i}.

Proof. Assume all ¥;: N; are path-valid, for j € {0,...,7}. We distinguish
which rule was applied to obtain W, : N/. The cases BACKJUMP and BRANCH-
CONDENSE follow immediately by assumption, since (N/U U;:ll D) C (N;U
U?:1 D;), and leaf markers are not extended.

Ri1GHT-COLLAPSE: We need to show that path-validity is maintained
by the addition of the new empty clause L: O, that is, we have to show
NoUUper {s()} E L for L =Ly ULz \ {l;, —1,1,}. Assume the kth step of
the derivation was the splitting step that produced split n and let L’ be the
label of the parent clause. By path-validity of Wy _;: Ny_;, we know that

NoU | {s()} E s'(n) v s°(n)

lj er’

By path-validity of ¥;: N;, we know that

NoU |J s uls'mlEL

leLl\{ln}

16

and
Nu | sOuisn} =L
€L\ {ln}
Or, equivalently:
Nou J s} b -st(n)
ljeLl\{ln}
and
Nu U 0 E s ().
li€La\{in}
By label monotonicity, L' C Ly and L' C Lo, therefore

No U [{s()} b (5 () v () A =" (n) A =5 ()

leL

or, equivalently:
Nou |J {s()} L.
l;eL

ENTER-RIGHT: By assumption that Ny U UljeL D; = 1, for the empty
clause L: O. This immediately implies statement 2, since the only new leaf
marker is ¢/, = {L}. Let us show that the blocked clauses B! = {s?(n)} are
also path-valid: Again let L': I'1,I'y — Ay, As be the parent clause of split
n. By assumption, No U U, 1, s(J) s*(n) Vv s*(n). Since [, € L, we know
that No U, ¢ s(j) U {s'(n)} = L and hence Ny U Uper sU) s?(n). O

Proposition 22 (Path-validity in derivations). Any labelled clause set in
any derivation 1s path-valid.

Proof. Let Wg: Ny > ¥y: Ny > ... be an arbitrary derivation. We show that
any ¥, : N; is path-valid by induction over the derivation. Clearly, ¥y: Ny is
path-valid. For the inductive case, we assume all ¥;: N; are path-valid, for
j €10,...,i— 1}, and distinguish which calculus rule was applied to obtain

e For splitting, we are adding the left split clause to the active set, so
s(n) = s'(n) € N; and path-validity is trivially maintained.

e For backtracking, the statement follows by induction hypothesis and
Lemma 21.

e Since resolution is sound, we know that the conclusion follows logically
from the premises. The statement then follows from the fact that the
conclusion’s label is the union of both premises’ labels.

17

e For subsumption deletion, the statement follows from the fact that
N;UD" C N;,_;uD"!
and induction hypothesis.

e The factoring case is trivial, since the conclusion follows logically from
the premise.

]

Corollary 23 (Restriction expansion). Let W, : N; be an arbitrary labelled
clause set in a derivation, and let M C levels(¥;) and k € {1,...,n}. If
(N; UD")|a U{s(k)} is satisfiable, then (N; U D")|auq,y is satisfiable.

Proof. Let L: C' € (N; U D")|mugy \ (N; U D)|ar U {s(k)}. By Proposition
22, L: C follows logically from (N; U D")|yr U {s(k)}. O

The following proposition follows trivially from the definition of subsumption
deletion:

Proposition 24 (Existence of a subsumption deletion step). Let D be a
deriwation and Vi : Ny, an arbitrary labelled clause set in D. For each L: C
mn any Df, there exists k' < k such that subsumption deletion was applied at
step k' of D with L: C the subsumed clause, and a subsuming clause with
split level [;.

Proof. By induction over the derivation, and induction over sequences of
stack reductions for the backtracking case: For W, all D; are empty, and
subsumption deletion is the only rule extending sets of deleted clauses, no
stack reduction rule extends sets of deleted clauses. O]

Proposition 25 (Existence of subsuming clauses). Let D be a derivation,
Uy N an arbitrary labelled clause set in D, and L: C € Dé’? for some j.
Furthermore, let k' be maximal such that subsumption deletion was applied
at step k' of D with L: C as subsumed clause, and a subsuming clause with
split level l;. Then for all U;: N; with i € {k', k' +1,... k}:

1. L:C € D;g, where l; = lf, and

2. there exists a clause L': C" with split level l;, such that L': C" subsumes
L: C and either L' : C' € N; or L' : C' € D for some | € levels(V;).
Furthermore, if L' : C' € D;, then it holds that h > k', where h is
mazximal such that subsumption deletion was applied at step h of D
with L': C" as subsumed clause, and there exists a clause L": C" € N;
that subsumes L: C.

18

Proof. First of all, note that k' exists, by Proposition 24. We first show 1.
By definition of subsumption deletion, L: C' &€ Dj?/' where l;‘?,/ = l;‘? . Assume
for contradiction that there exists some i € {k' + 1,...,k — 1} such that
L:C¢ D;Z for l;l = l?. Since L: C € Df, and subsumption deletion is the
only rule extending the deleted sets, one of the steps &'+ 1,..., k must have
been a subsumption step with L: C' as subsumed clause and a subsuming
clause with split level ;. This is a contradiction to the maximality of k'.
Let us now show 2. We first show the property is maintained by all
stack reduction rules. So let i € {k’,...,k — 1} and assume there exists
a clause L': C" with split level [;, such that L' : C" subsumes L : C' and
either L' : C" € N; or L' : C" € D for some [€ levels(¥;), and assume
U,;:N; — Wi: N/. Note that any stack reduction rule invokes delete(W, : N;, m)
for some m € levels(¥;) (e.g., m = ke for BRANCH-CONDENSE). We know
that [, ¢ L', since otherwise we would have D}, = & (where I}, = [;) by
definition of delete(V; : N;,m), a contradiction to 1. So L': C’ does not
depend on [,,, and hence if L': C’ € N;, then also L': C" € N;. On the other
hand, if L': C" € D;, then either L': C" € D), or L': C" € N} ifl € RU{l,,}.
We now show that the property indeed holds for all ¥; : N; with ¢ €
{K',k'+1,...,k}, by induction on i. We have already shown that it holds
for i = k’. For the inductive step, assume it holds for i—1. The cases splitting,
resolution and factoring are trivial, and the backtracking case follows from the
above discussion. In the case of subsumption deletion, it is easy to see that
the property is maintained if the subsumed clause does not itself subsume
L: C. Solet h = ¢ be maximal such that step h of D is subsumption deletion
with L': C" as subsumed clause, L”: C” as subsuming clause, let [,, be the
split level of L”: C” and assume that L': C’ subsumes L: C. Observe that
If 1,, # max(L’), then L': C" € D" by definition of subsumption deletion,
and so property 2. holds. On the other hand, if I, = max(L’), then L": C" is
removed. But since the subsuming clause also subsumes L: C and is in Ny,
property 2 still holds. O

Corollary 26 (Active clause sets and deleted clauses). Let ¥, : N; be an
arbitrary labelled clause set in a derivation, where V; has length n. Then N;
is satisfiable if and only if N; U D' is satisfiable.

