
HistoPyramids in Iso-Surface Extraction

Christopher Dyken Gernot Ziegler

Christian Theobalt Hans-Peter Seidel

MPI-I-2007-4-006 August 2007

Authors'Addresses

Christopher Dyken
Department of Informatics
University of Oslo
PO Box 1080 Blindern
N-0316 Oslo
Norway

Gernot Ziegler
Max-Planck-Institut für Informatik
Stuhlsatzenhausweg 85
D-66123 Saarbrücken
Germany

Christian Theobalt
Max-Planck-Institut für Informatik
Stuhlsatzenhausweg 85
D-66123 Saarbrücken
Germany

Hans-Peter Seidel
Max-Planck-Institut für Informatik
Stuhlsatzenhausweg 85
D-66123 Saarbrücken
Germany

Abstract
We present an implementation approach to high-speed Marching Cubes, running
entirely on the Graphics Processing Unit of Shader Model 3.0 and 4.0 graphics
hardware. Our approach is based on the interpretation of Marching Cubes as a stream
compaction and expansion process, and is implemented using the HistoPyramid,
a hierarchical data structure previously only used in GPU data compaction. We extend
the HistoPyramid structure to allow for stream expansion, which provides an efficient
method for generating geometry directly on the GPU, even on Shader Model 3.0
hardware. Currently, our algorithm outperforms all other known GPU-based iso-surface
extraction algorithms. We describe our implementation and present a performance
analysis on several generations of graphics hardware.

Keywords
GPU, graphics hardware, marching cubes, iso-surface extraction, HistoPyramids, vol-
ume rendering, voxelization

HistoPyramids in Iso-Surface Extraction

Christopher Dyken1,2, Gernot Ziegler3, Christian Theobalt3 and Hans-Peter Seidel3

1 Department of Informatics, University of Oslo, Norway
2 Centre of Mathematics for Applications, University of Oslo, Norway

3 Max-Planck-Institut für Informatik, Germany

Abstract
We present an implementation approach to high-speed Marching Cubes, running entirely on the Graphics Pro-
cessing Unit of Shader Model 3.0 and 4.0 graphics hardware. Our approach is based on the interpretation of
Marching Cubes as a stream compaction and expansion process, and is implemented using the HistoPyramid,
a hierarchical data structure previously only used in GPU data compaction. We extend the HistoPyramid struc-
ture to allow for stream expansion, which provides an efficient method for generating geometry directly on the
GPU, even on Shader Model 3.0 hardware. Currently, our algorithm outperforms all other known GPU-based
iso-surface extraction algorithms. We describe our implementation and present a performance analysis on several
generations of graphics hardware.

Categories and Subject Descriptors (according to ACM CCS): I.3.1 [Computer Graphics]: Hardware Architecture
I.3.5 [Computer Graphics]: Computational Geometry and Object Modeling I.3.7 [Computer Graphics]: Three-
Dimensional Graphics and Realism

1. Introduction

Iso-surfaces of scalar fields are used in a wide range of ap-
plications. In particular, scalar fields represented as three-
dimensional grids of scalar values are very common, e.g. in
medical imaging, geology, and computational geometry.
However, the number of elements in such a grid grows to the
power of three with respect to sample density, and therefore
the sheer amount of data associated is already a computa-
tional burden. Thus, any operation dealing with volumetric
grids of data puts tough requirements on CPU memory band-
width and processing power.

The Graphic Processing Units (GPUs) of graphics cards
are designed for huge computational tasks with large re-
quirements for memory bandwidth, building on simple and
massive parallelism instead of the CPU’s more sophisticated
serial processing. Not unexpectedly, there has been a lot
of interest in various volume-data processing algorithms on
graphics hardware. For example, volume ray-casting is a vi-
sualization technique for scalar fields that has been success-
fully implemented on GPUs.

However, applications such as for example surface fair-
ing, free-form modeling, and simulations usually needs

an explicit representation of the iso-surface. Marching
Cubes (MC) is an efficient algorithm for extracting ex-
plicit iso-surfaces from volumetric grids of scalar values.
In this paper we present a formulation of the MC algo-
rithm suitable for GPU implementation. The formulation is a
novel, yet well-investigated approach to MC on both Shader
Model 3 (SM3) hardware (hardware prior to the introduction
of geometry shaders) and on Shader Model 4 (SM4) [LB07]
hardware (hardware with geometry shaders). It outperforms
the known SM4-based geometry-shader approaches, yet re-
quires hardly more implementation effort. Since the geome-
try is extracted directly by the graphics hardware and is in-
dependent of view-point, we can store it in graphics mem-
ory and use it for low-burden rendering, or it could be fed
directly into a particle system running on the GPU and be
used to spawn particles evenly over the iso-surface. In Fig-
ure 1 we used such a particle system to set the surface “on
fire”, without any transfer of geometry to or from the CPU.

The main element of our approach is the Histogram Pyra-
mid (short: HistoPyramid), a hierarchical data structure re-
cently introduced in GPU programming [ZTTS06]. The lo-
cal nature of its associated algorithms allow for parallel
data expansion and compaction, which has traditionally been

2 C. Dyken & G. Ziegler & C. Theobalt & H.-P. Seidel / HistoPyramids in Iso-Surface Extraction

Figure 1: Many applications require explicit iso-surfaces from scalar fields, e.g. in the form of a list of triangles (left). Such
an explicit representation can be used to visualize the iso-surface (middle), or, for example, be used by the geometry shader to
spawn particles evenly over the iso-surface (right). In all three images, the GPU has autonomously extracted the mesh from the
scalar field, where it is kept in graphics memory to source subsequent rendering passes.

seen as a hard task for stream processors. Here, it is put to
use for volume analysis and, in one of the two presented al-
gorithmic variants, even for generating the output geometry
— directly on graphics hardware.

We begin by describing the general strategy of HistoPy-
ramids in Section 3, and continue with approaches to an
OpenGL implementation on SM3 and on SM4 hardware.
Please note that we describe the HistoPyramid technique for
data compaction and expansion of cells stored in 2D textures,
and therefore use the term texel for single data elements. But,
as already pointed out in [ZTTS06], this does not restrict the
algorithm to being used on 2D arrays only. With the accord-
ing mapping, arrays of any dimensionality can be processed.
As an example, in our particular context, we process a 3D
array by mapping it into the 2D domain, where its cells can
temporarily be regarded as texels.

Please do also note that instead of using the term voxels,
we use the term Marching Cube cell (or: MC cell) for the 3D
cells of geometry stemming from the input voxel data.

2. Previous and related work

In the last years, iso-surface extraction algorithms for voxel
data on stream processor architectures (like GPUs) have
been a topic of intensive research. Even though the particular
computations for each MC cell can be done in parallel, the
variable amounts of triangles produced have to be merged
into one continuous sequence of triangles. This is not trivial
to do in parallel, and poses a major performance problem for
iso-surface extraction on the GPU.

