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Abstra
tGiven a digraph G = (V;E) with a set U of verti
es marked \interesting,"we want to �nd a smaller digraph H = (V 0; E 0) with V 0 � U in su
h a waythat the rea
habilities amongst those interesting verti
es in G and H are thesame. So with respe
t to the rea
hability relations within U , the digraph His a substitute for G.We show that while almost all graphs do not have rea
hability substitutessmaller than 
(jU j2= log jU j), every planar graph has a rea
hability substituteof size O(jU j log2 jU j). Our result rests on two new stru
tural results forplanar dags, a separation pro
edure and a rea
hability theorem, whi
h mightbe of independent interest.

KeywordsRea
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1 Introdu
tionLet G = (V;E) be a dire
ted graph with n = jV j nodes and let U � V be a set of � nodes inG, whi
h are designated as interesting. A rea
hability substitute (RS) for (G;U) is a graphH = (V 0; E 0) su
h that U � V 0 and for any two interesting nodes u; v 2 U , there is a pathfrom u to v in G iff there is a path from u to v in H. Of 
ourse, G is a RS for (G;U) forany U � V . The problem we are interested in is that of �nding a small RS, i.e., one thatminimizes jV 0j+ jE 0j. We will show that this problem is NP-hard.Aside from the 
omplexity of �nding a small RS, we are interested in the stru
turalquestion of lower and upper bounds on its size. Trivially, every input has a solution ofsize O(�2). By a 
ounting argument we show that almost all inputs have only RS's of size
(�2= log�).Our fo
us in this paper is on planar inputs|the output RS need not be planar, though.Subramanian [23℄ showed that if all nodes of U lie on a 
onstant number of fa
es of a planarembedding, then there is a solution of size O(� log�), whi
h 
an be found in O(n logn) time.This algorithm was designed as a 
omponent of an algorithm for dynami
 rea
hability inplanar graphs; the graph is re
ursively partitioned with small separators and the interestingnodes are the nodes from the separators. Eppstein et al. later generalized this approa
h andobtained a faster algorithm [13℄. In addition, Klein and Subramanian [18℄ showed that thealgorithm of [23℄ 
an be modi�ed to 
onstru
t a substitute graph that not only representsthe rea
habilities among the interesting nodes but also approximates the lengths of shortestpaths between them.The main result of this paper is that planar inputs have small RS's, even if we removethe restri
tion that the interesting nodes lie on a 
onstant number of fa
es.Theorem 1 Any planar graph G = (V;E) with a subset U � V of � \interesting" nodeshas a rea
hability substitute of size O(� log2 �).Our proof is 
onstru
tive and o�ers an algorithm to �nd the RS.1.1 Other Related WorkThe 
ase in whi
h the set of interesting nodes 
an be a proper subset U � V , was notextensively studied. The only previous work we are aware of was mentioned above. Thespe
ial 
ase in whi
h U = V , i.e., all nodes are interesting, has been studied more extensively.If we require that V 0 = V and E 0 � E, the problem is 
alled Minimum Equivalent Graph(MEG). It is NP-hard and 
an be approximated within a 
onstant fa
tor in polynomialtime [17℄. If we require that V 0 = V but allow E 0 to 
ontain ar
s that are not in E, theproblem 
an be solved in polynomial time [1, 16, 17℄: Conne
t the nodes of ea
h strongly
onne
ted 
omponent (SCC) by a simple 
y
le and 
ompute the transitive redu
tion of thedag obtained by 
ontra
ting ea
h SCC into a single node. Note that the RS problem, besidesallowing U � V , removes both requirements of MEG: V 0 does not need to be 
ontained inV and E 0 does not need to be 
ontained in E.The 
ase U = V is strongly related to rea
hability, one of the most fundamental graphproblems whi
h was extensively studied. The stati
 problem is to �nd the transitive 
losure,1



