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Abstract

This article presents YAGO, a large ontology with high coverage and preci-
sion. YAGO has been automatically derived from Wikipedia and WordNet.
It comprises entities and relations, and currently contains more than 1.7 mil-
lion entities and 15 million facts. These include the taxonomic Is-A hierarchy
as well as semantic relations between entities. The facts for YAGO have been
extracted from the category system and the infoboxes of Wikipedia and have
been combined with taxonomic relations from WordNet. Type checking tech-
niques help us keep YAGO’s precision at 95% – as proven by an extensive
evaluation study. YAGO is based on a clean logical model with a decidable
consistency. Furthermore, it allows representing n-ary relations in a natural
way while maintaining compatibility with RDFS. A powerful query model
facilitates access to YAGO’s data.
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1 Introduction

Many applications in modern information technology utilize ontological back-
ground knowledge. This applies above all to applications in the vision of the
Semantic Web, but also to numerous other application fields: machine trans-
lation (e.g. [34]) and word sense disambiguation (e.g. [26]) exploit lexical
knowledge; query expansion uses taxonomies (e.g. [97, 71, 142]); document
classification based on supervised or semi-supervised learning can be com-
bined with ontologies (e.g. [80]); and [79] demonstrates the utility of back-
ground knowledge for question answering and information retrieval. Fur-
thermore, ontological knowledge structures play an important role in data
cleaning (e.g., for a data warehouse) [35], record linkage (aka. entity reso-
lution) [46], and information integration in general [115]. In addition, there
are emerging trends towards entity- and fact-oriented Web search and com-
munity management [16, 28, 33, 36, 52, 87, 99, 109, 111], which can build on
rich knowledge bases.

But the existing applications typically use only a single source of back-
ground knowledge (mostly WordNet [66] or Wikipedia). They could boost
their performance, if a huge ontology with knowledge from several sources
was available. Such an ontology would have to be of high quality, with accu-
racy close to 100 percent, i.e. comparable in quality to an encyclopedia. It
would have to comprise not only concepts in the style of WordNet, but also
named entities like people, organizations, geographic locations, books, songs,
products, etc., and also relations among these such as what-is-located-where,
who-was-born-when, who-has-won-which-prize, etc.1 It would have to be eas-
ily re-usable and application-independent. If such an ontology were available,
it could boost the performance of existing applications and also open up the
path towards new applications in the Semantic Web era.

1In this article, we mean by ”ontology” any set of facts and/or axioms, comprising
potentially both individuals and concepts.
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1.1 Related Work

Knowledge representation is an old field in AI and has provided numerous
models from frames and KL-ONE to recent variants of description logics and
RDFS and OWL (see [124] and [131]). Numerous approaches have been pro-
posed to create general-purpose ontologies on top of these representations.
One class of approaches focuses on extracting knowledge structures auto-
matically from text corpora. These approaches use information extraction
technologies that include pattern matching, natural-language parsing, and
statistical learning [137, 65, 27, 2, 128, 116, 50]. These techniques have also
been used to extend WordNet by Wikipedia individuals [123]. Two important
projects along these lines are KnowItAll [65] and TextRunner [13]. Know-
ItAll aimed at extracting and compiling instances of a given set of unary and
binary predicate instances on a very large scale – e.g., as many soccer play-
ers as possible or almost all company/CEO pairs from the business world.
TextRunner has the even more ambitious goal of extracting all instances of
all meaningful relations from Web pages, a paradigm referred to as machine
reading [63]. Recently this approach has been further extended to include
even lifelong learning, by using the already compiled knowledge to drive the
strategies for acquiring new facts [15]. Although automatic knowledge acqui-
sition of this kind often exhibits results of remarkable accuracy, the quality
is still significantly below that of a hand-crafted knowledge base. Further-
more, these systems do not extract facts in a canonical form, i.e. different
identifiers are used for the same entity and there exist no clearly defined rela-
tions. As a result, no explicit (logic-based) knowledge representation model
is available. Thus, information-extraction approaches are still much more
suitable for high coverage and less attractive for applications that need con-
sistent ontologies (e.g., high-accuracy query processing, or even automated
reasoning).

Similar observations hold for the recently popularized direction of min-
ing taxonomies and semantic relations from social-tagging platforms such as
del.icio.us and Web directories such as dmoz.org (see, e.g., [54, 82, 62]).
Notwithstanding the benefits of these approaches, the inherent noise and lack
of explicit quality control for social tagging usually lead to poor precision.

Because of the quality bottleneck, the most successful and widely em-
ployed ontologies are still man-made. These include WordNet [66], Cyc or
OpenCyc [106], SUMO [114], and especially domain-specific ontologies and
taxonomies such as UMLS2 or the GeneOntology3. These knowledge sources
have the advantage of satisfying the highest quality expectations, because

2http://umlsinfo.nlm.nih.gov
3http://www.geneontology.org/
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they are manually assembled. However, they are costly to assemble and con-
tinuous human effort is needed to keep them up to date. As a result, no
hand-crafted ontology knows the most recent Windows version or the latest
soccer star.

Lately, a new approach has entered the scene: community-based ontology
building. Inspired by Wikipedia, the Freebase project4 aims to construct an
ontology by inviting volunteers to contribute facts. However, it is not clear
how one can keep such a “social-wisdom” ontology consistent, as conflicting
facts seem almost inevitable in this kind of mass collaboration. One may
argue that Wikipedia is successfully maintaining its high quality despite this
difficulty, but on the other hand, Wikipedia by itself (i.e., without the added-
value-creating methods presented in this paper) is not offering explicit facts
but mostly stays at the level of natural-language text.

The Semantic Wikipedia project [145] is a comparable initiative. It invites
Wikipedia authors to add semantic tags to their articles in order to turn the
page link structure of Wikipedia into a huge semantic network. Again, the
usefulness of this approach will depend on the acceptance of the project by
the community and on finding successful ways of quality control.

Finally, a recently emerging approach is to automatically derive explicit
facts from - the “automatically understandable” part of - Wikipedia. This di-
rection includes DBpedia [9], Isolde [147], the work of Ponzetto et al. [118],
KYLIN [148], and also our own YAGO project (with first results given in
[139] and an extended, full account presented in this article). The DBpedia
project was initially started by extracting facts from the infoboxes of par-
ticular types of Wikipedia articles (e.g., on people, cities, companies, music
bands, etc.). In contrast to YAGO, DBpedia itself does not connect the
facts into a coherent whole by a taxonomy. Furthermore, it does not use de-
fined relations with ranges and domains, but the words from the infoboxes,
so that the same relationship appears with different names (e.g. length,
length-in-km, length-km). Thus, the consistency and accuracy of DBpedia
are unknown. The aim of DBpedia is rather to interlink existing ontologies
into a huge knowledge portal. YAGO has already been fed into the project.

Ponzetto et al. use rich heuristics to derive a taxonomy from Wikipedia
categories and links between them. Isolde extracts class candidates from
a specific domain corpus. It exploits Web sources such as Wikipedia and
Wiktionary to derive additional knowledge about these candidates. Although
both of these approaches pursue similar goals as YAGO, they lead to lower
quality and more restricted scope.

Finally, KYLIN starts out with extraction techniques on infoboxes, simi-
lar to those of DBpedia, but then uses powerful learning techniques to auto-

4http://www.freebase.com
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matically fill in missing values in incomplete infoboxes. The accuracy of the
extraction is remarkable. Its goal, however, is filling infoboxes rather than
constructing an ontological knowledge base.

1.2 Contributions and Outline

We present the ontology YAGO5, which combines high coverage with high
quality. Its core is assembled from one of the most comprehensive lexicons
available today, Wikipedia. But rather than using natural language process-
ing on the articles of Wikipedia, our approach builds on Wikipedia’s infoboxes
and category pages. Infoboxes are standardized tables that contain basic in-
formation about the entity described in the article. For example, there are
infoboxes for countries, which contain the native name of the country, its
capital and its size. As shown in [9], infoboxes are much easier to parse and
exploit than natural language text. Category pages are lists of articles that
belong to a specific category (e.g., Elvis is in the category of American rock
singers). These lists give us candidates for entities (e.g. Elvis) candidates for
concepts (e.g. IsA(Elvis, rockSinger)) [91] and candidates for relations (e.g.
nationality(Elvis, American)). In an ontology, concepts have to be arranged
in a taxonomy to be of use. The Wikipedia categories are indeed arranged in
a hierarchy, but this hierarchy is barely useful for ontological purposes. For
example, Elvis is in the super-category named Grammy Awards, but Elvis is
a Grammy Award winner and not a Grammy Award. WordNet, in contrast,
provides a clean and carefully assembled hierarchy of thousands of concepts.
But the Wikipedia concepts have no obvious counterparts in WordNet.

