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Abstract

We consider the linear space of piecewise polynomials in three variables which
are globally smooth, i.e., trivariate C! splines. The splines are defined on
a uniform tetrahedral partition A, which is a natural generalization of the
four-directional mesh. By using Bernstein-Bézier techniques, we establish
formulae for the dimension of the C! splines of arbitrary degree.
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§1. Introduction

Splines spaces are of particular interest in Approximation Theory and Computer Aided
Geometric Design. For splines in one variable there exists an almost completely developed
theory (cf. de Boor [5], Niirnberger [16], Prautzsch, Boehm & Paluszny [20], Schumaker
[21]). On the other hand, much less is known for bivariate and trivariate splines (cf. Chui
[8], Zeilfelder & Seidel [27]), i.e., splines which are defined on triangulations and tetrahedral
partitions, respectively. The main reason for this is that such spaces have a more com-
plex structure than univariate spline spaces, and even basic problems for these spaces are
sometimes difficult to solve.

One such basic question in the multivariate spline theory is to determine the dimen-
sion of the spaces. In order to develop efficient approximation and interpolation methods
(cf. Niirnberger & Zeilfelder [18], and, for instance, the approaches from Davydov & Zeil-
felder [10], Haber, Zeilfelder, Davydov & Seidel [12], Niirnberger, Schumaker & Zeilfelder
[17], Niirnberger & Zeilfelder [19]), it is important to know the dimension of these spaces.
This problem is easy to solve for continuous multivariate splines. The situation is com-
pletely different and stands in striking contrast to univariate theory if we consider smooth
multivariate splines.
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In this case, the problem of determining the dimension of splines on given partitions
becomes a complex task when the degree of the splines is low. For bivariate splines on given
triangulations the most general results are lower and upper bounds on the dimension (cf.
Schumaker [22,23]). Moreover, the dimension is known for splines on uniform partitions (cf.
Chui & Wang [9]), on arbitrary triangular cells (cf. Schumaker [24]), and for certain degrees
(cf. Alfeld, Piper & Schumaker [2], Hong [13], Ibrahim & Schumaker [14]). For trivariate
splines bounds on the dimension of the spaces are difficult to obtain, in general, and it has
been recognized that even for splines defined on arbitrary tetrahedral (half) cells an exact
dimension count would require at least some knowledge on the dimension of bivariate spline
spaces of arbitrary degree on triangulations (cf. Alfeld, Schumaker & Sirvent [3, Example
25], Alfeld, Schumaker & Whiteley [4, Remark 66]).

There are only few papers on the dimension of trivariate splines. Early results known
from the finite element literature (cf. Zenisek [28]) deal with certain subspaces (which
are now called super spline spaces) of splines with relatively high degree. For splines of
low degrees, results are known mainly for C! splines. For instance, Alfeld [1] developed a
local Hermite interpolation method using trivariate C! quintic super splines on tetrahedral
partitions, where all the tetrahedra are split into four subtetrahedra (trivariate Clough-
Tocher split). Quintic C'! super splines on a uniform type partition and on certain classes
of tetrahedral partitions were investigated in connection with local interpolation methods
of Schumaker & Sorokina [25], and Lai & Le Méhauté [15]. Farin & Worsey [26] generalized
the bivariate Clough-Tocher element for C'! cubic splines by splitting each tetrahedron into
12 subtetrahedra. For an application of this method in the context of so-called A-patches,
see Bajaj, Bernardini & Xu [7]. As a byproduct of these methods the dimension of the
spaces on the resulting tetrahedral partition was determined.

In this paper, we investigate the problem of determining the dimension of trivariate C'*
splines of arbitrary degree on a uniform type tetrahedral partition A, where no tetrahedron
is splitted. The partitions A are obtained as a natural generalization of the four-directional
mesh in the bivariate spline theory. Roughly speaking, given a uniform cube partition,
each cube () is subdivided into 24 tetrahedra which have the center of () as a common
vertex (see Figure 3). The dimension of the trivariate C' splines on A is determined by
constructing a suitable minimal determining set M for the spaces. For doing this, we use
a well-known characterization of the C'' smoothness across the common triangular faces of
two neighboring polynomial pieces in Bernstein-Bézier representation (cf. de Boor [6], Farin
[11]). We first give minimal determining sets for C'! splines on a particular tetrahedral
cell, i.e., one cube which is subdivided into 24 tetrahedra. Then, we construct step by
step a minimal determining set M for the whole spline space. This is done by considering
the tetrahedra of the partition in an appropriate order (see the proof of Theorem 6.1 in
Section 6). Here, in each step the remaining degrees of freedom are determined. In this way,
we obtain explicit formulae for the dimension of the C! spline spaces of arbitrary degree
(Theorem 3.1 and Corollary 3.2). The proof of this result is complex.

The paper is organized as follows. In Section 2 we give some preliminaries on trivari-
ate splines, their piecewise Bernstein-Bézier representation, minimal determining sets, and
smoothness conditions. In Section 3, we define a uniform tetrahedral partition A and state
our main results. We give explicit formulae for the dimension of C'! spline spaces of ar-
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bitrary degree on A. In Section 4, we introduce some notation needed for the subsequent
investigations and we rewrite the smoothness conditions of the spaces in a convenient form.
Section 5 contains minimal determining sets for C! splines on a special tetrahedral cell
which consists of 24 tetraedra. These results are used in Section 6 where we define a suit-
able minimal determining set for the spline spaces and prove our main results. The paper
concludes with some remarks.

§2. Trivariate Splines, Bernstein-Bézier Representation and MDS

We briefly recall some notation well-known in multivariate spline theory (cf. Alfeld,
Schumaker & Whiteley [4], de Boor [6], Chui [8], Farin[11]). For any integer ¢, we call

P, = span{zly’zF : 0,5, k>0, i+j+k<q}

the (ngS) dimensional space of trivariate polynomials of total degree ¢q. Given a (non-

degenerate) tetrahedron T = [vg, v1, vz, vs] in IR® with vertices vg, v1, v2, and vs, the linear
polynomials A\, € P, v =0,...,3, with the interpolation property

Ao (V) = 0oy, w=0,...,3,

are called the barycentric coordinates w.r.t. T'. Every polynomial p € P, can be written in
its Bernstein-Bézier representation as

_ . q,T
p= Z Aij,k L Bz’,j,k,ﬁ’ (2.1)
i+j+k+E=q

where
T ! i\ J . .
Bzg,j,k,li = i!j?k!ﬁ! )‘6)‘]1)‘]26)‘% € Py, t+7+k+4=q,

are the Bernstein polynomials of degree ¢ w.r.t. T.
Each Bernstein-Bézier coefficient a; j 1 ¢ of p is associated with the domain point

&k = (o + jur + kvg + Lus) /g,
and the set of domain points in 7" is denoted by
Dyr ={& e i+i+k+L=q}.
We call a set of tetrahedra A a tetrahedral partition of a finite domain Q C IR® if the
intersection of any two different tetrahedra from A is a common vertex, common edge or
common triangle, and the union of all tetrahedra from A is equal to €.
Given a tetrahedral partition A of a domain Q and r € {—1,...,q — 1}, we set

Sy (A) = {5 € C"(Q) : s|7 € P, for all tetrahedra T' € A}
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Fig. 1. Isosurfaces with different isovalues of a trivariate spline.

