
SOFIE: A Self-Organizing
Framework for Information

Extraction

Fabian M. Suchanek, Mauro Sozio,
Gerhard Weikum

MPI–I–2008–5-004 November 2008

Authors’ Addresses

Fabian M. Suchanek
Max-Planck-Institute for Computer Science
Campus E1 4
66123 Saarbrücken
Germany

Mauro Sozio
Max-Planck-Institute for Computer Science
Campus E1 4
66123 Saarbrücken
Germany

Gerhard Weikum
Max-Planck-Institute for Computer Science
Campus E1 4
66123 Saarbrücken
Germany

Abstract

This paper presents SOFIE, a system for automated ontology extension.
SOFIE can parse natural language documents, extract ontological facts from
them and link the facts into an ontology. SOFIE uses logical reasoning on
the existing knowledge and on the new knowledge in order to disambiguate
words to their most probable meaning, to reason on the meaning of text
patterns and to take into account world knowledge axioms. This allows
SOFIE to check the plausibility of hypotheses and to avoid inconsistencies
with the ontology. The framework of SOFIE unites the paradigms of pattern
matching, word sense disambiguation and ontological reasoning in one unified
model. Our experiments show that SOFIE delivers near-perfect output, even
from unstructured Internet documents.

Keywords

Ontologies, Information Extraction, YAGO, Reasoning

Contents

1 Introduction 3
1.1 Background and Motivation 3
1.2 Example Scenario . 4
1.3 Contribution . 4

2 Related Work 6

3 Model 9
3.1 Statements . 9
3.2 Rules . 12
3.3 MAX SAT Model . 15

4 Implementation 20
4.1 Pattern Extraction . 20
4.2 Weighted MAX SAT Algorithm 21
4.3 Putting Everything Together 27

5 Experiments 29
5.1 Semi-Structured Sources . 29

5.1.1 Controlled Experiment 29
5.1.2 Large-Scale Experiment 31

5.2 Unstructured Web Sources . 32
5.2.1 Controlled Experiment 32
5.2.2 Large-Scale Experiment 33

5.3 Comparison of MAX SAT Algorithms 34

6 Conclusion 36

A Approximation Guarantee of FMS 37

B Simple MAX SAT Algorithm 39

1

C Safe Variables 41

D Approximation Guarantee of FMS∗ 44

2

1 Introduction

1.1 Background and Motivation

Recently, several projects, such as YAGO [37, 38], Kylin/KOG [42, 43], and
DBpedia [4], have successfully used Information Extraction (IE) methods
for constructing large ontologies. They leveraged high-quality hand-crafted
sources with latent knowledge, most notably, Wikipedia, for collecting in-
dividual entities and facts, and combined these results with a taxonomical
hierarchy like WordNet [18], or SUMO [26, 14]. The focus has been on
exploiting semi-structured components in Wikipedia like infoboxes and the
category system, and free-text-based IE has been used only in an auxiliary
role. The resulting ontologies contain millions of entities and tens of millions
of facts (i.e., instances of relations between entities), and are organized in a
consistent manner by a transitive and acyclic subclass relation. Moreover,
empirical assessment has shown that these approaches have achieved an ac-
curacy above 95 percent; so they are close to the best hand-crafted knowledge
bases (which may also include false facts because of human mistakes).

Further expanding such automatically compiled ontologies and maintain-
ing them as knowledge keeps evolving, would be a natural next stage but
faces formidable challenges. Wikipedia’s semi-structured knowledge is huge
but limited; for broader coverage, natural-language text sources, such as
news articles, biographies, scientific publications, and also the full text of
Wikipedia articles must be brought into scope. But so far even the best IE
methods have typically achieved only 80 percent accuracy (or less) in such
settings. While this may be good enough for text-analytic applications, the
error rate is unacceptable for an ontological knowledge base. The key idea
to overcome this dilemma, pursued in this paper, is to leverage the existing
ontology for its own growth: use trusted facts as a basis for generating good
text patterns that can guide the free-text IE, and scrutinize the resulting hy-
potheses with regard to their consistency with the already known facts. This
will allow extracting ontological facts of high quality even from unstructured

3

text documents.

1.2 Example Scenario

Assume that a knowledge-gathering system encounters the following sen-
tence:

Einstein attended secondary school in Germany.

Knowing that “Einstein” is the family name of Albert Einstein and knowing
that Albert Einstein was born in Germany, the system might deduce that “X

attended secondary school in Y” is a good indicator of X being born in Y . Now
imagine the system finds the sentence

Elvis attended secondary school in Memphis.

Many people have called themselves “Elvis”. In the present case, assume that
the context indicates that Elvis Presley is meant. But the system already
knows (from the facts it has already gathered) that Elvis Presley was born in
the State of Mississippi. Knowing that a person can only be born in a single
location and knowing that Memphis is not located in Mississippi, the system
concludes that the pattern “X attended secondary school in Y” cannot mean that
X was born in Y . Re-considering the first sentence, it finds that “Einstein”
could have meant Hermann Einstein instead. Hermann was the father of
Albert Einstein. Knowing that Hermann went to school in Germany, the
system figures out that the pattern “X attended secondary school in Y” rather
indicates that someone went to school in some place. This, in turn, makes it
deduce that Elvis went to school in Memphis.1

1.3 Contribution

The example scenario shows that extracting new facts that are consistent
with an existing ontology entails several, highly intertwined problems:

Pattern selection: Facts are extracted based on linguistic patterns as
positive evidence. The accuracy of pattern-based IE critically depends on
having a variety of good patterns, and can be further boosted by also having
counter-patterns for pruning false hypotheses. Finding strongly indicative
positive and negative patterns is a key task of the IE process itself.

1This is actually true. Albert Einstein went to secondary school in Switzerland, not
Germany.

4

Entity disambiguation: Text-based IE recognizes words or phrases
as indicators of named entities, but faces ambiguous choices in many cases,
e.g., “Paris” denoting either the French capital or Paris in Texas. With many
location names, companies, or product names, this is a difficult task by itself.
As part of the IE process, mistakes in this step may mislead and degrade the
entire process.

Consistency checking: Testing the plausibility of new hypotheses by
checking their consistency with an existing ontology is a potentially powerful
means for eliminating false results. This issue has been studied for integrating
several ontologies (e.g., [40]), but this paper’s setting is very different by
comparing a large set of IE-provided noisy candidates against a trusted core
of facts. A conservative solution would be straightforward; however, the
difficulty lies in achieving decent recall and identifying the best “survivors”
from the candidate pool.

This paper presents a new approach to these problems. Rather than
addressing each of them separately, we provide a unified model for ontology-
oriented IE that solves all three issues simultaneously. To this end, we cast
known facts, hypotheses for new facts, word-to-entity mappings, gathered
sets of patterns, and a configurable set of semantic constraints into a unified
framework of logical clauses. Then, all three problems together can be seen
as a Weighted MAX SAT problem, i.e., as the task of identifying a maximal
set of consistent clauses. The approach is fully implemented in a system for
knowledge gathering and ontology maintenance, coined SOFIE. The salient
properties of SOFIE and novel research contributions of this paper are the
following:

• a new model for consistent growth of a large ontology;

• a unified method for pattern selection, entity disambiguation, consis-
tency checking, and eventually the identification of the best hypotheses
for new facts;

• an efficient algorithm for the resulting Weighted MAX SAT problem
that is tailored to the specific task of ontology-centric IE;

• experiments with a variety of real-life textual and semi-structured sources
to demonstrate the scalability and high accuracy of the approach.

The rest of the paper is organized as follows: Section 2 discusses related
work, Sections 3 and 4 present the SOFIE model and its implementation,
and finally, Section 5 discusses experiments.

5

2 Related Work

Fact Gathering. Unlike manual approaches such as WordNet [18], Cyc [23]
or SUMO [26], Information extraction (IE) approaches seek to extract facts
from text documents automatically. They encompass a wide variety of mod-
els and methods, including linguistic, learning, and rule-based approaches
[32]. The methods often start with a given set of target relations and aim to
collect as many of their instances – the facts – as possible. These facts can
serve for the purposes of ontology population or ontology learning.

DIPRE [10], Snowball [2], and KnowItAll [17] are among the most promi-
nent projects of this kind. They harness manually specified seed facts of a
given relation (e.g., a small number of company-city pairs for a headquarter
relation) to find textual patterns that could possibly express the relation,
use statistics to identify the best patterns, and then find new facts from oc-
currences of these patterns. Leila [36] has further improved this method
by using both examples and counterexamples as seeds, in order to generate
more robust patterns. This notion of counterexamples is also adopted by
SOFIE. Blohm et al. [9, 8] provide enhanced methods for selecting the best
patterns.

TextRunner [5] pursues the even more ambitious goal of extracting all
instances of all meaningful relations from Web pages, a paradigm referred to
as Open IE [16]. However, all of these projects merely extract non-canonical
facts. This means (1) that they do not disambiguate words to entities and (2)
that they may extract no well-defined relations (but, e.g., verbal phrases).
In contrast, SOFIE delivers canonicalized output that can be directly used
in a formal ontology.

Wikipedia-centric Approaches. Recently, a number of projects have ap-
plied IE with specific focus on Wikipedia: DBpedia [4], work by Ponzetto
et al. [27], Kylin/KOG [42, 43], and our own YAGO project [37]. While
Ponzetto et al. focus on extracting a taxonomic hierarchy from Wikipedia,

6

DBpedia and YAGO construct full-fledged ontologies from the semi-structured
parts of Wikipedia: infoboxes and the category system. Our new approach in
the current paper, on the other hand, can process the full body of Wikipedia
articles and is not tied at all to Wikipedia but can handle arbitrary Web
pages and natural-language texts.

Wang et al [41] have presented an approach called Positive-Only Re-
lation Extraction (PORE). PORE is a holistic pattern matching approach,
which has been implemented for relation-instance extraction from Wikipedia.
PORE does not incorporate world knowledge, which would be necessary for
ontology building and extension.

Probably the most advanced solutions along these lines are currently pro-
vided by Kylin and KOG. Whenever an infobox type includes an attribute
in some articles but this attribute has no value for a given article, Kylin
analyzes the full text of the article to derive the most likely value. KOG
(Kylin Ontology Generator) builds on Kylin’s output, unifies different at-
tribute names, derives type signatures, and (like YAGO) maps the entities
onto the WordNet taxonomy, using Markov Logic Networks [31]. KOG can
even discover new relation types. It builds on the class system of YAGO
and DBpedia (along with the entities in each class) to train its learning al-
gorithms for generating the subsumption graph between classes. Both Kylin
and KOG are customized and optimized for Wikipedia articles; fact gathering
from arbitrary Web sources has not been an objective.

Declarative IE. Shen et al. [33] propose a framework for declarative IE,
based on Datalog. By encapsulating the non-declarative code into predicates,
the framework provides a clean model for rule-based information extraction
and allows consistency constraints and checks against existing facts (e.g.,
for entity resolution). The information extraction methods of the system,
however, have to be designed manually. The approach has been successfully
applied for building and maintaining community portals like DBlife [15];
universal ontologies are not in the scope of this work.

