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Abstract

Search engines, question answering systems and classifisgstems alike can
greatly profit from formalized world knowledge. Unfortuebt manually com-
piled collections of world knowledge (such as WordNet or $wgygested Upper
Merged Ontology SUMO) often suffer from low coverage, higs@mbling costs
and fast aging. In contrast, the World Wide Web provides atlems source of
knowledge, assembled by millions of people, updated catigtand available for
free. In this paper, we propose a novel method for learnibgrary binary re-
lations from natural language Web documents, without humgaraction. Our
system, IEILA, combines linguistic analysis and machine learning teses to
find robust patterns in the text and to generalize them. Rotalzation, we only
require a set of examples of the target relation and a setuwftecexamples (e.g.
from WordNet). The architecture consists of 3 stages: Rgdiatterns in the
corpus based on the given examples, assessing the patsets dn probabilistic
confidence, and applying the generalized patterns to peopass for the target
relation. We prove the benefits and practical viability of approach by extensive
experiments, showing thatHLLA achieves consistent improvements over existing
comparable techniques (e.g. Snowball, TextToOnto).

Keywords

Ontology Learning, Relation Extraction, Information Extraction, Linguistic
Analysis
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1 Introduction

1.1 Motivation

Many data mining tasks such as classification, ranking,meeendation, or data
cleaning could be boosted by explicit background knowledgée form of on-
tologies (e.g., SUMO [29]), thesauri (e.g., WordNet [1%}),lexicons. Unfortu-
nately, the manual construction and maintenance of suctvlkdge bases is a
limiting factor in our modern world of “exploding informatn”. Recently, vari-
ous projects have pursued ways of utilizing the World Widédo\&ked other poorly
structured information sources for automatically creqtintological relations in
an almost unsupervised manner. These projects includg, sankll-scale ap-
proaches like Dipre [4], Snowball [1], and TextToOnto [1&]veell as very recent
projects like KnowltAll [14] and KnowltNow [7] that aim at fge-scale knowl-
edge discovery and harvesting on the Web. In this contexiyledge acquisition
amounts to finding as many instances as possible for unaryarnisemantic re-
lationssuch a€i ti es(x),Sci enti st s(x),Headquart ers(conpany,
city),BirthDates(person, date),orPl ays(person, instrunent),
including generic relations likenst anceOf (entity, cl ass).

At the heart of such knowledge acquisition projects are NNBt@ral Lan-
guage Processing) and text mining techniques. Prior appesahave limited the
NLP part to part-of-speech tagging [26] and focused mosilynatching textual
surface patterns such as Such as y” (one of the Hearst patterns [19]), in com-
bination with machine learning techniques and statistifakences for assessing
the validity of newly discovered patterns and relationanses. The actual NLP
and text analysis parts have been restricted in their expergess to regular ex-
pression matching on text sequences. To our knowledge, ofathe prior work
considered utilizing deeper linguistic analysis such asstocting NLP parse
trees or even graph structures and running matching anditgamethods on
these richer representations. Deeper linguistic analessns to be the key for
improving both precision and recall of unsupervised knagkeacquisition from



corpora like the Web or textual lexicons such as Wikipedikmearta.

1.2 Related Work

There are numerous Information Extraction (IE) approacivesgch differ in vari-
ous features:

e Type of the extracted relation: The extracted relations can be either unary
or binary. In the unary case, the relations are just listsntities (e.g. all
ci ties in a given text, [16, 8]). In this paper we focus on binary rela
tions (e.g. thebi rt hdat e-relation, which holds between a person and
her birthdate). Some systems are designed to discover neavybiela-
tions ([25]). However, we assume that the user gives thesy#ie target
relation he is interested in. Some systems are restrictéshtaing a sin-
gle relation, mostly the nst ance -relation ([12, 5]). In this paper, we
are interested in extracting arbitrary relations. This aally includes the
I nst ance -relation, but also relations like the r t hdat e-relation or
theheadquart er s-relation between a company and the city of its head-
quarters.

e Human interaction: There are systems that require human input for the IE
process ([31]). Our work aims at a completely automatedcesyst

e Type of corpora: There exist systems that can extract information effi-
ciently from formatted data, such as HTML-tables or streetiutext ([18,
17]). However, since a large part of the Web consists of mhtanguage
text, we consider in this paper only systems that acceptuaistructured
corpora.

e Initialization: As initial input, some systems require a hand-tagged cor-

pus ([20, 36]), i.e. a corpus in which the relevant items Hasen marked
manually. Other systems require text patterns ([39]) orpletes ([37]),
l.e. phrases that indicate a pair of the target relation.i\gther systems
require seed tuples ([1]), i.e. a list of pairs of the targgation. There
is also a class of systems that require just tables of tamyetepts ([11]).
Since hand-labeled data and manually assembled textpateguire huge
human effort, we consider only systems that use seed paables of con-
cepts.

Furthermore, we differentiate betweelnsed systems that are bound to a cor-
pus andopen systems that use the Web as a corpsowl tAll [14] is an example
of an open system. It is instantiated with a set of extraatides that are used to

3



generate keyword queries to search engines. Another sybhtmmakes use of
the Web is [10]. We observe that in both open and closed sstibi@ techniques
used to extract the entities from the documents are eskeWeconcentrate in
this paper on this type of techniques; to study them in a otlatt environment,
we restrict ourselves to closed systems for this paper.

There are many differeriechniquesfor extracting entities from documents.
One school concentrates on detecting the boundary of stiegeentities in the
text, [8, 16, 40]). This usually goes along with the restoictto unary target re-
lations. Other approaches make use of the context in whicengity appears
([11, 6]). This school is mostly restricted to thast anceC -relation. The only
group that can learn arbitrary binary relations is the grotipattern matching
systems ([14, 1, 30, 4, 35, 38]). Surprisingly, none of trstems uses deep lin-
guistic analysis of the corpus. Consequently, most of thenegtremely volatile
to small variations in the patterns — even if the variatioegioot have any seman-
tic effect. For example, the simple subordinate clause énftfiowing example
(taken from [30]) can already prevent a surface pattern Ineatrom discover-
ing the relation between_bndon” and the ‘river Thames”: ” London, which
has one of the busiest airports in the world, lies on the banks of the river
Thames.”

