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Abstract

We present a novel algorithm for accurately denoising static and time-varying
range data. Our approach is inspired by similarity-based non-local image fil-
tering. We show that our proposed method is easy to implement and outper-
forms recent state-of-the-art filtering approaches. Furthermore, it preserves
fine shape features and produces an accurate smoothing result in the spatial
and along the time domain.
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1 Introduction

With the increasing usage of scanning devices, denoising of digitized mod-
els became one of the most fundamental problems in computer graphics. It
remains a challenging task to remove the inevitable noise created in every
acquisition process while preserving the details of the underlying shape. Es-
pecially, fine features are often lost if no special treatment is provided. There-
fore, a large variety of smoothing algorithms has been introduced in recent
years in the fields of image processing, computer vision, and computer graph-
ics. While many image processing approaches are also specifically designed
for video denoising, methods for 3-dimensional data are usually applied to
static point clouds or meshes.

Recent improvements in scanning technology [24, 25] now permit the
acquisition of time-varying range data. This is usually accomplished by pro-
jecting structured light patterns on the scanned object. Then range data is
computed off-line from the recorded frames using triangulation algorithms
from computer vision.

In this paper, we propose a method for denoising this new type of data
which is based on non-local image filtering [5]. The main idea of this filter
is to determine the denoised pixel intensity as a weighted average of similar
pixel intensities in its vicinity. The similarity of two pixels is determined
by comparing their local neighborhoods. We extend this approach to static
and dynamic range data and show that our algorithm accurately preserves
fine shape features, is easy to implement and is able to outperform recent
state-of-the-art filtering approaches.

To our knowledge, our approach is the first which is designed to denoise
time-varying geometric data. We believe that denoising this new type of
data is the first step to open it for a wide use in various fields of computer
graphics.

2



2 Previous Work

Recent state-of-the-art approaches in image denoising comprise, for instance,
the well known bilateral filter [22] and its recently proposed extension to non-
local neighborhoods [5]. Paris and Durand [17] introduced an interesting
acceleration technique for the bilateral filter which allows it to be mostly
expressed as simple linear convolutions. Other works adapt neighborhood
filters for video processing [4, 15].

Many mesh denoising methods are derived from signal or image processing
approaches. Taubin [21] first introduced signal processing on meshes based
on the definition of the Laplacian operator on surfaces. Desbrun et al. [6]
proposed a geometric diffusion algorithm for irregular meshes and introduced
the use of an implicit integration method to stabilize the flow and to allow
larger time steps. In [1], Wiener filtering is applied to meshes. Hildebrandt
and Polthier [10] introduced a new variant of anisotropic mean curvature
flow which preserves non-linear features. Fleishman et al. [9] proposed an
anisotropic mesh denoising algorithm derived from the bilateral neighbor-
hood filter for images. Concurrently, Jones et al. [12] introduced a similar
method based on robust statistics and local first-order predictors of a sur-
face. Recent work of Yoshizawa et al. [23] extends the non-local image filter
to meshes by computing a local RBF approximation to define the similarity
measure. Our work proposes a different similarity measure for range scans
which does not require to compute a local approximation and thus allows
a faster evaluation. Furthermore, we introduce how to process time-varying
range data.

Denoising can be either applied before or after meshing acquired point
clouds. Filtering of meshes is usually faster since the given connectivity
permits an efficient access to neighboring samples. On the other hand, surface
reconstruction from noisy point clouds is a difficult task which makes prior
denoising desirable. Pauly and Gross [18] create a spectral decomposition of a
point cloud and denoise it by manipulation of the spectral coefficients. Lange
and Polthier [13] denoise point clouds using anisotropic mean curvature flow.
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An important group of algorithms that recently attracted the interest of
many researchers are moving-least squares (MLS) approaches. They were
first proposed by Levin [14] and introduced to computer graphics by Alexa
et al. [2]. The main idea of MLS is the definition of a projection operator
which takes points scattered in the vicinity of a surface onto the surface
itself. More precisely, the MLS surface is defined by the fixpoints of the
given projection operator. Mederos et al. [16] applied the MLS projection for
point cloud denoising. Amenta and Kil [3] analyzed different MLS operators
by separating them into two components. They used this representation to
introduce a new variant of MLS with a better behavior near sharp features.
Fleishman et al. [8] represented sharp features by defining piecewise smooth
moving least-squares surfaces using a method from robust statistics. Dey and
Sun [7] recently proposed the AMLS operator which provides reconstruction
guarantees for the underlying surface for a point set with a non-uniform
sampling density.