Proof. For the forward direction, we know by Proposition 25 that for every
clause L: C'in any D;, there exists a subsuming clause in N;. Hence N; U D?
is satisfiable if NV; is satisfiable. The backward direction is trivial. O

Lemma 27 (Split deletion and inactive clause sets). Let W: N be an arbitrary
labelled clause set with U of length n, and let m € {1,...,n} be such that
for all 5 > m, the parent clause of split j does not depend on l,,, and let

19

U N' = delete(V: N, m). Then for all k € {1,...,n— 1},

N Nk ifk<m
N~ ifk>m
{tm} =

Proof. Assume k < m, and let L :={l1,...,l;_;} ={l,...,lg-1}. Then

n—1
N*=(N'U| D)L UB;
j=1
n—1
= | (NUD, U | D)leverswy U D) || UBk (1)
l;€ER j=1 L
m—1
= | (NuD,u|JD;ulJ DU U D;)ievels(w) UB, (2)
l;ER j=1 j=m+1 L
=(NulJDylLu B (3)
j=1

= N*.

Equation (1) is obtained by plugging in the definition of N’, and observ-
ing that B, = Byj. For equation (2), we use the fact that U= 1D’ =

U™, i1 'D. i heversqwry WU J— D |ievers(wy because of level shifting. Finally, equa-
tion (3) follows from the fact that L C levels(0’).
Now assume k > m, and let L := {l},...,l},_;}. Note that

{ll,... ml} if k=m
{l17--- m—15, m+17-- lk} ifk>m

or, in other words, L = {ly,...,l;} \ {ln}. Hence

n—1

N* = (N'U U D))l U B;
7=1
= NUD U U D U U D U U |levels 2 UBk+1 (1)
ZER j=m+1 L
:NUUDMHQNMU&H ,,,,, 2)
7j=1
:NkJrllm'

20

We again use L C levels(W’) for equation (2), and the assumption that the
splits below m do not depend on [,,,. [l

2.3.5 Soundness

We can now tackle the preservation of labelled clause set satisfiability, as
discussed in Section 2.3.1. We again begin by showing that satisfiability is
preserved by each of the stack reduction rules.

Lemma 28 (BACKJUMP maintains satisfiability). Let ¥;: N; be an arbitrary
labelled clause set in a derivation, and assume V; : N; — W.: N! with rule
BAckJuMP. Then V;:N; is satisfiable if and only if V,: N/ is satisfiable.

Proof. Clearly, N; is unsatisfiable, since L: O € N;. Furthermore, if N € N;
exists — this is the case if [,, = left — then L: O € N, since [,, ¢ L, and thus
N is unsatisfiable. Hence ¥, : V; is satisfiable if and only if some Nf e N,
is satisfiable, for & < n. On the other hand, L: O € N/ since [,, ¢ L, thus
N/ is also unsatisfiable. Therefore, W/ : N/ is satisfiable if and only if some
N/* € N is satisfiable. The statement then follows directly with Lemma
27. O

Lemma 29 (BRANCH-CONDENSE maintains satisfiability). Let U,;: N; be an
arbitrary labelled clause set in a derivation, and assume V;: N; — W N! with
rule BRANCH-CONDENSE. Then W;: N; is satisfiable if and only if V.: N is
satisfiable.

Proof. Again, N; is unsatisfiable, since L: O € N;. Because I, . & L, we
also know L: O € N/, and thus N/ is unsatisfiable. By Lemma 27, we know
that Nzk = Ni”C for k < k,,... Hence it suffices to show that there exists
a satisfiable NF € N; with k € {kmnae,...,n} if and only if there exists
a satisfiable N/ € N! with &' € {kmae,...,n — 1}. Also note that since
br = left for all k € {kmag, .., n}, we have N = {NFmer NkmaztL 0 N0y

For the forward direction, let us first assume that N is satisfiable. We
show that there exists a satisfiable N/* € N/ with k € {kpaz,...,n — 1}, by
induction on k. For each k, we show that either

1. N'* is satisfiable, or

.....

must be a satisfiable N/* € N/.

We have assumed N/ = (N; U D) _,y U By, to be satisfiable,

|{l1 7777 lk’maw

21

hence also N; U Di|{l1,...,lkmm_1} is satisfiable — this provides the induction
base.
For the inductive step, let k > k,,,.. and assume that

is satisfiable. Assume parent clause of the k+ 1st split of W’ (or the kth split
of U;) was L': s'(k+ 1) v s*(k + 1). Since ;1 € L, we know by Lemma
15 that L/ C L. Since Iy, .. ¢ L, we also have I, . ¢ L'. But then, by
path-validity (Proposition 22), we know that

.....

Hence either

1.
(Nl U DZ)'{ZI ----- lk}\{lkmaz} U {S}Ijl (k + 1)}
is satisfiable, but then by Corollary 23, also
(NV; U Di)’{ll ----- ol 1\ {emae t
is satisfiable.
2. Or

"""" {lkmaz }

= N/*, hence N/* is

is satisfiable. By Lemma 27, we have N/

. {ermant
satisfiable.

Still for the forward direction, let us now assume that some NF is satis-
fiable, for k € {kpae + 1,...,n}. Then it immediately follows with Lemma
27 that N/*~! = N{ g is satisfiable.

Let us now prove the backward direction. So assume N/* is satisfiable,
for some k € {kmaz,...,n — 1}. Again by Lemma 27,

Nllk = Nz‘k+1|{lkmax} = (NiUDi)‘{h ,,,,, lk}\{lkmaz}UBk+l

is satisfiable. By path-validity (Proposition 22), we know that

Hence we again distinguish two cases:

22

1. Either

is satisfiable. But then also

(N’L U Dz)|{ll

is satisfiable.

2. Or

hence also

(NZ U Dz)|{l1 —1} U Bkmaz

----- lkmas

is satisfiable, since By, = {5y, (kmaz)}-
O

Lemma 30 (RIGHT-COLLAPSE maintains satisfiability). Let W, : N; be an
arbitrary labelled clause set in a derivation, and assume V; : N; — W, : N/
with rule RIGHT-COLLAPSE. Then VU, : N; is satisfiable if and only if W, : N/
is satisfiable.

Proof. First note that Ly: O € N; and L: O € N/, hence both N; and N/ are
unsatisfiable. Thus it suffices to show that there exists a satisfiable N/¥* € N/
if and only if there is a satisfiable N} € N;. By Lemma 27 and definition of
RIGHT-COLLAPSE, we obtain that for all N/* € N/,

7

N = NFU{L: O} if k> max(L)
NF otherwise.

