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Abstract

In this paper, we present an image-based framework that acquires the
reflectance properties of a human face. A range scan of the face is not re-
quired. Based on a morphable face model, the system estimates the 3D
shape, and establishes point-to-point correspondence across images taken
from different viewpoints, and across different individuals’ faces. This pro-
vides a common parameterization of all reconstructed surfaces that can be
used to compare and transfer BRDF data between different faces. Shape
estimation from images compensates deformations of the face during the
measurement process, such as facial expressions.

In the common parameterization, regions of homogeneous materials on
the face surface can be defined a-priori. We apply analytical BRDF models
to express the reflectance properties of each region, and we estimate their pa-
rameters in a least-squares fit from the image data. For each of the surface
points, the diffuse component of the BRDF is locally refined, which pro-
vides high detail. We present results for multiple analytical BRDF models,
rendered at novel orientations and lighting conditions.

1 Introduction

In movie productions and interactive applications featuring virtual charac-
ters, vivid renderings involve subtle effects of light interacting with skin,
and expressive scenes may need to be shot with harsh lighting from grazing
angles. The realistic reproduction of human faces by Computer Graphics
under such conditions requires sophisticated models of the visual proper-
ties of skin. The problem of obtaining these without the time-consuming
effort of an artist has been addressed by a number of approaches which use



measurements of the reflectance of human skin. Many approaches require a
large number of measurements, or dedicated equipment for geometry recon-
struction, such as range scanners, or complex setups for automated control
of the illumination conditions.

In this paper, we focus on a precise method which reduces the measure-
ment equipment and simplifies the procedure by exploiting Computer Vision
techniques. Ambiguities, noise and sparseness of the data obtained with the
simplified measurement paradigm are compensated for by a model-based
approach that uses plausibility constraints to reduce the set of possible so-
lutions in terms of the reflectance function and the 3D shape of the surface.

Our acquisition pipeline can be divided in three main steps (Figure 1).
In the first step, digital photographs of a face at different orientations and
illumination directions are taken in a calibrated environment.

Then, we fit a morphable model of 3D faces to each image. The re-
construction of 3D shape from each image is essential for recovering the
reflectance function from the image data, which can be interpreted as sets
of reflectance samples. Moreover, the morphable model provides a common
parameterization of the facial surface that establishes correspondence across
images of the face taken from different viewpoints. This correspondence is
necessary for combining information from multiple images.

In the third step, we apply a non-linear optimization method in order
to estimate parameters of a spatially varying BRDF model for the face
surface. The estimate can be used to render the face in novel views and
lighting conditions.

Our contribution is an entirely image-based method that does not rely
on a range scan of the face that is investigated. The method does not
only simplify the measurement process, making the system applicable for a
broader set of users, but it is also specially designed for non-rigid objects
that may slightly change during the measurement process. This is due to
our adaptive, model-based registration scheme that establishes correspon-
dence between different images of the same face. Moreover, the common
parameterization of different persons’ faces in our unified framework for
face representation makes it straight-forward to automatically transfer the
reflection properties of structures, such as the lips, from one person’s face
on the corresponding geometry of the new face.

2 Related Work

The measurement of reflection properties requires to sample the 4D space
of incident and outgoing directions. Image-based measurements are based
on the idea that in one image of a curved surface, many combinations of
light and viewing directions can be observed simultaneously [1,2, 3,4, 5],
which results in a much more efficient acquisition paradigm than classical



gonioreflectometers. While typically a point light source is applied for BRDF
measurements, also measurements of indoor scene with complex interreflec-
tions have been demonstrated [6,7,8]. Ramamoorthi and Hanrahan [9] and
Nishino et al. [10] even succeeded in reconstructing unconstrained incident
illumination and reflection properties at the same time. Spatial variation in
the surface reflection properties is only partially recovered by these methods,
i.e., if at all, only the diffuse part is allowed to vary across the surface.

A very general approach for acquisition of reflectance properties was
proposed by Lensch et al. [11]. The method is able to automatically cluster
material properties and describe the spatial variations across the surface
in terms of these clusters, including varying specular reflectivity. 3D shape
recorded with range scanners is registered with the images using a silhouette
matching algorithm. For human faces, the method would be difficult to
apply since the silhouette is not informative enough to precisely determine
3D orientation.