Other algorithms are based on statistical data analysis. Pauly et al. [19]
introduced a framework for measuring uncertainty in point-sampled geome-
try which can be used, for instance, for merging range scans. Schall et al. [20]
used locally defined kernels to define a global probability distribution func-
tion. Point positions on a smooth surface are then found by moving the noisy
point set to maximum likelihood positions. Recently, [11] proposed how to
produce a smooth point cloud from a given one using Bayesian statistics.
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3 Non-local Denoising

We begin this section by describing the idea of non-local filtering for images in
more detail before we introduce our extension of this approach for denoising
static range data. Building on this extension, we then show how to apply
our algorithm to filter time-varying range data.

3.1 Non-local Image Filtering

The non-local image filter [5] belongs to the group of neighborhood filtering
schemes, which define the intensity value of a restored pixel of an image as
the weighted average of neighboring pixels with similar intensity values.

More precisely, if an image I = {I(u)|u ∈ P} is given, where u = (x, y)
is a pixel and I(u) is the intensity value at u, the smoothed pixel intensity
I ′(u) can be computed as the average of all pixel intensities in the image

I ′(u) =

∑

v∈P Φ(u,v) · I(v)
∑

v∈P Φ(u,v)

weighted by a similarity factor which measures the similarity between u and
v as

Φ(u,v) = exp

(

−

∑

o Ga(||o||) · |I(u + o) − I(v + o)|2

h2

)

.

Figure 3.1 illustrates the computation of the similarity measure. It depends
on the pixel-wise intensity difference of two square neighborhoods centered
at the pixels u and v. The vector o denotes the offset between the center
pixel and an arbitrary neighborhood pixel. The influence of a pixel pair on
the similarity falls with increasing Euclidean distance to the center of the
neighborhoods. For the distance weighting a Gaussian kernel Ga(·) with a
user-defined standard deviation a is used. Additionally, the method depends
on the parameter h which controls the degree of smoothing.
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Figure 3.1: The similarity of neighborhoods is computed based on the pixel-
wise difference of intensity values. Similar neighborhoods of p and q have a
large weight Φ(p, q), while different neighborhoods of p and r have a small
weight Φ(p, r).

3.2 Static Range Data

We want to adapt this approach from the 2-dimensional plane to range data.
This is not a straight-forward task as image pixels are usually aligned on a
regular and equispaced grid which is in general not true for range images.
Its reason is that an acquisition device measures the distance between itself
and the object along its line-of-sight which is not the depth in the form of
a height field. Additionally, computing height data from the given depths
causes that the sampling positions are no longer equispaced. Hence, our
problem is different from image denoising, where pixels are usually aligned
on a regular and equispaced grid. We assume that the data is given in the
form of data points pi which are arranged on a regular grid structure. In
this way, the neighborhood information for all points is known, but they are
not required to be equispaced. Since this data representation can be easily
computed from the output of different scanning devices, our algorithm is
easily applicable to filter different types of range data.

Similar to the bilateral filtering algorithm [9], we find counterparts for
grey values of an image by the heights of points over a tangent plane com-
puted at a given point. By determining the weighted average of these offsets,
we find the displacement for the point to remove the additive noise compo-
nent from the range scan surface. For this, we first estimate normals ni for all
points pi by least-squares fitting to their one-ring neighborhood. Although
the resulting normals are noisy, no mollification in contrast to [12] is neces-
sary to apply our algorithm. After this, we determine the filtered points p′

i
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by computing

p′
i = pi −

∑

pj∈N (pi) Φd · Φs · [(pi − pj) · ni] · ni
∑

pj∈N (pi) Φd · Φs

where Φd represents the distance and Φs the similarity weight.
Unlike the non-local image filtering algorithm, we do not sum over all

point positions to filter a point but over a local square neighborhood N (pi)
surrounding pi. Additionally, we separate the distance weighting factor from
the similarity measure. This allows us a more efficient computation of the
similarity weight and the denoised point position p′

i.
The fundamental difference between our method and bilateral filtering

is the selection of the similarity weight Φs. Unlike the bilateral filtering
algorithm, where Φs only weights the similarity between the two points pi and
pj, our approach considers the similarity of their geometric neighborhoods:

Φd(pi,pj) = e−
||pi−pj ||

2

d2 Φs(pi,pj) = e−
Sim(pi,pj)2

s2

Sim(pi,pj) =

∑

o∈O |(pi+o − pj+o) · ni|
2

||O||
.