Reiss et al. [30] pursue a declarative approach that is similar to that
of [33], but use database-style algebraic operator trees rather than Datalog.
The approach greatly simplifies the manageability of large-scale IE tasks, but
does not address any ontology-centered issues.

A fundamental approach that combines probabilistic graphical models
with first-order logic is Markov Logic Networks [31]. Poon et al. [28] use
them for simultaneously segmenting bibliographic entries and reconciling the
involved entities (authors). In Markov Logic, first-order formulas that ex-
press properties of patterns and hypotheses are grounded and translated
into a Markov random field that defines a clique-factorized joint probabil-

7

ity distribution for the entirety of hypotheses. Inferencing procedures over
such structures can compute probabilities for the truth of the various hy-
potheses. Our approach has algorithmic building blocks in common with
[28], most notably, using – different – variations of SAT solvers, but follows
a very different architectural paradigm. SOFIE aims to identify the best
subset of hypotheses that is consistent with the existing ontology and its
contraints, rather than performing general-purpose probabilistic inferences
on them. Moreoever, SOFIE is particularly geared for extracting instances
of binary relations, rather than segmenting token sequences.

Ontology Integration and Extension. The goal of the current paper is to
provide means for automatically extending an ontology with new facts found
by IE methods while preserving the ontology’s consistency. This setting
resembles the issue of ontology integration: merging two or more ontologies
in a consistent manner [34, 40]. However, our setting is much more difficult,
because the new facts are extracted from highly noisy text and Web sources
rather than from a second, already formalized and clean, ontology.

Boer et al. [13] present an approach for extending a given ontology,
based on a co-occurrence analysis of entities in Web documents. However,
they rely on the existence of documents that list all instances of a certain
relation. While these lists exist for some relations, they do not exist for many
others; this limits the applicability of the approach.

Banko et al. pursue a similar goal called Lifelong Learning [6], imple-
mented in the Alice system. Alice is based on a core ontology and aims
to extend it by new facts. The approach is based on statistical methods
only and has not been tried out with individual entities. Moreover, it lacks
logical reasoning capabilities that are crucial for ensuring the consistency of
the automatically extended ontology.

We believe that SOFIE is the very first approach to the ontology-extension
problem that integrates logical constraint checking with pattern-based IE,
and is thus able to provide ontological facts about disambiguated entities in
canonical form.

8

3 Model

SOFIE is designed to extend an existing ontology. Hence, in the following,
we assume a given ontology. For our experiments, we used YAGO, but
our approach is open to any ontology. SOFIE extracts new information
from text documents. Hence, in the following, we assume a given corpus of
documents. In our experiments, we used documents downloaded from the
Internet, but any other source could be chosen. SOFIE casts the information
extraction into a logical reasoning problem. We will first introduce the notion
of statements and then proceed to the notion of rules. Finally, we will show
how the model can be cast into a Weighted MAX SAT problem.

3.1 Statements

Wics. As a knowledge gathering system, SOFIE has to address the prob-
lem of polysemy. In general, most words have several meanings. The word
“Java”, for example, can refer to the programming language or to the In-
donesian island. In a given context, however, a word is very likely to have
only one meaning [19]. For example, the occurrences of the word “Java”
in one Web document are likely to refer either all to the island or all to
the programming language (unless the document is about the problems of
polysemy). This gives rise to the following definition:

Definition 1: [Word in Context]
A word in context (wic) is a pair of a word and a context.

For us, the context of a word will simply be the document in which the
word appears. Thus, a wic is essentially a pair of a word and a document
identifier1. We use the notation word@doc. For example, we identify the
word “Java” in the document D8 by

1A wic is related to a KWIC (keyword in context), also known as a concordance.
A concordance is a word together with an ordered vector of the immediate surrounding

9

Java@D8

This way, the word “Java” in the document about Indonesian islands forms
one wic, whereas the word “Java” in another document (be it about islands
or programming languages) forms another wic. Once one occurrence of a wic
has been disambiguated, it is assumed that all other occurrences of the wic
are disambiguated as well. For example, once it has been figured out that
document D8 is about programming languages, all occurrences of Java@D8
will be assumed to refer to the programming language. When talking about
patterns in text documents, we will henceforth be precise and say that a pat-
tern appears with two wics instead of two words. Following the all-embracing
definition of entities, wics are also entities.

Facts and Hypotheses. For SOFIE, we will deal with relations of arbitrary
arity. Hence we use a prefix notation for statements. Each statement can
have an associated truth value of 1 or 0. We denote the truth value of a
statement in square brackets:

bornIn(AlbertEinstein, Ulm)[1]

A statement with truth value 1 is called a fact. A statement with an unknown
truth value is called a hypothesis. We will now see how both the ontology
and the corpus can be interpreted as sources of facts.

Ontological Facts. SOFIE is designed to extend an existing ontology. We
consider the ontology a set of facts. In the case of YAGO, this looks as follows:
Technically speaking, the YAGO ontology is a reification graph. With our
definitions, however, YAGO can also be interpreted as a set of facts. Here is
an excerpt of YAGO in this light:

bornIn(AlbertEinstein, Ulm)[1]
bornOnDate(AlbertEinstein, 1879-03-14)[1]
...

This representation can also be enhanced by including the fact identifier of
each fact as an additional argument. This would allow representing the n-ary
relations of YAGO. For simplicity, however, we limit ourselves to the binary
facts in YAGO for the time being.

words [24]. Thus, two occurrences of the same word in one document may form different
concordances, but only one wic.

10

Textual Facts. SOFIE will extract textual information from the corpus.
This information also takes the form of facts. One type of facts makes as-
sertions about the number of times that a pattern occurred with two wics.
For example, we might find that the pattern “X went to school in Y” occurred
with the wics Einstein@D29 and Germany@D29:

patternOcc(“X went to school in Y”, Einstein@D29, Ger-
many@D29)[1]

Another type of facts can state how likely it is from a linguistic point of view
that a wic refers to a certain entity. We call this likeliness value the disam-
biguation prior. We will discuss later how the disambiguation prior can be
computed. Here, we just give an example for facts about the disambiguation
prior of the wic Elvis@D29:

disambPrior(Elvis@D29, ElvisPresley, 0.8)[1]
disambPrior(Elvis@D29, ElvisCostello, 0.2)[1]

Other types of textual facts can be imagined. For example, the system could
produce facts that tell which wic occurred in which document or which wic
occurred how often with which other wic.

Hypotheses. Based on the ontological facts and the textual facts, SOFIE
will form hypotheses. These hypotheses can concern the disambiguation of
wics. For example, SOFIE can hypothesize that Java@D8 should be disam-
biguated as the programming language Java:

disambiguateAs(Java@D8, JavaProgrammingLanguage)[?]

We use a question mark to indicate the unknown truth value of the statement.
SOFIE will also hypothesize about whether a certain pattern expresses a
certain relation:

expresses(“X was born in Y”, bornInLocation)[?]

SOFIE also forms hypotheses about potential new facts. For example, SOFIE
could establish the hypothesis that Java was developed by Microsoft:

developed(Microsoft, JavaProgrammingLanguage)[?]

Unifying Framework. By casting both the ontology and the corpus anal-
ysis into statements, SOFIE unifies the domains of ontology and information
extraction. For SOFIE, there exist only statements. SOFIE will try to figure
out which hypotheses are likely to be true. For this purpose, SOFIE uses
rules.

11

3.2 Rules

Literals and Rules. SOFIE will use logical background knowledge to figure
out which hypotheses are likely to be true. This knowledge takes the from
of rules. Rules are based on literals :

Definition 2: [Literal]
A literal is a statement that can have placeholders for the relation
or some of the entities.

Here is an example of a literal with uppercase strings as placeholders:

bornIn(X, Ulm)

Now, a rule is basically a propositional formula over literals:

Definition 3: [Rule]
A rule over a set of literals L is one of the following

• an element of L

• an expression of the form ¬R, where R is a rule over L

• an expression of the form (R1 � R2), where R1 and R2 are
rules over L and � ∈ {∧,∨,⇒,⇔}.

As usual, we omit the outermost brackets and brackets around ∧-expressions.
With these conventions, the following line is a rule stating that whoever is
born in Ulm is not born in Timbuktu:

bornIn(X, Ulm) ⇒ ¬ bornIn(X, Timbuktu)

As in Prolog and Datalog, all placeholders are implicitly universally quan-
tified. We postpone the discussion of the formal semantics of the rules to
Section 3.3 and stay with an intuitive understanding of rules for the moment.

Grounding. The relation between statements and literals is as follows:

Definition 4: [Ground Instances]
A ground instance of a literal is a statement obtained by replacing
the placeholders by entities. A ground instance of a rule is a rule
obtained by replacing all placeholders by entities. All occurrences
of one placeholder must be replaced by the same entity.

For example, the following is a ground instance of the rule mentioned above:

12

bornIn(AlbertEinstein, Ulm) ⇒ ¬ bornIn(AlbertEinstein, Timbuktu)

SOFIE’s Rules. We have developed a number of rules for SOFIE. One of
the rules states that a functional relation should not have more than one
second argument for a given first argument:

R(X, Y)
∧ type(R, function)
∧ different(Y, Z)
⇒ ¬ R(X, Z)

The rule guarantees, for example, that people are not born in more than
one place. Since disambiguatedAs is also a functional relation, the rule also
guarantees that one wic is disambiguated to at most one entity. In some
sense, this rule is already employed during the construction of YAGO.

There are also other rules, some of which concern the textual facts. One
rule says that if pattern P occurs with entities x and y and if there is a relation
r, such that r(x, y), then P expresses r. For example, if the pattern “X was

born in Y” appears with Albert Einstein and his true location of birth, Ulm,
then it is likely that “X was born in Y” expresses the relation bornInLocation.
A naive formulation of this rule looks as follows:

patternOcc(P, X, Y)
∧ R(X, Y)
⇒ expresses(P, R)

We need to take into account, however, that patterns hold between wics,
whereas facts hold between entities. Our model allows us to incorporate this
constraint in an elegant way:

patternOcc(P, WX, WY)
∧ disambiguatedAs(WX, X)
∧ disambiguatedAs(WY, Y)
∧ R(X, Y)
⇒ expresses(P, R)

There exists also a dual version of this rule: If the pattern expresses the
relation r, and the pattern occurs with two entities x and y, and x and y are
of the correct types, then r(x, y):

13

patternOcc(P, WX, WY)
∧ disambiguatedAs(WX, X)
∧ disambiguatedAs(WY, Y)
∧ domain(R, DOM)
∧ type(X, DOM)
∧ range(R, RAN)
∧ type(Y, RAN)
∧ expresses(P, R)
⇒ R(X, Y)

By this rule, we are making a design choice: The pattern comes into play only
if the two entities are of the correct type. Thus, the very same pattern can
express different relations if it appears with different types. We will see in
the experiments (Section 5) how this works in practice. Another rule makes
sure that the disambiguation prior influences the choice of disambiguation:

disambPrior(W, X, N)
⇒ disambiguatedAs(W, X)

Softness. In general, it is impossible to satisfy all of the these rules simulta-
neously. For example, as soon as there exist two disambiguation priors for the
same wic, both will enforce a certain disambiguation. Two disambiguations,
however, contradict the functional constraint of disambiguatedAs. This is
why certain rules will have to be violated. Some rules are less important
than others. For example, if a strong disambiguation prior requires a wic to
be disambiguated as X, while a weaker prior desires Y , then X should be
given preference – unless other constraints favor Y . This is why a sophisti-
cated approach is needed to compute the most likely hypotheses. Before the
next section discusses such a sophisticated approach, Figure 1 summarizes
our notions again.