Fig. 2. An isosurface of a trivariate spline approximating volume data representing the
boundary of a human head. The data in this example were obtained from a bust of Max
Planck.

for the space of trivariate C" splines of degree ¢ w.r.t. A. Figure 1 shows an example of a
trivariate spline s. Here, we visualized different isosurfaces, i.e., for different real values of
¢ (called isovalues), we show the surfaces, where s satisfies s = ¢. An other example of an
isosurface of a trivariate spline is given in Figure 2. This spline is obtained by applying an
approximation method of the authors which is currently under development.
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The coefficients
Wit = Qi jikt(S) = aijre(s|T), i+j+k+L=q,

of s € Sg(A) in the representation (2.1) of its polynomial pieces s|p, T € A, are uniquely
associated with the domain points in 2 which we denote by

Dgn = U Dyr-
TeA

Given a vertex v € A and Ty = [v,...],..., T, = [v,...] the tetrahedra in A with common
vertex v, for m € {0,...,q} we call

R™w) = | J{€iin i+i+h=m}
/=1

the ring with distance m around v. Moreover, for m € {0,...,q}, the set
D™ (v) = | R*(v)
£=0

is called the m-disk of v.

Following Alfeld, Piper & Schumaker [2], we call M C D, A a determining set (DS)
for a linear subspace S of SS(A), if setting the coefficients a¢(s), £ € M of a spline s € S
to zero, implies that s = 0. A determining set M is called minimal determining set (MDS)
for S, if no determining set for S with fewer elements than M exists. Equivalently, M
is a minimal determining set, if setting the coefficients a¢(s), £ € M, of a spline s € S
to arbitrary values, all its coefficients ag(s), £ € Dy a are uniquely determined, i.e., s is
uniquely determined. If M is a minimal determining set for S, then it is obvious that #(M)
coincides with the dimension, i.e., the degrees of freedom, of S (here, and throughout the
paper we denote by # the cardinality of a finite set).

Given an arbitrary tetrahedral partition A, the dimension of SS(A), g > 1, is easy to
determine (cf. Alfeld, Schumaker & Sirvent [3, Theorem 10]). In this case, it is obvious that
D, a is a minimal determining set for 88 (A), and a straight forward computation shows
that

dim SY(A) = (551) Ta+ (%5") Fa+(q—1) Ea+Va, q¢>1, (2.2)

where Ta is the number of tetrahedra of A, Fa is the number of triangular faces of A,
Ex is the number of edges of A, and Va is the number of vertices of A (here, and in the
following we set (;) = 0, if ¢ < 7). The problem of determing the dimension of trivariate
splines becomes more difficult if we consider subspaces S of Sg(A) possessing smoothness
conditions.

In the following, we are interested in C' splines, i.e., we consider the subspaces S =
S;(A), ¢ > 2 (where A is the tetrahedral partition described in the next section). In order

to construct minimal determing sets for these spaces, we use the well-known smoothness
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conditions connected with the piecewise Bernstein-Bézier representation of the splines (cf.
de Boor [6], Chui [8], Farin [11]). Let T = [vo,v1,v2,vs], T = [vg,v1,vs,73] € A, be two
different tetrahedra of A, and suppose that s € Sg(A) is given in its piecewise representa-
tion (2.1) with coefficients

Wi gt = Qi kee(8) = @i jre(s|T), and @i j ke = G;jke(s) = aijre(sls),

e, ajjre = Qijre, 1 +J5+k+£€=gq. Then sis C' across the common triangular face
TNT = [vg,v1,vs], if and only if for all i+ j +k=q—1,

@ikl = @it1,5,k,0 Ao(03) + @i jr1k,0 A1(03) + aijky1,0 A2(03) + ai k1 A3(v3),  (2.3)

where \,, v =0,...,3, are the barycentric coordinates w.r.t. T'. Examples for these linear
constraints are shown in Figure 7. It is well known that the trivariate conditions (2.3)
are lower dimensional conditions if some of the involved barycentric coordinates vanish
at 03. These are called degenerate cases - Figure 7 (left) shows such an example, where
two barycentric coordinates are zero, and hence the smoothness conditions degenerate to
conditions as in the univariate case. Differentiability conditions for the non-degenerate case
are shown in Figure 7 (right).

63. Main Results

In the remainder of this paper we consider a tetrahedral partition A of the unit cube
Q =10,1] x [0,1] x [0,1] C IR* which is obtained as follows. Using n + 1 parallel planes in
each of the three space dimensions we first subdivide © into n3 subcubes,

Qumw = 5h 2] x 15 21 <[5,

SRS

1, i, k=1,...,n.

We let f[f]j k)’ ¢=1,...,6, be the six square faces of Q; ;j ), where we use the following
ordering: left (¢ = 1), front (¢ = 2), bottom (£ = 3), right (£ = 4), back (£ = 5), top
(¢ = [6]). Each subcube Q; jry, 4,5,k = 1,...,n, is split into six (Egyptian) pyramids
P([f] k) by connecting its midpoint

o /2i—1 21 2k-1
Viigk) = (Fgs S5 3

with the vertices of the face F1J £ =1,...,6 (see Figure 3, right). Finally, we insert

(4,4,k)
both diagonals in each of the faces }"([f]j k)’ denote their intersection point by wEf]j k) and
connect v(; ;) with wEf]j k) ¢ =1,...,6. This subdivides each pyramid P([f]j k) into four

tetrahedra, and we obtain the tetrahedral partition A; ; x) of each subcube Q; ;) which
consists of 24 tetrahedra. The tetrahedral partition A of €2 is then defined as

i,5,k € {1,...,n}
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Fig. 3. The uniform tetrahedral partition A is obtained by subdividing each subcube
into 24 tetrahedra.

4

4

Fig. 4. The intersections of A with planes parallel to the three unit planes are four-
directional meshes.

Figure 3 illustrates the construction of A. The intersection of any plane F defined by the
equation r = %, 1=0,...,n,y= %, j=0,...n,and z = %, k =0,...n, respectively, with
A is a the four-directional mesh (sometimes called a A2 triangulation) of the intersecting
square domain ENS2 (see Figure 4). Therefore, the tetrahedral decomposition A is a natural
generalization of the four-directional mesh to a trivariate partition.

It is easy to see that for this uniform tetrahedral partition A, we have
Ta =24n3 Fa=48n2+12n% Ean =291+ 18 n?+ 3 n, (3.1)
for the number of tetraeder Th, triangular faces Fa, and edges Ea of A, respectively.
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q | dim S}(A) dim S (A) dim S71(A)
2 3n?2+9n+4 34n3+24n2+6n+1 240 n3

3 6n3+24n?2+18n+4 111 n3+54n2+9n+1 480 n?

41 39n24+66n2+27n+4 260 3 +96n2+12n+1 840 n3

51 120n%+132n2+36n+4 505 n3 + 150 n2 +15n+1 1344 n?

6 | 273n3+222n2+45n+4 870 n3 + 216 n2 +18 n+1 2016 n3

7 522 n3 + 336 n2+54 n+4 1379 n2 +294 n2+21n+1 2880 n3

8 | 891 n3+474n?+63n+4 2056 n3 +384n%2+24n+1 | 3960 n3

9 | 1404 n3+636n2+72n+4 | 2925 n3+486 n2+27n+1 | 5280 n3

Tab. 1. Comparison of dimensions of spline spaces for low degrees.
Hence, (2.2) and some elementary computations imply that

dim Sg(A) = (4> +1) gn®>+6 ¢*n®* +3qn+1, ¢ > 1. (3.2)
The below investigations show that more complex arguments are needed to determine the
degrees of freedom of smooth splines. In Section 6, we prove the following main result on
the dimension of S(}(A), q > 2, where A is the above uniform tetrahedral partition.

Theorem 3.1. The dimension of S}(A) is given by

3n%2+9n+4, if g =2, (3.3)

and

(4 — 24¢% + 53¢ —45) N> +6 (2> = Tq+T7) n®>+9 (¢ — 1) n + 4, ifg>3. (3.4)

Using the result of Theorem 3.1, we compute the dimensions of the spline spaces
S;(A), g € {2,...,9} and compare these numbers with the dimensions of the continu-
ous and non-continuous spline spaces w.r.t. A (see Table 1).

