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Abstract

Let A = (ay,...,a,) and B = (by,...,b,) be two sequences with m >
n, whose elements are drawn from a totally ordered set. We present an
algorithm that finds a longest common increasing subsequence of A and B
in O(mlogm + nllogn) time and O(m + nf) space, where ¢ is the length
of the output. A previous algorithm by Yang et al. needs ©(mn) time and
space, so ours is faster for a wide range of values of m,n and /.
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1 Introduction

Given two sequences A =< aq,...,a, > and B =< by,...,b,, > with m >
n, a common subsequence of A and B is a subsequence (a; = by,,a;, =
brys - aj, = by,), where j; < jo < -+ < jyand k1 < Ky < -+ < Ky.

Given one sequence A =< aq,...,a, > where the a;’s are drawn from a to-
tally ordered set, an increasing subsequence of A is a subsequence (a;, , a;,, . .., a;,)
such that j; < j» <--- < jgand a;, <aj <---<ay.

Algorithms that search for the longest common subsequence (LCS) or
the longest increasing subsequence (LIS) date back several decades. See,
e.g., [1, 2,3, 5, 6].

However, only recently Yang et al. [7] combined the two concepts, and
defined the common increasing subsequence (CIS) of two sequences A and B,
i.e., an increasing sequence which is a subsequence of both A and B. They
designed an algorithm that finds a longest CIS (LCIS) of A and B using
©(mn) time and space.

In this paper we present an algorithm for the LCIS problem which runs in
O(mlogm+ntllogn) time and O(m + nf) space, where £ is the length of the
LCIS. Whenever n = Q(logm) and either m = Q(nlogn) or £ = o(n/logn),
it is faster than ©(mn).

In Section 2, we construct a data structure which we call a bounded heap
and which will be used by our LCIS algorithm. In Section 3 we present the
algorithm and prove its correctness.

2 The Bounded-Heap Data Structure

A bounded heap (BH) is a data structure that resembles a priority queue, but
also allows us to bound our queries. That is, we can ask for the minimum
priority among all items in the heap whose keys are smaller than k. In this
section we describe how to implement a bounded heap that supports the
following operations:

e Insert(H,k,p,d): Insert into the BH H the key k with priority p and
associated data d.

e DecreasePriority(H, k,p,d): If the BH H does not contain the key £,
perform Insert(H, k, p, d). Otherwise, set this key’s priority to min{p, p'},
where p' is its previous priority.

e BoundedMin(H,k): Return the item that has minimum priority among
all items in H with key smaller than k. If H does not contain any items
with key smaller than £, return “invalid”.
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Assume that the keys are drawn from the set {0y, 09,...,0p5} which is
totally ordered, i.e., 0y < 0y < -+ < 05. Let BM(k) denote the priority
of the item returned by the query BoundedMin(H,k). Clearly, BM(o;) <
BM (o) for any 1 < i < |X]| (see Figure 1).
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Figure 1: Example of BM values.

Since we only need to support BoundedMin queries (and not queries about
the priority of a specific key), it suffices to keep in our data structure only the
smallest key for each BM value. These keys will be the leaves of a balanced
search tree, sorted from left to right by increasing key order. Along with the
key, we also store the corresponding BM value in each leaf. For the example
in Figure 1, the data structure will contain the (key, BM) pairs (1, 00), (2,7),
(4,6), (6,5), (7,3), (8,2), (10,1).

A BoundedMin(H, o;) query is handled by searching for the largest key
which is smaller than o;. The BM value stored with this key is valid for o;
(by definition).

What we achieved by this compression is that now we can efficiently sup-
port DecreasePriority operations. Assume that the priority of o; decreased
from p' to p and that p is smaller than BM (o;) for ¢ < j < i'. This means
that all leaves in the tree which correspond to keys in {0;41,0;19,...,04 1}
need to be removed. This takes time O(logn + 4’ — i); we need to remove an
interval of O(i' — i) leaves as well as O(i' — i) internal nodes. Finally, a leaf
with key o;,1 and BM value p is inserted to the tree.

An Insert(H, k, p, d) operation is handled as if it was a DecreasePriority(H, k, p, d)
operation. To see that this works, note that the tree would not change if we
were to insert the key k with priority oco.

The O(i' — i) time of DecreasePriority can be charged to the insertions of
the leaves that were deleted. That is, when a new leaf is inserted, it receives
a constant number of tokens with which it can pay for the DecreasePriority
operation that caused its deletion from the tree. We get that on a bounded
heap containing n items, Insert and DecreasePriority take O(logn) amor-
tized time, and BoundedMin takes O(logn) worst case time.



3 The Algorithm

The algorithm appears in Figure 2. In the preprocessing step, it (1) Removes
from each sequence all elements which do not appear in the other (“cleanup”),
and (2) For every remaining element o, generates a balanced search tree T,
that contains oo and the indices of all occurances of o in B.

Then, the algorithm identifies common increasing subsequences (CISs).
In iteration ¢ it identifies CISs of length ¢ (using the results of iteration i —1).
More precisely, for every element a; in A, it identifies the minimum index &
in B such that there is a length-i CIS which ends at a; in A and at b, in B.
The index & is stored in L;[j].