1.3 Contribution

This paper presentsdLlLA (Learning to Extract Information by Linguistic Analy-
sis), a system with novel techniques for richer acquisitibbinary relations from
Web and text documents. ELLA uses a link-grammar representation [34] for
natural-language sentences as well as other advanced Nih®dsdike anaphora
resolution, and combines them with statistical learnimgrédust and high-yield
information extraction. Our experimental studies on aetgrof corpora demon-
strate that EILA achieves very good results in terms of precision and recall a
clearly outperforms the prior state-of-the-art methodse Ppaper’s novel contri-
butions are:

e We show how advanced NLP techniques like link grammars aagtaora
resolution can be harnessed for richer representation tofaldanguage
sentences and more expressive detection of semantioredati

e We develop a feature model for the link-grammar-based graptresenta-
tion of a sentence that is expressive enough to capturerpatbeyond the
previous state of the art but, at the same time is robust tml axerfitting
and efficiently tractable.



e Based on this feature model we design statistical learnsiag SVM or
KNN classifiers, that can discriminate good versus bad jpetter a given

target relation.

e All our techniques are carefully integrated into a full-fied system archi-
tecture and implemented in our LEILA system.



2 System Model

2.1 Link Grammars

There are different approaches for parsing natural langsagtences. It is pos-
sible to use just regular expressions to discover chunkelatad words or to
assign part-of-speech tags, but we already argued for a dedegled analysis.
Often, context-free grammars are used and a number of paaservailable to
construct context-free parse-trees for natural languagteaces ([23]). More ad-
vanced techniques use non-context-free feature strgcitustead of simple parse
trees. These include Lexical Functional Grammar pars@i§)(pr Head-Driven
Phrase Structure Grammar parsers ([2]). These technigweddeen extended by
stochastic models, resulting in ever more robust, but alscermomplex parsers
([26, 13]).

For our implementation, we chose the Link Grammar Parsdr |84 based
on a context-free grammar and hence it is simpler to handle the advanced
parsing techniques. At the same time, it provides a muchetesgmantic struc-
ture than the standard context-free parseffsgure 2.1 shows a simplified exam-
ple of a linguistic structure produced by the link parser:

prepObj prepObj
subj compl mod
det mod det

Chopin was.v  great among the composers of his time.n
Figure 2.1: A simple linkage
We call these structuréBikages. Formally speaking, a linkage is a connected

planar undirected graph, the nodes of which are the wordseo§éntence. The
edges are callelinks. They are labeled witlsonnectors, taken from a finite set

1[24] and [41] use the same parsing technique, albeit foedkfit purposes.



of symbols. For example, the connecsarbj marks the link between the subject
and the verb of the sentence. The linkage must fulfill cettaguistic constraints.
These are given by lnk grammar. A link grammar is a set of rules that spec-
ify which word may be linked by which connector to precedimgl dollowing
words. For example, the link grammar may specify that thedwaras” has to
have asubj -link to a preceding word and @onpl -link to a following word.
The parser also assigpart-of-speech tags to the words, i.e. symbols identifying
the grammatical function of the words. In the example shawhigure 2.1, the
letter "n” following the word "composers” identifies "composers” as a noun.
Figure 2.2 shows how the Link Parser copes with a more conmgtarple.
The relationship between the subjetibhdon” and the verb lies” is not dis-
rupted by the subordinate clause: For ambiguous sentetheckink Parser gen-

subj

prepObj
det 9rp

London, which has one of the busiest airports, lies on the banks of the river Thames.

Figure 2.2: A complex linkage

erates multiple linkages. When faced with an erroneoussent the Link Parser
tries to ignore some grammatical constraints in order to éirlchkage anyway.

Such a linkage is assigned a heuristic cost based on the maind@Enstraints that

have been violated. In the end, the parser outputs the leskegascending order
of their cost.

We say that a linkagexpresses a relationr, if the underlying sentence implies
that a pair of entities is in. For example, the linkage in Figure 2.2 expresses the
possessi on-relation, because it states thahdon” has an ‘airport”. Note
that the deep grammatical analysis of the sentence wowld ait to define the
meaning of the sentence in a theoretically well-founded (J2§]). For this pa-
per, however, we limit ourselves to an intuitive understagf the notion of
meaning.

We define goattern as a linkage in which two words have been replaced by
placeholders. Figure 2.3 shows a pattern derived fromt@gje in Figure 2.1 by
replacing ‘Thopin” and "composers” by the placeholdersX” and "Y”. We call
the (unique) shortest path from one placeholder to the otiedaridge, marked in
bold in the figure. A pattermatches a linkage if the bridge of the pattern appears
in the linkage, although nouns and adjectives are allowetiffier. For example,
the above pattern matches the linkage in Figure 2.4, bedhesbridge of the
pattern occurs in the linkage, apart from a substitutiorgoéat” by ” mediocre”.
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prepObj prepObj
subj compl mod
det mod det

X was.v great among the Y of his time.n

Figure 2.3: A pattern

If a pattern matches a linkage, we say that the paftevduces the pair of words

compl prepObj

subj mod
mod det

Mozart was.v clearly mediocre among the composers.n.
Figure 2.4: A matching linkage

that the linkage contains in the position of the placeh@dén the example in
Figure 2.4, the pairMozart” / ” composers” is produced.

2.2 Algorithm

As a definition of the target relation, our algorithm reqaieefunction (given by a
Java method) that decides into which of the following catexgoa word pair falls:

e The pair can be asxamplefor the target relation. E.qg., for the r t hdat e-
relation, a list of persons with their birth dates can ses/examples.

e The pair can be aounterexample for the target relation. E.g., if the pair
"Chopin” /" 1810” is in the example list, then the paiChopin” /” 2000”
must be a counterexample.

e The pair can be aandidate for the target relation. For thiei r t hdat e-
relation, only pairs of a proper name and a date are candidate

o None of the above.