In the following we give some alternative formulae for the dimension of the smooth
spline spaces. For doing this, in addition to the above notation let V; be the number of
interior vertices of /A, Vg the number of boundary vertices of A, F; the number of interior
triangular faces of A, and Ej the number of interior edges of A. The next corollary result
follows immediately from Theorem 3.1 and some elementary computations using that

Vi=5n2—6n2+3n—1, Vg = 12n° + 2,
(3.1), and the Euler type formulas
VB=2TA —F;+2, TA=Vi—FEr+Fr+1,
which are satisfied for any tetrahedral partition.
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[6]

[1] [5]

[2] [6]| [1]
[5] [3]
@ [4]

3 [2]

Fig. 5. Cutting of the cubes Q(; ; r)-

Corollary 3.2. The dimension of S;(A) is given by

ool

L(TTa—2Fa—8Ba+32Va) = § (24 Vi +14Vp =5 Ta +28)

! (9FI+57VI—23E1+79>, ifg =2,
(3.5)

ool

= ((2q3 —36¢% + 175q — 219) Ta +12 (¢* — 8¢ +12) Fao +12 (3¢ —7) Ea + 48 VA)
=% (36 (4= 1) Vi +12 (¢ — 20 +2) Vi
+(2¢° — 12¢% +19¢ — 15) Ta — 12 (2> — 7q + 3))
=1 ((2q3 —5q+9) Fr + (2¢° + 1242 + Tq— 3) V;

(24 +12¢% — 29 + 33) Ep +2¢° +12¢2 + Tq + 45)), ifq>3.
(3.6)

§4. Notation and C' Smoothness Conditions

For proving our main result (Theorem 3.1) we construct an appropriate MDS M for
the spline spaces (see Section 6). For defining M we use the notation which we introduce
in this section. In addition, we use these to rewrite the smoothness conditions (2.3) for the
splines on A in a convenient form. It generalizes a similar notation used in Davydov &
Zeilfelder [10] for bivariate splines on the four-directional mesh to the trivariate setting.

For all 4,5,k € {1,...,n} we set here for the ring with distance m € {0,..., ¢} around
the midpoint v(; j x) of Qi j k),

m — . — m:[ :UaT] . —m,0—m, T—1m
R (v(i,j,k)) ={¢ EanA(i,j,k) NS £(i,j,pk;) = U(i,j,k) T w 2qn )7
p €{0,2m} and o,7 € {0,...,2m}, o + 7 even, or

o €{0,2m} and p,7 € {0,...,2m}, p+ 7 even, or
7€ {0,2m} and p,o € {0,...,2m}, p+ o even}.

(4.1)
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[4,4.4] [4:4,2] [4:4.0]
[314,3] [3.4.1
[2,4.4] [2,4.2] [2/4,0]
[1,4.3] [1}4,1
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[2.2:2}{22.0] [3:3,4] [1,3.4]0:3.3] [0,3,1][1,3,0] [3,3,0]14)3,1] [4,3.3
[1.2.1] [4.2.4] [2:2.4]10,2,4] [0,2.2] [0,2,0] [2,2,0] [4.2,0][4)2.2] [4,24]
[2,2:2]10,2:2] 10,201 12,2,01 12,2 2] [3,1,4] [1,1,4] [0,1,3][034,1] [1,4,0] [3;1,0] [4,1,1] [4,1,3
[0.42] (041 [LL0]| A1) (4,041 12.0,410,0.41(0,0.2}[0,0,0} [2.0,0}{4:0,0}4.0,2} [4,0¢]
[10,3] [1,0.1]
[
[2,0:2] [0:02] [0:6.0] [2,6,0] [2:02] 2.0.4] 22001
[1,0,1] [3,0,3] [3;0,1
[2.021 120,01 [4.0/41-14.0,21i20.01
[6,6.6] [6,6,4] [6.6,2] [6,6,0]
[576,5] [5,6,3] [5:6,1]
[4,6,6] [4:6,4] [4:6,2] [4,6,0]
[3,6,5] [3:6,3][3,6,1]
[2,6.6] [2:6.4] [2:6,2] [2,6,0]
[1,6,5] [1,6,3] [1;6,1]
[6,6,6] [4:6,6] [2,6,6] [0:6,6]0,6,4] [0,6,2] [016,01[2,6,0} [4:6,0] [6:6.01[6,6.2] [6,6,4] [6,66
[578,6] [3,5,6] [1:5,6][0,8,5] [0,5,3] [0+5,1][1,5,0] [3,5,0] [5/5,0][6,5,1] [6,5,3] [6:5,5]
[6,4,6] [4,4,6] [2/4,6] [0,4,6]0,4,4] [0,4,2] [DAM][2,4,0] [4.4,0] [6,4,0][6,4,2] [6/4,4] [6 46
[5,3,6] [3:3.6] [1,3,6] [0,3,5] [0:3,3][0,3,1][1,3,0] [3:3.0] [5,3,01[6.3,1] [6:3.3] [6,3,5]

[6.,2.6] [4:2,6] [2:2,6] [0,

[54,6] [3,1,6] [131,6

[6 I~ V. NaWAY|
, OO 14,9,0]

2 06
S

2’610 14][ ’ !2] [0
1[0/1,5][0,1,3][0:1,1]

&0 041 0 021

2,0][2/2,0] [4:2,0] [6
[1,4,0] [3,1,0] [5:1,0

2,0][6,2,2] [6,2,4] [6
9

1T
ALY

—

(2,

[4,

[6.86:6

0.6]60:41{0,0.2H
[1,0,5] [1,0,3] [1:0,1
0,6] [2,0,4] [2:0,2] [2
[3,0,5] [3;0,3] [3,0,1
0,6][4,0,4] [4,0,2] [4
[5,0,5] [5,0,3] [5,0,1

I'\'ITR

16 1r
OTTO U |uu Z11

Fig. 6. Indexing the domain points within a cube for ¢ = 3. The figure shows the cases
m = 2 (top, right) and m = 3 (bottom).

m =1 (top, left),

U.V.

As it can be seen from this, the cases p = 0 and p = 2m include the domain points from

R™(v(ijky) N 73([1.1]]. ") and R™ (v(i k) N P([j]j k)’ respectively. Analogously, the cases o = 0

and o = 2m include the domain points from R™ (v(; ; x)) 073([1 ]j k)

and R"™ (v(; j k) ﬂP([” Ky

respectively, and 7 = 0 and 7 = 2m include the domain points from R™(v(; jx)) N 73(Z i)

1

0



Vi

“
4';
Y

A

N

Fig. 7. The smoothness conditions given by equation (4.4) (left) and (4.7) (right) for the
case ¢ = 3. To the left smoothness conditions are shown which degenerate to univariate
smoothness conditions (3 coefficients are therefore involved in each condition), while to
the right the non-degenerate case is shown, where 5 coefficients are involved in each
condition.

and Rm(’u(i’j,k)) N P([?,]j,k)7 respectively. An example for the indexing is shown in Figure 6,
where we use the cutting of the cubes as shown in Figure 5 (here, [¢] denotes the index of
the corresponding face f([f}j,k)).

