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Abstract

A fundamental class of problems in wireless communication is concerned with
the assignment of suitable transmission powers to wireless devices/stations
such that the resulting communication graph satisfies certain desired proper-
ties and the overall energy consumed is minimized. Many concrete commu-
nication tasks in a wireless network like broadcast, multicast, point-to-point
routing, creation of a communication backbone, etc. can be regarded as such
a power assignment problem.

This paper considers several problems of that kind; for example one prob-
lem studied before in [1, 7] aims to select and assign powers to k of the stations
such that all other stations are within reach of at least one of the selected
stations. We improve the running time for obtaining a (1 + ε)-approximate

solution for this problem from n((α/ε)O(d)) as reported by Bilo et al. ([7]) to

O

(

n +
(

k2d+1

εd

)min { 2k, (α/ε)O(d) }
)

that is, we obtain a running time that is

linear in the network size. Further results include a constant approxima-
tion algorithm for the TSP problem under squared (non-metric!) edge costs,
which can be employed to implement a novel data aggregation protocol, as
well as efficient schemes to perform k-hop multicasts.

Keywords

wireless network, approximation algorithm, disc cover, geometric clustering,
power assignment
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1 Introduction

Wireless network technology has gained tremendous importance in recent
years. It not only opens new application areas with the availability of high-
bandwidth connections for mobile devices, but also more and more replaces
so far ’wired’ network installations. While the spatial aspect was already
of interest in the wired network world due to cable costs etc., it has far
more influence on the design and operation of wireless networks. The power
required to transmit information via radio waves is heavily correlated with
the Euclidean distance of sender and receivers. Hence problems in this area
are prime candidates for the use of techniques from computational geometry.

Wireless devices often have limited power supply, hence the energy con-
sumption of communication is an important optimization criterion. In this
paper we use the following simple geometric graph model: Given a set P of
n points in R

2, we consider the complete graph (P, P × P ) with edge weight
ω(p, q) = |pq|α for some constant α > 1 where |pq| denotes the Euclidean
distance between p and q. For α = 2 the edge weights reflect the exact energy
requirement for free space communication. For larger values of α (typically
between 2 and 4), we get a popular heuristic model for absorption effects.

A fundamental class of problems in wireless communication is concerned
with the assignment of suitable transmission powers to wireless devices/stations
such that (1) the resulting communication graph satisfies a certain connectiv-
ity property Π, and (2) the overall energy assigned to all the network nodes
is minimized. Many properties Π can be considered and have been treated
in the literature before, see [8] for an overview. In this paper we consider
several definitions of Π to solve the following problems:
k-Station Network/k-disk Coverage: Given a set S of stations and some
constant k, we want to assign transmission powers to at most k stations
(senders) such that every station in S can receive a signal from at least one
sender.
k-hop Multicast: Given a set S of stations, a specific source station s, a
set of clients/receivers C ⊆ S, and some constant k, we want the commu-
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nication graph to contain a directed tree rooted at s spanning all nodes in C
with depth at most k.
TSP under squared Euklidean distance: Given a set S of n stations,
determine a permutation p0, p1, . . . pn−1 of the nodes such that the total energy
cost of the TSP tour, i.e.

∑n−1
i=0 |pip(i+1) mod n|α is minimized.

1.1 Related Work

The k-Station Network Coverage problem was considered by Bilo et al. [7] as
a k-disk cover, i.e. covering a set of n points in the plane using at most k disks
such that the sum of the areas of the disks is minimized. They show that
obtaining an exact solution is NP-hard and provide a (1+ ε) approximation

to this problem in time n((α/ε)O(d)) based on a plane subdivision and dynamic
programming. Variants of the k-disk cover problem were also discussed in
[1].

