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Abstract

The current trends in computer graphics focus on acquiring, processing and
reproducing real world scenes, often with a quite high dynamic range (HDR).
Many algorithms require such HDR image or video data as an input and the
increasing availability of HDR sensors provides a natural source of them. But
at the same time the diversity of HDR sensor technology leads to a strong
need for photometric calibration of such HDR camera systems in order to
retain the fidelity of the final result.

We present a calibration approach based on an earlier HDR recovery al-
gorithm for standard low dynamic range (LDR) cameras. We focus here on
the specific challenges posed by cameras with a dynamic range of more than
six orders of magnitude such as complex camera response curves or selection
of appropriate calibration targets. We perform an absolute calibration of two
HDR and one LDR camera systems to allow for recovery of real-world lumi-
nance values. To validate our approach, we compare these luminance values
to measurements performed with a luminance meter for grayscale patches
covering a dynamic range of six orders of magnitude. The achieved accu-
racy of the photometric calibration is sufficient for many measurement and
image-based acquisition applications.

Keywords

calibration, photometry, high dynamic range, video camera, absolute cali-
bration



1 Introduction

High dynamic range (HDR) imaging technology is becoming a standard tool
in computer graphics and vision applications. Especially when acquiring im-
ages in complex lighting situations, standard low dynamic range (LDR) imag-
ing sensors (mostly based on CCD technology [4]) are easily saturated and
image details are lost. Many applications such as measuring material char-
acteristics, capturing environment maps for realistic rendering using global
illumination solutions, or image-based recovery of surface reflection param-
eters furthermore require photometrically calibrated images with absolute
luminance values per pixel.

Several methods to improve the dynamic range of LDR cameras have
been developed based on the multiple acquisition of the target scene with
different exposure settings [1, 8, 9, 2]. These methods, however, impose a
severe limitation on the applications as a precise HDR acquisition is only
possible for static scenes. Kang et al. [5] proposed a method for dynamic
scenes but the achievable dynamic range is limited.

In recent years, several new image sensors, mostly based on CMOS tech-
nology, have been developed that are capable of capturing images with a
dynamic range of up to 8 orders of magnitude at video frame rates. Several
HDR video cameras based on these sensors are already commercially available
(see [5] for an overview). They cannot only be used to speed up many image-
based measurement systems that currently use multi-exposure techniques
but allow also to capture dynamic scenes with high contrast. Compared to
multi-exposure approaches, HDR video cameras offer considerably wider dy-
namic range and the quality is independent of changes in scene content as
frame-to-frame coherence is not required.

Although photometric calibration of LDR cameras has already been widely
discussed, the equivalent task for HDR cameras is not trivial. The technolo-
gies developed to capture high dynamic range are varied, so that it is diffi-
cult to define a general model of camera response curves. Depending on their
built-in assumptions many algorithms suited for LDR cameras may fail. Fur-
thermore, finding a suitable calibration target with sufficiently high dynamic
range is difficult. Finally, it is often not possible to control the integration
time of HDR cameras so that acquiring differently exposed images requires
additional optical filters.

1.1 Contribution

The goal of this paper is to perform absolute photometric calibration of
HDR cameras and to validate the accuracy of current HDR cameras for



applications requiring such calibration. We first adapt an existing technique
by Robertson et al. [9] to the specific requirements of HDR camera systems.
Alternatively, we follow earlier approaches [7] and make an assumption about
the shape of the response curve based on the used sensor technology and
camera data sheets. We thus only have to determine basic offset and scale
values to perform an absolute photometric calibration. We then compare
absolute luminance values of a series of grayscale patches determined using
the calibrated cameras with ground truth measurements performed with a
luminance meter and discuss the error in the light of possible applications.

The remainder of the paper is structured as follows: after an overview
over previous work in Section 2, we discuss our methods for photometric cal-
ibration of HDR cameras (Section 3). In Section 4, we present experimental
results to validate our approach. Before concluding, we discuss the benefits
and drawbacks of the approach in Section 5.

2 Previous Work

We first give a brief overview over current HDR camera technology. We then
present existing methods for photometric calibration of LDR cameras and
discuss their applicability to HDR camera systems.

