ol

INFORMATTIK

A Faster Algorithm for
Computing a Longest Common
Increasing Subsequence

Irit Katriel and Martin Kutz

MPI-1-2005-1-007 March 2005

N J

FORSCHUNGSBERICHT RESEARCH REPORT

MAX-PLANCK-INSTITUT
FUR
INFORMATIK

Stuhlsatzenhausweg 85 66123 Saarbriicken Germany

Authors’ Addresses

Irit Katriel, Martin Kutz
Stuhlsatzenhausweg 85
Max-Planck-Institut fiir Informatik,
66123 Saarbriicken, Germany

email: {irit,mkutz}@mpi-sb.mpg.de

Abstract

Let A = (ay,...,a,) and B = (by,...,b,) be two sequences with m >
n, whose elements are drawn from a totally ordered set. We present an
algorithm that finds a longest common increasing subsequence of A and B
in O(mlogm + nllogn) time and O(m + nf) space, where ¢ is the length
of the output. A previous algorithm by Yang et al. needs ©(mn) time and
space, so ours is faster for a wide range of values of m,n and /.

Keywords

Algorithms, Bounded Heap, Data Structures, Longest Common Increasing
Subsequence, Pattern Matching

1 Introduction

Given two sequences A =< aq,...,a, > and B =< by,...,b,, > with m >
n, a common subsequence of A and B is a subsequence (a; = by,,a;, =
brys - aj, = by,), where j; < jo < -+ < jyand k1 < Ky < -+ < Ky.

Given one sequence A =< aq,...,a, > where the a;’s are drawn from a to-
tally ordered set, an increasing subsequence of A is a subsequence (a;, , a;,, . .., a;,)
such that j; < j» <--- < jgand a;, <aj <---<ay.

Algorithms that search for the longest common subsequence (LCS) or
the longest increasing subsequence (LIS) date back several decades. See,
e.g., [1, 2,3, 5, 6].

However, only recently Yang et al. [7] combined the two concepts, and
defined the common increasing subsequence (CIS) of two sequences A and B,
i.e., an increasing sequence which is a subsequence of both A and B. They
designed an algorithm that finds a longest CIS (LCIS) of A and B using
©(mn) time and space.

In this paper we present an algorithm for the LCIS problem which runs in
O(mlogm+ntllogn) time and O(m + nf) space, where £ is the length of the
LCIS. Whenever n = Q(logm) and either m = Q(nlogn) or £ = o(n/logn),
it is faster than ©(mn).

In Section 2, we construct a data structure which we call a bounded heap
and which will be used by our LCIS algorithm. In Section 3 we present the
algorithm and prove its correctness.

2 The Bounded-Heap Data Structure

A bounded heap (BH) is a data structure that resembles a priority queue, but
also allows us to bound our queries. That is, we can ask for the minimum
priority among all items in the heap whose keys are smaller than k. In this
section we describe how to implement a bounded heap that supports the
following operations:

e Insert(H,k,p,d): Insert into the BH H the key k with priority p and
associated data d.

e DecreasePriority(H, k,p,d): If the BH H does not contain the key £,
perform Insert(H, k, p, d). Otherwise, set this key’s priority to min{p, p'},
where p' is its previous priority.

e BoundedMin(H,k): Return the item that has minimum priority among
all items in H with key smaller than k. If H does not contain any items
with key smaller than £, return “invalid”.

1

Assume that the keys are drawn from the set {0y, 09,...,0p5} which is
totally ordered, i.e., 0y < 0y < -+ < 05. Let BM(k) denote the priority
of the item returned by the query BoundedMin(H,k). Clearly, BM(o;) <
BM (o) for any 1 < i < |X]| (see Figure 1).

keyk |1 (2 |3|4|5|6|7[8]9]10
priority (|7 [10]6|8|5|3 9
BM (k) ||oc|7 |7]6]6|5|3]2]2]1

[N
H~
—_

Figure 1: Example of BM values.

Since we only need to support BoundedMin queries (and not queries about
the priority of a specific key), it suffices to keep in our data structure only the
smallest key for each BM value. These keys will be the leaves of a balanced
search tree, sorted from left to right by increasing key order. Along with the
key, we also store the corresponding BM value in each leaf. For the example
in Figure 1, the data structure will contain the (key, BM) pairs (1, 00), (2,7),
(4,6), (6,5), (7,3), (8,2), (10,1).