14

Ontological Facts Textual Facts Hypotheses

bornIn(Einstein,
Ulm)[1]

...
patternOcc(...)[1]
disambPrior(...)[1]
...

expresses(
“X born in Y”,
bornIn)[?]

developed(
Microsoft,
JavaProg.)[?]

...

Rules

R(X, Y) ∧ type(R, function) ∧ different(Y, Z) ⇒ ¬ R(X, Z)
...

Figure 1: Statements and Rules

3.3 MAX SAT Model

Design Alternatives. Abstractly speaking, SOFIE aims to find the hy-
potheses that should be accepted as true so that a maximum number of
rules is satisfied. Different approaches are conceivable. We sketch each of
them informally before embarking on a formal definition of our approach.

• The problem can be cast into a rule-based setting, for example into a
Datalog program (as it is done in [33]). However, this would not allow
violating certain rules – which is a necessary desideratum.

• The problem can be cast into a maximum satisfiability problem (MAX
SAT problem). The MAX SAT problem is the task of, given a set of
boolean variables and a set of propositional logic formulae, assigning
truth values to the variables so that the number of satisfied formulae
is maximized. In our setting, the variables would be the hypotheses
and the rules would be transformed to propositional formulae on them.
This view would allow violating some rules, but it would not allow
weighting them.

15

• The problem can be cast into a Markov Logic Network [31]. A Markov
Logic Network is concerned with a set of weighted first order logic for-
mulae f1, ..., fn over literals. For each formula fi, the Markov Logic Net-
work defines a function φi. φi takes as argument a possible state of the
world, i.e., a possible assignment of truth values to the ground instances
of the literals (e.g. {bornIn(Einstein, Ulm)=true, bornIn(Einstein,
Timbuktu)=false,...})2. φi returns a real value that grows monoton-
ically with the number of ground instances of fi that are satisfied by
the assignment. It can be shown that the product

∏
i φi defines a prob-

ability distribution over the possible states of the world. In particular,
states that satisfy a higher number of formulae have a higher proba-
bility. Markov Logic Networks are very powerful and could be used to
model our problem. However, such a model would lift the problem to
a more complex level (that of inferring probabilities), usually involving
heavy machinery. Furthermore, Markov Logic Networks might not be
able to deal efficiently with the millions of facts that YAGO provides.

We chose a fourth option, which is simple, yet powerful enough to model
our problem: the Weighted MAXimum satisfiability setting (Weighted MAX
SAT).3

Weighted MAX SAT. The Weighted MAX SAT problem is based on the
notion of clauses:

Definition 5: [Clause]
A clause C over a set of variables X consists of

• a positive literal set c1 = {x1
1, . . . , x

1
n} ⊆ X

• a negative literal set c0 = {x0
1, . . . , x

0
m} ⊆ X

We denote C by

(x1
1 ∨ x1

2 ∨ . . . ∨ x1
n ∨ ¬x0

1 ∨ ¬x0
2 ∨ . . . ∨ ¬x0

m)

A weighted clause over X is a clause C over X with an associated
weight w(C) ∈ R+.

2See [31] for a more precise definition of literals, ground instances and formulae and
for the necessary assumptions.

3In some sense, this problem is a special case of Markov Logic Networks, as computing
the state of maximum likelihood in these networks is nothing else than solving a Weighted
MAX SAT problem.

16

Given a clause C over a set X of variables, we say that a variable x ∈ X
appears with polarity p in C, if x ∈ Cp. Consider an example: If X =
{w, x, y, z} is a set of variables, then the following is a clause over X :

(w ∨ x ∨ ¬y ∨ ¬z)

In this clause, w and x appear with positive polarity and y and z appear with
negative polarity. Intuitively, the clause says that one of the variables w, x
should be assigned a truth value of 1, while one of the variables y, z should
be assigned a truth value of 0. This intuition is formalized as follows:

Definition 6: [Assignment, Partial Assignment, Satisfying Assignment]
An assignment for a set X of variables is a function v : X → {0, 1}.
A partial assignment for X is a partial function v : X ⇀ {0, 1}. A
(partial) assignment for X satisfies a clause C over X , if there is
an x ∈ X , such that x ∈ Cv(x).

In the example, an assignment v with v(w) = 1, v(x) = 1, v(y) = 0, v(z) = 1
would be a satisfying assignment. We use the notation ¬t = 1− t for truth
values t. Now we are ready to define the Weighted MAX SAT problem:

Definition 7: [Weighted MAX SAT]
Given a set C of weighted clauses over a set X of variables, the
Weighted MAX SAT problem is the task of finding an assignment v
for X that maximizes the sum of the weights of the satisfied clauses:∑

c ∈ C is satisfied in v

w(c)

An assignment that maximizes the sum of the satisfied clauses in a Weighted
MAX SAT problem is called a solution of the problem.

SOFIE. Intuitively speaking, the problem that SOFIE faces is, given a set
of facts, a set of hypotheses and a set of rules, finding truth values for the hy-
potheses so that a maximum number of rules is satisfied. Now, this problem
can be cast into a Weighted MAX SAT problem. In the following, we assume
a finite set of rules. Furthermore, we assume a finite set of ontological facts
and a finite set of textual facts. These assumptions implicitly define a finite
set of entities. We proceed as follows:

1. Every rule is syntactically replaced by all of its grounded instances.
Since the set of entities is finite, the set of ground instances is finite as
well.

17

2. Each ground instance is transformed to one or multiple clauses as usual
in propositional logic. Here, we give a pattern that captures all rules
introduced in Section 3.2:

p1 ∧ . . . ∧ pn ⇒ c (¬p1 ∨ . . . ∨ ¬pn ∨ c)

3. The set of all statements that appear in the clauses becomes the set
of variables. Note that these statements will include not only the on-
tological facts and the textual facts, but also all hypotheses that the
rules construct from them.

These steps leave us with a set of variables and a set of clauses. Figure 2
exemplifies this process:

Rule: bornIn(X, Ulm) ⇒ ¬ bornIn(X, Timbuktu)

Ground instances: bornIn(Einstein, Ulm) ⇒ ¬ bornIn(Einstein, Timbuktu)
bornIn(Microsoft, Ulm) ⇒ ¬ bornIn(Microsoft, Timbuktu)
...

Clauses: (¬ bornIn(Einstein, Ulm) ∨ ¬ bornIn(Einstein, Timbuktu))
(¬ bornIn(Microsoft, Ulm) ∨ ¬ bornIn(Microsoft, Timbuktu))
...︸ ︷︷ ︸

Variables: bornIn(Einstein, Ulm), bornIn(Einstein, Timbuktu),
bornIn(Microsoft, Ulm), bornIn(Microsoft, Timbuktu),
...

Figure 2: Conversion to Weighted MAX SAT

Weighting. We partition the clauses into two sets as follows:

1. The clauses about the disambiguation of wics and the quality of pat-
terns may possibly be violated. These are the clauses that contain
the relation patternOcc or the relation disambPrior (see again Section
3.2). We assign them a fixed weight w. For the disambPrior facts, we
multiply w with the disambiguation prior, so that the prior analysis is
reflected in the weight.

18

2. The other clauses should not be violated. We assign them a fixed weight
W . W is chosen so large that even repeated violation (say, hundred-
fold) of a clause with weight w does not sum up to the violation of a
clause with weight W .

This way, every clause has a weight and we have transformed the problem
into a Weighted MAX SAT problem.

Ockham’s Razor. The optimal solution of the Weighted MAX SAT prob-
lem shall reflect the optimal assignment of truth values to the hypotheses. In
practice, however, there are often multiple optimal solutions. Among these,
we prefer the solution that makes the least number of hypotheses true4. We
encode this desideratum in our Weighted MAX SAT problem by adding a
clause (¬h) with a small weight ε for each hypothesis h. This makes sure
that no hypothesis is made true if there is no evidence for it. The exact value
for ε is not relevant. Given two solutions of otherwise equal weight, ε just
serves to choose the one that makes the least number of hypotheses true.

4This principle is known as Ockham’s Razor, after the 14th-century English logician
William of Ockham. In our setting (as in reality), omitting this principle leads to random
hypotheses being taken for true.

19

4 Implementation

SOFIE’s main components are the pattern-extraction engine and the Weighted
MAX SAT solver. They are described in the next two subsections, followed
by an explanation of how everything is put together into the overall SOFIE
system.

4.1 Pattern Extraction

Pattern Occurrences. The pattern extraction component takes a docu-
ment and produces all patterns that appear between any two (strings that
may denote) entities. First, the system tokenizes the document. The tok-
enization identifies (normalized) numbers, (normalized) dates and, in Wikipedia
articles, also Wikipedia hyperlinks. Furthermore, the tokenization employs
lists (such as a list of stop words and a list of nationalities) to identify known
words. Last, the tokenization identifies strings that must be person names.1

The output of this procedure is a list of tokens. Next, “interesting” to-
kens are identified in the list of tokens. Since we are primarily concerned
with information about individuals, all numbers, dates and proper names
are considered “interesting”. Whenever two interesting tokens appear within
a window of a certain width, the system generates a pattern occurrence fact.
More precisely, assume x and y are interesting words and appear in docu-
ment d, separated by the sequence of tokens p. Then the following fact is
produced:

patternOcc(p, x@d, y@d)[1]

1The preprocessing tools are available at http://mpii.de/~suchanek/downloads/
javatools.

20

http://mpii.de/~suchanek/downloads/javatools
http://mpii.de/~suchanek/downloads/javatools

Tokenizing Wikipedia. Wikipedia is a special type of corpus, because it
provides both unstructured text and structured parts like infoboxes, lists,
etc. Infoboxes and lists of categories are tokenized as follows. The article
entity (given by the title of the article) is inserted before each attribute name
and before each category name. For example, the part “born in = Ulm” in
the infobox about Albert Einstein is tokenized as “Albert Einstein born in =

Ulm”. By this minimal modification, these structured parts become largely
accessible to SOFIE.