For the first case, use the fact that for & > max(L), we have L C {1,...,k},
and path-validity (Proposition 22). The second case is immediate. O]

Lemma 31 (ENTER-RIGHT maintains satisfiability). Let W, : N; be an ar-
bitrary labelled clause set in a derivation, and assume W; : N; — W! : N/
with rule ENTER-RIGHT. Then VU, : N; is satisfiable if and only if V. : N! is
satisfiable.

Proof. Again because of the empty clause, N; is unsatisfiable. Furthermore,
by Lemma 27, N¥ = NF for k < n. Thus it suffices to show that N is
satisfiable if and only if N/ is satisfiable. The forward direction is immediate
since N} C N/'. For the backward direction, assume that N] is satisfiable.
We show that then N must also be satisfiable. So let L: C' € N*\ N/ be

23

arbitrary but fixed. Let us show that L: C is redundant with respect to
N!. We inductively define integers j; and k;, and clauses L; : C; for [> 1
as follows: By definition of N* and N/, we know that L: C' € Dj, such
that [;, ¢ RU{l,}, and l,, ¢ L. Let k; be the step of the derivation where
L: C was subsumed (k; exists by Proposition 24). By Proposition 25, there
exists a clause L; : C; € N; U D* such that L; : C} subsumes L : C and
maX(Ll) = ljl'

o If [, € Ly, then we know L: C' € N/, by definition of delete_split.
e Otherwise, if [,, & Ly

— If Ly: Cy € N;, then also L: C € N/, by definition of delete_split.

— Otherwise, L, : Cy € Dj,. Let ky be the step of the derivation
where L, : C; was subsumed. By Proposition 25, we know that
ko > ki, and that there exists Ly : Cy with max(Ly) = [j,, such
that Lo: Cy subsumes L;: C; and hence also subsumes L: C'

Clearly, some k,,, will be the last subsumption step in the derivation where
Ly—1:Cy-y € Dj,,. The clause L,,: C,, subsumes L,,_; : Cy,—; and hence
also subsumes L : C, but L,, : C,, was not itself subsumed. Therefore,
L, :C,, € N;,.

o Ifl, € L, then L,,_1: C,,_; € N;, by definition of delete_split.
e Otherwise l,, € L, but then L,,: C,,, € N/, by definition of delete_split.

Both L,,_1: C,,—1 and L,, : C,, subsume L : C, hence in both cases, the
clause L: C' is redundant with respect to V.]

Proposition 32 (Calculus rules maintain satisfiability). Let W; : N; be an
arbitrary labelled clause set in a derivation, and assume W;: N; > W, 1:N;iq.
Then ¥, : N; s satisfiable if and only if V;1q: N;yq is satisfiable.

Proof. Let n be the length of ¥;. We distinguish which rule was applied to
obtain \Iji+1 . Ni—i—l'

e The cases resolution and factoring are trivial, since the conclusion fol-
lows logically from the premises.

24

e For the splitting case, let us first observe that W;,; has length n + 1,
and that for all 1 < k <n,

n+1
Ni]ii-l = (Ni-‘rl U U D;‘+1)|{l1 ,,,,, l—1} U BIZC—H
j=1
= (Nl U U D;)’{ll ----- L1} U Bli
j=1

— Nk

Thus it suffices to show that N; is satisfiable if and only if Ny, or
Nﬁ:@l is satisfiable. By definition of the splitting rule, we have N;,; =
Ni U {L/I Fl — Al} and

n+1
N = e U U DF i,y U B,
7=1

.....

J=1

since [, + 1 € L' and thus Niﬂ\{ll 77777 1.} = Ni, and the sets of deleted
clauses are not changed by splitting. By Corollary 26, satisfiability
of N; U U?Zl D; is equivalent to satisfiability of N;, hence Ni’ﬁil is
satisfiable if and only if N; U {L': T'y — As}. Therefore, it suffices
to show that N; is satisfiable if and only if N; U {L': T'; — A;} or
N; U{L" Ty — Ay} is satisfiable, and this is immediate since I'; — A;
and 'y — A, are variable-disjoint.

e For backtracking, we use induction over the stack reductions together
with Lemmata 28 to 31.

e For subsumption deletion, observe that N; and [V, are equisatisfiable,
since the subsuming clause Ly: I'y — Ay is still in N; ;.

]

Theorem 33 (Soundness). Let N be an arbitrary clause set. Let Ny := {@:
C' | C € N} be the associated set of labelled clauses, let Wo := (), and let
Wy : No>* W, : N,,, be an arbitrary derivation starting with Vo : No. Then
U, : Ny, is satisfiable if Wo: Ny is satisfiable.

Proof. By induction over the derivation, using Proposition 32. O

25

2.3.6 Completeness

When backtracking is modelled explicitly, as we have done here, classical
model construction techniques (as in [2, 16]) cannot directly be used to show
completeness of the calculus. In particular, defining a fair derivation to be
a derivation in which any non-redundant inference from persistent clauses is
eventually computed, no longer guarantees that any fair derivation from an
inconsistent clause set eventually yields a contradiction. The reason is that
in our calculus, the changes to the clause set are not monotonic (in the sense
that in each step, only derived clauses are added or redundant clauses are
removed).
For example, consider the unsatisfiable clause set

No={ S(a); —S(a); P(a);
P(z) — Q(y), P(f(x));

Qy) — S(z) }
where all clauses have the empty label. We construct an infinite derivation
D =Wy:Ny> WU :N; > ... as follows: we apply resolution to derive a clause

— Q(y), P(f"**(a)) (initially, n = 0) which we then split. In the left branch,
we use Q(y) to infer S(x). We then apply subsumption deletion to S(z) and
S(a), removing S(a) from the clause set and storing it in the deleted set of
the current split. We apply resolution to infer the empty clause from S(x)
and —S(a) and backtrack, entering the right branch, reinserting clause S(a).
We then repeat the procedure with n increased by one (see Figure 2.2). The
classical definition of persistent clauses as Ny = J, ;> INj yields a set that
does not contain S(a) (thus N is satisfiable), because for each subsumption
deletion step k, we have S(a) & Ni, hence S(a) is not "persistent” when
viewed over the whole derivation.

P(f"(a)) Plx) = Qy) v P(f(x))

/@<y> VP (0))
0y Q) = S) N |
S(@) '
5

Figure 2.2: Split Tree Development

In the above example, the non-persistent clause S(a) is redundant in all
left branches. However, every left branch is refuted at some point, causing

26

S(a) to be reinserted upon backtracking. Thus, the fact that the clause is
redundant only in branches that are eventually closed is irrelevant in an infi-
nite derivation. In the example, the split tree has an infinite path consisting
of right branches, and along this path, the clause S(a) is not redundant and
should therefore eventually be considered for inferences. Our goal is there-
fore to define a notion of fairness that ignores closed branches and only talks
about clauses on the infinite path of the split tree. In the following, we use
sufp(i) to denote the suffix U;: N; > W;1: N;11 &> ... of an infinite derivation
D =Wg:Ny > ¥y: Ny > ... Note that sufp(0) = D.

