
Solving the extended pairwise
alignment problem efficiently

Ernst Althaus Stefan Canzar

MPI–I–2007–1–002 May 2007

Authors’ Addresses

Ernst Althaus
Max-Planck-Institut für Informatik
Stuhlsatzenhausweg 85
66123 Saarbrücken
Germany

Stefan Canzar
Max-Planck-Institut für Informatik
Stuhlsatzenhausweg 85
66123 Saarbrücken
Germany

Publication Notes

This is an extended version with full proofs of the paper “A Lagrangian
relaxation approach for the multiple sequence alignment problem”, written
by the same authors and published by Springer in the proceedings of the First
International Conference on Combinatorial Optimization and Applications
(COCOA’07).

Acknowledgements

This work was partially supported by the German Academic Exchange Ser-
vice (DAAD).

The paper includes work done while the authors were at the Labora-
toire Lorrain de Recherche en Informatique et ses Applications (LORIA),
Campus Scientifique - BP 239 - 54506 Vandoeuvre-ls-Nancy Cedex (France),
supported by the Centre National de Recherche Scientifique (CNRS).

Abstract

We present a branch-and-bound (bb) algorithm for the multiple sequence
alignment problem (MSA), one of the most important problems in computa-
tional biology. The upper bound at each bb node is based on a Lagrangian
relaxation of an integer linear programming formulation for MSA. Dualizing
certain inequalities, the Lagrangian subproblem becomes a pairwise align-
ment problem, which can be solved efficiently by a dynamic programming
approach. Due to a reformulation w.r.t. additionally introduced variables
prior to relaxation we improve the convergence rate dramatically while at
the same time being able to solve the Lagrangian problem efficiently. Our
experiments show that our implementation, although preliminary, outper-
forms all exact algorithms for the multiple sequence alignment problem.

Keywords

Sequence alignment, Lagrangian relaxation, branch and bound, relax and cut

Contents

1 Introduction 2

2 Previous Work 4

3 Outline 7

4 Solving the Extended Pairwise Alignment Problem 8
4.1 Simple Algorithm . 9
4.2 Improved Algorithm . 10

4.2.1 The Bypass Graph . 14
4.2.2 Complexity . 17
4.2.3 Correctness . 18

5 Improving the Lagrangian Relaxation Bound 26
5.1 Subgradient Optimization . 26
5.2 Relax-and-Cut . 27

6 Experiments 29

1

1 Introduction

Aligning DNA or protein sequences is one of the most important and pre-
dominant problems in computational molecular biology. Before we motivate
this we introduce the following notation for the multiple sequence alignment
problem.

Let S = {s1, s2, . . . , sk} be a set of k strings over an alphabet Σ and let
Σ̄ = Σ ∪ {−}, where “−” (dash) is a symbol to represent “gaps” in strings.
Given a string s, we let | s | denote the number of characters in the string
and sl the lth character of s, for l = 1, . . . , | s |. We will assume that | si |≥ 4
for all strings si and let n :=

∑k

i=1 | s
i |.

An alignment A of S is a set S̄ = {s̄1, s̄2, · · · , s̄k} of strings over the
alphabet Σ̄ where each string can be interpreted as a row of a two dimensional
alignment matrix. The set S̄ of strings has to satisfy the following properties:
(1) the strings in S̄ all have the same length, (2) ignoring dashes, string s̄i is
identical to string si, and (3) none of the columns of the alignment matrix is
allowed to contain only dashes.

If s̄i
l and s̄j

l are both different from “−”, the corresponding characters in
si and sj are aligned and thus contribute a weight w(s̄i

l, s̄
j
l) to the value of

A. The pairwise scoring matrix w over the alphabet Σ models either costs or
benefits, depending on whether we minimize distance or maximize similarity.
In the following, we assume that we maximize the weight of the alignment.
Moreover, a gap in sj with respect to si is a maximal sequence si

l s
i
l+1 . . . s

i
m

of characters in si that are aligned with dashes “−” in row j. Associated
with each of these gaps is a cost. In the affine gap cost model the cost of a
single gap of length q is given by the affine function copen + qcext, i.e. such a
gap contributes a weight of −copen − qcext = wopen + qwext to the total weight
of the alignment. The problem calls for an alignment A whose overall weight
is maximized.

Alignment programs still belong to the class of the most important Bioin-
formatics tools with a large number of applications. Pairwise alignments, for
example, are mostly used to find strings in a database that share certain

2

commonalities with a query sequence but which might not be known to be
biologically related. Multiple alignments serve a different purpose. Indeed,
they can be viewed as solving problems that are inverse to the ones addressed
by pairwise string comparisons [13]. The inverse problem is to infer certain
shared patterns from known biological relationships.

The question remains how a multiple alignment should be scored. The
model that is used most consistently by far is the so called sum of pairs (SP)
score. The SP score of a multiple alignment A is simply the sum of the scores
of the pairwise alignments induced by A [6].

If the number k of sequences is fixed the multiple alignment problem for
sequences of length n can be solved in time and space O

(

nk
)

with (quasi)-
affine gap costs [12, 17, 23, 24]. More complex gap cost functions add a
polylog factor to this complexity [9, 16]. However, if the number k of se-
quences is not fixed, Wang and Jiang [27] proved that multiple alignment
with SP score is NP-complete by a reduction from shortest common super-
sequence [11]. Hence it is unlikely that polynomial time algorithms exist
and, depending on the problem size, various heuristics are applied to solve
the problem approximately (see, e.g., [3, 7]).

In [2, 1] Althaus et al. propose a branch-and-cut algorithm for the mul-
tiple sequence alignment problem based on an integer linear programming
(ILP) formulation. As solving the LP-relaxation is by far the most expensive
part of the algorithm and even not possible for moderately large instances,
we propose a Lagrangian approach to approximate the linear program and
utilize the resulting bounds on the optimal value in a branch-and-bound
framework. We assume that the reader is familiar with the Lagrangian re-
laxation approach to approximate linear programs.

The paper is organized as follows. In Section 2 we review the ILP for-
mulation of the multiple sequence alignment problem, whose Lagrangian re-
laxation is described in Section 3. Our algorithm for solving the resulting
problem is introduced in Section 4. Section 5 describes the approximation of
the Lagrangian dual problem. Finally, computational experiments on a set
of real-world instances are reported in Section 6.

3

2 Previous Work

In [2] Althaus et al. use a formulation for the multiple sequence alignment
problem as an ILP given by Reinert in [22].

For ease of notation, they define the gapped alignment graph, a mixed
graph whose node set corresponds to the characters of the strings and whose
edge set is partitioned in undirected alignment edges and directed positioning
arcs as follows: G = (V,EA ∪ AP) with V = V i ∪ · · · ∪ V k and V i = {ui

j |
1 ≤ j ≤ |si|}, EA = {uv | u ∈ V i, v ∈ V j, i 6= j} and AP = {(ui

l, u
i
l+1) |

1 ≤ i ≤ k and 1 ≤ l < |si|} (see figure 2.1). Furthermore, we denote with
G = {(u, v, j) | u, v ∈ V i, j 6= i} the set of all possible gaps.

An edge in EA is realized by an alignment, if its endpoints are placed into
the same column of the alignment matrix, i.e the corresponding characters
are aligned. Accordingly, a gap (ui

l, u
i
m, j) is realized by an alignment, if the

substring of si from position l to position m is aligned to gap characters “−”
in string sj, whereas both si

l−1 and si
m+1 are aligned with characters in sj.

Arcs in Ap represent consecutivity of characters within the same string and
are independent of the alignment.

In order to score the alignment, we assign each edge ui
lu

j
m ∈ EA a weight

w
ui

l
u

j
m

:= w(si
l, s

j
m) and a gap (ui

l, u
i
m, j) the weight w(ui

l
,ui

m,j) := wopen +(m−

l + 1) · wext, which represents the benefit of realizing that edge or gap.
We call pairs (E ′,G ′), for which there exists an alignment A such that E ′

and G ′ are the set of edges in E, respectively gaps in G ′, that are realized
by A, gapped traces. Notice that different alignments might correspond to
the same gapped trace (E ′,G ′), but all such alignments have the same score
∑

e∈E′ we +
∑

g∈G′ wg.
The ILP formulation uses a variable for every possible alignment edge

e ∈ EA, denoted by xe, and one variable for every possible gap g ∈ G, denoted
by yg. Reinert [22] showed that the {0, 1}-assignments to the variables such
that

(PaiwAl) we have pairwise alignments between every pair of strings,

4

A B C

A − C

−

−

AC−B

Figure 2.1: The graph in the middle is the gapped alignment graph for the
sequences given in the left part. The thick edges specify the alignment given
in the left part. The alignment edges in the right part can not be realized at
the same time in an alignment. Together with appropriate arcs of AP , they
form a mixed cycle.

(MixedCy) there are no mixed cycles, i.e. in the subgraph of the gapped
alignment graph consisting of the positioning arcs AP and the realized
edges {e ∈ EA | xe = 1} there is no cycle that respects the direction
of the arcs of Ap (and uses the edges of EA in either direction) and
contains at least one arc of AP (see figure 2.1),

(Trans) transitivity is preserved, i.e. if u is aligned with v and v with w
then u is aligned with w, for u, v, w ∈ V .

These three conditions are easily formulated as linear constraints (see
[2]). Given weights we associated with variables xe, e ∈ EA, and gap costs
wg associated with variables yg, we denote the problem of finding a gapped
trace (a solution satisfying (PaiwAl),(MixedCy) and (Trans)) which has the
highest weight as (P) and its optimal value as v(P). As the number of those
inequalities is exponential Althaus et al. use a cutting plane framework
to solve the LP relaxation (all inequalities have a polynomial separation
algorithm). In their experiments they observed that the number of iterations
in the cutting plane approach can be reduced, if they use additional variables
z(u,v) for u ∈ V i, v ∈ V j, i 6= j, with the property that z(u,v) = 1 iff at least
one character of the string of u lying behind u is aligned to a character of
the string of v lying before v, i.e. z(ui

l
,u

j
m) = 1, iff there is l′ ≥ l and m′ ≤ m

with x
vi

l′
u

j

m′
= 1. This condition is captured by the inequalities

0 ≤ z ≤ 1, z(ui

||si||
,u

j
1
) = x(ui

||si||
,u

j
1
), (2.4)

z(ui
l
,u

j
m) ≥ z(ui

l+1
,u

j
m) + x

ui
l
,u

j
m

and (2.5)

z(ui
l
,u

j
m) ≥ z(ui

l
,u

j
m−1

) + x
ui

l
,u

j
m
. (2.6)

5

In the following, we describe the inequalities used in [2] to enforce
(MixedCy). We resign to explicitly specify the inequalities enforcing (Pai-
wAl) and (Trans), as they are not crucial for the understanding of our ap-
proach.