We present techniques that link the two sources with high accuracy. To
the best of our knowledge, our method is the first approach that accomplishes
this unification between WordNet and facts derived from Wikipedia with a
precision of 95%. This allows the YAGO ontology to profit, on one hand,
from the vast amount of individuals known to Wikipedia, while exploiting, on
the other hand, the clean taxonomy of concepts from WordNet. Currently,
YAGO contains roughly 1.7 million entities and 15 million facts about them.

We explain how we can enforce the high accuracy of our extraction heuris-
tics through type checking. Type checking leverages the information that has
already been extracted to verify the plausibility of newly extracted data. We
show that type checking can be used both in a reductive fashion (eliminating
facts that are implausible) and in an inductive fashion (adding supplemental
facts so that the ontology becomes consistent). We have conducted an ex-
tensive evaluation study, which proves that YAGO has an overall precision

5Yet Another Great Ontology
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of 95%.
YAGO is based on a data model of entities and binary relations. But

by means of reification (i.e., introducing identifiers for relation instances) we
can also express relations between facts (e.g., which fact was found on which
Web site), n-ary relations (e.g. that Elvis won the Grammy Award in 1967)
and general properties of relations (e.g., transitivity or acyclicity). We show
that, despite its expressiveness, the YAGO data model is still decidable and
can be mapped to RDFS. Furthermore, we present a query language as a
natural extension of our data model, which allows querying reified facts.

YAGO was first presented in [139]. This article significally extends the
previous work by adding the exploitation of infoboxes, introducing quality
control techniques and defining a new query language. The rest of this article
is organized as follows. In Section 2 we introduce YAGO’s data model.
Section 3 describes the sources from which the current YAGO is assembled,
namely Wikipedia and WordNet. In Section 4 we explain the information
extraction algorithms behind YAGO. Section 5 presents an evaluation, a
comparison to other ontologies, and sample facts from YAGO. We conclude
with a summary and an outlook in Section 6.
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2 The YAGO Model

To accommodate the ontological data we already extracted and to be pre-
pared for future extensions, YAGO must be based on a thorough and expres-
sive data model. The model must be able to express entities, facts, relations
between facts and properties of relations. The state-of-the-art formalism
in knowledge representation is currently the Web Ontology Language OWL
[131]. Its most expressive variant, OWL-full, can express properties of re-
lations, but is undecidable. The weaker variants of OWL, OWL-lite and
OWL-DL, cannot express relations between facts. RDFS, the basis of OWL,
can express relations between facts, but provides only very primitive seman-
tics. For example, it does not know transitivity, which is crucial for partial
orders such as subclassOf or locatedIn. This is why we introduce a
slight extension of RDFS, the YAGO model. The YAGO model can express
relations between facts and relations, while it is at the same time simple and
decidable. We will first describe the YAGO model informally and then give
a formal definition.

2.1 Informal description

As in OWL and RDFS, all objects (e.g. cities, people, even URLs) are
represented as entities in the YAGO model. Two entities can stand in a
relation. For example, to state that Elvis won a Grammy Award, we say
that the entity Elvis Presley stands in the hasWonPrize relation with
the entity Grammy Award. We write

Elvis Presley hasWonPrize Grammy Award

Numbers, dates, strings and other literals are represented as entities as well.
This means that they can stand in relations to other entities. For example,
to state that Elvis was born in 1935, we write:

Elvis Presley bornInYear 1935

8



Entities are abstract ontological objects, which are language-independent in
the ideal case. Language uses words to refer to these entities. In the YAGO
model, words are entities as well. This makes it possible to express that a
certain word refers to a certain entity, like in the following example:

”Elvis” means Elvis Presley

This allows us to deal with synonymy and ambiguity. The following line says
that ”Elvis” may also refer to the English songwriter Elvis Costello:

”Elvis” means Elvis Costello

We use quotes to distinguish words from other entities. Similar entities are
grouped into classes. For example, the class singer comprises all singers
and the class word comprises all words. Each entity is an instance of at least
one class. We express this by the type relation:

Elvis Presley type singer

Classes are also entities. Thus, each class is itself an instance of a class,
namely of the class class1. Classes are arranged in a taxonomic hierarchy,
expressed by the subClassOf relation:

singer subClassOf person

In the YAGO model, relations are entities as well. This makes it possible to
represent properties of relations (like transitivity or subsumption) within the
model. The following line, e.g., states that the subClassOf relation is an
acyclic transitive relation (atr):

subclassOf type atr

Acyclic transitive relations are of particular importance to YAGO because
they are used to model partial orders such as subclassOf and locatedIn.
The triple of an entity, a relation and an entity is called a fact. The two enti-
ties are called the arguments of the fact. Each fact is given a fact identifier.
As RDFS, the YAGO model considers fact identifiers to be entities as well.
This allows us to represent for example that a certain fact was derived from
a certain source. For example, suppose that the above fact (Elvis Presley,
bornInYear, 1935) had the fact identifier #1, then the following line would
say that this fact was found in Wikipedia:

#1 foundIn Wikipedia

1For the YAGO model, classes should be thought of as abstract identifiers rather than
sets.
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We will refer to entities that are neither facts nor relations as common enti-
ties. Common entities that are not classes will be called individuals. Sum-
ming up, a YAGO ontology is basically a function that maps fact identifiers
to fact triples. More formally, a YAGO ontology can be described as a reifi-
cation graph.

2.2 Reification graphs

A reification graph is defined over

• a set of nodes N . In YAGO, these are the common entities.

• a set of edge identifiers I. In YAGO, these are the fact identifiers.

• a set of labels L. In YAGO, these are the relation names.

The reification graph is an injective total function

GN,I,L : I → (N ∪ I) × L × (N ∪ I).

We call the range of this function the edges of the graph. Intuitively speak-
ing, the edges of a reification graph cannot only connect two nodes, but also
a node and an edge or even two edges. Each edge is unique and has an
identifier from I. Furthermore, each edge has a label from L. Note that a
reification graph of the form GN,I,L : I → N ×L×N defines a usual directed
multi-graph with nodes N and labeled edges range(GN,I,L).

A YAGO ontology over a finite set of common entities C, a finite set of
relation names R and a finite set of fact identifiers I is a reification graph
over the set of nodes I ∪C ∪R and the set of labels R, i.e. an injective total
function

y : I → (I ∪ C ∪ R) ×R× (I ∪ C ∪ R)

We write down a YAGO ontology (and in general any reification graph)
by listing the elements of the function in the form

id1: arg11 rel1 arg21

id2: arg12 rel2 arg22

...

To simplify, we will omit the part before the colon if it occurs nowhere else,
assuming it to be an arbitrary fresh identifier. Furthermore, we allow the
following shorthand notation

id2 : (arg11 rel1 arg21) rel2 arg22

10



to mean

id1: arg11 rel1 arg21

id2: id1 rel2 arg22

where id1 is a fresh identifier. Assuming left-associativity, the notation can
be further simplified to

id2 : arg11 rel1 arg21 rel2 arg22

For example, to state that Elvis’ birth date was found in Wikipedia, we can
simply write this fragment of the reification graph as

Elvis bornInYear 1935 foundIn Wikipedia

2.3 n-ary Relations

Some facts require more than two arguments (for example the fact that Elvis
got the Grammy Award in 1967). One common way to deal with this is-
sue is to use n-ary relations (as for example in wonPrizeInYear(Elvis,

GrammyAward, 1967)). RDFS and OWL do not allow n-ary relations. There-
fore, the standard way to deal with this problem in these formalisms is to
introduce a new binary relation for each argument (e.g. winner,prize,
year). Then, an n-ary fact can be represented by a new event entity (say,
elvisGetsGrammy) that is linked by these binary relations to all of its argu-
ments:

GrammyAward prize elvisGetsGrammy

Elvis winner elvisGetsGrammy

1921 year elvisGetsGrammy

The YAGO model offers a more natural solution to this problem: It is based
on the assumption that for each n-ary relation, a primary pair of its argu-
ments can be identified. For example, for the above wonPrizeInYear-
relation, the pair of the person and the prize could be considered a primary
pair. The primary pair can be represented as a binary fact with a fact iden-
tifier:

#1 : Elvis hasWonPrize Grammy Award

11



All other arguments can be represented as relations that hold between the
primary pair and the other argument:

#2 : #1 inYear 1967

With our simplified syntax, this can as well be written as

Elvis hasWonPrize Grammy Award inYear 1967

2.4 Semantics

This section gives a model-theoretic semantics to YAGO. We first prescribe
that the set of relation names R for any YAGO ontology must contain at least
the relation names type, subClassOf, domain, range and subRelationOf.
The set of common entities C must contain at least the classes entity, class,
relation and atr (for acyclic transitive relation). Furthermore, it must con-
tain classes for all literals as given in Figure 1.