2.1 HDR Camera Technology

There are currently two major approaches to extend the dynamic range of
an imaging sensor. One type of sensor collects charge generated by the
photo current. The amount of charge collected per unit of time is linearly
related to the irradiance on the chip (similar to a standard CCD chip [4]),
the exposure time is however varying per pixel (sometimes called “locally au-
toadaptive” [6]). This can for instance be achieved by sequentially capturing
multiple exposures with different exposure times setting or by stopping after
some time the exposure of the pixels that would be overexposed during the
next time step. A second type of sensor uses the logarithmic response of a
component to compute the logarithm of the irradiance in the analog domain.
Both types require a suitable analog-digital conversion and generate typically
a non-linearly sampled signal encoded using 8-16 bits per pixel value.

2.2 Photometric Calibration

Photometric calibration of LDR cameras has been widely discussed in the
context of high dynamic range imaging. A good overview over existing work



can be found in [9]. Current methods to extend the dynamic range through
multiple exposures consist of two steps: they first recover the camera response
curve in order to linearize the captured images. If the sensor has a linear
characteristic (such as the raw output of a CCD sensor) this step can be
omitted [7]. In a second step, the linearized input images are scaled according
to the exposure settings and combined into a single image.

In principle, three different approaches are used for response curve re-
covery of LDR cameras. We briefly discuss each of them in view of possible
application to photometric calibration of HDR cameras.

The algorithm developed by Debevec and Malik [1] is based on the con-
cept that a particular pixel exposure is defined as a product of the irradiance
at the film and the exposure time, transferred by the camera response func-
tion. This concept is embedded in an objective function which is minimized
to determine the camera response curve. The objective function is addition-
ally constrained by the assumption that the response curve is smooth, which
is essential for the minimization process. Whereas this assumption is gener-
ally true for LDR cameras based on CCD technology, the response curve is
normally not smooth in locally autoadaptive HDR sensors. Furthermore, the
process of recovering the response curve is based on solving a set of linear
equations. While the size of the matrix representing these linear equations is
reasonable for 8 bit data, memory problems may occur for arbitrary precision
data typical to HDR acquisition so that extensive subsampling is required.

The method proposed by Mitsunaga and Nayar [8] computes a radiomet-
ric response function approximated using a high-order polynomial without
precise knowledge of the exposures used. The recovery process is limited to
estimating the order of the polynomial and its coefficients. The authors state
that it is possible to represent virtually any response curve using a polyno-
mial. This fact is true for LDR cameras based on a CCD sensor, however it is
not possible to approximate the logarithmic response of some CMOS sensors
in this manner. Polynomial approximation also assumes that the response
curve is continuous, which depends on the encoding.

The response curve recovery proposed by Robertson et al. [9] is based
on an estimation approach. The authors define an observation model which
assumes a linear relation between the camera response values and a product of
irradiance and exposure time. The response curve is determined through an
iterative algorithm minimizing the objective function independently for each
camera output level, making no assumption on the shape of the response
curve. The memory requirements are limited to the storage of the source
exposures and no additional space is necessary for the computations.



3 HDR Camera Response

To choose an appropriate algorithm for the recovery of the HDR camera
response, we can formulate the following requirements. First, varied tech-
nology used in the HDR sensors results in non-linear, often non-continuous
output. Therefore no assumption on the response curve shape can be made.
Second, the range of HDR camera output levels is in general arbitrary and
often exceeds 8 bits. Thus the algorithm should be well scalable in terms of
memory consumption and computational complexity for an arbitrary num-
ber of camera output levels. In view of the analysis given in the previous
section, the calibration approach by Robertson et al. [9] appears to be the
most suitable method for HDR cameras. In the following section we briefly
summarize their algorithm.