This results in a better and more homogeneous filtering performance.
We compute the point-wise difference of two square neighborhoods centered
at pi and pj and project the distances onto the normal ni. This gives us
the point-wise height difference of both neighborhoods which is averaged to
compute the similarity Sim(pi,pj). We use Gaussian weighting functions
for Φd and Φs and an automatic procedure to determine their bandwidths
d and s. For this, we first choose random points pk of the range scan. We
then determine the maximal distance of the points of N (pk) to pk and the
standard deviation of all offsets to the tangent plane defined at pk. The
average maximal distance and standard deviation over all random samples
are then assigned µd and σs. We set d = 0.75µd and s = σs.

The user-defined parameters of our algorithm are thus the size of the
neighborhood N (pi) which controls the degree of smoothing and the size of
the neighborhood used to determine Sim(pi,pj) which regulates the homo-
geneity of the filtering result.

Similar to other neighborhood filtering schemes for meshes our algorithm
shrinks the object. This problem can be corrected in a post-processing step
using for instance a volume preservation technique [6]. On the other hand,
our method does not require special boundary treatment which is important
as scanned data is not closed and often has holes. Furthermore, our algorithm
only changes the point position in normal direction. This avoids point-drifts
which would introduce irregularities in the scan.
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3.3 Time-varying Range Data

Building on the previous section, we now propose how to extend our algo-
rithm to handle time-varying range data. The data is given as a sequence of
frames each of which is a static range scan. When we apply our algorithm
to each frame independently, we obtain a result that is satisfying for each
frame but which is not temporally stable.

Therefore, we extend N (pi) which is only defined as a spatial neighbor-
hood in the previous section by the temporal domain. This means we choose
for N (pi) sample points not only inside the current frame but also in neigh-
boring frames. We usually consider one frame before and after the current
frame for N (pi). In the following, we use the notation Nk(pi) for the slice of
the neighborhood N (pi) which is contributed by the frame k. Consequently,
we have to adapt Φd and Φs to weight the distance and the similarity be-
tween pi and pj which can be a points in different frames. We adapt the
bandwidths of Φd and Φs depending on the frame pj is associated with. We
detect the parameters automatically as described in Sec. 3.2 for each frame
k and identify the weighting functions as Φdk and Φsk.

Similar to the spatial domain, we want that neighborhoods from distant
frames contribute less to the new point position. We therefore introduce the
temporal distance factor Ψdk which weights the contribution of the frame k.
If c is the index of the current frame, we select Ψdk = (1/2)|k−c|. Additionally,
we can weight a frame based on the level of its additive noise. Neighborhoods
from frames with a higher amount of noise can contribute less to a smooth
solution and should thus have a lower weight. We obtain an estimate for
the noise-level from the bandwidth sk of Φsk for each frame k. We use these
values to set the weighting factor Ψsk = exp(−s2

k/ maxk{sk}
2). By combining

all elements, we determine the denoised point position as

p′
i = pi −

∑

k ΨdkΨsk

∑

pj∈Nk(pi) ΦdkΦsk · [(pi − pj) · ni] · ni
∑

k ΨdkΨsk

∑

pj∈Nk(pi) ΦdkΦsk

.

One advantage of our approach is that we do not necessarily need to
compensate for motion between frames as the similarity of the whole temporal
neighborhood is evaluated. If the motion is high, the similarity of the whole
neighborhood will be low and it will only marginally contribute to the new
point position. In this way, our approach also automatically accounts for
scene changes.
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4 Results

We demonstrate results of our denoising approach in Figures 4.1-4.3. We test
our method on scanned data from various sources. We apply our algorithm
to laser scanned models (Figs. 4.1+4.2) as well as to face and hand sequences
which were acquired using a structured light scanner (Fig. 4.3). We compare
our result with the bilateral filtering algorithm. Table 4.1 summarizes the
timings for our results and the parameter settings used to generate them.
All images are rendered using flat shading.

