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Abstract

Given a digraph G = (V, F) with a set U of vertices marked “interesting,”
we want to find a smaller digraph ‘H = (V', E') with V' D U in such a way
that the reachabilities amongst those interesting vertices in G and H are the
same. So with respect to the reachability relations within U, the digraph H
is a substitute for G.

We show that while almost all graphs do not have reachability substitutes
smaller than Q(|U|?/ log [U]), every planar graph has a reachability substitute
of size O(|U|log? |U|). Our result rests on two new structural results for
planar dags, a separation procedure and a reachability theorem, which might
be of independent interest.
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1 Introduction

Let G = (V, E) be a directed graph with n = |[V| nodes and let U C V' be a set of x nodes in
G, which are designated as interesting. A reachability substitute (RS) for (G,U) is a graph
H = (V', E') such that U C V' and for any two interesting nodes u,v € U, there is a path
from u to v in G iff there is a path from u to v in H. Of course, G is a RS for (G,U) for
any U C V. The problem we are interested in is that of finding a small RS, i.e., one that
minimizes |V'| 4+ |E'|. We will show that this problem is NP-hard.

Aside from the complexity of finding a small RS, we are interested in the structural
question of lower and upper bounds on its size. Trivially, every input has a solution of
size O(k?). By a counting argument we show that almost all inputs have only RS’s of size
Q(k*/ log k).

Our focus in this paper is on planar inputs—the output RS need not be planar, though.
Subramanian [23] showed that if all nodes of U lie on a constant number of faces of a planar
embedding, then there is a solution of size O(x log k), which can be found in @(nlogn) time.
This algorithm was designed as a component of an algorithm for dynamic reachability in
planar graphs; the graph is recursively partitioned with small separators and the interesting
nodes are the nodes from the separators. Eppstein et al. later generalized this approach and
obtained a faster algorithm [13]. In addition, Klein and Subramanian [18] showed that the
algorithm of [23] can be modified to construct a substitute graph that not only represents
the reachabilities among the interesting nodes but also approximates the lengths of shortest
paths between them.

The main result of this paper is that planar inputs have small RS’s, even if we remove
the restriction that the interesting nodes lie on a constant number of faces.

Theorem 1 Any planar graph G = (V, E) with a subset U C V' of k “interesting” nodes
has a reachability substitute of size O(rlog® k).

Our proof is constructive and offers an algorithm to find the RS.

1.1 Other Related Work

The case in which the set of interesting nodes can be a proper subset U C V, was not
extensively studied. The only previous work we are aware of was mentioned above. The
special case in which U = V| i.e., all nodes are interesting, has been studied more extensively.
If we require that V' =V and E' C E, the problem is called Minimum Equivalent Graph
(MEG). Tt is NP-hard and can be approximated within a constant factor in polynomial
time [17]. If we require that V' = V but allow E’ to contain arcs that are not in E, the
problem can be solved in polynomial time [1, 16, 17]: Connect the nodes of each strongly
connected component (SCC) by a simple cycle and compute the transitive reduction of the
dag obtained by contracting each SCC into a single node. Note that the RS problem, besides
allowing U C V, removes both requirements of MEG: V' does not need to be contained in
V and E' does not need to be contained in E.

The case U =V is strongly related to reachability, one of the most fundamental graph
problems which was extensively studied. The static problem is to find the transitive closure,



while in the dynamic version we need to efficiently maintain a data structure that can answer
reachability queries [14, 22, 25] or, in a widely studied special case, the explicit transitive
closure matrix [5, 9, 21]. If we are interested in a substitute graph which not only represents
the existence of paths but also approximates their lengths, this is called a spanner, and several
spanner constructions, with different sizes and approximation guarantees, are known, though
most of the existing work on spanners is about undirected graphs [2, 3, 4, 7, 8, 10, 11, 12,
19, 20, 27]. Another related problem is that of computing a distance oracle [6, 24, 26|, i.e., a
representation of the reachability relation of the graph which supports (exact or approximate)
distance queries efficiently.

1.2 Owur Techniques

The main result builds upon of three components. The first is a digraph construction we call
an interval structure. Given a linearly ordered set S of £ nodes, an interval structure for S is
a graph of size O(¢log () such that for every length-2¢ interval I of nodes from S for integer
i, there is a node in the graph that reaches exactly the nodes in I. This data structure is
very simple and it has several nice properties on which we elaborate later.