The corpus should be a sequence of natural language semtefoese sen-
tences are parsed, producing a dgegmmatical structure [26] for each of them.
In principle, our algorithm does not depend on a specificipgrechnique. For



example, the parse-trees produced by a context-free graganaerve as gram-
matical structures. For our implementation, however, wadubke Link Grammar
structures introduced above.

Our algorithm proceeds in three phases:

1. In theDiscovery Phase, it seeks sentences in which an example appears.
In the corresponding linkage, the two words are replacedl@dgepolders,
resulting in a pattern. The patterns collected this way atked positive
patterns.

2. In the second phase, tissessment Phase, the algorithm finds all link-
ages that match a positive pattern, but produce counteg@raniThe corre-
sponding patterns are collectedragative patterns. Now, statistical learn-
ing is applied to learn the concept of positive patterns ftbenpositive and
the negative patterns. The result of this process is a Glssie. a function
from patterns to boolean values.

3. In the last phase, thdarvesting Phase, the algorithm considers again all
sentences in the corpus. For each linkage, it generateesdllpe patterns
by replacing two words by placeholders. If the two words acardidate
and the pattern is classified as positive, the produced p@iroposed as a
new element of the target relation. These new pairs aredctieoutput
pairs of the algorithm.

For testing purposes, it is possible to run the HarvestingsPlon a differ-
ent corpus. In this case, we refer to the Discovering PhaddrenAssessment
Phase collectively abraining, whereas the Harvesting Phase is also referred to as
Testing.

2.3 Statistical Model

The central task of the Discovery Phase is determining irettéhat express the
target relation. Since the linguistic meaning of the patias not apparent to the
system, it relies on the followinlgypothesis Whenever an example pair appears
in a sentence, the linkage and the corresponding patteregxthe target relation.
This hypothesis may falil if a sentence contains an exampieraely by chance,
l.e. without expressing the target relation. In this casemwald use the pattern
as a positive sample for the generalization process, ajthdus a negative one.
Analogously, a pattern that does express the target relatay occasionally pro-
duce counterexamples. In this case, the pattern is usedeggtve sample in the
generalization process. We call these pattéase samples.



Our approach is not bound to a certain machine learning ighgoy but virtu-
ally any learning algorithm that can deal with a limited nienbf false samples
is suitable. For Support Vector Machines (SVM), the effddlatse samples has
been analyzed thoroughly [9]. In general, SVM is highly talg to noise. There
are also detailed theoretical studies [3] on how the propomf false samples
influences a PAC-learner. In essence, the number of regsiéegbles increases,
but the classification is still learnable. It is also possidol understand the concept
of positive patterns as a probabilistic concept [22]. Irs thetting, the pattern is
not either positive or negative, but it may produce paireftarget relation with
a certain fixed probability. The task of the learner is toretae function from the
pattern to its probability. [33] shows that probabilistancepts can be learned and
gives bounds on the number of required samples. The follpwirbsection con-
siders a particularly simple class of learners, the k-Nstaxeighbor-classifiers.

2.3.1 k-Nearest-Neighbor Classifiers

A k-Nearest-Neighbors (KNN) classifier requires a distaincetion on the pat-
terns. During training, positive and negative patternscatkected. In the testing
phase, a pattern is classified as positive iff the (distameighted) majority of
its & nearest neighbors is positive. We consider a simple vaohah adaptive
KNN classifier. Based on the distance function, we clustersdimple patterns
into classes. We show in Section 3.2 how to establish a distamction on pat-
terns for this clustering. With our distance function, thesters are equivalence
classes, i.e. all patterns in the class match the same kskagd we may assume
that they all have the same probability of producing an exampa counterexam-
ple. When a new pattern needs to be classified, we first detentsiequivalence
class. If the majority of the patterns in the class is posjtive classify the new
pattern as positive, else as negative.

We now consider the problem of false samples. We concerdratalse pos-
itives, as the problem of false negatives is dual. We analyzerobability that
one given equivalence clags classifies a new pattern as positive, although the
patterns inE’ do not express the target relation. Since all patterns ghare the
same properties, we occasionally refe‘t@s one single pattern.

We first concentrate on the probability Bfcontaining more positive patterns
than negative patterns, althoughdoes not express the target relation. We model
the sentences as a sequence\ofandom events. For each sentence, we can
have three types of events: (E) matches the linkage and produces an example,
(2) E matches and produces a counterexample or (3) neither. Weloeshese
three events by Bernoulli random variablésB, C', captured by a multinomial
distribution: A = 1 with probabilityp 4 iff an example is produced? = 1 with
probability pp iff a counterexample is produced a6d= 1 — A — B with proba-
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bility pc = 1 — pa — pg. The key assumption is that, < pg, sinceF does not
express the target relation. L#tA stand for the number of produced examples
and# B for the number of counterexamples. We are interested inriblegpility

of E being a false positive, namely(#A > #B), given thatps < pg (pc > 0).

In the appendix, we prove the upper bound (using Chernoéftdong bounds)

P#A > #B) < 2V | 9~ Na—pe)2(3-r)?

wherep, = pAppr' Now, we concentrate on the probability that a new pattern
fallsinto £, P(E). We estimate this probability as a multiplelof- po: P(E) =

B(1 — pc) for somes > 1. The better the examples and counterexamples are
chosen, the smallet will be (in our experiments? ~ 1.69). Then the probability

that E' classifies a new pattern wrongly is bounded by

26(1 — po) (e~ VB | o~V O-pe)+2)(bp0?)
This estimation mirrors the intuition that either a negatequivalence class is
rare (¢ is large) and then it rarely matches in the Harvesting Phasigeoclass

is frequent p is small) and then the probability of containing too manyifes
patterns is small.
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3 Implementation

3.1 Document Preprocessing

In order to allow our system#lILA to learn relations involving dates and numbers,
we normalize date and number expressions by regular expnesstching. For
example, the expressiohbvember 23rd to 24th 1998” becomes 1998-11-23
to 1998-11-24" and the expressiond.8107 acre-feet” becomes 1000 cubic-
meters”.