Graphics hardware prior to SM4, which introduced ge-
ometry shaders, lacked functionality for this kind of stream
compaction and expansion. The graphics hardware couldn’t
produce triangles directly, and the triangle data had to be
provided by the CPU or streamed off a vertex buffer object.
Also, the only method for discarding triangles in the graph-
ics pipeline was to let the triangles be culled right before

rasterization. A straight-forward approach to stream com-
paction and expansion was thus to assume a fixed number
of triangles for each 3D cell and let the superfluous output
elements be discarded by degenerating the corresponding tri-
angles to points in the vertex shader.

Marching Tetrahedra (MT) is particularly suitable in such
a setting. While MC produces up to four (original triangle
table [LC87]) or five (modified triangle table [MSS94]) tri-
angles per MC cell, MT only produces at maximum two per
MT tetrahedron. In addition, each MC cell needs eight scalar
values to classify its cubic interior, while a MT tetrahedron
only requires the scalar values at its four corners. Thus, both
the amount of inputs per element and the amount of fixed
expansion per element is limited. Pascucci [Pas04], a pio-
neer of this technique, used triangle strips, arranged in a 3D
space-filling curve, to feed as little geometry as necessary
to the GPU. However, since one single cubic 3D cell has to
be split into at least five MT tetrahedra, the total number of
triangles is usually larger than for the result of MC.

Another prime example of GPU based MT is the work
of Klein, Stegmaier, and Ertl [KSE04], which renders ver-
tex arrays and peaks 7.7 million tetrahedra per second,
rendering on an ATI Radeon 9800 Pro. Kipfer and West-
ermann [KW05] improved upon this by observing that
edges are shared in-between tetrahedra, and thus should be
used as the basic data structure in the evaluation. Further,
Buatois [BCL06] used multiple stages and vertex texture
lookups instead to reduce redundant calculations.

All of the mentioned algorithms suffer from the fact that
the GPU cannot easily create or discard geometry. The fixed
expansion causes a considerable amount of unnecessary ver-
tex processing. Kipfer and Westermann [KW05] try to re-
duce this vertex processing load via an interval tree, by iden-
tifying the volume regions which produce geometry at all.
However, this requires CPU-based pre-processing of the 3D
cells. Another CPU-assisted method is given by Johann-
son [JC06], who circumvents the GPU geometry genera-
tion restriction by letting the CPU do the MC cell classifi-

C. Dyken & G. Ziegler & C. Theobalt & H.-P. Seidel / HistoPyramids in Iso-Surface Extraction 3

cation and only feeds the GPU with an MC cell if it actually
produces geometry. But Johannson also notes that this pre-
processing on the CPU limits the speed of the algorithm.

Another drawback of these approaches is that none of the
named algorithms is capable of creating a compact list of
the iso-surface triangle mesh in GPU memory. Thus, part of
or the whole of the algorithm has to be run each time the
resulting triangle mesh is rendered. Also, it is difficult to use
the set of triangles as input to other computations.

A first solution for GPU-based stream compaction is
given in [Hor05]. It first uses a prefix sum method to gen-
erate the correct output indices for each input element. Af-
terwards, for each output element in the compacted out-
put, it gathers the corresponding input element via a bi-
nary search, ignoring unnecessary elements in the process.
Unfortunately, their approach has a complexity of n log(n),
and does not perform well on large datasets. Prefix Sum
(Scan) [Har07] improved on this, and provides an efficient
implementation in CUDA. During a pyramid-like up-sweep
and down-sweep phase, it creates, in parallel, a table that
associates each input element with an offset in the out-
put stream, at considerably reduced algorithmic complexity.
Then, using this table and GPU scattering, it can directly
place each relevant input element in the output list, while it
ignores the irrelevant elements.

Another approach to data compaction is provided by
Ziegler et.al. [ZTTS06] with the introduction of HistoPy-
ramids, running entirely on the GPU of SM3 hardware. As
demonstration, the algorithm is used to extract a compact se-
quence of points from volumetric data. Despite a more com-
plicated gather process for the output elements, the HistoPy-
ramid is surprisingly fast when a considerable amount of in-
put elements shall be discarded. In [DRS07], Dyken et.al.
use this HistoPyramid for creating a compact list of silhou-
ette edges, and can thus reduce the amount of data trans-
ferred from GPU to CPU. The result is a silhouette detection
algorithm faster than any CPU implementation for meshes
larger than a few thousand triangles.

The introduction of SM4 hardware provided data com-
paction and expansion on the hardware level. The geometry
shader, a new programmable stage in the graphics pipeline,
has the ability to create and discard geometry on the fly.
Uralsky [Ura06] present how MT can be implemented us-
ing geometry shaders, with an implementation given in the
NVidia OpenGL SDK-10. We have benchmarked our ap-
proach against this implementation in Section 5. Another
feature of SM4, the transform feedback buffers, provide a
simple method for tapping into the pipeline before rasteri-
zation starts, and to record all the primitives submitted. In
combination, these two new features can also create a com-
pact sequence of triangles in GPU memory.

1 0 0 0

0 2 0 1

1 0 1 0

1 1 0 1

Base level

3 1

3 2

Level 1

9

Level 2

Figure 2: Bottom-up build process, adding the values of
four texels repeatedly. The top texel contains the total num-
ber of output elements in the pyramid.

3. HistoPyramids

The core component of our MC implementation is the
HistoPyramid algorithm, which is used to compact and ex-
pand data streams on the GPU. The input is a stream of
data input elements called the input stream. Each input el-
ement may allocate a given number of elements in the out-
put stream. If an input element allocates zero elements in the
output stream, the input element is discarded and the out-
put stream becomes smaller (data compaction). On the other
hand, if the input element allocates more than one output el-
ement, the stream is expanded (data expansion). The input
elements individual allocation is determined by a predicate
function.

The HistoPyramid algorithm consists of two distinct
phases. In the first phase, we create a HistoPyramid, a
pyramid-like data structure very similar to a MipMap. In the
second phase, we extract the output elements by traversing
the HistoPyramid top-down to find the corresponding input
elements. In the case of stream expansion, we also determine
which copy of the input element we are currently generating.

3.1. Construction

The first step is to build the HistoPyramid. The HistoPyra-
mid is a stack of 2D textures. At each level, the texture size is
a quarter of the size of the level below, resembling the exact
same layout as the MipMap pyramid of a 2D texture. We call
the largest texture in the bottom of the stack the base texture,
and the single texel of the 1×1 texture in the top of the stack
the top element. Figure 2 show the levels of a HistoPyramid
laid out from left to right. The number of texels in the base
texture is the number of input elements the HistoPyramid
can handle. For simplicity, we assume that the base texture
is square and the size of the sides is a power of two (arbitrary
sizes can be accommodated with suitable padding).