while in the dynami
 version we need to eÆ
iently maintain a data stru
ture that 
an answerrea
hability queries [14, 22, 25℄ or, in a widely studied spe
ial 
ase, the expli
it transitive
losure matrix [5, 9, 21℄. If we are interested in a substitute graph whi
h not only representsthe existen
e of paths but also approximates their lengths, this is 
alled a spanner, and severalspanner 
onstru
tions, with di�erent sizes and approximation guarantees, are known, thoughmost of the existing work on spanners is about undire
ted graphs [2, 3, 4, 7, 8, 10, 11, 12,19, 20, 27℄. Another related problem is that of 
omputing a distan
e ora
le [6, 24, 26℄, i.e., arepresentation of the rea
hability relation of the graph whi
h supports (exa
t or approximate)distan
e queries eÆ
iently.1.2 Our Te
hniquesThe main result builds upon of three 
omponents. The �rst is a digraph 
onstru
tion we 
allan interval stru
ture. Given a linearly ordered set S of ` nodes, an interval stru
ture for S isa graph of size O(` log `) su
h that for every length-2i interval I of nodes from S for integeri, there is a node in the graph that rea
hes exa
tly the nodes in I. This data stru
ture isvery simple and it has several ni
e properties on whi
h we elaborate later.The se
ond 
omponent is a new type of balan
ed separator for planar dags, whi
h mightbe of independent interest. We show that, given a plane dag (i.e., a planar dag with a planarembedding) with a weight for ea
h node, it is always possible to �nd a balan
ed almost-dire
ted separator. That is, a simple 
urve whi
h does not go through any node and 
rossesea
h ar
 at most on
e; and partitions the nodes into two sets A and B of balan
ed weight.Almost-dire
ted means that almost all ar
s whi
h 
ross the 
urve are dire
ted from A to B.The third 
omponent is the algorithm that, given a plane dag G and a simple almost-dire
ted separator, 
onstru
ts a dag ~G that represents all paths from interesting nodes inA to interesting nodes in B. This 
onstru
tion uses the interval stru
ture. ~G is the unionof three parts: The �rst represents paths from interesting nodes in A to the separator, these
ond represents paths from the separator to interesting nodes in B and the third links thesestru
tures in the right way. We prove an upper bound of O(� log�) for ~G. One step of thisproof establishes that the rea
hability from interesting nodes in A to the separator 
annotbe very 
ompli
ated. More pre
isely, let e = (a; b) be an ar
 that 
rosses the separator andlet its type be the set of interesting nodes in A that 
an rea
h its startpoint a. We show thatthe number of types on the separator is O(�), and furthermore that while walking along theseparator, the number of times that the type 
hanges is O(�). This result is interesting inits own.On
e we have the graph ~G, we re
ursively 
ompute an RS for A and an RS for B. Now, allpaths between interesting nodes are represented by a graph with a total size of O(� log2 �).1.3 RoadmapThe rest of the paper is organized as follows. In Se
tion 2 we derive several 
omplexityresults about the 
omputational 
ost of 
omputing small RS's and lower bounds on theirsizes. Se
tions 3{5 form the bulk of the paper and des
ribe the 
onstru
tion of RS's forplanar a
y
li
 graphs: In Se
tion 3 we assume that we have a simple dire
ted separator2



and show how to represent the rea
habilities from ea
h side to the separator. In Se
tion 4we show how to �nd a simple almost-dire
ted separator and in Se
tion 5 we des
ribe howto 
ombine the di�erent parts of the algorithm and show how to handle the fa
t that theseparator may not be perfe
tly dire
ted. Finally, in Se
tion 6 we show how to extend thealgorithm to handle 
y
li
 graphs.2 The Complexity of Rea
hability SubstitutesIn order to prove that the optimization problem under 
onsideration is NP-hard, we �rst
onsider a more general problem.2.1 NP-hardness of a more general problemAssume that the input graph 
ontains two types of ar
s: solid ar
s Es and dashed ar
s Ed.A solid ar
 (u; v) 2 Es implies that the output graph must 
ontain a path from u to v, adashed ar
 (u; v) 2 Ed indi
ates that there may or may not be a path from u to v in theoutput graph and (u; v) 62 Es [Ed indi
ates that the output graph must not 
ontain a pathfrom u to v. Note that this version of the problem may not have a solution, namely whenthe input already violates transitivity.Theorem 2 The problem des
ribed above is NP-hard.Proof By redu
tion from Minimum Hitting Set, whi
h is the following problem.Input: A 
olle
tion C of subsets of a �nite set S.Output: A hitting set for C, i.e., a subset S 0 of S su
h that S 0 
ontains at least one elementfrom ea
h subset in C.Obje
tive: Minimize jS 0j.The redu
tion is as follows. V = S [ C [ fxg. That is, U 
ontains a node for everyitem in S, a node for every subset in C, and a spe
ial node x. The ar
s are as follows:- For ea
h u 2 S and v 2 C, (u; v) 2 Es if u 2 v.- (x; u) 2 Ed for ea
h u 2 S.- (x; u) 2 Es for ea
h u 2 C.Given a solution to this problem, we 
onstru
t a solution to the hitting set problem asfollows: for ea
h ar
 (x; u) outgoing from x, if u 2 S then add u to the hitting set. Ifu 2 C then add an arbitrary element from u to the hitting set. If u is a dummy node thatwas introdu
ed by the algorithm, then it is rea
hable from some nodes in S (otherwise thesolution is not optimal). Sele
t one of them for the hitting set.One 
an easily verify that every set in C is represented in the hitting set. To see that thehitting set is optimal, note that the 
ardinality of the hitting set is equal to the degree of xin the RC. If there is a smaller hitting set, then we 
an obtain a smaller RC by removingall ar
s in
ident to x and 
onne
ting x to the node representing ea
h element of the optimalhitting set, 
ontradi
ting our assumption that the RC is optimal.3



