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Abstract

Since their introduction, mean value coordinates enjoy ever increasing popularity
in computer graphics and computational mathematics because they exhibit a va-
riety of good properties. Most importantly, they are defined in the whole plane
which allows interpolation and extrapolation without restrictions. Recently, mean
value coordinates were generalized to spheres and to �3. We show that these
spherical and 3D mean value coordinates are well-defined on the whole sphere
and the whole space �3, respectively.
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1 Introduction
While certain types of generalized barycentric coordinates for planar polygons
were already known for a long time (Wachspress coordinates [10]), a new inter-
est in them was initiated by the invention of the mean value coordinates [1]. A
general theory of barycentric coordinates was developed, and it could be shown
that Wachspress and mean value coordinates are basically the only homogeneous
three-point coordinates that are positive for all convex polygons [2]. Moreover,
it turned out that mean value coordinates, unlike the Wachspress coordinates, can
be defined in the whole plane, for convex and non-convex polygons [4]. All these
properties made mean value coordinates an increasingly popular tool for mesh
deformation and many other applications [5, 8, 9].

Naturally, several attempts were made to generalize mean value coordinates
to higher dimensions. First, a definition for polyhedra with triangular faces was
obtained [3, 6, 7]; later, constructions for spherical polygons and for arbitrary
polyhedra were developed [8]. Nevertheless, a proof, that these spherical mean
value coordinates and 3D mean value coordinates are defined for the whole sphere
and the whole space �3, was not yet given. In the following chapters, we will
derive such a proof.

2



2 Planar Mean Value Coordinates
In this chapter, we give a definition of the mean value coordinates and a proof that
they are well-defined that is easy to generalize to higher dimensions.

2.1 Definition. A (planar) polygon P is given by a finite sequence of distinct
vertices vi ∈ �

2 such that its edges (vi, vi+1) do not intersect. For an edge e, V(e)
denotes the set of indices i such that vi is incident to e, and V(P) denotes the set
of all vertex indices.

2.2 Algorithm (planar mean value coordinates). Mean value coordinates for a
point x ∈ �2 with respect to a polygon P can be defined in the following way [1]:

• An edge vector ve is assigned to each edge e of the polygon such that∑
e ve = 0. (ve can be considered as some kind of edge normal.)

For an edge e = (vi, vi+1), let �1
e ⊂ �

1 be the oriented circular arc with end
points vi−x

‖vi−x‖ and vi+1−x
‖vi+1−x‖ . Let n : �1 → �2 be the outward unit normal vector

of the circle. Then ve is defined as the integral of n over �1
e , see Figure 2.1

(left):

ve :=
∫

�
1
e

ndS .

• The edge vectors are distributed to their respective edge vertices by the
unique weights µe, j such that µe,i(vi − x) + µe,i+1(vi+1 − x) = ve for an edge
e = (vi, vi+1).

• The weights at each vertex vi are cumulated as wi := µei−1,i + µei,i where ei

denotes the edge (vi, vi+1).

• The weights are normalized to form a partition of unity:

λi :=
wi∑
j w j
. (2.1)
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It is straightforward to show that the definition of ve has the following closed
form solution [1]

ve = tan
αi

2

( vi − x
‖vi − x‖

+
vi+1 − x
‖vi+1 − x‖

)
(2.2)

where αi denotes the angle between vi − x and vi+1 − x. Distributing these edge
vectors to the vertices yields the formula proposed earlier [1]:

wi =
tan αi−1

2 + tan αi
2

‖vi − x‖
. (2.3)

To show that this yields well-defined coordinates, it is necessary to show that
the denominator in the normalization step (Equation (2.1)) cannot become zero.
As shown in [4], this can be done in two steps:

• A refinement lemma is proven that states that the denominator does not
change if we refine our polygon by including additional vertices.

• For a particular refinement of the polygon, it is shown that the denominator
doesn’t vanish.

We will give an alternative proof for the first step. It has the advantage of
being more general than the original proof in [4], and it can easily be generalized
to higher dimensions. The second step proceeds as in [4].