For the coefficients ag = a¢(s), £ € Dy a, of a spline s € S} (A), ¢ > 2, we now set

J— m7[p707T] 3 J— m,[p,tr,‘r]
9 =aggn o TE=EGhn "

By continuity of s at the triangles of the faces .7:[1.1,]].7,6) and ‘7:([?]—1,]',@7 1 # 1, }“([i]j,k) and
.7-"([2]3._1,,6), j# 1, and f[?,]j,k) and ]—"([f,]j’k_l), k#1, 14,5, ke{l,...,n}, respectively, we have

aq = ag, (4.2)
where

,[2q,0,7] ,[0,0,7] ,[0,2q,7] ,[0,0,7] ,[o,7,24] ,[o,7,0]
(a7 )E U {(Egi—f,j,k)’ggi,j,k) )7( Eli,j_lq,k)vggi,j,k) )7( Eli,j,k_lqyéé’j,k) )} (43)

In the following we use (4.1) to rewrite the smoothness conditions (2.3) for s €
S;(A), q > 2, in a convenient form which is used in the proceeding sections. First, we
describe the smoothness conditions of s across the common triangles of the faces of adjacent
cubes in 2. Then, we consider the smoothness conditions of s across the common triangular
faces of tetrahedra inside the six pyramids of a cube. These smoothness conditions are of
the same type (see Figure 7 (left), where we symbolize the domain points associated with
the involved Bernstein-Bézier coefficients by black dots). Finally, we rewrite the smoothness
conditions of s across the common triangular faces of tetrahedra from different pyramids
of a cube (see Figure 7 (right), where we symbolize the domain points associated with the
involved Bernstein-Bézier coefficients by black dots).
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The smoothness conditions of s across the triangular faces of F/ - and FY

i,J,k) (i—=1,5,k)’
: [2
i # 1, f(l]Jk) and }"([z] _1py J # L and ]—"[i,]j’ y and .7-"([] w1y B # LGk € {1,...,n},
respectively, are given as
ao =3 (ag +a,), (4.4)

where

,[0,0,7] 1,[0,0—1,7—1] 1,[2¢—2,0—1,7—1]
(aaﬁaf}/) S U {(é.gz,J k) ’5217:,] k) ’5217' I:J(Ilf) )7

10,0,7] 1,[o—1,0,7—1] 1,Jo—1,2¢—2,7—1] (4.5)
(Egm k) ’ggm k) ’égm L,k) " ),

[o,7,0] 1,[o—1,7—1,0] 1,Jlo—1,7—1,2¢—2]
(g(q%J k) ’ggljk) ’ggz,Jk 1) - )}

The smoothness conditions of s across the common triangular faces of the four tetrahedra
in P([f]j Ky b k€ {1,...,n}, L€ {1,...,6}, are determined by equation (4.4), where

q
(a, B, fY) © U U <{(£(%ka’)g U]’ é.(l Jp,a ' U+1 7£(1,ka’)g+1 7 1])a

0,0,0 o—1,p,0+1] [c+1,p,0—1]
Eray ™ Erny &Gk );

(é.l o'o'p],é.l o— 1a+1,p,§l [c+1, o'—l,p])}
(i,3,k) (4,5,k (i,5,k) (4.6)

,0,2m—o ,o0—1,2m—o—1] ,0+1,2m—o+1]
LG ei & )

Y

[2m—o,p,o] 2m—o—1,p,0—1] 2m—o+1,p,0+1]
(€€ S )

o,2m—o, [c—1,2m—0o—1,p] [c+1,2m—o+1,p]
(€™ € " i M3).

The conditions determined by (4.4), where (4.6) and m € {1,...,q} is fixed, involve
Bernstein-Bézier coefficients where the associated domain points are on the ring R™ (”(i,j, k)),
only. In addition, there are smoothness conditions involving Bernstein-Bézier coefficients
associated with domain points on the rings R™ (v(; ; 1)) and Rm_l(v(i,j,k)), simultaneously.
These are the smoothness conditions of s across the common triangular faces of tetrahedra
inside of different pyramids P([Z] k) P([fI; k) L#£V,in Q; k-

The smoothness conditions of s across the common trlangular face of P ~and PP

( , k) (4,3,k)°
& 2] ) 1) 3]
7’( L) and P(H Ky Plige and 7’( i) Piky and 7)( i k)’ P(i,j,k) and P(m k) Pk and

(4] (4] (6] (5]
P(zyk)’ P(zyk) and P(zyk)’ Py and Pl Py and P, POl and PEL,
73(1,] ") and 73( k) and P( P k) and P([?,]j,k)7 i,7,k € {1,...,n}, respectively, are given as
aa = (ag + ay) — 3(ac + ay), (4.7)
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where

(@, 8,7.¢m) e | U

m=1 o€{o0,..., 2(m—1)}
o even

m—1,[0,0,0] [1,0,0+1] [0,1,041] [0,0,0] [0,0,0+2]
({@ugk) Lagwy Saam Saaw . o Caam )
00’0 10+10 OU+11 00’0] 00’+20]
(R T A Sy AR S el 7 )]
[0,0,0] [04+1,1,0] [04+1,0,1] [5,0,0] [042,0,0]
T e T e i T S Rl

U

,[0,2m—2,0 [1,2m,0+1] [0,2m—1,041] [0,2m,0] [0,2m,0+2
{EGm Leiamott] grllam-tott] gnllsmel grifamaot),

J5k) d5k) J:k)
,[0,0,2m—2] [1,041,2m] [0,04+1,2m—1] [0,0,2m] [0,042,2m]
(E(m k) ’é(m k) ’é(m k) ’é(m k) ’é(m k) )
0,2m—2,0] [o+1,2m,1] [o+1,2m—1,0] 0,2m;,0] [0+2,2m,0]
(&g € "€

U

,[2m—2,0,0 [2m,1,0+1] [2m—1,0,0+1] [2m,0,0] [2m,0,0+2
{(E(z,] k) ]75(1 + 75(11 + 76(1, 75(1 - ])7

9k) k) k)
(f(m 5 [2m—2,0,0] af(z,ﬁ:; oL 5(1,321:)1 Lo+1,0] 5(1,321:)1 01, 5(1,321:)1 o+20))
(E(m k)cr,O,Zm ?] ,5(,73[;)%’1’2”"”],g(m?;lvov?m 1],5(1732,;),2771],é(m?)tz,o,zm])}
U
{(qzzmzm'22m Za’guazyzm 1”+1%£OJZ? 1”””+1,£uai?2m°}£u
(E(i’j k)2m R 2]’ 5(1,121:)1 orhame 1]7 5(%121:)1 b 2m]7 é(mzlgb oz vf(z
(E(m k)a S 2]’ g(l,JOI—cJ)rl e 1]7 E(Z,J(}I—:)rl S 2m]7 é(z,yzc)zm o vf(z

[2m,2m,o+2]
J>k)
[2m,0+2,2m]
J>k)
[04+2,2m,2m]
J>k)

§5. Minimal Determing Sets for C'! Splines on a Tetrahedral Cell

In this section, we consider the spaces S; (Aqi,1,1))s @ = 2, where Ay 1,1y is the tetra-
hedral cell obtained from subdividing the cube @ = Q(1,1,1) into 24 tetrahedra (see Section
3). In the following, we give two different MDS for these spaces. The first MDS for
S(} (Aqi,1,1)), ¢ = 2, is denoted by MVQ. Computing the cardinality of MVQ, we determine
the dimension of S;(A(1,1,1))7 g > 2. The second MDS denoted by M is more complex

than MVQ since it possesses fewer symmetries. On the other hand, we need Mg for the
construction of the MDS M for S(}(A), q > 2, (see Section 6), and therefore for the proof

of our main result (Theorem 3.1).
Throughout this section, for short we set

U =U(1,1,1) and gmolpetl = 51,1{)’1{)’ e R™(v).
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SRR

Fig. 8. The choice of points for X/lJQ in the case ¢ = 3. The figure shows the rings

SERDRRRe

R™(v), m = 1,2, (top) and m = 3 (bottom), where the points in Mg are marked by
black circles.

In the following, we define MQ which is a subset of the ¢-disk D?(v) of v. For doing this,
we define auxiliarly sets which we denote by A™(v), ©™(v), m =2,...,q, and D;.
For m € {2,...,q}, we set

Am(v) = U U {Em,[P,U,T], é’m,[T,P,U]’ &'m:[aﬂ':p]}.

€{0,2m oc€eq{0,..., 2m}
P { }76{0,2711—0'}

The points of the sets A™(v) are marked by grey circles in Figure 8.
Moreover, we set

0, if m =2,
U U {gm,[p+1,a+1ﬁ] 5m,[0+1,p+1,r] fm,[ff+1mp+1]}
m _ ) ) ]
© (U)_ pe{2,...,2(m—-1)—2} o€{0,2m—1}
p even T€{o,2m—o}

itme{3,...,q}.