Marschner et al. [12] were the first who applied image-based BRDF mea-
surments to human skin. From a sparse set of input images, they fitted
parameters of a reflectance model [13] to the data, recovering homogeneous
reflection properties. With spatially uniform reflectance functions, local de-
tails of skin, which are important for realistic appearance of faces, cannot
be expressed. Marschner et al. later added a detailed albedo texture which
was obtained from registered measurements captured from different view-
points [14].

Debevec et al. proposed a face relighting method that uses thousands
of images recorded in a special setup, the light stage. Initially, the method
involves no analytic function for skin reflectance, but instead exploits the
superposition principle of light: Arbitrary lighting conditions can be sim-
ulated by computing a weighted sum of the recorded images of the face,
each lit by a point light source at a different position [15]. In the second
part of their work, they perform a color space analysis to separate contribu-
tion of specular from diffuse reflection, and create a description of surface
reflectance using the Torrance-Sparrow model [16].

In contrast, Paris et al. presented a method that obtains a rough ap-
proximation of a face’s reflection properties by fitting the simple Phong
reflectance model [17] to a single image of a face at frontal illumination [18].
All methods that were described so far require a-priori input of the 3D
geometry, which is usually acquired using a range scanner.

Face geometry can also be reconstructed from images; for instance, there
is recent work by Moghaddam, Lee et al. [19,20] which takes silhouette
images as input, and reconstructs a face as a linear combination in a model
space.

When restricting the spatially varying component of the reflectance model
only to the diffuse component of a Phong model, Blanz and Vetter have
shown that a single image without knowledge about geometry and illumi-



nation of the face is sufficient for recovering a surface description [21,22].
The reconstruction is possible due to a underlying data base of previously
recorded faces. Our work builds on this technique for acquiring the 3D
shape.

Carceroni and Kutulakos [23] recovered shape, motion and reflection
properties from video streams with known directional lighting by exploiting
the dense coherence in subsequent frames. They have demonstrated the ap-
plication of their technique to human skin, but have not acquired a complete
face.

Based on the Torrance-Sparrow model, Georghiades estimated both shape
and reflectance in an exclusively image-based acquisition framework from 12
images taken from the same viewpoint [24]. Methods that only record from
a single viewpoint, however, have access to only few data at grazing view-
ing and illumination angles, which affects the reliability of the estimated
BRDFs.

Image analysis of human faces is not restricted to measuring reflective
properties. Tsumura et al. presented a color space method which separates
the contribution of specular reflection and shading from the melanin and
hemoglobin component of scattered light within the facial tissue [25].

There is recent work by Krishnaswamy and Baranoski [26] which ad-
dresses the choice of an appropriate model for human skin, including spec-
tral phenomena and subsurface light transport. They provide an overview of
the physical composition of human skin and contain references to in-detail
work on anatomy. For our purposes, it is sufficient to observe that, on
the interface between stratum corneum and air, specular reflection occurs,
while light penetrating the surface is scattered diffusely. Skin being a non-
metallic material implies that the reflection is governed by Fresnel’s Law.
The Cook-Torrance model explicitly contains a Fresnel term to express that.
Some other parametric models of reflectance can partly reproduce the an-
gular dependency described by the Fresnel term implicitly. In this paper,
we investigate the appropriateness of existing well-known models.

Subsurface light transport plays an important role for the appearance
of human faces. It can be expressed using a BSSRDF. Jensen et al. have
proposed a BRDF approximation for their subsurface light transport model
[27]. Following this idea, we consider local reflectance models.

Except of the methods by Blanz-Vetter and Carceroni-Kutulakos, all
methods for the reconstruction of individual face appearance assume the
face to be static. If facial expressions or small deformations are involved
the resulting quality is degraded. In our approach, the geometry of the
face is estimated from each individual input image while still maintaining a
common parameterization. This offers the capability of measuring BRDFs
using images from different viewpoints in different lighting directions even
with different facial expressions.