Figure 1: The YAGO literal classes

Literal

Number String TimeInterval Quantity

Rational

Integer

NonNegInteger

Word

URL

Char

TimePoint

Date Year Duration

Length

Weight

For the rest of the article, we assume a given set of common entities C
and a given set of relations R. The set of fact identifiers used by a YAGO
ontology y is implicitly given by I = domain(y). To define the semantics
of a YAGO ontology, we consider the set of all possible facts F = (I ∪ C ∪
R) × R × (I ∪ C ∪ R). We define a rewrite system → ⊆ P(F) × P(F),
i.e. → reduces one set of facts to another set of facts. We use the shorthand
notation {f1, ..., fn} →֒ f to say that

F ∪ {f1, ..., fn} → F ∪ {f1, ..., fn} ∪ {f}

for all F ⊆ F , i.e. if a set of facts contains the facts f1, ..., fn, then the
rewrite rule adds f to this set. Our rewrite system contains the following
(axiomatic) rules:

12



∅ →֒ (domain, range, class)
∅ →֒ (domain, domain, relation)
∅ →֒ (range, domain, relation)
∅ →֒ (range, range, class)
∅ →֒ (subClassOf, type, atr)
∅ →֒ (subClassOf, domain, class)
∅ →֒ (subClassOf, range, class)
∅ →֒ (type, range, class)
∅ →֒ (subRelationOf, type, atr)
∅ →֒ (subRelationOf, domain, relation)
∅ →֒ (subRelationOf, range, relation)

The first rule, e.g., says that the range of the relation domain is the class
class, i.e. the second argument of a domain fact will always be a class. In
addition, the rewrite system contains for the literal classes the rules

∅ →֒ (X, subClassOf, Y )

for each edge X → Y in Figure 1.

Furthermore, it contains the following rules for all r, r1, r2 ∈ R, x, y, c, c1, c2 ∈
I ∪ C ∪ R, r1 6= type, r2 6= subRelationOf, r 6= subRelationOf,
r 6= type, c 6= atr, c2 6= atr:

(1) {(r1, subRelationOf, r2), (x, r1, y)} →֒ (x, r2, y)
(2) {(r,type, atr), (x, r, y), (y, r, z)}

→֒ (x, r, z)
(3) {(r,domain, c), (x, r, y)} →֒ (x,type, c)
(4) {(r,range, c), (x, r, y)} →֒ (y,type, c)
(5) {(x,type, c1), (c1, subClassOf, c2)}

→֒ (x,type, c2)

Theorem 1: [Convergence of →]
Given a set of facts F ⊂ F , the largest set S with F →∗ S is
finite and unique.

The proof of Theorem 1 is given in the Appendix A. Given a YAGO ontol-
ogy y, the rules of → can be applied to its set of facts, range(y). We call

13



the largest set that can be produced by applying the rules of → the set of
derivable facts of y, D(y). Two YAGO ontologies y1, y2 are equivalent if the
fact identifiers in y2 can be renamed by a bijective substitution so that

(y1 ⊆ y2 ∨ y2 ⊆ y1) ∧ D(y1) = D(y2)

The deductive closure of a YAGO ontology y is computed by adding the
derivable facts to y. Each derivable fact (a, r, b) needs a new fact identifier,
which is just fa,r,b. Using a relational notation for the function y, we can
write this as

y∗ := y ∪ { (fa,r,b, (a, r, b)) |
(a, r, b) ∈ D(y) \ range(y) }

A structure for a YAGO ontology y is a triple of

• a set U (the universe)

• a function D : I ∪ C ∪ R → U (the denotation)

• a function E : D(R) → U × U (the extension function)

As in RDFS, a YAGO structure needs to define the extensions of the relations
by the extension function E . E maps the denotation of a relation symbol to
a relation on universe elements. We define the interpretation Ψ with respect
to a structure < U ,D, E > as the following relation:

Ψ := {(e1, r, e2) | (D(e1),D(e2)) ∈ E(D(r))}

We say that a fact (e1, r, e2) is true in a structure, if it is contained in the
interpretation. A model of a YAGO ontology y is a structure such that

1. all facts of y∗ are true in the structure

2. if Ψ(x,type, string) for some x, then D(x) = x

3. if Ψ(r,type, atr) for some r, then there exists no x such that Ψ(x, r, x)

14



A YAGO ontology y is called consistent iff there exists a model for it. Ob-
viously, a YAGO ontology is consistent iff

6 ∃x, r : (r,type, atr) ∈ D(y)
∧ (x, r, x) ∈ D(y)

Since, by Theorem 1, the deductive closure of a YAGO ontology can be
computed by applying the rules (1)-(5) finitely often, we have the following
corollary of Theorem 1:

Corollary 1: [Decidability ]
The consistency of a YAGO ontology is decidable.

A base of a YAGO ontology y is any equivalent YAGO ontology b with b ⊆ y.
A canonical base of y is a base so that there exists no other base with less
elements.

Theorem 2: [Uniqueness of the Canonical Base]
The canonical base of a consistent YAGO ontology is unique.

The proof of Theorem 2 is given in the Appendix B. In fact, the canonical
base of a YAGO ontology can be computed by greedily removing derivable
facts from the ontology in any order. This makes the canonical base a natural
choice to efficiently store a YAGO ontology.

2.5 Reification and Semantics

The YAGO model allows making statements about facts. However, it does
not allow curtailing the validity of facts: A model for the ontology must make
every fact true, regardless of whether the fact is an argument of another fact.
This has several consequences. First, it is not possible to state in YAGO that
a certain fact is false. In any case, YAGO does not provide the predefined vo-
cabulary for such a statement and it would entail immediate undecidability.
Second, the primary pair of an n-ary relation will always be true in a model
of the ontology. Consider, for example, the fact that Elvis was a singer from
1950 to 1977. In the YAGO model, this fact could be expressed as
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#1: Elvis type singer

#2: #1 during 1950-1977

If the type relation denotes the relation ”x is a y”, then each model will
contain the fact that Elvis is a singer – even though in the intended interpre-
tation that holds only from 1950 to 1977. Thus, a more adequate denotation
for the type relation would actually be ”x is or was a y”. Another conse-
quence of the YAGO model is that intentional predicates like believesThat

or saysThat are not possible, because all arguments to these relations would
become true in the model. It does, however, allow using success verbs such
as seesThat or knowsThat, the arguments of which are true by intention.

These properties of the YAGO model may be considered limiting, but
they guarantee the decidability of the model.

2.6 Data Types

The YAGO model treats literals (such as strings or numbers) as proper en-
tities. Literals are instances of literal classes (or data types). RDFS and
OWL use the data types defined by XML Schema[20]. These data types,
however, are more machine-oriented and not always semantically plausible.
For example, XML Schema does not know the data type rationalNumber,
but only the disjunct data types float and double. This is why the YAGO
model comes with its own data types (see Figure 1), which follow the SUMO
ontology [114]. YAGO sees, e.g, integer as a subclass of rational, be-
cause each integer number is a rational number. Besides numbers, YAGO
also knows strings. These are characterized by mapping to themselves in
any denotation. timeIntervals are specific periods of time, such as the year
2007 or the 8th of January 1935.

The class quantity contains values that have a physical dimension such
as length or weight. These values have units, such as meter or kilogram. In
RDFS, quantities are usually represented by an anonymous entity (a blank
node). This entity is connected by an rdf:value edge to the numerical
value and by a unit edge to the unit of measurement, e.g. as follows:

:x rdf:value 1000

:x unit gram

As a consequence, the very same quantity has to be represented as two blank
nodes, if measured with two different units. The YAGO model, in contrast,
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can express that the very same quantity has two different values if measured
in different units:

#1: 1000g hasValue 1000

#2: #1 inUnit ”gram”
#3: 1000g hasValue 1

#4: #3 inUnit ”kilogram”

In YAGO, we use the ISO units and formats both for the hasValue facts
and as quantity identifiers.

2.7 Relation to Other Formalisms

The YAGO model is very similar to RDFS. In RDFS, relations are called
properties. Just as YAGO, RDFS knows the properties domain and range.
These properties have a semantics that is equivalent to that of the corre-
sponding YAGO relations. RDFS also knows subClassOf and subProp-

ertyOf (i.e. subRelationOf) as well, but these relations are not acyclic
as they are in YAGO. Acyclicity is crucial for YAGO, but RDFS does not
know the concept of an acyclic transitive relation. This entails that the
property atr can be defined and used, but that RDFS would not know its
semantics.