2.3 Lemma. Let u ∈ �2 be a point, let v j ∈ �
2 be a set of points that lie on a

common line e, and let u =
∑

j µ jv j for some coefficients µ j. Denote by (nk)k=0,1

an orthonormal basis of �2 such that n0 is the normal vector of e, and let ξk and
ζ jk be the coefficients of u and v j, respectively: u =

∑
k ξknk, v j =

∑
k ζ jknk. We

define ζ0 := ζ00 = ζ10 > 0. (The last inequality can be achieved by choosing the
orientation of n0 appropriately.) This setting is sketched in Figure 2.1 (right).

Then
∑

j µ j =
ξ0
ζ0
.

Proof.
u =
∑

j

µ jv j =
∑

j

µ jζ0n0 +
∑

j

µ jζ j1n1.

Since u has a unique representation in the basis (nk), the claim follows. �

2.4 Lemma. In the situation of Lemma 2.3, assume that u is given as the sum of
points u =

∑
i ui, ui =

∑
j µi jv j ∈ �

2.
Then

∑
j µ j =

∑
i j µi j.
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Figure 2.1: Left: Construction of the edge vector ve. Right: Some notation.

Proof. Let ui =
∑

k ξiknk be the representations of ui in the basis (nk). From the
unique representation of u =

∑
k ξknk in this basis and the fact that u =

∑
i ui, we

can conclude ξ0 =
∑

i ξi0. Using Lemma 2.3 for u and the ui, we obtain

∑

j

µ j =
ξ0

ζ0
=
∑

i

ξi0

ζ0
=
∑

i j

µi j.

�

2.5 Definition. A refinement P̂ of a polygon P is a polygon that contains all the
vertices of P in the same order and additional vertices that lie on edges of P such
that P and P̂ bound the same area in �2.

2.6 Lemma (refinement of planar polygons). Let P be a polygon, and let P̂ be a
refinement of P. Let wi and ŵi be the weights in step 3 of Algorithm 2.2 for P and
P̂.

Then
∑

i∈V(P) wi =
∑

i∈V(P̂) ŵi.

Proof. Let e be an edge of P, and let Ê be the set of edges in P̂ that compose
the refinement of e. From the definition of ve, it is obvious that ve =

∑
ê∈Ê v̂e.

Therefore, Lemma 2.4 implies that
∑

i∈V(e) µe,i =
∑

ê∈Ê, i∈V (̂e) µ̂̂e,i. By taking the sum
over all edges e, we obtain the claim. �

Note, that this lemma is not restricted to mean value coordinates but applies
to all kind of coordinates as defined in [7]. The reason is that the edge vector for
an edge e can always be expressed as the sum of the edge vectors of its refine-
ment. The following lemma, in contrast, is in general not true if applied to other
coordinates than mean value coordinates.
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Figure 2.2: Left: Refinement of a polygon such that all edges with negative weight
(-) are counterbalanced by an edge with positive weight (+). Middle and Right:
Projection of an edge of a spherical polygon to the tangent plane at x.

2.7 Lemma. Let e be an edge of a polygon P. Let µe,i be the coefficients of its
edge vector ve.

Then
∑

i µe,i is greater than zero if and only if �1
e is positively oriented.

Proof. Without loss of generality let �1
e be positively oriented. Then ve is con-

tained in the cone defined by the convex hull of the v j − x. (The cone is indicated
by the shaded area in the left part of Figure 2.1.) Since all the ζ j0 = ζ0 are greater
than zero by definition of n0, ξ0 must be greater than zero as well. Therefore, the
claim follows from Lemma 2.3. �

2.8 Theorem ([4]). Let P be a polygon. Then the planar mean value coordinates
with respect to P are well-defined in �2.

Proof. Consider the denominator W :=
∑

i wi in Equation (2.1). We have to show
that W does not vanish if computed for an arbitrary x ∈ �2. We refine P by
adding all intersection points of rays from x through the vertices vi with the edges
of P, see the left hand side of Figure 2.2. According to Lemma 2.6, this does not
change W. If we now split the denominator of the refined polygon into partial
sums