3 Measurement Setup

The measurements used in our system are digital photographs recorded in
a calibrated environment. As shown in Figure 2, we measure reflectances
with a HMI point light source (which is behind a protective pane that looks
overly bright in Figure 2) in a photo lab with black walls, carpet and ceiling
[28]. The position of the camera is kept fixed, while the photographs show
different orientations of the face, and different positions of the light source.
The position of the light relative to the camera is computed from the images
using steel spheres as targets with the method of Lensch et al. [11]. Once
per measurement session, we calibrate the digital camera with Bouguet’s
“Camera Calibration Toolbox” [29]. Our measurement loop involves the
following steps:

e for each face, measure three metric distances on the face (such as
distance between eye corners) for absolute scaling.

e then, loop over a set of light conditions.

— record two pictures of the steel spheres to compute the light
source position.

— loop over up to three poses of the subject.

x take a digital picture in point light conditions,

* at the same pose, take an additional picture with diffuse light,
or take a set of pictures with varying exposure.

* the combination of these pictures forms one measurement.

Taking several pictures per pose is helpful because it provides additional
information about shadowed regions of the face, which is important for iden-
tifying features, and for precise fitting of the model. This can be either ac-
complished by high dynamic range — allowing a more accurate placement
of the feature points by the user in dark image areas — through the differ-
ent pictures, or by one additional image with diffuse illumination, which, in
addition, allows a more accurate geometry fit, as the morphable face model
has shown to be more accurate in such lighting conditions.

In each case, the BRDF model will always be fitted against a single
exposure image.

We have collected measurements from two subjects in varying pose and
lighting situations. In total, we use 22 measurements for the female face,
and 21 for the male face.



4 Model-Based Shape Estimation and Registra-
tion

An essential step in our framework is the estimation of 3D shape from the
image data, which is achieved by fitting a deformable model of human faces
to each image. This approach has a number of advantages:

e 10 3D scan of the face is required for reconstructing BRDF,

e the deformable model compensates deformations within the face, such
as small facial expressions that occur during the measurement,

e due to the global nature of the model, a consistent and realistic surface
is estimated even if large portions of the face are shadowed in the
images,

e the 3D surface is registered with each image in a semi-automatic way,
using manually defined feature points,

e after fitting the model to images, corresponding pixels in different
views of the face are automatically identified by computing a mapping
from a common reference face to each input image. Combining in-
formation from different images for each surface point is essential for
BRDF measurements.

e a common parameterization of different individual faces can be used
for transferring reflectances between faces.

In the following, we briefly summarize the concept of the morphable
model. For details, see [21,22].

4.1 Morphable Model of Faces

The morphable model [30,21] is a vector space of 3D shapes and textures
spanned by a set of examples, capturing the common properties and the main
modes of variation found in an object class such as human faces. Shape and
texture vectors are defined such that any linear combination

=1 =1

of examples S;, T; is a realistic face if S and T are within a few standard
deviations from their averages.

The morphable model is constructed from 200 textured Cyberware (TM)
laser scans, which are given in a cylindrical parameterization at a resolution
of 0.615mm in height and 0.7° in azimuth.



A common parameterization is achieved by automatically establishing
correspondence (h, ) +— (h;, ;) from a reference scan to each individual
face ¢ [21,22] such that corresponding points, such as the tip of the nose,
are assigned the same parameters (h, ¢) on all faces.

Concatenating the vertex coordinates of the n sampling points of the
reference face, we define shape and texture vectors:

So = (:rl,yl,zl,arg,...,xnjymzn)T (2)
Ty = (7“1»91717177“2’---,ngn,bn)T, (3)

Then, we can use the common parameterization to define S; and T;
accordingly.

4.2 Fitting the Morphable Model to Images

The goal of the fitting process is to find coefficients a;, b; (Equation 1) and
rendering parameters such that the rendered image I,,04¢ 1S as similar as
possible to the input image Iinpys in terms of image difference [21,22]. Ren-
dering involves re-computing the surface normals at each iteration, perspec-
tive projection and Phong illumination. The Phong model serves as an initial
step in a bootstrapping approach to the problem addressed in this paper,
which is to estimate 3D shape and BRDF from the same image data. Since
the fitting algorithm makes a conservative estimate on shape and texture,
we do not expect significant errors caused by assuming Phong illumination.
In addition to local shading, the algorithm computes cast shadows with a
shadow map once every 1000 iterations. The following rendering parameters
are automatically optimized:

e 3D rotation (3 angles)

e 3D translation (3 dimensions)

e focal length of the camera (1 variable)

e angle of directed light (2 angles)

e intensity of directed light (3 color channels)
e intensity of ambient light (3 color channels)
e color contrast (1 variable)

e gain in each color channel (3 variables)

e offset in each color channel (3 variables).