To compute the array Li[1...n], the algorithm traverses A and for each
aj, sets Li[j] to be the minimum index in the tree T, i.e., the earliest
occurance of a; in B. Note that due to step (1) of the preprocessing, L[j]
is finite.

For ¢ > 1, the #th iteration proceeds as follows. The algorithm traverses
A again, and for every a;, it checks whether a; (together with some b,) can
extend a CIS of length ¢ — 1 to a CIS of length ¢, and if so, identifies the
minimum such x. For this purpose, the algorithm maintains a bounded heap
. When it begins processing a;, H contains all elements a; € {a;,...,a; 1}
for which L;_[t] # occ. The key of a; in H is a;, and its priority is L;_[t],
i.e., the minimum index of the endpoint in B of a length-(i — 1) CIS which
ends, in A, at index ¢. The algorithm queries H to find the leftmost endpoint
(in B) of a length-(i — 1) CIS which contains only elements smaller than a;.
Let «' be this endpoint. Then, L;[j] is set to the first occurance of a; in B
which is after k' — we will prove that this is the leftmost endpoint in B of a
length-i CIS which ends, in A, at a;.

The arrays Linkq, Links, ... are used to save the information we need in
order to construct the LCIS: Whenever we detect that the index pair (j, %)
can extend a length-(i — 1) CIS which ends at the index pair (j', '), we set
Link;[j] = j'. Finally, if there is a length-(¢ — 1) CIS which ends at a;, then
a; is inserted into #H with priority L;_[a;]; it may later be extended into a
length-; CIS by some a; with j' > j.

3.1 Proof of Correctness

The correctness of the algorithm relies on the following lemma, which states
that if there is a solution then the algorithm finds it. It is straighforward to
show that the algorithm will not find a CIS that does not exist.

Lemma 1 Let A and B be two sequences that have a length-f CIS which



Function LCIS(A = (a1,...an), B = (b1,...bm))
Preprocess (* Clean A and B and build T, for every o. *)
i+ 1

(* Compute Li[1...n] *)
for j =1 to n do L;[j] < MinimumKey(Ty,)

H « [] (* Empty Bounded Heap. *)

(* Main loop: *)

do
i i+ 1
for j =1to ndo
Li[j] = o0
(4',K") < BoundedMin(H, a;)
if (5, k') # “invalid” then
L;[j] «~ min{x : 5 € Ty; Nk > K'}
Link;[j] = j'
endif
if L; 1[j] # oo then
(* Recall that DecreasePriority inserts a; if it is not already there. *)
DecreasePriority (M., aj, Li—1[j], (4, K))
endif
endfor

while i < n and L; # oco™.

(* Generate a LCIS in reverse order *)
if L, = 00" then ¢ i —1
j < an index such that L;[j] # oc.
while ¢ > 0 do
output a;
j < Link;[j]
14 1—1
end while
end

Figure 2: LCIS Algorithm.



ends in A at index j and in B at index k. Then at the end of the iteration
in which i = ¢, Ly[j] < k.

Proof By induction on /. For ¢ = 1, the claim is obvious. Assume that it
holds for any CIS of length £ — 1 and that we are given A and B which have
a CIS ¢1,..., ¢ of length ¢, which is located in A as a;,,...,a;, and in B as
brys sy,

By the induction hypothesis, at the end of the + = ¢ — 1 iteration, L;_;
contains entries which are not equal to oo. Hence, the algorithm will proceed
to perform iteration ¢ = ¢. Again by the induction hypothesis, L, 1[j; 1] <

‘

Kp—1.

Since aj,_, < aj,, it is guaranteed that when j = j,, H contains an item
with key a;,_,, priority &' < K,y and d = (js—1,+"). So the BoundedMin
operation will return a valid value. If the value returned is (j,_1, k¢_1), then
the smallest occurance of a, in B after ;1 is not beyond x,. So the algo-
rithm will set L,[js] < kg. On the other hand, if the value returned is not
(je—1, ke—1), then it is (je—1, ') for some £’ < k,_y. Since a; < ay, again we
get that the smallest occurance of a; in B after x,_; is not beyond k;. So
the algorithm will set L;[j,] < k. |

3.2 Complexity

The preprocessing phase takes O(mlogm) time: Eliminating items that ap-
pear only in one of the sequences is easy after they are sorted. The construc-
tion of the T,,’s takes O(m) time, because we need to build search trees, each
over a static, sorted set of indices.

A is traversed O(¢) times, and in each traversal O(n) operations are
performed on balanced search trees of size n, each of which takes O(logn)
amortized time. In total, this takes O(nflogn) time. Constructing the LCIS
takes O(¢) time. We get that the total running time of the algorithm is
O(mlogm + nllogn).

As for space complexity, note that in the main loop, we only use L;_;
and L;. Therefore, we do not need to save the previous L’s. This means
that if we only wish to find the length of the LCIS, the space requirement is
O(m + n). If we also want to construct the LCIS, we need O(nf) space for
the Link arrays.
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