2.2 NP-hardness of our problemMultiply ea
h node representing an item by four. That is, for every item u 2 S, U 
ontainsfour nodes, u1; : : : ; u4. The ar
s are now as follows:- For ea
h u 2 S and v 2 C, if u 2 v then (ui; v) 2 Es for all 1 � i � 4.- For ea
h u 2 C, (x; u) 2 Es.Proposition 1 An optimal H 
ontains a node u for ea
h item u 2 S su
h that u is rea
hablefrom ea
h of u1; : : : ; u4 and rea
hes every node that represents a set in C that 
ontains u.It is easy to see that otherwise, H is not optimal. Hen
e, in an optimal H there will bean ar
 from x to u if in the previous redu
tion there was an ar
 from x to u. This impliesthat �nding an optimal RS is NP-hard.2.3 The 
ounting argumentWe use a 
ounting argument in order to show that there are relations that 
annot be repre-sented by a graph of size less than 
(�2= log�).Let � = 2k for some integer k and 
onsider as possible inputs all bipartite graphs withk (interesting) nodes on ea
h side of the bipartition. Ar
s are dire
ted from one side to theother. If nodes are labeled 1; : : : ; k on ea
h side, there are exa
tly 2k2 su
h input graphs.We determine an upper bound on the number N(`) of di�erent inputs that have a rea
h-ability substitute of size at most `. Obviously, N(`) is smaller than the number of di�erentdigraphs on at most ` nodes with at most ` ar
s. The latter quantity 
an be bounded asfollows: For any ar
, there are less than `2 possibilities of how to pla
e it in (or omit itfrom) the digraph. As a 
onsequen
e, the number of digraphs, and thus N(`), is boundedby `2` = 22` log `. Therefore, only a fra
tion of 22` log `�k2 of all inputs 
an have an RS of sizeat most `. This fra
tion 
an only be 
onstant if ` 2 
(k2= log k).Lemma 1 A smallest RS of almost all relations among � interesting nodes has size 
(�2= log�).2.4 A lower bound for planar outputsThroughout this exposition, we assume that a planar instan
e (G = (V;E); U � V ) of theRS problem 
omes with a �xed embedding of G into the plane. Nodes 
orrespond to pointsand ar
s are embodied as simple 
urves who may only interse
t at nodes. If not given, su
ha representation 
an be 
onstru
ted in linear time [15℄.The almost linear-size RS for planar graphs that we 
onstru
t for Theorem 1 will, however,be far from planar. To see that this 
annot be avoided, we brie
y argue why in general,planarity must be sa
ri�
ed if one wants small RS's.Consider the plane dag in Figure 1. The paths through the bla
k uninteresting nodesare set up to make a lower interesting node vj rea
hable from some upper interesting nodeui if and only if i � j < i + r. We 
laim that any planar RS for this dag with the whitenodes marked interesting, must 
ontain essentially all those bla
k intermediate nodes, too.4



v1 v2 v3 v5v4 v`� � �
u`u5u4u3u2u1

... . . . ...
� � �

r levels
Figure 1: A planar dag with planar RS's of quadrati
 size only.In other words, this dag is in
ompressible if planarity is to be maintained. With r � ` thisgives a quadrati
 lower bound on the representation size in terms of �.To prove this 
laim, 
onsider a pair ui; ui0 with i � i0 < i + r. The set of bottom nodesrea
hable from both, forms an interval fvi0 ; : : : ; vi+r�1g of length r + i � i0. In an RS forthis dag, there must be a path P from ui to vi+r�1 and a path P 0 from ui0 to vi0 . By someadditional framework nodes and ar
s, whi
h we omitted for simpli
ity, we 
an guarantee thatalso in the output, the ui and the vi 
ome in ordered lines and that any 
onne
ting paths runin the area between them. Hen
e, P and P 0 will have to interse
t at some node x. Underthese side 
onditions, it is easy to see that the set of vj rea
hable from this x is exa
tly theabove length-(r+ i� i0) interval. Hen
e, we must have a di�erent node for ea
h su
h interval,whi
h yields our 
laim.3 Crossing a LineThe rest of the paper 
ontains the proof of Theorem 1. Initially, we assume that the inputis a dag. In Se
tion 6 we show how to handle 
y
les.Assume we 
an split the plane along a simple 
losed 
urve L su
h that the two resultingareas A and B 
ontain about the same number of interesting nodes and su
h that 
ross-se
tion ar
s of G go only in one dire
tion, from A to B. In this se
tion we show how torepresent all 
ross 
onne
tions from interesting nodes in A to su
h in B with a graph of sizeO(� log�). Let's make the 
on
ept of \splitting" more pre
ise.De�nition 1 A simple 
ut of a plane digraph (or graph) G = (V;E) is a partition (A;B =V n A) of the nodes su
h that there exists a Jordan 
urve L (a simple 
losed 
urve, that is)separating the plane into two areas su
h that one 
ontains all nodes in A and the other allin B, and su
h that L 
ontains no node and 
rosses no ar
 of G more than on
e. A simple
ut is dire
ted (from A to B) if no ar
 goes from B to A.We 
all the involved sets A and B simple sets and 
all A out-dire
ted and B in-dire
tedin 
ase of a dire
ted 
ut. 5