The optimization starts with default values defining a frontal view and
frontal illumination. Fitting the model is achieved by a stochastic Newton
algorithm [22] minimizing a cost function £ = E;+ Ep+ Ep. Ej is the sum
of square differences in the three color channels, Er is the sum of square
differences of image-plane positions of a set of about 7 — 20 manually defined
feature points, such as the corners of the eyes. This term, which contributes
to E only in the first iterations, helps the system to converge by pulling
some feature points towards the predefined positions. Ep is a regularization
term that penalizes linear combinations that are unplausible in terms of
the probability density estimated by a Principal Component Analysis of the
database of 3D faces. Ep is the Mahalanobis distance of the solution from
the average face (for details, see [22]).

Fitting the model to the images provides a correspondence mapping from
texture coordinates of the morphable model to image coordinates in each
image. In order to achieve precise correspondence, the slight facial deforma-
tions due to movements during the long delay between measurements are
compensated by fitting the model to each image separately, starting from the
average shape. This essentially makes each fit an independent estimate of
shape, which introduces measurement errors in our procedure, even though
the explicit and implicit constraints in the morphable model and the im-
age data make sure that we still obtain realistic surface normals that are
consistent across measurements.

In each surface point of the male model, we have measured the deviation
of the surface normal of each reconstructed head from the average of all
reconstructions: The mean angular deviation is 6.3 degrees.

While the fitting algorithm places model structures, such as the corner of
the mouth, to the desired position in each image, we cannot expect that in-
dividual structures which are not captured by the morphable model, such as
moles or freckles, are set in correspondence with the same vertex or texture
coordinate of the 3D model across different images. We therefore extract the
person’s texture from a frontal view at frontal illumination with the method
described in [21] and use this texture instead of the average texture as a
starting value in each fitting process: As a consequence, misalignments of
individual texture details will be penalized throughout the fit.

Even though the deformations between images are due to facial expres-
sions, it was not necessary to use the extended vector space of facial expres-
sions presented in [31]: It turned out that the small variations of expression
found in the database of 200 close-to-neutral individual faces are sufficient.
The quality of the fit is shown in Figure 3.

4.3 Sampling Facial Reflectance

With the face geometry reconstructed, we can re-sample the input images
and thus obtain, from each measurement, a texture map of observed radiance



in the common parameterization of facial surface.

Figure 4 shows several of these maps combined in one image, illustrating
the correspondence between different measurements. In the same param-
eterization, we can store vectors 1 and v pointing to the light and to the
viewer, along with surface normals n and point coordinates p in some global
coordinate system. 1 and v are then transformed into an orthonormal local
coordinate system defined by the normal n and the tangents t and b, and
normalized in length to be elements of the unit sphere, resulting in according
vectors 1 and V.

With the reflectances r computed from the observed radiances R

R
ri=
L[ - 1]

(4)

each point in the discretized face parameterization can be considered as a
reflectance sample

Sos=((1v),r0) e ((S?x5?) xR*xRY). (5)

We linearly scale all reflectance values, so that (1,1,1)" is the reflectance
of a diffuse white calibration target. o will be used to express the confidence
into the sample, and it will be defined below in Section 5.1.

Some of the reflectance samples s in the set S of measured data cannot
contribute to a meaningful measurement, and are therefore discarded: These
are samples in cast shadow, which can be identified using the shadow buffer
technique. Also, samples which were seen or lit from a flat angle (I, or v,
are low) should be discarded, as the uncertainty in the normal estimation
causes the largest error there. We use a morphological erosion filter in order
to remove additional samples along the margin of shadows and occluding
contours.