4 C. Dyken & G. Ziegler & C. Theobalt & H.-P. Seidel / HistoPyramids in Iso-Surface Extraction

Each texel in the base layer corresponds to one input el-
ement, and contains the number of its allocated output el-
ements. For example, in Figure 2 we have an input stream
of 16 elements, laid out from left to right and top to bot-
tom. Thus, elements number 0,1,3,4,6,11, and 12 have allo-
cated one output element each (stream pass-through). Ele-
ment number 9 has allocated two output elements (stream
expansion), while the rest of the elements have none allo-
cated (stream compaction). This rest will be discarded. To
generate this allocation, we apply the predicate function to
the base layer, letting the predicate function do the mapping
from the dimension of the input stream (in our MC applica-
tion, the input stream is 3D) to a 2D layout in the base layer.

The next step is to build the rest of the layers from bottom-
up, layer by layer. According to the MipMap-principle, each
texel in a level corresponds to four texels in the in the level
below. This texel is assigned the sum of the four correspond-
ing elements in the layer below. Even this is similar to the
construction of MipMap pyramids, the only difference is that
we sum the four elements instead of averaging them. The ex-
ample in Figure 2 shows this process. The sum of the texels
in the 2×2 block in the upper left of the base layer is three,
and stored in the upper left texel of Level 1. The sum of the
texels in the single 2×2 block of Level 1 is nine, and stored
in the single texel of Level 2, which is the top element of the
HistoPyramid.

We see that the computation of a texel in one level only
depends on the texels in the previous one. This allows us to
compute all texels in one level in parallel, without any data
inter-dependencies.

3.2. Traversal

In the second phase, we generate the output stream. The
number of output elements is given by the top element of
the HistoPyramid. To produce the output stream, we iterate
over the output elements and traverse the HistoPyramid once
per output element. We enumerate the elements in the out-
put stream, and use this enumeration as each element’s key
index k. The traversal requires several variables: We let m de-
note the number of levels in the HistoPyramid. The traversal
maintains a texcoord p and a current level l, which always
refer to a texel in the HistoPyramid. The traversal starts from
the top level l = m and goes recursively down, terminating
at the base level l = 0. During traversal, k and p is continu-
ously updated, and when the traversal terminates p points to
a texel in the base layer. In the case of stream pass-through, k
is always zero when the traversal terminates. However, in the
case of stream expansion, the value in k determines which
numbered copy of the input element this particular output
element is.

Initially, l = m and p points to the center of the single
texel in the top level. We subtract one from l, descending
one step in the HistoPyramid, and now p refers to the center

In: Key indices

6 7 8

3 4 5

0 1 2

Out: Texcoords and k

[1,2],1 [0,3],0 [3,2],0

[3,0],0 [2,1],0 [1,2],0

[0,0],0 [1,0],0 [0,1],0

1 0 0 0

0 2 0 1

1 0 1 0

1 1 0 1

Base level

3 1

3 2

Level 1

9

Level 2

1 0 0 0

0 2 0 1

1 0 1 0

1 1 0 1

Base level

3 1

3 2

Level 1

9

Level 2

Figure 3: Element extraction, interpreting partial sums as
interval in top-down traversal. Red traces the extraction of
key index 4 and green traces key index 6.

of the 2× 2 block of texels in level m− 1 corresponding to
the single texel p pointed to at level m. We label these four
texels in the following manner,

a b
c d

and use the values of these texels to form the four ranges
A,B,C, and D, defined as

A = [0 , a),

B = [a , a+b),

C = [a+b , a+b+ c), and

D = [a+b+ c , a+b+ c+d).

Then, we examine which of the four ranges k falls into. If,
for example, k falls into the range B, we adjust p to point to
the center of b and subtract the start of the range, in this case
a, from k. We then recurse by subtracting one from l and re-
peating the process until l = 0, when the traversal terminates.
Then, from p we can calculate the index of the correspond-
ing input stream element, and the value in k enumerates the
copy.

C. Dyken & G. Ziegler & C. Theobalt & H.-P. Seidel / HistoPyramids in Iso-Surface Extraction 5

Figure 3 show two examples of HistoPyramid traversal.
The first example, labeled red, is of the key index k = 4, is
a case of stream copy. We start at level 2 and descend to
level 1. The four texels at level 1 form the ranges

A = [0 , 3), B = [3 , 5), C = [5 , 8), D = [8 , 9).

We see that k is in the range B. Thus, we adjust the texcoord
to point to the upper left texel and subtract 3 from k, which
leaves k = 1. Then, we descend again to the base level. The
four texels in the base level corresponding to the upper left
texel of level 1 form the ranges

A = [0 , 0), B = [0 , 1), C = [1 , 2), D = [2 , 2).

The ranges A and D are empty. Here, k = 1 falls into B, and
we adjust p and k accordingly. Since we’re at the base level,
the traversal terminates, p = [2,1] and k = 0.

The second example of Figure 3, labeled green, is a case
of stream expansion. Here the key index k = 6. We begin at
the top of the HistoPyramid and descend to level 2. Again,
the four texels form the ranges

A = [0 , 3), B = [3 , 5), C = [5 , 8), D = [8 , 9),

And k falls into the range C. We adjust p to point to c and
subtract the start of range C from k, resulting in k = 1. De-
scending, we inspect the four texels in the lower left corner
of the base layer, which form the four ranges

A = [0 , 0), B = [0 , 2), C = [2 , 3), D = [3 , 3),

Here, k falls into range B, and we adjust p and k accordingly.
Since we’re at the base level, we terminate the traversal, and
have p = [1,2] and k = 1. This means that output element 6 is
the second output element (since k = 1) of the input element
corresponding to the position [1,2] in the base texture.

The traversal only reads from the HistoPyramid and there
are no data dependencies between traversals. Therefore, the
output elements can be extracted in any order, for example,
at the same time in parallel.

3.3. Comments

The 2D texture layout of the HistoPyramid fits graphics
hardware very well. It can intuitively be seen that in the
domain of normalized texcoord calculations, the texture
fetches overlay with fetches from the layer below. This al-
lows the 2D texture cache to assist HP traversal with mem-
ory prefetches, and thus increase its performance.

At each descend during the traversal, we have to inspect
the values of four texels, which amounts to four texture
fetches. However, since we always fetch 2×2 blocks, we can
use a four-channel texture and encode these four values as a
RGBA value. This halves the size of all textures along both
dimensions, and lets us thus build four times larger HistoPy-
ramids within the same texture size limits. In addition, since
we quarter the number of texture fetches, and graphics hard-
ware is quite efficient at fetching four-channel RGBA values,

a

c

(e, f)

(b, f)

(f ,h)

b

d

e f

g h

x

y

z

Figure 4: A marching cube cell (MC cell). In this case, only
the corner f is inside the iso-surface, and thus, the edges
(e, f), (b, f), and (f ,h) intersect the iso-surface.

this usually yields a significant speed-up. For more details,
see vec4-HistoPyramids in [ZTTS06].