14



-2a+b+c+d —-at+b+c

—2a+b+c+d —-a+b+c —2a+b+cH

d+(b+€)/2 c+d

Fig. 9. Computation of the Bernstein-Bézier coeflicients associated with domain points
. 1
in R*(v).

The points of the set ©™(v) are marked by white circles in the figure at the bottom of
Figure 8 (case m = 3). In addition, we let

D, = {51,[0,0,0]7 51,[2,0,0]7 51,[0,2,0]7 51,[0,0,2]}‘ (5.1)

The set MQ is obtained by adding the points of the rings R™(v) to D; which are not
contained in A™(v) U©®™(v), m =2,...,q. Formally, we define

Mo=DiU | (Rm(v) \ (A™(v) U @m(v))). (5.2)

m=2

For instance in the case ¢ = 3 the set MQ is given as the union of points marked by black
circles in Figure 8. Again, we use here the cut of the cube as illustrated in Figure 5. Note
that similar as in Figure 6 some domain points appear more than once in Figure 8.

Theorem 5.1. The set MVQ is a minimal determing set for S} (A11,1)), ¢ > 2.

Proof: Let arbitrary coefficients az = a¢(s), £ € Mg, of a spline s € S;(A(l,l,l)), q> 2,
be given. We have to show that all coefficients of s, i.e., ag = a¢(s), & € DI(v), are uniquely
determined, while all smoothness conditions of the space are satisfied.

The coefficients a¢(s), ¢ € D(v) are uniquely determined. This follows from some
elementary computations using the 24 smoothness conditions determined by (4.6) and (4.8),
where m = 1. We illustrate these computations in Figure 9, where we set

a=ae(s), &= gb[0,0,0] ag(s), &€ = gb[2,00] o ae(s), €= £1:10,2,0]

15



and
d=agls), €=

and compute the remaining coefficients from R!(v). Note that
ae(s) = (—a+b+c+d)/2,  if&=¢o000

We claim that the coefficients a¢(s), & € D™(v) are uniquely determined for m €
{2,...,q}. To show this we use induction.
We first consider the case m = 2. Since

U ({52,[p,0,2]752,[p,2,0]752,[p,2,4]752,[p,4,2]} U {52,[2,p,0]752,[2,p,4]}> c Mo,

p€{0,4}

it follows from (4.6), where m = 2, that a¢(s) is uniquely determined if

£ € U U {é-Z,[p,o',’r]7 £2,[o',p,7'], 52,[0,7’,p]},

p€{0,4} o,7€{1,3}

and

E E U {52,[p,2,2]7 52,[27p,2]7 Eza[zvzyp]}.

pe{0,4}

Note that it is a well-known fact from bivariate spline theory (cf. Schumaker [24]) that the
coefficients associated with the latter set are not overdetermined.

As we have seen above, the coefficients of s associated with points from D!(v) are
uniquely determined, and hence it follows from (4.8), where m = 2, that a¢(s) is uniquely

determined if
¢e Y (el

p,0,7€{0,4}

Note that the three smoothness conditions determined by (4.8) involving a coefficient asso-
ciated with the latter set are all satisfied, and we get here, for instance,

agz,[o,o,o] = a‘gz,[z,o,o] + a£2,[o,2,01 + a‘gz,[o,og] -2 agl,[0,0,0]-

We conclude that the coefficients a¢(s), & € D?(v) are uniquely determined.

Let us assume that we have already shown that the coefficients a¢(s), £ € D™~ 1(v),
where m € {3, ..., ¢} are uniquely determined. We now prove that the coefficients a¢(s), & €
R™(v) are uniquely determined.

By definition, we have

) 17 b ) ) 17 ) »i 1 A
U U {fm [+ O'T],é-m [o,p+ T])é-m [o,7,p+ ]} QMQ
pe{2,..., 2(m—1)—2} ce{0,2m—1}
p even T€{oc+1,2m—1—0c}
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Since the coefficients associated with domain points in R™~!(v) are uniquely determined
by induction hypothesis, it follows from (4.8) using m and ¢ € {2,...,2(m —1) — 2}, o
even, that the coefficients

ae(s), £ € O™(v),

are uniquely determined. Moreover,

U {gm,[p,o’—l,a—i—l]7 gm,[p,o’~|—1,o’—1]7 gm,[a—l,p,a—i—l]7 gm,[a—i—l,p,o’—l],

Em,[a—l,o’+1,p] Em,[a—i—l,a—l,p] Em,[p,o’—l,2m—o’—1] é-m,[p,a+1,2m—o'~|—1]
) ) ) )

gm,[2m—o’—1,p,o’—1]7 gm,[2m—o’~|—1,p,a+1], 5m,[o’—1,2m—o’—1,p], 5m,[o’~|—1,2m—a+1,p]}>
\ ©™(v)

is a subset of MVQ, and therefore the smoothness conditions in (4.6) using m and o €
{1,...,2m — 1} imply that a¢(s) is uniquely determined if

é- e U U {é-m,[p,cr,r]7 é-m,[fr,p,cr]7 é-m,[cr,fr,p]}.

0,2 oce{l,..., 2m—1}
pE{ m} T€{0c,2m—o}

Note that it is a well-known fact from bivariate spline theory (cf. Schumaker [24]) that the
coefficients a¢(s), where

é- e U {gm,[p,m,m], é-m,[m,p,m]7 gm,[m,m,p]}.

p€{0,2m}

are not overdetermined. In addition, it follows from the induction hypothesis that a¢(s) is
uniquely determined if

é- e U {Em—l,[p,a,fr]}.

p,O’,TE{O,Z(m—l)}

Therefore, (4.8) for m and ¢ € {0,2(m — 1)} implies that a¢(s) is uniquely determined if

ce  J femborly

p70776{072m}

Note that the three smoothness conditions determined by (4.8) involving a coefficient asso-
ciated with the latter set are all satisfied, and we get here, for instance,

agm,[o,o,o] = agm,p,o,o] + agm,[og,o] + agm,[o,og] -2 a€m71,[0,0,0].

It follows from the choice of MVQ that the coefficients a¢(s), & € R™(v) are uniquely
determined, and therefore the coefficients a¢(s), & € D™(v) are uniquely determined.
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g dim SIAy 1) | dm SO(Au ) | dim S, (A0
2| 16 65 240

3| 52 175 480

4] 136 369 840

5| 292 671 1344

6| 548 1105 2016

7| 916 1695 2880

8| 1432 2465 3960

9| 2116 3439 5280

Tab. 2. Comparison of dimensions for splines on the tetrahedral cell A(q y 1y.

The case m = ¢ shows the assertion, and the proof of the theorem is complete. O

The next result is obtained from counting the number of points in the minimal de-
termining set M for 5(}(&(1,1,1)), q > 2, defined in (5.2). In Table 2 we compare the
dimension of these spaces with the dimensions of continuous and non-continuous splines on
the same tetrahedral cell.

Theorem 5.2. The dimension ofS;(A(LLl)), q > 2, is given by
4 (¢* = 3¢* + 59— 2). (5.3)
Proof: Let us denote by d,,, the number of points in
MvQﬂDm(v), m=2,...,q.

It easily follows from the definition of MVQ and the proof of Theorem 5.1 that the set
R™(v) N Mg contains exactly

12 (m—1) +12 (m —2) + 24 (")

points, where m € {2,...,q}. Therefore, the recurrence relation
A = dp—1 +24 m — 36 +24 (", ?) (5.4)
is satisfied for m € {3,...,q}. Since d2 = 16, it follows from induction and some elementary

computations that d, = 4 (¢> — 3¢%> + 5q — 2), ¢ > 2. Since dg4 coincides with the number
of points in Mg, the proof of the theorem is complete. [

We proceed by defining a subset Mg of D?(v) which is different from MVQ, and we show

that Mg is a MDS for 5(}(&(1,1,1)), q > 2. In contrast to MVQ, the sets Mg NR™(v), m =
2,...,q, possess fewer symmetries, and therefore it is more complex to describe Mq. On the

other hand, since we can now use that MVQ is a MDS for S(}(A(l,l,l)), q > 2, (Theorem 5.1),
the proof of the proceeding theorem becomes simpler than the proof of Theorem 5.1. Here,
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Fig. 10. The choice of points for M in the case ¢ = 3. The figure shows the rings
R2(v) (top) and R3(v) (bottom), where the points of Mg are marked by black circles.

we only have to check that the number of points in Mg coincides with (5.3) while Mg is
a DS.