The second component is a new type of balanced separator for planar dags, which might
be of independent interest. We show that, given a plane dag (i.e., a planar dag with a planar
embedding) with a weight for each node, it is always possible to find a balanced almost-
directed separator. That is, a simple curve which does not go through any node and crosses
each arc at most once; and partitions the nodes into two sets A and B of balanced weight.
Almost-directed means that almost all arcs which cross the curve are directed from A to B.

The third component is the algorithm that, given a plane dag G and a simple almost-
directed separator, constructs a dag G that represents all paths from interesting nodes in
A to interesting nodes in B. This construction uses the interval structure. G is the union
of three parts: The first represents paths from interesting nodes in A to the separator, the
second represents paths from the separator to interesting nodes in B and the third links these
structures in the right way. We prove an upper bound of O(xlogk) for G. One step of this
proof establishes that the reachability from interesting nodes in A to the separator cannot
be very complicated. More precisely, let e = (a,b) be an arc that crosses the separator and
let its type be the set of interesting nodes in A that can reach its startpoint a. We show that
the number of types on the separator is O(k), and furthermore that while walking along the
separator, the number of times that the type changes is O(k). This result is interesting in
its own.

Once we have the graph G, we recursively compute an RS for A and an RS for B. Now, all
paths between interesting nodes are represented by a graph with a total size of O(klog® k).

1.3 Roadmap

The rest of the paper is organized as follows. In Section 2 we derive several complexity
results about the computational cost of computing small RS’s and lower bounds on their
sizes. Sections 3-5 form the bulk of the paper and describe the construction of RS’s for
planar acyclic graphs: In Section 3 we assume that we have a simple directed separator



and show how to represent the reachabilities from each side to the separator. In Section 4
we show how to find a simple almost-directed separator and in Section 5 we describe how
to combine the different parts of the algorithm and show how to handle the fact that the
separator may not be perfectly directed. Finally, in Section 6 we show how to extend the
algorithm to handle cyclic graphs.

2 The Complexity of Reachability Substitutes

In order to prove that the optimization problem under consideration is NP-hard, we first
consider a more general problem.

2.1 NP-hardness of a more general problem

Assume that the input graph contains two types of arcs: solid arcs Ey and dashed arcs Ej.
A solid arc (u,v) € E; implies that the output graph must contain a path from u to v, a
dashed arc (u,v) € Ey indicates that there may or may not be a path from u to v in the
output graph and (u,v) ¢ E; U E, indicates that the output graph must not contain a path
from u to v. Note that this version of the problem may not have a solution, namely when
the input already violates transitivity.

Theorem 2 The problem described above is NP-hard.

Proof By reduction from Minimum Hitting Set, which is the following problem.

Input: A collection C' of subsets of a finite set S.

Output: A hitting set for C, i.e., a subset S’ of S such that S’ contains at least one element
from each subset in C.

Objective: Minimize |S'|.

The reduction is as follows. V = S U C U {z}. That is, U contains a node for every
item in S, a node for every subset in C, and a special node x. The arcs are as follows:

For each w € S and v € C, (u,v) € Ey if u € v.

(z,u) € By for each u € S.

(x,u) € Es for each u € C.

Given a solution to this problem, we construct a solution to the hitting set problem as
follows: for each arc (z,u) outgoing from z, if u € S then add w to the hitting set. If
u € C then add an arbitrary element from u to the hitting set. If u is a dummy node that
was introduced by the algorithm, then it is reachable from some nodes in S (otherwise the
solution is not optimal). Select one of them for the hitting set.

One can easily verify that every set in C' is represented in the hitting set. To see that the
hitting set is optimal, note that the cardinality of the hitting set is equal to the degree of z
in the RC. If there is a smaller hitting set, then we can obtain a smaller RC by removing
all arcs incident to x and connecting x to the node representing each element of the optimal
hitting set, contradicting our assumption that the RC is optimal.



2.2 NP-hardness of our problem

Multiply each node representing an item by four. That is, for every item u € S, U contains
four nodes, uy,...,us. The arcs are now as follows:

- For each uw € S and v € C, if u € v then (u;,v) € Es for all 1 <i < 4.

- For each u € C, (z,u) € E,.

Proposition 1 An optimal H contains a node u for each item u € S such that uw is reachable
from each of uy,...,us and reaches every node that represents a set in C' that contains u.