LEILA accepts, but is not restricted to, HTML documents. Our megss-
ing produces two files from the original document: The firg fibntains the
proper sentences with the HTML-tags removed. The seconcdiiains the non-
grammatical parts, such as lists and expressions usingthases. For example,
the character sequenc€rfiopin (born 1810) was a great composer” is split
into the sentenceChopin was a great composer” and the non-grammatical
information "Chopin (born 1810)". A list like " Some well-known composers
are: <UL><LI> Chopin <LI> Mozart... </UL>" produces the following
output for the non-grammatical file:

”Some well-known composers are: # Chopin”

”Some well-known composers are: # Mozart”

We give the files with the proper sentences to the Link Granpagser. As it
comes with no additional computational cost, we have thegvgroduce its three
most likely linkages for each sentence. For the non-grancaddiles, we provide
a pseudo-parsing, which simply links each two adjacent wdnyl an artificial
connector. As a result, the uniform output of the preprdogsis a sequence of
linkages.

We use a very basic form of named entity recognition. First, c@ncatenate
all words that are joined by<A> ... </A>"tags. Next, we use the fact that
the Link Parser links noun groups liké&rederic Chopin” or ”United States
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of America” by designated connectors. We join words that are linkedhage

connectors. For our goal, it is essential to normalize ndatiseir singular form.
This task is non-trivial, because there are numerous worttsiswegular plural

forms and there exist even word forms that can be either tigaikr form of one
word or the plural form of another. By collecting these exums systematically
from WordNet, we were able to stem most of them correctly with Plural-to-

Singular StemmerRlingSemmer?).

Anaphora resolution increases the number of sentence$ Hiea can use.
Although the linkages would allow for quite sophisticatedtniques, we restrict
ourselves to a conservative approach for the time being:éplace a third person
pronoun by the subject of the preceding sentence, if theuangs-plural forms
match. Furthermore, the system uses a simple form of regufaession match-
ing to detect possible person names and company names. |lbws & resolve
company references (likatfe company”) to the corresponding company name.

3.2 Feature Model

This section discusses how patterns can be representecaachfized. It would
obviously not be too difficult to somehow encode the full higles of patterns
into feature vectors. However, such an approach would nuergdize well, for it
would capture all details of the specific sentences thatdeked patterns and thus
tend to cause overfitting. So the problem that we tackle ideatify the charac-
teristic but generalized features within linkages as tngjinput for the statistical
learner. The most important component of a pattern is itigexi In the Discovery
Phase, we collect the bridges of the patterns in a list. Eaclyéd is given an
identification number, theridge id. Furthermore, each pattern is givemhahel:
Positive patterns are given the label and negative patternsl. Thecontext of
a word in a linkage is the set of all its links together withithdirection in the
sentence (left or right) and their target words. For examible context of the
placeholder Y” in the pattern of Figure 2.3 is the set of triplé&et , | ef t,
"the”), (prepoj , | ef t, "among”), (nmod, ri ght , "of") }. We distinguish the
following types of words: Nouns, adjectives, prepositions, verbs, numlgates,
names, person names, company names and abbreviations.dAcamhave a set
of corresponding types. The parser already assigns thenga#ioal types by its
part-of-speech tagging. We assign the other types by regutaiession matching.
For example, any word matchin§R-Z][a-z]+ Inc” is given the typeconpany.
Furthermore, we maintain a list of stopwords. To accomnmstia considerable
role that stopwords play in the understanding of a sentemeenake each stop-

thttp://www.mpii.mpg.det suchanek/personal/programs/javaexport
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word a type of its own. We represent a pattern by a quadrupits dfridge id,
the context of the first placeholder, the context of the sédq@aceholder, and its
label. For example, supposing that the bridge id of the patteFigure 2.3 is 42
and supposing that the pattern is positive, we represeitiern as

(42,
{(subj ,ri ght ,"was”) },
{(det , | ef t, "the”),
(prepQoj , | ef t,”among”),
(of Comp, ri ght, "of")
}41)

To show that our approach does not depend on a specific lgaafgorithm,
we implemented two machine learning algorithms failla: One is the simple
adaptive KNN classifier discussed in 2.3.1 and the other sas 8VM.

3.2.1 kNN

For KNN, we need a similarity function on patterns. By~ y we denote the
auxiliary function

1 ifz=y
Ty o= {0 else

Let 7(w) be the set of types of a word. We define the following similarity
functions for wordsuy, w,, contextsC;, Cy and patterns
(b1, C11, Ch2, 1), (ba, Ca1, Coa, ls):
_ J7(wy) N 7(wy)
|7 (w1) U T(ws)]

sim(wy, wo)

Z aq(cony ~ cong) + ag(diry ~ dirg) + agsim(wy, ws)

sim(Cy, Cy) = |Cy] - |Gy

(coni,diry1,w1)€Cy
(cona,dira,w2)€Co

stm((br, Ch1, Cia, 1), (ba, Co1, O, l3)) =
%(bl ~ bg)(sim(Cn, 021> + S’iTTL(Cm, 022))
wherea;, «g, as are weighting factors that sum up to 1. We chose=
0.4, ap = 0.2, ag = 0.4. We consider all patterns, p, with sim(py,p2) > 6
to be in the same equivalence class for some real valuié 6 is large, mem-

ory consumption increases and precision becomes bettethdgeneralization
suffers. We chosé = 0.5. We store an equivalence class simply by storing a
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prototype pattern. If we see a new pattern that does nottallan existing equiv-
alence class, it becomes the prototype for a new equivaldass. At the end of
the Assessment Phase, the label of an equivalencecclgiss its prototypec, is
computed as the average value of the labels of the pattethe itlass, weighted
with their respective similarities to the prototype:

label(c) = Z L sim(p, )

p=(b,C1,C2,l)Ec |C|

To classify a previously unseen pattern, we first deterntmequivalence class.
Then we calculate its label as the product of its similaktyhte prototype and the
label of the equivalence class.