RDFS also knows reification, i.e. it can express facts about facts. To
refer to such a fact, RDFS does not use fact identifiers, but it characterizes
the fact by giving its relation and its arguments. For example, to talk about
the fact (Elvis, bornInYear,1935), RDFS would create a new entity for
the fact (say, elvisFact) and characterize it as follows:

elvisFact rdf:relation bornInYear

elvisFact rdf:subject Elvis

elvisFact rdf:object 1935

elvisFact rdf:type statement

This process is called reifying the fact. Then, elvisFact can be used as
an argument in other facts. Different from the YAGO model, though, the
reified fact does not become part of the ontology – let alone the model. In
RDFS, arbitrary facts can be used as arguments, even ones that are false in
the model.
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Thus, to model YAGO’s reification, one would need to reify each fact of
the ontology in the above manner so that each fact is present both in the
ontology and as a reified fact. To simplify this process, the XML syntax of
RDFS allows triple identifiers. If a fact of the ontology is equipped with a
triple identifier, that fact is automatically reified. This allows us to map a
YAGO ontology into RDFS. The following excerpt shows how the sample
fact of Section 2.3 can be represented in RDFS. Each fact of YAGO becomes
a triple in RDFS with a triple identifier.

<rdf:Description rdf:about="http://mpii.de/yago#Elvis">

<yago:hasWonPrize rdf:ID="f1"

rdf:resource="http://mpii.de/yago#GrammyAward" />

</rdf:Description>

<rdf:Description rdf:about="http://mpii.de/yago#f1">

<yago:inYear rdf:ID="f2">1967</yago:inYear>

</rdf:Description>

YAGO uses fact identifiers, but it does not have built-in relations to make
logical assertions about facts (e.g. it does not allow saying that a fact is false).
If one relies on the denotation to map a fact identifier to the corresponding
fact element in the universe, one can consider fact identifiers as simple indi-
viduals. This abandons the syntactic link between a fact identifier and the
fact. In return, it opens up the possibility of mapping a YAGO ontology to
an OWL ontology under certain conditions. OWL has built-in counterparts
for almost all built-in data types, classes, and relations of YAGO. The only
concept that does not have an exact built-in counterpart is atr. However,
this is about to change. OWL is currently being refined to its successor,
OWL 1.1[117]. The extended description logic SROIQ [76], which has been
adopted as the logical basis of OWL 1.1, allows expressing irreflexivity and
transitivity. This allows defining acyclic transitivity, even though subClas-

sOf and subPropertyOf remain reflexive and transitive and hence not
acyclic. We plan to investigate the relation of YAGO and OWL, once OWL
1.1 has been fully established.

2.8 Query Language

To demonstrate the use of YAGO, we present a query language for reification
graphs. A pattern for a reification graph GN,I,L over a set of variables V, V ∩
(N ∪ I ∪L) = ∅, is a reification graph over the set of nodes N ∪V , the set of
identifiers I ∪ V and the set of labels L ∪ V . A matching of a pattern P for

18



a graph G is a substitution σ : V → N ∪ I ∪ L, such that σ(P ) ⊂ G. σ(P )
is called a match.
Our syntax simplifications from section 2.2 can be transferred to patterns:
Each implicit fact identifier becomes a fresh variable. Thus, e.g., the query
”When did Elvis win the Grammy Award?” can be formulated as

Elvis hasWonPrize Grammy Award inYear $x

which is shorthand for

$i1: Elvis hasWonPrize Grammy Award

$i2: $i1 inYear $x

A match of that pattern for the ontology would map the variables to entities
such that the pattern becomes a subgraph of the ontology.

Usually, each entity that appears in the query also has to appear in the
ontology. If that is not the case, there is no match. However, we may want
to allow a query such as ”Which singers were born after 1930?”, even if 1930
does not appear in the ontology. We cannot simply add all existing literals
to the YAGO ontology because a YAGO ontology has to be finite. Hence, we
introduce filter relations (such as after), which are not part of the match,
but are evaluated on the match as filters. Technically, a filter relation is a
decidable function that maps two literals to either 0 or 1. Then, a filter pat-
tern P for a reification graph GN,I,R over a set of literals L, a set of variables
V, V ∩ (N ∪I ∪R∪L) = ∅ and a set of filter relations F , is a reification graph
over the set of nodes N ∪ V ∪ L, the set of identifiers I ∪ V and the set of
labels R ∪ V ∪ F . For example, the following is a filter pattern over the set
of literals {1930} and the set of filter relations {after}:

$i1: $x type singer

$i2: $x bornInYear $y

$i3: $y after 1930

A matching for a filter pattern is a matching σ for the pattern P\{(i, (a1, r, a2))|r ∈
F}, such that ∀(i, (a1, r, a2)) ∈ P, r ∈ F : r(σ(a1), σ(a2)) = 1. In the
example, a matching would have to bind $x and $y in such a way that
after($y, 1930) = 1. $i3 is left unbound. Then, a match for a filter pat-
tern is a matching applied to the pattern, i.e. in our case e.g.
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#1: Elvis type singer

#2: Elvis bornInYear 1935

$i3: 1935 after 1930

See Section 4.4 for implementation issues.
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3 Sources for YAGO

3.1 WordNet

WordNet is a semantic lexicon for the English language developed at the
Cognitive Science Laboratory of Princeton University[66]. WordNet distin-
guishes between words as literally appearing in texts and the actual senses
of the words. A set of words that share one sense is called a synset. Thus,
each synset identifies one sense (i.e., semantic concept). Words with mul-
tiple meanings (ambiguous words) belong to multiple synsets. As of the
current version 3.0, WordNet contains 82,115 synsets for 117,798 unique
nouns. (Wordnet also includes other types of words like verbs and adjec-
tives, but we consider only nouns in this article.) WordNet provides rela-
tions between synsets such as hypernymy/hyponymy (i.e., the relation be-
tween a sub-concept and a super-concept) and holonymy/meronymy (i.e., the
relation between a part and the whole); for this article, we focus on hyper-
nyms/hyponyms. Conceptually, the hypernymy relation in WordNet spans
a directed acyclic graph (DAG) with a single root node called entity.

3.2 Wikipedia

Wikipedia is a multilingual, Web-based encyclopedia. It is written collabo-
ratively by volunteers and is available for free. We downloaded the English
version of Wikipedia in November 2007, which comprised 2,000,000 articles at
that time. Each Wikipedia article is a single Web page and usually describes
a single topic or entity.

The majority of Wikipedia pages have been manually assigned to one
or multiple categories. The page about Elvis Presley, for example, is in the
categories American rock singers, 1935 births, and 34 more.

Furthermore, a Wikipedia page may have an infobox. An infobox is a
standardized table with information about the entity described in the article.
For example, there is a standardized infobox for people, which contains the
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birth date, the profession, and the nationality. Other widely used infoboxes
exist for cities, music bands, companies etc.

For our information extraction, we use the XML dump of Wikipedia. It
is approximately 3 Gigabytes large and stores the articles in the original wiki
markup language.
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4 Information Extraction

The construction of the YAGO ontology takes place in two stages: First,
different heuristics are applied to Wikipedia to extract candidate entities
and candidate facts. This stage also establishes the connection between
Wikipedia and WordNet. Then, quality control techniques are applied. We
will now explain these steps in detail and then explain how YAGO is stored.

4.1 Wikipedia Heuristics

Since Wikipedia knows far more individuals than WordNet, the individuals
for YAGO are taken from Wikipedia. Each Wikipedia page title is a candi-
date to become an individual in YAGO. For example, the page title ”Albert
Einstein” is a candidate to become the individual Albert Einstein in our
ontology. The page titles in Wikipedia are unique. Our algorithm parses the
XML dump of Wikipedia and applies 4 different types of heuristics to the
articles.

4.1.1 Infobox Heuristics

Attributes and Values

A Wikipedia article may contain an infobox (see Figure 2). An infobox is
a rich source of facts about the article entity. Each row in the infobox ta-
ble contains an attribute and a value. For example, an infobox on the page
of Elvis Presley may contain the attribute Born with the value January 8,

1935. We have identified 170 highly frequent attributes. For each of these
attributes, we have manually designed a YAGO relation, the target relation.
For example, for the attribute Born, we introduced the relation birthDate

with domain person and range timeInterval. Some attributes use the same
relation. For example, both Born and Birthday map to the relation birth-

Date. In principle, each row of the infobox will generate one fact. Its first
argument is the article entity, its relation is determined by attribute and its
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second argument is the value of the attribute. However, we map some at-
tributes to the inverse of a relation. For example, the attribute official name

has as its value the official name of the article entity. But instead of gen-
erating the fact (entity, hasOfficialName, officialname), our algorithm
rather generates the fact (officialname, means, entity). For the purpose
of the knowledge extraction, we call these attributes inverse attributes.