Using these additional variables, we can define facets that guarantee
(MixedCy) as follows. Let AA = {(u, v) | u ∈ V i, v ∈ V j, i 6= j}, i.e. for
each undirected edge uv ∈ EA, we have the two directed arcs (u, v) and
(v, u) in AA. Let M ⊆ AA ∪ AP be a cycle in (V,AA ∪ AP) that contains at
least one arc of AP . We call such a cycle a mixed cycle. The set of all mixed
cycles is denoted by M. For a mixed cycle M ∈ M the inequality

∑

e∈M∩AA

ze ≤ |M ∩ AA| − 1 (2.7)

is valid and defines a facet under appropriate technical conditions. These
inequalities imply (MixedCy) as z(u,v) ≥ xuv, and are called (lifted) mixed
cycle inequalities.

Assume a mixed cycle M contains at least two arcs of AP and let (ui
l, u

i
l+1)

be one of them. Let M ′ be the cycle obtained from M by replacing arcs
(v, ui

l), (u
i
l, u

i
l+1), (u

i
l+1, w) (w.l.o.g. assume w 6= ui

l+2) by arcs (v, ui
l) and

(ui
l, w) . Then the mixed cycle inequality for M ′ implies the mixed cycle

inequality for M as z(ui
l
,w) ≥ z(ui

l+1
,w). In particular, a mixed cycle inequality

can only define a facet if there is exactly one arc of AP in M . The constraints
(2.7) can be formulated similarly without using the additional z-variables.

6

3 Outline

Our Lagrangian approach is based on the integer linear program outlined
above. Hence we have three classes of variables, X, Y and Z. Notice that a
single variable xuv, y(u,v,j), or z(u,v) involves exactly two sequences. Let X i,j,
Y i,j, and Zi,j be the set of variables involving sequences i and j. If we restrict
our attention to the variables in X i,j, Y i,j and Zi,j, for a specific pair of se-
quences i, j, a solution of the ILP yields a description of a pairwise alignment
between sequences i and j, along with appropriate values for the variables
in Zi,j. The constraints (MixedCy) and (Trans) are used to guarantee that
all pairwise alignments together form a multiple sequence alignment. We
call an assignment of {0, 1}-values to variables in (X i,j, Y i,j, Zi,j) such that
(X i,j, Y i,j) imposes a pairwise alignment and Z i,j satisfies inequalities (2.4),
an extended pairwise alignment. Given weights for the variables in X i,j, Y i,j

and Zi,j, we call the problem of finding an extended pairwise alignment of
maximum weight the extended pairwise alignment problem.

In our Lagrangian approach we dualize the constraints for condition
(MixedCy) (i.e. inequalities (2.7)) and relax conditions (Trans) (during ex-
periments it turned out that relaxing condition (Trans) is more efficient in
practice as dualizing them). Hence our Lagrangian subproblem is an ex-
tended pairwise alignment problem. More precisely, if λM ≥ 0 is the current
multiplier for the mixed cycle inequality of M ∈ M, we have to solve the
Lagrangian relaxation problem

∑

M∈M

λM(|M ∩ AA| − 1) +

max
∑

e∈EA

wexe +
∑

g∈G

wgyg −
∑

M∈M

λM

∑

e∈M∩AA

ze (LRλ)

s.t.(X i,j, Y i,j, Zi,j) forms an extended pairwise alignment for all i, j.

We denote its optimal value with v(LRλ). As the number of inequalities
that we dualize is exponential, we modify the subgradient method (SM) in a
relax-and-cut fashion, as proposed by [10] (see Section 5).

7

4 Solving the Extended
Pairwise Alignment Problem

Recall how a pairwise alignment with gap cost is computed for two strings s
and t of length ns and nt, respectively (without loss of generality we assume
nt ≤ ns). By a simple dynamic programming algorithm, we compute for
every 1 ≤ l ≤ ns and every 1 ≤ m ≤ nt the optimal alignment of prefixes
s1 . . . sl and t1 . . . tm that aligns sl and tm and whose score is denoted by
D(l, m). This can be done by comparing all optimal alignments for strings
s1 . . . sl′ and t1 . . . tm′ for l′ < l and m′ < m, adding the appropriate gap cost
to the score w(sl, tm) obtained for aligning sl and tm. If the weight of a gap is
an arbitrary function w(q) of its length q, the determination of the optimal
alignment value maxx≤ns,y≤nt

[D(x, y) + w(ns − x) + w(nt − y)], takes time
O (n2

sn
2
t)

1.
In the affine gap weight model we can restrict the dependence of each

cell in the dynamic programming matrix to adjacent entries in the matrix
by associating more than one variable to each entry as follows. Besides
computing D(l, m), we compute the score of the optimal alignment of these
substrings that aligns character sl to a character tk with k < m, denoted by
V (l, m), and the one that aligns tm to a character sk with k < l, denoted by
H(l, m). Hence, in a node V (l, m), we have already paid the opening cost for
the gap in t and we can traverse from V (l, m) to V (l, m+ 1) by just adding
wext, but not wopen. Each of the terms D(l, m), V (l, m) and H(l, m) can
be evaluated by a constant number of references to previously determined
values and thus the running time reduces to O (nsnt).

The pairwise alignment problem can be interpreted as a longest path
problem in an acyclic graph, having three nodes D(l, m), V (l, m) and H(l, m)
for every pair of characters sl ∈ s, tm ∈ t, referred to as cell (l, m). We
call this graph the dynamic programming graph. In the further discussion

1The running time can be reduced to O
(

n2

snt

)

by distinguishing three different types
of alignments [25]

8

D

H
B

V
D

H
B

V

D

H
B

V

(i + 1, j + 1)(i, j + 1)

(i, j)

Figure 4.1: Three cells of the dynamic programming matrix, with four values
(nodes) associated to each of them describing the type of the alignment. The
forth value B(i, j) means that neither si is aligned to a character of t nor
tj is aligned to a character of s. Note that arcs (dependencies) are between
certain values D, V , H and B, the target node determines the type of the
partial alignment.

we assume that nodes of a cell (l, m) are drawn at coordinates (l, m) in
the plane. Furthermore, the term S (l, m), with S ∈ {D, V,H}, is used
interchangeably to refer both to a node in the dynamic programming graph
and the score of the specific type of alignment it represents.

Each pairwise alignment corresponds to a path through this graph from
D(0, 0) to a node of the cell (ns, nt), with every arc of the path representing
a certain kind of column in the alignment matrix, determined by the type
of its target node (Figure 4.1). An alignment arc from an arbitrary node in
cell (l− 1, m− 1) to node D(l, m) corresponds to an alignment of characters
sl and tm. Accordingly, a gap arc has a target node V (l, m) or H(l, m)
and represents a gap opening (source node is D(l, m − 1) or D(l − 1, m),
respectively) or a gap extension (source node is V (l, m − 1) or H(l − 1, m),
respectively). We call gap arcs from a node of the cell (i, j) to a node of the
cell (i, j + 1) horizontal, gap arcs from a node of the cell (i, j) to a node of
the cell (i+ 1, j) vertical, and alignment arcs from diagonal.

4.1 Simple Algorithm

Now assume some variable z(u,v) is multiplied by a non-zero value in the ob-
jective function, as the arc (u, v) ∈ AA is contained in at least one mixed
cycle M , to which a non-zero Lagrangian multiplier λM is associated. Re-
call that the multiplier of the variable z(u,v) in the objective function is
−

∑

M∈M|(u,v)∈M λM (see (LRλ)). Then we have to pay the multiplier as

9

soon as our path traverses at least one alignment arc that enforces z(u,v) = 1.
Assume s = si, t = sj, u = ui

l and v = uj
m. Then z(u,v) = 1, iff there is

l′ ≥ l and m′ ≤ m such that x
ui

l′
u

j

m′
= 1 (see definition of variables z(u,v) in

(2.4)). In the dynamic program graph, this corresponds to alignment arcs
whose target lies in the lower right rectangle from cell (l, m) (i.e. for the
target D(l′, m′) it holds that l′ ≥ l and m′ ≤ m). Analogously, if u lies in
string sj and v in string si, this corresponds to alignment arcs whose target
lies in an upper left rectangle. We call these rectangles blue and red obstacles
and denote them by Ob(l, m) and Or(l, m), respectively. Cell (l, m) is called
the origin of the obstacle.

Let the set of all blue and red obstacles be denoted by Ob and Or, respec-
tively, and let O = Ob ∪ Or. Then the extended pairwise alignment problem
is solvable by a dynamic program in O (n2

sn
2
t |O|) time, following the same

approach as above: we compute the best alignment of all pairs of prefixes
s1 . . . sl and t1 . . . tm that aligns sl and tm, based on all best alignments of
strings s1 . . . sl′ and t1 . . . tm′ , for l′ < l and m′ < m. We add the appropriate
gap weight to w(sl, tm) and subtract all multipliers that are associated with
obstacles that have to be charged when aligning sl and tm but are not jet
charged. This are the red obstacles with origin (i, j) with l ≤ i,m′ < j ≤ m
and the blue obstacles with m ≤ j, l′ < i ≤ l. Notice that the information
that sl′ and tm′ are the last two aligned characters suffices to determine which
multipliers we have to charge additionally when aligning sl and tm.

4.2 Improved Algorithm

We reduce the complexity of the dynamic program by again decreasing the
alignment’s history, necessary to determine the benefit of any possible con-
tinuation in a partial alignment. The determination of the set of obstacles,
whose associated penalty we have to pay when using an alignment arc, poses
the major problem. For that we have to know the last alignment arc that
has been used on our path. However, this arc can not be precomputed in
a straightforward way, since the longest path in this context does not have
optimal substructure.

We say that we enter an obstacle with an arc, if the target lies within
the obstacle, but not the source. The key idea is to charge the Lagrangian
multipliers as soon as we enter an obstacle no matter whether we enter it
with an alignment arc (in which case we indeed have to charge the associated
multiplier) or with a gap arc (such that we have to charge the associated
multiplier only when using an alignment arc within the obstacle later). We
introduce further nodes and edges which allow us to bypass obstacles in which

10

we do not use any alignment arc.
When traversing an alignment arc with target D(x, y), we charge the

multipliers of all obstacles we enter, i.e. red obstacles with origin (x′, y) for
x′ ≥ x and blue obstacles with origin (x, y′) for y′ ≥ y. When traversing a
gap arc we charge only multipliers of those obstacles we enter, in which we are
still able to traverse an alignment arc (i.e. we do not charge the multiplier if
the target of any alignment arc reachable does not lie in this obstacle). More
precisely, for using the gap arc from a node in cell (x − 1, y) to H(x, y), we
charge the multipliers of all blue obstacles having origin (x, y ′) with y′ > y.
Similarly, gap arcs from a node in cell (x, y− 1) to V (x, y) are charged. This
motivates the following definition.