The general broadcast problem – assigning powers to stations such that
the resulting communication graph contains a directed spanning tree and
the total amount of energy used is minimized– has a long history. The
problem is known to be NP-hard ([9, 8]), and for arbitrary, non-metric
distance functions the problem can also not be approximated better than a
log-factor unless P = NP [18]. For the Euclidean setting in the plane, it is
known ([2]) that the minimum spanning tree induces a power assignment for
broadcast which is at most 6 times as costly as the optimum solution. This
bound for a MST-based solution is tight ([9], [19]). There has also been work
on restricted broadcast operations more in the spirit of the k-hop multicast
problem we consider in this paper. In [3] the authors examine a bounded-hop
broadcast operation where the resulting communication graph has to contain
a spanning tree rooted at the source node s of depth at most k. They show
how to compute an optimal k-hop broadcast range assignment for k = 2 in
time O(n7). For k > 2 they show how to obtain a (1 + ε)-approximation
in time O(nO(µ)) where µ = (k2/ε)2k

, that is, their running time is triply
exponential in the number of hops k and this shows up in the exponent of
n. In very recent work [17], Funke and Laue show how to obtain a (1 + ε)
approximation for the k-hop broadcast problem in time doubly exponential
in k based on a coreset which has size exponential in k, though.

The classical travelling salesperson problem is NPO-complete for arbi-
trary, non-metric distance functions (see [16]), a lot of progress has been
made for the geometric case, where a (1 + ε) approximation is available (see
[4]).

General surveys of algorithmic range assignment problems can be found
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in [8, 20, 15].

1.2 Our Contribution

In chapter 2 we show how to find a coreset of size independent of n and
polynomial in k and 1/ε for the k−Station Network Coverage/k-Disk cover
problem. This enables us improve the running time of the (1 + ε) approxi-

mation algorithm by Bilo et al.[7] from n((α/ε)O(d)) to

O

(

n +

(
k2d+1

εd

)min { 2k, (α/ε)O(d) })

that is, we obtain a running time that is linear in n. We also present a
variant that allows for the senders to be placed arbitrarily (not only within
the given set of points) as well as a simple algorithm which is able to tolerate
few outliers and runs in polynomial time for constant values of k and the
number of outliers.

Also based on the construction of a (different) coreset of small size, we
show in chapter 3 how to obtain a (1 + ε) approximate solution to the k-hop
multicast problem with respect to a constant-size set C of receivers/clients.
Different from the solution for the k-hop broadcast problem presented in [17]
we can exhibit a coreset of size polynomial in k, 1/ε and r. The approach in
[17] requires a coreset of size exponential in k.

Finally, in chapter 4 we consider the problem of finding energy-optimal
TSP tours. The challenge here is that the edge weights induced by the Energy
costs do not define a metric anymore; a simple example shows that an optimal
solution to the Euklidean TSP can be a factor Ω(n) off the optimum solution.
We present an O(1)-approximation for the TSP problem with powers of the
Euklidean distance as edge weights.
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2 Energy-minimal Network
Coverage or:
”How to cover Points by Disks”

Given a set S of points in R
d and some constant k. We want to find at most

k d-dimensional balls with radii ri that cover all points in S while minimizing
the objective function

∑k
i=1 rα

i for some power gradient α > 1.

2.1 A small coreset for k-disk cover

In this section we describe how to find a coreset of size O(k2d+1/εd), i.e. of
size independent of n and polynomial in k and in 1/ε. We can distinguish
between two variants of the problem: the discrete version in which all the
center points of the balls must be contained in the input set S and the non-
discrete version in which the center points can be chosen arbitrarily. In the
construction of the coreset we will focus on the latter version and mention
when things have to be changed to make the approach also work for the first
case.

The idea is to reduce the input size by snapping the input points onto a
regular grid in such a way that a feasible solution for the original point set
can be transformed into a feasible solution for the aligned point set and vice
versa without changing the objective value too much.

We start by putting a regular d-dimensional grid on the input set S with
grid cell width δ. Each point of S is associated with an arbitrary but fixed
corner of the grid cell C in which it is contained. Such a corner point we
call the representative point for the points in S ∩ C. We say that C is
active if S ∩ C 6= ∅. Note that the distance between any point in S and
its representative is at most

√
d · δ and that from sets of points with same

coordinates only one has to be considered. The goal is now to (i) map S to

5



(a)

δ

ri

≈ δ

(b)

Figure 2.1: proof illustrations for theorem 2

only a few representatives and (ii) the set of representatives R represents S
in an (1 + ε)-approximation manner, i.e. opt(R) ≤ (1 + ε) · opt(S).

