Shape Complexity from
Image Similarity

Danyi Wang, Alexander Belyaev,
Wagar Saleem, Hans-Peter Seidel

MPI-1-2008-4-002 October 2008

Authors’ Addresses

Danyi Wang
PITERION GmbH
Hanns-Klemm-Str. 5
71034 Boblingen
Germany

Alexander Belyaev

School of Engineering and Physical Sciences
Heriot-Watt University

Edinburgh EH14 4AS

United Kingdom

Wagqar Saleem, Hans-Peter Seidel
Max-Planck-Institut fiir Informatik
Stuhlsatzenhausweg 85

66123 Saarbriicken

Germany

Acknowledgements

All shape models for this work have been taken from the AIM@QSHAPE Shape
Repository.

Abstract

We present an approach to automatically compute the complexity of a given
3D shape. Previous approaches have made use of geometric and/or topo-
logical properties of the 3D shape to compute complexity. Our approach
is based on shape appearance and estimates the complexity of a given 3D
shape according to how 2D views of the shape diverge from each other. We
use similarity among views of the 3D shape as the basis for our complexity
computation. Hence our approach uses claims from psychology that humans
mentally represent 3D shapes as organizations of 2D views and, therefore,
mimics how humans gauge shape complexity. Experimental results show that
our approach produces results that are more in agreement with the human
notion of shape complexity than those obtained using previous approaches.

Keywords

shape complexity, shape views, boundary contour extraction, view similarity,
shape similarity, Similarity Structure Analysis, Multidimensional Scaling

Contents

1

Introduction
1.1 Previous Work
1.2 Overview

Constructing a View Similarity Matrix

2.1 Shape Views
2.2 Boundary Contour Extraction
2.3 Comparing Viewso
2.4 Similarity Matrixo

Shape Complexity from View Similarity

3.1 Starting Positions o000
3.2 Checking for an SSA Solution
3.3 Updating Point Positions
3.4 Stopping Conditiono
3.5 Computing Shape Complexity

Results and Conclusion
4.1 Discussiono

11
11
12
12
13
14

16

1 Introduction

More and more real world objects are being digitized and efforts into creation
of original 3D content are also increasing. With the resulting proliferation
of digital 3D shapes, it is becoming necessary to be able to organize them in
some manner. One such means is to sort shapes according to their complexity.
Given a collection of shapes, humans can easily estimate which shapes are
more or less complex than the others. Very few such automatic measures
exist for digital shapes.

1.1 Previous Work

It is not entirely clear how exactly to define and hence compute the complex-
ity of a shape. In [17], an attempt has been made to formalize the notion of
shape complexity by defining a few measures that could lead to its estimation.

o Algebraic complexity is the degree of the polynomial used to represent
the shape.

e Morphological complexity is an estimate of the amount of fine details
in the shape, and is computed as the largest value of r for which the
shape is r-smooth or r-reqular.

e Combinatorial complexity is the number of vertices used in the shape
representation.

e Representational complexity is a qualitative measure of the amount of
redundancy in the shape representation.

e Topological complexity is also a qualitative measure comprising of the
genus of and non-manifold elements in the shape.

While these measures may capture some aspects of how humans gauge shape
complexity, they are limited in terms of how they can be applied for auto-
matic complexity estimation. The first two measures are restricted to spe-
cialist shape representations and all three quantitative measures are rather
loose — shapes of varying complexities can easily end up having the same
values for these measures.

More discriminative approaches have involved the use of information the-
ory [19]. The canonical simplest shape is the sphere. There is no variation
in its surface and its appearance is constant, up to scale, from all directions.
Page and colleagues [13, 21] attribute this to the sphere’s property of having
the same curvature throughout. Hence, they view the curvatures of shape
vertices as a probability distribution and compute the shape’s complexity as
the entropy of this distribution. This approach however is sensitive to noise.
Small amounts of noise on the surface of the shape can cause large variations
in curvature, thus leading to a high complexity value when computed using
the above methods, whereas the shape itself does not change much.

The method proposed in [15] builds upon the observation that inside the
sphere, each surface point is visible from every other surface point. A shape’s
inner complezity is then measured in terms of the mutual information be-
tween regions of the shape that are mutually visible to each other through the
shape’s interior. An outer shape complexity is also proposed that considers
visibility between regions of the shape and a bounding sphere.

1.2 Overview

It is claimed in psychology [6, 10] that humans perceive 3D objects as ar-
rangements of 2D views. This observation has been exploited for object
recognition [8], to compute shape similarities [7] and to extract static [24]
and dynamic [18] representations of 3D shapes.

We propose that it is lack of (dis)similarity among views of the sphere,
the canonical simplest shape, that leads to its low complexity, and claim
that a shape is complex if the views corresponding to it are different from
each other. A shape is more complex than another if the difference, or
dissimilarity, between its corresponding views is greater than that for the
other shape’s views.