3.2.2 SVM

To generalize patterns by an SVM, the patterns have to bslataa to real-valued
feature vectors. For this purpose, we first group the pateyntheir bridge ids.
Each group will be treated separately so that it is not nacgde store the bridge

id in the feature vector. If: is the number of connector symbols, then a feature
vector can be depicted as follows:

label context 1 context 2

/'/\r - N\ 7 - DY

R X..X ... X..X X..X .. X..X
—— —— —— ——

connector connector connector connectoy

The vector consists of three parts. The first part is the lgbebr —1), which
occupies one dimension in the vector as a real value (debgté&dn the scheme
above). The second part and the third part store the conteékedirst and sec-
ond placeholder, respectively. Each context contains gaubfor each possible
connector symbol. Each of these subparts contains onedrib{dd byX in the
above scheme) for each possible word type. So if theréaoed types, the over-
all length of the vector i$ +n x t +n x t. We encode a context as follows in the
vector: If there is a link of connectabn that points to a wordv, we first select
the sub-part that corresponds to the connector symbol Within this sub-part,
we set all bits to 1 that correspond to a type thdtas.

The vectors are still grouped according to the bridges. rAfie Discovery
Phase and the Assessment Phase, we pass each group sepaeiebVM. We
used Thorsten Joachims’ SVMLight [21] with its default pasders. The SVM
produces anodel for each group, which allows it to classify previously unsee
vectors. To classify a new pattern as positive or negativefivgt identify the
group it belongs to. We translate the pattern to a vectorn e use the model

15



corresponding to the group to classify the vector. Both thblland SVM classi-
fiers output a real value that can be interpreted as the cowfdef classifying a
test sample and can be used for computing precision atelifféevels of recall.
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4 Experiments

4.1 Setup

We ran LEILA on differentcorpora:

e Wikicomposers This is the set of all Wikipedia articlésbout composers.
We use it to see howrlILA performs on a document collection with a strong
structural and thematic homogeneity. We downloaded aludwmnts that
are listed in Wikipedia’s list of composers. The set cossiét872 HTML
documents.

e Wikigeneral. The set of all Wikipedia articles starting witls™ or " M”.
We chose it to assessELLA’s performance on structurally homogenous,
but thematically random documents. The set contains 78TNIlHJocu-
ments.

e Wikigeography. The set of all Wikipedia pages about the geography of
countries. This set contains 313 HTML documents.

e Googlecomposers This is a set of web pages about composers obtained
by querying the search engine Google. We use it to see hewALper-
forms on a corpus with a high structural heterogeneity. Werigd Google
for each composer name that appeared in Wikipedia’'s compigte We
restricted ourselves to the baroque, classical, and rocm@mnposers. For
each composer name, we downloaded the HTML page that rangle h
est in the query result. If the highest ranked page was a \&fkgatrticle,
we chose the second page. The set contains 492 HTML docun&inte
the querying was done automatically, a downloaded pagetisau@ssarily

http://www.wikipedia.org
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about the composer we queried for. The pages include spuadvertise-
ments as well as pages with no proper sentences at all.

We tested EILA with differenttarget relations. These include

e Thebi rt hdat e relation, which holds between a person and his birthdate
(for example Chopin”/” 1810”). This relation is easy to learn, because it is
bound to strong surface clues (the first element is alwayseentde second
Is a date). Furthermore, the likelihood of false positigesmall, because it
is extremely unlikely that a person and her birthdate appgaihance in a
sentence.

e Thesynonyny relation, which holds between two names that refer to the
same entity (for exampleJN”/” United Nations”). This relation is more
sophisticated, since there are no surface clues.

e Thei nst anceO relation, which holds between an entity and its concept
(for example Chopin”/” composer”). This relation is even more sophisti-
cated, because the sentences often express it only inhplicit

We compared EILA to differentcompetitors. We only considered competi-
tors that, like LEILA, extract the information from a corpus without using other
Internet sources. We wanted to avoid running the compstitarour own cor-
pora or on our own target relations, because we could notremstair tuning of
the competitors. Hence we rarelLA on the corpora and the target relations that
our competitors have been tested on by their authors. We a@ipe results of
LEILA with the results reported by the authors. The followingdistimerates our
competitors, together with their respective corpora afations:

e TextToOnto. This is a representative of methods that use surface psaiter
This approach has been perfected especially for ttet anceO relation.
Hence we chose as competitor a state-of-the-art patteroherafor this
relation, TextToOnt& For completeness, we also consider its successor
Text20nto [11], although it contains only default methodsts current
state of development.

e Snowball. To compare our system with the classical slot-extractaragigm,
we chose Snowball [1] as a recent competitor. In the orighagler, Snow-
ball has been tested on thenpany/ headquart er s relation. It holds
between a company and the city of its headquarters. Snowhbaltrained
on a collection of some thousand documents and then appli@dest col-
lection. For copyright reasons, we only had access to thetdsction. It
consists of 150 text documents.

2http://lwww.sourceforge.net/projects/texttoonto
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e There is a class of competitors that use context to assigmeepbd to an
entity. These systems are restricted toitihhst anceC -relation, but they
can classify instances even if the corpus does not contaihcaxdefini-
tions. We examined one of the newest systems in this field: syiseem
designed by Cimiano and Volker [12], which we will refer te the CV-
system In the original paper, the system was tested on a collectid380
files from the Lonely Planet Internet site

For theevaluation, the output pairs of the system have to be compared to
a table of ideal pairs. There are two different ways of defrime ideal pairs:
Ground-truth based or document-based.

For theground-truth evaluation technique, the ideal pairs are a set of ground
truth pairs that are independent of the corpus. This metheths inadequate for
our purpose for two reasons: First, the ground truth tablg Ioeaneither a subset
or a superset of the facts expressed in the documents. Sebertdchnique does
not allow us to measure the yield of the system with respe¢héodocument
content. We are interested in how good the system perforesiacting pairs as
compared to a human reader.

The latter question is answered by tdecument-based evaluation tech-
nique. For this technique, the ideal pairs are extracted manaiaiy the doc-
uments. In our methodology, the ideal pairs comprise alisptiat a human
would understand to be elements of the target relation. imradves full anaphora
resolution, the solving of reference ambiguities, and th@ae of truly defining
concepts. For example, we accept Chopin as instancewposer but not as
instance ofrenber , even if the text says that he was a member of some club. Of
course, we expect neither the competitors nernla to achieve the results in the
ideal table.