Definition 4.2.1 (Enclosing Obstacles) The set of enclosing blue obsta-
cles Qb(p) of a cell p = (x, y) contains all blue obstacles Ob(l, m) with
l ≤ x,m > y. Accordingly, Qr(p) = {Or(s, t) | s > x, t ≤ y}. Further-
more we define Q(p) = Qb(p) ∪ Qr(p).

Hence when using a gap arc, we charge multipliers of all obstacles enclos-
ing the target but not the source. Notice that the set of obstacles enclosing
a cell (x, y) contains exactly those obstacles whose associated multiplier we
have to charge when using an alignment arc a from a node in cell (x, y) to
D(x+ 1, y+ 1), but which are not taken into account during the traversal of
a.

The following simple facts are crucial for the understanding of our proofs.

• Qb((x + 1, y)) \ Qb((x, y)) is the set of obstacles whose associated La-
grangian multipliers we have to charge when using an arc from a node
in cell (x, y) to node H(x+ 1, y).

• Qb((x, y + 1)) \ Qb((x, y)) = ∅.

• For arbitrary cells p, q, r, it holds that {Q(q)\Q(p)}∪{Q(r)\Q(q)} ⊇
Q(r) \ Q(p).

• Consider l′ < l and m′ < m. Let A be an alignment that aligns sl′ with
tm′ and sl with tm with gaps in between. The set of obstacles whose
multipliers have to be charged for the alignment of sl and tm contains
obstacles in Q((l − 1, m− 1)) \ Q((l′, m′)) plus obstacles entered with
the alignment arc having target D(l, m).

Again notice that we charge the multiplier of an obstacle at most once
(when we enter the obstacle). Furthermore, we charge at least the multipliers
we have to charge (the last two facts above), but we possibly charge more:

11

s

m
′

l − 1

m
′
− 1

l

m

l
′

t

b

t

(a) Conflicting obsta-
cles

�

���

���

���

� �� � � �

�

(b) Dominating obsta-
cles

s

t

(l′, m′)

b1 b2

(l, m)

t2
t1

(c) Path construction

Figure 4.2: (a) A pair of conflicting obstacles, together with its base b and its
tail t . (b) Obstacle Ob(l0, m0) dominates obstacles Ob(l1, m1) and Ob(l2, m2).
Obstacle Ob(l1, m1) is minimal in D(Ob(l0, m0)). (c) We can bypass the
dashed obstacles within the dp-graph, as they are not in conflict with any
other obstacle. We can enter the dotted obstacle, as we have to subtract the
multiplier then using the alignment arc with target (l′ + 1, m′ + 1). Hence,
we can reach b1 from (l, m) within the dp-graph, jump to t2, and proceed in
the dp-graph to (l′, m′).

we charge the multiplier of an obstacle o whenever we reach a cell enclosed by
o, independent of the arc type. Hence, we have to ensure that we are able to
bypass obstacles we do not have to pay, i.e. obstacles that are not enclosing
any target node of an alignment arc traversed by the optimal path. We
accomplish this by adding new nodes and arcs to the dynamic programming
graph. Additionally we compute, for every pair of characters sl ∈ s, tm ∈ t, a
fourth value B(l, m) denoting the value of the optimal alignment that aligns
either character sl to “-” strictly left from tm or character tm to “-” strictly
left from sl, i.e. we have paid both opening costs. Hence every cell (l, m)
contains a fourth node B(l, m) in the dynamic programming graph.

Before we introduce the new nodes and edges formally, we need some
basic definitions. We call a pair of a blue obstacle Ob(l, m) and a red ob-
stacle Or(l

′, m′) conflicting, if l′ ≥ l and m′ ≤ m (Figure 4.2(a)). The
base b(Ob(l, m),Or(l

′, m′)) of a pair of conflicting obstacles is defined as cell
(l − 1, m′ − 1), the tail t(Ob(l, m),Or(l

′, m′)) as cell (l′, m). We say a cell
(l, m) dominates a cell (l′, m′), denoted by (l, m) < (l′, m′), if l < l′ and
m < m′. Similarly, a blue (red) obstacle Ob(r)(l, m) dominates an obstacle
Ob(r)(l

′, m′), iff origin (l, m) dominates origin (l′, m′) (Figure 4.2(b). A blue

(red) obstacle is minimal in set Ôb ⊆ Ob (Ôr ⊆ Or), if it is not dominated

12

by any other obstacle in Ôb (Ôr). We denote the set of obstacles that are
dominated by a given obstacle o, by D(o).

Given a set E ′ ⊆ EA of alignment arcs, we call the set of obstacles we do
not have to charge for using an edge in E ′ the forbidden obstacles w.r.t. E ′.

Assume that in the optimal extended alignment, (l, m) and (l′+1, m′+1)
with l < l′ and m < m′ are the targets of two realized alignment edges with
gaps in between. We have to make sure that there is a path from D(l, m) to
the appropriate node of the cell (l′, m′) (e.g. B, if l < l′ and m < l′; H, if
l < l′ and m = m′; V , if l = l′ and m < m′) which doesn’t enter a forbidden
obstacle. To achieve this, we try to proceed in the dynamic programming
graph from D(l, m) with gap arcs of either type until we can’t go further
without entering a forbidden obstacle. This motivates the addition of the B-
node into a cell as it allows us to use gap arcs in either sequence alternatively
without paying opening cost twice (see Figure 4.2(c)).

Notice that we can not enter and leave an obstacle using exclusively gap
arcs of one type (e.g. with horizontal arcs, we can enter blue obstacles, but
not leave them). Hence we are able to reach a node of cell (l′, m′) without
entering a forbidden obstacle, if we can reach a node of a cell (l′, m′′) with
m′′ < m. Analogously we can argue that we can reach the cell (l′, m′), if
we can reach a node of a cell (l′′, m′) with l′′ < l′. In particular, we are
able to reach the appropriate node of the cell (l′, m′) within the dynamic
programming graph, if the type of the cell is D,H, or V .

Hence we only consider the case where we want to reach the B-node of
the cell (l′, m′) and cannot proceed from a node of the cell (lb, mb) with lb < l′

and mb < m′. In this case, (lb, mb) is the base of a pair of conflicting for-
bidden obstacles. More precisely, lb is the smallest value such that there is a
pair of forbidden conflicting obstacles with base (lb, m

′′). Similarly, mb is the
smallest value such that there is a base (l′′, mb) of a pair of conflicting forbid-
den obstacles. Hence (lb, mb) dominates the base of every pair of forbidden
conflicting obstacles.

Analogously, we can argue that there is a tail (lt, mt) of a pair of conflict-
ing obstacles from which we can reach B(l′, m′) without entering a forbidden
obstacle (if we are not able to reach the cell (l′, m′) within the dynamic pro-
gramming graph) and that (lt, mt) dominates (l′, m′). Furthermore the base
(lb, mb) dominates the tail (lt, mt), what we can see as follows. Let (ob, or)
be any pair of forbidden conflicting obstacles. The cell (lb, mb) dominates
the base of (ob, or). This base dominates the tail of (ob, or), which again
dominates (lt, mt).

Therefore, the insertion of arcs from the four nodes of every base b to
the B-node of every tail t such that b < t , would enable us to “jump over”
obstacles that we do not have to pay. The weights for these arcs are deter-

13

mined by the cost of the gaps leading from b to t plus the penalties implied
by obstacles enclosing t , but not b.

As the number of conflicting obstacles is at most |O|2, the number of addi-
tional arcs is at most O (|O|4) and hence the running time is O (nsnt + |O|4).

4.2.1 The Bypass Graph

To further reduce the number of additional arcs (dependencies) in our dy-
namic programming graph, we introduce the bypass graph, which is correlated
to the transitive reduction of the induced subgraph on the set of newly added
arcs.

The nodes of the bypass graph (formal definition below) represent pairs
of conflicting obstacles. Intuitively, reaching a node v in the bypass graph
along a path p, with b(v) = (l, m) and t(v) = (l′, m′), can be interpreted
as having a consecutive run of alternate gaps sg+1, . . . , sl′ and th+1, . . . , tm′ ,
with g ≤ l and h ≤ m. In particular, each node in the bypass graph (bpg)
is connected to the B-node of its corresponding tail via an edge of weight
0. Note that in this case, the last alignment arc on path p has target node
D(g, h).

An outgoing edge (v, w) to another bpg node w models the extension of
a gap in one of the strings by ||t(w)− t(v)||1 characters, i.e. by traversing an
edge in the bpg the cell of the tail moves vertically upwards or horizontally
to the right. Contrariwise, the cell of the base moves simultaneously to the
right, respectively upwards. Therefore, the weight of a bpg edge (v, w) is
composed of

• the cost of extending a gap by ||t(w)− t(v)||1 characters,

• minus the sum of multipliers associated with obstacles enclosing w but
not v,

• the sum of multipliers associated with obstacles that we are leaving
when proceeding from t(v) to t(w) and which do not enclose the target
node of any alignment arc on our path.

The third part is based on the fact, that the structure of our overall graph
prevents any path from reentering an already left obstacle and thus the re-
maining part of path p going from t(w) to (ns, nt) cannot traverse an align-
ment arc whose target node is enclosed by such an obstacle. As it concerns
the determination of whether the part of path p going from (0, 0) to t(w)
traverses such an alignment arc, note that the weight of a bpg edge can in-
corporate only “local” information. Specifically, we have to deal with the

14

inexact information that the last alignment arc is “to the lower left” of b(v).
Similarly, when continuing from node w, we must not make any assumptions
about the node from where we reached w and therefore we will have to fur-
ther weaken our knowledge about the position of the last alignment arc to
that it is to the lower left of b(w). As a consequence, in the third part only
those among the obstacles we are leaving can be considered, that are not
enclosing b(v). This is illustrated in Figure 4.3. As we will see below, the
definition of the edge set ensures the there always exists of a path through
the bpg along which this set of obstacles is equal to the set of obstacles that
are not enclosing the target node of any alignment arc lying on the path
(compare third part).

Definition 4.2.2 (Bypass Graph) We define the Bypass Graph (bpg)
G = (V, E , l) with edge set E ⊂ V × V and length function l : E → R

as follows. The vertex set V contains all pairs v of conflicting obsta-
cles. Let vb and vr denote the blue and red obstacle of v, respectively.
E = Eb ∪ Er, where Eb = {(v, w) | vr = wr and wb is minimal in D(vb)}
and Er = {(v, w) | vb = wb and wr is minimal in D(vr)}. Every edge
(v, w) ∈ Eκ, κ ∈ {b, r}, is assigned a length l((v, w)) = wext · ||t(w)− t(v)||1−
∑

o∈Q−(v,w) λ(o) +
∑

o∈Q+(v,w) λ(o), where Q−(v, w) = Q(t(w)) \ Q(t(v)) and

Q+(v, w) = {Oκ(i, j) ∈ Qκ(t(v)) \ Qκ(t(w)) | wκ = Oκ(l, m), i ≥ l, j ≤ m}.