Theorem 1 For an appropriate δ we have

opt(R) ≤ (1 + ε) · opt(S)

Proof: Suppose we are given an optimal solution of S by k balls Ci with radii
ri and objective value OPT . Now perturb the input points in S by snapping
them to the d-dimensional grid as described above. By this perturbation it
can happen that some representative points are not covered anymore by the
discs Di. Note that increasing the radii ri by

√
d · δ ensures coverage again.

( Notice that in the discrete case the centers are also perturbed. Increasing
the radii by just another

√
d · δ ensures coverage in this case. ) Thus the

cost of this feasible solution P is given by

cost(P ) =
k∑

i=1

(ri +
√

d · δ)α

consider one ball C ′
i of P and choose

δ :=
1√
d
· δ′ with δ′ :=

ε · OPT 1/α

k · cα

then we have

cost(C ′
i) = (ri + δ′)α

=
α∑

j=0

(
α

j

)

· rα
i · δ′α−j

= rα
i +

α−1∑

j=0

(
α

j

)

· rα
i · δ′α−j
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note that ri ≤ OPT 1/α. Thus

cost(C ′
i) ≤ rα

i + OPT ·
α−1∑

j=0

(
α

j

)

·
(

ε

k · cα

)α−j

︸ ︷︷ ︸

(∗)

using some calculus we can show that (∗) ≤ ε/k for

cα :=
ε

k
· 1

( ε
k

+ 1)
1
α − 1

If we assume that ε ≤ 1 (which is reasonable for an approximation scheme)
cα ≤ 1

α
√

2−1
≤ ln 2 · α, i.e. cα is actually a very small constant, depending

only on α. Indeed we can show that bounding cα by ln 2 · α leads to the
asymptotically best bound on the size of the resulting coreset. Thus the cost
of P can be bounded by

cost(P ) ≤
k∑

i=1

(

rα
i +

ε

k
· OPT

)

=
k∑

i=1

rα
i + ε · OPT = (1 + ε) · OPT

Theorem 2 The size of the computed coreset R is bounded by

O

(
k2d+1

εd

)

Proof: Observe that the size of R is exactly given by the number of active
cells. On the other hand a cell C is active if and only if there is a point in
S that is contained in C. Since a feasible solution covers all points, a cell is
active only if it is (partially) covered by any of the corresponding balls (see
figure 2.1a). Thus the number of active cells is bounded by the number #cc
of cells (partially) covered by an optimal solution. Thus we can bound #cc
by a simple volume argument: just count how many cells with volume δd fit
in the balls of an opimal solution. Note that to ensure that also the partially
covered cells are taken into account we increase the radii by

√
d · δ (see figure
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2.1b). This leads to

#cc ≤
k∑

i=1

(

ri +
√

d · δ
)d

δd

≤ 1

δd
·

k∑

i=1

(
OPT 1/α + δ′

)d
=

1

δd
·

k∑

i=1

(OPT 1/α +
ε

k · cα
︸ ︷︷ ︸

≤1

OPT 1/α)d

≤ 1

δd
·

k∑

i=1

(2 · OPT 1/α)d

≤ kd+1

εd
· (2 · cα ·

√
d)

d ∈ O

(
kd+1

εd

)

For the construction of the grid we have assumed so far that we know
the optimal objective value OPT . Since we cannot compute OPT efficiently
we have to use an approximate value instead. Badoiu et al. show in [6]
how to compute a constant factor approximation of the so called k-center
clustering problem in O(n) time. This problem differs from the k-disc cover
problem only in the objective function where one pays only for the heaviest
disc. Obviously such a solution is a k-factor approximation for the k-disc
cover problem. It is easy to verify that our algorithm is still correct using
this approximation instead of OPT but also involves an increase in the size

of the computed coreset to O
(

k2d+1

εd

)

. As future work one could think of

deriving a constant factor approximation algorithm to avoid this.