There is a variation of the document-based evaluation tqakencalled the
Ideal Metric [1]. We use the Ideal Metric only to compare&iLA to Snowball,
which has been optimized for this metric. The Ideal Metrisueses the target
relation to be right-unique (i.e. a many-to-one relatiorlence the ideal pairs
are right-unique. The output pairs can be made right-unipugelecting the pair
with the highest confidence for each first component. Nexilidates have to be
removed from the ideal pairs and also from the output pailsofone removes
all output pairs that have a first component that is not in deali set. Intuitively,
the Ideal Metric understands the results of the system asdidun from the first
pair component to the second. It compares the function ledmliby the system
to the ideal function. Once the ideal pairs are defined, pi@tj recall, and their
harmonic mear#'1 can be computed as follows, whevetput denotes the multi-

Shttp://www.lonelyplanet.com/
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set of the output pairs antlleal denotes the multi-set of the ideal pairs:

|Output N Ideal |
|Ideal|

|Output N Ideal|
|Output|

recall = precision =

71— 2 X recall X precision

recall + precision

There is one special case for the CV-system, which uses #@ Metric for the
non-right-unique nst ance relation. To allow for a fair comparison, we used
the Relaxed Ideal Metric, which does not make the ideal pairs right-unique. The
calculation of recall is relaxed as follows:

|Output N Ideal|
2By - (z,9) € Ideal}]

recall =

All document-based evaluation techniques require the mdaaxiraction of ideal
pairs. Due to the effort, we processed only a small propomiothe documents
by hand. To ensure significance in spite of this, we computdidence inter-
vals for our estimates: We interpret the sequence of outpus s a repetition
of a Bernoulli-experiment, where the output pair can beegittorrect (i.e. con-
tained in the ideal pairs) or not. The parameter of this Beitirdistribution is the

precision. We estimate the precision by drawing a sampldaherhand-labeled
documents). By assuming that the output pairs are idehticaelependently dis-
tributed, we can calculate a confidence interval for oumestion. We report
confidence intervals for precision and recall for a configdewel ofa. = 95%.

For the evaluation, we used approximate string matchingnigaes to ac-
count for different writings of the same entity. For example count the output
pair "Chopin” / " composer” as correct, even if the ideal pairs contain
"Frederic_Chopin” / ” composer”. We measured precision at different levels of
recall and report the values for the best F1 value. To find dgther LEILA just
reproduces the given examples, we also report the numbetranfides among
the output pairs. During our evaluation, we found that theklGrammar parser
does not finish parsing on roughtys of the files (for major grammatical erros or
indigestable input).

4.2 Results

4.2.1 Results on different relations

We tested EILA on the following target relationdi r t hdat e, synonyny and
i nst anceO . Table 4.1 summarizes our experimental results.
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For thebirthdate relation, we used Edward Morykwas’ list of famous birth-
dayd as examples, and we chose all pairs of person and incorneatisie as
counterexamples. All pairs with of a proper name and a dateamdidates.

We ran LEILA on the Wikicomposer corpus.HiLA performed quite well on this
task. The patterns found were of the forid was born in Y” and "X (Y)".
The quality of the results decreases as the system stareasider any number
in brackets a birthdate. For example, at the lower end of tiééidence scale, the
system also reports operas with the date of their first pedorce.

As examples orsynonymy we used all pairs of proper names that share the
same synset in WordNet. As counterexamples, we chose al phhouns that
are not synonymous in WordNet. For instandgN"/” United Nations” is an ex-
ample and fabbit”/” composer” is a counterexample. All pairs of proper names
are candidates.

We ran LEILA on the Wikigeography corpus, because this set is partiguiah

in synonyms. [EILA performed reasonably well. The patterns found include ”
was known as Y” as well as several non-grammatical constructions suctXas ”
(formerly Y)”.

The most interesting relation is thenst anceO relation. If an entity be-
longs to a concept, it also belongs to all super-conceptaeder, admitting each
pair of an entity and one of its super-concepts as an exanmguévihave resulted
in far too many false positives. In contrast, restrictingeeif to the lowest con-
cept might make the system miss useful patterns. The proldémdetermine
for each entity the (super-)concept that is most likely taibed in a natural lan-
guage definition of that entity. Psychological evidencqd RBR&jgests that humans
prefer a certain layer of concepts in the taxonomy to clgssitities. The set of
these concepts is called tBasic Level. Heuristically, we found that the lowest
super-concept in WordNet that is not a compound word is a gggadoximation
of the basic level concept for a given entity. We used allgafra proper name
and the corresponding basic level concept of WordNet as pbken We could
not use pairs of proper names and incorrect super-concesuamterexamples,
because our corpus Wikipedia knows more meanings of pragees than Word-
Net. Therefore, we used all pairs of common nouns and incosiger-concepts
from WordNet as counterexamples. All pairs of a proper nante aWordNet
concept are candidates.

We ran LEILA on the Wikicomposers corpus. The performance on this task
was acceptable, but not impressive. However, the chanaastan a high recall
and a high precision were significantly decreased by ourhtagluation pol-
icy: The ideal pairs include tuples deduced by resolvingastic and semantic
ambiguities and anaphoras. Furthermore, our evaluatibcypemands that non-

http://www.famousbirthdates.com
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defining concepts likeenmber not be chosen as instance concepts. In fact, a high
proportion of the incorrect assignments wéme end, nenber, successor
andpr edecessor, decreasing the precision oELLA. Thus, compared to the
gold standard of humans, the performance efila can be considered reasonably
good.

The patterns found include the Hearst patterns [¥9kuch as X”, but also
more interesting patterns lik&X”was knownasayY”,"X [...]as Y”,” X can
be regarded as Y” and "X is unusual among Y.

To test whether thematic heterogeneity influencesLh, we ran it on the
Wikigeneral corpus. Finally, to try the limits of our systeme ran it on the
Googlecomposers corpus. As shown in Table 4.1, the perfuzenaf LEILAdropped
in these increasingly challenging tasks, buillacould still produce useful re-
sults.