Definition 34 (Persistent Split). Given an infinite derivation

D=Vyg:Ng > Vi: Ny > ...,
and i > 1, where V; = (¢, ..., 1), we call Yy, (1 < k < n;) persistent in
sufp(i), if li, € levels(¥;) for all j > 1.

Definition 35 (Weakly Persistent Clause). Given an infinite derivation
D:\IIQZNO > \I’llNl > ey

and i > 0, where U; = (., ..., 1), we call a clause L: C € (N; U DY)

weakly persistent in sufp (i), if for all l; € L, ¢; is persistent in sufp(i).

Weakly persistent clauses are not necessarily contained in every clause
set of the derivation from some point on. However, if a clause is weakly
persistent, then from some point on, every clause set contains either the
clause itself, or some clause that subsumes it. Also note that any clause that
is weakly persistent in D is contained in Ny, since no split is persistent in D.

Lemma 36. For any infinite derivation D and for v > 1, if a clause L: C €
(N;UD3)\ Ny is weakly persistent in sufp(i), then it is also weakly persistent
in sufp(k) where k < i is maximal such that step k of D has L: C as its
conclusion.

Proof. Let k be defined as above and assume L: C' is not weakly persistent
in sufp(k). Then there exists k& < k' < i such that some split with level in
L was deleted in step &’ of D. Thus by Definition 5, L: C ¢ (N U D).
Hence there must exist &” > k such that step £” has L: C as its conclusion,
a contradiction. O

Also note that Definition 35 implies that any clause that is weakly per-
sistent in D is contained in Ny, since no split is persistent in D.

Definition 37 (Persistent Step). Given an infinite derivation
D=Wy:Ng > Uy: Ny > ...,
we say that step 1 > 1 of D is persistent, if

27

1. step i is a splitting or backtracking step, V; = (., ..., 1), and 1, is
persistent in sufp(i), or

2. step i is an inference or reduction step and all premises of the applied
inference or reduction rule are weakly persistent in sufp(i — 1).

Definition 38 (sptp). Given an infinite derivation

D=Wy:Ng > Uy: Ny > ...,
let i > 0 be a backtracking step, let | be the split level of the toplevel split
of V;, and let k < v be mazimal such that step k of D is a splitting step
producing a split of level | — 1. Then we define sptp(i) := k, the associated
splitting step of backtracking step 1.

Lemma 39. For any infinite derivation D = Wg: Ny > Wy : Ny > ..., if
step i > 1 is a persistent splitting step with parent clause L: C' (a persistent
backtracking step with L: C' the parent clause of the associated splitting step),
then L: C is weakly persistent in sufp(i — 1).

Proof. Let [denote the level of the split produced at step i. Assume L: C'is
not weakly persistent. Let k& be minimal such that k& > i and I’ & levels(¥y)
for some I’ € L. Then step k of D is a backtracking step. Since the split
produced at step i is persistent, the split with level I’ must have been removed
by application of BRANCH-CONDENSE. Hence there is an empty clause L'
O€ N,y withl e L' but I’ ¢ L', a contradiction to Lemma 15. O

Lemma 40. For any infinite derivation D and for ¢ > 1, if the conclusion
of step i is weakly persistent in sufp(i), then all premises of step i are weakly
persistent in sufp(i — 1).

Proof. Follows from Definition 35 and Lemma 39. O]

We will define the limit of an infinite derivation D to be the derivation
obtained by starting from the original labelled clause set and applying exactly
the persistent steps of D. Note that all left splits are created by splitting,
whereas all right splits are created by backtracking. The limit will contain
no more applications of backtracking. Instead, whenever a persistent right
branch is created in the original derivation, the limit will enter that branch
directly, using the rule splitting right:

Definition 41 (Splitting Right). The inference

v:N L: F17F2—>A17A2

7
U N LTy — A,

28

where ¥ = (Y, ...,n), L' = LU{l, + 1}, V' = (i1, Un, ..., 1) with
i1 = (I, +1,2,0,9), vars(T'y — Ay) Novars(Ty — Ag) = &, and A # &
and Ay # @ is called splitting right.

Definition 42 (Limit of a Derivation). Given an infinite derivation
D=Vyg:Ng > Vi: Ny > ...,

let© > 0 be a backtracking step, let | be the split level of the toplevel split of V;,

and let k < i be maximal such that step k of D is a splitting step producing a

split of level | — 1. We define the monotonic function fp: N — N as follows:

fD(O) = 0
fo(i+1) := min{j > fp(i) | step j of D is persistent}.
The limit of D is defined as
lim(D) := Wy: Nj > Ui:N| > Uo: Ny > ...
where Wy: Ny = Wo: Ny and V', : N, is obtained from V;:N; as follows:

1. if step fp(i + 1) of D is a backtracking step: let (I,2,2, M) be the
toplevel split of V;. 1, and consider the associated splitting step k =
sptp(i + 1)

Ui 1:Ngo1r LTy, Ty — Ag, Ay
\I/kINk Lli Fl —>A1

A

Then step i + 1 of im(D) is the splitting right step

\IJQNZI L: F17F2—>A1,A2

\I/;H:Ni'+1 M: Ty — Ay

A

2. otherwise: Wi, : N/ | is obtained by applying the same rule as in step

)

fo(i+1) of D to ¥;: N;.
Lemma 43. For any infinite derivation D, lim(D) is well-defined.

Proof. We show by induction on ¢ > 1 that every premise L : C of step ¢
of lim(D) = Uy: N) > W :N| > ... is contained in N]_,. By definition of
lim(D), step fp(i) of D is persistent.

1. If step fp(i) of D is an inference or reduction step, then by Definition
37, L: C' is weakly persistent in sufp(fp(i) —1).

2. If step fp(i) of D is a splitting or backtracking step, then by Lemma
39, L: C' is weakly persistent in sufp(fp(i) — 1)

29

Assume L: C &€ Ny. Lemma 36 tells us that L: C' is weakly persistent in
sufp(k), where k < fp(i) is maximal with L: C the conclusion of step k of
D. Hence by Lemma 40, all premises of step k£ of D are weakly persistent,
therefore step k is a persistent step. For the base case ¢ = 1, this is a
contradiction, since fp(i) is the first persistent step of D, and we can thus
conclude that L: C' € Ny = N|. For i > 1, there is j < i such that fp(j) =k
and L : C is the conclusion of step j of lim(D). Since L: C' € Ny)1,
we can conclude that L: C' has not been persistently subsumed and hence
L:C e N/_,. O

Note that in general, neither N C Ny,) nor Nj 2 Ny, ;) hold for ar-
bitrary ¢, because Ny, ;) may contain clauses that are not (weakly) persis-
tent, and persistent clauses may have been subsumed by non-persistent ones.
Therefore we can not simply take the limit to be a subsequence of the initial
derivation.