For defining Mg, we use some auxiliarly sets which we denote by U™ (v), E™(v),
T™(v), and ®™(v), m=2,...,q.

For m € {2,...,q}, we set

\I/m(’U) — U U {gm,[p,o’,’r], é'm,[O',p,T]7 gm,[a,T,p]}

€{0,2m oced{l,..., 2m—1}
P { } T€{oc,2m—o}
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and
r—-m(,u) :{gm,[2,2m,2m], 5m,[2m,2,2m]7 gm,[2m,2m,2]7 gm,[2m,2m,2m]}-

—
—

The definition of U™ (v) is similar to the definition of A™(v), but slightly different. The
points of the set U™ (v) are marked by grey circles in Figure 10, while the points of Z™(v)
are marked by a dot. In addition, we set

( 0, if m =2,
U (emlpT112m] em [Lpt12m] em[1,2mp+1]

Tm('U) — p even

pe{2,..., 2(m—1)—2}
% gm[p+1,2m,1] gm[2m,p+1,1] gm[2m,1p+1]
) ; 5
Em,[p+1,2m,2m—1] Em,[Zm,p+1,2m—1] é-m,[2m,2m—1,p+1]}
’ ’

\ ifme{?),...,q},

Y

and

0 if m =g,
7070]7 Emv[oap70]7 é‘ma[oyoyp]}7 if m E {27 ceey q — 1}

KA
3
S
I
-
——
)
3
B

The definition of Y™ (v) is similar to the definition of ®™(v), but different. The points
of the set Y™ (v) are marked by white circles in Figure 10, while the points in ®™(v) are
marked with a cross.

The set M is obtained by adding the points of the rings R™(v) which are not con-
tained in U™ (v) UE™(v) U Y™ (v) U D™ (v), m = 2,...,q. Formally, we define

q

Mo = (Rm(v) \ (™ (v) UE™(v) UT™(v) U (Dm(v))>. (5.5)

m=2

For instance in the case ¢ = 3 the set M is given as the union of points marked by black
circles in Figure 10. Again, we use here the cut of the cube as illustrated in Figure 5. Note
that similar as in Figure 6 some domain points appear more than once in Figure 10. In
contrast to the construction of Mg, no point from D*'(v) is contained in Mg. Moreover,
these sets are not nested for different degrees. By this we mean, for instance, that the set
D?(v) N M consists of 16 points in the case ¢ = 2, while for ¢ = 3 the set D?(v) N Mg
consists of 9 points, only (see Figures 11 and 10, respectively).

Theorem 5.3. The set Mg is a minimal determing set for S;(A1,1,1)), ¢ > 2.

Proof: We first show that the number of points in Mg denoted by ¢, coincides with the
dimension of 5(}(&(1,1,1)), i.e., according to Theorem 5.2 we have to show that

cq=4("-3¢+5¢-2), q¢>2 (5.6)
This is certainly true for ¢ = 2, since in this case, we have

MQ — R2 (’U) \ (\IIZ (’U) U E2 (’U)) — U {52,[0,0,7']7 éh2,[a,0,*r]7 é—?,[ﬂ',T,O]}-

o,Te€{0,..., 4}
o,7 even, (o,7)#(2,2)
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Fig. 11. The choice of points for Mg in the case ¢ = 2. The figure shows the ring
R2(v), where the points of Mg are marked by black circles.

(See Figure 11, where the points from M are marked by black circles.)
Moreover, it can be seen from the choice of points in Mg that

¢ = (cqr1 — #(@71(©)) + #(R4(v) N M)
= cg1— (34— 2) + (12— 4) — 4+ 15 (g — 2) + 24 (%)
= cq_1+24 ¢ — 36 + 24 (13?),

where g € {3,...,q}, and therefore a comparison with (5.4) implies that (5.6).

It remains to show that M is a determining set for S;(A(Ll’l)), q > 2, i.e., we have
to show that for any spline s € S;(A(l,l,l)), with a¢(s) =0, £ € My, it follows that s = 0.
We prove this claim by induction on gq.

Let ¢ =2, and s € S3(A1,1,1)) be given such that ag(s) = 0, where

é‘ E U {627[0)0-)7_]7 52)[07077—]7 52)[077—)0]}.

o,7e{0,..., 4}
o,7 even, (o,7)#(2,2)

It follows from (4.6) where m =2 and ¢ € {1, 2,3} that as(s) =0 if

é- c < U {52,[0,0',7'],52,[0,0,7’],52,[0,7,0]}) U {52,[4,1,1],52,[1,4,1],52,[1,1,4]},

o,7€{1,3}

and
é‘ E {627[0)2)2],627[2)0)2]7 52)[27270]}.
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The smoothness conditions in (4.8) for m = 2 and o € {0, 2} imply that a¢s(s) =0, £ € Dy
(for the definition of Dy, see (5.1)), and therefore it follows from the arguments given in the
beginning of the proof of Theorem 5.1 that

ag(s) =0, ¢ € D (v).
Using the conditions in (4.8) where m =2 and o € {0, 2}, we get a¢(s) =0, if

2,[4,1,3] ¢2,[1,4,3] ¢2,[1,3,4] ¢2,[4,1,3] ¢2,[1,4,3] ¢2,[1,3,4]
§e{¢ € € & & & 2
Hence, the conditions determined in (4.6) imply a¢(s) = 0, if

5 6 {527[27274], 527[27472]7 £27[47272]}7

and
£ e {£2,[2,4,4], 52,[3,3,4], 52,[4,2,4]7 52’[4’3’3], 52’[4’4’2], £2,[3,4,3]}.

Finally, it follows from the remaining condition determined by (4.8) that ag¢(s) = 0, if
¢ = ¢2[444 and hence s = 0.
Let us assume that we have already shown that the above claim holds true for ¢ — 1,
and let a spline s € 5(}(&(1,1,1))7 q > 3, be given which satisfies a¢(s) =0, £ € Mg.
It follows from the conditions determined in (4.6) where m =g and o € {1,...,2¢—1}
that ag(s) =0, if
£ e U {gq,[O,o’,T], é-q,[a,(],T]7 gq,[o’,’r,(]]},

oce{l,..., 2q—1}
T€{o,2q—0c}

and
¢e {gq,[Zq,l,l]7 gq,[1,2q,1], gq,[l,l,Zq]}_

The smoothness condition determined in (4.8) where m = q and o € {0,...,2(¢— 1)}, o
even, imply that
ag(s) =0, ¢ € d1(w).

Therefore, it follows from the choice of points in Mg and the induction hypothesis that
ag(s) =0, ¢ € D1 (w).