We connect the bypass graph to the dynamic programming graph by
arcs as follows: If (i, j) is the base of a pair of conflicting obstacles with
corresponding node v ∈ V in the bpg we add arcs of all nodes in cell (i, j) to
v (recursion formula (4.6)) and by arcs from all v ∈ V to the B-node of their
tail t(v) (formula (4.5)).

The overall structure of the resulting graph, whose longest path from a
dedicated start node in cell (0, 0) to a node in cell (ns, nt) corresponds to
the optimal pairwise alignment, can be described in terms of the following
recurrences (base case omitted):

C(l, m) = max {D(l, m), V (l, m), H(l, m), B(l, m)} (4.1)

15

R3

R2 R1

b2

t2

t1

f

b1

r

Figure 4.3: Assume we traverse an edge of the bypass graph from the node
corresponding to the pair of conflicting obstacles (b1, r) to the pair (b2, r)
and we will leave the bypass graph at a node whose target is at f . The red
obstacles whose origin lie in R1 are entered when proceeding from the tail
t1 of (b, r1) to the tail t2 of (b, r2) and hence the corresponding multipliers
have to be subtracted. Furthermore, no blue obstacles are entered. At the
same time blue obstacles that originate in area R2 are left. Since the last
alignment arc is “to the left” of base b(b, r1) those obstacles do not enclose
any alignment arc and we therefore add their associated multipliers. We do
not add multipliers of any red obstacle. After reaching node (b, r2) we have
to weaken our information about the last alignment arc to be “to the left” of
b(b, r1). As a consequence, we would not be able to decide whether we have
to pay for obstacles originating in R3 or not. Hence we must have edges in
the bypass graph that enable us to reach f on a path, on which these regions
do not contain any origins of obstacles.

16

with

D(l, m) = C(l − 1, m− 1) + w(sl, tm) −
∑

o=Or(i,m),i≥l

λ(o) −
∑

o=Ob(l,j),j≥m

λ(o)

(4.2)

V (l, m) = max

{

D(l, m− 1) + wext + wopen

V (l, m− 1) + wext

}

−
∑

o=Or(i,m),i>l

λ(o) (4.3)

H(l, m) = max

{

D(l − 1, m) + wext + wopen

H(l− 1, m) + wext

}

−
∑

o=Ob(l,j),j>m

λ(o) (4.4)

B(l, m) = max



























maxv∈V :t(v)=(l,m){δ(v)}
B(l − 1, m) + wext −

∑

o=Ob(l,j),j>m λ(o)

B(l, m− 1) + wext −
∑

o=Or(i,m),i>l λ(o)

V (l − 1, m) + wext + wopen −
∑

o=Ob(l,j),j>m λ(o)

H(l, m− 1) + wext + wopen −
∑

o=Or(i,m),i>l λ(o)

(4.5)

where

δ(v) = max























maxu:(u,v)∈E {δ(u) + l((u, v))}














D(b(v)) + qwext + 2wopen

V (b(v)) + qwext + wopen

H(b(v)) + qwext + wopen

B(b(v)) + qwext















−
∑

o∈{Q(t(v))\Q(b(v))} λ(o)

(4.6)

with q being the Manhattan distance between the tail and the base of
node v, i.e. q = ||t(v)− b(v)||1.

4.2.2 Complexity

Obviously there are at most |O|2 conflicting pairs of obstacles and hence the
number of additional nodes |V| is at most |O|2. From Definition 4.2.2 it fol-
lows immediately that the number of additional arcs |A| is at most O (|O|3),
as an edge of the bypass graph is defined by three obstacles. Therefore the
running time to compute an optimal solution to the extended pairwise align-
ment problem is O (nm + |O|3).

We improve the practical performance of our algorithm for solving the
extended pairwise alignment problem by applying an A∗-approach: Notice
that the scores D(l, m), V (l, m), H(l, m) and B(l, m) during an iteration of
the subgradient optimization (see Section 5) can be at most the scores of the

17

first iteration, i.e. when all multipliers λ are set to 0. Then it is easy to see,
that the length of a longest path from any node (l, m) to (ns, nt) determined
in the first iteration provides a heuristic estimate for all other iterations,
which is monotonic and thus the first path found from (0, 0) to (ns, nt) is
optimal.

4.2.3 Correctness

Let p be a path starting at D(0, 0) through the dp-graph and the bypass
graph ending at a node D(i, j). Furthermore, let D(l, m) be the last node of
type D on p preceding D(i, j) and let p̂ be the prefix of p up to node D(l, m).
If d denotes the score of the alignment of prefixes s1 . . . sl and t1 . . . tm induced
by p̂, the score of the alignment induced by p is d+w(si, tj)+wext · ||(i−1, j−
1)−(l, m)||1+r ·wopen−

∑

o=Or(i′,j′)|i≤i′,m<j′≤j λ(o)−
∑

o=Ob(i′,j′)|j≤j′,l<i′≤i λ(o),

where r=0, if (i−1, j−1) = (l, m), r=2, if i−1 > l and j−1 > m and r = 1
otherwise.

Theorem 4.2.3 Given strings s and t of length ns and nt, respectively,
D(x, y), for 1 ≤ x ≤ ns and 1 ≤ y ≤ nt, is equal to the value of an op-
timal extended pairwise alignment of prefixes s1 . . . sx and t1 . . . ty that aligns
sx with ty.

Hence the optimal extended pairwise alignment of s and t can be deter-
mined by iterating over all D(x, y), 1 ≤ x ≤ ns and 1 ≤ y ≤ nt, adding the
appropriate weight for the remaining gaps. Alternatively, it can be easily
seen that the value of the optimal extended pairwise alignment of s and t
corresponds to the maximum ofD(ns, nt), V (ns, nt), H(ns, nt), and B(ns, nt).

Proof. Consider arbitrary but fixed indices 1 ≤ l < l′ < ns and 1 ≤ m <
m′ < nt and assume that D(l, m) and D(l′ + 1, m′ + 1) are the targets of
two realized alignment edges with gaps in between. We will show in Lemma
4.2.5 and Lemma 4.2.6 that

(a) there is a path of length wext · ||(l′, m′) − (l, m)||1 + 2 · wopen −
∑

o∈{Q((l′ ,m′))\Q((l,m))} λ(o) between D(l, m) and B(l′, m′),

(b) any path between D(l, m) and B(l′, m′) that does not traverse any
alignment arc has length at most wext · ||(l′, m′)− (l, m)||1 + 2 ·wopen −
∑

o∈{Q((l′ ,m′))\Q((l,m))} λ(o).

Similar assumptions can be made if l = l′ or m = m′, where we pay the
gap opening cost at most once and the path ends at a node of type H, V or
D.

18

Using these two facts, we can prove the statement of the theorem by
induction over x and y. For x = 0 and y = 0 there is nothing to show.
Consider x, y > 0.

Assume in the optimal extended pairwise alignment that aligns sx and
ty the last alignment arc preceding the one with target D(x, y) has target
D(l, m). Using fact (a) and the induction hypothesis, we obtain, by setting
q := ||(x− 1, y − 1) − (l, m)||1 and using r as defined above,

D(x, y) ≥ D(l, m) + q · wext + r · wopen −
∑

o∈{Q((x−1,y−1))\Q((l,m))}

λ(o) +

+ w(sx, ty) −
∑

o=Or(i,y),i≥x

λ(o) −
∑

o=Ob(x,j),j≥y

λ(o) (4.7)

= D(l, m) + q · wext + r · wopen −
∑

o∈{Ôr∪Ôb}

λ(o), (4.8)

where Ôr = {Or(i, j) | x ≤ i,m < j ≤ y} and Ôb = {Ob(i, j) | y ≤ j, l <
i ≤ x}. This value is equal to the value of the optimal extended pairwise
alignment of prefixes s1 . . . sx and t1 . . . ty that aligns sx and ty.

Now let p be the longest path ending in D(x, y). Notice that the last arc
of path p is an alignment arc. Let D(l, m) be the target of the last alignment
arc of p preceding D(x, y). Using fact (b) and the induction hypothesis, we
can simply replace “≥” in equation (4.7) by “≤” to obtain analogously

D(x, y) ≤ D(l, m) + q · wext + r · wopen −
∑

o∈{Ôr∪Ôb}

λ(o), (4.9)

where q, r, Ôr and Ôr are as defined above. This value corresponds to the
value of the extended pairwise alignment of prefixes s1 . . . sx and t1 . . . ty that
aligns sx with ty and sl with tm. Furthermore, it is based on the optimal
extended pairwise alignment of prefixes s1 . . . sl and t1 . . . tm that aligns sx

with ty. Clearly, the score of this specific alignment is bounded from above by
the value of the optimal extended alignment of prefixes s1 . . . sx and t1 . . . ty
that aligns sx with ty. 2

It remains to show assumptions (a) and (b) and their modifications for the
case l′ = l or m′ = m used in the proof. If l′ = l and m′ = m, there is nothing
to show. If l′ = l or m′ = m and the other inequality is strict, we exclusively
use gap arcs in one string and we therefore do not leave obstacles that we
enter. Hence, we do not need to enter the bypass graph and can proceed
simply in the dp-graph. It remains to show the facts for the case l′ < l and
m′ < m. Fact (a) mainly relies on the existence of a path through the bypass

19

�������
�������
�������
�������

�������
�������
�������
�������

t(v0)

s

t

(lb , mb)

b1

b2

b3

b4

b5

(l′, m′)

(a)

s

t

(lb , mb)

t(v1)

t(v2)

b

t(v0)

(l′, m′)

(b)

Figure 4.4: Given base (lb , mb) and a cell (l′, m′) as in Lemma 4.2.4. (a) The
initial node v0 in the bpg is determined by the shaded rectangle. Note that
ψ(vb

0) > ψ(b1). In the example, set Q0
b contains blue obstacles b2, b3, b4, but

not b5, since b5 encloses (l′, m′). b3 is a leftmost obstacle in Q0
b (min. property)

and ψ(b3) > ψ(b2) (max. property) and therefore v1 = (b3, v
r
0). (b) An

example sequence 〈vi〉20 depicted by the sequence of its tail cells, (v0, v1) ∈ Eb,
(v1, v2) ∈ Er. The sequence terminates at v2 as b encloses (l′, m′).

graph that represents a consecutive run of alternate gaps in either string and
that is penalized only by multipliers assigned to newly entered obstacles:

Lemma 4.2.4 Given a node v ∈ V of the bpg, b(v) = (lb , mb), and a cell
(l′, m′) with t(v) < (l′, m′), there exists a node vn ∈ V and path p through
the bpg from every source node S (lb , mb), S ∈ {D, V,H,B}, to the node
B(t(vn)) of length wext · ||t(vn)− b(v)||1 + r ·wopen −

∑

o∈{Q(t(vn))\Q(b(v))} λ(o),

where r = 2 if S = D, r = 1 if S ∈ {H, V } and r = 0 if S = B, such
that {Q(t(vn))\Q(b(v))} ⊆ Q((l′, m′)), i.e. obstacles enclosing t(vn) but not
b(v) also enclose (l′, m′).