3.1 Response Recovery

The camera response curve is derived from an observation model describing
the relation between the camera output levels produced under known expo-
sure to the underlying light intensity values. If the camera output value for
7" pixel of the i"" exposed image is denoted by y;;, the exposure of this image
is denoted by t;, and the underlying light values by z;, the observation model
can be described as follows. If only the exposure is varying between images,
the amount of light contributing to the output value y;; is ¢; * x;, with an
additional noise term N;;. Therefore the amount of the captured light plus
noise is transferred by the camera response function f to the exposed image
in the following way:

Based on the above observation, the algorithm computes the inverse of
the response curve f~! by minimizing the following objective function O:

O(f,z) = sz‘j « (f M (i) — ti* ) (2)

The noise term in Equation 1 is now represented by the weighting function
w;; which models the confidence in the accuracy of the values captured by
the camera. The function w;; is a Gaussian distributed around the medium
output value. It implies that values located near the minimum or maximum
are acquired with less confidence than pixel values in the middle range of the
camera response.

The objective function O is numerically minimized using a form of Gauss-
Seidel relaxation. For a color camera, the response curve should be deter-
mined for each color channel separately unless it is known that the color
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channels are treated exactly identical. For a detailed description of this al-
gorithm we refer to [9].

3.2 Target Setup

For the accuracy and completeness of the response curve, it is necessary that
the pixel values of the acquired exposures uniformly cover the full range of
the camera output values. Due to the fact that the camera captures high
dynamic range, a proper scene setup becomes an issue. In fact we were
not able to prepare in our lab a single setup that satisfies this requirement.
It is therefore necessary to capture several different setups, each covering a
different luminance range, and to stitch them together into a single image.
With this approach it is in principle possible to provide data of arbitrarily
high dynamic range as input to the response recovery algorithm.

The estimation of the camera response curve is based on different expo-
sures of the same scene. Using conventional cameras, different exposures are
acquired by changing either aperture size or integration time. In the case of
an HDR camera, changing the integration time is however not possible. It
is furthermore desirable to keep the aperture constant to prevent artifacts
related to varying depth of field, vignetting, and to diffraction effects at the
aperture blades. We therefore simulate different exposures by mounting neu-
tral density filters in front of the camera lens. Following the analysis in [2],
we suggest to acquire two images that are exposed similarly and one that
is considerably different. If possible, the properties of the sensor technol-
ogy should also be taken into account: if a camera varies exposure times in
powers of 2, the filters’ extension factors should not be powers of 2 to avoid
mapping possible singularities onto each other.

The calibration of video cameras allows also easily to capture a larger
number of frames for all input scenes in order to reduce the influence of
image noise on the response curve recovery.

3.3 Absolute Calibration

The relative luminance values obtained from the recovered response curve are
linearly proportional to the absolute luminance with a scale factor dependent
on the exposure parameters and the lens system. Absolute calibration is
based on the acquisition of a scene containing patches with known reflectance.
The scale factor is determined by minimization of the relative error between
measured luminance values and the captured, linearized camera response.



Figure 1: Cameras used in our experiment: HDRC VGAx camera (lower
left), Silicon Vision Lars III (center), Jenoptik C14 (lower right), and Minolta
LS-100 luminance meter (top).

4 Example Calibration

In this section, we validate the proposed process of photometric calibration
by performing an example calibration of two HDR video cameras: a Silicon
Vision Lars IIT and a HDRC VGAx camera. For comparison purposes we
also included in the experiment the Jenoptik C14 — a high-end, CCD based
LDR camera (see Figure 1).

The Lars III sensor is an example of a locally autoadaptive image sen-
sor [6]: the exposure is terminated for each individual pixel after one out of
12 possible exposure times (usually powers of 2). For every pixel, the camera
returns the amount of charge collected until the exposure was terminated as
a 12 bit value and a timestamp. This can be lossless encoded as 16 bit value
similar to an unsigned IEEE floating point value [3] with 4 bit exponent e
and 12 bit mantissa m. A linearized relative luminance value can also be
reconstructed as m - 2¢.

The HDRC sensor is a logarithmic-type sensor [10]. The camera returns
images of 10 bit values.