Disambiguation. Our system produces pattern occurrences with wics.
Each wic can have several meanings. The system looks up the potential
meanings in the ontology and produces a disambiguation prior for each of
them. For example, suppose word w occurs in document d and w refers to
the entities e1, . . . , en in the ontology. Then, the system produces a fact of
the following form for each ei:

disambPrior(w@d, ei, l(d, w, ei))[1]

Here, l(d, w, ei) is a real value that expresses the likelihood that w means
ei in document d. There are numerous approaches for estimating this value
[3]. We use a simple but effective estimation, known as the bag of words
approach: Consider the set of words in d, and for each ei, consider the set
of entities connected to ei in the ontology. We compute the intersection of
these two sets and set l(d, w, ei) to the size of the intersection. This value
increases with the amount of evidence that is present in d for the meaning
ei. We normalize all l(d, w, ei), i = 1 . . . n to a sum of 1.

We observe that this full disambiguation procedure is not always nec-
essary. First, all literals in the document (such as dates) are already nor-
malized. Hence, they always refer to themselves. Second, some words have
only one meaning. For these tokens, our system produces no disambiguation
prior. Instead, it produces pattern occurrences that contain the respective
entity directly instead of the wic.

4.2 Weighted MAX SAT Algorithm

Prior Assignments. In our Weighted MAX SAT problem, we have vari-
ables that correspond to hypotheses (such as developed(Microsoft, JavaPro-
grammingLanguage)) and variables that correspond to facts (namely ontolog-
ical facts and textual facts). A solution to the Weighted MAX SAT problem

21

should assign the truth value 1 to all facts. Therefore, we assign the value
1 to all textual facts and all ontological facts a priori. This assumes that
the ontology is consistent with the rules. In case of YAGO, this is given by
the construction methods. Furthermore, we will assume that the ontology is
complete on the type and means facts. In case of YAGO, this assumption
is acceptable, because all entities in YAGO have type and means relations.
If type and means are fixed, this allows certain simplifications, such as an a
priori computation of the disambiguation prior (as explained in the previous
section). This leaves us with a partial assignment, which already assigns
truth values to a large number of statements.

Approximation. The Weighted MAX SAT problem is NP-hard [20]2. This
means that it is impractical to find an optimal solution for large instances
of the problem, as it is the case in our setting. Some special cases of the
Weighted MAX SAT problem can be solved in polynomial time [21, 29].
However, none of them applies in our setting. Hence, we resort to using an ap-
proximation algorithm. An approximation algorithm for the Weighted MAX
SAT problem is an algorithm that, given a Weighted MAX SAT problem,
produces an assignment for its variables that is not necessarily an (optimal)
solution. The quality of that assignment is assessed by the approximation
ratio:

Definition 8: [Approximation Ratio of an Assignment]
Given a Weighted MAX SAT problem in the form of a set X of
variables and a set C of weighted clauses, and given a solution vo,
the approximation ratio of another assignment v for X is the ratio∑

c ∈ C
c satisfied in v

w(c) /
∑

c ∈ C
c satisfied in vo

w(c)

An algorithm for the Weighted MAX SAT problem is said to have an ap-
proximation guarantee of r ∈ [0, 1], if its output has an approximation ratio
greater than or equal to r for all Weighted MAX SAT problems. Many al-
gorithms have only a weak approximation guarantee, but perform better in
practice.

2The original SAT problem is not NP-hard if there are at most two literals per clause.
The weighted and unWeighted MAX SAT problems, however, are NP-hard even when
each clause has no more than two literals.

22

Approximation Algorithms. The Weighted MAX SAT problem is an
active area of research and numerous approximate algorithms have been pro-
posed.3 In some special cases of the Weighted MAX SAT problem, the
optimal solution can be approximated with a high approximation guaran-
tee [39, 1]. However, our case is again too general. Out of the vast array
of available methods, we focus on greedy algorithms here. This choice has
two reasons: First, these methods are extremely simple and run in linear or
quadratic time (in the total size of the clauses). Second, they will allow us
to incorporate a resolution-like strategy in a straightforward way.

Greedy Algorithms. We call an algorithm greedy, if it assigns the variables
incrementally without ever undoing its decision. One of the most prominent
greedy algorithms is Johnson’s Algorithm [22]. It is particularly simple and
has been shown to have an approximation guarantee of 2/3 [11]. However, the
algorithm cannot produce assignments with an approximation ratio greater
than 2/3 if the problem has the following shape [45]: For some integer k, the
set of variables is X = {x1, . . . , x3k} and the set of clauses is

x3i+1 ∨ x3i+2

x3i+1 ∨ x3i+3

¬x3i+1 for i = 0, . . . , k − 1

This, however, is exactly the shape of clauses induced by the rule for func-
tional relations (in negation see Section 3.2). This means that Johnson’s
Algorithm cannot solve SOFIE’s Weighted MAX SAT problem optimally, if
instances of functional relations appear. Since already the relation disam-
biguatedAs falls into this category, Johnson’s Algorithm is less well suited
for our problem. Hence, we consider a different greedy algorithm here.

FMS Algorithm. We introduce the Functional Max Sat Algorithm here,
which is aimed at clauses induced by functional relations. The algorithm
uses unit clauses :

Definition 9: [Unit Clause]
Given a set of variables X , a partial assignment v on X and a set of
clauses C on X , a unit clause is a clause c ∈ C that is not satisfied
in v and that contains exactly one unassigned literal.

Strictly speaking, a unit clause is only defined with respect to an assignment.
To simplify, we will occasionally not mention the assignment explicitly, when
the assignment is clear from the context. Intuitively speaking, unit clauses

3See [7] for a survey.

23

are the clauses whose satisfaction in the current partial assignment depends
only on one single variable. Our algorithm uses them as follows:

Algorithm 1: Functional Max Sat (FMS)
Input: Set of variables X

Set of weighted clauses C
Output:Assignment v for X
1 v := the empty assignment
2 FOR EACH x ∈ X
3 m0(x) :=

∑
{ w(c) | c ∈ C unit clause, x ∈ c0}

4 m1(x) :=
∑

{ w(c) | c ∈ C unit clause, x ∈ c1}
5 Q := priority queue of all x ∈ X ,

ordered by descending |m1(x)−m0(x)|
6 WHILE Q is not empty
7 x∗ := Q.dequeue()
8 v(x∗) = [m1(x∗) > m0(x∗)]
9 FOR EACH unassigned x s.t. ∃ C ∈ C : x∗ ∈ C, x ∈ C
10 recompute m0(x), m1(x), update priorities in Q

The algorithm takes as input a set of of variables X and a set of weighted
clauses C. In order to assign a truth value to a variable x, the algorithm
considers only the unit clauses in which x appears. It computes for each
variable x the sum of the weights of the unit clauses in which x appears with
negative polarity (m0(x), line 3). Analogously, it computes the weights of the
unit clauses in which x appears positive (m1(x), line 4). In case there are no
unit clauses with x, both m0(x) and m1(x) are zero. In the loop (lines 6–10),
the algorithm always picks the variable x that exhibits the largest difference
of m0(x) and m1(x), breaking ties arbitrarily (line 7). In case there are no
unit clauses at all, m0(x) = m1(x) = 0 for all x ∈ Q. In this case, an arbitrary
variable x is dequeued from Q. If m1(x) > m0(x), x is assigned the truth
value 1. Else x is assigned the truth value 0 (line 8). After the assignment,
the unit clauses in which x appeared are no longer unit clauses. However,
new unit clauses might have sprung up. Hence, all variables affected by the
assignment of x (line 9) have their values m0(x) and m1(x) recomputed. This
changes their priority in the priority queue Q, so Q has to be updated (line
10). This procedure is iterated until all variables are assigned (lines 6-10).
Assuming that all operations on the priority queue run in logarithmic time,
the algorithm runs in time O(n ·m · k · log(n)), where n is the total number
of variables in the clauses, k is the maximum number of variables per clause
and m is the maximum number of appearances of a variable. We prove in

24

the Appendix A that the FMS Algorithm has an approximation guarantee
of 1/2:

Theorem 1: [Approximation Guarantee of the FMS Algorithm]
Independent of the order in which the variables are assigned, the
FMS Algorithm has an approximation guarantee of 1/2.

One might be tempted to construct a similar greedy algorithm that simply
assigns the truth value t to a variable x, if the weight of unsatisfied clauses
where x appears with polarity t exceeds the weight of unsatisfied clauses
where x appears with polarity ¬t. We call this algorithm the Simple Algo-
rithm and discuss it in Appendix B. In summary, it would have difficulties
with the clauses in the SOFIE setting.

DUC Propagation. Once the FMS Algorithm has assigned a single vari-
able, the truth value of others might be implied by necessity. These variables
are called safe:

Definition 10: [Safe Variable]
Given a set of variables X , a partial assignment v on X and a
weighted set of clauses C on X , an unassigned variable x ∈ X is
called safe, if there exists a truth value t ∈ {0, 1} such that the
weight of all unit clauses where x appears with polarity p is larger
than the weight of all unsatisfied clauses in which x appears with
polarity ¬p:∑

c unit clause in v
x ∈ cp

w(c) ≥
∑

c unsatisfied clause in v
x ∈ c¬p

w(c)

p is called the safe truth value of x.

The following theorem [25, 44] says that safe variables can be assigned their
safe truth value without changing the weight of the best solution that can
still be obtained:

25

Theorem 2: [Safe Truth Values are Safe]
Let X be a set of variables, let v be a partial assignment on X , and
let C be a weighted set of clauses. Let x be a safe variable with
safe truth value t. Let vo ⊇ v be an assignment that extends v and
maximizes the sum of the weights of the satisfied clauses. Let v′o
be a variant of vo that assigns t to x:

v′o = vo \ {x → 1, x → 0} ∪ {x → t}

Then ∑
c ∈ C satisfied in v′o

w(c) ≥
∑

c ∈ C satisfied in vo

w(c)

We provide a proof in Appendix C. Theorem 2 gives rise to the technique of
Dominating Unit Clause Propagation:

Algorithm 2: DUC Propagation
Input: Set of variables X

Set of weighted clauses C
Partial assignment v for X

Output:Modified v
1 WHILE there exists a safe variable x ∈ X
2 v(x) := safe truth value for x

Assigning one safe variable can create new unit clauses, which can give rise
to new safe variables. Theorem 2 ensures that the safe variables can be
assigned in any order without worsening the best solution that can still be
achieved.4 In particular, the theorem ensures that if a partial assignment
is part of an optimal solution, the enlarged assignment produced by the
DUC Propagation will still be part of an optimal solution. Unlike the FMS
Algorithm, however, DUC propagation does not necessarily produce a total
assignment. Some variables may be left unassigned.

FMS Algorithm and DUC Propagation. We combine the FMS Al-
gorithm with DUC propagation by calling the DUC propagation after each
assignment (Algorithm 3).

4DUC Propagation subsumes the techniques of unit propagation and pure literal elimi-
nation employed by the Davis-Putnam-Logemann-Loveland (DPLL) algorithm [12] for the
SAT problem.