4.4 A-priori Clustering

The surface of a human face has regions with different types of tissue, such
as skin, lips, eyes and hair, and the reflectance properties of these regions
differ considerably. Performing a separate data analysis on these regions
helps to achieve high-quality models of reflectance within each region. A
BRDF measurement technique for general objects would have to assign these
clusters in an automated way [11]. Focusing on human faces, however, we
can exploit the common parameterization of our face representation that
defines correspondence from face to face, and manually define regions of
different reflectance properties in terms of this parameterization (Figure 5),
which can then be applied to all faces in an automated way.



5 Estimating BRDF Model Parameters

Generalization from the samples of the BRDF that we observed in the dif-
ferent face regions to novel viewing and lighting conditions requires inter-
polation and extrapolation of the BRDF. Due to measurement noise in the
data within each cluster, we have to solve statistical regression problems,
estimating a BRDF

Fi82xS? - RY, (i,\?)r—>r (6)

which maps the incoming light and viewing direction to the reflectance r in
the three color channels red, green and blue. Estimating f from the sparse
data is heavily underdetermined, so we have to assume that the solution f
is an element of a general BRDF model, formally given as

M:IR”—>(S2><SQ—>]R3) (7)

M maps a parameter vector a € IR to a BRDF f. Thus, the regression
problem is transformed into finding an optimal parameter vector a.

5.1 Error Functional

In order to define a criterion for the optimal solution, we use a quadratic
error functional which expresses the distance between the measurements in
the sample set S, and the BRDF given by the model M for the parameters
a:

. (r— M(@)(1.9)
E(S,M(a)) = 5 >

((1,%),r,0)es

Each sample is assigned a confidence value o, which weights the cost
function. As we do not know standard deviations of measurement errors
yet, we use o to heuristically control the cost function. For each sample
((1,%),r,0), let )

o= Lo (9)
The first division by I, simply cancels out with the division by |i -m| in
Equation 4. Because of that, camera noise, which is independent from the
observed surface normal and the incident light direction, has the same effect
on all samples and is treated evenly by the cost function.

The second division by [, and v, addresses noise caused by registration
errors. In regions where the camera observed the face surface from an almost
normal angle, a small delocalization of the estimated surface against the
measured surface causes few problems, as the normals do not vary much
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there. Under grazing angle conditions, however, normals vary more strongly
for changing coordinates in the image; accordingly, a small delocalization
has a stronger effect there, and such samples need to be treated as less
reliable. An analogous argument for the incident light direction motivates
the division by [,.

Thus, we effectively obtain an error functional similar to the one used
by Lafortune et al. [13]

5.2 Hierarchical Non-linear Optimization

We perform a non-linear optimization using the Levenberg-Marquardt al-
gorithm as described by Press et al. [32]. For each material cluster, we
start with a conservative initial value, and fit the BRDF model parame-
ters against a small, randomly chosen subset of the samples of the cluster.
In subsequent fitting iterations, we increase the size of the subset until all
available data are considered. This algorithm spends many iterations on
few samples, while we are still far from the optimum, and few iterations on
many samples, which reduces the overall fit time significantly. A result is
shown in Figure 6.

The performance of the first Levenberg-Marquardt fitting step depends
on the initial value; it needs more iterations if chosen far from the opti-
mum. As the following steps start with the result of the previous steps,
their runtime depends less on the initial value.

Tests which we performed with an isotropic Lafortune model on syn-
thetic data indicate that BRDF model parameters which express diffuse
light scattering can almost always be accurately recovered; direction depen-
dent scattering is estimated reliably in cases where the kind of scattering
is suggested by the initial parameters (e.g. one forward pointing lobe for
forward scattering).

5.3 Refining Spatial Detail

By dividing the face into regions with separate BRDFs, we are able to
estimate the full parameter vector, including specular properties. However,
this results in a BRDF that is spatially uniform within the surface region,
which looks unrealistic (see Figure 6). In order to reproduce the spatial
variation caused by surface details on the skin, we fit the BRDF again for
each point of the discretized face surface, this time only considering samples
for this precise point.