A BoundedMin(H, o;) query is handled by searching for the largest key
which is smaller than o;. The BM value stored with this key is valid for o;
(by definition).

What we achieved by this compression is that now we can efficiently sup-
port DecreasePriority operations. Assume that the priority of o; decreased
from p' to p and that p is smaller than BM (o;) for ¢ < j < i'. This means
that all leaves in the tree which correspond to keys in {0;41,0;19,...,04 1}
need to be removed. This takes time O(logn + 4’ — i); we need to remove an
interval of O(i' — i) leaves as well as O(i' — i) internal nodes. Finally, a leaf
with key o;,1 and BM value p is inserted to the tree.

An Insert(H, k, p, d) operation is handled as if it was a DecreasePriority(H, k, p, d)
operation. To see that this works, note that the tree would not change if we
were to insert the key k with priority oco.

The O(i' — i) time of DecreasePriority can be charged to the insertions of
the leaves that were deleted. That is, when a new leaf is inserted, it receives
a constant number of tokens with which it can pay for the DecreasePriority
operation that caused its deletion from the tree. We get that on a bounded
heap containing n items, Insert and DecreasePriority take O(logn) amor-
tized time, and BoundedMin takes O(logn) worst case time.

3 The Algorithm

The algorithm appears in Figure 2. In the preprocessing step, it (1) Removes
from each sequence all elements which do not appear in the other (“cleanup”),
and (2) For every remaining element o, generates a balanced search tree T,
that contains oo and the indices of all occurances of o in B.

Then, the algorithm identifies common increasing subsequences (CISs).
In iteration ¢ it identifies CISs of length ¢ (using the results of iteration i —1).
More precisely, for every element a; in A, it identifies the minimum index &
in B such that there is a length-i CIS which ends at a; in A and at b, in B.
The index & is stored in L;[j].

To compute the array Li[1...n], the algorithm traverses A and for each
aj, sets Li[j] to be the minimum index in the tree T, i.e., the earliest
occurance of a; in B. Note that due to step (1) of the preprocessing, L[j]
is finite.

For ¢ > 1, the #th iteration proceeds as follows. The algorithm traverses
A again, and for every a;, it checks whether a; (together with some b,) can
extend a CIS of length ¢ — 1 to a CIS of length ¢, and if so, identifies the
minimum such x. For this purpose, the algorithm maintains a bounded heap
. When it begins processing a;, H contains all elements a; € {a;,...,a; 1}
for which L;_[t] # occ. The key of a; in H is a;, and its priority is L;_[t],
i.e., the minimum index of the endpoint in B of a length-(i — 1) CIS which
ends, in A, at index ¢. The algorithm queries H to find the leftmost endpoint
(in B) of a length-(i — 1) CIS which contains only elements smaller than a;.
Let «' be this endpoint. Then, L;[j] is set to the first occurance of a; in B
which is after k' — we will prove that this is the leftmost endpoint in B of a
length-i CIS which ends, in A, at a;.

The arrays Linkq, Links, ... are used to save the information we need in
order to construct the LCIS: Whenever we detect that the index pair (j, %)
can extend a length-(i — 1) CIS which ends at the index pair (j', '), we set
Link;[j] = j'. Finally, if there is a length-(¢ — 1) CIS which ends at a;, then
a; is inserted into #H with priority L;_[a;]; it may later be extended into a
length-; CIS by some a; with j' > j.

3.1 Proof of Correctness

The correctness of the algorithm relies on the following lemma, which states
that if there is a solution then the algorithm finds it. It is straighforward to
show that the algorithm will not find a CIS that does not exist.

Lemma 1 Let A and B be two sequences that have a length-f CIS which

Function LCIS(A = (a1,...an), B = (b1,...bm))
Preprocess (* Clean A and B and build T, for every o. *)
i+ 1

(* Compute Li[1...n] *)
for j =1 to n do L;[j] < MinimumKey(Ty,)

H « [] (* Empty Bounded Heap. *)

(* Main loop: *)

do
i i+ 1
for j =1to ndo
Li[j] = o0
(4',K") < BoundedMin(H, a;)
if (5, k') # “invalid” then
L;[j] «~ min{x : 5 € Ty; Nk > K'}
Link;[j] = j'
endif
if L; 1[j] # oo then
(* Recall that DecreasePriority inserts a; if it is not already there. *)
DecreasePriority (M., aj, Li—1[j], (4, K))
endif
endfor

while i < n and L; # oco™.