2.2 Algorithms

What remains is to solve the small coreset instances. As mentioned before
we distinguish between two variants of the problem: the discrete version and
the non-discrete version:

2.2.1 Discrete Version

Via Bilo et al.: Recall that the running time of the approach of Bilo et
al. is given by

n((α/ε)O(d))

using their algorithm for solving the coreset instance yields an overall running
time of
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O

(

n +

(
k2d+1

εd

)(α/ε)O(d))

.

Via Brute-Force: We can find an optimal solution in the following way.
We consider all k-subsets of the points in the coreset N as the possible centers
of the balls. Note that at least one point in N has to lie on the boundary of
each ball in an optimal solution (otherwise you could create a better solution
by shrinking a ball). Thus the number of possible radii for each ball is
bounded by n − k. In total there are (n − k)k ·

(
n
k

)
≤ n2k possible solutions

which means that we can solve our coreset via brute-force in time

O

(

n +

(
k2d+1

εd

)2k
)

So we obtain the following result:

Corollary 1 The runnnig time of our approximation algorithm in the dis-
crete case is

O

(

n +

(
k2d+1

εd

)min { 2k, (α/ε)O(d) })

2.2.2 Non-Discrete Version

Via Brute-Force: Note that on each ball D of an optimal solution there
must be at least three points (or two points in diametral position) that define
D - otherwise it would be possible to obtain a smaller solution by shrinking
D. Thus for obtaining an optimal solution via brute force it is only necessary
to check all k-sets of 3- respectively 2-subsets of S which yields a running
time of O(n3k). Solving our coreset via brute-force yields the following:

Corollary 2 The runnnig time of our approximation algorithm in the non-
discrete case is

O

(

n +

(
k2d+1

εd

)3k
)

2.3 k-disk cover with few outliers

Assume we want to cover not all points by disks but we relax this constraint
and allow a few points not to be covered, i.e. we allow let’s say c outliers.
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This way, the optimal cover might have a considerably lower power consump-
tion/cost.

Conceptually, we think of a k-disk cover with c outliers as a (k + c)-
disk cover with c disks having radius 0. Doing so, we can use the same
coreset construction as above, replacing k by k + c. Obviously, the cost of
an optimal solution to the (k + c)-disk cover problem is a lower bound for
the k-disk cover with c outliers. Hence, the imposed grid might be finer than
actually needed. So snapping each point to its closest representative still
ensures a (1 + ε)-approximation. Constructed as above, the coreset has size

O( (k+c)2d+1

εd ).
Again, there are two ways to solve this reduced instance, first by a slightly

modified version of the algorithm proposed by Bilo et al. [7] and second by
exhaustive search.

We will shortly sketch the algorithm by Bilo et al. [7] which is based
on a hierarchical subdivision scheme proposed by Erlebach et al. in [11].
Each subdivision is assigned a level and they together form a hierarchy. All
possible balls are also assigned levels depending on their size. Each ball of a
specific level has about the size of an ε-fraction of the size of the cells of the
subdivision of same level. Now, a cell in the subdivision of a fixed level is
called relevant if at least one input point is covered by one ball of the same
level. If a relevant cell S ′ is included in a relevant cell S and no larger cell S“

exists that would satisfy S ′ ⊆ S“ ⊆ S, then S ′ is called a child cell of S and S
is called the parent of S ′. This naturally defines a tree. It can be shown that
a relevant cell has at most a constant number of child cells (the constant only
depending on ε, α and d). The key ingredient for the algorithm to run in
polynomial time is the fact that there exists a nearly optimal solution where
a relevant cell can be covered by only a constant number of balls of larger
radius. The algorithm then processes all relevant cells of the hierarchical
subdivision in a bottom-up way using dynamic programming. A table is
constructed that for a given cell S, a given configuration P of balls having
higher level than S (i.e. large balls) and an integer i ≤ k stores the balls of
level at most the level of S (i.e. small balls) such that all input points in S
are covered and the total number of balls is at most i. This is done for a cell
S by looking up the entries of the child cells and iterating over all possible
ways to distribute the i balls among them.