In the following proof of Lemma 4.2.4 we use functions ξ and ψ that are
defined for an obstacle o = Oκ(l, m) as ξ(o) = l and ψ(o) = m. Furthermore,
we denote by A] B the union of disjoint sets A and B.

Proof. We construct a sequence 〈vi〉n0 of pairs of conflicting obstacles as
follows (compare Figure 4.4(a)): We select v0 = (vb

0, v
r
0) with maximal ξ(vr

0)
and ψ(vb

0), such that b(v0) = (lb , mb) and vb
0, v

r
0 /∈ Q((l′, m′)). Let Qi

b be the
set of blue obstacles that enclose the tail of pair vi but neither cell (l′, m′)

20

�����
�����
�����
�����
�����
�����
�����

�����
�����
�����
�����
�����
�����
�����

s

t

t(v1)

r

b3

b1

b2

t(v0)

Figure 4.5: Consider (v0, v1) ∈ Eb lying on a path p̂ through the bpg as de-
scribed in Lemma 4.2.4. Nodes v0, v1 are represented by their corresponding
tails and by obstacles drawn by solid lines. Obstacles in Q+(v0, v1) originate
in the shaded rectangle. The existence of obstacle b1 is in contradiction to
the maximality of ψ(vb

0), b2 is in conflict with the min. property of ξ(vb
1).

According to the definition of an edge in the bpg, vb
1 is minimal in D(vb

0) and
therefore obstacle b3 cannot exist. It follows Q+(v0, v1) = Q+(1).

nor (lb , mb), i.e. Qi
b = Qb(t(vi)) \ (Qb(b(v0)) ∪ Qb((l

′, m′))). Accordingly,
Qi

r = Qr(t(vi)) \ {Qr(b(v0)) ∪ Qr((l
′, m′))}. Then for i ≥ 1, if Qi−1

b 6=
∅, vi is obtained from vi−1 by picking the uppermost among the leftmost
blue obstacles in Qi−1

b while keeping the red obstacle unchanged, i.e. vi =
(Ob(g, h), v

r
i−1), with Ob(g, h) ∈ Qi−1

b such that ∀g′, h′,Ob(g
′, h′) ∈ Qi−1

b :
g ≤ g′ (min. property) and ∀h′,Ob(g, h

′) ∈ Qi−1
b : h > h′ (max. property).

Similarly, if Qi−1
b = ∅ but Qi−1

r 6= ∅, we retain the blue obstacle and choose
the rightmost among the lowermost red obstacles in Qi−1

r , i.e. we set vi =
(vb

i−1,Or(g, h)), with Or(g, h) ∈ Qi−1
r such that ∀g′, h′,Or(g

′, h′) ∈ Qi−1
r :

h′ ≥ h and ∀g′,Or(g
′, h) ∈ Qi−1

r : g′ < g. The sequence terminates at vn, if
Qn

b = Qn
r = ∅ (Figure 4.4(b)).

In the following we show that nodes in the bypass graph representing pairs
of conflicting obstacles in 〈vi〉n0 lie on a path p̂ that can be easily extended
to a path p having the required properties. It can be easily verified that
there exists an edge between nodes corresponding to two consecutive pairs
of obstacles in 〈vi〉n0 : the min. and max. properties of our construction of
sequence 〈vi〉n0 ensure vb

i ∈ D(vb
i−1) if Qi−1

b 6= ∅, and vr
i ∈ D(vr

i−1) otherwise.
Furthermore, the existence of an obstacle v̂κ ∈ D(vκ

i−1) with v̂κ < vκ
i would

be in contradiction to the min. property of vκ
i , meaning vκ

i is minimal in
D(vκ

i−1) and thus (vi−1, vi) ∈ Eκ, for all 1 ≤ i ≤ n, κ ∈ {b, r}.

21

We will argue by induction on the number of edges k, 1 ≤ k ≤ n, on a
prefix of the path induced by sequence 〈vi〉n0 , that

k
∑

i=1

l(vi−1, vi) = wext · ||t(vk) − t(v0)||1 −
∑

o∈Q−(k)

λ(o) +
∑

o∈Q+(k)

λ(o), (4.10)

with Q−(k) = Q(t(vk)) \ Q(t(v0)) and Q+(k) = Q(t(v0)) \ {Q(b(v0)) ∪
Q(t(vk))}. In other words, the length of path p̂, going from v0 to vk, accounts
for the extension cost of gaps between cells t(v0) and t(vk) and is penalized
by Lagrangian multipliers associated with obstacles enclosing t(vk) but not
t(v0). Additionally, penalties of obstacles that p̂ leaves are recovered, if they
enclose t(v0) but not b(v0). Note that these obstacles are being paid for when
traversing an arc connecting a node in cell b(v0) of the dynamic programming
graph with bpg node v0. Also, the weight of this arc incorporates any gap
opening costs, depending on the type of its source node. Crucial in this
context is, that multipliers assigned to obstacles that p̂ enters along one arc
and leaves along a later arc cancel out each other.

For the base case (k = 1) it suffices to show that Q+(1) = Q+(v0, v1)
(compare Equation (4.10) for k = 1 with the length of an edge in the bpg,
Definition 4.2.2). W.l.o.g. assume (v0, v1) ∈ Eb (see Figure 4.5). Note that
for general (vi−1, vi) ∈ Eb every red obstacle enclosing t(vi−1) also encloses
t(vi) (e.g. red obstacle r in Figure 4.5) and thus Q(t(vi−1)) \ Q(t(vi)) ⊆ Ob.
For every element o ∈ Q+(v0, v1) it holds o /∈ Q(b(v0)) and o /∈ Q(t(v1))
by definition, and thus Q+(v0, v1) ⊆ Q+(1). In order to show Q+(v0, v1) ⊇
Q+(1), consider an arbitrary element Ob(g, h) ∈ Q+(1). From Ob(g, h) /∈
Q(b(v0)) and Ob(g, h) ∈ Q(t(v0)) it follows that g ≥ ξ(vb

0). Furthermore,
g = ξ(vb

0) and h = ψ(vb
1) are contradictory to the max. property of vb

0 and
the min. property of vb

1, respectively (see obstacle b1 and b2 in figure 4.5). At
the same time ξ(vb

0) < g < ξ(vb
1) and ψ(vb

0) < h < ψ(vb
1) are in contradiction

to the minimality of vb
1 in D(vb

0) (obstacle b3 in figure 4.5), from which we
conclude g ≥ ξ(vb

1) and h ≤ ψ(vb
1), and thus Q+(1) ⊆ Q+(v0, v1).

Now assume equation (4.10) is true for some k with 1 ≤ k < n. Then the
path obtained by appending edge (vk, vk+1) has length

qkwext −
∑

o∈Q−(k)

λ(o) +
∑

o∈Q+(k)

λ(o) + l(vk, vk+1) (4.11)

= qk+1wext −
∑

o∈Q−(k)]Q−(vk ,vk+1)

λ(o) +
∑

o∈Q+(k)]Q+(vk ,vk+1)

λ(o) (4.12)

where qi = ||t(vi) − t(v0)||1. Now assume (vk, vk+1) ∈ Eb (for (vk, vk+1) ∈ Er

a symmetric argument applies). Then it is easy to see, that

22

�����
�����
�����
�����

�����
�����
�����
�����

s

t

t(vk+1)

r1

r2
b1

t(v0)

t(vk)

b2

(a) (vi−1, vi) ∈ Eb, ∀1 ≤ i ≤ k

������������������������������

������
������
������

��

��

s

t

R2

b1

t(vk)

t(v0)

R1

t(vk+1)

(b) ∃1 ≤ i ≤ k (vi−1, vi) ∈ Er,

Figure 4.6: (a) Obstacles in Q−(k) are from Or and enclose t(vk+1), see
obstacle r1. Therefore Q−(k+1) is obtained by simply adding obstacles that
enclose t(vk+1), but not t(vk), like obstacle r2. Obstacles in Q+(k+1) can be
divided into two subsets, depending on whether they enclose t(vk) (obstacle
b1) or not (obstacle b2). The latter one coincides with set Q+(k). The
first subset is equal to set Q+(vk, vk+1), as the min. and max. properties
of elements of sequence 〈vi〉 imply the shaded rectangle to be empty. (b)
Obstacles in Q−(k) must not enclose t(vk+1) (e.g. obstacle b1) and thus have
to be removed from Q−(k)]Q−(vk, vk+1) to obtain Q+(k+1). Note that no
blue obstacle originates in rectangles R1 (an edge in Er is traversed only if
there is no outgoing edge in Eb) or R2 (min. and max. properties of elements
of 〈vi〉). Therefore obstacles enclosing t(vk) but not t(vk+1) do not enclose
t(v0) and Q+(k+1) = Q+(k) follows (obstacles enclosing t(v0) but not t(vk)
do not enclose t(vk+1)).

23

Q−(k + 1) = Q−(k)]Q−(vk, vk+1) and (4.13)

Q+(k + 1) = Q+(k)]Q+(vk, vk+1) (4.14)

if (vi−1, vi) ∈ Eb, ∀1 ≤ i ≤ k (figure 4.6(a)), and

Q−(k + 1) = {Q−(k)] Q−(vk, vk+1)} \ Q
+(vk, vk+1) and (4.15)

Q+(k + 1) = Q+(k) (4.16)

otherwise (figure 4.6(b)). In both cases (4.10) follows by induction.
Now let again qn = ||t(vn) − t(v0)||1 and q̂n = ||t(vn) − b(v0)||1. Then

by extending path p̂ by an arc from an appropriate base node S (b(v0)),
S ∈ {D,H, V,B}, to bpg node v0 we obtain a path p of desired length

q̂nwext + r · wopen −
∑

o∈{Q(t(vn))\Q(b(v0))}

λ(o), (4.17)

where the number r of gaps we are opening in cell b(v0) is determined by the
type S of the base node in which path p originates. More precisely, r = 2 if
S = D, r = 1 if S ∈ {H, V } and r = 0 if S = B.