4.1 Experiment Setup

In order to cover the dynamic range in which these cameras operate, we ac-
quired three target setups with varied luminance characteristic (see Figure 2).
The target scene was first acquired under a moderate illumination covering
lower parts of the dynamic range. Then a strong light source was included
into the setup providing both strong illumination and hard shadows. To
provide sufficient samples in the upper dynamic range, we acquired the light
source with reflector shining directly towards the cameras. Stitching these
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Figure 2: Three target setups used for the measurement of the response
curve (tone mapped for presentation). The histogram shows the luminance
distribution in the stitched images for acquisition without filter, and using a
neutral density filter with x1.5 and x 10 extension factors. This setup covers
8 orders of luminance magnitude.

three images together yields an input for the response recovery algorithm
covering a dynamic range of more than 8 orders of magnitude. To obtain
differently exposed images, each target setup was acquired without any filter
and with neutral density filters with x1.5 and x10 extension factor. The
response curve for the LDR camera was recovered using a series of 13 dif-
ferently exposed images of a GretagMacbeth ColorChecker and a standard
algorithm [9].

4.2 Recovered Response Curves

The recovered response curves for the three cameras are shown in Figure 3.
A single response curve was recovered for the monochromatic Lars III cam-
era whereas separate curves were determined for the three color channels of
the other cameras. As we had access to the raw sensor values of the HDRC
camera before Bayer interpolation, we recovered the response curve for each
channel directly from corresponding pixels in order to avoid possible inter-
polation artifacts.

Figure 3 shows that the response curves of the two HDR cameras both
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Figure 3: The recovered response curves and corresponding weighting func-
tions representing the confidence in the accuracy of the acquisition for given
camera output value (value 1.0 represents the full confidence, 0.0 represents
no confidence).



cover a considerably wider range of luminance than the high-end LDR camera
that covers a range of about 3.5 orders of magnitude. The different shapes
of the HDR response curves are caused by their respective sensor technology
and the encoding.

The logarithmic HDRC VGAx camera has the highest dynamic range
(more than 8 orders of magnitude). Unfortunately, an offset in the A/D con-
version makes the lower third of the 10 bit range unusable.

The multiple exposure values of the locally autoadaptive Lars III cam-
era are well visible as discontinuities in the response curve. Note that the
luminance range is covered continuously and gaps are only caused by the en-
coding. The camera covers a dynamic range of about 5 orders of magnitude.
Noise at the switching points between exposure times is well visible.

4.3 Results of Absolute Calibration

The recovered response curves convert the camera output values into relative
luminance values. To perform an absolute calibration, we acquired a Gre-
tagMacbeth ColorChecker chart under 6 different illumination conditions.
The luminance of the gray patches was measured using a Minolta LS-100
luminance meter yielding a total of 36 samples and an optimal scale factor
was determined for each camera. Results for selected patches are shown in
Table 1.

The accuracy of the absolute calibration for the 36 patches can be seen
in Figure 4. The calibrated camera luminance values are well aligned to the
measured values proving that the response curve recovery was accurate. To
quantify the quality of the absolute calibration, we calculated the average
relative error for these data points. For the HDRC camera, relative error in
the luminance range of 1-10,000 [cd/m?] is 13% while the relative error for
the Lars III camera in the luminance range of 10-1,000 [cd/m?] amounts to
9.5%. Note that these results can be obtained with a single acquisition. Using
multiple exposures, the C14 camera is capable of an average relative error
of below 7% in the range 0.1-25, 000 [cd/m?], thus giving the most accurate
results.

4.4 Fitting a Response Function

As an alternative approach to the previous sections, we fit the camera output
values directly to the measured luminance values from the experiment in
Section 4.3 using an a priori function appropriate for the given HDR sensor.
Thus, for the HDRC camera we fit the parameters of a logarithmic function
y; = a *log,o(x;) + b and for the decoded values of the Lars III camera we
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Figure 4: The results of absolute calibration. The recovered response curves
were fitted to the measurements of 6 gray patches of GretagMacbeth Col-
orChecker chart under 6 different illumination conditions.

fit a linear function y; = a* x; +b. Results for selected patches are shown in
Table 1.

We compare the relative errors achieved by the response curve recovery
including absolute calibration and the function fit in Figure 5. The average
relative error is about 6% for the HDRC camera and luminance values above
1[cd/m?]. For the Lars III camera it is also about 6% for luminance values
above 10 [ed/m?]. Especially for high luminance values above 10, 000 [cd/m?],
the calibration via function fitting provides more accurate results.