Consequently, our approach to complexity computation is based on sim-
ilarity between shape views. Given a shape, we obtain N views of it, and
compare each view to the others, leading to a N x N similarity matrix, S.
For view comparison, we first acquire binary views from which we extract the
boundary contours. These contours are then compared to each other using

the Contour to Centroid Triangulation (CCT) method [3]. In Chapter 2,
we explain each of the above steps in detail. Applying Similarity Structure
Analysis (SSA) [4, 5] to S yields a 2D plot with N points where the distance
between the points in the plot depends on the relative magnitude of entries in
S. Thus, a “simple” shape, whose views are relatively similar to each other,
will correspond to an SSA plot containing points close to each other. A more
complex shape will lead to a plot in which the points are more spread out.
We therefore measure the complexity of the shape as the amount of disper-
sion of points in its SSA plot obtained in the above manner. In Chapter 3,
we explain the SSA method and how we measure complexity values from the
obtained plots. Finally, some results are presented in Chapter 4 followed by
some closing remarks. A detailed version of this report has been presented
in [23] and a pictorial overview of our entire pipeline in given in Figure 1.1.

(a) A shape to be analyzed.) The shape’s view sphere.

) Some views of the shape.

(d) Extracted boundary contours of the views.

0 0.130 0.246 0.236

0.130 0 0.222 0.220

=1 0246 0222 0 0.123
0.234 0.220 0.123 0O

(e) Similarity matrix of boundary contours.

03l 5

08

a7

06+ +4

+t

HE+
+4 T H

05F

++

n4f +,
naf
nal+ * +F o
7
i

o1F + +

i L

0 01 0z 03 04 05 06 07 08 04 1

(f) SSA plot corresponding to S.

Figure 1.1: An overview of our approach. Views of a shape are captured
and their boundary contours are extracted and compared with each other to
yield a similarity matrix, S. The distéances in S are represented as a 2D plot
using SSA. Point positions in the plot are then used to compute complexity.

2 Constructing a View
Similarity Matrix

Given a shape, we first obtain N views of it from its view sphere. As a shape
can be adequately represented by its silhouette, we make sure to obtain
binary views as this simplifies the subsequent boundary contour extraction
step. Once each view is represented as a boundary contour, we use a shape
similarity method to compute similarity between all pairs of views. This
yields the similarity matrix, S, for the shape.

2.1 Shape Views

A shape’s view sphere is a bounding sphere of the shape centered at the
shape’s geometric center, i.e. the center of the shape’s bounding box. Each
point on the view sphere is a viewpoint and the corresponding view is the
one obtained by placing a camera at that point facing towards the center
of the sphere. In order to view only the shape, the background is typically
plain.

As the sphere has continuous surface area, placing cameras at all points
on its surface is not only computationally infeasible but also impossible.
We therefore approximate the view sphere with a platonic solid, namely
an icosahedron, chosen for its triangle mesh structure. The icosahedron is
set to have the same center and radius as the intended view sphere it is
approximating. With only 12 vertices, the icosahedron provides a crude
approximation of the view sphere. For finer approximations, iterations of
Loop subdivision [11] followed by re-projection of vertices to the sphere are
applied to it. Cameras are placed at the vertices of the resulting mesh. Views
of the shape are then simply snapshots obtained from these cameras.

To obtain binary views like the ones shown in Figure 1.1, we render the
shape with a white material and set the background to black before capturing

Jbin:

Wy

i
Ty
i

]
s
A

AT

T

T
o
s

T3

7,

i
SO

ey

o

i
-1
I
.
B
Ty,

s
o

oy

Sy
w‘\
Tl
Tad
WA
fi
¥

s
il
s

LT]

i

AT

o

BT r
T,

oy
1N
o
o

A araAT
Sy

e ey
o8,

YN

LYY,
TN
D

h

A I

i
¥,

PRI A Ty

fo)
L
N,

AV ALY
gy
ey
5
Ty
-
¥
T
A

LY

A N

Facv

Wy o
VAN

Y#“'AY

ol
A

N

1MA'AVATB¢T.7

s
i
-.ejfl

e
I

VAN,
WA
T

A
f
¥

AT
A

AR

4
T

Ph

‘_r;"’.l.

=)

1y
o Hh‘x‘k‘ﬁ"‘"ﬁ"‘

e T T oy
RIS

'

L
¥
o

P T Ty
N N A AN

4"‘"“‘."
i)
.

of
Sy
s
ol
iy,

A

.l,."_'_p-
e
*‘I’
W
i
[
T

i

nf‘vjﬁflﬂf

£
'
Ly,
%y

o

(a) A model and its view sphere. (b) Views from a view sphere.

Figure 2.1: Note that the model, radius of the view sphere relative to the
bounding box of the model, and the number of subdivision steps applied to
the view sphere differ in each sub-figure.

snapshots from the virtual cameras.

2.2 Boundary Contour Extraction

Given a binary view image, the first step in extracting a closed, connected
contour representing the boundary of the viewed shape is to identify pixels
in the view image that lie on the shape boundary. This is done by scanning
the image first row-wise and then column-wise. In each scan, we mark as
boundary pixel the first shape pixel we come across when previous pixels
belonged to the background, or vice versa. For more details, we refer the
reader to [23], Chapter 3.

The row and column numbers of boundary pixels in the image give their
coordinates, to which we apply the Crust method [1] to obtain boundary
edges, see Figure 2.2. Given a set of points, P, sampled on a curve, the
method constructs the Voronoi diagram of P to obtain the Voronoi vertices
V of P. Tt then performs a Delaunay triangulation [9] of P U V. From the
triangulation, edges that connect points in P to each other then form the
“crust”, C, of P, which we take to be the boundary contour. This method
has previously also been applied directly to 3D surface reconstruction [2].
We use the Triangle software [20] for Voronoi and Delaunay computations.