It is easy to see that otherwise, H is not optimal. Hence, in an optimal H there will be
an arc from x to u if in the previous reduction there was an arc from x to w. This implies
that finding an optimal RS is NP-hard.

2.3 The counting argument

We use a counting argument in order to show that there are relations that cannot be repre-
sented by a graph of size less than Q(x?%/logk).

Let k = 2k for some integer k£ and consider as possible inputs all bipartite graphs with
k (interesting) nodes on each side of the bipartition. Arcs are directed from one side to the
other. If nodes are labeled 1, ...,k on each side, there are exactly 2 such input graphs.

We determine an upper bound on the number N (¢) of different inputs that have a reach-
ability substitute of size at most ¢. Obviously, N(¢) is smaller than the number of different
digraphs on at most ¢ nodes with at most ¢ arcs. The latter quantity can be bounded as
follows: For any arc, there are less than ¢? possibilities of how to place it in (or omit it
from) the digraph. As a consequence, the number of digraphs, and thus N(¢), is bounded
by (2¢ = 92¢108¢ Therefore, only a fraction of 22196¢=F of all inputs can have an RS of size
at most £. This fraction can only be constant if £ € Q(k?/logk).

Lemma 1 A smallest RS of almost all relations among k interesting nodes has size Q(k?/ log k).

2.4 A lower bound for planar outputs

Throughout this exposition, we assume that a planar instance (G = (V, E),U C V) of the
RS problem comes with a fixed embedding of GG into the plane. Nodes correspond to points
and arcs are embodied as simple curves who may only intersect at nodes. If not given, such
a representation can be constructed in linear time [15].

The almost linear-size RS for planar graphs that we construct for Theorem 1 will, however,
be far from planar. To see that this cannot be avoided, we briefly argue why in general,
planarity must be sacrificed if one wants small RS’s.

Consider the plane dag in Figure 1. The paths through the black uninteresting nodes
are set up to make a lower interesting node v; reachable from some upper interesting node
u; if and only if ¢ < j < 7+ r. We claim that any planar RS for this dag with the white
nodes marked interesting, must contain essentially all those black intermediate nodes, too.
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Figure 1: A planar dag with planar RS’s of quadratic size only.

In other words, this dag is incompressible if planarity is to be maintained. With r ~ ¢ this
gives a quadratic lower bound on the representation size in terms of «.

To prove this claim, consider a pair wu;, u; with i < ¢ < ¢+ r. The set of bottom nodes
reachable from both, forms an interval {vy,...,v;1, 1} of length r +4 — 4. In an RS for
this dag, there must be a path P from u; to v;;, 1 and a path P’ from uy to vy. By some
additional framework nodes and arcs, which we omitted for simplicity, we can guarantee that
also in the output, the u; and the v; come in ordered lines and that any connecting paths run
in the area between them. Hence, P and P’ will have to intersect at some node z. Under
these side conditions, it is easy to see that the set of v; reachable from this z is exactly the
above length-(r+i—1') interval. Hence, we must have a different node for each such interval,
which yields our claim.

3 Crossing a Line

The rest of the paper contains the proof of Theorem 1. Initially, we assume that the input
is a dag. In Section 6 we show how to handle cycles.

Assume we can split the plane along a simple closed curve £ such that the two resulting
areas A and B contain about the same number of interesting nodes and such that cross-
section arcs of G go only in one direction, from A to B. In this section we show how to
represent all cross connections from interesting nodes in A to such in B with a graph of size
O(klogk). Let’s make the concept of “splitting” more precise.

Definition 1 A simple cut of a plane digraph (or graph) G = (V, E) is a partition (A, B =
V'\ A) of the nodes such that there exists a Jordan curve L (a simple closed curve, that is)
separating the plane into two areas such that one contains all nodes in A and the other all
in B, and such that L contains no node and crosses no arc of G more than once. A simple
cut is directed (from A to B) if no arc goes from B to A.

We call the involved sets A and B simple sets and call A out-directed and B in-directed
in case of a directed cut.



The condition on arc-curve crossings in Definition 1 is needed to ensure that the cut
conforms with the embedding. If it was not there, the separating curve could cut out just
any set we like.

It will turn out that obtaining a directed simple cut that is also reasonably balanced is
difficult and sometimes not even possible. However, we shall deal with those problems later.
For now, let us assume we have such a cut. The construction behind the following theorem
forms the main ingredient for Theorem 1.