(* Generate a LCIS in reverse order *)
if L, = 00" then ¢ i —1
j < an index such that L;[j] # oc.
while ¢ > 0 do
output a;
j < Link;[j]
14 1—1
end while
end

Figure 2: LCIS Algorithm.

ends in A at index j and in B at index k. Then at the end of the iteration
in which i = ¢, Ly[j] < k.

Proof By induction on /. For ¢ = 1, the claim is obvious. Assume that it
holds for any CIS of length £ — 1 and that we are given A and B which have
a CIS ¢1,..., ¢ of length ¢, which is located in A as a;,,...,a;, and in B as
brys sy,

By the induction hypothesis, at the end of the + = ¢ — 1 iteration, L;_;
contains entries which are not equal to oo. Hence, the algorithm will proceed
to perform iteration ¢ = ¢. Again by the induction hypothesis, L, 1[j; 1] <

‘

Kp—1.

Since aj,_, < aj,, it is guaranteed that when j = j,, H contains an item
with key a;,_,, priority &' < K,y and d = (js—1,+"). So the BoundedMin
operation will return a valid value. If the value returned is (j,_1, k¢_1), then
the smallest occurance of a, in B after ;1 is not beyond x,. So the algo-
rithm will set L,[js] < kg. On the other hand, if the value returned is not
(je—1, ke—1), then it is (je—1, ') for some £’ < k,_y. Since a; < ay, again we
get that the smallest occurance of a; in B after x,_; is not beyond k;. So
the algorithm will set L;[j,] < k. |

3.2 Complexity

The preprocessing phase takes O(mlogm) time: Eliminating items that ap-
pear only in one of the sequences is easy after they are sorted. The construc-
tion of the T,,’s takes O(m) time, because we need to build search trees, each
over a static, sorted set of indices.

A is traversed O(¢) times, and in each traversal O(n) operations are
performed on balanced search trees of size n, each of which takes O(logn)
amortized time. In total, this takes O(nflogn) time. Constructing the LCIS
takes O(¢) time. We get that the total running time of the algorithm is
O(mlogm + nllogn).

As for space complexity, note that in the main loop, we only use L;_;
and L;. Therefore, we do not need to save the previous L’s. This means
that if we only wish to find the length of the LCIS, the space requirement is
O(m + n). If we also want to construct the LCIS, we need O(nf) space for
the Link arrays.

Acknowledgement We wish to thank Kanela Kaligosi for her comments on
an earlier draft of this paper.

References

1]

L. Bergroth, H. Hakonen, and T. Raita. A survey of longest com-
mon subsequence algorithms. In SPIRE ’00: Proceedings of the Sev-
enth International Symposium on String Processing Information Retrieval
(SPIRE’00), page 39. IEEE Computer Society, 2000.

S. Bespamyatnikh and M. Segal. Enumerating longest increasing subse-
quences and patience sorting. Inform. Process. Lett., 76(1-2):7-11, 2000.

M.L. Fredman. On computing the length of longest increasing subse-
quences. Discrete Mathematics, 11(1):29-35, 1975.

Daniel S. Hirschberg. Algorithms for the longest common subsequence
problem. J. ACM, 24(4):664-675, 1977.

James W. Hunt and Thomas G. Szymanski. A fast algorithm for com-
puting longest common subsequences. Commun. ACM, 20(5):350-353,
1977.

M.S. Paterson W.J. Masek. A faster algorithm computing string edit
distances. J. Comput. System Sci., 20:18-31, 1980.

[-Hsuan Yang, Chien-Pin Huang, and Kun-Mao Chao. A fast algorithm
for computing a longest common increasing subsequence. Information
Processing Letters, 93/5:249-253, 2005.

o

INFORMATIK

Below you find

a list of the most recent technical reports of the Max-Planck-Institut fiir Informatik. They

are available by anonymous ftp from ftp.mpi-sb.mpg.de under the directory pub/papers/reports. Most
of the reports are also accessible via WWW using the URL http://www.mpi-sb.mpg.de. If you have any
questions concerning ftp or WWW access, please contact reports@mpi-sb.mpg.de. Paper copies (which
are not necessarily free of charge) can be ordered either by regular mail or by e-mail at the address below.