The crust, C, gives us an unordered set of edges with no connectivity
information, i.e. given an edge in C, we do not know which is the next

Figure 2.2: The two-dimensional crust algorithm, generated from [16]. (a)
Voronoi diagram of a point set, P (red), sampled from a curve. Voronoi
vertices, V', and edges are in green. (b) Delaunay triangulation of P U V.
Crust edges are shown in pink.

or previous edge. This information is required for the similarity algorithm
later. We pick the point, py, in P with the smallest z and y coordinates to
initialize a list, L = {pg}. Then we search C for an edge, (po,p;), for some
other p; € P. L is updated as L = {po, p;} and the edge is removed from C.
The next incident edge (p;, p;) is then found, L is updated, L = {po,p;, p;}
and the edge is removed from C. This process is repeated until pg is reached
again. At this point, L represents a closed, connected polyline representing
the boundary of the shape, e.g. see Figure 1.1.

2.3 Comparing Views

To compare views, we use the Contour to Centroid Triangulation (CCT) al-
gorithm [3] which has been reported [22] to outperform other shape similarity
measures.

From a given boundary polyline, the farthest point from the center of
the polyline shape is chosen and it is used as the starting point to segment
the boundary. If more than one point is found, e.g. from the polyline of a
circle, then any of its farthest points can act as the starting point. Going
along the boundary starting from this point, the boundary is divided into

n equal length arcs where n can be between 10 and 75. A multi-resolution
boundary representation can be used by using different number of segments
per resolution and each resolution can describe finer details of the boundary.
An overview of the descriptor is given in Figure 2.3.

N

(b) Multi-resolution representation. (¢) Query features.

Figure 2.3: Shape descriptor for CCT, reproduced from [3]. (a) The shape
boundary is segmented, triangulated with respect to the shape center and
features are extracted. (b) The segment (po,ps) is refined once into the
segments {(po, p2), (p2, p4) } and a second time into {(po, p1), (p1,P3), (P3,D4)}-
(c) Features extracted from a query shape, to be compared with those of
stored shapes.

Then three primitives (a, m, lw) per segment reading clockwise are de-
fined as:

1. ¢, the start angle between the center extension and the chord. The
angle that is less than or equal to 180° is used.

2. n, the ratio of chord length to arc length, denoting smoothness.

3. x, the distance from the segment’s start to the center of the shape.

These parameters are normalized by dividing all by their maximum corre-
sponding values. This normalization helps in making all the three primitives
contribute equally to the descriptor. The normalized parameters are repre-
sented as a feature vector of the boundary polyline.

A similarity measure D;(X,Y), based on the sum of absolute differences,
between all query local features ¢; = (a;, b;, m;, v;, w;) of shape X and stored
local features s; = (¢j,n;,x;) of shape Y, as shown in Figure 2.3, for every j
rotations, where ¢ and j are between 1 and f segments, is defined as

le(X, Y) = ZMZTZOCLZ — Cj_1| + |UZ‘ - ZL’j_1| + |7TLZ — nj_1|,
7
|ai — ¢ + |vi — x| + [ms — ny],
|a; = cp1l + [vi — 2y | + [— njgal).

In order to account for reflected shapes:

D2f(X, Y) = ZMZTZ(“)Z — Cj—ll -+ |U}Z — I’j_1| + |7’I’LZ —Nj-1},

[bi — ¢ + [wi — 23] + [mi — ny,
b = cia| + [wi — Ty | + [mi — nya]).

The similarity measure between the query and stored shape is then the min-
imum of D1 and D2 or:

Di(X,Y)=Min(D1;(X,Y),D2;(X.,Y))/f,

where

Dy(X,X) =0.

2.4 Similarity Matrix

Given N views, {vy,vg,...,vx}, of the shape, and denoting the similarity
between v; and v; as computed above by s; ;, the similarity matrix, S, for
the shape is defined as

0 S12 S13 ... S1N

5211 0 $23 ... S2N

S = 531 53,2 0 ... S3.N
SN1 SN2 SN3 ... 0

10

3 Shape Complexity from
View Similarity

Similarity Structure Analysis (SSA), or Multidimensional Scaling (MDS) [4,
5], provides a tool for

. analyzing the structure of (dis)similarity data ... [It] repre-
sents the data as distances among points in a geometric space of
low dimensionality. This map can help to see patterns in the data
that are not obvious from the data matrices.

Given the N x N similarity matrix, S, we apply SSA to it to obtain a 2D
plot containing N points, where pairwise distances between the N points in
the plot are related to the entries, s;;,4,7 € {1,..., N}, in S.

Corresponding to the N views, {vy,va,...,vx}, N points, Py = {pioli €
{1,...,N}}, are chosen in the Cartesian plane. The original SSA method
does not pose any restrictions on how these points are chosen. However, we
specify a starting position of points which we describe later in Section 3.1.
The distance matrix, D(P,,), of the set, P,,, m > 0, is computed such that
d; ; is the Cartesian distance between p; ., and p;,,. It follows that d;; = 0
for all .

In order to compute the SSA plot, the starting configuration is set as
Co = D(Py). An iterative process then starts whereby, in each iteration k,
k > 1, the configuration matrix, Cj_1, is checked to be the SSA solution
of S. If the solution has been reached then iteration stops. Otherwise, the
positions of the points in P,_; in the SSA plot are updated to Py, the new
configuration matrix is computed as C, = D(P}) and iteration continues.