Theorem 3 Consider a plane dag with a directed simple cut (A, B) and with a total of k
nodes marked interesting. Then there ezists a digraph of size O(klogk) containing all those
interesting nodes, who represents all reachabilities from interesting nodes in A to interesting
nodes in B and no further connections amongst interesting nodes.

3.1 The type bound

The proof of Theorem 3 treats the two parts A and B independently. We first account for all
interesting reachabilities from A to the separating curve £, then for the reachabilities from
L into B, and afterwards merge the two structures into one RS for the whole problem.

For technical convenience, we introduce an interface node x, for each arc e = (u, w) that
crosses £ and replace e by the two “halves” (u,z.) and (z.,w). After that, £ meets the
graph only at these interface nodes (none of which is interesting) and cuts no arcs any more.
Denote the set of interface nodes by X.

Beginning our analysis in A, we ignore the other side, B, completely for a while. Hence,
the outdegree of all interface nodes is (effectively) zero for the time being. For convenience,
we split the cutting curve £ at an arbitrary point that is not a node and stretch it out into a
straight horizontal line, so that the A-portion of G now sits completely above this baseline.

All interface nodes come in a natural order now so we can label them x; through z; (from
left to right) and as they sit on the baseline, we also like to call them ground nodes in this
section. Each of them carries a type: the set of interesting nodes that reach this ground
node. We shall see that neighboring nodes of identical type can be treated like a single node
in our representation, so we are interested in the number of type changes along L: pairs
(i — 1,7) where the types of x;_y and xz; differ. (We consider (0, 1) a type change, too.)

The following observation gives a linear bound on the complexity of the baseline.

Proposition 2 With ( interesting nodes above the baseline, there are at most 40 — 3 type
changes on the baseline.

Our proof of Proposition 2 rests on an inductive reconstruction procedure for the dag,
subject to some special rules. We define the net of an interesting node a of the plane dag
to be the set of all arcs and nodes which are reachable from a and reach the baseline. The
shadow of a is the region of all points in the halfplane that are completely enclosed by arcs
from a’s net and the baseline, together with all points of the net itself (see Figure 2). Here
are the insertion rules.

Rule 1. Exactly one interesting node is inserted at a time and with it all arcs and nodes
from its net but no more.



baseline

Figure 2: The net and shadow of a node.

Rule 2. An interesting node must be inserted before all other interesting nodes in its
shadow.

This process starts with an empty dag above an empty baseline. The first rule guarantees
that after the insertion of an interesting node a, its influence on the baseline will never again
change. New ground nodes may be created afterwards but none of them will carry an a in
its type. The motivation for the second rule is more complicated and shall become clear
throughout the proofs of the two subsequent lemmas.

Lemma 2 Immediately after a new interesting node a has been inserted, the ground nodes
that carry a in their type form a contiguous interval.

Proof Immediately after insertion of a, all nodes in the shadow of @ must carry a in their
type because if some node z inside the shadow didn’t, it would by Rule 1 have to be reach-
able by some other node, b, say. Such a b must, by Rule 2, lie outside the shadow of a. But
then any path from b to x would have to cross a’s net and would thus, by planarity, also

carry the label a into the type of z. A contradiction. See Figure 3. |
a
b
O,
x

Figure 3: All types in the shadow of a new a receive that a.

Lemma 3 Immediately after the insertion of a new interesting node a, the ground nodes
that have been created through this insertion are of type {a} and they form a contiguous
interval on the baseline.

Proof The first part is an immediate implication of Rule 1. If a node carries any further
label b, it must have existed already at the creation time of node b. To see that the ground
nodes with type {a} form an interval, assume for contradiction that there was some node of
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type {c,...} between two {a}-nodes. Then the interesting node ¢ would have to lie in the
shadow of a; a contradiction to Rule 2. |

Proof (of Proposition 2) By induction. We keep count of the number of type changes along
the baseline while new interesting nodes are inserted according to the two rules.

After the first interesting node, there is exactly one type on the baseline which means
just one type change, the initial one. When a new interesting node a is added, new type
changes may appear in at most four places: at the two ends of the interval of a (by Lemma 2)
and at the ends of the interval of new type-{a} ground nodes (by Lemma 3). Note that we
do not claim that only four new types are created—that would not be true—but that there
are no more than four new positions on the baseline, where the type changes. |

3.2 Representing intervals

Lemmas 2 and 3 tell us that if we follow Rules 1 and 2, changes along the baseline occur along
contiguous intervals. Our RS construction rests on the following structure for representing
reachabilities of intervals.