4. Marching cubes

The Marching Cubes (MC) algorithm [LC87] of Lorensen
and Cline is probably the most used algorithm for extracting
iso-surfaces from scalar fields. From a 3D grid of N×M×L
scalar values, we form a grid of (N−1)× (M−1)× (L−1)
cubic “MC cells”, where the centers of the MC cells are in-
between the position of the scalar values. Thus, each MC cell
have a scalar value associated with each of its eight corners.
The basic idea is to “march” through all the cells one-by-one,
and for each cell, produce a set of triangles that approximates
the iso-surface locally to that particular cell.

It is assumed that the topology of the iso-surface inside a
MC cell is completely determined from classifying the eight
corners of the MC cell as inside or outside the iso-surface,
see Figure 4. Thus, the topology of the local iso-surface can
be encoded into an eight-bit integer, which we call the class
of the MC cell. For example, in Figure 4 the corner f is in-
side and the rest of the corners are outside. Encoding “in-
side” with 1 and “outside” with 0, we get the MC class
%00000100 in binary notation, or 32 in decimal. If any of
the twelve edges of the MC cell have one endpoint inside
and one outside, the edge is said to be piercing since it in-
tersects the iso-surface. The MC cell in Figure 4 have three
piercing edges: (b, f), (e, f), and (f ,h). The set of piercing
edges is completely determined by the MC class of the cell.

For each piercing edge of a MC cell, we determine the
intersection point where the iso-surface and the edge inter-
sects. By triangulating the intersection points we get an ap-
proximation of the iso-surface inside the MC cell. And with
some care, the triangles of two adjacent MC cells fits to-

6 C. Dyken & G. Ziegler & C. Theobalt & H.-P. Seidel / HistoPyramids in Iso-Surface Extraction

Figure 5: The 15 basic predefined triangulations [LC87] of
edge intersections, which by symmetry provide in principle
triangulations for all 256 MC cases. However, a few of the
cases are ambiguous, and we handle this by adding some
extra triangulations [MSS94].

gether. Since the intersection points only slides along the
piercing edges, there are essentially 256 different triangu-
lations we use, one for each MC class. From 15 basic pre-
defined triangulations, depicted in Figure 5, we can create
triangulations for all 256 MC classes du to inherent sym-
metry [LC87]. However, some of the MC classes are am-
biguous, which may result in a discontinuous surface. Luck-
ily, this is easily remedied by modifying the triangulations
for some of the MC cases [MSS94]. On the downside, this
also increases the maximum number of triangles emitted per
MC cell from 4 to 5.

We only know the value of the scalar field at the end-point
of the MC cell edges. Thus, to determine the intersection of
a piercing edge and the iso-surface, the scalar field must be
defined along the edges. The simplest choice is to let the in-
tersection be at the midpoint of the edge. The result of this
choice is depicted in the left part of Figure 6, which shows
that this strategy leads to an excessively “blocky” appear-

Figure 6: Difference between assuming that edges pierce
the iso-surface at the middle of an edge (left) or using an
approximating linear polynomial to determine the intersec-
tion (right).

ance. A considerably better choice is to use a linear polyno-
mial that interpolates the scalar values at the edge end-points
to approximate the scalar field. By finding the intersection of
the edge and this approximation, we get a considerably bet-
ter estimate of the intersection. The result is shown in the left
part of Figure 6.

4.1. Mapping Marching Cubes to Stream and HP
Processing

Our approach is to implement MC as a sequence of data
stream operations, with the input data stream being the cells
of the 3D scalar field, and the output stream being a set of
vertices, forming the triangles of the iso-surface. The data
stream operations are executed via the HistoPyramid and (in
one variant) the geometry shader, which compact and ex-
pand the data stream as necessary.

Figure 7 shows a flowchart of our algorithm. We use a
texture to represent the scalar field, and the first step of our
algorithm is to update this scalar field. The scalar field can
stem from a variety of sources, and thus for example origi-
nate from storage or CPU memory, or simply be the result of
GPGPU computations. For static scalar fields, this update is
of course only conducted once.

The next step is to build the HistoPyramid. First, we build
the base layer. Our predicate function maps base level tex-
els to MC cells, and calculates the original 3D coordinates.
Then, it samples the scalar field via these 3D texcoords to
classify the MC cell corners. By comparing against the iso-
level, it can determine which MC cell corners are inside or
outside the iso-surface. This determines the MC class of the

C. Dyken & G. Ziegler & C. Theobalt & H.-P. Seidel / HistoPyramids in Iso-Surface Extraction 7

cell and a lookup in the vertex count texture yields the num-
ber of vertices needed to triangulate this class. We store this
number in the base layer, and can now proceed with HistoPy-
ramid reductions to build the rest of the levels, as described
in Section 3.1.

After the HistoPyramid has been completed, we read back
the single texel on its top level. This makes the CPU aware
of the required number of vertices needed for the complete
iso-surface. Dividing this number by three yields the number
of triangles.

The input to the render pass is a sequence of increasing
key indices. The length of this sequence is the number of ver-
tices in the iso-surface. For each vertex, we use the key index
to conduct a HistoPyramid traversal, as described in Sec-
tion 3.2. After the traversal, we have a texel position in the
base texture and a key index remainder. From the texel posi-
tion in the base texture, we can determine the corresponding
3D coordinate. Using the MC class of the cell and the key
index remainder, we can do a lookup in the triangulation ta-
ble texture, which is a 16×256 table where entry (i, j) tells
which edge vertex i of a class j cell corresponds to. We then
sample the scalar field at the two end-points of the edge, de-
termine a linear interpolant of the scalar field along the edge,
find the exact intersection, and emit the corresponding ver-
tex.

In effect, the algorithm has transformed the stream of
scalar field values into a stream of vertices, which can di-
rectly be used to render iso-surface geometry. Still, the ge-
ometry can be stored in a buffer on the GPU if so needed,
either using transform feedback buffers or through a render-
to-vertex-buffer pass.

4.2. Implementation details

In detail, the actual implementation of our MC approach
contains some noteworthy caveats which we describe in this
chapter.

The scalar field texture for the input data would ideally be
stored as 3D texture. But since we want to generate its con-
tent on the GPU, and render-to-3D-texture is not yet pos-
sible, we map the 3D domain to a 2D tiling. For this pur-
pose, we create a large tiled 2D texture, where each tile cor-
responds to a slice of the 3D volume, an approach known
as a Flat 3D layout [HISL03]. The HistoPyramid algorithm
performs better for large amounts of data. Therefore, we use
the Flat 3D layout on the HistoPyramid base level as well,
and process the entire volume using one HistoPyramid.

We used a four-channel HistoPyramid, where the RGBA-
values of each base layer texel correspond to the analysis of
a tiny 2× 2× 1-chunk of MC cells. The analysis begins by
fetching the scalar values at the common 3× 3× 2 corners
of the four MC cells. We compare these values to the iso-
value to determine the inside/outside state of the corners, and

from this determine the MC class of the MC cells. The MC
class corresponds to the MC template geometry set forth by
the Marching Cubes algorithm. It is needed in the extraction
process, and therefore we use some of the bits in the base
level texels to cache it. To do this, we let the vertex count
be the integer part and the MC class the fractional part of a
single float32 value. This is sound, as the maximum number
of vertices needed by an MC class is 15, and therefore the
vertex count only needs 4 of the 32 bits in a float32 value.