The k-disk cover problem with c outliers exhibits the same structural
properties as the k-disk cover problem without outliers. Especially, the local
optimality of the global optimal solution is preserved. Hence, we can adapt
the dynamic programming approach of the original algorithm. In order for
the algorithm to cope with c outliers we store not only one table for each
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cell but c + 1 such tables. Each such table corresponds to the table for
a cell S where 0, 1, . . . , c pointsx are not covered. Now, we do not only
iterate over all possible ways to distribute the i balls among its child cells
but also all ways to distribute l ≤ c outliers. This increases the running time
to n((α/ε)O(d)) · c((α/ε)O(d)) = n((α/ε)O(d)). Hence running the algorithm on the
coreset yields the following result:

Corollary 3 We can compute a minimum k-disk cover with c outliers (1+ε)
approximately in time

O

(

n +

(
(k + c)2d+1

εd

)(α/ε)O(d))

.

For the exhaustive search approach we consider all assignments of k disks
each having a representative as its center and one lying on its boundary.
For each such assignment we check in time O(kn) whether the number of
uncovered points is at most c. We output the solution with minimal cost.

Corollary 4 We can compute a minimum k-disk cover with c outliers (1+ε)
approximately in time

O

(

n + k

(
(k + c)2d+1

εd

)2k+1
)

.
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3 Bounded-hop Multicast or:
”Reaching few Receivers
quickly”

Given a set P of points (stations) in R
d, a distinguished source point s ∈ P

(sender), and a set C ⊂ P of client points (receivers) we want to assign
distances/ranges r : P → R

+
0 to the elements in P such that the resulting

communication graph contains a tree rooted at s spanning all elements in
C and with depth at most k (an edge (p, q) is present in the communica-
tion graph iff r(p) ≥ |pq|). Goal is to minimize the total assigned energy
∑

p∈P r(p)α. This can be thought of as the problem of determining an en-
ergy efficient way to quickly (i.e. within few transmissions) disseminate a
message or a datastream to a set of few receivers in a wireless network.

As in the previous Section we will solve this problem by first deriving
a coreset S of size independent of |P | = n and then invoking a brute-force
algorithm. We assume both k and |C| = c to be (small) constants. The
resulting coreset will have size polynomial in 1/ε, c and k. For few receivers
this is a considerable improvement over the exponential-sized coreset that
was used in [17] for the k-hop broadcast.

3.1 A small coreset for k-hop multicast

In the following we will restrict to the planar case in R
2, the approach extends

in the obvious way to higher (but fixed) dimensions. Assume w.l.o.g. that
the maximum distance of a point p ∈ P from s is exactly 1. We place a
square grid of cell width ∆ = 1√

2
ε
kc

on [−1, 1]× [−1, 1] ⊂ R
2. The size of this

grid is O( (kc)2

ε2
). Now we assign each point in P to its closest grid point. Let

S be the set of grid points that had at least one point from P snapped to it,
C ′ the set of grid points that have at least one point from C snapped to it.
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It remains to show that S is indeed a coreset. We can transform any
given valid range assignment r for P (wrt receiver set C) into a valid range
assignment r′ for S (wrt receiver set C ′). We define the range assignment r′

for S as
r′(p′) = max

p was snapped to p′

r′(p) +
√

2∆.

Since each point p is at most 1√
2
∆ away from its closest grid point p′ we

certainly have a valid range assignment for S. It is easy to see that the cost
of r′ for S is not much larger than the cost of r for P . We have:

∑

p′∈S

(r′(p′))α =
∑

p∈P

( max
p was snapped to p′

r(p) +
√

2∆)α

≤
∑

p∈P

( max
p was snapped to p′

r(p) +
ε

kc
)α

≤
∑

p∈P

(r(p) +
ε

kc
)α.

The relative error satisfies

cost(r′)

cost(r)
≤
∑

p∈P (r(p) + ε
kc

)α

∑

p∈P (r(p))α
.

Notice, that
∑

p∈P r(p) ≥ 1 and r is positive for at most kc points p (each of
the c receivers must be reached within k hops). Hence, the above expression
is maximized when r(p) = 1

kc
for all points p that are assigned a positive

value. Thus
cost(r′)

cost(r)
≤

(kc) · ( 1
(kc)

+ ε
(kc)

)α

(kc) · ( 1
(kc)

)α
= (1 + ε)α.