3.1 Starting Positions

The original SSA method places no requirements on the initial point positions
in the SSA plot. However, the choice of starting points affects our final

11

(a) (b) (c)

Figure 3.1: Point movement in the SSA plot. (a) starting positions of four
points as determined in Section 3.1, (b) diminishing point movements with
increasing iterations of the algorithm, (c) final point positions.

complexity result. A random selection of points leads to varying complexity
values for the same shape each time it is computed. Therefore, we fix the
initial point configuration as follows. We consider a sinusoidal function with x
and y rescaled to the interval [0, 1] and sample the N initial points, {p;), €

{1,..., N}}, uniformly on it along the x axis, i.e. the coordinates of p; g, are
given by
i L1+ sin(2)
i=~ 7 Y=g sin i~
=N YT in(2rx; —m

An example with four points is shown in Figure 3.1, and with 42 points in
Figure 4.1.

3.2 Checking for an SSA Solution

To check whether a given C,,, m > 0, is an SSA solution of S, we need
to construct the ranking number matrices of C;, and S. For a matrix, A,
to construct its ranking number matrix, R(A), all entries a; ; are sorted in
descending order and given consecutive ranks. Thus, the largest entry gets
a rank of one, the second largest a rank of two, and so on. Equal entries
are assigned consecutive ranks. If the entries in A are then replaced by their
ranks, we obtain R(A).
C,, is an SSA solution of S <= R(C,,) = R(S).

3.3 Updating Point Positions

Positions of points in P,,,, m > 0, are updated according to the rank image
matriz of C,, with respect to S. We denote the rank image matrix of a

12

matrix, A, with respect to another matrix, B, as Rg(A). It contains the
entries of A permuted such that the ranking number matrices of Rg(A) and
B match, i.e. R(Rg(A)) = R(B).

For a given C,,, Rs(C,,) denotes the intended point configuration, i.e.
it is desired that the Cartesian distances between the points in P, follow
a similar pattern as the similarity distances in S, and that their distance
matrix, which will be the next configuration matrix, be an SSA solution
to S. To achieve this, a correction factor is computed for each point pair
(Diyms D) 25
Friinm = C{{i,j},m — Cigym

{i.5}m 203

Y

where cf& it and cy; j).m are entries in Rg(C,,) and C,, respectively. The
correction factor for a point pair can be thought of as the force between
them; the 2 in the denominator denotes how the points exert equal forces
on each other. A positive value of fy; ;1 », indicates that the current distance
between the point pair is an underestimate and should be increased, whereas
a negative value implies a shortening of the distance.

The displacement of p;,, with respect to p,,, is then given as

d{i,j},m = f{i,j},m : (pz,m - pj,m)-

The total displacement for p;,, with respect to all other points is then given

as
N

. 1 .
dim =] Z dijym-
i=1j#i
The averaging above ensures that points do not get displaced by too large
an amount. Finally, the new point position is given by

Pim+1 = Pim + dim.

Figure 3.1 shows update of point positions as the SSA algorithm progresses
for an example with four points.

3.4 Stopping Condition

Ideally, iteration stops when the current configuration matrix, C,,, m > 0, is
an SSA solution of S. Indeed the update of point positions explained above
aims to achieve just that. However, as each point is acted upon by all other
points, the distance matrix of the new point positions is typically still not a
solution to S. Thus, the points are moved again and again until a stopping

13

condition is reached. With each iteration, the distance matrix of the point
positions comes closer to the SSA solution of S. This is reflected by pro-
gressively smaller values of | f(; j} .| and |d; ,,|. Note that when the solution

is reached, f{; j),m and consequently d;,, will both be zero. In fact, after a

certain number of iterations, |&Zm| becomes negligible. Therefore, iteration
is stopped when the values of all | f{; j | fall below a certain threshold. The
point positions when iteration stops form the final configuration of the SSA
plot.

3.5 Computing Shape Complexity

As we take the same number of views for each shape, the initial point config-
uration in the SSA plots for all shapes is the same, shown in Figure 4.1. As
per the SSA method, movement of points in subsequent iterations is guided
by the relative magnitudes of entries in the shape’s similarity matrix. Thus,
it is not possible to distinguish between plots obtained for two shapes whose
similarity matrices differ only in scale. Therefore, when iteration stops, we
rescale each plot according to its similarity matrix, S, to obtain Q = {q;},
the final set of points. Assuming the algorithm stopped after M iterations, we
consider the last configuration matrix, Cy; = D(P),), and obtain a rescaling

factor :
largest entry in S

- largest entry in Cy;

The centroid of the points in P, is computed, c); = % > Pium, and the
positions of the rescaled points are updated,

qi=cu+ F - (piv —cum).

Complexity of the analyzed shape is now measured in terms of dispersion
of the points in Q. Our motivation is that a simple shape will yield only a
few distinct views, leading to a handful of tight, distinct clusters in the SSA
plot, whereas a complex shape will have largely varying views which will lead
to loose and overlapping clusters.