∑
i∈V(e) µe,i associated to the edges e, we know from Lemma 2.7 that the sign

of these partial sums depends only on the orientation of �1
e . From Formula (2.2)

we can see that the absolute value of the partial sums decreases with increasing
distance to x. Therefore, W splits into sums of alternating sign and decreasing ab-
solute value starting with a positive number if x is inside and a negative number if
x is outside the polygon. Hence, W is positive inside and negative outside the poly-
gon. In particular, W is not equal to zero, and the theorem is proven. (For points x
on an edge exists a continuous extension of the definition in Algorithm 2.2.) For
details see [4]. �
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3 Spherical mean value coordinates
In this chapter, we show that the spherical mean value coordinates that we intro-
duced in [8] are well-defined in the whole space �3.

3.1 Definition. A spherical polygon P consists of a finite sequence of distinct
vertices vi ∈ �

2 located on a sphere and a set of non-intersecting edges (vi, vi+1)
that connect vertices vi and vi+1 by geodesic lines (these are the arcs of great
circles on the sphere).

It is admissible if it contains no antipodal points.

We consider a spherical polygon P on the unit sphere centered at the origin.
Let x be a point on the sphere. To obtain its spherical coordinates, P is centrally
projected to the tangent plane Tx�

2 at x to the sphere. Let vi be the intersection
points of the line given by vi and Tx�

2, see Figure 3.1 and Figure 2.2 (middle).
The points vi determine a polygon P in the plane Tx�

2. Now, we can compute the
planar mean value coordinates λi of x with respect to P. The spherical mean value
coordinates λi of x are defined by

∑

i

λivi = x, λi B 〈vi, vi〉λi

v3

v4

v1

v5 v2

v3

v5

v1

v2

v4

0

x

T Sx
2

Figure 3.1: Construction of spherical barycentric coordinates.
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where 〈·, ·〉 denotes the usual scalar product in �3. Note that 〈vi, vi〉 is just ±‖vi‖.
Although this value becomes very large and finally undefined if the angle θi be-
tween x and vi approaches π2 , this is compensated by a shrinkage of λi such that the
definition of λi can be extended continuously to the case θi =

π

2 . Note that these
coordinates can be used for exact interpolation of spherical harmonics of degree
one.

Finally, we remark that these coordinates can also be extended to vectors vi

and x of arbitrary length by defining

λi(x) B
‖x‖
‖vi‖
〈vi, vi〉λi. (3.1)

More details of this construction can be found in [8].
Since the planar mean value coordinates λi are well-defined and the spherical

mean value coordinates are a scaled version of them, we can basically conclude
that spherical mean value coordinates are well-defined, too. When doing so, one
new difficulty occurs: when a spherical polygon is projected to the tangent plane,
more general polygons may occur than considered so far, see Figure 2.2 (right).
We need to show that the results from the previous chapter still hold in this case.

3.2 Definition. A projective polygon consists of a finite sequence of distinct ver-
tices vi ∈ �

2 and a sequence of non-intersecting edges, given either by ei = {x =
pvi + qvi+1 ∈ �

2|p + q = 1, p ∈ [0, 1]} or by ei = {x = pvi + qvi+1 ∈ �
2|p + q =

1, p ∈ � \ (0, 1)}.

Such a polygon can be represented in polar coordinates as a sequence of dis-
tinct vertices v j = r jeiφ j with φ j ∈ [0, 2π) and r j ∈ � (including the negative
numbers). Using this notation, the complement of the line segment (v j, v j+1) is
chosen as edge e j if and only if the signs of r j and r j+1 differ, see Figure 3.2.
Without loss of generality let x be at the origin. Then we can define mean value
coordinates for projective polygons just as in Algorithm 2.2, and Formula (2.3)
becomes

wi =
tan αi−1

2 + tan αi
2

ri

with αi = φi+1 − φi.
Since projective polygons should actually be defined for the real projective

plane ��2 ⊃ �2, we can use the same proofs as in Chapter 2 if we take care of
the infinite points. The idea is that infinite points have infinite norm and therefore
weight zero. More accurately, we had to consider the limit of points that approach
infinity on a given edge. Doing this, we find out that Lemmas 2.3–2.6 still hold.
Lemma 2.7 has to be stated more precisely as
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3.3 Lemma. Let e be an edge that does not contain an infinite point in its interior.
Let µe,i be the coefficients of the respective edge vector ve.