On the other hand we can transform any given valid range assignment r′

for S into a valid range assignment r for P as follows. We select for each grid
point g ∈ S one representative gP from P that was snapped to it. For the grid
point to which s (the source) was snapped we select s as the representative. If
we define the range assignment r for P as r(gP ) = r′(g) +

√
2∆ and r(p) = 0

if p does not belong to the chosen representatives, then r is a valid range
assignment for P because every point is moved by at most ∆/

√
2. Using the

same reasoning as above we can show that cost(r) ≤ (1 + ε)α cost(r′). In
summary we obtain the following theorem:

Theorem 3 For the k-hop multicast problem with c receivers there exists a

coreset of size O( (kc)2

ε2
).
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3.2 Solution via a naive algorithm

As we are not aware of any algorithm to solve the k-hop multicast problem
we employ a naive brute-force strategy, which we can afford since after the
coreset computation we are left with a ’constant’ problem size. Essentially
we consider every kc-subset of S as potential set of senders and try out the
|S| potential ranges for each of the senders. Hence, naively there are at

most

(
kc2

ε2

kc

)

·
(

kc2

ε2

)kc

different range assignments to consider at all. We

enumerate all these assignments and for each of them check whether the
range assignment is valid wrt c′; this can be done in time |S|. Of all the valid
range assignments we return the one of minimal cost.

Assuming the floor function a coreset S for an instance of the k-hop
multicast problem can be constructed in linear time. Hence we obtain the
following corollary:

Corollary 5 A (1 + ε)-approximate solution to the k-hop multicast problem

on n points in the plane can be computed in time O(n +
(

kc
ε

)4kc
).

As we are only after an approximate solution, we do not have to consider
all |S| potential ranges but can restrict to essentially O(log1+ε

kc
ε
) many, the

running time of the algorithm improves accordingly:

Corollary 6 A (1 + ε)-approximate solution to the k-hop multicast problem

on n points in the plane can be computed in time O

(

n +
(

(kc)2 log kc

ε

ε3

)kc
)

.
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4 Information aggregation via
energy-minimal TSP Tours

While early wireless sensor networks (WSNs) were primarily data collection
systems where sensor readings within the network are all transferred to a
central computing device for evaluation, current WSNs perform a lot of the
data processing in-network. For this purpose some nodes in the network
might be interested in periodically collecting information from certain other
nodes, some nodes might want to disseminate information to certain groups
of other nodes. A typical approach for data collection and dissemination
as well as for data aggregation purposes are tree-like subnetwork topologies,
they incur certain disadvantages with respect to load-imbalance as well as
non-obliviousness to varying initiators of the data collection or dissemination
operation, though. Another, very simple approach could be to have a virtual
token floating through the network (or part thereof). Sensor nodes can attach
data to the token or read data from the token and then hand it over to the
next node. Preferably the token should not visit a node again before all other
nodes have been visited and this should happen in an energy-optimal fashion,
i.e. the sum of the energies to hand over the token to the respective next node
should be minimized. Such a scheme has some advantages: first of all none
of sensor nodes plays a distinguished role – something that is desirable for
a system of homogenous sensor nodes – furthermore every sensor node can
use the same token to initiate his data collection/dissemination operation.
Abstractly speaking we are interested in finding a Travelling Salesperson tour
(TSP) of minimum energy cost for (part of) the network nodes. Unfortu-
nately, the classical TSP with non-metric distance function is very hard to
solve (see [16]), most progress has been made for the metric and geometric
case (see e.g. [4]).

In this chapter we show that the ’normal’ Euklidean TSP is not suitable
for obtaining an energy-efficient tour, but still a constant-factor approxima-
tion can be obtained.
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4.1 Why Euclidean TSP does not work

Figure 4.1: An optimal
energy-minimal tour for
points on a line

Simply computing an optimal tour for the un-
derlying Euclidean instance does not work.
The cost for such a tour can be a factor Ω(n)
off from the optimal solution for the energy-
minimal tour. Consider the example where n
points lie on a slightly bent line and each point
having distance 1 to its right and left neigh-
bor. An optimal Euclidean tour would visit
the points in their linear order and the go back
to the first point. Omitting the fact that the
line is slightly bent this tour would have a cost
of (n − 1) · 12 + (n − 1)2 = n(n − 1) if the
edge weights are squared Euclidean distances. However, an optimal energy-
minimal tour would have a cost of (n − 2) · 22 + 2 · 12 = 4(n − 1) + 2. This
tour would first visit every second point on the line and on the way back all
remaining points as in figure 4.1.