Lemma 44. For every infinite derivation D = Wo: Ny > W1: Ny > ..., and
every i > 1, if step © of im(D) is an inference step, then its conclusion is
contained in N,).

Proof. Follows directly from Definition 42.]
. lim(D
For lim(D) = U{: Nj > W :N] > ... we define Noo @)= U: N V-

Definition 45 (Fairness). A derivation
D:\IloiN() > \IfllNl > ...
15 called fair if

1. either D is finite and in the final clause set Ny all resolution and factor-
ing inferences are redundant in Ny, or D is infinite and every resolution
or factoring inference from NEP) s redundant in some N! € lim(D);
and

2. for everyi > 0 with L: O € N; with L # @, there exists j > i such that
step j of D is a backtracking step with premise L: O.

Lemma 46. For any fair infinite derivation D and any i > 0, no L: O with
L # & is weakly persistent in sufp(i).

Proof. Assume L # @ and consider the backtracking step with L: O as
premise (which must exist by condition 2 of Definition 45). It follows from the
definitions of the stack reduction rules that the final rule applied is ENTER-
RIGHT, which deletes the split with the greatest split level in L. O]

30

Our completeness proof will closely follow the one given in [2] (Theorem

4.9), with the exception that we limit ourselves to showing that unsatisfiabil-

ity of Ny implies @: O € N&m(p). Note that by Lemma 44, this also implies

@:0¢€ Uj N;. We use the standard redundancy criterion that is based on a
clause ordering > [2] and we write Rz(N) for the set of redundant clauses
with respect to N and R (N) for the set of redundant inferences with re-
spect to N. The standard redundancy criterion satisfies the following four
conditions:

(R1) if N C N’ then R%(N) C RZ(N') and R7(N) C RZ(N');

(R2) if N C RZ(N) then RZ(N) C RZ(N\N') and R7(N) C R7(N\N');
(R3) if N is unsatisfiable, then N \ R%(N) is also unsatisfiable; and

(R4)

R4) a resolution or factoring inference + is in R (IN) whenever its conclu-
sion is in N URZ(N).

Lemma 47. Let im(D) = V{: Ny > W : N > ... be the limit of a deriva-

tion D. Then Rr(U; N}) € R(Na"®) and R (U; N}) € R; (NP,

Moreover, the set NEmD) unsatisfiable if Nj is unsatisfiable.
Proof. Observe that for any ¢« > 0, one of the following holds:

(i) N/, = N;U{C}, where C' is the conclusion of a resolution or factoring
step from clauses in N/; or

(ii) N/, = N/ U{C}, where C is a non-trivial subclause of a clause in N;;

or
(iii) N/, = N/ \ {D}, where D € R%(N]).

Hence by definition of N2®) any clause in (| LN NI®) ig in some

’R;(NZ’) Therefore ({J; V) \ NImP) U,; R%(N}). Moreover, by condi-
tion (R1), U, R}(Nj’) C R%(U; Nj). As a consequence, we have (U; V}) \
RZU i Vj) C NEm(D) Applying condition (R1) again, we may infer that
R((U; M)\ REU; V) € R(NI"P)) (where R may be either Rz or R).
Using condition (R2), we obtain R(U; N}) C R(Néiom(p)).

For the second part, assume N is unsatisfiable. Hence also [J; N} is un-
satisfiable, and by condition (R3), (U; Nj)\R%(U; IVj) is unsatisfiable. Since

(U; NAREU, N)) < NEMP) e can infer that N"®) is unsatisfiable. [

31

We say that a set of labelled clauses N is saturated up to redundancy,

if every resolution or factoring inference v from N \ R%Z(NNV) is contained in

Theorem 48 (Completeness). Let D = Wo: Ny > ¥y : Ny > ... be a fair
derivation. If @: 0 & Uj N;, then Ny is satisfiable.

Proof. By Lemma 44, @: O & |J,; N; implies @: O ¢ NI®) - Gince D s

) . lim(D
fair, every inference from NI=(D)

by Lemma 47, also redundant in N2, Hence N2™P) is saturated up to
redundancy. It follows ([2], Theorem 4.9) that NEMP) g satisfiable if and
only if it does not contain a contradiction. By Lemma 46, the only possible
contradiction in N2™™) is @: O. Thus by Lemma 47, if @: O ¢ N2™®) then
Ny = N is satisfiable. O

is redundant in some N/ and therefore,

32

3 Experiments and Related
Work

3.1 Experiments

Our enhanced backtracking process has been integrated into the SPAsS [22]
theorem prover. The basis for the implementation was SPASS version 3.0.
As we mentioned before, the calculus presented here represents a minimal
set of inference and reduction rules, whereas the overall splitting calculus is
implemented in SPAsS [19], and our extension covers that entire calculus.
The data structures used to represent the split stack were modified to allow
storage of the dependencies of closed left branches. Minor modifications to
the implementation of reduction rules were made to ensure that reduced
clauses are always recorded for later reinsertion. These modifications were
necessary since the original branch condensation in SPASS is performed only
up to the last backtracking level, hence a redundant clause is recorded only
if it has been subsumed by a clause with greater split level. Finally, a new
backtracking procedure was written, implementing the stack reduction rules.

The implementation was tested on the TPTP problem library, version
3.2.0 [18], which consists of 8984 first-order problems. On 2513 of those
problems, SPASS (in automatic mode) uses the splitting rule during proof
search. For the experiments, an Opteron Linux cluster was used, and SPASS
was given a time limit of 5 minutes per problem.

Overall, the number of splits performed per problem decreased by about
10% on average when using improved backtracking. In addition, SPASS with
improved backtracking terminated with a solution for 24 problems (22 proofs,
2 completions) that could not be solved by the version without improved
backtracking within the given time limit. The new version looses 4 problems
because of the potentially different search space exploration caused by the
new backtracking rule. These problems are recovered by an increased time

33

limit.

3.2 Related Work

The paper is an extension of the abstract DPLL calculus of Nieuwenhuis
et al. [15] for first-order logic. Due to the need to create new clauses via
inferences and reductions, the calculus is more involved.