We use two measures to obtain a complexity value from Q. The first
method measures complexity as the dispersion of the points in the z and y

directions,
_ 2 2
Co =/oi+ 0,

where o, and o0, are standard deviations of the z and y coordinates resp.
of the q;. The second measure relies on the convex hull of the points in Q

14

which is a subset, H = {h;|j € {1,...,h}}, of Q. Shape complexity is then
measured as

hlx hly
1 h2x h2y
On = 5| &
hh:c hhy
hlx hly
1
= 5 [(hishay +hoshyy + . 4 hyhyy) —

(hlthx + h2yh3:1: +.oo+ hhyhlx)])

where hj, and h;, are the x and y coordinates resp. of h;.

15

4 Results and Conclusion

We tested our approach on a set of shapes we obtained from the Internet. In
Figure 4.2, we show each of these shapes alongside their corresponding SSA
plots, and the obtained values for our two complexity measures, C'; and C,.
As the shown values indicate, the shapes are sorted according to values of C,
from top to bottom and left to right, so the Bumpy Sphere is the simplest
shape according to this measure, the Star is more complex and so on till the
Bunny iH model. The next more complex model with respect to Cj is the
Torus and then the Camel up to the Bones model. In the SSA plots shown,
the points have been rescaled to fit inside the interval x,y € (0, 1) for better
visualization. We use N = 42, i.e. we subdivide the initial view sphere once
(Section 2.1). The corresponding starting position for points in the SSA
plots is shown in Figure 4.1. As discussed in Section 3.1, as we use the same
number of views for each shape, our strategy to assign positions to initial
points in the SSA plot initializes the SSA plot for all shapes identically. How
these points then move within the plot as the SSA algorithm progresses then
depends on the similarity matrix, S, for the shape.

Our results are summarized in Table 4.1, where the shapes are again
sorted by C, and we also show the relative complexities of the shapes, e.g.
according to C,, the Camel is 2.6 times as complex as the Bumpy sphere.

As seen in the results, Cs and C, do not give mutually consistent results.
This can also be seen in Figure 4.3 where we compare our results with those
obtained using our implementations of previous curvature based methods
[13, 21]. We see especially that relatively simple shapes like the Cone and
Torus are ranked quite high with C,. The reason for this is that points in the
SSA plots for these shapes (Figure 4.2) lie in tight, distinct clusters. As C,
relies on deviation in one dimension only (along the = and y axes separately),
the final value comes out to be large. This is corrected when we consider
two dimensional information by computing the area of the convex hull to
calculate C. In Figure 4.3, the Cone and Torus models are much higher in
the ranking according to Cs. As expected, the curvature based methods of

16

1 - : - . ' - s
@ ++
oaf
0sh
ok
06
oSt
s
04t
"
-
03k +
4
”
ozt P i
ol

LIS

0 L it L L L L L L
[t} 01 0z 03 04 0.5 e o7 0.8 [R:} 1

Figure 4.1: Initial point positions. As we use 42 views for each shape, our
method from Section 3.1 to assign initial positions to points in the SSA plot
initializes the SSA plot for all shapes identically, as shown above.

’ Shape \ C, \ Relative \ C, \ Relative ‘
Bumpy sphere 1.4028 1 6.0435 1
Star 1.4091 1.0 9.8827 1.6
Schwarz’s Cylinder | 3.1565 2.3 11.0770 1.8
Ellipsoid 3.2412 2.3 12.7204 2.1
Genus 7.3383 5.2 11.0868 1.8
Cone 7.5897 5.4 25.0723 4.1
Bunny iH 8.0565 5.7 11.9106 2.0
Torus 8.2006 5.8 19.7177 3.3
Camel 13.2013 9.4 15.9134 2.6
Dinosaur 13.3709 9.5 14.9445 2.5
Homer 15.8560 11.3 15.8468 2.6
Armadillo 15.9370 11.4 18.4462 3.1
Bones 19.5370 13.9 25.5131 4.2

Table 4.1: Shapes sorted by Cs.

17

SSA plot

Shape

SSA plot

= 1.40, C, = 6.04

&

Bumpy sphere, C

3

Torus, Cs = 8.20, C, = 19.72

Star, Cs = 1.41, C, = 9.88

+

=

Schwarz’s cyl., C

=3.16, C,, = 11.08

Camel, Cs = 13.20, C, = 15.91

Jal\

k3

05|
m
o)
s
oal 4
03|
= -
o
W0z 03 97 05 05 07 05 08

Dinosaur, Cy = 13.37, C, = 14.94

B

PR

Ellipsoid, Cs = 3.24, C, = 12.72

£
4

Y

34, C, = 11.09

Homer, C's = 15.86, C,, = 15.85

Genus, Cs = 7.

O

-

-

i

15.93, C, = 18.45

Bones, Cy = 19.54, C, = 25.51

Cone, Cy = 7.59, C, = 25.07

A F

5

o3|
os|
o)
%I ol
os|
o4
> o3|
ol
d o
. O

Bunny iH, Cs =

8.06, C, = 11.91

Figure 4.2: Shapes sorted top to bottom, left to right according to C.

[21]

[13]

Cs

Cs

Rank |

O L KK

SO R
. AR EE

3

4

10

11

12

13

Figure 4.3: Shapes sorted according to four complexity measures — our com-
plexity measures, Cs and C,, and the methods from [13] and [21].

19

[13, 21] are unable to deal with noise, the most prominent example of which is
that they rank the Bumpy sphere as one of the most complex shapes, whereas
our view based method ignores the noise and ranks the Bumpy sphere as the
simplest.