Consider a digraph #H (which will be our RS) with a designated subset X of nodes
(corresponding to the ground nodes). We say that a node set Z C X is represented by H
(w.r.t. X) if there exists a node uz in H such that {nodes reachable from uz} N X = Z.
Assume further that the set 7 is endowed with a linear order, i.e., Z is an “interval.” We say
that H has an interval structure for Z (w.r.t. X) if every contiguous subinterval of length 2°
in Z is represented by H for all ¢« > 0. The proof of the following two lemmas should make
the concept clear.

Lemma 4 For an interval of length { there exists an interval structure of size O(¢log?).

Proof We need |log ¢] levels, each responsible for the subintervals of one common length 2°.
There are less than ¢ intervals on each level, and each length-2! interval can be realized by
one node and two arcs pointing to two level-2°=1 intervals. |

Assume that H contains an interval structure for an interval Z, and that we wish to
represent some subinterval Z' of Z whose length ¢’ is not a power of 2. Since Z' is the union
of two intervals of length 2!°¢%) we can do this by adding just one node and two arcs to H.

Lemma 5 If a digraph R already contains interval structures for two intervals {xq,..., x4}
and {2}, ...,z},}, then O (min{t,t'}log(t + ') additional nodes and arcs suffice to extend
them to an interval structure of the concatenation {x1,...,x, 2, ...,z }. The original

interval structures are not destroyed by this extension.

Proof We only have to represent subintervals that extend over both domains. The others
are already covered by the interval structures for the given sets. Any such subinterval begins
on some x; and ends at some x’] It can be represented as the union of two intervals on the
left and two further intervals on the right, which can be realized by one new node and four



arcs. Charging each new interval to its endpoint in the smaller side, we see that there are
no more than min{¢, #'} new intervals on each level i < [log(¢+ ') |, which gives the claimed
bound. i

3.3 Constructing the RS for one halfplane

We now construct an RS H that encodes all reachabilities from interesting nodes in the upper
halfplane to the ground nodes. Since we shall soon see that adjacent nodes of identical type
can be treated jointly, we delete adjacent doublicates so that by Proposition 2, we are left with
a sequence xy,...,x; of ground nodes whose length ¢ is linear in the number of interesting
nodes.

We follow the reconstruction from the proof of Proposition 2 again, starting with an
empty dag and extending it one interesting node after another by Rules 1 and 2. (Only with
duplicate ground nodes removed from the process now.) The RS H for our dag is constructed
simultaneously, also starting as an empty dag.

Case a. If a new interesting node a does not introduce new ground nodes (i.e., no new
singleton type {a} is created) then the set of ground nodes with a in their type (which
forms a contiguous interval by Lemma 2) can be covered by four intervals from the
interval structures in H. (This will be shown in Lemma 7 below.) We create a new
node in ‘H and link it to these four intervals. This node will be only there for the
current interesting node a and not be reused in the construction of H later.

Case b. If a new interesting node a does introduce new ground nodes, the set N of type-{a}
ground nodes forms a contiguous interval by Lemma 3. Using Lemma 4 we create a
new interval structure of size O(|N|log |N|) for N. By Lemma 2, the set of all ground
nodes with a in their type forms a super interval of N. Denote the portion to the left
of N by L and that to the right by R. (See the dashed regions in the left drawing of
Figure 4.) We shall see (in Lemma 6 below) that the dag H already contains interval
structures for L and R. With the help of Lemma 5 we can thus create merged interval
structures for the unions L U N and N U R, which costs O(|N|logk) (using k as a
very generous bound on |L| 4+ |N| and |N|+ |R|). Afterwards, we represent the whole
interval L U N U R with one new node and four arcs, just like in Case 1.

Note that in Case b we do not create an interval structure for the whole section LUN UR.
That would turn out too costly. Instead we provide two independent structures that overlap
on N. We now show that the interval structures required in both cases do always exist as
claimed. Afterwards we upper bound the total size of H. We begin with the more difficult
case.

Lemma 6 Before a Case b insertion, H contains an interval structure for each of L and R.