As we have much less samples now, we cannot estimate the full parameter
set, so we only consider spatial variation of the parameters that model the
diffuse reflection. As the diffuse reflection can be observed from most viewing
and light conditions, and it contributes, for most BRDF models, linearly to
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the total reflectance, it can reliably be estimated, even from a small number
of well-lit measurements.

The restriction to less measurements may induce artefacts at borders
of different measurements in the texture space, because small errors in the
estimation of the distance between face and light source cause the overall
brightness of the diffuse texture to vary, which may show up as visible dis-
continuity at measurement borders. At the face contour and at the shadow
line, these are not noticeable, as our cost function from Equation 8 assigns
low conficence to these samples. Along the border of cast shadows and to
regions where samples are filtered out because their brightness is outside a
confidence range for the observed cluster, this mechanism alone is too weak,
and small artefacts remain, which may result in visible discontinuities.

We therefore define for each sample the FEuclidean distance in texture
space d from this sample to the closest position without sample in the same
measurement. With that, we can re-define

o= Gmax (10)

min{d, dmax} - 1, - 1, - v,

The results in this paper have been obtained for dy.x = 10. An example
is shown in Figure 7.

6 Results

The geometric quality of our estimations produces plausible results, as shown
in Figure 3. View 16 and 17 in Figure 3 demonstrate the necessity of an
additional image with the same pose, either with diffuse lighting or with
extended dynamic range. The geometry reconstruction would fail if only
sparse image information is available due to extreme lighting conditions.
With the additional image the correct 3D shape is reconstructed and the
correspondence between different views is accurately established (see Fig-
ure 4).

Since the 3D shape is adapted to each individual input image, deforma-
tions on the face geometry can be easily compensated for. We observed such
deformations over time (compare view 8 and 9 in Figure 3) and as reactions
to the light intensity, e.g, when the light moves close to the face, humans
tend to partially close the eyelids.

For the resolution of the measured reflectance maps, we choose 1000 x
1000 in A and ¢. With respect to the quality of the obtained reflectance
samples, we observed that samples at grazing light and viewing angles were
subject to more measurement noise than perpendicularly lit and observed
samples. This is accounted for by assigning a lower confidence value which
increased the stability of our fitting process.
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6.1 Comparison of BRDF Models

We have performed the estimation of model parameters for several well-
established lighting models. Specifically, these were

e the Phong Model [17], which is probably most widely used of all avail-
able models due to its simplicity and early availability in hardware,

e the Cook-Torrance [34] model, which models specular reflectance ac-
cording to explicit micro-geometry assumptions,

e the Ward model [35], which is designed for fitting against experimental
data, while still providing physical parameters, and

e the Lafortune model [13], which models a superset of the effects mod-
eled by the Phong model, among them off-specular reflections, while
still being computationally simple.

In all cases, we used isotropic variants of the models. Resulting render-
ings are shown in Figure 8 , a comparison of original images and a super-
imposed reconstruction for the same illumination can be seen in Figure 9.
A rendering approximating real world lighting conditions is given in Figure
10.

As all of models employed express diffuse reflection using a Lambertian
term, differences in non-specular areas are hardly visible. For the specular
terms, differences can be more easily observed. The results indicate that our
system found realistic parameter settings for all models that were tested, and
for most of the material clusters.

Upon visual inspection of the results, we tend to prefer the Cook-Torrance
or, alternatively, the Ward model for rendering. The Phong model lacks gen-
erality with respect to specular effects, and accordingly fails to reproduce
brighter specularities under grazing angles. The Lafortune model is superior
in this respect; however, it does not inherently restrict the form of the model
to plausible solutions, and is therefore more easily affected by over-fitting
and measurement noise. An example of this can be seen on the overly bright
reflex in the eyebrow region, in the leftmost rendering in Figure 8.

The original Lafortune model contains a linear combination of several
lobes for complex scattering effects, and one lobe alone already allows a
much more expressive BRDF than the Phong model. Possibly in conjunc-
tion with measurement error, the stability of the fit of several lobes was an
issue in our experiments; when fitting the parameters for several lobes, the
resulting shapes of the additional lobes depended heavily on the choice of
initial parameters, and varied from person to person.