Note that the termination condition of sequence 〈vi〉n0 implies ∀o ∈
{Q(t(vn)) \ Q(b(v0))} : o ∈ Q((l′, m′)) and therefore the claim of the lemma
follows. 2

Lemma 4.2.5 Given strings s and t of length ns and nt, respectively, con-
sider arbitrary but fixed indices 1 ≤ l < l′ < ns and 1 ≤ m < m′ < nt. There
is a path of length wext·||(l′, m′)−(l, m)||1+2·wopen−

∑

o∈{Q((l′ ,m′))\Q((l,m))} λ(o)

from D(l, m) to B(l′, m′),

Proof. Starting from node D(l, m), traversing exclusively gap arcs, we enter
the bpg from a node in cell (lb, mb), from which we can not proceed without
entering a forbidden obstacle. Cell (lb , mb) must be the base of a pair of
conflicting obstacles (see Figure 4.2(a)). We thus construct a sequence 〈vi〉n0
of pairs of conflicting obstacles as described in the proof of Lemma 4.2.4 to
determine the path through the bpg. If we now can find a path from the
B-node in cell t(vn) to node B(l′, m′) using exclusively gap arcs that are not
entering any forbidden obstacles the overall path from D(l, m) to B(l′, m′)
has desired length wext·||(l′, m′)−(l, m)||1+2·wopen−

∑

o∈Q((l′,m′))\Q((l,m)) λ(o).
Otherwise we reach again the base of a pair of forbidden conflicting obstacles
and we apply Lemma 4.2.4 again to jump over forbidden obstacles. 2

Finally we show, that we do not overestimate the optimal path length.

24

Lemma 4.2.6 Given strings s and t of length ns and nt, respectively, con-
sider arbitrary but fixed indices 1 ≤ l < l′ < ns and 1 ≤ m < m′ < nt.
Any path from D(l, m) to B(l′, m′) that uses only gap arcs has length at most
wext · ||(l′, m′) − (l, m)||1 + 2 · wopen −

∑

o∈{Q((l′,m′))\Q((l,m))} λ(o).

Proof. For the sake of simplicity consider an arbitrary path that enters the
bpg only once from a node S (lb , mb) and returns to the original dynamic
programming graph at a node B(tn). Then obstacles in Q((l′, m′))\Q((l, m))
can be subdivided into three disjoint groups. Obstacles that enclose (lb, mb),
obstacles in Q(tn) \ Q((lb , mb)) and obstacles that do not enclose tn. Ob-
stacles from first and third group must be entered and thus paid by the
sequence of gap arcs leading from D(l, m) to S (lb , mb) (formulas (4.3)-
(4.5)), and from B(tn) to B(l′, m′) (formula (4.5)), respectively. The length
of an arbitrary path p′ from S (lb , mb) to B(tn) through the bpg differs
from path p induced by sequence 〈vi〉n0 and constructed in Lemma 4.2.4
only in two aspects. First, for an edge (vk, vk+1) on path p̂ we have to
relax (4.14) to Q+(k + 1) ⊇ Q+(k)] Q+(vk, vk+1) and equation (4.15)
to Q−(k + 1) ⊆ Q−(k) \ Q+(vk, vk+1). Intuitively, when traversing edge
(vk, vk+1) ∈ Eb in figure 4.6(a), the shaded rectangle may still contain ob-
stacles. And second, {Q(tn) \ Q((lb , mb))} ⊆ Q((l′, m′)) (see termination
condition of sequence 〈vi〉n0) does not necessarily hold. As a consequence, ob-
stacles that contribute to the penalty of path p also contribute to the penalty
of p̂ and the claim follows. 2

25

5 Improving the Lagrangian
Relaxation Bound

Recall that (LRλ) is the problem of computing all extended pairwise align-
ments for a given set of multipliers λ and v(LRλ) is its objective function
value. Moreover, (P) is the multiple sequence alignment problem itself.

Since the optimal value v(LRλ) is an upper bound on the optimal value of
(P) for all multiplier vectors λ ∈ R

m
+ , m = |M|, we are interested in solving

the problem

min
λ≥0

v(LRλ) (LR)

to obtain tighter bounds for our branch-and-bound algorithm.

5.1 Subgradient Optimization

It is well known that the Lagrangian function f(λ) = v(LRλ) (for our case
where (P) is a maximization problem) is a convex function of λ, but it is not
differentiable at points, where the optimal solution of (LRλ) is not unique. A
commonly used approach to determine near-optimal Lagrangian multipliers
efficiently is based on the vector of subgradients g(λ) ∈ R

m, associated with
a given λ. The set ∂f(λ0) of all subgradients of f(λ) at a point λ0 is always
nonempty, and one can show that the vector

gM(λ0) = r − 1 −
r

∑

j=1

z̄(uj ,uj+1), M ∈ M (5.1)

is contained in ∂f(λ0), where z̄ is an optimal solution to (LRλ0). The
iterative approach proposed by Held and Karp [14] generates a sequence
λ0, λ1, . . . of Lagrangian multipliers by taking at iteration k a step along

26

a subgradient of f(λk), projecting the resulting point onto the nonnegative
orthant:

λk+1
M = max







0, λk
M + θ

v(LRλk) − LB
∑

M ′∈M

g2
M ′

gM(λk)







, M ∈ M (5.2)

where LB is a lower bound on v(P), and θ is a step size parameter as-
suming values in (0, 2]. As to the adaption of scalar step size θ, our approach
differs from the classical Held-Karp method, which halves parameter θ when
there is no upper bound improvement for a certain number of consecutive
iterations. If the best and worst upper bounds computed in the last p iter-
ations differ by more than 1%, we suspect that we are “overshooting” and
thus we halve the current value of θ. If, in contrast, the two values are within
0.1% from each other, we overestimate v(LRλ∗), where λ∗ is an optimal so-
lution to (LR), and therefore increase θ by a factor of 1.5. Similarly to [5],
we experienced a faster convergence to near optimal multipliers using this
strategy, compared to the classical approach.

As (2.7) involves exponentially many mixed cycle inequalities that would
have to be dualized, formula (5.2) can not be applied in a straightforward
way, but we use the relax-and-cut framework outlined below.

5.2 Relax-and-Cut

In the traditional case of the subgradient method (SM), when the number
of dualized constraints is not too large, Beasley [4] reported good practical
convergence to v(LR), when setting gi = 0 whenever gi ≥ 0 and λi = 0, for
i ∈ 1, . . . , m, i.e. if an inequality whose multiplier is 0 is not violated. We ex-
tend this idea by setting gM = 0 for all M with λM = 0 whose corresponding
mixed cycle inequalities are not violated by the Lagrangian solution. These
multipliers would remain zero valued at the end of the current iteration and
thus would not directly contribute to v(LRλ), at any given SM iteration.
We call the corresponding constraints inactive inequalities. Conversely, we
call inequalities, whose associated multiplier may directly contribute to the
Lagrangian objective function, active inequalities. These are the constraints
(2.7) that are violated by the Lagrangian solution and those inequalities
that have nonzero multipliers associated with them. Otherwise the value
∑

M∈M gM would be very high, resulting in virtually unchanged multipliers
from iteration to iteration. We therefore apply (5.2) exclusively to active
inequalities, as suggested in [19].

27

This dynamic scheme, where the pool of active inequalities may contin-
uously change, heavily relies on the ability to identify inequalities that are
violated by the Lagrangian solution. In order to prevent the set of active
inequalities from growing too rapidly we restrict the separation problem to
mixed cycle inequalities, that are most violated by the average of the last
h solutions. Experiments show, that this modification improves the rate of
convergence dramatically (table 6.1).

28

6 Experiments

We have implemented our Lagrangian approach in C++ using the LEDA-
library[20] and have embedded it into a branch-and-bound framework. The
lower bounds in each bb node are computed by selecting, in a greedy fashion,
edges from the set {e ∈ EA | x̄e = 1} that satisfy conditions (1)-(3). The
weights for the alignment edges were obtained by the BLOSUM62 amino acid
substitution matrix, whereas the gap arcs were assigned a weight that was
computed as 4l+6, where l is the number of characters in the corresponding
gap.

We tested our implementation on a set of instances of the BAliBASE
library. The benchmark alignments from reference 1 (R1) contain 4 to 6
sequences and are subdivided into three groups of different length (short,
medium, long). They are further categorized into three subgroups by the
degree of similarity between the sequences (group V1: identity < 25%, group
V2: identity 20 − 40%, group V3: identity > 35%).

We compared our implementation, which we will call LASA (LAgrangian
Sequence Alignment), with MSA [18] and COSA[2]. The multiple sequence
alignment program MSA is based on dynamic programming and uses the so
called quasi-affine gap cost model, a simplification of the (natural) affine gap
cost model. The branch-and-cut algorithm COSA is based on the same ILP
formulation and uses CPLEX as LP-solver. We ran the experiments on a
system with a 2,39 GHz AMD Opteron Processor with 8 GB of RAM. Any
run that exceeded a CPU time limit of 12 hours was considered unsuccessful.

Tables 6.2, 6.3 and 6.4 report our results on short and medium sized and
long instances from reference 1. The columns have the following meaning:

Instance: Name of the instance, along with an indication (k, n) of the num-
ber of sequences and the overall number of characters;

Heur: Value of the initial feasible solution found by COSA or MSA;

PUB: Pairwise upper bound;

29

Root: Value of the Lagrangian upper bound at the root node of the branch-
and-bound tree;

Opt: Optimal solution value;

#Nodes: Number of branch-and-bound subproblems solved;

#Iter: Total number of iterations during the subgradient optimization;

Time: Total running time;

Although MSA reduces the complexity of the problem by incorporating
quasi-affine gap costs into the multiple alignment, it could hardly solve in-
stances with a moderate degree of similarity. In contrast, our preliminary
implementation outperforms the CPLEX based approach COSA, the only
method known till now to solve the MSA problem exactly. COSA was not
able to solve any of the medium sized or long benchmark alignments, while
LASA found the optimal solution within minutes. This is mainly because
the LPs are quite complicated to solve. Moreover, one instance crashed as
an LP could not be solved by CPLEX.

The running time of LASA and COSA strongly depends on tight initial
lower bounds. For example, LASA takes about 13 hours for the long instance
3pmg with the bound obtained by the heuristic and only about one hour with
the optimal value used as a lower bound.

Finally, we give computational evidence for the effectiveness of our novel
approach to select violated inequalities to be added to our constraint pool.
Considering the average of the last h solutions of the Lagrangian relaxation
instead of looking only at the current solution (h = 1) dramatically reduces
the number of iterations (see table 6.1). Only short sequences of high identity
(short, V3) could be solved for h = 1. Furthermore, this table shows that
the extended pairwise alignment problems are solved at least twice as fast
when using the A∗ approach.