4.1 Discussion

Our literature review on automatic computation of complexity of 3D shapes,
presented in Section 1.1, yielded few other works. The ones among these that
we tested are vulnerable to noise and slight irregularities in the shape. In
contrast, our method is able to ignore these artefacts and produce a ranking
of shapes that is more in agreement with human notions of shape complexity.

However, our method still has deficiencies, e.g. in the first two columns in
Figure 4.3, the Bunny is ranked quite low compared to other, simpler shapes
like the Torus. We believe this is because of inadequate representation of
the information contained in our SSA plots. A deeper understanding of the
SSA plot reflected in sophisticated measures to compute complexity from the
plots will, in our opinion, relieve our method of the above problems.

The key to our complexity results is the SSA plot we obtain for each shape,
which in turn depends on the shape similarity method used. A good shape
similarity method, i.e. one that can compute similarities between shapes as
humans perceive them, is thus crucial for the success of our approach.

As large numbers of 3D shape content become common, organizing them
in a meaningful manner becomes important. Our approach can be used
for this purpose to sort shapes in a 3D shape repository according to their
complexities. Given a query shape, the repository can also be searched for
stored shapes that are more, less or similarly complex.

One straightforward application of our SSA plots can be to compute shape
symmetries [12, 14]. Symmetries in a shape are a measure of the shape’s self-
similarities. A shape that has many symmetries will yield tight clusters of
points in the SSA plot, e.g. the Star in Figure 4.2. This is because clusters
correspond to views that are similar to each other. If views from different
parts of the shape end up in the same cluster, that is indicative of a self-
similarity within the shape between those parts. We could see each point in
a cluster as a “vote” for a view. When different parts of a shape vote for the
same view, the shape will surely be symmetric. Similar voting schemes have
also been employed in previous works on symmetry [12, 14]. A significantly
large number of votes for a view could also be used as a cue for the best view
of the object.

20

Bibliography

1]

N. Amenta, M. Bern, and D. Eppstein. The crust and the [-skeleton:
combinatorial curve reconstruction. Graphical Models and Image Pro-
cessing, 60(2):125-135, 1998.

N. Amenta, M. Bern, and M. Kamvysselis. A new Voronoi-based surface
reconstruction algorithm. In Proceedings of the 25th ACM Conference
on Computer Graphics and Interactive Techniques (SIGGRAPH °98),
pages 415421, 1998.

E. Attalla and P. Siy. Robust shape similarity retrieval based on contour
segmentation polygonal multiresolution and elastic matching. Pattern
Recognition, 38(12):2229-2241, 2005.

I. Borg and P. Groenen. Modern Multidimensional Scaling: Theory and
Applications. Springer, 2005.

I. Borg and J. Lingoes. Multidimensional Similarity Structure Analysis.
Springer, Berlin, 1987.

H. H. Biilthoff, S. Y. Edelman, and M. J. Tarr. How are three-
dimensional objects represented in the brain? Cerebral Cortex, 5(3):247—
260, 1995.

F. Cutzu and M. J. Tarr. The representation of three-dimensional object
similarity in human vision. In SPIE Proceedings from Electronic Imag-
ing: Human Vision and FElectronic Imaging 11, 3016, pages 460-471,
1997.

C. M. Cyr and B. B. Kimia. A similarity-based aspect-graph approach to
3D object recognition. Internation Journal of Computer Vision, 57(1):5—
22, 2004.

21

[9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

B. Delaunay. Sur la sphere vide. [zvestia Akademia Nauk SSSR, VII Se-
ria, Otdelenie Matematicheskii i Fstestvennyka Nauk, 7:793-800, 1934.

J. J. Koenderink and A. J. van Doorn. The internal representation of
solid shape with respect to vision. Biological Cybernetics, 32(4):211-216,
1979.

C. T. Loop. Smooth subdivision surfaces based on triangles. Master’s
thesis, Department of Mathematics, The University of Utah, 1987.

N. J. Mitra, L. Guibas, and M. Pauly. Partial and approximate symme-
try detection for 3D geometry. ACM Transactions on Graphics (Pro-
ceedings of SIGGRAPH ’06), 25(3):560-568, 2006.

D. L. Page, A. Koschan, S. R. Sukumar, B. Roui-Abidi, and M. A. Abidi.
Shape analysis algorithm based on information theory. In Proceedings
of the International Conference on Image Processing 2003 (ICIP °03),
pages 229-232, 2003.

J. Podolak, P. Shilane, A. Golovinskiy, S. Rusinkiewicz, and
T. Funkhouser. A planar-reflective symmetry transform for 3D shapes.
ACM Transactions on Graphics (Proceedings of SIGGRAPH 06), pages
549-559, 2006.

J. Rigau, M. Feixas, and M. Sbert. Shape complexity based on mutual
information. In Proceedings of the IEEE International Conference on
Shape Modeling and Applications 2005 (SMI °05), pages 357-362, 2005.

A. Rosner. The Crust Curve Recosntruction Applet.
valis.cs.uiuc.edu/~sariel /research /CG /applets/Crust /Crust.html.
last accessed on 1 Oct, 2008.