An alternative approach to case analysis in saturation-based theorem
proving, relying on the introduction of special propositional symbols instead
of a split stack, was presented in [17]. The main difference to our frame-
work is that when simulating splitting with new propositional symbols, the
generated clauses can not be directly used for reductions: for example, split-
ting the clause P(x) V Q(y) in this way produces the clauses P(x) V p and
p — Q(z), where p is a new propositional symbol. Therefore, this type of
splitting does not provide the necessary support for the superposition based
decidability results on non Horn first-order fragments. On the other hand,
in particular if applied to unsatisfiable problems, this alternative approach
to splitting can be very useful.

For the general methodology of labelled clauses there is a huge literature,
see [4] for an overview. In particular, the use of clause labels to model
explicit case analysis was first suggested in [13], which provided a starting
point for the work presented here. We refined the abstract labelled splitting
rule presented there with explicit backtracking and redundancy handling.

The DPLL procedure [6], which lies at the core of most of today’s state-
of-the-art boolean satisfiability solvers, has received a great deal of attention
in the past years. In particular, a lot of research has gone into improving
the backtracking process. Thus it is natural to ask how, in the propositional
domain, our backtracking scheme compares to that of modern SAT solvers.
Let us first clarify some key differences between our framework and DPLL.

In basic DPLL, when exhaustive unit propagation has neither led to a
conflict nor yielded a complete truth assignment, a choice is made by as-
suming some yet undefined literal to be true (typically a literal occurring in
some clause). If this choice leads to a conflict, the truth value of that literal
is flipped, hence the two branches of the case analysis are A and = A for some
propositional variable A. This can be simulated by the refined version of the
splitting rule, discussed after Definition 1. The reason why this refinement is
restricted to ground split parts is that the negation of universally quantified
clauses leads to the introduction of new Skolem constants, and in practice
this tends to extend the search space for the second branch. This could in
principle be avoided by remembering all ground terms that a variable has

34

been instantiated with. For example, if the left split part was P(z) and a
refutation of the branch involved substituting = by both a and f(b) in dif-
ferent subtrees, then = P(a)V—=P(f(b)) could be used instead of —P(c) for
some new constant c. Although this approach avoids the introduction of
new symbols, tracking all instantiations adds overhead and the fact that the
resulting lemmata are again in general non-units diminishes their usefulness
for reductions. When dealing with purely propositional problems however,
this lemma-generation can be used to simulate DPLL-style case analysis: for
any clause I' — A, A chose A as the first split part — the lemma —A is then
available in the second branch.

Backtracking in modern SAT solvers is based on a conflict analysis dur-
ing which a conflict clause is learned, i.e., added to the clause set. We
compared SPASS implementing our new backtracking rule (Definition 10)
without learning with MiniSat v1.14 [8] on SAT problems, by manipulating
both systems such that they essentially use the same propositional variable
order for branching. Out of the current SATLIB (http://www.satlib.org)
library we selected about 200 problems that SPASS could solve in a 5 min
time limit. On more than 95% of all problems Minisat needs less splits than
SpAss. Out of these problems, SPASS performs three times more splits than
MiniSat, on the average. This result suggests that conflict-driven clause
learning is in favor of the SPASS split backtracking mechanism. So there is
potential for exploring this mechanism also for the first-order case. However,
again, this requires at least a detailed analysis of the closed branches as split
clauses may have been used in several instantiations.

Although our backtracking rule does not include learning of conflict clauses,
there are cases where it is superior to the conflict driven clause learning of
modern SAT solvers, i.e., a proof requires less splits. This is documented by
the 5% of examples where SPASS needed less splits than MiniSat and such
examples can also be explicitly constructed.

The following example illustrates a clause set, where the labelled splitting
style of backtracking is in favor of the DPLL style of backtracking.

{ /11\//12\/43\/145, 1{1\/142\/143\/1457 1{1\/144\/1467

A VAN Ag, AV AN AN AL, AV AV AN A
AV, AV s, A3V s,
ANVCy, .

Negation is denoted by overlining and the C; stand for further disjuncts
containing positive literals. In favor of a small example, it contains potential
for simplification, e.g., the first two clauses. Marking decision literals with a
d, the partial truth assignment A¢ AZ A¢ (corresponding to splittings of the
finally given clauses) is extended to A{ A4 A4 A5 by unit propagation, leading

35

to a conflict. In terms of the labelled resolution calculus, this corresponds
to an empty clause with label {1,3,5} where the first split clause is A;VCY,
the second A5V (5, and the third A3V C3. Both DPLL and labelled splitting
then enter the right branch of the last split. In DPLL terms, we get the
assignment A A4 A3, which we extend to A{ Ad A3 A4 via a further decision.
Clause A;VA,VAg propagates Ag, after which clause A;VA,VAg becomes false.
Resolving these two yields the conflict clause A;VA,, and DPLL backjumps
to decision level 1, i.e. to assignment A9 A4. If this branch cannot be closed
without repeating the decision on A, that was just undone, this overall search
space needs to be explored again. On the other hand, in the labelled calculus,
the conflict clause corresponds to an empty clause with label {1, 7}, where
we have split A4V Cy. So Enter-right is the only applicable stack reduction
rule. The right branch of the corresponding split can be closed by the clauses
AVANANA; and AV ALV ALV A, without further splitting, since the split
of clause AsV (s is still available.

36

4 Conclusion

We have extended the abstract DPLL calculus by Nieuwenhuis et al. [15]
to the full first-order case, called labelled splitting. The calculus is sound
and complete. For the completeness result we introduced a new notion of an
infinite path to establish fairness.

The calculus is implemented for the full superposition calculus [19] in
Spass. It shows a 10% average gain in the number of splits on all TPTP
problems where splitting is involved and SPASS could decide 24 more prob-
lems compared to the previous version.

The fairness notion of Definition 45 does not directly provide an effective
strategy for a fair inference selection. In SPASS we mainly use two different
strategies. For the propositional case we employ exhaustive splitting, because
splitting combined with the reduction matching replacement resolution [19]
constitutes already a complete calculus. For the first-order case, clauses are
selected for inferences with respect to their “weight” composed out of the
number of contained symbols and their depth in the derivation. If such
a clause can be split and the first split part has a “sufficient” reduction
potential for other clauses, splitting is preferred over other inferences.

A comparison of the labelled splitting backtracking mechanism with DPLL
style backtracking based on conflict-driven clause learning reveals room for
further improvement. However, this is not a straightforward effort, because
the negation of a first-order clause is an existentially quantified conjunction of
literals that via Skolemization introduces new constants to the proof search.
It is well known that the addition of new constants causes an increased com-
plexity of the unsatisfiability problem and if potentially done infinitely often,
can even cause completeness issues. So it seems to us that in the case of a
conflict, an analysis of the proof and the used first-order terms in the proof
is the most promising approach to enhance the presented labelled splitting
backtracking mechanism with conflict-driven clause learning. This will be
subject of future research.