HistoPyramid texture building is implemented as consec-
utive GPGPU-passes of reduction operations, with special
handling for the base level. By viewing it as reduction opera-
tion in a MipMap-like pyramid, the current texel receives the
sum of the four corresponding texels in the level below. The
top level contains exactly one entry. The reduction passes are
mostly done as exemplified in “render-to-texture loop with
custom MipMap generation” [JS05], but instead of using
one single framebuffer object (FBO) for all MipMap levels,
we use a separate FBO for each MipMap level, which gave
a speedup on some hardware. Since we use a four-channel
HistoPyramid, the top level texel actually contains four val-
ues, not only one, and the sum of these four values yields the
number of vertices in the iso-surface. We read these four val-
ues back and add them on the CPU. We can then commence
rendering of the iso-surface triangles.

Iso-surface rendering is triggered by processing the given
number of vertices in the vertex shader. The only vertex at-
tribute provided by the CPU is a sequence of key indices,
streamed off a static vertex buffer object (VBO). In theory,
on SM4 hardware, we could use the built-in gl_VertexID
variable directly, but since OpenGL cannot trigger process-
ing of vertices without any vertex attribute data, we would
have to provide a VBO anyway. The vertex shader is exe-
cuted for each vertex, using the provided key index to tra-
verse the HistoPyramid, determining which MC cell and
which of its edges this vertex corresponds to. It then sam-
ples the scalar field at both end-points of its edge, and forms
a linear approximation which it intersects with the edge. The
shader can also find an approximate normal vector for this
point, which it does by interpolating the forward differences
of the scalar field at each edge end. In this variant, it is thus
the vertex-shader which generates the iso-surface on the fly.

Another approach to iso-surface extraction is to let the ge-
ometry shader generate the vertices required for each MC
cell. In this variant, the HistoPyramid is only used for data
stream compaction, discarding MC cells that do not intersect
the iso-surface. After retrieving the number of geometry-
producing MC cells from the top level of the HistoPyra-
mid, the CPU triggers the geometry shader by rendering
one point per geometry-producing MC cell. For each invo-
cation, the geometry shader first traverses the HistoPyramid
and determines which MC cell this invocation corresponds
to. Then, based on the stored MC class, it emits the required
vertices and, optionally, their normals by iterating through

8 C. Dyken & G. Ziegler & C. Theobalt & H.-P. Seidel / HistoPyramids in Iso-Surface Extraction

Scalar field
texture

Vertex count
texture

HistoPyramid
texture

Triangulation
table texture

Enumeration
VBO

Start
new frame

Update
scalar field

Build
HP base

HP
reduce

Vertex count
readback

Render
geometry

Iso-level

For each level

Figure 7: A flowchart of our algorithm (vertex-shader variant, aka VS variant). Black arrows describe the temporal flow of the
algorithm, blue arrows are writes, and green arrows are reads. White boxes are operations done on the CPU, blue boxes are
done on the GPU, red boxes are static data, and green boxes are dynamic data.

the triangulation table texture. This way, this variant reduces
the number of HistoPyramid traversals from once per every
vertex of each iso-surface triangle, to once per geometry-
producing MC cell. Despite this theoretical advantage, it
showed in the timings of Section 5 that the overhead of
this additional GPU pipeline stage is still considerably larger
than the partially redundant HistoPyramid traversals.

Instead of direct rendering, the generated iso-surface
mesh might be required by the CPU. In that case, it can be
downloaded as a 1D buffer stream. The most direct way for
this on recent hardware is the transform feedback extension,
which captures the newly generated stream of vertex data
before it actually is rendered. On older hardware, a sim-
ple fragment shader and render-to-texture (NVidia/ATI) or
render-to-vertex buffer (ATI) can be used to extract the ge-
ometry to a static data array in graphics memory, from where
it can be downloaded to the CPU.

5. Performance analysis

The number of voxels processed per second is the usual mea-
sure of performance for iso-surface extraction implementa-
tions. But since the processing of a MC cell intersecting the
iso-surface is higher than for MC cells that do not intersect,
this number alone is not a good enough indicator of per-
formance. Therefore, we have chosen to introduce the term
density, defined as the percentage of the MC cells that do
produce geometry.

We used six datasets with varying complexity at four dif-
ferent resolutions, thus measuring the performance of the al-
gorithms under a wide range of conditions. Iso-surfaces of
the datasets are depicted in Figure 8. The “Bunny” and “CT-
head” datasets were obtained from the Stanford volume data
archive [Sta], the “MRbrain”, “Bonsai”, and “Aneurism”
datasets were obtained from volvis.org [Vol], while the
“Cayley” is the implicit equation f (x,y,z) = 16xyz + 4(x +
y+ z)−1 sampled over [−1,1]3.

We also used three different NVidia GeForce graphics

cards: a 6600GT with 128MB RAM, a 7800GT with 256MB
RAM, and a 8800GTX with 768MB RAM. The 6600GT was
part of a Linux workstation with an AMD Athlon 64 3500+
CPU at 2.2 GHz and 1 GB of RAM, using the 97.55 release
of the NVidia display driver. The 7800GT and the 8800GTX
were part of another Linux workstation with an Intel Core2
CPU at 2.13 GHz and 1 GB of RAM, using the 97.51 release
of the display driver. The 6600GT and 7800GT did not have
enough RAM to handle the largest datasets, and thus had to
be skipped in large dataset rendering.

Table 5 shows the results of our experiments. For each
dataset, at each resolution, we have calculated the number
of MC cells and the density. We have measured the perfor-
mance of three different algorithms, two of our own design
and one intended for comparison. Our own ones are HistoPy-
ramid extraction in the vertex shader (HP-VS), and extrac-
tion in the geometry shader (HP-GS). For comparison, we
benchmarked a geometry shader-based MT implementation,
provided in the NVidia OpenGL SDK-10 (NV-SDK10). The
performance is measured in million MC cells processed per
second, with frames per second given in parentheses.

The results show that the HistoPyramid algorithms
achieve a considerably higher throughput for increasing
amounts of volume data. This is expected, since the HistoPy-
ramid is especially suited for sparse input data, and applied
on large datasets, large amounts of data is culled early in
the traversal. However, some increase in throughput is also
likely caused by the fact that larger chunks of data give
increased possibility of data-parallelism, and require fewer
GPU state-changes in relation to the data processed. This
probably explains the (moderate) increase in performance
for the NV-SDK10 comparison implementation.

HistoPyramid building speeds are highly dependent on
memory bandwidth. The 7800GT has twice the memory
bandwidth of the 6600GT, and the 7800GT run is thus also
about twice as fast as the 6600GT run.