Proof Formally, the proof is by induction, assuming that at each step the current A has
been constructed according to the above rules. The induction base is trivial with empty L



and R for the first interesting vertex to be inserted. We do the induction step only for L,
concluding for R by symmetry.

Consider the rightmost ground node y in L. We claim that it was amongst the last
ground nodes created in L, with type {b}, say. By Rule 2, b must lie outside the shadow of
the new node a. Take any path P, from b to y and a path P, from a to the leftmost ground
node z in L. These paths must cross in some node r, as shown in Figure 4. (Here we use
that a creates new ground nodes which lie to the right of y.) The shadow of r covers all of L.
Hence, by Rule 1, the last nodes of L must have appeared already when b was introduced;
which is what we claimed.

g\/L A AN
KK 5K

L

Figure 4: In Case a (left), the interval L already has an interval structure; and in Case b
(right), we get a subinterval of the union of two interval structures.

Denote the three ground intervals involved in the appearance of the interesting node b
by Ly, Ny, and R,. We know by induction that we have created an interval structure for the
unions L, U N, and Ny U Ry then. Since by definition, y lies in N,, the above claim implies
that L C L, U N,. Hence, we already have an interval structure for L in RS, as was to be
shown. |

Lemma 7 In Case a, the set of ground nodes with the new node a in their type can be
covered with no more than four intervals represented in H.

Proof Traverse the leftmost path in the net of a until you meet the first node that was
created in an iteration of type b and denote the respective interesting node by uy. Likewise,
follow the right flank to the first such node there, created by an interesting node ug. (Note
that u;, = up is well possible.)

Clearly, all ground nodes reachable from a are reachable from uj, or ug, too, and since
they form an interval by Lemma 2, this interval can be written as the union of two subin-
tervals from the structure for u; and two from that of up. [

3.4 Merging all interval structures

We have everything in place to conclude the proof of Theorem 3 about reachabilities across
a directed simple cut.

Proof (of Theorem 3) First of all, we need to verify that the previous construction is of
size O(klogk). This is not difficult. An application of Case a produces only a constant
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number of arcs and nodes which accumulates to @(k) for all interesting nodes. In Case b,
we charge the cost for the new interval structure and for the two subsequent merges to the
newly created ground nodes, which sums to O(xlog k) as desired.

We repeat the whole construction for the other side B, with everything directed from
the baseline into B this time, so that we have two digraphs H 4 and Hp for the two parts.
It only remains to merge them at the baseline. Therefore, recall that we have deleted type
multiplicities on the baselines for A and B. Ground nodes of A might not have a pendant
in B and vice-versa. This has to be taken into account again now—in the obvious way:
add an arc from a ground node a of A to a ground node b of B iff the intersection of the
equivalence classes represented by them is not empty. The number of such connections is
easily seen to be linear in x by a straight-forward type-change counting argument, again. |

4 Balanced Cuts

In order to apply Theorem 3 efficiently in a recursive procedure, we would like to find directed
simple cuts in plane dags (as in Definition 1) that yield balanced partitions with respect to
the number of interesting nodes on each side. Unfortunately, this is not always possible.

Figure 5 shows a plane dag whose 4 interesting nodes form a star around a central node
with some further in-between arcs which separate the interesting nodes. With this dag, we
face the problem that as soon as we put two different interesting nodes into A, the outward
arcs force also the center into A, but then A must contain all interesting nodes. Therefore,
this dag does not have a balanced directed simple cut. (It is not hard to see how to extend the
dag to ensure that this property is maintained in any possible plane embedding.) The obvious
n-petal generalization of this figure does not have directed simple cuts better balanced than
1:n — 1. So the degree of imbalance may get arbitrarily bad.

@ < [ ] > 0@
u\ 4 /u
O O
N
@ < [ ] - ]
N
O O
\ \ \v
@ < [ ] >0

Figure 5: A plane dag without a balanced directed cut (filled dots representing non-
interesting nodes).

Our remedy to this problem is to settle for cuts with slightly weaker properties. The key
is that disturbing center node in Figure 5.

Definition 2 A simple cut (A, B) of a plane digraph G is almost directed if the deletion of
at most one node of G together with all incident arcs turns it into a directed simple cut.

Assume the dag is endowed with an additive weight function pu: 2V — R. Then a simple
cut is a-balanced, 0 < a < 1/2, if a < pu(A)/p(V) <1 —a.