26

Algorithm 3: FMS∗

Input: Set of variables X
Set of weighted clauses C

Output:Assignment v for X
1 Run Functional MAX SAT (Alg. 1) with X , C
2 After each assignment (line 8 in Functional MAX SAT):
3 Run DUC Propagation (Alg. 2) with X , C, v
4 Remove assigned variables from Q

We prove in Appendix D that this modification does not change the approx-
imation guarantee of the algorithm:

Theorem 3: [Approximation Guarantee of the FMS∗ Algorithm]
The FMS∗ Algorithm has an approximation guarantee of 1/2.

The approximation guarantee does not improve over the approximation guar-
antee of the FMS Algorithm, because the presence of safe variables cannot
be assumed in general.

Lazy Generation of Clauses. Our algorithm works on a database repre-
sentation of the ontology. The hypotheses and the textual facts are stored
in the database as well. Since our Weighted MAX SAT problem may be
huge, we refrain from generating all clauses explicitly. Rather, we use a lazy
technique that, given a statement s, generates all clauses in which s appears
on the fly. The algorithm returns only those clauses that are not yet satis-
fied. It uses an ordering strategy, computing ground instances of the most
constraining literals first.

4.3 Putting Everything Together

SOFIE Algorithm. SOFIE operates on a given set of ontological facts –
the ontology – and a given set of documents – the corpus. It operates in large
batches, for efficiency and because the hypotheses testing is more effective
when SOFIE considers many patterns and hypotheses together.

SOFIE first parses the corpus, producing textual facts. These are then
compiled into hypotheses and mapped into clause form for the Weighted
MAX SAT solver. Then, the FMS∗ Algorithm is run, assigning truth values
to hypotheses. Afterwards, the true hypotheses can be accepted as new facts
of the ontology. This applies primarily to new ontological facts (i.e., facts

27

with relations such as bornOnDate). Going beyond the ontological facts, it
is also possible to include the new expresses facts in the ontology. Thus, the
ontology would store which pattern expresses which relation.

Now suppose that, later, SOFIE is run on a different corpus. Since the
SOFIE algorithm assigns the truth value 1 to all facts from the ontology, the
later run of SOFIE would adopt the expresses facts from the previous run.
This way, SOFIE can already build on the known patterns when it analyzes
a new corpus.

28

5 Experiments

To study the accuracy and scalability of SOFIE under realistic conditions, we
carried out experiments with different corpora, using YAGO [37] as the pre-
existing ontology. YAGO contains about 2 million entities and 20 million
facts for 100 different relations. Our experiments here demonstrate that
SOFIE is able to enhance YAGO by adding previously unharvested facts
and completely new facts without degrading YAGO’s high accuracy.

We experimented with both semi-structured sources from Wikipedia and
with unstructured free-text sources from the Web. In each of these two
cases, we first perform controlled experiments with a small corpus for which
we could manually establish the ground truth of all correct and potentially
extractable facts. We report both precision and recall for these controlled
experiments. Then, for each of the semi-structured and unstructured cases,
we show results for large-scale variants, with evaluation of output precision
and run-time. All experiments were performed with the rules from Section
3.2, unless otherwise noted. In all cases, we used the weight W = 100 for
the inviolable rules, w = 1 for the violable rules and ε = 0.1 for Ockham’s
Razor. The experiments were run on a standard desktop machine with a 3
GHz CPU and 3.5 GB RAM, using the PostgreSQL database system.

5.1 Semi-Structured Sources

5.1.1 Controlled Experiment

To study the performance of SOFIE on semi-structured text under controlled
conditions, we created a corpus of 100 random Wikipedia articles about news-
papers. We decided for three relations that were not present in YAGO, and
added 10 instances for each of them as seed pairs to YAGO. SOFIE took
3 min to parse the corpus, and 5 min to compute the truth values for the
hypotheses. We evaluated SOFIE’s precision and recall manually, as shown
in Table 1.

29

Table 1: Results on the Newspaper Corpus (1)
Relation Ground Output Correct Prec- Re-

truth pairs pairs ision call
foundedOnD. 89 87 87 100% 97.75%
hasLanguage 45 29 28 96.55% 62.22%
ownedBy 57 49 49 100% 85.96%

Thanks to its powerful tokenizer, SOFIE immediately finds the infobox at-
tributes for the relations (such as owner for the owner of a newspaper). In
addition, SOFIE finds some facts from the article text, but not all (e.g., for
hasLanguage). As our results show, SOFIE can achieve a precision that is
similar to the precision of tailored and specifically tuned infobox harvesting
methods as employed in [37, 38, 4, 42]. To test the performance of SOFIE
without infoboxes, we removed the infoboxes from half of the documents,
the goal being to extract the now missing attributes from other parts of the
articles. We chose our seed pairs from the portion of articles that did have
infoboxes. Table 2 shows the results.

Table 2: Results on the Newspaper Corpus (2)
Relation Ground Output Correct Prec- Re-

truth pairs pairs ision call
foundedOnD. 89 78 77 98.71% 86.51%
hasLanguage 45 18 18 100% 40.00%
ownedBy 57 26 26 100% 45.76%

Recall is much lower if the infoboxes are not present. Still, SOFIE manages to
find information also in the articles without infoboxes. This is because SOFIE
finds the category “Newspapers established in...”. This category indicates the
year in which the newspaper was founded. Interestingly, this category did not
occur in our seed pairs for foundedOnDate. Thus, SOFIE had no clue about
the quality of this pattern. By help of the infoboxes, however, SOFIE could
establish a large number of instances of foundedOnDate. Since many of these
had the category “Newspapers established in...”, SOFIE accepted also the
category pattern “Newspapers established in X” as a good pattern for the
relation foundedOnDate. In other words, newly found instances of the target
relation induced the acceptance of new patterns, which in turn produced
new instances. This principle is very close to what has been proposed for
DIPRE [10] and Snowball [2]. However, in contrast to such prior work,
SOFIE achieves this effect without any special consideration, simply by its
principle of including patterns and hypotheses in its reasoning model. In the
ideal case, SOFIE could extract the information solely from the article text,
thus abandoning the dependence on infoboxes. Then, SOFIE would perform

30

a task similar to the task performed by KYLIN [42]. Up to now, however, the
performance of SOFIE on this task trails behind the performance of KYLIN,
which has a recall of over 90%. This is because KYLIN is highly tuned
and specifically tailored to Wikipedia, whereas SOFIE is a general-purpose
information extractor.

5.1.2 Large-Scale Experiment

We created a corpus of 2000 randomly selected Wikipedia articles. We chose
13 relations that are frequent in YAGO. We added a rule saying that the
birth date and the death date of a person shall not have a difference of more
than 100 years. For simplification, we also added a rule saying that a person
cannot be both an actor and a director of a movie. This setting posed a
stress test to SOFIE, because of the high thematic diversity: Articles could
be “out of scope” (relative to the 13 target relations) and even an individual
article could cover very heterogeneous topics; these difficulties can mislead
any IE method.

SOFIE took 1:27 hours to parse the corpus. It took 12 hours to create all
hypotheses, and the actual FMS* Algorithm ran for 1 hour and 17 min. Table
3 shows the results of our manual evaluation (where we always disregard facts
that were already known to YAGO).

Table 3: Results on the Wikipedia Corpus
Relation Output Correct Prec.

pairs pairs
actedIn 8 8 100%
bornIn 122 116 95.08%
bornOnDate 119 115 96.63%
diedOnDate 20 19 95.00%
directed 8 10 80.00%
establishedOnDate 50 44 88.00%
hasArea 1 1 100%
hasDuration 1 1 100%
hasPopulation 20 18 90.00%
hasProductionLanguage 4 4 100%
hasWonPrize 35 34 97.14%
locatedIn 109 100 91.74%
writtenInYear 8 8 100%
Total 505 478 94.65%

The evaluation shows good results. However, the precision values are slightly
worse than in the small-scale experiment. This is due to the thematic

31

diversity in our corpus. The documents comprised articles about people,
cities, movies, books and programming languages. Our relations, in contrast,
mostly apply only to a single type each. For example, bornOnDate applies
exclusively to people. Thus, the chances for examples and counterexamples
for each single relation are lowered. Still, the precision values are very good.
For the bornIn relation, SOFIE found the category pattern “People from X”.
In most cases, this category indeed identifies the birth place of people. In
some cases, however, the category tells where people spent their childhood.
This misleads SOFIE.

Overall, the patterns stemmed from the article texts, the categories, and
the infoboxes. So SOFIE harvested both the semi-structured and the un-
structured part of Wikipedia in a unified manner. Given this general-purpose
nature of SOFIE, the results are remarkably good.

5.2 Unstructured Web Sources

5.2.1 Controlled Experiment

To study the performance of SOFIE on unstructured text under controlled
conditions, we used a corpus of newspaper articles that has been used for a
prototypical IE system, Snowball [2]. Snowball was run on a collection of
some thousand documents. For a small portion of that corpus, the authors
established the ground truth manually. For copyright reasons, we only had
access to this small portion. It comprises 150 newspaper articles. The author
kindly provided us with the output of Snowball on this corpus. The corpus
targets the headquarters relation, which is of particular finesse, as city names
are usually highly ambiguous. To exclude the effect of the ontology in SOFIE,
we manually added all organizations and cities mentioned in the articles
to YAGO. This gives us a clean starting condition for our experiment, in
which all failures are attributed solely to SOFIE and not to the ontology.
As the headquarters relation is not known to YAGO, we added 5 pairs of
an organization and a city as seed pairs to the ontology. Unlike Snowball,
SOFIE extracts disambiguated entities. Hence, we disambiguated each name
in the ground truth manually. We expect SOFIE to disambiguate its output
correctly, whereas we will count any surface representation of the ground
truth entity as correct for Snowball.

To run SOFIE with minimal background knowledge, we first ran it only
with the isHeadquartersOf relation. This relation is not a function, so that
SOFIE has no counterexamples. SOFIE took 2 minutes to parse the corpus,
22 minutes to create the hypotheses and 20 sec to run the actual FMS∗

32

algorithm. We evaluated according to the ideal metrics [2], which only takes
into account “relevant pairs”, i.e., pairs that have as a first component a
company that appears in the ground truth. Table 4 shows results for Snowball
and SOFIE (as SOFIE 1).

Table 4: Results on the Snowball Corpus
Grnd. Outp. Relev. Corr. Prec. Rec.
truth pairs pairs pairs (ideal)

Snowball 120 429 65 37 56.69% 30.89%
SOFIE 1 120 35 35 32 91.43% 24.32%
SOFIE 2 120 46 46 42 91.30% 31.08%

SOFIE achieves a much higher precision than Snowball – even though SOFIE
faced the additional task of disambiguation. In fact, the 3 cases where SOFIE
fails are difficult cases of disambiguation, where “Dublin” does not refer to
the Irish capital, but to a city in Ohio. To see how semantic information
influences SOFIE, we added the original headquarteredIn relation, which
is the inverse relation of isHeadquartersOf. We added a rule stating that
whenever X is the headquarters of Y , Y is headquartered in X. Furthermore,
we made headquarteredIn a functional relation, so that one organization is
only headquartered in one location. The results are shown as SOFIE 2 in
Table 4. Adding the inverse relation has allowed SOFIE to find patterns,
in which the organization precedes the headquarter (such as “Microsoft, a

Redmond-based company”). This has increased SOFIE’s recall to the level
of Snowball’s recall. At the same time, the functional constraint has kept
SOFIE’s precision at a very high level.