The different learning methods (KNN and SVM) performed &ty for all re-
lations. Of course, in each of the cases, it is possible teeaela higher precision
at the price of a lower recall. Parsing the files with the Lirdeger constitutes
the largest part of the run-time (approx. 42 seconds perdilg,3:45h for the
Wikigeography corpus). Training and testing on all corpexaept Wikigeneral
is in the range of 2-15 minutes, with the SVM being a bit fasiem kNN. The
Wikigeneral corpus with its roughi§0, 000 documents takes about 5h for training
and testing with the SVM. We did not employ KNN for this corpus

Table 4.1: Results with different relations
Corpus Relation System #0 #C # Precision Recall F1 H#E %E
Wikicomposers birthdate LEILA(SVM) 95 70 101 | 73.68%% 8.86% | 69.31%+ 9.00% | 71.43% 3 | 4.29%
Wikicomposers birthdate LEILA(KNN) 90 70 101 | 78.89% 8.43% | 70.30%+ 8.91% | 74.35% 3 | 4.23%
Wikigeography synonymy | LEILA(SVM) 92 74 164 | 80.43%% 8.11% | 45.12%+ 7.62% | 57.81% 4 | 541%
Wikigeography synonymy LEILA(KNN) 143 | 105 164 | 73.43%% 7.24% | 64.02%+ 7.35% | 68.40% 5 4.76%
Wikicomposers instanceOf | LEILA(SVM) 685 | 408 | 1127 | 59.56%+ 3.68% | 36.20%+ 2.81% | 45.03% | 27 | 6.62%
Wikicomposers instanceOf | LEILA(KNN) 790 | 463 | 1127 | 58.61%= 3.43% | 41.08%+t 2.87% | 48.30% | 34 7.34%
Wikigeneral instanceOf | LEILA(SVM) 921 | 304 912 | 33.01%+ 3.04% | 33.33%+3.06% | 33.17% | 11 | 3.62%
Googlecomposers| instanceOf | LEILA(SVM) 787 210 1334 | 26.68%% 3.09% | 15.74%+ 1.95% 19.80% 10 4.76%
Googlecomposers| instanceOf | LEILA(KNN) 840 237 1334 | 28.21% 3.04% | 17.77%+ 2.05% | 21.80% | 20 8.44%
Googlec.+Wikic. instanceOf | LEILA(SVM) 563 203 1334 | 36.06%% 3.97% | 15.22%+ 1.93% | 21.40% 11 5.42%
Googlec.+Wikic. instanceOf | LEILA(KNN) 826 246 1334 | 29.78%- 3.12% | 18.44%+ 2.08% | 22.78% 19 7.72%

#0 — number of output pairs
#C — number of correct output pairs
#l — number of ideal pairs

#E — number of examples among #C
%E — proportion of exasplaong #C
Recall and Precision with configeinterval ate = 95%

4.2.2 Results with different competitors

Table 2 shows the results for comparingiLAagainst various competitors (with
LEILAperformance in boldface). The numbers show thatLk clearly outper-
formed the other approaches in almost all cases. We compaedto Text-
ToOnto and Text20nto for thei nst anceOf relation on the Wikicomposers
corpus. TextToOnto requires an ontology as source of plessiincepts. We
gave it the WordNet ontology, so that it had the same pretiongdi as LEILA.
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TextToOnto does not have any tuning parameters. Text2Olwsathe choice
of certain sub-algorithms. The reported results were tis Wwe could achieve.
Text20nto seems to have a precision comparable to oursugltithe small num-
ber of found pairs does not allow a significant conclusion.thBsystems have
drastically lower recall than £ILA.

Next, we compared EILA to Snowball. As described above, we used the
conpany/ headquart er s-relation and the corpus that came with Snowball.
Since we only had access to the test corpus, we traimadalLon a small portion
(3%) of the test documents and tested on the remaining onese 8irriginal
5 seed pairs that Snowball used did not appear in the caleeti our disposal,
we chose 5 other seed pairs as examples. We used no countptegand hence
omitted the learning step of our algorithm.

LEILA quickly finds the patternY -based X”. This led to very high precision
and good recall, compared to Snowball — even though SnowilzalItrained on
a much larger training collection of some thousand document the original
paper [1], Snowball is evaluated using tideal Metric. Consequently, we report
precision and recall with respect to the Ideal Metric. By tlagure of this metric,
the precision increases and the recall decreases, altloeigblative performance
of the systems does not change.

Finally, we compared EILA to theCV-system In the gold standard for this
approach, the ideal pairs are given as a table, in which eatdy & assigned to
its most likely concept according to a human understandirigeotext, indepen-
dently of whether there are explicit definitions for the gntn the text or not.
Some caution is necessary in a comparison. For exampleexhenight state
that Leonardo Da Vinci was a painter, but that he also inwenw machines.
Then our system will classify him as a painter, whereas tmepstitor might say
he is an inventor. We demonstrate the difference of the twwagthes by our
experiments.

We conducted two experiments: First, we used the documenssd in Cimi-
ano and Volker’s original paper [11], the Lonely Planetpies. To ensure a fair
comparison, we traineddlLA separately on the Wikicomposers corpus, so that
LEILA cannot have example pairs in its output. For the evaluatwenalculated
precision and recall with respect to an ideal table proviokethe authors. Since
our competitor uses a different ontology, we allowed a disteof 4 edges in the
WordNet hierarchy to count as a match (for both systems).ceSthe explicit
definitions that our system relies on were sparse in the spiiLA performed
worse than the competitor.

In a second experiment, we had the competitor run on the Bhkposers
corpus. As the CV-system requires a set of target conceptgawe it the set of all
concepts in our ideal pairs. Furthermore, the system regjain ontology on these
concepts. We gave it the WordNet ontology, pruned to theetazgncepts with
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their super-concepts. We evaluated by the Relaxed Idealidylagain allowing
a distance of 4 edges in the WordNet hierarchy to count as am{édr both
systems). This time, our competitor performed worse. Thisecause our ideal
table is constructed from the definitions in the text, whicin competitor is not
designed to follow. These experiments show the differeiiopbphies of the CV-
system and EILA.