The 
ondition on ar
-
urve 
rossings in De�nition 1 is needed to ensure that the 
ut
onforms with the embedding. If it was not there, the separating 
urve 
ould 
ut out justany set we like.It will turn out that obtaining a dire
ted simple 
ut that is also reasonably balan
ed isdiÆ
ult and sometimes not even possible. However, we shall deal with those problems later.For now, let us assume we have su
h a 
ut. The 
onstru
tion behind the following theoremforms the main ingredient for Theorem 1.Theorem 3 Consider a plane dag with a dire
ted simple 
ut (A;B) and with a total of �nodes marked interesting. Then there exists a digraph of size O(� log�) 
ontaining all thoseinteresting nodes, who represents all rea
habilities from interesting nodes in A to interestingnodes in B and no further 
onne
tions amongst interesting nodes.3.1 The type boundThe proof of Theorem 3 treats the two parts A and B independently. We �rst a

ount for allinteresting rea
habilities from A to the separating 
urve L, then for the rea
habilities fromL into B, and afterwards merge the two stru
tures into one RS for the whole problem.For te
hni
al 
onvenien
e, we introdu
e an interfa
e node xe for ea
h ar
 e = (u; w) that
rosses L and repla
e e by the two \halves" (u; xe) and (xe; w). After that, L meets thegraph only at these interfa
e nodes (none of whi
h is interesting) and 
uts no ar
s any more.Denote the set of interfa
e nodes by X.Beginning our analysis in A, we ignore the other side, B, 
ompletely for a while. Hen
e,the outdegree of all interfa
e nodes is (e�e
tively) zero for the time being. For 
onvenien
e,we split the 
utting 
urve L at an arbitrary point that is not a node and stret
h it out into astraight horizontal line, so that the A-portion of G now sits 
ompletely above this baseline.All interfa
e nodes 
ome in a natural order now so we 
an label them x1 through xt (fromleft to right) and as they sit on the baseline, we also like to 
all them ground nodes in thisse
tion. Ea
h of them 
arries a type: the set of interesting nodes that rea
h this groundnode. We shall see that neighboring nodes of identi
al type 
an be treated like a single nodein our representation, so we are interested in the number of type 
hanges along L: pairs(i� 1; i) where the types of xi�1 and xi di�er. (We 
onsider (0; 1) a type 
hange, too.)The following observation gives a linear bound on the 
omplexity of the baseline.Proposition 2 With ` interesting nodes above the baseline, there are at most 4` � 3 type
hanges on the baseline.Our proof of Proposition 2 rests on an indu
tive re
onstru
tion pro
edure for the dag,subje
t to some spe
ial rules. We de�ne the net of an interesting node a of the plane dagto be the set of all ar
s and nodes whi
h are rea
hable from a and rea
h the baseline. Theshadow of a is the region of all points in the halfplane that are 
ompletely en
losed by ar
sfrom a's net and the baseline, together with all points of the net itself (see Figure 2). Hereare the insertion rules.Rule 1. Exa
tly one interesting node is inserted at a time and with it all ar
s and nodesfrom its net but no more. 6



baseline
a

Figure 2: The net and shadow of a node.Rule 2. An interesting node must be inserted before all other interesting nodes in itsshadow.This pro
ess starts with an empty dag above an empty baseline. The �rst rule guaranteesthat after the insertion of an interesting node a, its in
uen
e on the baseline will never again
hange. New ground nodes may be 
reated afterwards but none of them will 
arry an a inits type. The motivation for the se
ond rule is more 
ompli
ated and shall be
ome 
learthroughout the proofs of the two subsequent lemmas.Lemma 2 Immediately after a new interesting node a has been inserted, the ground nodesthat 
arry a in their type form a 
ontiguous interval.Proof Immediately after insertion of a, all nodes in the shadow of a must 
arry a in theirtype be
ause if some node x inside the shadow didn't, it would by Rule 1 have to be rea
h-able by some other node, b, say. Su
h a b must, by Rule 2, lie outside the shadow of a. Butthen any path from b to x would have to 
ross a's net and would thus, by planarity, also
arry the label a into the type of x. A 
ontradi
tion. See Figure 3.a
x

b
Figure 3: All types in the shadow of a new a re
eive that a.Lemma 3 Immediately after the insertion of a new interesting node a, the ground nodesthat have been 
reated through this insertion are of type fag and they form a 
ontiguousinterval on the baseline.Proof The �rst part is an immediate impli
ation of Rule 1. If a node 
arries any furtherlabel b, it must have existed already at the 
reation time of node b. To see that the groundnodes with type fag form an interval, assume for 
ontradi
tion that there was some node of7



type f
; : : :g between two fag-nodes. Then the interesting node 
 would have to lie in theshadow of a; a 
ontradi
tion to Rule 2.Proof (of Proposition 2) By indu
tion. We keep 
ount of the number of type 
hanges alongthe baseline while new interesting nodes are inserted a