Higher quality in the reproduction of specular properties is observed
for the Ward and Cook-Torrance model, which both are expressive. Both
models inherently produce plausible specular lobes.
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The fits of all models show one general aspect of our system which might
motivate further improvement: while our approach so far restricts the spec-
ular variation to piece-wise constant inside the clusters, specular properties
may vary continuously over the face. Thus, some areas in the face have in re-
ality a stronger specular highlight (such as the nose) or a weaker one (such as
in the beard shadow of the male model). This is to some extent compensated
for in the diffuse refinement step by assigning higher or lower Lambertian
diffuse reflectance to areas where highlights were observed. Consequently,
the distinction between diffuse and specular reflection is weakened, however,
the overall result is improved (as can be seen in Figure 8).

6.2 Transfer of BRDF on Faces

In the common face surface parameterization, the locations of features do
not depend on the individual. Therefore, the individual surface description
is intrinsically transferable among different faces. We demonstrate this by
exchanging the surface description of two significantly different models as
seen in Figure 11. While the geometry of the male and the female model
are distinct both in size and in local features, an exchange is still possible,
creating paradox effects of a male texture on a female face and vice versa.
One possible application of this could lead to off-line make-up, if combined
with measured illumination.

7 Conclusion

We have presented a novel acquisition paradigm of reflection properties of
human faces. The method is entirely image-based and recovers 3D geometry
and spatially varying BRDFs from a sparse set of digital photographs by
estimating model parameters.

The morphable face model that is used for the geometry reconstruction
accounts for deformations of the face and establishes a common parame-
terization for different input images and even between different individuals.
Based on this novel parameterization one can define surface regions with dis-
tinct material properties for which separate BRDFs are obtained. Within
each region spatial variation of the diffuse component is captured to account
for details of natural skin. The framework produces realistic renderings of
human faces even for harsh lighting conditions.

The common parameterization of faces and the general, simple acquisi-
tion pipeline is suitable for a wide range of future developments, e.g., the
investigation of effects such as subsurface light transport [36] and scattering
from velvety hair covering facial skin [37]. Subsurface scattering, which is a
topic of recent research [38], is of special interest here.

The rich variety of illumination effects on human skin and the fact that
observers are sensitive to subtle details of facial appearance, make human
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faces a relevant and challenging test bed for modeling reflection properties.
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Figure 1: Acquisition pipeline of our model-based approach.
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Figure 2: The measurement setup. The camera (on the left) remains at the
same position, while the orientation of the subject’s face and the position
of the light source (which is behind a protective pane) are varied. The steel
spheres behind the subject are used for measuring the position of the light
source relative to the camera.



Figure 3: Some reconstructed face geometry examples, rendered into the
original images (lower row), in comparison to the original images (upper
row). These geometries are used as input for the BRDF estimation. Mea-
surement 1 and 9 are quite close to the original face, 8 shows a small artefact
on the ridge of the nose, 16 and 17 do not visually equal the subject’s face
texture, but are still satisfactory in terms of geometry.
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Figure 4: Measured radiance on the face surface in the common surface pa-
rameterization for faces, in a combination of different measurements. While
the correspondence between the chin region of measurement 0 and 1 is sub-
optimal, good correspondence of sharp face features such as lips and nose
edges is established between measurements 0, 2 and 5.

Figure 5: In the parameterization defined by the reference texture (left),
manually marked regions of different surface properties (right) apply to all
faces automatically.
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Figure 6: Result of fitting the Cook-Torrance model against the samples in
a-priori clusters.

22



Figure 7: Result of fitting the Cook-Torrance model against the samples in
a-priori clusters after estimating spatially varying diffuse components
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Ward

Figure 8: Renderings of novel pose and varying point lighting, in BRDFs
obtained from various models.
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Figure 9: Renderings of original measurement and superimposed reconstruc-
tion. The same gamma curve has been applied to both.
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Figure 10: Rendering in an approximation of a real world situation. Envi-
ronment by Paul Debevec [33].

male geometry female geome- male geometry female geome-
try try
male texture male texture female texture female texture

Figure 11: Rendered at novel pose and lighting, the images on the left
and right show shapes and spatially varying Cook-Torrance BRDF's of two
individuals. The images in the center demonstrate that BRDFs can be
transferred between shapes.
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