Figure 2: A Wikipedia Infobox

Elvis Presley

Elvis in 1970

Background information

Birth name Elvis Aaron Presley[1]

Also known as Elvis

Born
January 8, 1935
Tupelo, Mississippi

Origin Memphis, Tennessee

Died
August 16, 1977 (aged 42)
Memphis, Tennessee

Genre(s)
Rockabilly, Rock and Roll, Gospel, 

Blues, Country

Occupation(s) Singer, Actor

Instrument(s) Vocals, Guitar, Piano

Years active 1954–1977

Label(s) Sun, RCA

Website Elvis.com
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Some attributes may have multiple values. For example, a person may
have multiple children. In this case, one row of the infobox will generate
multiple facts – one hasChild fact for each child. Again other attributes do
not concern the article entity, but another fact. For example, the attribute
GDPasOf gives the year in which the gross domestic product (GDP) of a
country was computed. In this case, the algorithm does not generate the fact
(country, GDPasOf,year), but rather the fact (id,during,year), where id

is the id of the previously established fact (country,hasGDP,gdp). Thus,
we get the following fact (in shorthand notation)

country hasGDP gdp during year

Sometimes, the meaning of the attribute depends on the type of infobox. For
example, the length of a car is an extent in space, whereas the length of a
song is a duration. Hence we allow ambiguous attributes to be qualified by
the type of the infobox (in this example we distinguish car infoboxes and
song infoboxes). In summary, an infobox heuristics is a manually established
mapping from a (possibly qualified) attribute to the target relation that stores
whether the attribute is an inverse attribute, whether it allows multiple values
and whether it is about another fact.

Parsing

When our algorithm finds an infobox, it walks through all of its attributes.
If a heuristics is available for the attribute, the algorithm tries to parse the
value of the attribute as an instance of the range of the target relation. For
example, the attribute Birth date has the target relation birthDate. Its
range is timeInterval. Hence the parser tries to parse the value of the
attribute as a time interval (i.e. as a year or a date expression). We use the
parsers from [138] to parse literals of different types. This parser uses regular
expressions to parse numbers, dates and quantities. It also normalizes units
of measurement to ISO units. If the range of the target relation is not a
literal class (but, e.g. the class person), the parser expects a Wikipedia
entity as value and hence tries to find a Wikipedia link. If the parse fails, the
attribute is ignored. Inverse attributes and attributes with multiple values
are handled accordingly. Last, the type of the infobox (e.g. city infobox or
person infobox) produces a candidate fact that establishes the article entity
as an instance of the respective class.

There is one exception: For each country, Wikipedia contains a page on
its economy (e.g. a page with the title ”Economy of the United States”). In
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these cases, the parser is configured to attach the extracted facts not to an
entity economy of the United States but rather to the country itself.

4.1.2 Type Heuristics

Wikipedia Categories

To establish for each individual its class, we exploit the category system
of Wikipedia. There are different types of categories: Some categories, the
conceptual categories, indeed identify a class for the entity of the page (e.g.
Albert Einstein is in the category Naturalized citizens of the United States).
Other categories serve administrative purposes (e.g. Albert Einstein is also
in the category Articles with unsourced statements), others yield relational
information (like 1879 births) and again others indicate merely thematic
vicinity (like Physics).

Conceptual Categories

Only the conceptual categories are candidates for serving as a class for the
individual. The administrative and relational categories are very few (less
than a dozen) and can be excluded by hand. To distinguish the conceptual
categories from the thematic ones, we employ a shallow linguistic parsing of
the category name (using the Noun Group Parser of [138]). For example, a
category name like Naturalized citizens of the United States is broken into
a pre-modifier (Naturalized), a head (citizens) and a post-modifier (of the

United States). Heuristically, we found that if the head of the category name
is a plural word, the category is most likely a conceptual category. We used
the Pling-Stemmer from [138] to reliably identify and stem plural words. This
gives us a (possibly empty) set of conceptual categories for each Wikipedia
page. Conveniently, articles that do not describe individuals (like hub pages)
do not have conceptual categories. Thus, the conceptual categories yield not
only the type relation, but also, as its domain, the set of individuals. It also
yields, as its range, a set of classes.

The Wikipedia Category Hierarchy

The Wikipedia categories are organized in a directed acyclic graph, which
yields a hierarchy of categories. This hierarchy, however, reflects merely
the thematic structure of the Wikipedia pages (e.g., as mentioned in the
introduction, Elvis is in the category Grammy Awards). Thus, the hierarchy
is of little use from an ontological point of view. Hence we take only the
leaf categories of Wikipedia and ignore all higher categories. Then we use
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WordNet to establish the hierarchy of classes, because WordNet offers an
ontologically well-defined taxonomy of synsets.

Integrating WordNet Synsets

Each synset of WordNet becomes a class of YAGO. Care is taken to exclude
the proper nouns known to WordNet, which in fact would be individuals
(Albert Einstein, e.g., is also known to WordNet, but excluded). There are
roughly 15,000 cases, in which an entity is contributed by both WordNet
and Wikipedia (i.e. a WordNet synset contains a common noun that is the
name of a Wikipedia page). In some of these cases, the Wikipedia page
describes an individual that bears a common noun as its name (e.g. Time

exposure is a common noun for WordNet, but an album title for Wikipedia).
In the overwhelming majority of the cases, however, the Wikipedia page is
simply about the common noun (e.g. the Wikipedia page Physicist is about
physicists). To be on the safe side, we always give preference to WordNet
and discard the Wikipedia individual in case of a conflict. This way, we lose
information about individuals that bear a common noun as name, but it
ensures that all common nouns are classes and no entity is duplicated.

Connecting Wikipedia and WordNet

The subClassOf hierarchy of classes is taken from the hyponymy relation
from WordNet: A class is a subclass of another one, if the first synset is a
hyponym of the second. Now, the lower classes extracted from Wikipedia
have to be connected to the higher classes extracted from WordNet. For
example, the Wikipedia class American people in Japan has to be made
a subclass of the WordNet class person. To this end, we use the following
algorithm:

Function wiki2wordnet(c)
Input: Wikipedia category name c

Output: WordNet synset
1 head =headCompound(c)
2 pre =preModifier(c)
3 post =postModifier(c)
4 head =stem(head)
5 If there is a WordNet synset s for pre + head

6 return s

7 If there are WordNet synsets s1, ...sn for head

8 (ordered by their frequency for head)
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9 return s1

10 fail

We first determine the head compound, the pre-modifier and the post-modifier
of the category name (lines 1-3). For the Wikipedia category American peo-

ple in Japan, these are ”American”, ”people” and ”in Japan”, respectively.
We stem the head compound of the category name (i.e. people) to its singu-
lar form (i.e. person) in line 4. Then we check whether there is a WordNet
synset for the concatenation of pre-modifier and head compound (i.e. Amer-

ican person). If this is the case, the Wikipedia class becomes a subclass
of the WordNet class (lines 5-6). If this is not the case, we exploit that
the Wikipedia category names are almost exclusively endocentric compound
words (i.e. the category name is a hyponym of its head compound, e.g.
”American person” is a hyponym of ”person”). The head compound (”per-
son”) has to be mapped to a corresponding WordNet synset (s1, ..., sn in line
7). This mapping is non-trivial, since one word may refer to multiple synsets
in WordNet. We experimented with different disambiguation approaches.
Among others, we mapped the co-occurring categories of a given category
to their possible synsets as well and determined the smallest subgraph of
synsets that contained one synset for each category. These approaches lead
to non-satisfactory results.

Finally, we found that the following solution works best: WordNet stores
with each word the frequencies with which it refers to the possible synsets.
We found out that mapping the head compound simply to the most frequent
synset (s1) yields the correct synset in the overwhelming majority of cases.
This way, the Wikipedia class American people in Japan becomes a subclass
of the WordNet class person/human.

Exceptions

There were only around two dozen prominent exceptions, which we corrected
manually. For example, all categories with the head compound ”capital” in
Wikipedia mean the ”capital city”, but the most frequent sense in Word-
Net is ”financial asset”. In summary, we obtain a complete hierarchy of
classes, where the upper classes stem from WordNet and the leaves come
from Wikipedia.
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4.1.3 Word Heuristics

Exploiting WordNet Synsets

Wikipedia and WordNet also yield information on word meaning. WordNet
for example reveals the meaning of words by its synsets. For example, the
words ”urban center” and ”metropolis” both belong to the synset city. We
leverage this information in two ways. First, we introduce a class for each
synset known to WordNet (i.e. city). Second, we establish a means relation
between each word of synset and the corresponding class (i.e. (”metropolis”,
means, city)).

Exploiting Wikipedia Redirects

Wikipedia contributes names for the individuals by its redirect system: a
Wikipedia redirect is a virtual Wikipedia page, which links to a real Wikipedia
page. These links serve to redirect users to the correct Wikipedia article. For
example, if the user typed ”Einstein, Albert” instead of ”Albert Einstein”,
then there is a virtual redirect page for ”Einstein, Albert” that links to ”Al-
bert Einstein”. We exploit the redirect pages to give us alternative names for
the entities. Each redirect gives us one means fact (e.g. (”Einstein, Albert”,
means, Albert Einstein)).