ording to the two rules.After the �rst interesting node, there is exa
tly one type on the baseline whi
h meansjust one type 
hange, the initial one. When a new interesting node a is added, new type
hanges may appear in at most four pla
es: at the two ends of the interval of a (by Lemma 2)and at the ends of the interval of new type-fag ground nodes (by Lemma 3). Note that wedo not 
laim that only four new types are 
reated|that would not be true|but that thereare no more than four new positions on the baseline, where the type 
hanges.3.2 Representing intervalsLemmas 2 and 3 tell us that if we follow Rules 1 and 2, 
hanges along the baseline o

ur along
ontiguous intervals. Our RS 
onstru
tion rests on the following stru
ture for representingrea
habilities of intervals.Consider a digraph H (whi
h will be our RS) with a designated subset X of nodes(
orresponding to the ground nodes). We say that a node set Z � X is represented by H(w.r.t. X) if there exists a node uZ in H su
h that fnodes rea
hable from uZg \ X = Z.Assume further that the set Z is endowed with a linear order, i.e., Z is an \interval." We saythat H has an interval stru
ture for Z (w.r.t. X) if every 
ontiguous subinterval of length 2iin Z is represented by H for all i � 0. The proof of the following two lemmas should makethe 
on
ept 
lear.Lemma 4 For an interval of length ` there exists an interval stru
ture of size O(` log `).Proof We need blog `
 levels, ea
h responsible for the subintervals of one 
ommon length 2i.There are less than ` intervals on ea
h level, and ea
h length-2i interval 
an be realized byone node and two ar
s pointing to two level-2i�1 intervals.Assume that H 
ontains an interval stru
ture for an interval Z, and that we wish torepresent some subinterval Z 0 of Z whose length `0 is not a power of 2. Sin
e Z 0 is the unionof two intervals of length 2blog `0
, we 
an do this by adding just one node and two ar
s to H.Lemma 5 If a digraph R already 
ontains interval stru
tures for two intervals fx1; : : : ; xtgand fx01; : : : ; x0t0g, then O �minft; t0g log(t + t0)� additional nodes and ar
s suÆ
e to extendthem to an interval stru
ture of the 
on
atenation fx1; : : : ; xt; x01; : : : ; x0t0g. The originalinterval stru
tures are not destroyed by this extension.Proof We only have to represent subintervals that extend over both domains. The othersare already 
overed by the interval stru
tures for the given sets. Any su
h subinterval beginson some xi and ends at some x0j. It 
an be represented as the union of two intervals on theleft and two further intervals on the right, whi
h 
an be realized by one new node and four8



ar
s. Charging ea
h new interval to its endpoint in the smaller side, we see that there areno more than minft; t0g new intervals on ea
h level i � blog(t+ t0)
, whi
h gives the 
laimedbound.3.3 Constru
ting the RS for one halfplaneWe now 
onstru
t an RSH that en
odes all rea
habilities from interesting nodes in the upperhalfplane to the ground nodes. Sin
e we shall soon see that adja
ent nodes of identi
al type
an be treated jointly, we delete adja
ent doubli
ates so that by Proposition 2, we are left witha sequen
e x1; : : : ; xt of ground nodes whose length t is linear in the number of interestingnodes.We follow the re
onstru
tion from the proof of Proposition 2 again, starting with anempty dag and extending it one interesting node after another by Rules 1 and 2. (Only withdupli
ate ground nodes removed from the pro
ess now.) The RSH for our dag is 
onstru
tedsimultaneously, also starting as an empty dag.Case a. If a new interesting node a does not introdu
e new ground nodes (i.e., no newsingleton type fag is 
reated) then the set of ground nodes with a in their type (whi
hforms a 
ontiguous interval by Lemma 2) 
an be 
overed by four intervals from theinterval stru
tures in H. (This will be shown in Lemma 7 below.) We 
reate a newnode in H and link it to these four intervals. This node will be only there for the
urrent interesting node a and not be reused in the 
onstru
tion of H later.Case b. If a new interesting node a does introdu
e new ground nodes, the set N of type-fagground nodes forms a 
ontiguous interval by Lemma 3. Using Lemma 4 we 
reate anew interval stru
ture of size O(jN j log jN j) for N . By Lemma 2, the set of all groundnodes with a in their type forms a super interval of N . Denote the portion to the leftof N by L and that to the right by R. (See the dashed regions in the left drawing ofFigure 4.) We shall see (in Lemma 6 below) that the dag H already 
ontains intervalstru
tures for L and R. With the help of Lemma 5 we 
an thus 
reate merged intervalstru
tures for the unions L [ N and N [ R, whi
h 
osts O(jN j log�) (using � as avery generous bound on jLj+ jN j and jN j+ jRj). Afterwards, we represent the wholeinterval L [N [R with one new node and four ar
s, just like in Case 1.Note that in Case b we do not 
reate an interval stru
ture for the whole se
tion L[N[R.That would turn out too 
ostly. Instead we provide two independent stru
tures that overlapon N . We now show that the interval stru
tures required in both 
ases do always exist as
laimed. Afterwards we upper bound the total size of H. We begin with the more diÆ
ult
ase.Lemma 6 Before a Case b insertion, H 
ontains an interval stru
ture for ea
h of L and R.Proof Formally, the proof is by indu
tion, assuming that at ea
h step the 
urrent H hasbeen 
onstru
ted a