4.2 A 6-Approximation Algorithm

In this section we will describe an algorithm which computes a 6-approximation
for the TSP under squared Euclidean distance. Obviously, the cost of a min-
imum spanning tree is a lower bound for the optimal value OPT of the tour.

PSfrag replacements

r

r1 r2 rk

p1 p2 pk

T1 T2 Tk

. . .

Figure 4.2: tree T and its children
trees T1, T2, . . . , Tk

Consider a non-trivial minimum span-
ning tree T for a graph with node set V
and squared Euclidean edge weights. We
denote the cost of such a tree by MST(T ).
Let r be the root of T and p be one child
of T .

We define two Hamiltonian paths
πa(T ) and πb(T ) as follows. Let πa(T )
be a path starting at r, finishing at p that
visits all nodes of T and the cost of this
path is at most 6 MST(T ) − 3‖rp‖2. Let
πb(T ) be defined in the same way but in
opposite direction, i.e. it starts at p and
finishes at r.

Now, if we have such a tour πa(T ) for
the original vertex set V we can construct a Hamilton tour by connecting r
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with p. The cost of this tour is clearly at most 6 MST(T )−3‖rp‖2 +‖rp‖2 ≤
6 MST(T ) ≤ 6 OPT. It remains to show how to construct such tours πa and
πb. We will do this recursively.

For a tree T of height 1, i.e. a single node r, πa(T ) and πb(T ) both
consist of just the single node. Conceptually, we identify p with r in this case.
Obviously, the cost of both paths is trivially at most 6 MST(T ) − 3‖rp‖2.

Now, let T be of height larger than 1 and let T1, . . . , Tk be its children
trees. Let r denote the root of T and ri the root of Ti and pi be a child of Ti

as in figure 4.2. Then we set πa(T ) = (r, πb(T1), π
b(T2), . . . , π

b(T )).
The cost of the path πa(T ) satisfies

cost(πa(T )) = ‖rp1‖2 + cost(πb(T1)) + ‖r1p2‖2 + cost(πb(T2)) +

. . . + ‖rk−1pk‖2 + cost(πb(Tk))

≤ (‖rr1‖ + ‖r1p1‖)2 + cost(πb(T1))

+(‖r1r‖ + ‖rr2‖ + ‖r2p2‖)2 + cost(πb(T2))
...

+(‖rk−1r‖ + ‖rrk‖ + ‖rkpk‖)2 + cost(πb(Tk))

≤ 2‖rr1‖2 + 2‖r1p1‖2 + cost(πb(T1))

+3‖r1r‖2 + 3‖rr2‖2 + 3‖r2p2‖2 + cost(πb(T2))
...

+3‖rk−1r‖2 + 3‖rrk‖2 + 3‖rkpk‖2 + cost(πb(Tk))

≤ 6
k∑

i=1

‖rri‖2 + 3
k∑

i=1

‖ripi‖2 +
k∑

i=1

cost(πb(Ti)) − 3‖rrk‖2

≤ 6
k∑

i=1

‖rri‖2 + 6
k∑

i=1

MST(Ti) − 3‖rrk‖2

= 6 MST(T ) − 3‖rrk‖2.

In the above calculation we used the fact that (
∑n

i=1 ai)
α ≤ nα−1 ·∑n

i=1 aα
i ,

for ai ≥ 0 and α ≥ 1. The path πb(T ) is constructed analogously.
In fact, the very same construction and reasoning can be generalized to

the following corollary.

Corollary 7 There exists a 2 · 3α−1-approximation algorithm for the TSP if
the edge weights are Euclidean edge weights to the power α.
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