In Figure 4.1, we show the filtering efficiency of our approach on real-
world laser scanned data. The images show that high-frequency noise on the
Bimba model is removed after one iteration of our algorithm while lower-
frequency details like hair, ear and eye are accurately preserved.

Figure 4.2 shows a comparison of bilateral filtering and our approach
concerning feature preservation. Note that our algorithm creates a smoother
result of the Turbine Blade model than bilateral filtering and preserves the
sharp feature more accurately.

Figure 4.3 illustrates the results of the bilateral filter and our algorithm
on three frames of the acquired structured light sequences. To filter the
scans, we perform two iterations for each algorithm. In the first iteration,
we filter with a larger kernel size to remove the stripe artifacts created due
to the projection of regular line patterns onto the scanned object during the
acquisition process. As the stripe pattern varies over time, our method filters
across frames to increase the temporal stability of the smoothed sequence.
We consider one frame before and after the current frame while filtering
both sequences. High-frequency noise distributed over the whole scan does
not show any temporal coherence. Therefore, we filter every frame separately
with a smaller kernel size in the second iteration. We choose the parameters
to optimize the result of each algorithm.

Figure 4.3 shows that our method removes the stripe artifacts and the
high-frequency noise properly and achieves a more homogeneous result than
the bilateral filter due to the comparison of geometric neighborhoods in-
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Figure 4.1: Results of our approach on a raw laser scan of the Bimba model
(top row). The middle row shows the denoised result after one iteration of our
algorithm. In the bottom row we show zooms of the noisy and denoised ear
of the model and the corresponding mean curvature visualizations. Notice
that high-frequency noise is nicely removed while details in hair, ear and eye
regions are accurately preserved.
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raw input bilateral filt. our approach

Figure 4.2: Comparison of feature-preservation properties of bilateral fil-
tering and our approach on a laser range scan of the Turbine Blade model.
The zoomed mean curvature visualizations show that our approach preserves
sharp features more accurately than bilateral filtering while simultaneously
producing a slightly smoother result.
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Figure 4.3: Denoising results for two acquired noisy range sequences. The raw
input from the structured light scanner (top row) is denoised using bilateral
filtering [9] (middle row) and our technique (bottom row). Coloring by mean
curvature is used to illustrate the smoothness of the range data.

bilateral filtering

model P Sim N (·) time/frame

Blade 59K – 11x11 2.81s
Face Sequence 192K – 21x21 30s
(50 frames) – 11x11 10s

Hand Sequence 131K – 21x21 23s
(80 frames) – 11x11 7s

our approach

model P Sim N (·) time/frame

Blade 59K 5x5 7x7 5.6s
Bimba 212K 5x5 7x7 7.4s

Face Sequence 192K 11x11 19x19 285s
(50 frames) 5x5 11x11 18s

Hand Sequence 131K 11x11 19x19 203s
(80 frames) 5x5 11x11 13s

Table 4.1: Parameter settings and timings for the results presented in this
paper. The parameter P labels the average number of input points per
frame. Sim denotes the size of the neighborhood considered to compute the
similarity measure of our algorithm. All results were computed on a 2.66 GHz
Pentium 4 with 1.5 GB of RAM.
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stead of points. Since our algorithm exploits temporal coherence, we achieve
stable filtering results along the time domain. Furthermore, our algorithm
accurately preserves high-curvature regions, for instance, at the eyes and the
lips of the face scan.
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5 Conclusions & Future Work

We present a non-local neighborhood filtering technique for the accurate
denoising of static and time-varying range data. To our knowledge, our ap-
proach is the first method which is designed to denoise time-varying geometric
data. We show that it is able to preserve fine surface features, produces a
better smoothing result than previous state-of-the-art neighborhood filters,
and is easy to implement. In the future, we plan to enrich our algorithm
by additional attributes like color which is usually acquired simultaneously
with the geometric data. We believe that combining several attributes during
the filtering process will further increase the performance of neighborhood
filtering schemes.
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