5.2.2 Large-Scale Experiment

To evaluate SOFIE’s performance on a large, unstructured corpus, we down-
loaded 10 biographies for each of 400 US senators, as returned by a Google
search (less, if the pages could not be accessed or were not in HTML). We
excluded pages from Wikipedia. This resulted in 3440 HTML files. Ex-
tracting information from these files is a particulary challenging endeavor,
because the documents are arbitrary, unstructured pages from the Web, con-
taining, for example, tables, lists, advertisements, and occasionally also error
messages. The disambiguation is particularly difficult. For example, there
was one senator called James Watson, but YAGO knows 13 people with this
name.

We added a rule saying that the birth date and the death date of a
person shall not have a difference of more than 100 years. As explained
in Section 4.3, we ran SOFIE in 5 batches of 20,000 pattern occurrences,

33

keeping the true hypotheses and the patterns from the previous iteration for
the next one. Overall, SOFIE took 7 hours to parse the corpus and 9 hours to
compute the true hypotheses. We evaluated the results manually by checking
each fact on Wikipedia, thereby also checking whether the entities have been
disambiguated correctly. Table 5 shows the results of the evaluation.

Table 5: Results on the Biography Corpus
Relation # Output # Correct Precision

pairs pairs
politicianOf 339 ≈ 322 94.99%
bornOnDate 191 168 87.96%
bornIn 119 104 87.40%
diedOnDate 66 65 98.48%
diedIn 29 4 13.79%
Total 744 673 90.45%

For politicianOf, we evaluated only 200 facts, extrapolating the number of
correct pairs and the precision accordingly. Our evaluation shows very good
results. SOFIE did not only extract birth dates, but also birth places, death
dates, and the states in which the people worked as politicians. Each of these
facts comes with its particular disambiguation problems. The place of birth,
for example, is often ambiguous, as many cities in the United States bear the
same name. Even the birth date may come with its particular difficulties if
the name of the person refers to multiple people. Thus, we can be extremely
satisfied with our precision values.

SOFIE could not establish the death places correctly, though. This is due
to some misleading patterns that got established in the first batch. Coun-
terexamples were only found in a later batch, when the patterns were already
accepted. However, the general accuracy of SOFIE is still remarkable, given
that the system extracted disambiguated, clean canonicalized facts from Web
documents.

5.3 Comparison of MAX SAT Algorithms

To see how the FMS∗ Algorithm performs in our SOFIE setting, we ran the
algorithm on a small corpus of 250 biography files. We compared the FMS∗

Algorithm to Johnson’s Algorithm [22] and to a simple greedy algorithm
that sets a variable to 1 if the weight of unsatisfied clauses in which the
variable occurs positive is larger than the weight of unsatisfied clauses where
it appears negative. Table 6 shows the results. The number of unsatisfied
inviolable clauses was 0 in all cases. In general, all algorithms perform very

34

well. However, the FMS∗ Algorithm manages to satisfy the largest number
of rules. It violates only one tenth of the rules that the other algorithms
violate.

Table 6: MAX SAT Algorithms (SOFIE Setting)
Algorithm Time Unsatisfied Weight of

violable unsatisfied
clauses clauses

(of 172,165) (% of total)
FMS∗ 15 min 241 0.0013
Johnson 7 min 2,357 0.0301
Simple 7 min 2,583 0.0365

To study the performance of the FMS∗ Algorithm on general MAX SAT
problems, we used the benchmarks provided by the International Conference
on Theory and Applications of Satisfiability Testing1. We took all benchmark
suites where the optimal solution was available: (1) randomly generated
Weighted MAX SAT problems with 2 variables per clause (90 problems),
(2) randomly generated Weighted MAX SAT problems with 3 variables per
clause (80 problems) and (3) designed Weighted MAX SAT problems (geared
for “difficult” optimum solutions) with 3 variables per clause (15 problems).
Each problem has around 100 variables and around 600 clauses. Table 7
shows the results.

Table 7: MAX SAT Algorithms (Benchmarks)
Algorithm Averaged approximation ratios, %

Suite 1 Suite 2 Suite 3
Johnson 86.6837 91.5369 99.9682
Simple 86.6919 91.4946 99.9682
FMS∗ 87.3069 92.2848 99.9702

All algorithms find good approximate solutions, with approximation ratios on
average greater than 85%. The setting of benchmarks is somewhat artificial
and not designed for approximate algorithms. However, the experiments give
us confidence that the FMS∗ Algorithm has at least comparable performance
to Johnson’s Algorithm. Our main goal, however, was to devise an algorithm
that performs well in the SOFIE setting. The approximation guarantee of
1/2 gives a lower bound on the performance in the general case.

1http://www.maxsat07.udl.es/

35

http://www.maxsat07.udl.es/

6 Conclusion

The central thesis of this paper is that the knowledge of an existing ontol-
ogy can be harnessed for gathering and reasoning about new fact hypothe-
ses, thus enabling the ontology’s own growth. To prove this point, we have
presented the SOFIE system that reconciles pattern-based information ex-
traction, entity disambiguation, and ontological consistency constraints into
a unified framework. Our experiments with both Wikipedia and natural-
language Web sources have demonstrated that SOFIE can achieve its goals
of harvesting ontological facts with very high precision.

SOFIE’s main algorithm is completely source-independent. There is no
feature engineering, no learning with cross validation, no parameter esti-
mation, and no tuning of algorithms. Notwithstanding this self-organizing
nature, SOFIE’s performance could be further boosted by customizing its
rules to specific types of input corpora. With appropriate rules, SOFIE
could potentially even accommodate other IE paradigms within its unified
framework, such as co-occurrence analysis [13] or infobox completion [42].

36

Appendix A Approximation
Guarantee of FMS

Theorem 1: [Approximation Guarantee of the FMS Algorithm]
Independent of the order in which the variables are assigned, the
FMS Algorithm has an approximation guarantee of 1/2.

Proof: We are given a Weighted MAX SAT problem in the form of a set X
of variables and a set C of weighted clauses. The FMS algorithm constructs
an assignment incrementally by assigning one variable after the other. We
consider two sets, which we construct incrementally as the algorithm assigns
the variables: The set C− ⊆ C will collect unsatisfied clauses, while the set
C+ ⊆ C will collect satisfied clauses. In each step, the algorithm selects an
unassigned variable x ∈ X and chooses the truth value t, if∑

c ∈ C unit clause
x ∈ ct

w(c) ≥
∑

c ∈ C unit clause
x ∈ c¬t

w(c)

Before t is assigned to x, we update the sets C− and C+ as follows:

C+ := C+ ∪ { c | c ∈ C unsatisfied clause, x ∈ ct}
C− := C− ∪ { c | c ∈ C unit clause, x ∈ c¬t}

Every clause that is added to C+ will be satisfied by the current assignment
of t to x. Every clause in C− will be unsatisfied and cannot be satisfied by
future assignments. We observe that the clauses added to C+ have a higher
total weight than the clauses added to C−. Hence, the update maintains the
following invariance condition:∑

c ∈ C+

w(c) ≥
∑

c ∈ C−
w(c)

Each clause c ∈ C will be added to either one of the two sets during the course
of the algorithm. Hence, when the algorithm terminates, C+ contains exactly

37

the satisfied clauses. Thus, the total weight of satisfied clauses achieved by
the algorithm is: ∑

c ∈ C+

w(c)

Now consider an optimal solution vo. Its weight is at most the weight of all
clauses: ∑

c ∈ C
w(c)

Hence the approximation ratio of the FMS Algorithm is∑
c∈C+ w(c)∑
c∈Cvo

w(c)

≥
∑

c∈C+ w(c)∑
c∈C w(c)

≥
∑

c∈C+ w(c)∑
c∈C− w(c)+

∑
c∈C+ w(c)

≥
∑

c∈C+ w(c)∑
c∈C+ w(c)+

∑
c∈C+ w(c)

≥ 1
2

38

Appendix B Simple MAX
SAT Algorithm

For completeness, we also examine a simple baseline algorithm for the Weighted
MAX SAT problem here.

Algorithm 4: Simple Algorithm
Input: Set of variables X

Set of weighted clauses C
Output:Assignment v for X
1 v := the empty assignment
2 FOR EACH x ∈ X
3 m0 :=

∑
{ w(c) | c ∈ C unsatisfied, x ∈ c0}

4 m1 :=
∑

{ w(c) | c ∈ C unsatisfied, x ∈ c1}
5 v(x) = [m1 > m0]

This algorithm simply assigns the truth value t to a variable x, if the weight
of unsatisfied clauses where x appears with polarity t exceeds the weight of
unsatisfied clauses where x appears with polarity ¬t. By a similar argument
as given in Appendix A, the Simple Algorithm also has an approximation
guarantee of 1/2. However, it can miss the optimal solution for the following
type of Weighted MAX SAT problem: The set of variables is X = {X, Y, Z}
and the clauses are

¬X ∨ ¬Y ∨ Z w1 = W
X w2 = W − ε
Y ∨ ¬Z w3 = W

This constellation of clauses is quite frequent in the SOFIE setting, because
most rules induce clauses of the shape ¬X ∨ ¬Y ∨ Z (see Section 3.3). An
optimal solution could set X to 1, Y to 0, and Z to 0, gaining 3W − ε. The
proposed algorithm, however, could possibly set X to 0, earning only 2W .

39

One could think of ordering the variables as it is done in the FMS Algorithm,
privileging variables that exhibit a large difference of clause weights. How-
ever, in the example, X does exhibit the largest difference of clause weights.
Still, setting X to 0 misses the optimal solution. The FMS Algorithm, in
contrast, finds the optimal solution.

40

Appendix C Safe Variables

Theorem 2: [Safe Truth Values are Safe]
Let X be a set of variables, let v be a partial assignment on X and
let C be a weighted set of clauses. Let x be a safe variable with
safe truth value t. Let vo ⊇ v be an assignment that extends v and
maximizes the sum of the weights of the satisfied clauses. Let v′o
be a variant of vo that assigns t to x:

v′o = vo \ {x → 1, x → 0} ∪ {x → t}

Then ∑
c ∈ C satisfied in v′o

w(c) ≥
∑

c ∈ C satisfied in vo

w(c)

Proof: Theorem 2 has first been proven for unweighted MAX SAT in [25] as
the Dominating Unit Clause Rule. [44] provides a proof for Weighted MAX
SAT with two literals per clause. The proof can be generalized to other cases
where all clause have the same number of literals. We provide a shorter,
general proof here.