Max-Planck-Institut fiir Informatik
Library

attn. Anja Becker
Stuhlsatzenhausweg 85

66123 Saarbriicken

GERMANY

e-mail: library@mpi-sb.mpg.de

MPI-1-2005-4-004

MPI-1-2005-4-003

MPI-1-2005-4-002

MPI-1-2005-4-001

MPI-1-2005-2-001
MPI-1-2005-1-007

MPI-1-2005-1-002
MPI-1-2005-1-001

MPI-1-2004-NWG3-001

MPI-1-2004-NWG1-001

MPI-1-2004-5-001

MPI-1-2004-4-006
MPI-1-2004-4-005

MPI-1-2004-4-004
MPI-1-2004-4-003

MPI-1-2004-4-002

MPI-1-2004-4-001

MPI-1-2004-2-007
MPI-1-2004-2-002

MPI-1-2004-2-001

MPI-1-2004-1-006

C. Theobalt, N. Ahmed, E. De Aguiar,
G. Ziegler, H. Lensch, M.A.,. Magnor,

Joint Motion and Reflectance Capture for Creating
Relightable 3D Videos

H. Seidel
T. Langer, A.G. Belyaev, H. Seidel

O. Schall, A. Belyaev, H. Seidel

M. Fuchs, V. Blanz, H. Lensch,
H. Seidel

J. Hoffmann, Carla Gomes
I. Katriel, M. Kutz

I. Katriel, M. Kutz, M. Skutella
D. Michail
M. Magnor

B. Blanchet
S. Siersdorfer, S. Sizov, G. Weikum
K. Dmitriev, V. Havran, H. Seidel

I.P. Ivrissimtzis, W.-. Jeong, S. Lee,
Y.a. Lee, H.-. Seidel

R. Zayer, C. Rossl, H. Seidel
Y. Ohtake, A. Belyaev, H. Seidel

Y. Ohtake, A. Belyaev, H. Seidel
J. Haber, C. Schmitt, M. Koster,
H. Seidel

S. Wagner
P. Maier

H.d. Nivelle, Y. Kazakov

L.S. Chandran, N. Sivadasan

Analysis and Design of Discrete Normals and
Curvatures

Sparse Meshing of Uncertain and Noisy Surface
Scattered Data

Reflectance from Images: A Model-Based Approach for
Human Faces

Bottleneck Behavior in CNF Formulas

A Faster Algorithm for Computing a Longest Common
Increasing Subsequence

Reachability Substitutes for Planar Digraphs
Rank-Maximal through Maximum Weight Matchings

Axisymmetric Reconstruction and 3D Visualization of
Bipolar Planetary Nebulae

Automatic Proof of Strong Secrecy for Security
Protocols

Goal-oriented Methods and Meta Methods for
Document Classification and their Parameter Tuning

Faster Ray Tracing with SIMD Shaft Culling

Neural Meshes: Surface Reconstruction with a Learning
Algorithm

r-Adaptive Parameterization of Surfaces

3D Scattered Data Interpolation and Approximation
with Multilevel Compactly Supported RBFs