37

Bibliography

1]

2]

F. Baader and T. Nipkow. Term Rewriting and All That. Cambridge
University Press, 1998.

L. Bachmair and H. Ganzinger. Resolution theorem proving. In Hand-
book of Automated Reasoning, pages 19-99. 2001.

L. Bachmair, H. Ganzinger, and U. Waldmann. Superposition with
simplification as a decision procedure for the monadic class with equality.
In G. Gottlob, A. Leitsch, and D. Mundici, editors, Computational Logic
and Proof Theory, Third Kurt Gdédel Colloguium, volume 713 of LNCS,
pages 83-96. Springer, August 1993.

D. Basin, M. D’Agostino, D. Gabbay, S. Matthews, L. Vigan, and o eds.
Labelled deduction, 2000.

P. Beame, H. Kautz, and A. Sabharwal. Understanding the power of
clause learning, 2003.

M. Davis and H. Putnam. A computing procedure for quantification
theory. J. ACM, 7(3):201-215, 1960.

W. F. Dowling and J. H. Gallier. Linear-time algorithms for testing the
satisfiability of propositional horn formulae. Journal of Logic Program-
ming, 1(3):267-284, 1984.

N. Eén and N. Sorensson. An extensible SAT-solver. Theory and Appli-
cations of Satisfiability Testing, pages 502-518, 2004.

E. Goldberg and Y. Novikov. Berkmin: A fast and robust SAT-solver.
In DATE °02: Proceedings of the conference on Design, automation and
test in Furope, page 142, Washington, DC, USA, 2002. IEEE Computer
Society.

38

[10] R. Hahnle. Tableaux and related methods. In A. Robinson and
A. Voronkov, editors, Handbook of Automated Reasoning, volume 1,
chapter 3, pages 100-178. Elsevier, 2001.

[11] T. Hillenbrand and C. Weidenbach. Superposition for finite domains.
Research Report MPI-1-2007-RG1-002, Max-Planck Institute for Infor-
matics, Saarbriicken, Germany, April 2007.

[12] R. Letz, K. Mayr, and C. Goller. Controlled integration of the cut
rule into connection tableau calculi. Journal of Automated Reasoning,,
13(3):297-338, 1994.

[13] T. Lev-Ami, C. Weidenbach, T. Reps, and M. Sagiv. Labelled clauses.
In 21st International Conference on Automated Deduction (CADE-21),
volume 4603 of Lecture Notes in Computer Science, pages 311-327, Bre-
men, Germany, 2007. Springer.

[14] J. P. Marques-Silva and K. A. Sakallah. GRASP - A search algo-
rithm for propositional satisfiability. IEEE Transactions on Computers,
48(5):506-521, May 1999.

[15] R. Nieuwenhuis, A. Oliveras, and C. Tinelli. Solving SAT and SAT
modulo theories: From an abstract Davis-Putnam-Logemann—Loveland
procedure to DPLL(T). Journal of the ACM, 53(6):937-977, 2006.

[16] R. Nieuwenhuis and A. Rubio. Paramodulation-based theorem prov-
ing. In A. Robinson and A. Voronkov, editors, Handbook of Automated
Reasoning, volume I, chapter 7, pages 371-443. Elsevier, 2001.

[17] A. Riazanov and A. Voronkov. Splitting without backtracking. In IJCAI
pages 611-617, 2001.

[18] G. Sutcliffe and C. Suttner. The TPTP Problem Library: CNF Release
v1.2.1. Journal of Automated Reasoning, 21(2):177-203, 1998.

[19] C. Weidenbach. Combining superposition, sorts and splitting. In
A. Robinson and A. Voronkov, editors, Handbook of Automated Rea-
soning, volume 2, chapter 27, pages 1965-2012. Elsevier, 2001.

[20] C. Weidenbach, B. Gaede, and G. Rock. SPASS & FLOTTER, version
0.42. In M. McRobbie and J. Slaney, editors, 13th International Confer-
ence on Automated Deduction, CADFE-13, volume 1104 of LNAI pages
141-145. Springer, 1996.

39

[21] C. Weidenbach, R. Schmidt, T. Hillenbrand, R. Rusev, and D. Topic.
The SPASS Handbook. Included in the SPASS 3.0 distribution.

[22] C. Weidenbach, R. Schmidt, T. Hillenbrand, R. Rusev, and D. Topic.
System description: SPASS version 3.0. In F. Pfenning, editor, CADE-
21 : 21st International Conference on Automated Deduction, volume
4603 of LNAI, pages 514-520. Springer, 2007.

[23] L. Zhang, C. F. Madigan, M. W. Moskewicz, and S. Malik. Efficient
conflict driven learning in boolean satisfiability solver. In ICCAD, pages
279-285, 2001.

40

Below you find a list of the most recent technical reports of the Max-Planck-Institut fiir Informatik. They
are available via WWW using the URL http://www.mpi-inf.mpg.de. If you have any questions concern-
ing WWW access, please contact reports@mpi-inf.mpg.de. Paper copies (which are not necessarily free
of charge) can be ordered either by regular mail or by e-mail at the address below.

Max-Planck-Institut fiir Informatik
Library

attn. Anja Becker
Stuhlsatzenhausweg 85

66123 Saarbriicken

GERMANY

e-mail: library@mpi-inf.mpg.de

MPI-1-2007-RG1-002 T. Hillenbrand, C. Weidenbach Superposition for Finite Domains

MPI-1-2007-5-003 F.M. Suchanek, G. Kasneci, Yago : A Large Ontology from Wikipedia and WordNet
G. Weikum
MPI-1-2007-5-002 K. Berberich, S. Bedathur, A Time Machine for Text Search
T. Neumann, G. Weikum
MPI-1-2007-5-001 G. Kasneci, F.M. Suchanek, G. Ifrim, NAGA: Searching and Ranking Knowledge
M. Ramanath, G. Weikum
MPI-1-2007-4-008 J. Gall, T. Brox, B. Rosenhahn, Global Stochastic Optimization for Robust and
H. Seidel Accurate Human Motion Capture
MPI-1-2007-4-007 R. Herzog, V. Havran, K. Myszkowski, Global Illumination using Photon Ray Splatting
H. Seidel
MPI-1-2007-4-006 C. Dyken, G. Ziegler, C. Theobalt, GPU Marching Cubes on Shader Model 3.0 and 4.0
H. Seidel
MPI-1-2007-4-005 T. Schultz, J. Weickert, H. Seidel A Higher-Order Structure Tensor
MPI-1-2007-4-004 C. Stoll A Volumetric Approach to Interactive Shape Editing
MPI-1-2007-4-003 R. Bargmann, V. Blanz, H. Seidel A Nonlinear Viseme Model for Triphone-Based Speech