Parsing Person Names

The YAGO hierarchy of classes allows us to identify individuals that are per-
sons. If the words used to refer to these individuals match the common
pattern of a given name and a family name, we extract the name com-
ponents and establish the relations givenNameOf and familyNameOf.
For example, we know that Albert Einstein is a person, so we introduce
the facts (”Einstein”, familyNameOf, Albert Einstein) and (”Albert”,
givenNameOf, Albert Einstein). Both are subrelations of means, so
that the family name ”Einstein”, for example, also means Albert Einstein.
We used the Name Parser from [138] to identify and decompose the person
names.

4.1.4 Category Heuristics

Relational Categories

Relational Wikipedia categories give valuable information about the article
entity. For example, if a page is in the category Rivers in Germany, then we
know that the article entity is locatedIn Germany. Category information
is very useful, because not every article has an infobox, but most articles
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have categories. We designed simple category heuristics to exploit the cate-
gory names. Each heuristics is basically a pair of a regular expression (e.g.
”Mountains|Rivers in (.*)”) and a target relation (e.g. locatedIn). If a
category name matches the regular expression, a new fact is added, where
the first argument is the article entity, the relation is the target relation and
the second argument is the string captured by the brackets of the regular
expression. If, e.g., the Rhine is in the category Rivers in Germany, then
we add the fact (Rhine,locatedIn,Germany). Table 1 shows some of our
category heuristics.

Table 1: Some Category Heuristics

Regular Expression Relation

([0-9]{3,4}) births bornOnDate

([0-9]{3,4}) deaths diedOnDate

([0-9]{3,4}) establishments establishedOnDate

([0-9]{3,4}) books|novels writtenOnDate

Mountains|Rivers in (.*) locatedIn

Presidents|Governors of (.*) politicianOf

(.*) winners hasWonPrize

[A-Za-z]+ (.*) winners hasWonPrize

Since all candidate facts will be type checked, we can be generous with our
heuristics. For example, the last two heuristics will extract ”American Nobel
Prize” and ”Nobel Prize”, respectively, from the category name ”American
Nobel Prize winners”. Of course, ”Nobel Prize” is the correct choice, because
the category says that the prize winner is American, not the prize. At this
stage, however, we keep both candidates and rely on the type check to sort
out the wrong one (see Section 4.2.2).

Language Categories

There are some special categories that indicate the name of the article entity
in other languages. For example, the city of London is in the special cate-
gory fr:Londres, meaning that London is called ”Londres” in French. Our
algorithm maps the language prefix ”fr” to the appropriate language entity
(French) and adds the following candidate fact:

London isCalled ”Londres” inLanguage French
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4.2 Quality Control

Our goal is to deliver an ontology of high quality. For this purpose, we
developed rigorous quality control mechanisms. Canonicalization makes each
fact and each entity reference unique. As a result, an entity is always referred
to by the same identifier in all facts in YAGO. Type Checking eliminates
individuals that do not have a class. It also eliminates facts that do not
respect the domain and range constraints of their relation. As a result, an
argument of a fact in YAGO is always an instance of the class required by
the relation. We will now discuss these steps in detail.

4.2.1 Canonicalization

Redirect Resolution

Our infobox heuristics deliver facts that have Wikipedia entities (i.e. Wikipedia
links) as arguments. These links, however, need not be the correct Wikipedia
page identifiers. For example, a reference to the city of Saint Petersburg

may be given as the link St. Petersburg. If one clicks on that link, Wikipedia’s
redirect system will seamlessly forward to the correct page Saint Petersburg,
but for our ontology, these incorrect links have to be resolved. So, for each
argument of each candidate fact, our algorithm checks whether the argument
is an incorrect Wikipedia identifier and replaces it by the correct, redirected,
Wikipedia identifier.

Removal of Duplicate Facts

Sometimes, two heuristics deliver the same fact. In this case, our canonical-
ization eliminates one of them. Furthermore, if one fact is more precise than
another, then only the more precise fact is kept. For example, if the category
heuristics has determined a birth date of 1935 and the infobox heuristics has
determined 1935-01-08, then only the fact with 1935-01-08 is kept.

4.2.2 Type Checking

Reductive Type Checking

A candidate fact may contain an entity for which the heuristics could not
determine its class. Since we cannot validate such a fact, our algorithm
discards these facts. The same applies to Wikipedia entities that have been
proposed for an article, but that do not have a page yet. For the remaining
facts, our algorithm knows the class(es) and all super classes for each entity.
If it encounters a fact where the first argument is not in the domain of the
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relation, this fact is eliminated (similarly for the second argument and the
range). This type constraint also applies to literals, but the heuristics already
make sure that literals have the correct data type.

Inductive Type Checking

Type constraints can be used not only to eliminate facts, but also to generate
facts. If, for example, some entity has a birth date, then one could infer
that the entity is a person – rather than eliminating the fact due to lack of
type information. We call this process inductive type checking, as opposed
to reductive type checking. We have made the experience that for people
entities, inductive type checking works very well. So whenever a fact contains
an unknown entity and the range or domain of the relation predicts that the
entity should be a person, the algorithm keeps the fact and makes the entity
an instance of the class person. Reductive type checking is not applied in
these cases. We use a regular expression check to make sure that the entity
name follows the basic pattern of given name and family name.

4.3 Storage

Descriptions

Due to its generality, the YAGO ontology can store meta-relations uniformly
together with usual relations. For example, we store for each individual the
URL of the corresponding Wikipedia page with the describes relation. This
will allow future applications to provide the user with detailed information
on the entities. We introduce the describes relation between the individual
and its URL for this purpose.

Witnesses

When a new fact was extracted from a particular Web page, we call this
page the witness for the fact. We introduce the foundIn relation, which
holds between a fact and the URL of the witness page. We use the using

relation to identify the technique by which a fact was extracted and the
during relation to give the time of the extraction. The information about
witnesses will enable applications to use, e.g., only facts extracted by a certain
technique, facts extracted from a certain source or facts of a certain date.
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File Format

The YAGO model itself is independent of a particular data storage format.
To produce minimal overhead, we decided to use simple text files as an inter-
nal format. We maintain a folder for each relation and each folder contains
files that list the entity pairs. With each fact, we store the estimated accu-
racy as a value between 0 and 1 (as given by our evaluation, see Section 5).
We provide conversion programs to convert the ontology to different output
formats. First, YAGO is available as a simple XML version of the text files.
We also provide an RDFS version of YAGO, as explained in Section 2.7.
Furthermore, YAGO can be converted to a database table. The table has
the simple schema

FACTS(factId, arg1, relation, arg2, accuracy)

We provide software to load YAGO into an Oracle, Postgres, or MySQL
database.

4.4 Query Engine

We implemented a simple query engine along the lines of [87] on top of the
database version of YAGO. It can solve queries of the form described in Sec-
tion 2.8. The engine first normalizes the shorthand notations to the standard
notation, so that each line of the query consists of a fact identifier, a first
argument, a relation and a second argument. Since entities can have several
names in YAGO, we have to deal with ambiguity. Our query engine makes
sure that each word in the query is considered in all of its possible mean-
ings. For this purpose, we replace each non-literal, non-variable argument
in the query by a fresh variable and add a means fact for it. We call this
process word resolution. Consider, for example, the query ”Who was born
after Elvis?”:

$i1: Elvis bornOnDate $e

$i2: $x bornOnDate $y

$i3: $y after $e

This query becomes

$i0: ”Elvis” means $Elvis

$i1: $Elvis bornOnDate $e
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$i2: $x bornOnDate $y

$i3: $y after $e

An answer to this query shall bind the variables of the original, non-normalized
query (assume them to be $e, $x and $y) and the variables introduced by
the word resolution (i.e. in our case $Elvis). We first discard lines with
filter relations. In our example, the last line is discarded. Then, one single
SQL query is fired. It contains one SELECT argument for each variable that
we want to bind and one join for each line of the query. In the example, the
SQL query is

SELECT f0.arg2, f1.arg2, f2.arg1, f2.arg2

FROM facts f0, facts f1, facts f2

WHERE f0.arg1=’"Elvis"’

AND f0.relation=’means’

AND f1.arg1=f0.arg2

AND f1.relation=’bornOnDate’

AND f2.relation=’bornOnDate’

This query delivers values for the variables $Elvis, $e, $x and $y. Then, the
query engine evaluates the after relation on the pair $y/$e. If the relation
holds, the binding of the variables is returned as a result.

Technically, each individual is an instance of all superclasses of its class
in the deductive closure of the YAGO ontology. To avoid computing the
deductive closure, we introduced the pseudo-relation isA. It holds between
an entity and all classes that the entity is an instance of. The query engine
resolves an isA relation to a sequence of queries, which try several path
lengths up to a certain limit. For example, the query

Elvis isA $x

is converted to the following sequence of queries

$i1: Elvis type $x

$i1: Elvis type $x1

$i2: $x1 subclassOf $x

$i1: Elvis type $x1

$i2: $x1 subclassOf $x2
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$i3: $x2 subclassOf $x

...