Quadric-Based Mesh Reconstruction from Scattered
Data

Modeling Hair using a Wisp Hair Model

Summaries for While Programs with Recursion

Intuitionistic LTL and a New Characterization of Safety
and Liveness

Resolution Decision Procedures for the Guarded
Fragment with Transitive Guards

On the Hadwiger’s Conjecture for Graph Products

MPI-1-2004-1-005
MPI-1-2004-1-004
MPI-1-2004-1-003

MPI-1-2004-1-002

MPI-1-2004-1-001

MPI-1-2003-NWG2-002
MPI-1-2003-NWG2-001

MPI-1-2003-4-009

MPI-1-2003-4-008
MPI-1-2003-4-007

MPI-1-2003-4-006

MPI-1-2003-4-005

MPI-1-2003-4-004

MPI-1-2003-4-003
MPI-1-2003-4-002

MPI-1-2003-4-001

MPI-1-2003-2-004

MPI-1-2003-2-003

MPI-1-2003-2-002

MPI-1-2003-2-001

MPI-1-2003-1-018

MPI-1-2003-1-017

MPI-1-2003-1-016

MPI-1-2003-1-015

MPI-1-2003-1-014

MPI-1-2003-1-013

MPI-1-2003-1-012

MPI-1-2003-1-011

MPI-1-2003-1-010

MPI-1-2003-1-009

MPI-1-2003-1-008

S. Schmitt, L. Fousse
N. Sivadasan, P. Sanders, M. Skutella
1. Katriel

P. Sanders, S. Pettie

N. Beldiceanu, I. Katriel, S. Thiel

F. Eisenbrand
L.S. Chandran, C.R. Subramanian
N. Zakaria

C. Roessl, I. Ivrissimtzis, H. Seidel

I. Ivrissimtzis, W. Jeong, H. Seidel

Roessl, F. Zeilfelder,
. Niirnberger, H. Seidel

Hangelbroek, G. Niirnberger,
Roessl, H.S. Seidel, F. Zeilfelder

Bekaert, P. Slusallek, R. Cools,
. Havran, H. Seidel

Zayer, C. Roessl, H. Seidel

Theobalt, M. Li, M. Magnor,
. Seidel

. Tarini, H.P.A. Lensch, M. Goesele,
. Seidel

. Podelski, A. Rybalchenko

<@ as 0o

z ma @

>

Y. Kazakov, H. Nivelle

M. Jaeger

P. Maier

G. Schaefer

G. Schifer, S. Leonardi

G. Schifer, N. Sivadasan

. Kovécs

. Schéfer, L. Becchetti, S. Leonardi,
. Marchetti-Spaccamela,
. Vredeveld

I. Katriel, S. Thiel

A
G
A
T

P. Krysta, A. Czumaj, B. Voecking
H. Tamaki
B. Csaba

P. Sanders

A comparison of polynomial evaluation schemes
Online Scheduling with Bounded Migration

On Algorithms for Online Topological Ordering and
Sorting

A Simpler Linear Time 2/3 - epsilon Approximation for
Maximum Weight Matching

Filtering algorithms for the Same and UsedBy
constraints

Fast integer programming in fixed dimension
Girth and Treewidth

FaceSketch: An Interface for Sketching and Coloring
Cartoon Faces

Tree-based triangle mesh connectivity encoding

Neural Meshes: Statistical Learning Methods in Surface
Reconstruction

Visualization of Volume Data with Quadratic Super
Splines

The Dimension of C! Splines of Arbitrary Degree on a
Tetrahedral Partition

A custom designed density estimation method for light
transport

Convex Boundary Angle Based Flattening

A Flexible and Versatile Studio for Synchronized
Multi-view Video Recording

3D Acquisition of Mirroring Objects

Software Model Checking of Liveness Properties via
Transition Invariants

Subsumption of concepts in DL FLq for (cyclic)
terminologies with respect to descriptive semantics is
PSPACE-complete

A Representation Theorem and Applications to
Measure Selection and Noninformative Priors

Compositional Circular Assume-Guarantee Rules
Cannot Be Sound And Complete

A Note on the Smoothed Complexity of the
Single-Source Shortest Path Problem

Cross-Monotonic Cost Sharing Methods for Connected
Facility Location Games

Topology Matters: Smoothed Competitive Analysis of
Metrical Task Systems

Sum-Multicoloring on Paths

Average Case and Smoothed Competitive Analysis of
the Multi-Level Feedback Algorithm

Fast Bound Consistency for the Global Cardinality
Constraint

- not published -
Selfish Traffic Allocation for Server Farms

A linear time heuristic for the branch-decomposition of
planar graphs

On the Bollobéds — Eldridge conjecture for bipartite
graphs

Polynomial Time Algorithms for Network Information
Flow

MPI-1-2003-1-007 H. Tamaki Alternating cycles contribution: a strategy of
tour-merging for the traveling salesman problem

MPI-1-2003-1-006 M. Dietzfelbinger, H. Tamaki On the probability of rendezvous in graphs
MPI-1-2003-1-005 M. Dietzfelbinger, P. Woelfel Almost Random Graphs with Simple Hash Functions