The smoothness conditions determined in (4.8) where m = q and o € {0,...,2(¢— 1)}, o
even, now imply that a¢(s) =0, if

Jp+1,0+1,2qg—0 Jo+1,04+1,2q—0 Jo+1,2q—0,p+1
£e U U {Eq[p q ]7£f1[ p q ]75(1[ q—o,p ]}.
pE{2,...,2(a—-1)} 0€{0,2¢q—1}
p even

Hence, (4.6) gives a¢(s) =0, if

€ €Z1(0) \ {grLaendy,
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It follows from the choice of M and the smoothness conditions determined in (4.8) where
m=gqand o € {2,...,2(¢ — 1) — 2}, o even, that a¢(s) =0, if

¢ € U {éq,[erl,Zq,Zq—l]7 5(1,[2q,p+1,2q—1]7 Eq,[2q,2q—1,p+1]}.
pe{2,..., 2(g—1)—2}
p even
Therefore, the smoothness conditions determined in (4.6) where m = gand o € {1,...,2q—

1} imply that a¢(s) =0, if

é' E U {Eqa[quo-:TL é‘qv[o—an:TL Eqa[o—yTan]}.

oe{l,..., 2g—1}
T€{0,2¢—0}

Finally, the remaining condition determined in (4.8) where m = ¢ gives a¢(s) = 0, if
¢ = ¢9[2920:24 and hence s = 0. This completes the proof of the theorem. O

§6. Minimal Determining Set for S;(A), and Proof of the Main Result

We construct a MDS M for S(}(A), q > 2, where A is the tetrahedral partition defined
in Section 3. For doing this, we use the results from the previous section. In particular, we
use that M is a MDS for S;(A(Ll’l)), g > 2. Counting the number of points in M, we
establish the explicit formula for the dimension of these spaces given in Theorem 3.1.

The set M is obtained as the union of some subsets of Dy a(, ;s 44,k € {1,...,n},
whose definition requires some auxiliarly sets which we denote by A(% jk)s Bi k) and Cg j gy

Let
A g k) = ( U U {E(”k)o” }>

pe{o ]_} o,Te€{0,..., 2(qg—p)}

o+T1 even

(U U gesels)

p€{0,2q} €{0,...2(a~1)}

o even

{g(z,j]:)T]}> )

c€{0,2q}
U {E(m k)a o }>

U

T€{oc,2g—0c}

(m k) = (
pE{0,1} eomElh 2l
[e+1,1,p] ¢q,lp;1,0+1]
- ( U &G " })
pe{o Zq} O'E{O ..... 2(g—1)}
0-7277—]
U( {€G.70) }>’

o€{0,2¢q}
T7€{o,2¢—0c}
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Fig. 12. The sets A(; ;) (top), B(; jx) (middle), and C(; ;1) (bottom), in the case
q=3.

and

Cogm = (U U @nm™)

pe{0,1} o7€{0,...2(a—p)}

o-+T even

s[p,o+1,1] slo+1,p,1]
U( U U s ” })
p€{072q} ce{o,..., 2(g—1)}

o even

q7[0-77-72]
o U Hesm™)-
o€{0,2q}
T€{o,29q—0c}
It can be seen form this definition that the set A(; ;) contains all the domain points
from Dy A, ; ., where the associated Bernstein-Bézier coefficients have influence on the Ct
[zl]J k)" Similarly, the sets B(; ; 1) and C(; ; ), respectively, contain
all the domain points from Dy A, , ., Where the associated Bernstein-Bézier coefficients have

continuity across the face F,

influence on the C'!' continuity across the faces f([f]j k) and f([?]j k) respectively. Figure 12

shows an example for the sets A j xy, Byi j k), and C(; j x), where the points from these sets
are marked by grey circles.
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Moreover, we set
Migry = {6 € Do, € = (51 55, 551) € Mg}, (6.1)

where Q@ = Q(1,1,1) and Mg is defined in (5.5). Hence, M ;1) = Mg, and M ; i),
(¢,7,k) # (1,1,1), is simply a “shifted” version of M.
Finally, we define

M = M1
U U ((M(i,l,l) \VAG1,1) UM \ Beasin) U (M) \C(1,1,¢))>

i1€{2,...,n}

U U ((M(i,j,l) \ (Agij1) YUBga,j1)) UM\ (Aai,) UCa,5)))

i,j€{2,...,n} (62)

U (Mg \ (B U C(l,i,j))))
v U ((Mu,j,k) \ (Agigm) U By U C(i,j,k))>-

i:jake{zv"'an}

Theorem 6.1. The set M is a minimal determining set for S(}(A), q>2.

Proof: Let arbitrary coefficients ag = a¢(s), £ € M, of a spline s € S;(A), q > 2, be
given. We have to show that all coefficients of s, i.e., ag = a¢(s), £ € Dy a, are uniquely
determined, while all smoothness conditions of the space are satisfied.

Our method of proof is to show inductively that the coefficients a¢(s), £ € Qi jx) N
Dy, a are uniquely determined for 4,5,k € {1,...,n}, where we consider the cubes Q; ; r)
in an appropriate order. This natural order is as follows. First, we consider the cases
(i,j,k) = (i,1,1), i = 1,...,n. Then, we consider the cases (i, 7, k) = (1,5,1), j =2,...,n,
and (i,7,k) = (1,1,k), k = 2,...,n. We proceed by considering the cases (i,j,k) =
(4,5,1), 4,j = 2,...,n, (i,5,k) = (4, 1,k), i,k = 2,...,n, and (4,5,k) = (1,4,k), j, k =
2,...,n. Finally, we consider the cases (i, j, k), i,5,k =2,...,n.

First, it follows from Theorem 5.3 and

M1 EM,
that the coefficients a¢(s), where
§€Qu,1,1)NDyn

are uniquely determined.
We proceed by considering the cube () (2 1,1)- This cube has exactly one face in common

with @(1,1,1), namely the face ]—"([‘11]1 1) = .7-"([;]1 1) It follows from the conditions determined

by (4.3), (4.5), (4.6), and (4.8), that the coefficients
ag(s), §€ A(2,1,1)
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are uniquely determined. Note that the coefficients a¢(s), where

£ c (Rq(v(27171)) U Rq_l(v(2,1,1))> N P(z,l,l)

are determined by (4.3) and (4.5), respectively, and the smoothness conditions (4.6) involv-
ing these points are automatically satisfied, which follows from an elementary computation
similarly as in Lai & LeMéhauté [15], since the coefficients a¢(s), where

f S (Rq(v(l,l,l)) U Rq_l(v(1,1,1))> N ,P([A;]’l’l)
satisfy the same type of conditions. Since
M1\ A@,1,1) EM,

and the coefficients a¢(s), £ € A(2,1,1), are uniquely determined, we obtain from arguing
along the lines of the proof of Theorem 5.3 using the definition of Mz 1 1), that a¢(s) is
uniquely determined if

£ €Q2,1,1) N Dy,

while all the smoothness conditions determined by (4.5) and (4.6) involving coefficients
associated with domain points in )2 1,1) are satisfied. It follows from induction, the choice
of points in M, and a similar argument that a¢(s) is uniquely determined if

S U (Q(z’,l,l) UQ,i,1 U Q(l,l,i)) NDg,A.
i€{2,...,n}

Next, we consider the cube (2 2,1). This cube has exactly two faces in common with
some cubes considered before, namely the faces }"([1?271) = ]:([22’1) and }"([2?171) ]:([2271)
follows from the conditions determined by (4.3), (4.5), (4.6), and (4.8), that the coefficients

a¢(s), where
£ € App21)UBpa

are uniquely determined. In particular, the coefficients a¢(s), where

e U by

are uniquely determined, which follows from the C! smoothness of s at the edge with
endpoints (1, 1,0) and (— L 1), Note that the coefficients a¢(s), where

§ € (Rq(’U(z,z,l)) U Rq_l(”(z,z,1))) N (P([z],zyl) U 73([2],2,1))
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are uniquely determined by (4.3) and (4.5), respectively, and, repeating the above argu-
ments, the smoothness conditions (4.6) involving these points are automatically satisfied,
since the coefficients a¢(s), where

£ e (Rq(v(1,2,1)) U Rq_l(v(l,ll))) n /P([i]ﬂ,l)’

or

£ c (Rq(v(27171)) U Rq_l(v(2,1,1))> N P(z,l,l)

satisfy the same type of conditions. Since
M2\ (A@21) UBe2n) €M,

and the coefficients a¢(s), £ € A(2,2,1) U B(2,2,1), are uniquely determined, we obtain from
arguing along the lines of the proof of Theorem 5.3 using the definition of M5 1), that
a¢(s) is uniquely determined if