Then
∑

i µe,i is greater than zero if and only if the respective angle αi and the
distances ri and ri+1 have the same sign.

We can now state

3.4 Theorem. Planar mean value coordinates for projective polygons are well-
defined.

Proof. In a first step, the projective polygon is refined at all infinite points. Then,
no edge contains an infinite point in its interior any more, and we can proceed as
in the proof of Theorem 2.8 using Lemmas 2.6 and 3.3. �

3.5 Corollary. Let P be an admissible spherical polygon. Then the spherical
mean value coordinates with respect to P are well-defined on �2.

Proof. Since P is admissible, its projection P is a projective polygon (in particular,
the projection is still non-intersecting). Hence, P is well-defined by Theorem 3.4.

�
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4 3D mean value coordinates for
arbitrary polyhedra
In this chapter, we show that 3D mean value coordinates are well-defined. It turns
out that the proof can be given along the same lines as in Chapter 2 for planar
mean value coordinates. Therefore, we indicate only the necessary changes.

4.1 Definition. A polyhedron P consists of a finite set of distinct vertices vi ∈ �
3

and a set of non-intersecting faces. F(vi) denotes the set of faces incident to vi.
For a face f, V(f) denotes the set of indices i such that vi is incident to f, and V(P)
denotes the set of all vertex indices.

4.2 Algorithm (3D mean value coordinates). Mean value coordinates for a point
x ∈ �3 with respect to a polyhedron P can be defined in the following way [8]:

• A face vector vf is assigned to each face f of the polyhedron such that∑
f vf = 0. (vf can be considered as some kind of face normal.)

For a face f, let �2
f ⊂ �

2 be the spherical patch obtained by projecting f to
the unit sphere with center x. Choose the orientation of �2

f consistently with
the orientation of the boundary of f. Let n : �2 → �3 be the outward unit
normal vector of the sphere. Then vf is defined as the integral of n over �2

f :

vf :=
∫

�
2
f

ndS .

A closed form for this integral is given in [8].

• For each face f, its face vector vf is distributed to the respective face vertices
using the spherical mean value coordinates µf,i with respect to the boundary
polygon of f:

∑
i∈V(f) µf,i(vi − x) = vf . Since f is planar, its projection to the

unit sphere centered at x (the boundary of �2
f ) is an admissible spherical

polygon. Therefore, the µf,i are well-defined by Corollary 3.5.
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• The weights at each vertex vi are cumulated as wi :=
∑

f∈F(vi) µf,i.

• The weights are normalized to form a partition of unity (2.1).

It is now easy to see that analogons of Lemmas 2.3–2.6 can be proven for
polyhedra by replacing lines and edges by planes and faces and so on. We obtain

4.3 Definition. A refinement P̂ of a polyhedron P is a polyhedron that contains
all the vertices of P and additional vertices and edges that lie on faces of P such
that P and P̂ bound the same volume in �3.

4.4 Lemma (refinement of polyhedra). Let P be a polyhedron, and let P̂ be a
refinement of P. Let wi and ŵi be the weights in step 3 of Algorithm 4.2 for P and
P̂.

Then
∑

i∈V(P) wi =
∑

i∈V(P̂) ŵi.

The proofs for Lemma 2.7 and Theorem 2.8 carry over to the 3D case as well,
and we arrive at

4.5 Theorem. 3D mean value coordinates are well-defined in �3.

Note that this theorem holds also for non-convex polyhedra with multiple com-
ponents (if these are alternatingly oriented, compare [4]). Also, we do not require
the faces to be simply connected.
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5 Conclusion
We showed that the spherical mean value coordinates and the 3D mean value
coordinates that were very recently introduced in [8] are well-defined. As far as
we know, these are the only known coordinates for polyhedra that are defined in
the whole space �3. Extensions to polytopes in �n−1 and �n are straightforward.
We hope that this will foster the usage of these coordinates in the future.
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