ording to the above rules. The indu
tion base is trivial with empty L9



and R for the �rst interesting vertex to be inserted. We do the indu
tion step only for L,
on
luding for R by symmetry.Consider the rightmost ground node y in L. We 
laim that it was amongst the lastground nodes 
reated in L, with type fbg, say. By Rule 2, b must lie outside the shadow ofthe new node a. Take any path Pb from b to y and a path Pa from a to the leftmost groundnode x in L. These paths must 
ross in some node r, as shown in Figure 4. (Here we usethat a 
reates new ground nodes whi
h lie to the right of y.) The shadow of r 
overs all of L.Hen
e, by Rule 1, the last nodes of L must have appeared already when b was introdu
ed;whi
h is what we 
laimed. auLar N RL
uRbx yFigure 4: In Case a (left), the interval L already has an interval stru
ture; and in Case b(right), we get a subinterval of the union of two interval stru
tures.Denote the three ground intervals involved in the appearan
e of the interesting node bby Lb, Nb, and Rb. We know by indu
tion that we have 
reated an interval stru
ture for theunions Lb [Nb and Nb [ Rb then. Sin
e by de�nition, y lies in Nb, the above 
laim impliesthat L � Lb [ Nb. Hen
e, we already have an interval stru
ture for L in RS, as was to beshown.Lemma 7 In Case a, the set of ground nodes with the new node a in their type 
an be
overed with no more than four intervals represented in H.Proof Traverse the leftmost path in the net of a until you meet the �rst node that was
reated in an iteration of type b and denote the respe
tive interesting node by uL. Likewise,follow the right 
ank to the �rst su
h node there, 
reated by an interesting node uR. (Notethat uL = uR is well possible.)Clearly, all ground nodes rea
hable from a are rea
hable from uL or uR, too, and sin
ethey form an interval by Lemma 2, this interval 
an be written as the union of two subin-tervals from the stru
ture for uL and two from that of uR.3.4 Merging all interval stru
turesWe have everything in pla
e to 
on
lude the proof of Theorem 3 about rea
habilities a
rossa dire
ted simple 
ut.Proof (of Theorem 3) First of all, we need to verify that the previous 
onstru
tion is ofsize O(� log �). This is not diÆ
ult. An appli
ation of Case a produ
es only a 
onstant10



number of ar
s and nodes whi
h a

umulates to O(�) for all interesting nodes. In Case b,we 
harge the 
ost for the new interval stru
ture and for the two subsequent merges to thenewly 
reated ground nodes, whi
h sums to O(� log�) as desired.We repeat the whole 
onstru
tion for the other side B, with everything dire
ted fromthe baseline into B this time, so that we have two digraphs HA and HB for the two parts.It only remains to merge them at the baseline. Therefore, re
all that we have deleted typemultipli
ities on the baselines for A and B. Ground nodes of A might not have a pendantin B and vi
e-versa. This has to be taken into a

ount again now|in the obvious way:add an ar
 from a ground node a of A to a ground node b of B iff the interse
tion of theequivalen
e 
lasses represented by them is not empty. The number of su
h 
onne
tions iseasily seen to be linear in � by a straight-forward type-
hange 
ounting argument, again.4 Balan
ed CutsIn order to apply Theorem 3 eÆ
iently in a re
ursive pro
edure, we would like to �nd dire
tedsimple 
uts in plane dags (as in De�nition 1) that yield balan
ed partitions with respe
t tothe number of interesting nodes on ea
h side. Unfortunately, this is not always possible.Figure 5 shows a plane dag whose 4 interesting nodes form a star around a 
entral nodewith some further in-between ar
s whi
h separate the interesting nodes. With this dag, wefa
e the problem that as soon as we put two di�erent interesting nodes into A, the outwardar
s for
e also the 
enter into A, but then A must 
ontain all interesting nodes. Therefore,this dag does not have a balan
ed dire
ted simple 
ut. (It is not hard to see how to extend thedag to ensure that this property is maintained in any possible plane embedding.) The obviousn-petal generalization of this �gure does not have dire
ted simple 
uts better balan
ed than1 : n� 1. So the degree of imbalan
e may get arbitrarily bad.
Figure 5: A plane dag without a balan
ed dire
ted 
ut (�lled dots representing non-interesting nodes).Our remedy to this problem is to settle for 
uts with slightly weaker properties. The keyis that disturbing 
enter node in Figure 5.De�nition 2 A simple 
ut (A;B) of a plane digraph G is almost dire
ted if the deletion ofat most one node of G together with all in
ident ar
s turns it into a dire
ted simple 
ut.Assume the dag is endowed with an additive weight fun
tion � : 2V ! R. Then a simple
ut is �-balan
ed, 0 � � � 1=2, if � � �(A)=�(V ) � 1� �.11