This implementation leaves much room for improvement, especially concern-
ing efficiency. For example, it takes several seconds to return 5 answers to
the query ”Who was born after Elvis?”. Queries with more joins, especially
with isA and with means, can take several minutes. In this article, we use
the engine only to showcase the contents of YAGO.

35



5 Evaluation

5.1 Precision

We were interested in the precision of YAGO. To evaluate the precision of
an ontology, its facts have to be compared to some ground truth. Since
there is no computer-processable ground truth of suitable extent, we had
to rely on manual evaluation. We presented randomly selected facts of the
ontology to human judges and asked them to assess whether the facts were
correct. For each fact, judges could click ”correct”, ”incorrect” or ”don’t
know”. Since common sense often does not suffice to judge the correctness
of YAGO facts, we also presented them the corresponding Wikipedia page.
Thus, our evaluation compared YAGO against the ground truth of Wikipedia
(i.e., it does not deal with the problem of Wikipedia containing some small
fraction of false information). Of course, it would be pointless to evaluate
the portion of YAGO that stems from WordNet, because we can assume
human accuracy here. Likewise, it would be pointless to evaluate the non-
heuristic relations in YAGO, such as describes or foundIn. This is why we
evaluated only those facts that stem from a heuristics. 13 judges participated
in the evaluation and evaluated a total number of 5200 facts. We report the
precision of the most precise and least precise heuristics groups in Table 2.
To be sure that our findings are significant, we computed the Wilson interval
[23] for α = 5%. A precision of 100% means that all facts produced by the
heuristics have been evaluated exhaustively.

The evaluation shows very good results. 74 heuristics have a precision
of over 95%. Especially the crucial link between WordNet and Wikipedia,
WordNetLinker, turned out to be very accurate. Also, the use of concep-
tual categories (ConceptualCategory) and infobox types (InfoboxType) to
establish the type relation proved very fruitful. establishedInCat is a cate-
gory heuristics, the other heuristics shown in the table are infobox heuristics.
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Table 2: Precision of YAGO’s heuristics
Heuristics #Eval Precision

1 hasExpenses 46 100.0 % ± 0.0 %

2 hasInflation 25 100.0 % ± 0.0 %

3 hasLaborForce 43 97.67441% ± 0.0 %

4 during 232 97.48950% ± 1.838 %

5 ConceptualCategory 59 96.94342% ± 3.056 %

6 participatedIn 59 96.94342% ± 3.056 %

7 plays 59 96.94342% ± 3.056 %

8 establishedInCat 57 96.84294% ± 3.157 %

9 createdOn 57 96.84294% ± 3.157 %

10 originatesFrom 57 96.84294% ± 3.157 %

...

72 WordNetLinker 56 95.11911% ± 4.564 %

...

74 InfoboxType 76 95.08927% ± 4.186 %

75 hasSuccessor 53 94.86150% ± 4.804 %

...

88 hasGDPPPP 75 91.22189% ± 5.897 %

89 hasGini 62 91.00750% ± 6.455 %

90 discovered 84 90.98286% ± 5.702 %

Our algorithms cannot always achieve a precision of 100%. One reason for
this is purely statistical: even if all of our assessed sample facts are correct
(as they were indeed for many heuristics), the center of the Wilson interval
will be lower than 100% to account for the uncertainty that is inherent in
a confidence estimation. Some fraction of the assessed facts was extracted
incorrectly. For example, the inductive type checking mistook a racing horse
for a person, because it had a birth date. The WordNetLinker made the
Los Angeles Angels of Anaheim managers a subclass of angel. Another
source of error are inconsistencies of the underlying sources. For example, for
the relation bornOnDate, most false facts stem from erroneous Wikipedia
categories (e.g. some person born in 1802 is in the Wikipedia category 1805

births). For facts with literals (such as hasHeight), many errors stem from
a non-standard format of the numbers (giving, e.g., one movie actor the
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height of 1.6km, just because the infobox says 1,632m instead of 1.632m).
Occasionally, the data in Wikipedia was updated between the time of our
extraction and the time of the evaluation. This explains many errors in
hasGDPPPP and hasGini. In addition, the evaluation of an ontology is
sometimes a philosophical issue, because even simple relations suffer from
vagueness. For example, is Lake Victoria locatedIn Tanzania, if Tanzania
borders the lake? Is an economist who works in France a French Economist,
even if he was born in Ireland? These cases of disputability are inherent even
to human-made ontologies. Thus, we can be extremely satisfied with our
results. Further note that these values measure just the potentially weakest
point of YAGO, as all other facts were derived non-heuristically.

It is difficult to compare YAGO to other information extraction ap-
proaches, because the approaches usually differ in the choice of relations
and in the choice of the sources. Furthermore, precision can usually be var-
ied at the cost of recall. Approaches that use pattern matching (e.g. the
Espresso System [116] or Leila [137]) typically achieve precision rates of
50% to 92%, depending on the extracted relation. State-of-the-art taxonomy
induction as described in [128] achieves a precision of 84%. KnowItAll [65]
and KnowItNow [27] are reported to have precision rates of 85% and 80%,
respectively. TextRunner [13] is able to extract a large amount of facts (11.3
million) out of which only an estimated 69% (7.8 million) are well-formed.
Of these well-formed facts, the authors estimate that 82% are correct. Wu et
al. [148] aim at filling in missing values in Wikipedia infoboxes and achieve
a remarkable precision of 73% to 97%. Ponzetto et al. [118] exploit the
Wikipedia category network to construct a taxonomy and achieve an preci-
sion of around 87%. Banko et al. [15] use different domain search strategies
for fact extraction and show an precision of around 80%.

5.2 Size

Table 3 shows the number of entities in YAGO. The overall number of entities
is 1.7 million.

Table 3: Number of entities in YAGO
Relations 92

Classes 224,391

Individuals (without words and literals) 1,531,588

38



Table 4 shows the number of facts for the most frequent relations in YAGO.
The overall number of ontological facts is 15 million. This number does not
include the respective witness facts (foundIn, during and using) and the
trivial facts (inUnit, hasValue and describes). YAGO profits most from
the infoboxes about movies, persons, and geopolitical entities.

Table 4: Largest relations in YAGO

Relation # Facts Relation # Facts

hasUTCOffset 12724 hasWonPrize 13645

livesIn 15185 writtenInYear 16441

originatesFrom 16876 directed 18633

hasPredecessor 19154 actedIn 22249

hasDuration 23652 bornInLocation 24400

hasImdb 24659 hasArea 26781

hasProductionLanguage 27840 produced 30519

hasPopulation 30731 isOfGenre 33898

hasSuccessor 46658 establishedOnDate 69529

hasWebsite 79779 created 83627

locatedIn 125738 diedOnDate 168037

subClassOf 211979 bornOnDate 350613

givenNameOf 464816 familyNameOf 466969

inLanguage 2389627 isCalled 2984362

type 3957223 means 4014819

It is not easy to compare the size of YAGO to other ontologies, because the
ontologies usually differ in their structure, their types of axioms, their rela-
tions, their domain, and their quality. For informational purposes, we list the
current number of entities and facts for some of the most important other
domain-independent ontologies in Table 5, as given on the respective Web
sites. DBpedia is huge, but it includes YAGO.
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Table 5: Size of other ontologies

Ontology # Entities # Facts

SUMO [114] 20,000 60,000

Ponzetto et al. [118] n/a 110,000

WordNet [66] 117,659 821,492

Cyc [106] 300,000 3,000,000

TextRunner [13] n/a 7,800,000

YAGO 1,700,000 15,000,000

DBpedia [9] 1,950,000 103,000,000
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6 Applications

6.1 Querying

As described in Section 4.4, we have implemented a query engine for accessing
the content of YAGO. Table 6 shows two simple queries on the ontology.
The second query makes use of the distinction between words and other
individuals in YAGO.

Table 6: Simple queries on YAGO

Query Result

Who was Einstein’s doctoral advisor? $x=Alfred Kleiner

Einstein hasDoctoralAdvisor $x

Who is named after a place in Africa? $who=Gabriel Sudan

$place locatedin Africa and 22 more

$name means $place

$name familynameof $who

Table 7 shows three advanced queries. The first query uses a virtual relation
(>) to ask for countries having a higher Human Development Index (HDI)
than Canada. YAGO knows 5. The other queries show how reified facts work.
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Table 7: Advanced queries on YAGO

Which countries have a $other=Sweden

higher HDI than Canada? and 4 others

Canada hasHDI $HDIcanada

$other hasHDI $HDIother

$HDIother > $HDIcanada

When did Angela Merkel become chancellor? $when=2005-11-22

Angela Merkel isa chancellor

since $when

How is Germany called in Italian? $how=”Germania”

Germany isCalled $how

inLanguage Italian

It is tempting to assume some kind of ”completeness” of YAGO and to
ask, e.g. how to say a particular word in Italian, who governed a particular
country at a particular point of time or who was a particular person’s doctoral
advisor. It should not be forgotten, however, that YAGO cannot know more
than what is available in the infoboxes and categories of Wikipedia. YAGO’s
knowledge is huge, but it cannot be complete.