In addition, the fitting approach allows to extrapolate the response curves
for values beyond the range of the calibration targets. To verify this, we ac-
quired an extremely bright patch (194, 600 [cd/m?]) and compared the mea-
surement of the light meter to the calibrated response of the HDR cameras.
As shown in Table 1, only the readout from the HDRC camera derived via
function fitting is reliable while the HDRC response curve seems to be bogus
in that luminance range. The Lars III camera reached the saturation level
and yielded arbitrary results (see Table 1). Likewise, this patch could not be
recorded with the available settings of the LDR camera.

10



IT

measured HDRC Lars III Cl14
luminance | output recovered resp. fitted resp. | output recovered resp. fitted resp. | recovered resp.
[cd/m?] | 10 bit [cd/m?] [cd/m?] | 16 bit [cd/m?] [cd/m?] [cd /m?]
5.3 404 4.78 4.57 200 9.04 8.69 5.38

9.3 424 7.95 8.12 366 9.35 11.52 9.05

70.9 497 46.70 62.65 | 3,278 62.46 61.33 66.07

741.2 582 403.22 695.22 | 18,722 643.96 663.00 704.43
8,796 673 8,616.82 8,924.89 | 32,126 4,196.72 7,822.66 8,734.86
194,600 788 1,081,800 225,010 | 43,665 44,121,000 50,415 -

Table 1: Measured luminance values of patches with corresponding camera output and calibrated camera response

obtained via response recovery (Sections 4.2 and 4.3) and function fitting (Section 4.4).
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Figure 5: Comparison of the relative errors in luminance measurement
achieved by the response curve recovery including absolute calibration and
by the function fit.

5 Discussion

The ability to capture HDR data has a strong impact on various computer
graphics applications. The flexibility in the acquisition of dynamic sequences,
which can contain both bright light sources and very dark areas at the same
moment (such as sun and deep shadows), is unprecedented. Dynamic envi-
ronment maps can for instance be captured in real time to faithfully convey
the illumination conditions of the real world to rendering algorithms, thus
giving new insights to mixed reality applications. Predictive rendering meth-
ods may additionally benefit from knowledge about physically accurate lumi-
nance values, so that e.g. the results of global illumination solutions can be
directly compared to real world measurements. Also, perceptually enabled
algorithms may appropriately simulate the behavior of the human visual
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system, since precise luminance values can be captured. The application of
HDR cameras is natural in such situations but requires careful calibration:
Computer graphics algorithms commonly operate in linear intensity space.
Understanding and calibrating the camera response is crucial for the proper
interpretation of captured data.

In this paper, we presented two alternative approaches to photometric
calibration of HDR cameras. Although the relative error achieved by the
function fitting approach is lower, the response recovery algorithm is useful
to obtain the exact shape of the camera response curve and to give confidence
that the chosen a priori function is correct. It can also help to understand
the behavior of the sensor, especially if the encoding is unknown. The low
precision of the measurements in the luminance range above 1,000 [cd/m?]
is a clear limitation which could be caused either by an excessive amount of
noise or by glare artifacts introduced by the ND filters.

The function fitting approach has strong advantages in the quality of
the results and the ability to extrapolate from the calibration data. The
confidence in extrapolated measurements is however limited and the error
cannot be predicted because the exact shape of the response function in this
range is unknown. Nevertheless, it is important to keep in mind that the
fitting approach led to a lower relative error for both HDR cameras.

The experiments showed also that the HDR cameras have problems in
dark conditions below 10 [cd/m?] which can be explained by the high noise
level in the sensors. The quality of a high-end CCD camera such as the Jenop-
tik C14 combined with traditional HDR recovery algorithms still cannot be
achieved consistently over the whole dynamic range of the HDR cameras.

Finally, the accuracy of the photometric calibration is not the only im-
portant quality measure. Depending on the application, other issues such as
the quantization of the luminance values might have an important influence
on the quality of the measurements and need to be further investigated.

6 Conclusions

Driven by vision applications in difficult lighting situations, the evolution of
high dynamic range camera systems will continue. We showed in this paper
that such cameras can also be used for photometric measurements with an
accuracy comparable to traditional multi-exposure HDR recovery systems
although some issues such as the noise level in dark conditions still need to
be resolved. We expect that many future applications in computer graphics
will especially benefit from the fast acquisition of high dynamic range data
made possible by these devices.
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