11



Note that the cut itself is required to be simple, i.e., it must be realizable by a Jordan
curve with the properties from Definition 1. Only for directedness we are then allowed to
remove one bothersome node to obtain a clean directed cut.

As to the weight function. For our purpose, this y is induced by letting p(v) = 1 for any
interesting node v and p(v) = 0 otherwise.

With the relaxed notion of directedness, we are able to obtain balanced cuts. In the
next section, we will show how the following result can be combined with the reachability
structure from Theorem 3, which requires perfectly directed cuts.

Theorem 4 Any plane dag with k > 2 interesting nodes has an almost-directed 1/3-balanced
cut.

In Figure 5, any two interesting nodes together with the center (playing the role of the

exceptional node) form such a cut.
Proof Choose a linear extension of the given dag G = (V, E). Processing this order node
by node, we maintain a collection of simple out-directed node sets A;. These sets may grow
and get merged, they never shrink. Our goal is to create a set that reaches a mass between
k/3 and 2k/3. We make sure that in an individual step, weights do not increase by more
than x/3; so as soon as some A; gets heavier than x/3 we will be done.

Figuratively, we like to think of the chosen order as assigning heights to the nodes such
that higher nodes come first in the order and thus all arcs of the dag lead downwards.
Envision this height field as located in a big sea of water. Processing nodes in the chosen
order can be seen as lowering the waterline step by step, raising node after node out of the
water. The sets A; we maintain, will be islands in this world. They will grow and merge as
the sea level sinks. Initially, there are no sets A;; everything is under water.

When a new node v rises out of the water, we distinguish different cases:

Case 1. If (v) has in-degree zero, we create a new island Apew = {v}.

Case 2. In case of positive in-degree, each in-neighbor belongs to some island A; already.
Let I = {i | A; has v as out-neighbor}. All these islands, together with v and all the
connecting arcs, partition the remaining nodes V'\ (J; A; U {v}) into disjoint bays B;, as
shown in Figure 6.

Figure 6: Turtle Island.

Note that islands that are not listed in I are not used for partitioning but instead become
part of their surrounding bays. So bays may actually contain little enclosed islands. For
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example, in the figure we have Ay C B,. This guarantees that each bay B; is an in-directed
simple set.

Case 2(a). We now measure the weight of the bays. If any of them, B;, say, weighs at
least x/3, we group everything else, V'\ B;, that is, in one big island Apew, destroying all
islands contained therein. Note that further sets A; may survive, namely if they were located
within B;. Also, the new island may contain underwater nodes which have to be removed
from the global list. Such enclosed lakes, however, pose no problem. By construction, the
resulting island Apew is a simple out-directed set as required. It also won’t be heavier than
than 2k/3. We may proceed with the next node v’ in our total order. Note that in the
special case 6~ (v) = 1, the above procedure simply adds the node v to the one island of its
only in-neighbor.

Case 2(b). We are left with a situation where the mass of each single island A; and also
of each bay B, lies strictly below /3. In this case, we will directly construct the desired
cut, thus terminating the big loop over all nodes.

We define levels for islands and bays: On level 0 lie all A; and B; for which A; U {v}
respectively B; U {v} is a simple set. Take away all these sets and let level 1 consist of all
islands and bays that now become simply connected if extended by v. Repeat this process,
defining levels iteratively until the whole plane is exhausted. In the example of Figure 6,
level 0 contains the sets Ay, Ay, By, Bs, and Bg; on level 1 there are By, By, and As; and
the last level is made up of A3 and Bs.

We now successively merge islands and bays in order to create some area of land or sea
that has the desired mass. Therefore, consider the total mass of all level-0 islands. If it
exceeds /3, we can join a suitable subset of these islands with the node v to form an almost
out-directed set of the desired mass. Likewise, a large total mass of level-0 bays would give
an almost in-directed set.

So assume that there is less than /3 island mass on level-0 and likewise for the bays.
We then merge the levels 0 and 1. Each level-1 island absorbs all level-0 bays it encloses and
each level-1 bay unites with its contained level-0 islands. In our example, A5 would become
a big island that now includes By, Bs, and Bg, while the lakes B; and B, would swallow
Ay and As, respectively. There are two possibilities now. Either one of the new sets grows
beyond r/3; then this set, extended by v, has the desired properties. Or, all new sets remain
below the /3 threshold; then we step to the next level. That means, we measure the total
island mass and total bay mass on level 1 (also counting enclosed level-0 sets) and, in case
they don’t reach the x/3 bound, join all level-1 sets to their surrounding level-2 sets.