Table 4.2: Results with different competitors

Lonely Planet
Lonely Planet
Lonely Planet

instanceOf LEILA(SVM) 159 42 289 | 26.42% + 6.85% 14.53% +4.06% | 18.75%
instanceOf LEILA(KNN) 168 44 289 | 26.19% + 6.65% 15.22% +4.14% | 19.26%
instanceOf CV-system 289 92 289 | 31.83% + 5.37% 31.83% +537% | 31.83%

M — Metric (S: Standard document-based, I: Ideal Matric, BtaiRed Ideal Metric)
Other abbreviations as in Table 4.1

Corpus M Relation System #0 #C #l Precision Recall F1
Snowballcorp. | S headquarters| LEILA(SVM) 92 82 165 89.13% + 6.36% 49.70% +7.63% | 63.81%
Snowballcorp. | S headquarters| LEILA(KNN) 91 82 165 90.11% + 6.13% 49.70% + 7.63% | 64.06%
Snowballcorp. | S headquarters| Snowball 144 49 165 34.03% + 7.74% 29.70% + 6.97% 31.72%
Snowball corp. | headquarters| LEILA(SVM) 50 48 126 96.00% + 5.43% 38.10% + 8.48% | 54.55%
Snowball corp. | headquarters| LEILA(KNN) 49 48 126 97.96% + 3.96% 38.10% + 8.48% | 54.86%
Snowball corp. | headquarters| Snowball 64 31 126 48.44% +12.24% | 24.60% + 7.52% 32.63%
Wikicomposers | S instanceOf LEILA(SVM) 685 | 408 | 1127 | 59.56% +368% | 36.20%  +2.81% | 45.03%
Wikicomposers | S instanceOf LEILA(KNN) 790 | 463 | 1127 | 58.61% + 3.43% 41.08% + 2.87% | 48.30%
Wikicomposers | S instanceOf Text20nto 36 18 | 1127 | 50.00% 1.60% + 0.73% 3.10%
Wikicomposers | S instanceOf TextToOnto 121 47 | 1127 | 38.84% + 8.68% 4.17% +1.17% 7.53%
Wikicomposers | R instanceOf LEILA(SVM) 336 | 257 744 | 76.49% + 4.53% 34.54% 4+ 3.42% | 47.59%
Wikicomposers | R instanceOf LEILA(KNN) 367 | 276 744 | 75.20% + 4.42% 37.10%  + 3.47% | 49.68%
Wikicomposers | R instanceOf CV-system 134 30 744 | 22.39% 4.03% + 1.41% 6.83%

R

R

R
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5 Conclusion and Outlook

We have presented a novel approach for extracting binaayioes from natural
language text. The linguistic and statistical techniquesemploy provide us
with patterns that are robust to variations in the text. Weehenplemented our
approach and showed that our systemua outperforms existing competitors.

Our current implementation leaves room for future work.skithe linkages
allow for more sophisticated ways of resolving anaphoras @ther references
as compared to what we have currently implemented. Betténads could be
used to detect named entities. Furthermore, patterns beutdatched in a more
flexible way, for example by allowing matches of semanticalmilar words in
the bridge (like to recognize as” and "to know as”). Also, the patterns could
be learned and optimized only once and then be applied terdiit corpora.

The system could learn numerous interesting relationfydiireg for example
country/ presi dent,part O ,bel ongsTo,i sAut hor O ori sMarri edTo.
If only the results with a high confidence are taken, the systeuld be used for
building an ontology automatically. The system could acgj@nd exploit new
corpora on its own (for example, it could read newspapergcelt has built up
sufficient background knowledge, it could use this knowgetlganalyze corpora
more efficiently. For example, once it knows th&ita” was a hurricane, it will
conclude thatRita (2005)” does not mean that Rita was born in 2005, but rather
that Rita occurred in 2005. The system could make more stoqdtisd use of the
semantic relations, e.g. by concluding that multiple ifthece in the taxonomy
might indicate polysemy. We plan to exploit these posgibsiin our future work.
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Appendix A Proof for the bound in
section 2.3.1

With the definitions given in section 2.3.1, we prove an uggmemd for the prob-
ability P(#A > #B). Let#C = N — #A — #B.

P(#A > #B) = P(#A > #BI#C > k) - P(#C > k)
+P(#A > #B|#C < k)- P(#C < k) foranyk

< P(#C > k) + P(#A > #B|#C < k) - P(#C < k)

k—1 .
= PO > K) + 3 P(#A >~ #C = i) - P(HC =)
=0

N
—_

#C=i)- Y PHC=0)

)

.
< P(#C 2 k) + max P(#A > ——

N
< P(#C 2 k) + max P(#A > ——

Il
o

[#C =)

Now, we make use of the Chernoff-Hoeffding bound. This bocea be general-
ized for anyx > pn:

PO Xiza) < 207G
1=0

If we choosek = (1 + ¢)pc N, we may write:
P#HC >k)<2- exp 2N (v —pe)*

We observe that the moment we fix th€’, we obtain a Binomial distribution for
A and B with the parameter

26



pa = pa/(pa + pg). Sinceps < pp, pa < 1 and(N —i)/2 > pa(N — ).

Therefore

N —1
2

1 ~

|#C =) < 9= 2(N=1)(5—pa)?

P(#A >
Using these two bounds yields:

P(#A>#B) < 22N’ 4 max 2e2N-0G )
i=0...k—1
262N (N =Pc)® 4 9o 2(N=(k=1))(3-Pa)

26—2N52p20 + 26—2[N(1—pc—6pc)+1](%—124)2
We choose = -2 Then
pCc

1-pc

—p
2pc

)*pg 4 ¢ AN(=po— 12_1,20 po)+1](3—pa)?

P(#A > #B) < 2¢ N

(1-pc)? 1-p 1~
92N | o 2N (—pe— 1)+ (G —pa)?

_ 9o NUTEE | o aNCE) G r)?

_NO=pe)? 2

— % 2 4 9e (N(=pe)+2)(5-Pa)
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