J. Rossignac. Shape complexity. The Visual Computer, 21(12):985-996,
2005.

W. Saleem, W. Song, A. Belyaev, and H.-P. Seidel. On computing best
fly. In Proceedings of the 23rd Spring Conference on Computer Graphics
2007 (SCCG ’07), pages 143-149, 2007.

C. E. Shannon and W. Weaver. A Mathematical Theory of Communi-
cation. University of Illinois Press, Champaign, 1L, USA, 1963.

J. R. Shewchuk. Triangle: Engineering a 2D Quality Mesh Genera-
tor and Delaunay Triangulator. Lecture Notes in Computer Science,
1148:203-222, 1996.

22

[21]

23]

[24]

S. R. Sukumar, D. Page, A. Gribok, A. Koschan, and M. A. Abidi.
Shape measure for identifying perceptually informative parts of 3D ob-
jects. In Proceedings of the Third International Symposium on 3D Data

Processing, Visualization, and Transmission (3DPVT '06), pages 679-
686, 2006.

R. C. Veltkamp and L. J. Latecki. Properties and performance of shape
similarity measures. In Proceedings of the 10th International Conference
on Data Science and Classification 2006 (IFCS °06), 2006.

D. Wang. 3D shape complexity using view similarity. Master’s thesis,
Computer Science Department, University of Saarland, 2008.

H. Yamauchi, W. Saleem, S. Yoshizawa, Z. Karni, A. Belyaev, and H.-
P. Seidel. Towards stable and salient multi-view representation of 3D

shapes. In Proceedings of the IEEE International Conference on Shape
Modeling and Applications 2006 (SMI '06), pages 265-270, 2006.

23

Below you find a list of the most recent technical reports of the Max-Planck-Institut fiir Informatik. They
are available via WWW using the URL http://www.mpi-inf.mpg.de. If you have any questions concern-
ing WWW access, please contact reports@mpi-inf.mpg.de. Paper copies (which are not necessarily free
of charge) can be ordered either by regular mail or by e-mail at the address below.

Max-Planck-Institut fur Informatik

Library

attn. Anja Becker
Stuhlsatzenhausweg 85
66123 Saarbriicken

GERMANY
e-mail: library@mpi-inf .mpg.de

MPI-I-2008-5-003

MPI-I-2008-5-002

MPI-I1-2008-5-001

MPI-I-2008-1-001

MPI-1-2007-RG1-002

MPI-I-2007-5-003

MPI-1-2007-5-002

MPI-1-2007-5-001

MPI-I-2007-4-008

MPI-1-2007-4-007

MPI-1-2007-4-006

MPI-I1-2007-4-005
MPI-1-2007-4-004
MPI-1-2007-4-003

MPI-1-2007-4-002

MPI-I1-2007-4-001

MPI-1-2007-2-001

MPI-1-2007-1-002

MPI-1-2007-1-001

MPI-I-2006-5-006

MPI-I-2006-5-005

MPI-I-2006-5-004

MPI-I-2006-5-003

F.M. Suchanek, G. de Melo, A. Pease

T. Neumann, G. Moerkotte

F. Suchanek, G. Kasneci,
M. Ramanath, M. Sozio, G. Weikum

D. Ajwani

T. Hillenbrand, C. Weidenbach

F.M. Suchanek, G. Kasneci,
G. Weikum

K. Berberich, S. Bedathur,
T. Neumann, G. Weikum

G. Kasneci, F.M. Suchanek, G. Ifrim,
M. Ramanath, G. Weikum

J. Gall, T. Brox, B. Rosenhahn,

H. Seidel

R. Herzog, V. Havran, K. Myszkowski,
H. Seidel

C. Dyken, G. Ziegler, C. Theobalt,

H. Seidel

T. Schultz, J. Weickert, H. Seidel

C. Stoll

R. Bargmann, V. Blanz, H. Seidel

T. Langer, H. Seidel

J. Gall, B. Rosenhahn, H. Seidel

>

. Podelski, S. Wagner

E. Althaus, S. Canzar

E. Berberich, L. Kettner

. Kasnec, F.M. Suchanek,
. Weikum

QO

R. Angelova, S. Siersdorfer

F. Suchanek, G. Ifrim, G. Weikum

V. Scholz, M. Magnor

Integrating Yago into the Suggested Upper Merged
Ontology

Single Phase Construction of Optimal DAG-structured
QEPs

STAR: Steiner Tree Approximation in
Relationship-Graphs

Characterizing the performance of Flash memory
storage devices and its impact on algorithm design

Superposition for Finite Domains

Yago : A Large Ontology from Wikipedia and WordNet

A Time Machine for Text Search

NAGA: Searching and Ranking Knowledge

Global Stochastic Optimization for Robust and
Accurate Human Motion Capture

Global Tllumination using Photon Ray Splatting

GPU Marching Cubes on Shader Model 3.0 and 4.0

A Higher-Order Structure Tensor
A Volumetric Approach to Interactive Shape Editing

A Nonlinear Viseme Model for Triphone-Based Speech
Synthesis

Construction of Smooth Maps with Mean Value
Coordinates

Clustered Stochastic Optimization for Object
Recognition and Pose Estimation

A Method and a Tool for Automatic Veriication of
Region Stability for Hybrid Systems

A Lagrangian relaxation approach for the multiple
sequence alignment problem

Linear-Time Reordering in a Sweep-line Algorithm for
Algebraic Curves Intersecting in a Common Point