The columns in table 6.1 have the following meaning:

Instance: Name of the instance, along with an indication (k, n) of the num-
ber of sequences and the overall number of characters;

h = · : The number of solutions that were considered to compute an average
Lagrangian solution;

LASA: Default version of LASA, i.e. h = 10 and using the A* approach;

DynProg: LASA without using the A* approach;

30

#Iter: Number of iterations needed by a specific version of LASA;

Time: Total running time in seconds needed by a specific version of LASA;

h = 1 h = 2 h = 20 h = 30 LASA (A*, h = 10) DynProg, h = 10
Instance #Iter #Iter #Iter #Iter #Iter Time Time
1aho (5/320) 748,470 2,496 1,194 1,283 1,089 10 22
1csp (5/339) 17 14 19 19 17 <1 <1
1dox (4/374) 80,001 271 211 207 253 1 5
1fkj (5/517) 316,072 849 707 676 348 9 25
1fmb (4/400) 1,372 14 14 14 13 <1 <1
1krn (5/390) 191,281 634 148 155 104 1 8
1plc (5/470) 232,591 489 642 513 218 6 14
2fxb (5/287) 16,425 15 11 11 11 <1 <1
2mhr (5/572) 60,005 93 116 177 65 3 8
9rnt (5/499) 54 49 40 40 39 1 3

Table 6.1: We give the number of iterations needed by our approach for
different numbers h of solutions that were considered to compute the average
Lagrangian solution. The default is h = 10. The last column gives the time
spent in the root node if we resign to use the A∗ approach.

Conclusion

We have constructed a Lagrangian relaxation of the multiple sequence align-
ment ILP formulation that allowed us to obtain strong bounds by solving a
generalization of the pairwise alignment problem. By utilizing these bounds
in a branch-and-bound manner we achieved running times that outperform
all other exact or almost exact methods. We plan to integrate our imple-
mentation into the software project SEQAN currently developed by the free
university of Berlin.

Besides optimizing our implementation for speed an important issue in
our future work will be to extend the scheme to volume and to bundle al-
gorithms. A more sophisticated Lagrangian heuristic for computing lower
bounds in the bb nodes will be necessary to be able to solve instances of
larger size.

31

LASA COSA MSA
Instance Heur PUB Root Opt #Nodes #Iter Time Time Time

Reference 1 Short, V3
1aho (5/320) 877 987 884 881 7 1,089 <1 1:29 -
1csp (5/339) 1,457 1,473 1,457 1,457 1 17 <1 1 <1
1dox (4/374) 749 782 751 750 3 253 3 30 <1
1fkj (5/517) 1,578 1,675 1,585 1,578 3 348 13 6:04 -
1fmb (4/400) 1,333 1,353 1,333 1,333 1 13 <1 2 <1
1krn (5/390) 1,523 1,558 1,523 1,523 1 104 1 6 6
1plc (5/470) 1,736 1,824 1,736 1,736 1 218 6 4:24 20:14
2fxb (5/287) 1,341 1,352 1,341 1,341 1 11 < < 1 <1
2mhr (5/572) 2,364 2,406 2,364 2,364 1 65 3 2 17
9rnt (5/499) 2,550 2,573 2,550 2,550 1 39 1 4 <1

Reference 1 Short, V2
1aab (4/291) 231 257 231 231 1 100 <1 4 < 1
1csy (5/510) 649 769 649 649 1 393 17 3:01 -
1fjlA (6/398) 674 731 676 674 5 561 12 34 -
1hfh (5/606) 903 1,067 911 903 3 411 33 - -
1hpi (4/293) 386 439 386 386 1 298 4 53 7
1pfc (5/560) 994 1,139 1,004 994 11 1,387 1:48 37:46 -
1tgxA (4/239) 247 317 247 247 1 566 9 53 -
1ycc (4/426) 117 309 202 200 7 1,865 2:19 - -
3cyr (4/414) 515 615 522 515 7 983 38 -∗ 45

Reference 1 Short, V1
1aboA (5/297) -685 -476 -604 -676 3,497 417,260 11:04:02 - -
1aboA (5/297) -676 -476 -604 -676 2953 349792 9:13:49 - -
1tvxA (4/242) -409 -260 -358 -405 777 122,785 1:59:44 - -
1idy (5/269) -420 -273 -356 -414 4,193 678,592 12:00:48 - -
1idy (5/269) -414 -273 -352 -414 3529 594746 10:27:30 - -
1r69 (4/277) -326 -207 -289 -326 253 54,668 58:40 - -
1ubi (4/327) -372 -246 -330 -372 215 43,620 1:12:57 - -
1wit (5/484) -198 -25 -186 -197 15 4,221 7:42 - -
2trx (4/362) -182 -88 -178 -182 5 2,186 3:04 - -

Table 6.2: Results on short instances from reference 1. *: With the COSA-
code, the instance 3cyr crashed after about one hour of computation time as
the LP-solver was not able to solve the underlying LP.

32

Instance Heur PUB Root Opt #Nodes #Iter Time
Reference 1 Medium, V3

1amk (5/1241) 5,668 5,728 5,669 5,669 1 60 8
1ar5A (4/794) 2,303 2,357 2,304 2,303 3 262 20
1ezm (5/1515) 8,378 8,466 8,378 8,378 1 105 23
1led (4/947) 2,150 2,282 2,158 2,150 33 1,435 3:54
1ppn (5/1083) 4,718 4,811 4,729 4,724 23 925 3:10
1pysA (4/1005) 2,730 2,796 2,732 2,730 3 223 28
1thm (4/1097) 3,466 3,516 3,468 3,468 3 233 30
1tis (5/1413) 5,854 5,999 5,874 5,856 83 2,993 18:31
1zin (4/852) 2,357 2,411 2,361 2,357 13 625 1:03
5ptp (5/1162) 4,190 4,329 4,233 4,205 193 8,337 35:48

Reference 1 Medium, V2
1ad2 (4/828) 1,195 1,270 1,197 1,195 7 419 42
1aym3 (4/932) 1,544 1,664 1,551 1,544 17 1,060 2:37
1gdoA (4/988) 980 1,201 1,003 984 459 31,291 2:38:36
1ldg (4/1240) 1,526 1,640 1,539 1,526 41 2,160 8:32
1mrj (4/1025) 1,461 1,608 1,473 1,464 27 1,681 5:29
1pgtA (4/828) 683 808 691 690 9 926 2:05
1pii (4/1006) 1,099 1,256 1,103 1,100 23 1,320 4:54
1ton (5/1173) 1,550 1,898 1,609 1,554 807 44,148 5:32:47

Table 6.3: Results on medium sized instances from reference 1. COSA and
MSA were not able to solve any of these benchmark alignments. Results on
group V1 are omitted, since LASA was not able to solve these instances in
the allowed time frame.

Instance Heur PUB Root Opt #Nodes #Iter Time
1ad3 (4/1746) 5,355 5,424 5,358 21 734 4:25
actin (5/1924) 8,018 8,178 8,039 8,022 45 2,138 19:41
3pmg (4/2224) 7,363 7,602 7,460 7,418 1,397 53,350 12:50:50
3pmg (4/2224) 7,418 7,602 7,448 7,418 119 4,789 1:08:37

Table 6.4: Results on long sequences from reference 1. Only three instances
could be solved by LASA. MSA and COSA were not able to solve any of
these benchmark alignments. Instance 3pmg was solved once with an initial
lower bound obtained by MSA (7363) and once with the optimal value (7418)
computed by LASA itself.

33

Bibliography

[1] E. Althaus, A. Caprara, H.-P. Lenhof, and K. Reinert. Multiple sequence
alignment with arbitrary gap costs: Computing an optimal solution us-
ing polyhedral combinatorics. In T. Lengauer and H.-P. Lenhof, editors,
Proceedings of the European Conference on Computational Biology, vol-
ume 18 of Bioinformatics, pages S4–S16, Saarbrücken, October 2002.
Oxford University Press.

[2] E. Althaus, A. Caprara, H.-P. Lenhof, and K. Reinert. Aligning multiple
sequences by cutting planes. Mathematical Programming, 105:387–425,
2006.

[3] S. F. Altschul, W. Gish, W. Miller, E. W. Myers, and D. J. Lipman.
Basic local alignment search tool. J. Mol. Biol., 215:403–410, 1990.

[4] J. Beasley. Lagrangian Relaxation. In: Modern heuristic techniques for
combinatorial problems. Blackwell Scientific Publications, 1993.

[5] A. Caprara, M. Fischetti, and P. Toth. A heuristic method for the set
cover problem. Operations Research, 47:730–743, 1999.

[6] H. Carrillo and D. J. Lipman. The multiple sequence alignment problem
in biology. SIAM J. Appl. Math., 48(5):1073–1082, 1988.

[7] A. Delcher, S. Kasif, R. Fleischmann, J. Peterson, W. O., and
S. Salzberg. Alignment of whole genomes. Nucleic Acids Research,
27:2369–2376, 1999.

[8] R. C. Edgar. MUSCLE: a multiple sequence alignment method with
reduced time and space complexity. BMC Bioinformatics, 5(1), August
2004.

[9] D. Eppstein. Sequence comparison with mixed convex and concave costs.
Journal of Algorithms, (11):85–101, 1990.

34

[10] M. Fisher. Optimal solutions of vehcile routing problems using minimum
k-trees. Operations Research, 42:626–642, 1994.

[11] M. Garey and D. Johnson. Computers and Intractability: A Guide to
the Theory of NP-Completeness. W.H. Freeman, 1979.

[12] S. Gupta, J. Kececioglu, and A. Schaeffer. Improving the practical space
and time efficiency of the shortest-paths approach to sum-of-pairs mul-
tiple sequence alignment. J. Comput. Biol., 2:459–472, 1995.

[13] D. Gusfield. Algorithms on strings, trees and sequences: computer sci-
ence and computational biology. Cambridge University Press, Cam-
bridge, 1997.

[14] M. Held and R. Karp. The traveling salesman problem and minimum
spanning trees: part ii. Mathematical Programming, 1:6–25, 1971.

[15] K. Katoh, K. ichi Kuma, H. Toh, and T. Miyata. Mafft version 5:
improvement in accuracy of multiple sequence alignment. Nucleic Acids
Research, 33:511, 2005.

[16] L. Larmore and B. Schieber. Online dynamic programming with appli-
cations to the prediction of rna secondary structure. In Proceedings of
the First Symposium on Discrete Algorithms, pages 503–512, 1990.

[17] M. Lermen and K. Reinert. The practical use of the A∗ algorithm for
exact multiple sequence alignment. Journal of Computational Biology,
7(5):655–673, 2000.

[18] D. Lipman, S. Altschul, and J. Kececioglu. A tool for multiple se-
quence alignment. Proceedings of the National Academy of Sciences
of the United States of America, 86:4412–4415, 1989.