Note that the 
ut itself is required to be simple, i.e., it must be realizable by a Jordan
urve with the properties from De�nition 1. Only for dire
tedness we are then allowed toremove one bothersome node to obtain a 
lean dire
ted 
ut.As to the weight fun
tion. For our purpose, this � is indu
ed by letting �(v) = 1 for anyinteresting node v and �(v) = 0 otherwise.With the relaxed notion of dire
tedness, we are able to obtain balan
ed 
uts. In thenext se
tion, we will show how the following result 
an be 
ombined with the rea
habilitystru
ture from Theorem 3, whi
h requires perfe
tly dire
ted 
uts.Theorem 4 Any plane dag with � � 2 interesting nodes has an almost-dire
ted 1=3-balan
ed
ut.In Figure 5, any two interesting nodes together with the 
enter (playing the role of theex
eptional node) form su
h a 
ut.Proof Choose a linear extension of the given dag G = (V;E). Pro
essing this order nodeby node, we maintain a 
olle
tion of simple out-dire
ted node sets Ai. These sets may growand get merged, they never shrink. Our goal is to 
reate a set that rea
hes a mass between�=3 and 2�=3. We make sure that in an individual step, weights do not in
rease by morethan �=3; so as soon as some Ai gets heavier than �=3 we will be done.Figuratively, we like to think of the 
hosen order as assigning heights to the nodes su
hthat higher nodes 
ome �rst in the order and thus all ar
s of the dag lead downwards.Envision this height �eld as lo
ated in a big sea of water. Pro
essing nodes in the 
hosenorder 
an be seen as lowering the waterline step by step, raising node after node out of thewater. The sets Ai we maintain, will be islands in this world. They will grow and merge asthe sea level sinks. Initially, there are no sets Ai; everything is under water.When a new node v rises out of the water, we distinguish di�erent 
ases:Case 1. If (v) has in-degree zero, we 
reate a new island Anew = fvg.Case 2. In 
ase of positive in-degree, ea
h in-neighbor belongs to some island Ai already.Let I = fi j Ai has v as out-neighborg. All these islands, together with v and all the
onne
ting ar
s, partition the remaining nodes V n (SI Ai [ fvg) into disjoint bays Bj, asshown in Figure 6.
A1A3A2 A4B5 B1B2

A5 B4B3 vB6Figure 6: Turtle Island.Note that islands that are not listed in I are not used for partitioning but instead be
omepart of their surrounding bays. So bays may a
tually 
ontain little en
losed islands. For12



example, in the �gure we have A4 � B4. This guarantees that ea
h bay Bj is an in-dire
tedsimple set.Case 2(a). We now measure the weight of the bays. If any of them, Bj, say, weighs atleast �=3, we group everything else, V n Bj, that is, in one big island Anew, destroying allislands 
ontained therein. Note that further sets Ai may survive, namely if they were lo
atedwithin Bj. Also, the new island may 
ontain underwater nodes whi
h have to be removedfrom the global list. Su
h en
losed lakes, however, pose no problem. By 
onstru
tion, theresulting island Anew is a simple out-dire
ted set as required. It also won't be heavier thanthan 2�=3. We may pro
eed with the next node v0 in our total order. Note that in thespe
ial 
ase Æ�(v) = 1, the above pro
edure simply adds the node v to the one island of itsonly in-neighbor.Case 2(b). We are left with a situation where the mass of ea
h single island Ai and alsoof ea
h bay Bj lies stri
tly below �=3. In this 
ase, we will dire
tly 
onstru
t the desired
ut, thus terminating the big loop over all nodes.We de�ne levels for islands and bays: On level 0 lie all Ai and Bj for whi
h Ai [ fvgrespe
tively Bj [ fvg is a simple set. Take away all these sets and let level 1 
onsist of allislands and bays that now be
ome simply 
onne
ted if extended by v. Repeat this pro
ess,de�ning levels iteratively until the whole plane is exhausted. In the example of Figure 6,level 0 
ontains the sets A1, A2, B4, B5, and B6; on level 1 there are B1, B2, and A5; andthe last level is made up of A3 and B3.We now su

essively merge islands and bays in order to 
reate some area of land or seathat has the desired mass. Therefore, 
onsider the total mass of all level-0 islands. If itex
eeds �=3, we 
an join a suitable subset of these islands with the node v to form an almostout-dire
ted set of the desired mass. Likewise, a large total mass of level-0 bays would givean almost in-dire
ted set.So assume that there is less than �=3 island mass on level-0 and likewise for the bays.We then merge the levels 0 and 1. Ea
h level-1 island absorbs all level-0 bays it en
loses andea
h level-1 bay unites with its 
ontained level-0 islands. In our example, A5 would be
omea big island that now in
ludes B4, B5, and B6, while the lakes B1 and B2 would swallowA1 and A2, respe
tively. There are two possibilities now. Either one of the new sets growsbeyond �=3; then this set, extended by v, has the desired properties. Or, all new sets remainbelow the �=3 threshold; then we step to the next level. That means, we measure the totalisland mass and total bay mass on level 1 (also 
ounting en
losed level-0 sets) and, in 
asethey don't rea
h the �=3 bound, join all level-1 sets to their surrounding level-2 sets.This way we grow larger and larger simple sets, who always have the property that withthe possible ex
eption of the 
entral node v, they are either 
ompletely out- or in-dire
ted.Eventually, by the time we rea
h the highest level, we must �nd a set of the desired mass.This �nishes the 
ase distin
tions. As long as we don't happen to �nd a good set with
ase 2(b), we keep lowering the waterline node by node, growing and merging islands untilone of them rea
hes the desired size. For a 
onne
ted dag this must happen at some pointbe
ause in the end we would have just one big island of weight �. If, for a dis
onne
ted dag,the pro
ess ends with many islands of insuÆ
ient weight, we may simply merge a suitableset of islands to a
hieve a total weight in the interval [�=3; 2�=3℄. With no ar
s outside ofthe islands left, the result will obviously be a simple 
ut.13