Synthesis

MPI-1-2007-4-002 T. Langer, H. Seidel Construction of Smooth Maps with Mean Value
Coordinates
MPI-1-2007-4-001 J. Gall, B. Rosenhahn, H. Seidel Clustered Stochastic Optimization for Object

Recognition and Pose Estimation

MPI-1-2007-2-001 A. Podelski, S. Wagner A Method and a Tool for Automatic Veriication of
Region Stability for Hybrid Systems

MPI-1-2007-1-002 E. Althaus, S. Canzar A Lagrangian relaxation approach for the multiple
sequence alignment problem

MPI-1-2007-1-001 E. Berberich, L. Kettner Linear-Time Reordering in a Sweep-line Algorithm for
Algebraic Curves Intersecting in a Common Point

MPI-1-2006-5-006 G. Kasnec, F.M. Suchanek, Yago - A Core of Semantic Knowledge

G. Weikum

MPI-1-2006-5-005 R. Angelova, S. Siersdorfer A Neighborhood-Based Approach for Clustering of
Linked Document Collections

MPI-1-2006-5-004 F. Suchanek, G. Ifrim, G. Weikum Combining Linguistic and Statistical Analysis to

Extract Relations from Web Documents

MPI-1-2006-5-003 V. Scholz, M. Magnor Garment Texture Editing in Monocular Video
Sequences based on Color-Coded Printing Patterns
MPI-1-2006-5-002 H. Bast, D. Majumdar, R. Schenkel, IO-Top-k: Index-access Optimized Top-k Query
M. Theobald, G. Weikum Processing
MPI-1-2006-5-001 M. Bender, S. Michel, G. Weikum, Overlap-Aware Global df Estimation in Distributed
P. Triantafilou Information Retrieval Systems
MPI-1-2006-4-010 A. Belyaev, T. Langer, H. Seidel Mean Value Coordinates for Arbitrary Spherical

MPI-1-2006-4-009

—

. Gall, J. Potthoff, B. Rosenhahn,

C. Schnoerr, H. Seidel

Polygons and Polyhedra in R3

Interacting and Annealing Particle Filters:
Mathematics and a Recipe for Applications

MPI-I-2006-4-008

MPI-I-2006-4-007

MPI-I-2006-4-006

MPI-1-2006-4-005
MPI-1-2006-4-004

MPI-1-2006-4-003

MPI-1-2006-4-002

MPI-1-2006-4-001

MPI-1-2006-2-001

MPI-I-2006-1-007
MPI-I-2006-1-006

MPI-I-2006-1-005
MPI-I1-2006-1-004

MPI-I-2005-5-002

MPI-1-2005-4-006

MPI-I-2005-4-005

MPI-1-2005-4-004

MPI-1-2005-4-003

MPI-I-2005-4-002

MPI-1-2005-4-001

MPI-I-2005-2-004

MPI-1-2005-2-003
MPI-1-2005-2-002
MPI-1-2005-2-001
MPI-I-2005-1-008

MPI-1-2005-1-007

MPI-1-2005-1-003

MPI-I-2005-1-002
MPI-1-2005-1-001

I. Albrecht, M. Kipp, M. Neff,
H. Seidel

O. Schall, A. Belyaev, H. Seidel

Theobalt, N. Ahmed, H. Lensch,
. Magnor, H. Seidel

Belyaev, H. Seidel, S. Yoshizawa
Havran, R. Herzog, H. Seidel

< > 20

de Aguiar, R. Zayer, C. Theobalt,
. Magnor, H. Seidel

. Ziegler, A. Tevs, C. Theobalt,
Seidel

Efremov, R. Mantiuk,
Myszkowski, H. Seidel

Wies, V. Kuncak, K. Zee,
Podelski, M. Rinard

Bast, I. Weber, C.W. Mortensen
. Kerber

EEmEsS R IQ 26

>

Eigenwillig, L. Kettner, N. Wolpert
Funke, S. Laue, R. Naujoks, L. Zvi

<

S. Siersdorfer, G. Weikum

C. Fuchs, M. Goesele, T. Chen,
H. Seidel

G. Krawczyk, M. Goesele, H. Seidel

C. Theobalt, N. Ahmed, E. De Aguiar,
G. Ziegler, H. Lensch, M.A. Magnor,
H. Seidel

T. Langer, A.G. Belyaev, H. Seidel

O. Schall, A. Belyaev, H. Seidel

M. Fuchs, V. Blanz, H. Lensch,
H. Seidel

Y. Kazakov

H.d. Nivelle
P. Maier, W. Charatonik, L. Georgieva
J. Hoffmann, C. Gomes, B. Selman

C. Gotsman, K. Kaligosi,
K. Mehlhorn, D. Michail, E. Pyrga

I. Katriel, M. Kutz

S. Baswana, K. Telikepalli

I. Katriel, M. Kutz, M. Skutella
D. Michail

MPI-1-2004-NWG3-001 M. Magnor

MPI-1-2004-NWG1-001 B. Blanchet

Gesture Modeling and Animation by Imitation

Feature-preserving Non-local Denoising of Static and
Time-varying Range Data

Enhanced Dynamic Reflectometry for Relightable
Free-Viewpoint Video

Skeleton-driven Laplacian Mesh Deformations

On Fast Construction of Spatial Hierarchies for Ray
Tracing

A Framework for Natural Animation of Digitized
Models

GPU Point List Generation through Histogram
Pyramids

Design and Evaluation of Backward Compatible High
Dynamic Range Video Compression

On Verifying Complex Properties using Symbolic Shape
Analysis

Output-Sensitive Autocompletion Search

Division-Free Computation of Subresultants Using
Bezout Matrices

Snap Rounding of Bézier Curves

Power Assignment Problems in Wireless
Communication

Automated Retraining Methods for Document
Classification and their Parameter Tuning

An Emperical Model for Heterogeneous Translucent
Objects

Photometric Calibration of High Dynamic Range
Cameras

Joint Motion and Reflectance Capture for Creating
Relightable 3D Videos

Analysis and Design of Discrete Normals and
Curvatures

Sparse Meshing of Uncertain and Noisy Surface
Scattered Data

Reflectance from Images: A Model-Based Approach for
Human Faces

A Framework of Refutational Theorem Proving for
Saturation-Based Decision Procedures

Using Resolution as a Decision Procedure
Bounded Model Checking of Pointer Programs
Bottleneck Behavior in CNF Formulas

Cycle Bases of Graphs and Sampled Manifolds

A Faster Algorithm for Computing a Longest Common
Increasing Subsequence

Improved Algorithms for All-Pairs Approximate
Shortest Paths in Weighted Graphs

Reachability Substitutes for Planar Digraphs
Rank-Maximal through Maximum Weight Matchings

Axisymmetric Reconstruction and 3D Visualization of
Bipolar Planetary Nebulae

Automatic Proof of Strong Secrecy for Security
Protocols