Let X be a set of variables, let v be a partial assignment on X and let C be
a weighted set of clauses. Let x be a safe variable with safe truth value t (see
Definition 10). Let vo ⊇ v be an assignment that extends v and maximizes
the sum of the weights of the satisfied clauses. Let v′o be a variant of vo that
assigns t to x:

v′o = vo \ {x → 1, x → 0} ∪ {x → t}

We have to prove ∑
c ∈ C satisfied in v′o

w(c) ≥
∑

c ∈ C satisfied in vo

w(c)

41

If vo(x) = t, it follows vo = v′o and the claim follows immediately. Now
assume vo(x) = ¬t. We first observe that the clauses satisfied by v will be
satisfied by both vo and v′o, because vo ⊇ v and v′o ⊇ v. Hence, it suffices to
consider only the clauses that are not satisfied in v. We define C ′ to be the
set of clauses that are not satisfied by v. Then we have to prove∑

c ∈ C ′ satisfied in v′o

w(c) ≥
∑

c ∈ C ′ satisfied in vo

w(c)

Since vo differs from v′o only in the assignment of x, the clauses that do not
contain x will either be satisfied in both vo and v′o or in none of them:∑

c ∈ C ′ satisfied in v′o
x 6∈ c

w(c) =
∑

c ∈ C ′ satisfied in vo
x 6∈ c

w(c)

Hence, we have to prove only∑
c ∈ C ′ satisfied in v′o

x ∈ c

w(c) ≥
∑

c ∈ C ′ satisfied in vo
x ∈ c

w(c) (∗)

We consider the left-hand-side of (∗) and compute a lower bound for it. Given
that v′o(x) = t, v′o will satisfy at least the clauses in which x appears with
polarity t: ∑

c ∈ C ′ satisfied in v′o
x ∈ c

w(c) ≥
∑

c ∈ C ′
x ∈ ct

w(c)

Now we consider the right-hand-side of (∗). vo will satisfy all clauses that
contain x with polarity ¬t. It cannot satisfy the clauses that contain x with
polarity t and that were unit clauses in v. However, it could potentially
satisfy the non-unit clauses that contain x with polarity t. Thus, we obtain
the following upper bound on the right-hand-side of (∗):∑

c ∈ C ′
x ∈ c¬t

w(c) +
∑

c ∈ C ′ non-unit in v
x ∈ ct

w(c) ≥
∑

c ∈ C ′ satisfied in vo
x ∈ c

w(c)

Using these two bounds in (∗), we have to prove∑
c ∈ C ′
x ∈ ct

w(c) ≥
∑

c ∈ C ′
x ∈ c¬t

w(c) +
∑

c ∈ C ′ non-unit in v
x ∈ ct

w(c)

42

Subtracting the second summand on both sides yields∑
c ∈ C ′ unit clause in v

x ∈ ct

w(c) ≥
∑

c ∈ C ′
x ∈ c¬t

w(c)

This is the definition of x being a safe variable with safe truth value t.

Asymmetry. Note the asymmetry in the rule for safe variables: To set a
variable x to a truth value t, the rule considers the unit clauses where x ap-
pears with polarity t and compares them to the unsatisfied clauses where x
appears with polarity ¬t. One might be tempted to compare just the unsat-
isfied clauses where x appears with polarity t to the unsatisfied clauses where
x appears with polarity ¬t, no matter whether the clauses are unit clauses
or not. This algorithm, however, performs worse than the FMS Algorithm
in certain situations that are important in the SOFIE setting, see Section B.

43

Appendix D Approximation
Guarantee of FMS∗

Theorem 3: [Approximation Guarantee of the FMS∗ Algorithm]
The FMS∗ Algorithm has an approximation guarantee of 1/2.

Proof: We are given a Weighted MAX SAT problem in the form of a set
X of variables and a set C of weighted clauses. We have to prove that the
FMS∗ algorithm maintains an approximation guarantee of 1/2. As in the
preceding proof in Appendix A for Theorem 1, we construct two sets C− ⊆ C
and C+ ⊆ C, which are updated after every step of the algorithm. In each
step, the algorithm will assign a truth value t to a variable x (either by DUC
Propagation or by the FMS Algorithm). As in the previous proof, we update
the sets C− and C+ as follows before x is assigned:

C− := C− ∪ { c | c ∈ C unsatisfied clause, x ∈ c¬t}
C+ := C+ ∪ { c | c ∈ C unit clause, x ∈ ct}

The variable x can be assigned in two ways:

1. x can be assigned by the FMS Algorithm. Then,∑
c ∈ C unit clause

x ∈ ct

w(c) ≥
∑

c ∈ C unit clause
x ∈ c¬t

w(c)

2. x can be assigned by DUC Propagation. Then, by the definition of
DUC Propagation,∑

c ∈ C unit clause
x ∈ ct

w(c) ≥
∑

c ∈ C unsatisfied
x ∈ c¬t

w(c)

44

Thus, in both cases∑
c ∈ C unsatisfied clause

x ∈ ct

w(c) ≥
∑

c ∈ C unit clause
x ∈ c¬t

w(c)

Hence, the following invariance condition holds throughout the course of the
algorithm: ∑

c ∈ C+

w(c) ≥
∑

c ∈ C−
w(c)

As shown in Appendix A, this entails an approximation guarantee of 1/2.

45

Bibliography

[1] Approximating the value of two power proof systems, with applications
to max 2sat and max dicut. In ISTCS 1995.

[2] E. Agichtein, L. Gravano. Snowball: Extracting relations from large
plain-text collections. In ICDL 2000.

[3] E. Agirre, P. Edmonds. Word Sense Disambiguation: Algorithms and
Applications (Text, Speech and Language Technology). Springer, 2006.

[4] S. Auer, C. Bizer, G. Kobilarov, J. Lehmann, R. Cyganiak, Z. G. Ives.
Dbpedia: A nucleus for a Web of open data. In ISWC 2007.

[5] M. Banko, M. J. Cafarella, S. Soderland, M. Broadhead, O. Etzioni.
Open information extraction from the Web. In IJCAI 2007.

[6] M. Banko, O. Etzioni. Strategies for lifelong knowledge extraction from
the web. In K-CAP 2007.

[7] M. Battiti, R. Protasi. Approximate algorithms and solutions for Max
SAT. In G. Xue, editor, Handbook of Combinatorial Optimization ,
Kluwer, 2001.

[8] S. Blohm and P. Cimiano. Using the Web to reduce data sparseness in
pattern-based information extraction. In PKDD 2007.

[9] S. Blohm, P. Cimiano, E. Stemle. Harvesting relations from the Web-
quantifiying the impact of filtering functions. In AAAI 2007.

[10] S. Brin. Extracting patterns and relations from the World Wide Web.
In Selected papers from the Int. Workshop on the WWW and Databases,
1999.

[11] J. Chen, D. K. Friesen, H. Zheng. Tight bound on Johnson’s algorithm
for maximum satisfiability. J. Comput. Syst. Sci., 58(3):622–640, 1999.

46

[12] M. Davis, G. Logemann, D. Loveland. A machine program for theorem-
proving. Commun. ACM, 5(7):394–397, 1962.

[13] V. de Boer, M. van Someren, B. J. Wielinga. Extracting instances of
relations from Web documents using redundancy. In ESWC 2006.

[14] G. de Melo, F. M. Suchanek, A. Pease. Integrating YAGO into the
Suggested Upper Merged Ontology. In ICTAI 2008.

[15] P. DeRose, W. Shen, F. Chen , A. Doan, R. Ramakrishnan. Building
structured Web community portals: A top-down, compositional, and
incremental approach. In VLDB 2007.

[16] O. Etzioni, M. Banko, M. J. Cafarella. Machine reading. In AAAI 2006.

[17] O. Etzioni, M. J. Cafarella, D. Downey, S. Kok, A.-M. Popescu,
T. Shaked, S. Soderland, D. S. Weld, A. Yates. Web-scale information
extraction in KnowItAll. In WWW 2004.

[18] C. Fellbaum, editor. WordNet: An Electronic Lexical Database. MIT
Press, 1998.

[19] W. A. Gale, K. W. Church, D. Yarowsky. One sense per discourse. In
HLT 1991.

[20] M. R. Garey and D. S. Johnson. Computers and Intractability: A Guide
to the Theory of NP-Completeness. W. H. Freeman & Co., 1979.

[21] B. Jaumard and B. Simeone. On the complexity of the maximum satis-
fiability problem for horn formulas. Inf. Process. Lett., 26(1):1–4, 1987.

[22] D. S. Johnson. Approximation algorithms for combinatorial problems.
J. Comput. Syst. Sci., 9(3):256–278, 1974.

[23] D. Lenat, R.V. Guha. Building Large Knowledge Based Systems: Rep-
resentation and Inference in the Cyc Project. Addison-Wesley, 1989.

[24] C. D. Manning and H. Schutze. Foundations of Statistical NLP. MIT
Press, 1999.

[25] R. Niedermeier and P. Rossmanith. New upper bounds for maximum
satisfiability. Journal of Algorithms, 36:2000, 2000.

[26] I. Niles and A. Pease. Towards a standard upper ontology. In FOIS,
2001.

47

[27] S. P. Ponzetto and M. Strube. Deriving a large-scale taxonomy from
Wikipedia. In AAAI, 2007.

[28] H. Poon and P. Domingos. Joint inference in information extraction. In
AAAI, 2007.

[29] V. Raman, B. Ravikumar, S. S. Rao. A simplified NP-complete
MAXSAT problem. Inf. Process. Lett., 65(1):1–6, 1998.

[30] F. Reiss, S. Raghavan, R. Krishnamurthy, H. Zhu, S. Vaithyanathan.
An algebraic approach to rule-based information extraction. In ICDE
2008.

[31] M. Richardson and P. Domingos. Markov logic networks. Machine
Learning, 62(1-2), 2006.

[32] S. Sarawagi. Information Extraction. Foundations and Trends in
Databases, 2(1), 2008.

[33] W. Shen, A. Doan, J. F. Naughton, R. Ramakrishnan. Declarative infor-
mation extraction using datalog with embedded extraction predicates.
In VLDB 2007.

[34] S. Staab and R. Studer, editors. Handbook on Ontologies, 2nd edition.
Springer, 2008.

[35] F. Suchanek, M. Sozio, G. Weikum. Sofie: A Self-Organizing Framework
for Information Extraction. Research Report MPI-I-2008-5-012, Max-
Planck Institute for Informatics, Germany, 2008.

[36] F. M. Suchanek, G. Ifrim, G. Weikum. Combining linguistic and statis-
tical analysis to extract relations from Webdocuments. In KDD, 2006.

[37] F. M. Suchanek, G. Kasneci, G. Weikum. YAGO: A Core of Semantic
Knowledge. In WWW 2007.