On the whole, The HP-VS algorithm outperforms all other
algorithms except for some of the tiny and dense datasets,

C. Dyken & G. Ziegler & C. Theobalt & H.-P. Seidel / HistoPyramids in Iso-Surface Extraction 9

6600GT 7800GT 8800GTX 8800GTX 8800GTX
Model MC cells Density HP-VS HP-VS HP-VS HP-GS NV-SDK10

B
un

ny

255x255x255 16581375 3.2% – – 538.6 (32.5) 77.6 (4.7) –
127x127x127 2048383 5.6% 5.4 (2.6) 11.8 (5.8) 309.5 (151.1) 41.9 (20.4) –

63x63x63 250047 9.1% 4.0 (16.1) 8.5 (34.1) 163.4 (653.5) 26.2 (104.7) 28.3 (113.2)
31x31x31 29791 13.6% 2.5 (82.8) 5.0 (167.9) 25.5 (857.0) 13.0 (434.9) 21.9 (734.0)

C
th

ea
d 255x255x128 8323200 3.7% – 16.3 (2.0) 437.6 (53.0) 64.0 (7.8) –

127x127x63 1016127 6.3% 5.4 (5.3) 11.6 (11.5) 288.1 (283.6) 37.8 (37.2) –
63x63x31 123039 9.6% 3.7 (29.9) 7.7 (62.2) 97.3 (791.0) 23.2 (188.6) 25.3 (205.9)
31x31x15 14415 14.5% 2.3 (161.3) 4.5 (311.5) 12.9 (896.4) 10.5 (729.0) 17.1 (1187.0)

m
rb

ra
in 255x255x128 8323200 5.8% – 10.5 (1.3) 309.0 (37.4) 35.7 (4.3) –

127x127x63 1016127 7.4% 4.6 (4.5) 9.9 (9.7) 257.7 (263.6) 29.7 (29.2) –
63x63x31 123039 10.0% 3.5 (28.6) 7.4 (60.0) 96.8 (786.5) 20.5 (166.8) 26.4 (214.9)
31x31x15 14415 14.9% 2.2 (155.0) 4.3 (300.9) 12.7 (879.7) 10.0 (695.0) 18.2 (1257.4)

B
on

sa
i 255x255x255 16581375 3.0% – – 560.8 (33.8) 77.0 (4.6) –

127x127x127 2048383 5.1% 5.9 (2.9) 13.0 (6.3) 329.8 (161.0) 42.3 (20.7) –
63x63x63 250047 6.7% 5.4 (21.5) 11.4 (45.5) 186.5 (745.9) 31.0 (124.1) 28.9 (115.6)
31x31x31 29791 8.2% 4.1 (136.8) 8.0 (268.8) 25.1 (843.0) 18.3 (613.7) 24.0 (804.6)

A
ne

ur
is

m 255x255x255 16581375 1.6% – – 892.5 (53.8) 125.1 (7.5) –
127x127x127 2048383 2.1% 12.6 (6.1) 29.1 (14.2) 557.6 (272.2) 92.8 (45.3) –

63x63x63 250047 3.7% 9.1 (36.2) 19.2 (76.7) 190.5 (761.9) 49.8 (199.3) 32.9 (131.5)
31x31x31 29791 6.8% 4.5 (149.7) 8.6 (289.1) 25.0 (839.3) 18.8 (632.6) 25.5 (856.6)

C
ay

le
y 255x255x255 16581375 0.9% – – 1112.3 (67.1) 233.2 (14.1) –

127x127x127 2048383 1.9% 13.5 (6.6) 31.2 (15.2) 581.3 (283.8) 112.5 (54.9) –
63x63x63 250047 3.9% 8.5 (33.9) 17.9 (71.6) 198.0 (791.9) 51.6 (206.6) 32.1 (128.5)
31x31x31 29791 8.1% 3.7 (123.8) 7.3 (245.8) 25.8 (866.2) 17.5 (588.3) 24.7 (827.9)

Table 1: The performance of full extraction and rendering of iso-surfaces, measured in million MC cells processed per second,
with frames per second given in parentheses. The algorithms measured were HistoPyramid extraction in the vertex shader (HP-
VS), extraction in the geometry shader (HP-GS), and the Marching Tetrahedra implementation of the NVidia OpenGL SDK10
(NV-SDK10).

where NV-SDK10 has the best performance. We also see
that HP-GS, using the geometry shader for stream expan-
sion, and with the theoretical advantage of reducing the num-
ber of HistoPyramid traversals to about one sixth on average,
performs four to eight times slower than HP-VS in practice
on the same hardware. This shows that the introduction of
an additional stage in the graphics pipeline is considerably
more expensive than the extra fetches from the HistoPyra-
mid texture. However, this ratio is likely to change in future
hardware generations with improved geometry shaders.

The HP-VS algorithm on the 8800GTX is again ten to
thirty times faster than the 7800GT, peaking at over 1000
million MC cells processed per second. But on the whole,
even though the performance of the 6600GT is miniscule
compared to the 8800GTX, we see that in contrast to DX10-
based approaches, the algorithm still works, even on low-end
hardware. In addition, NV-SDK10 on an 8800GTX is only
two to four times faster than HP-VS on a 7800GT.

We also experimented with various detail changes in the
algorithm. For example, positioning the vertices at the edge
midpoints removes the need for sampling the scalar field in
the extraction pass, as mentioned in Section 4. In theory,

this should increase performance, but experiments show that
the speedup is marginal and visual quality drops drastically,
see Figure 6. In addition, we benchmarked performance with
different texture storage formats, including the new integer
storage format of SM4. However, it showed that the storage
type still has relatively little impact in this hardware genera-
tion.

6. Conclusion and future work

We have presented a fast and general method to extract iso-
surfaces from volume data, running completely on the GPU.
It is based on the MC algorithm and uses the HistoPyra-
mid technique to handle geometry generation. We have de-
scribed a SM3 version using HistoPyramids for both culling
of MC cells and geometry generation, and a SM4 version
that uses the geometry shader for geometry generation. We
have done a performance analysis on both versions along-
side the MT implementation provided in the NVidia SDK-
10. For reasonable data sizes, our algorithms outperforms all
other known GPU-based iso-surface extraction algorithms.
Surprisingly, the SM3 variant of the algorithm is also the

10 C. Dyken & G. Ziegler & C. Theobalt & H.-P. Seidel / HistoPyramids in Iso-Surface Extraction

Bunny CThead MRbrain

Bonsai Aneurism Cayley

Figure 8: Images of the voxel volumes used in the performance analysis.

fastest one on recent SM4 hardware, even though it actually
ignores recent geometry shader capabilities.