Yago - A Core of Semantic Knowledge

A Neighborhood-Based Approach for Clustering of
Linked Document Collections

Combining Linguistic and Statistical Analysis to
Extract Relations from Web Documents

Garment Texture Editing in Monocular Video
Sequences based on Color-Coded Printing Patterns

MPI-I-2006-5-002

MPI-I-2006-5-001

MPI-1-2006-4-010

MPI-1-2006-4-009

MPI-1-2006-4-008

MPI-1-2006-4-007

MPI-I-2006-4-006

MPI-I-2006-4-005
MPI-1-2006-4-004

MPI-1-2006-4-003

MPI-1-2006-4-002

MPI-1-2006-4-001

MPI-I-2006-2-001

MPI-1-2006-1-007
MPI-I-2006-1-006

MPI-I-2006-1-005
MPI-I-2006-1-004

MPI-1-2005-5-002

MPI-1-2005-4-006

MPI-1-2005-4-005

MPI-1-2005-4-004

MPI-1-2005-4-003

MPI-I-2005-4-002

MPI-1-2005-4-001

MPI-1-2005-2-004

MPI-I1-2005-2-003
MPI-1-2005-2-002
MPI-1-2005-2-001
MPI-I-2005-1-008

MPI-1-2005-1-007

MPI-I-2005-1-003

H. Bast, D. Majumdar, R. Schenkel,
M. Theobald, G. Weikum

M. Bender, S. Michel, G. Weikum,
P. Triantafilou

A. Belyaev, T. Langer, H. Seidel

J. Gall, J. Potthoff, B. Rosenhahn,
C. Schnoerr, H. Seidel

I. Albrecht, M. Kipp, M. Neff,
H. Seidel

O. Schall, A. Belyaev, H. Seidel

C. Theobalt, N. Ahmed, H. Lensch,
M. Magnor, H. Seidel

A. Belyaev, H. Seidel, S. Yoshizawa
V. Havran, R. Herzog, H. Seidel

E. de Aguiar, R. Zayer, C. Theobalt,
M. Magnor, H. Seidel

G. Ziegler, A. Tevs, C. Theobalt,
H. Seidel

A. Efremov, R. Mantiuk,
K. Myszkowski, H. Seidel

T. Wies, V. Kuncak, K. Zee,
A. Podelski, M. Rinard

H. Bast, I. Weber, C.W. Mortensen
M. Kerber

A. Eigenwillig, L. Kettner, N. Wolpert

S. Funke, S. Laue, R. Naujoks, L. Zvi
S. Siersdorfer, G. Weikum
C. Fuchs, M. Goesele, T. Chen,

H. Seidel
G. Krawczyk, M. Goesele, H. Seidel

C. Theobalt, N. Ahmed, E. De Aguiar,

G. Ziegler, H. Lensch, M.A. Magnor,
H. Seidel

T. Langer, A.G. Belyaev, H. Seidel
O. Schall, A. Belyaev, H. Seidel
M. Fuchs, V. Blanz, H. Lensch,

H. Seidel

Y. Kazakov

H.d. Nivelle

P. Maier, W. Charatonik, L. Georgieva

J. Hoffmann, C. Gomes, B. Selman

C. Gotsman, K. Kaligosi,
K. Mehlhorn, D. Michail, E. Pyrga

I. Katriel, M. Kutz

S. Baswana, K. Telikepalli

IO-Top-k: Index-access Optimized Top-k Query
Processing

Overlap-Aware Global df Estimation in Distributed
Information Retrieval Systems

Mean Value Coordinates for Arbitrary Spherical
Polygons and Polyhedra in R3

Interacting and Annealing Particle Filters:
Mathematics and a Recipe for Applications

Gesture Modeling and Animation by Imitation

Feature-preserving Non-local Denoising of Static and
Time-varying Range Data

Enhanced Dynamic Reflectometry for Relightable
Free-Viewpoint Video

Skeleton-driven Laplacian Mesh Deformations

On Fast Construction of Spatial Hierarchies for Ray
Tracing

A Framework for Natural Animation of Digitized
Models

GPU Point List Generation through Histogram
Pyramids

Design and Evaluation of Backward Compatible High
Dynamic Range Video Compression

On Verifying Complex Properties using Symbolic Shape
Analysis

Output-Sensitive Autocompletion Search

Division-Free Computation of Subresultants Using
Bezout Matrices

Snap Rounding of Bézier Curves

Power Assignment Problems in Wireless
Communication

Automated Retraining Methods for Document
Classification and their Parameter Tuning

An Emperical Model for Heterogeneous Translucent
Objects

Photometric Calibration of High Dynamic Range
Cameras

Joint Motion and Reflectance Capture for Creating
Relightable 3D Videos

Analysis and Design of Discrete Normals and
Curvatures

Sparse Meshing of Uncertain and Noisy Surface
Scattered Data

Reflectance from Images: A Model-Based Approach for
Human Faces

A Framework of Refutational Theorem Proving for
Saturation-Based Decision Procedures

Using Resolution as a Decision Procedure
Bounded Model Checking of Pointer Programs
Bottleneck Behavior in CNF Formulas

Cycle Bases of Graphs and Sampled Manifolds

A Faster Algorithm for Computing a Longest Common
Increasing Subsequence

Improved Algorithms for All-Pairs Approximate
Shortest Paths in Weighted Graphs