[38] F. M. Suchanek, G. Kasneci, G. Weikum. YAGO: A Large Ontology
from Wikipedia and WordNet. Elsevier Journal of WebSemantics, 2008.

[39] L. Trevisan, G. B. Sorkin, M. Sudan, D. P. Williamson. Gadgets, ap-
proximation, linear programming. SIAM J. Comput., 29(6):2074–2097,
2000.

[40] O. Udrea, L. Getoor, R. J. Miller. Leveraging data and structure in
ontology integration. In SIGMOD 2007.

48

[41] G. Wang, Y. Yu, H. Zhu. Pore: Positive-only relation extraction from
Wikipedia text. In ISWC, 2007.

[42] F. Wu and D. S. Weld. Autonomously semantifying Wikipedia. In CIKM
2007.

[43] F. Wu and D. S. Weld. Automatically refining the Wikipedia infobox
ontology. In WWW 2008.

[44] Z. Xing and W. Zhang. MaxSolver: an efficient exact algorithm for
(weighted) maximum satisfiability. Artificial Intelligence, 164(1-2):47–
80, 2005.

[45] M. Yannakakis. On the approximation of maximum satisfiability. In
SODA 1992.

49

Below you find a list of the most recent technical reports of the Max-Planck-Institut für Informatik. They
are available by anonymous ftp from ftp.mpi-sb.mpg.de under the directory pub/papers/reports. Most
of the reports are also accessible via WWW using the URL http://www.mpi-sb.mpg.de. If you have any
questions concerning ftp or WWW access, please contact reports@mpi-sb.mpg.de. Paper copies (which
are not necessarily free of charge) can be ordered either by regular mail or by e-mail at the address below.

Max-Planck-Institut für Informatik
Library
attn. Anja Becker
Stuhlsatzenhausweg 85
66123 Saarbrücken
GERMANY
e-mail: library@mpi-sb.mpg.de

.

MPI-I-2007-5-003 Fabian M. Suchanek, Gjergji Kasneci,
Gerhard Weikum

Yago: A Large Ontology from Wikipedia and WordNet

MPI-I-2007-RG1-002 T. Hillenbrand, C. Weidenbach Superposition for Finite Domains

MPI-I-2007-5-002 K. Berberich, S. Bedathur,
T. Neumann, G. Weikum

A Time Machine for Text Search

MPI-I-2007-5-001 G. Kasneci, F.M. Suchanek, G. Ifrim,
M. Ramanath, G. Weikum

NAGA: Searching and Ranking Knowledge

MPI-I-2007-4-006 C. Dyken, G. Ziegler, C. Theobalt,
H. Seidel

GPU Marching Cubes on Shader Model 3.0 and 4.0

MPI-I-2007-4-005 T. Schultz, J. Weickert, H. Seidel A Higher-Order Structure Tensor

MPI-I-2007-4-004 C. Stoll A Volumetric Approach to Interactive Shape Editing

MPI-I-2007-4-003 R. Bargmann, V. Blanz, H. Seidel A Nonlinear Viseme Model for Triphone-Based Speech
Synthesis

MPI-I-2007-4-002 T. Langer, H. Seidel Construction of Smooth Maps with Mean Value
Coordinates

MPI-I-2007-4-001 J. Gall, B. Rosenhahn, H. Seidel Clustered Stochastic Optimization for Object
Recognition and Pose Estimation

MPI-I-2007-2-001 A. Podelski, S. Wagner A Method and a Tool for Automatic Veriication of
Region Stability for Hybrid Systems

MPI-I-2007-1-002 E. Althaus, S. Canzar A Lagrangian relaxation approach for the multiple
sequence alignment problem

MPI-I-2007-1-001 E. Berberich, L. Kettner Linear-Time Reordering in a Sweep-line Algorithm for
Algebraic Curves Intersecting in a Common Point

MPI-I-2006-5-006 G. Kasnec, F.M. Suchanek,
G. Weikum

Yago - A Core of Semantic Knowledge

MPI-I-2006-5-005 R. Angelova, S. Siersdorfer A Neighborhood-Based Approach for Clustering of
Linked Document Collections

MPI-I-2006-5-004 F. Suchanek, G. Ifrim, G. Weikum Combining Linguistic and Statistical Analysis to
Extract Relations from Web Documents

MPI-I-2006-5-003 V. Scholz, M. Magnor Garment Texture Editing in Monocular Video
Sequences based on Color-Coded Printing Patterns

MPI-I-2006-5-002 H. Bast, D. Majumdar, R. Schenkel,
M. Theobald, G. Weikum

IO-Top-k: Index-access Optimized Top-k Query
Processing

MPI-I-2006-5-001 M. Bender, S. Michel, G. Weikum,
P. Triantafilou

Overlap-Aware Global df Estimation in Distributed
Information Retrieval Systems

MPI-I-2006-4-010 A. Belyaev, T. Langer, H. Seidel Mean Value Coordinates for Arbitrary Spherical
Polygons and Polyhedra in R3

MPI-I-2006-4-009 J. Gall, J. Potthoff, B. Rosenhahn,
C. Schnoerr, H. Seidel

Interacting and Annealing Particle Filters:
Mathematics and a Recipe for Applications

MPI-I-2006-4-008 I. Albrecht, M. Kipp, M. Neff,
H. Seidel

Gesture Modeling and Animation by Imitation

MPI-I-2006-4-007 O. Schall, A. Belyaev, H. Seidel Feature-preserving Non-local Denoising of Static and
Time-varying Range Data

MPI-I-2006-4-006 C. Theobalt, N. Ahmed, H. Lensch,
M. Magnor, H. Seidel

Enhanced Dynamic Reflectometry for Relightable
Free-Viewpoint Video

MPI-I-2006-4-005 A. Belyaev, H. Seidel, S. Yoshizawa Skeleton-driven Laplacian Mesh Deformations

MPI-I-2006-4-004 V. Havran, R. Herzog, H. Seidel On Fast Construction of Spatial Hierarchies for Ray
Tracing

MPI-I-2006-4-003 E. de Aguiar, R. Zayer, C. Theobalt,
M. Magnor, H. Seidel

A Framework for Natural Animation of Digitized
Models

MPI-I-2006-4-002 G. Ziegler, A. Tevs, C. Theobalt,
H. Seidel

GPU Point List Generation through Histogram
Pyramids

MPI-I-2006-4-001 A. Efremov, R. Mantiuk,
K. Myszkowski, H. Seidel

Design and Evaluation of Backward Compatible High
Dynamic Range Video Compression

MPI-I-2006-2-001 T. Wies, V. Kuncak, K. Zee,
A. Podelski, M. Rinard

On Verifying Complex Properties using Symbolic Shape
Analysis

MPI-I-2006-1-007 H. Bast, I. Weber, C.W. Mortensen Output-Sensitive Autocompletion Search

MPI-I-2006-1-006 M. Kerber Division-Free Computation of Subresultants Using
Bezout Matrices

MPI-I-2006-1-005 A. Eigenwillig, L. Kettner, N. Wolpert Snap Rounding of Bézier Curves

MPI-I-2006-1-004 S. Funke, S. Laue, R. Naujoks, L. Zvi Power Assignment Problems in Wireless
Communication

MPI-I-2005-5-002 S. Siersdorfer, G. Weikum Automated Retraining Methods for Document
Classification and their Parameter Tuning

MPI-I-2005-4-006 C. Fuchs, M. Goesele, T. Chen,
H. Seidel

An Emperical Model for Heterogeneous Translucent
Objects

MPI-I-2005-4-005 G. Krawczyk, M. Goesele, H. Seidel Photometric Calibration of High Dynamic Range
Cameras

MPI-I-2005-4-004 C. Theobalt, N. Ahmed, E. De Aguiar,
G. Ziegler, H. Lensch, M.A. Magnor,
H. Seidel

Joint Motion and Reflectance Capture for Creating
Relightable 3D Videos

MPI-I-2005-4-003 T. Langer, A.G. Belyaev, H. Seidel Analysis and Design of Discrete Normals and
Curvatures

MPI-I-2005-4-002 O. Schall, A. Belyaev, H. Seidel Sparse Meshing of Uncertain and Noisy Surface
Scattered Data

MPI-I-2005-4-001 M. Fuchs, V. Blanz, H. Lensch,
H. Seidel

Reflectance from Images: A Model-Based Approach for
Human Faces

MPI-I-2005-2-004 Y. Kazakov A Framework of Refutational Theorem Proving for
Saturation-Based Decision Procedures

MPI-I-2005-2-003 H.d. Nivelle Using Resolution as a Decision Procedure

MPI-I-2005-2-002 P. Maier, W. Charatonik, L. Georgieva Bounded Model Checking of Pointer Programs

MPI-I-2005-2-001 J. Hoffmann, C. Gomes, B. Selman Bottleneck Behavior in CNF Formulas

MPI-I-2005-1-008 C. Gotsman, K. Kaligosi,
K. Mehlhorn, D. Michail, E. Pyrga

Cycle Bases of Graphs and Sampled Manifolds

MPI-I-2005-1-007 I. Katriel, M. Kutz A Faster Algorithm for Computing a Longest Common
Increasing Subsequence

MPI-I-2005-1-003 S. Baswana, K. Telikepalli Improved Algorithms for All-Pairs Approximate
Shortest Paths in Weighted Graphs

MPI-I-2005-1-002 I. Katriel, M. Kutz, M. Skutella Reachability Substitutes for Planar Digraphs

MPI-I-2005-1-001 D. Michail Rank-Maximal through Maximum Weight Matchings

MPI-I-2004-NWG3-001 M. Magnor Axisymmetric Reconstruction and 3D Visualization of
Bipolar Planetary Nebulae

MPI-I-2004-NWG1-001 B. Blanchet Automatic Proof of Strong Secrecy for Security
Protocols

MPI-I-2004-5-001 S. Siersdorfer, S. Sizov, G. Weikum Goal-oriented Methods and Meta Methods for
Document Classification and their Parameter Tuning

MPI-I-2004-4-006 K. Dmitriev, V. Havran, H. Seidel Faster Ray Tracing with SIMD Shaft Culling

MPI-I-2004-4-005 I.P. Ivrissimtzis, W.-. Jeong, S. Lee,
Y.a. Lee, H.-. Seidel

Neural Meshes: Surface Reconstruction with a Learning
Algorithm

	Introduction
	Background and Motivation
	Example Scenario
	Contribution

	Related Work
	Model
	Statements
	Rules
	MAX-SAT Model

	Implementation
	Pattern Extraction
	Weighted MAX SAT Algorithm
	Putting Everything Together

	Experiments
	Semi-Structured Sources
	Controlled Experiment
	Large-Scale Experiment

	Unstructured Web Sources
	Controlled Experiment
	Large Scale Experiment

	Comparison of MAX-SAT Algorithms

	Conclusion
	Approximation Guarantee of FMS
	Simple MAX SAT Algorithm
	Safe Variables
	Approximation Guarantee of FMS*