6.2 Other Uses

Notwithstanding its young age, YAGO has already found several applications
in different areas of research.

Semantic Search

YAGO is the basis for the semantic search engines NAGA [87] and ESTER
[16]. NAGA utilizes YAGO as a knowledge base for graph-based information
retrieval. It allows querying YAGO in a SPARQL-like fashion and ranks
the answers according to their ”prominence”. Its ranking mechanism uses
YAGO’s data model to formalize notions like the compactness, informative-
ness and confidence of answer graphs. ESTER combines full text search and
ontological search by weaving the YAGO ontology into a text corpus. This
allows ESTER to deliver hybrid answers that incorporate both data from the
text and from the ontology.
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Entity Ranking

Stoyanovich et al.[132] build an enriched Web graph, which contains Web
pages and the entities mentioned in them. Based on this graph, the au-
thors propose authority-based ranking techniques that combine Web page
authorities and entity authorities into a mutual reinforcement process. The
ontological basis for the enriched graph structure is YAGO.

Disambiguation

Demartini [51] aims at finding per-topic experts among the Wikipedia au-
thors. YAGO’s semantics is exploited to refine and disambiguate Wikipedia
topics in the expert finding process.

Knowledge Acquisition

The idea of YAGO’s category heuristics has been applied by Ponzetto et
al. [118] to extract ontological knowledge from Wikipedia’s category system.
YAGO itself has been integrated into the DBpedia project [9], where it forms
the taxonomic backbone of the knowledge base.
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7 Conclusion

7.1 Summary

We presented our ontology YAGO and the methodology for constructing it
automatically. We explained the logical model behind YAGO and showed
how it extends the data model of RDFS to represent n-ary relations. We
proved that, despite the expressiveness of the model, its consistency is still
decidable. Furthermore, we could show that the model allows computing a
unique smallest base for any given YAGO ontology.

We showed how the category system and the infoboxes of Wikipedia can
be exploited for knowledge extraction. We explained how Wikipedia and
WordNet can be linked and how we can enforce high precision through type
checks.

Our evaluation showed not only that YAGO is one of the largest knowl-
edge bases available today, but also that it has an unprecedented quality in
the league of automatically generated ontologies.

7.2 Discussion

Although the knowledge extraction itself runs in a fully automated way, a
one-time manual effort was necessary to bootstrap the extraction. We identi-
fied and defined attributes and relations for the infoboxes, and we established
the patterns for the category heuristics. Furthermore, we manually identified
some exceptions for the heuristics that connects Wikipedia and WordNet.
Given the huge amount of knowledge that we could extract in return and
given the high precision of the data that we could achieve, we believe that
the manual effort was justified.

So far, YAGO’s extraction mechanisms are tailored to Wikipedia and
WordNet. However, our work has created a rich framework of methods that
can be applied to other sources as well. Many sources, such as the catalogue
of Amazon.com or the Internet Movie Database, use category systems and
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structures that are similar to infoboxes. Furthermore, techniques such as
inductive and reductive type checking can be applied in other scenarios, too.
Finally, YAGO itself can be useful for other information extraction projects,
e.g., to check the plausibility of the extracted facts.

7.3 Outlook

YAGO opens up new opportunities and challenges. On the theoretical side,
we plan to investigate how the YAGO model and OWL 1.1 can be reconciled,
once OWL 1.1 has been fully developed. Furthermore, the efficiency of the
query engine deserves attention. On the practical side, we plan to enrich
YAGO by further facts from other sources. We hope that future information
extraction can profit from the knowledge that YAGO already provides –
for example to do type checks or to generate seed pairs. This could result
in a positive feedback loop, in which the addition of knowledge helps the
extraction of new knowledge.

YAGO can be freely downloaded from our Web site http://www.mpii.

mpg.de/yago. We hope that the availability of a huge, clean, and high quality
ontology can give new impulses to the Semantic Web vision.
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Appendix A Proof of

Theorem 1

Let F be a (finite) set of fact triples, as defined in Chapter 2.4. Let → be
the rewrite system defined there (see [11] for a reference on term rewriting).
All rules of the rewrite system are of the form F → F ∪ {f}, where F ⊆ F
and f ∈ F . Hence → is monotone. Furthermore, F is finite. Hence → is
finitely terminating. It is easy to see that if F → F ∪{f1} and F → F ∪{f2}
for some F ⊆ F and f1, f2 ∈ F , then

F → F ∪ {f1} → F ∪ {f1, f2}
F → F ∪ {f2} → F ∪ {f1, f2}

Hence → is locally confluent. Since → is finitely terminating, → is glob-
ally confluent and convergent. Thus, given any set of facts F ⊆ F , the largest
set DF with F →∗ DF is unique and finite.
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Appendix B Proof of

Theorem 2

A canonical base of a YAGO ontology y is any base b of y, such that there
exists no other base b′ of y with |b′| < |b|. This section will prove that,
for a consistent YAGO ontology, there exists exactly one such base. In the
following, → denotes the rewrite system and F denotes the set of facts defined
in Chapter 2.4.

Lemma 1: [No circular rules]
Let y be a consistent YAGO ontology, and {f1, ..., fn} a set
of facts. Then there are no sets of facts F1, ..., Fn, such that
that F1, ..., Fn ⊆ D(y) and

F1 →֒ f1 with f2 ∈ F1

F2 →֒ f2 with f3 ∈ F2

...

Fn →֒ fn with f1 ∈ Fn

Proof: By analyzing all possible pairs of rule schemes (1)...(5), one finds
that the above rules must fall into one of the following categories:

• All rules are instances of (5). In this case, (c, subClassOf, c) ∈ D(y)
for some common entity c and hence y cannot be consistent.

• All rules are instances of (1). In this case, (c, subRelationOf, c) ∈
D(y) for some common entity c and hence y cannot be consistent.

• All rules are instances of (2). In this case, (c, r, c) ∈ D(y) for some
common entity c and relation r and (r,type,acyclicTransitive-
Relation)∈ D(y) and hence y cannot be consistent.
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• n = 2, one rule is an instance of (1), and the other an instance of (2). In
this case, (c, r, c) ∈ D(y) for some common entity c and relation r and
(r,type,acyclicTransitiveRelation)∈ D(y) and hence y cannot be
consistent.

Lemma 2: [No derivable facts in canonical base]
Let y be a consistent YAGO ontology and b a canonical base
of y and let B = range(b). Let f ∈ D(y) be a fact such that
D(y)\{f} → D(y). Then f 6∈ B.

Proof: Since b is a base, there is a sequence of sets of facts B0, ..., Bn such
that

B = B0 → B1 → B2 → . . . → Bn−1 → Bn = D(y)

This sequence is a sequence of rule applications, where each rule has the form
S →֒ s, where S ⊆ F and s ∈ F . We call S the premise of the rule and
s its conclusion. We say that a fact t contributes to a set of facts T in the
sequence B0, ...Bn, if there is a sequence of rule applications r1, ...rm, so that
t is in the premise of r1, the conclusion of r1 is in the premise of r2 etc. and
the conclusion of rm is in T .

Now assume f ∈ B. Since D(y)\{f} → D(y), there must be a rule
G →֒ f with G ⊆ D(y)\{f}. Let i ∈ [0, n] be the smallest index such that
Bi ⊇ G. f cannot contribute to G, because then there would exist circular
rules in the sense of the preceding lemma. Hence f does not contribute to
G. Then B\{f} is also a base, because the above rule applications can be
re-ordered so that f is derived from Bi. Hence b cannot be a canonical base.
Now we are ready to prove Theorem 2:

Theorem 2: [Uniqueness of the Canonical Base]
The canonical base of a consistent YAGO ontology is unique.

Proof: Let b be a canonical base of a consistent YAGO ontology y. Let
B = range(b). We define the set

C := D(y) \ {f | D(y)\{f} → D(y)}

Intuitively speaking, C contains only those facts that cannot be derived from
other facts in D(y). By the previous lemma, B ⊆ C. Assume B ⊂ C, i.e.
there exists a fact f ∈ C, f 6∈ B. Since C ⊆ D(y), f ∈ D(y). Since b is a
base, there exists a rule S →֒ f for some S ⊆ D(y). Hence f 6∈ C, which is
a contradiction. Hence B = C and every canonical base equals b.
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This theorem entails that the canonical base of a YAGO ontology can be
computed by removing all facts that can be derived from other facts in the
set of derivable facts.
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