This way we grow larger and larger simple sets, who always have the property that with
the possible exception of the central node v, they are either completely out- or in-directed.
Eventually, by the time we reach the highest level, we must find a set of the desired mass.

This finishes the case distinctions. As long as we don’t happen to find a good set with
case 2(b), we keep lowering the waterline node by node, growing and merging islands until
one of them reaches the desired size. For a connected dag this must happen at some point
because in the end we would have just one big island of weight . If, for a disconnected dag,
the process ends with many islands of insufficient weight, we may simply merge a suitable
set of islands to achieve a total weight in the interval [k/3,2k/3]. With no arcs outside of
the islands left, the result will obviously be a simple cut. |
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5 Putting Things Together

On the large scale, our algorithm for dags works as follows. It uses Proposition 4 to find a
balanced almost-directed simple cut (A, B). Almost-directedness guarantees that any path
from a node in A to a node in B either crosses the cut exactly once or passes through
an exceptional node v that might violate perfect directedness. The other direction is even
simpler: Any path from B into A must pass through that v since all other cross-cut arcs
point in the opposite direction.

Theorem 3 allows us to represent all paths from interesting nodes in A to interesting
nodes in B with a graph of size @(klogk). All remaining cross-cut paths go through v and
are easily represented by at most a linear number of arcs: Include v as a node of H and
express each reachability from an interesting node to v or from v to an interesting node by
a single arc in the respective direction.

We now take care of reachabilities amongst interesting nodes in A and within B by
recursion. Therefore observe that for connections between A-nodes, we don’t have to consider
B anymore. A directed path between two nodes in A cannot cross the cut—unless it passes
through v, but all those paths have already been taken care of in the cross-cut step above, as
a side effect, actually. Likewise for reachabilities within B. Hence, we really face two smaller
problems of the same type as the original one. The balancedness provided by Proposition 4
ensures that we have to recurse by O(log k) levels. Altogether, this gives a representation of
size O(k log® k).

6 Handling cycles

A simple cycle in a plane graph divides the plane into two areas A and B, such that any
path from one area to the other passes through a node on the cycle. Let A be the set of
interesting nodes in A that are reachable from the cycle. Then for every interesting node b
in B, there are to options: (1) There is a path from b to a node on the cycle and b reaches
all of the nodes in A, or (2) b does not reach the cycle and does not reach any node in A.

A strongly connected component (SCC) which is not a simple cycle divides the plane into
more than two areas, which again must communicate through the SCC. One of these areas
is “outside” and the rest are “inside” the SCC. Note that for any two distinct SCCs, either
one is enclose in an area which is inside the other, or they are outside each other; otherwise,
they share at least one node so they are the same SCC.

Using the above observations, we can determine a hierarchy of the non-trivial SCCs (the
ones which contain more than one node), where there are no SCCs inside a level-0 SCC and
inside a level-i SCC there are only SCCs of lower levels. We can then construct H as follows.
Initially, for every area defined by a level-0 SCC C, create an H representing reachabilities
amongst the interesting nodes in this area. Next, add a node ¢ that represents the SCC C
and for every interesting node u inside C, add the arc (u, c) if there is a path from u to C
and the arc (c, u) if there is a path from C' to u.
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After processing level i — 1, contract each level-(i — 1) SCC C into the single node ¢, and
continue to level 7. We now need to consider two cases. The first is that the node c is linked
to some interesting node inside the SCC that it represents. In this case, c is inserted into U,
i.e., it is interesting. Otherwise, we do not insert ¢ into U, but we do leave it in the graph;
it is not interesting in itself, but there may be paths between interesting nodes outside of C'
that go through nodes of C.

In order to ensure that the cycles only add O(k) nodes and arcs to #H, we need a simple
optimization: If there is only one interesting node u (whether an original node or a node
representing a contracted SCC) inside C' which reaches or is reached from C, then we won’t
add a new interesting node ¢, but rather use u directly. Now, we know that every time
we added an interesting node, we also contracted at least two interesting nodes which were
inside the same SCC. Thus, the number of interesting nodes added to represent SCCs is
O(k). Furthermore, each interesting node u is connected by the additional arcs to at most
one node SCC representative C, so in total we added at most O(k) more arcs.
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