In direct comparison, Scan and HistoPyramids have some
similarities (the up-sweep phase and the HistoPyramid con-
struction is closely related), while the difference lies in the
extraction process. Scan has the advantage that only one ta-
ble lookup is needed, as long as scatter-write is available.
For HistoPyramids, each output element extraction requires
a log(n)-traversal of the HistoPyramid. But despite that algo-
rithmic complexity, the HistoPyramid algorithm can utilize
the texture cache very efficiently, reducing the performance
hit of the deeper traversal. A second difference is that Scan’s
output extraction iterates over all input elements and scat-
ters the relevant ones to output, while HistoPyramid iterates
on the output elements instead. Thus, if a lot of the input
elements are to be culled (which is the case with MC), the
HistoPyramid algorithms can play out its strengths, despite
its tree traversal.

It is worth noting that the presented geometry generation
approach is not specific to MC. Its data expansion princi-
ples are general enough to be used in totally different areas,
allowing the use of older SM3 hardware for GPU-based ge-
ometry generation and processing.

Future work might concentrate on out-of-core applica-
tions which can benefit greatly from high-speed MC imple-
mentations. Multiple Rendering Targets (MRT) might allow
us to generate multiple iso-surfaces or to accelerate HistoPy-

ramid processing (and thus geometry generation) even fur-
ther. A proper view-dependent layering of volume data ex-
tractions could allow for immediate output of transparency
sorted iso-surface geometry.

References

[BCL06] BUATOIS L., CAUMON G., LEVY B.: GPU ac-
celerated isosurface extraction on tetrahedral grids. In In-
ternational Symposium on Visual Computing (2006).

[DRS07] DYKEN C., REIMERS M., SELAND J.: Real-
time GPU silhouette refinement using adaptively blended
Bézier patches. Computer Graphics Forum, to appear
(2007).

[Har07] HARRIS M.: Parallel prefix sum (scan) with
CUDA. NVIDIA CUDA SDK 1.0, 2007.

[HISL03] HARRIS M. J., III W. V. B., SCHEUERMANN

T., LASTRA A.: Simulation of cloud dynamics on graph-
ics hardware. Proceedings of Graphics Hardware (2003).

[Hor05] HORN D.: GPU Gems 2: Programming Tech-
niques for High-Performance Graphics and General-
Purpose Computation. Addison-Wesley, 2005, ch. Stream
Reduction Operations for GPGPU Applications, pp. 573–
589.

[JC06] JOHANSSON G., CARR H.: Accelerating march-
ing cubes with graphics hardware. In CASCON ’06: Pro-
ceedings of the 2006 conference of the Center for Ad-

C. Dyken & G. Ziegler & C. Theobalt & H.-P. Seidel / HistoPyramids in Iso-Surface Extraction 11

vanced Studies on Collaborative research (2006), ACM
Press.

[JS05] JULIANO J., SANDMEL J.: GL_EXT_frame-
buffer_object. OpenGL extension registry, 2005.

[KSE04] KLEIN T., STEGMAIER S., ERTL T.: Hardware-
accelerated reconstruction of polygonal isosurface repre-
sentations on unstructured grids. Pacific Graphics 2004
Proceedings (2004).

[KW05] KIPFER P., WESTERMANN R.: GPU construc-
tion and transparent rendering of iso-surface. In Pro-
ceedings Vision, Modeling and Visualization 2005 (2005),
Greiner G., Hornegger J., Niemann H., Stamminger M.,
(Eds.), IOS Press, infix, pp. 241–248.

[LB07] LICHTENBELT B., BROWN P.: GL_EXT_gpu_
shader4. OpenGL extension registry, 2007.

[LC87] LORENSEN W., CLINE H. E.: Marching cubes:
A high resolution 3d surface construction algorithm.
Computer Graphics (SIGGRAPH 87 Proceedings) 21, 4
(1987), 163–170.

[MSS94] MONTANI C., SCATENI R., SCOPIGNO R.: A
modified look-up table for implicit disambiguation of
Marching Cubes. The Visual Computer 10 (1994), 353–
355.

[Pas04] PASCUCCI V.: Isosurface computation made sim-
ple: Hardware acceleration, adaptive refinement and tetra-
hedral stripping. Joint Eurographics - IEEE TVCG Sym-
posium on Visualization (2004), 292–300.

[Sta] The stanford volume data archive. http://
graphics.stanford.edu/data/voldata/.

[Ura06] URALSKY Y.: DX10: Practical metaballs and im-
plicit surfaces. GameDevelopers conference, 2006.

[Vol] Volvis volume dataset archive. http://www.
volvis.org/.

[ZTTS06] ZIEGLER G., TEVS A., THEOBALT C., SEI-
DEL H.-P.: GPU Point List Generation through His-
togram Pyramids. Tech. Rep. MPI-I-2006-4-002, Max-
Planck-Institut für Informatik, 2006.

http://graphics.stanford.edu/data/voldata/
http://graphics.stanford.edu/data/voldata/
http://www.volvis.org/
http://www.volvis.org/

Below you find a list of the most recent technical reports of the Max-Planck-Institut für Informatik. They
are available by anonymous ftp from ftp.mpi-sb.mpg.de under the directory pub/papers/reports. Most
of the reports are also accessible via WWW using the URL http://www.mpi-sb.mpg.de. If you have any
questions concerning ftp or WWW access, please contact reports@mpi-sb.mpg.de. Paper copies (which
are not necessarily free of charge) can be ordered either by regular mail or by e-mail at the address below.

Max-Planck-Institut für Informatik
Library
attn. Anja Becker
Stuhlsatzenhausweg 85
66123 Saarbrücken
GERMANY
e-mail: library@mpi-sb.mpg.de

MPI-I-2006-5-001 M. Bender, S. Michel, G. Weikum,
P. Triantafilou

Overlap-Aware Global df Estimation in Distributed
Information Retrieval Systems

MPI-I-2005-5-002 S. Siersdorfer, G. Weikum Automated Retraining Methods for Document
Classification and their Parameter Tuning

MPI-I-2005-4-006 C. Fuchs, M. Goesele, T. Chen,
H. Seidel

An Emperical Model for Heterogeneous Translucent
Objects

MPI-I-2005-4-005 G. Krawczyk, M. Goesele, H. Seidel Photometric Calibration of High Dynamic Range
Cameras

MPI-I-2005-4-004 C. Theobalt, N. Ahmed, E. De Aguiar,
G. Ziegler, H. Lensch, M.A.,. Magnor,
H. Seidel

Joint Motion and Reflectance Capture for Creating
Relightable 3D Videos

MPI-I-2005-4-003 T. Langer, A.G. Belyaev, H. Seidel Analysis and Design of Discrete Normals and
Curvatures

MPI-I-2005-4-002 O. Schall, A. Belyaev, H. Seidel Sparse Meshing of Uncertain and Noisy Surface
Scattered Data

MPI-I-2005-4-001 M. Fuchs, V. Blanz, H. Lensch,
H. Seidel

Reflectance from Images: A Model-Based Approach for
Human Faces

MPI-I-2005-2-004 Y. Kazakov A Framework of Refutational Theorem Proving for
Saturation-Based Decision Procedures

MPI-I-2005-2-003 H.d. Nivelle Using Resolution as a Decision Procedure

MPI-I-2005-2-002 P. Maier, W. Charatonik, L. Georgieva Bounded Model Checking of Pointer Programs

MPI-I-2005-2-001 J. Hoffmann, C. Gomes, B. Selman Bottleneck Behavior in CNF Formulas

MPI-I-2005-1-008 C. Gotsman, K. Kaligosi,
K. Mehlhorn, D. Michail, E. Pyrga

Cycle Bases of Graphs and Sampled Manifolds

MPI-I-2005-1-008 D. Michail ?