[19] A. Lucena. Steiner problem in graphs: Lagrangean relaxation and
cutting-planes. COAL Bulletin, 21:2–7, 1993.

[20] K. Mehlhorn and S. Näher. The LEDA Platform of Combinatorial and
Geometric Computing. Cambridge University Press, Cambridge, 1999.
See also http://www.mpi-sb.mpg.de/LEDA/.

[21] C. Notredame, D. G. Higgins, and J. Heringa. T-coffee: A novel
method for fast and accurate multiple sequence alignment. J Mol Biol,
302(1):205–217, September 2000.

35

[22] K. Reinert. A Polyhedral Approach to Sequence Alignment Problems.
PhD thesis, Universität des Saarlandes, 1999.

[23] K. Reinert, H.-P. Lenhof, P. Mutzel, K. Mehlhorn, and J. Kececioglu.
A branch-and-cut algorithm for multiple sequence alignment. In Pro-
ceedings of the First Annual International Conference on Computational
Molecular Biology (RECOMB-97), pages 241–249, 1997.

[24] K. Reinert, J. Stoye, and T. Will. An iterative methods for faster sum-of-
pairs multiple sequence alignment. BIOINFORMATICS, 16(9):808–814,
2000.

[25] D. Sankoff and J. B. Kruskal. Time Warps, String Edits and Macro-
molecules: the Theory and Practice of Sequence Comparison. Addison
Wesley, 1983.

[26] J. D. Thompson, D. G. Higgins, and T. J. Gibson. Clustal w: improv-
ing the sensitivity of progressive multiple sequence alignment through
sequence weighting, position-specific gap penalties and weight matrix
choice. Nucleic Acids Res, 22(22):4673–4680, November 1994.

[27] L. Wang and T. Jiang. On the complexity of multiple sequence align-
ment. J. Comput. Biol., 1:337–348, 1994.

36

Below you find a list of the most recent technical reports of the Max-Planck-Institut für Informatik. They
are available by anonymous ftp from ftp.mpi-sb.mpg.de under the directory pub/papers/reports. Most
of the reports are also accessible via WWW using the URL http://www.mpi-sb.mpg.de. If you have any
questions concerning ftp or WWW access, please contact reports@mpi-sb.mpg.de. Paper copies (which
are not necessarily free of charge) can be ordered either by regular mail or by e-mail at the address below.

Max-Planck-Institut für Informatik
Library
attn. Anja Becker
Stuhlsatzenhausweg 85
66123 Saarbrücken
GERMANY
e-mail: library@mpi-sb.mpg.de

.

MPI-I-2007-RG1-002 T. Hillenbrand, C. Weidenbach Superposition for Finite Domains

MPI-I-2007-5-002 K. Berberich, S. Bedathur,
T. Neumann, G. Weikum

A Time Machine for Text Search

MPI-I-2007-5-001 G. Kasneci, F.M. Suchanek, G. Ifrim,
M. Ramanath, G. Weikum

NAGA: Searching and Ranking Knowledge

MPI-I-2007-4-006 C. Dyken, G. Ziegler, C. Theobalt,
H. Seidel

GPU Marching Cubes on Shader Model 3.0 and 4.0

MPI-I-2007-4-005 T. Schultz, J. Weickert, H. Seidel A Higher-Order Structure Tensor

MPI-I-2007-4-004 C. Stoll A Volumetric Approach to Interactive Shape Editing

MPI-I-2007-4-003 R. Bargmann, V. Blanz, H. Seidel A Nonlinear Viseme Model for Triphone-Based Speech
Synthesis

MPI-I-2007-4-002 T. Langer, H. Seidel Construction of Smooth Maps with Mean Value
Coordinates

MPI-I-2007-4-001 J. Gall, B. Rosenhahn, H. Seidel Clustered Stochastic Optimization for Object
Recognition and Pose Estimation

MPI-I-2007-2-001 A. Podelski, S. Wagner A Method and a Tool for Automatic Veriication of
Region Stability for Hybrid Systems

MPI-I-2007-1-001 E. Berberich, L. Kettner Linear-Time Reordering in a Sweep-line Algorithm for
Algebraic Curves Intersecting in a Common Point

MPI-I-2006-5-006 G. Kasnec, F.M. Suchanek,
G. Weikum

Yago - A Core of Semantic Knowledge

MPI-I-2006-5-005 R. Angelova, S. Siersdorfer A Neighborhood-Based Approach for Clustering of
Linked Document Collections

MPI-I-2006-5-004 F. Suchanek, G. Ifrim, G. Weikum Combining Linguistic and Statistical Analysis to
Extract Relations from Web Documents

MPI-I-2006-5-003 V. Scholz, M. Magnor Garment Texture Editing in Monocular Video
Sequences based on Color-Coded Printing Patterns

MPI-I-2006-5-002 H. Bast, D. Majumdar, R. Schenkel,
M. Theobald, G. Weikum

IO-Top-k: Index-access Optimized Top-k Query
Processing

MPI-I-2006-5-001 M. Bender, S. Michel, G. Weikum,
P. Triantafilou

Overlap-Aware Global df Estimation in Distributed
Information Retrieval Systems

MPI-I-2006-4-010 A. Belyaev, T. Langer, H. Seidel Mean Value Coordinates for Arbitrary Spherical
Polygons and Polyhedra in R

3

MPI-I-2006-4-009 J. Gall, J. Potthoff, B. Rosenhahn,
C. Schnoerr, H. Seidel

Interacting and Annealing Particle Filters:
Mathematics and a Recipe for Applications

MPI-I-2006-4-008 I. Albrecht, M. Kipp, M. Neff,
H. Seidel

Gesture Modeling and Animation by Imitation

MPI-I-2006-4-007 O. Schall, A. Belyaev, H. Seidel Feature-preserving Non-local Denoising of Static and
Time-varying Range Data

MPI-I-2006-4-006 C. Theobalt, N. Ahmed, H. Lensch,
M. Magnor, H. Seidel

Enhanced Dynamic Reflectometry for Relightable
Free-Viewpoint Video

MPI-I-2006-4-005 A. Belyaev, H. Seidel, S. Yoshizawa Skeleton-driven Laplacian Mesh Deformations

MPI-I-2006-4-004 V. Havran, R. Herzog, H. Seidel On Fast Construction of Spatial Hierarchies for Ray
Tracing

MPI-I-2006-4-003 E. de Aguiar, R. Zayer, C. Theobalt,
M. Magnor, H. Seidel

A Framework for Natural Animation of Digitized
Models

MPI-I-2006-4-002 G. Ziegler, A. Tevs, C. Theobalt,
H. Seidel

GPU Point List Generation through Histogram
Pyramids

MPI-I-2006-4-001 A. Efremov, R. Mantiuk,
K. Myszkowski, H. Seidel

Design and Evaluation of Backward Compatible High
Dynamic Range Video Compression

MPI-I-2006-2-001 T. Wies, V. Kuncak, K. Zee,
A. Podelski, M. Rinard

On Verifying Complex Properties using Symbolic Shape
Analysis

MPI-I-2006-1-007 H. Bast, I. Weber, C.W. Mortensen Output-Sensitive Autocompletion Search

MPI-I-2006-1-006 M. Kerber Division-Free Computation of Subresultants Using
Bezout Matrices

MPI-I-2006-1-005 A. Eigenwillig, L. Kettner, N. Wolpert Snap Rounding of Bézier Curves

MPI-I-2006-1-004 S. Funke, S. Laue, R. Naujoks, L. Zvi Power Assignment Problems in Wireless
Communication

MPI-I-2005-5-002 S. Siersdorfer, G. Weikum Automated Retraining Methods for Document
Classification and their Parameter Tuning

MPI-I-2005-4-006 C. Fuchs, M. Goesele, T. Chen,
H. Seidel

An Emperical Model for Heterogeneous Translucent
Objects

MPI-I-2005-4-005 G. Krawczyk, M. Goesele, H. Seidel Photometric Calibration of High Dynamic Range
Cameras

MPI-I-2005-4-004 C. Theobalt, N. Ahmed, E. De Aguiar,
G. Ziegler, H. Lensch, M.A. Magnor,
H. Seidel

Joint Motion and Reflectance Capture for Creating
Relightable 3D Videos

MPI-I-2005-4-003 T. Langer, A.G. Belyaev, H. Seidel Analysis and Design of Discrete Normals and
Curvatures

MPI-I-2005-4-002 O. Schall, A. Belyaev, H. Seidel Sparse Meshing of Uncertain and Noisy Surface
Scattered Data

MPI-I-2005-4-001 M. Fuchs, V. Blanz, H. Lensch,
H. Seidel

Reflectance from Images: A Model-Based Approach for
Human Faces

MPI-I-2005-2-004 Y. Kazakov A Framework of Refutational Theorem Proving for
Saturation-Based Decision Procedures

MPI-I-2005-2-003 H.d. Nivelle Using Resolution as a Decision Procedure

MPI-I-2005-2-002 P. Maier, W. Charatonik, L. Georgieva Bounded Model Checking of Pointer Programs

MPI-I-2005-2-001 J. Hoffmann, C. Gomes, B. Selman Bottleneck Behavior in CNF Formulas

MPI-I-2005-1-008 C. Gotsman, K. Kaligosi,
K. Mehlhorn, D. Michail, E. Pyrga

Cycle Bases of Graphs and Sampled Manifolds

MPI-I-2005-1-007 I. Katriel, M. Kutz A Faster Algorithm for Computing a Longest Common
Increasing Subsequence

MPI-I-2005-1-003 S. Baswana, K. Telikepalli Improved Algorithms for All-Pairs Approximate
Shortest Paths in Weighted Graphs

MPI-I-2005-1-002 I. Katriel, M. Kutz, M. Skutella Reachability Substitutes for Planar Digraphs

MPI-I-2005-1-001 D. Michail Rank-Maximal through Maximum Weight Matchings

MPI-I-2004-NWG3-001 M. Magnor Axisymmetric Reconstruction and 3D Visualization of
Bipolar Planetary Nebulae

MPI-I-2004-NWG1-001 B. Blanchet Automatic Proof of Strong Secrecy for Security
Protocols

MPI-I-2004-5-001 S. Siersdorfer, S. Sizov, G. Weikum Goal-oriented Methods and Meta Methods for
Document Classification and their Parameter Tuning

MPI-I-2004-4-006 K. Dmitriev, V. Havran, H. Seidel Faster Ray Tracing with SIMD Shaft Culling

MPI-I-2004-4-005 I.P. Ivrissimtzis, W.-. Jeong, S. Lee,
Y.a. Lee, H.-. Seidel

Neural Meshes: Surface Reconstruction with a Learning
Algorithm

MPI-I-2004-4-004 R. Zayer, C. Rössl, H. Seidel r-Adaptive Parameterization of Surfaces