£ € Q2,21 NDyn,

while all the smoothness conditions determined by (4.5) and (4.6) involving coefficients
associated with domain points in )2 2,1y are satisfied. It follows from induction, the choice
of points in M, and a similar argument that a¢(s) is uniquely determined if

§ € U (Q(i,j,l) UQ,1,5) U Q(l,i,j)) N Dy .

i,J€{2,...,n}

Finally, we consider the cube (Q(322). This cube has exactly three common faces with

some cubes considered before, namely the faces }"([1]2 2) = ]:([2]2 2)) ]:([;]1 9 = .7:([3]2 2> and
.7-"([2?271) .7-"([2?272) It follows from the conditions determined by (4.3), (4.5), (4.6), and (4.8),

that the coefficients a¢(s), where
§ € A2 UB@222) UCx2p22)

are uniquely determined. In particular, the coefficients a¢(s), where

1,[p,0,0] 0, 1,0,0,
S U {ggz,z,zf)) ’5(2 2 2) )P ’532 2,2) ’ 2

are uniquely determined, Which follows from the C’ 1 smoothness of s at the edges with end-
points (1,1 Lyand (2,1 L) (L L Lyapq (L 2 1y (L 1 1yand (1,1, 2) respectively.

n’n’ n’n’n n’n’ n’n’n n’n’ n’n’

Note that the coefficients a¢(s), where

§ € (Rq(v(z,z,z)) U Rq_l(”(2,2,2))) N (P([;],z,z) U P([z]z 2) U P([z],z,z))
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are uniquely determined by (4.3) and (4.5), respectively, and, repeating the above argu-
ments, the smoothness conditions (4.6) involving these points are automatically satisfied,
since the coefficients a¢(s), where

£ e (Rq(v(1,2,2)) U Rq_l(v(l,Z?))) n /P([i]ﬂ,?)’

or

£ ¢ (Rq(v(2,1,2)) U Rq_l(v(ll,?))) n P([g],l,Z)’

or

€ € (RU@an) URT™ (vp20)) NPEh0),
satisfy the same type of conditions. Since
M2,22) \ (A2,2,2) U B(2,2,2) UC2,2,2)) € M.
and the coefficients a¢(s), & € A(2,2,2)UB(2,2,1)UC(2,2,2), are uniquely determined, we obtain

from arguing along the lines of the proof of Theorem 5.3 using the definition of M3 3 2),
that ag(s) is uniquely determined if

£ € Q2,22 NDyn,

while all the smoothness conditions determined by (4.5) and (4.6) involving coefficients
associated with domain points in () (2 2,2y are satisfied. It follows from induction, the choice
of points in M, and a similar argument that a¢(s) is uniquely determined if

§ € U Qi j,k) N Dy,

i,j,ke{2,...,n}

This completes the proof of the theorem. O
Counting the number of points in M, we now obtain the result stated in Theorem 3.1.
Proof of Theorem 3.1: It follows from Theorem 5.2 that the set M ; ;) contains
4 (¢ —3¢% +5¢ — 2)
points, and it is clear that this is also the number of points in every set M; ;1) defined in
(6.1). Since the cardinality of A 11)NMa1,1) is 4 (¢* —2¢+3),if ¢ > 3, and 11, if ¢ = 2,
it follows that the set M2 1 1)\ A(2,1,1) contains 4 (¢* —4¢®+ 7¢ — 5) points, if ¢ > 3, and 5

points, if ¢ = 2. The same number of points are chosen in M for the cubes Q; 1 1), Q(1,i,1),
and (1,1, ¢ = 2,...,n. Therefore, these cubes contribute a total number of

4 (> =3¢ +5¢—2)+12 (n—1)(¢* — 4¢* + 7 — 5)
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points, if ¢ > 3, and
16+ 15 (n — 1)

points, if ¢ = 2. The cardinality of (A2 1)U B2,2,1)) N M 2,21y is 8¢> —19¢ + 23, if ¢ > 3,
and 15, if ¢ = 2. The same number of points are chosen in M for the cubes Q; j 1), Qi,1,5);
and Q(1,,5), % J = 2,...,n. Therefore, these cubes contribute a total number of

3 (n—1)%(4 (¢® =3¢ +5q — 2) — 8¢ + 19¢ — 23) = 3 (n — 1)*(4¢® — 20¢” + 39¢ — 31)

points, if ¢ > 3, and
3(16—15)(n—1)2=3 (n—1)?

pOiIltS, if q = 2. The cardinality of (./4(27272) U 8(27272) UC(27272)) N M(27272) is 12(]2 — 33(] + 37,
if ¢ > 3, and 16, if ¢ = 2. The same number of points are chosen in M for the cubes
Qi j,k)> % Jsk =2,...,n. Therefore, these cubes contribute a total number of

(n—1)%(4 (¢* — 3¢> + 5q — 2) — 12¢° + 33¢q — 37) = (n — 1)*(4¢° — 24¢> + 53¢ — 45)

points, if ¢ > 3, and no further point, if ¢ = 2. Therefore, the total number of points in M
is equal to

4 (> =3¢ +5¢—2)+12 (n—1)(¢® — 4¢®> + 7q — 5)+
3 (n—1)%(4¢® — 20¢® + 39¢ — 31) + (n — 1)*(4¢> — 24¢* + 53¢ — 45),

for ¢ > 3, and
16415 (n—1)+3 (n —1)%

for ¢ = 2. An elementary computation now shows that these numbers coincide with the
numbers given in (3.3) and (3.4), respectively. The proof of Theorem 3.1 is complete. O

Remark 6.2. In particular, our results show that the space S5 (A) does not possess enough
degrees of freedom to provide good approximation properties, in general. Surprisingly, we
observe that for the uniform partition A the situation is similar to the case of quadratic
C" splines on the three-directional mesh, and therefore different to the case of quadratic
C' splines on the four-directional mesh. Moreover, we note that the dual basis {B¢ €
Si(A), &€ € M}, where ag(Be) = 1, and a¢(Be) = 0, &' # £ resulting from the MDS M
from Theorem 6.1 is non-local, in general. The question of constructing a local basis for
splines of small degree is under investigation.

Remark 6.3. The results of this paper can be extended to more general domains as in
Figure 13 for which the inductive arguments given in the proof of Theorem 6.1 also work.

Remark 6.4. In Alfeld, Schumaker & Whiteley [4, Theorem 4] a formula for the dimension
for C! splines of degree > 8 on generic tetrahedral partitions was given. The numbers given
in Theorem 3.1 and Corollary 3.2 do not coincide with these dimensions and therefore we
conclude that A, the tetrahedral partition defined in Section 3, is non-generic for C* splines,
in general. Moreover, we note that in Alfeld, Schumaker & Whiteley [4, Example 7 & 8] as
well as in Alfeld, Schumaker & Sirvent [3, Example 26] the dimension of splines on particular
cells were computed. These cells are different from the cell in Section 5.
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Fig. 13. A more general domain €2 than the unit cube decomposed in uniform cubes.

Remark 6.5. In general, trivariate splines posses much more degrees of freedom than
tensor spline spaces of the same degree, which can be considered as subspaces with certain
super-smoothness conditions across the interior triangular faces of A. For instance, it easy
to see that the triquadratic C'! tensor spline space S3 @ S3 ® S5 C Si(A), where S is the
univariate spline space w.r.t. the knots %, i=0,...,n, possesses n3+12 n%2+6 n+8 degrees
of freedom, which is much smaller than the dimension of S} (A), i.e., 273 n3+222 n%+45 n+
4. Similarly, the subspace S3 @ 83 ® S; C S¢(A), where S3 is the univariate spline space
w.r.t. the knots %, i =0,...,n, possesses 8n°> 4 24n2 + 24n + 8 degrees of freedom, while
the complete space S3 (A) has a much larger dimension, namely 1404 n3 +636 n?+72 n+4.
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