MPI-I-2005-1-007 I. Katriel, M. Kutz A Faster Algorithm for Computing a Longest Common
Increasing Subsequence

MPI-I-2005-1-003 S. Baswana, K. Telikepalli Improved Algorithms for All-Pairs Approximate
Shortest Paths in Weighted Graphs

MPI-I-2005-1-002 I. Katriel, M. Kutz, M. Skutella Reachability Substitutes for Planar Digraphs

MPI-I-2005-1-001 D. Michail Rank-Maximal through Maximum Weight Matchings

MPI-I-2004-NWG3-001 M. Magnor Axisymmetric Reconstruction and 3D Visualization of
Bipolar Planetary Nebulae

MPI-I-2004-NWG1-001 B. Blanchet Automatic Proof of Strong Secrecy for Security
Protocols

MPI-I-2004-5-001 S. Siersdorfer, S. Sizov, G. Weikum Goal-oriented Methods and Meta Methods for
Document Classification and their Parameter Tuning

MPI-I-2004-4-006 K. Dmitriev, V. Havran, H. Seidel Faster Ray Tracing with SIMD Shaft Culling

MPI-I-2004-4-005 I.P. Ivrissimtzis, W.-. Jeong, S. Lee,
Y.a. Lee, H.-. Seidel

Neural Meshes: Surface Reconstruction with a Learning
Algorithm

MPI-I-2004-4-004 R. Zayer, C. Rssl, H. Seidel r-Adaptive Parameterization of Surfaces

MPI-I-2004-4-003 Y. Ohtake, A. Belyaev, H. Seidel 3D Scattered Data Interpolation and Approximation
with Multilevel Compactly Supported RBFs

MPI-I-2004-4-002 Y. Ohtake, A. Belyaev, H. Seidel Quadric-Based Mesh Reconstruction from Scattered
Data

MPI-I-2004-4-001 J. Haber, C. Schmitt, M. Koster,
H. Seidel

Modeling Hair using a Wisp Hair Model

MPI-I-2004-2-007 S. Wagner Summaries for While Programs with Recursion

MPI-I-2004-2-002 P. Maier Intuitionistic LTL and a New Characterization of Safety
and Liveness

MPI-I-2004-2-001 H. de Nivelle, Y. Kazakov Resolution Decision Procedures for the Guarded
Fragment with Transitive Guards

MPI-I-2004-1-006 L.S. Chandran, N. Sivadasan On the Hadwiger’s Conjecture for Graph Products

MPI-I-2004-1-005 S. Schmitt, L. Fousse A comparison of polynomial evaluation schemes

MPI-I-2004-1-004 N. Sivadasan, P. Sanders, M. Skutella Online Scheduling with Bounded Migration

MPI-I-2004-1-003 I. Katriel On Algorithms for Online Topological Ordering and
Sorting

MPI-I-2004-1-002 P. Sanders, S. Pettie A Simpler Linear Time 2/3 - epsilon Approximation for
Maximum Weight Matching

MPI-I-2004-1-001 N. Beldiceanu, I. Katriel, S. Thiel Filtering algorithms for the Same and UsedBy
constraints

MPI-I-2003-NWG2-002 F. Eisenbrand Fast integer programming in fixed dimension

MPI-I-2003-NWG2-001 L.S. Chandran, C.R. Subramanian Girth and Treewidth

MPI-I-2003-4-009 N. Zakaria FaceSketch: An Interface for Sketching and Coloring
Cartoon Faces

MPI-I-2003-4-008 C. Roessl, I. Ivrissimtzis, H. Seidel Tree-based triangle mesh connectivity encoding

MPI-I-2003-4-007 I. Ivrissimtzis, W. Jeong, H. Seidel Neural Meshes: Statistical Learning Methods in Surface
Reconstruction

MPI-I-2003-4-006 C. Roessl, F. Zeilfelder, G. Nrnberger,
H. Seidel

Visualization of Volume Data with Quadratic Super
Splines

MPI-I-2003-4-005 T. Hangelbroek, G. Nrnberger,
C. Roessl, H.S. Seidel, F. Zeilfelder

The Dimension of C1 Splines of Arbitrary Degree on a
Tetrahedral Partition

MPI-I-2003-4-004 P. Bekaert, P. Slusallek, R. Cools,
V. Havran, H. Seidel

A custom designed density estimation method for light
transport

MPI-I-2003-4-003 R. Zayer, C. Roessl, H. Seidel Convex Boundary Angle Based Flattening

MPI-I-2003-4-002 C. Theobalt, M. Li, M. Magnor,
H. Seidel

A Flexible and Versatile Studio for Synchronized
Multi-view Video Recording

MPI-I-2003-4-001 M. Tarini, H.P.A. Lensch, M. Goesele,
H. Seidel

3D Acquisition of Mirroring Objects

MPI-I-2003-2-004 A. Podelski, A. Rybalchenko Software Model Checking of Liveness Properties via
Transition Invariants

MPI-I-2003-2-003 Y. Kazakov, H. de Nivelle Subsumption of concepts in DL FL0 for (cyclic)
terminologies with respect to descriptive semantics is
PSPACE-complete

MPI-I-2003-2-002 M. Jaeger A Representation Theorem and Applications to
Measure Selection and Noninformative Priors

MPI-I-2003-2-001 P. Maier Compositional Circular Assume-Guarantee Rules
Cannot Be Sound And Complete

MPI-I-2003-1-018 G. Schaefer A Note on the Smoothed Complexity of the
Single-Source Shortest Path Problem

MPI-I-2003-1-017 G. Schfer, S. Leonardi Cross-Monotonic Cost Sharing Methods for Connected
Facility Location Games

MPI-I-2003-1-016 G. Schfer, N. Sivadasan Topology Matters: Smoothed Competitive Analysis of
Metrical Task Systems

MPI-I-2003-1-015 A. Kovcs Sum-Multicoloring on Paths

	1. Related Work
	2. Overview
	3. Discriminator
	4. HistoPyramid Builder
	5. PointList Builder
	6. Algorithmic variants
	6.1. Merged Discriminator and HistoPyramid Builder
	6.2. Point list entry cloning
	6.3. Faster traversal with partial sums in vec4
	6.4. Bilinear interpolation for faster summation

	7. Applications
	7.1. Image analysis
	7.2. Volume analysis
	7.3. Sparse matrix creation
	7.4. Quadtree Builder

	8. Results
	9. Conclusions and Outlook