5 Putting Things TogetherOn the large s
ale, our algorithm for dags works as follows. It uses Proposition 4 to �nd abalan
ed almost-dire
ted simple 
ut (A;B). Almost-dire
tedness guarantees that any pathfrom a node in A to a node in B either 
rosses the 
ut exa
tly on
e or passes throughan ex
eptional node v that might violate perfe
t dire
tedness. The other dire
tion is evensimpler: Any path from B into A must pass through that v sin
e all other 
ross-
ut ar
spoint in the opposite dire
tion.Theorem 3 allows us to represent all paths from interesting nodes in A to interestingnodes in B with a graph of size O(� log�). All remaining 
ross-
ut paths go through v andare easily represented by at most a linear number of ar
s: In
lude v as a node of H andexpress ea
h rea
hability from an interesting node to v or from v to an interesting node bya single ar
 in the respe
tive dire
tion.We now take 
are of rea
habilities amongst interesting nodes in A and within B byre
ursion. Therefore observe that for 
onne
tions between A-nodes, we don't have to 
onsiderB anymore. A dire
ted path between two nodes in A 
annot 
ross the 
ut|unless it passesthrough v, but all those paths have already been taken 
are of in the 
ross-
ut step above, asa side e�e
t, a
tually. Likewise for rea
habilities within B. Hen
e, we really fa
e two smallerproblems of the same type as the original one. The balan
edness provided by Proposition 4ensures that we have to re
urse by �(log �) levels. Altogether, this gives a representation ofsize O(� log2 �).6 Handling 
y
lesA simple 
y
le in a plane graph divides the plane into two areas A and B, su
h that anypath from one area to the other passes through a node on the 
y
le. Let ~A be the set ofinteresting nodes in A that are rea
hable from the 
y
le. Then for every interesting node bin B, there are to options: (1) There is a path from b to a node on the 
y
le and b rea
hesall of the nodes in ~A, or (2) b does not rea
h the 
y
le and does not rea
h any node in A.A strongly 
onne
ted 
omponent (SCC) whi
h is not a simple 
y
le divides the plane intomore than two areas, whi
h again must 
ommuni
ate through the SCC. One of these areasis \outside" and the rest are \inside" the SCC. Note that for any two distin
t SCCs, eitherone is en
lose in an area whi
h is inside the other, or they are outside ea
h other; otherwise,they share at least one node so they are the same SCC.Using the above observations, we 
an determine a hierar
hy of the non-trivial SCCs (theones whi
h 
ontain more than one node), where there are no SCCs inside a level-0 SCC andinside a level-i SCC there are only SCCs of lower levels. We 
an then 
onstru
t H as follows.Initially, for every area de�ned by a level-0 SCC C, 
reate an H representing rea
habilitiesamongst the interesting nodes in this area. Next, add a node 
 that represents the SCC Cand for every interesting node u inside C, add the ar
 (u; 
) if there is a path from u to Cand the ar
 (
; u) if there is a path from C to u.14



After pro
essing level i� 1, 
ontra
t ea
h level-(i� 1) SCC C into the single node 
, and
ontinue to level i. We now need to 
onsider two 
ases. The �rst is that the node 
 is linkedto some interesting node inside the SCC that it represents. In this 
ase, 
 is inserted into U ,i.e., it is interesting. Otherwise, we do not insert 
 into U , but we do leave it in the graph;it is not interesting in itself, but there may be paths between interesting nodes outside of Cthat go through nodes of C.In order to ensure that the 
y
les only add O(�) nodes and ar
s to H, we need a simpleoptimization: If there is only one interesting node u (whether an original node or a noderepresenting a 
ontra
ted SCC) inside C whi
h rea
hes or is rea
hed from C, then we won'tadd a new interesting node 
, but rather use u dire
tly. Now, we know that every timewe added an interesting node, we also 
ontra
ted at least two interesting nodes whi
h wereinside the same SCC. Thus, the number of interesting nodes added to represent SCCs isO(�). Furthermore, ea
h interesting node u is 
onne
ted by the additional ar
s to at mostone node SCC representative C, so in total we added at most O(�) more ar
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