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Abstract

We present a new Monte Carlo method for solving the global illumination
problem in environments with general geometry descriptions and light emission
and scattering properties. Current Monte Carlo global illumination algorithms
are based on generic density estimation techniques that do not take into account
any knowledge about the nature of the data points — light and potential particle
hit points — from which a global illumination solution is to be reconstructed. We
propose a novel estimator, especially designed for solving linear integral equations
such as the rendering equation. The resulting single-pass global illumination al-
gorithm promises to combine the flexibility and robustness of bi-directional path
tracing with the efficiency of algorithms such as photon mapping.
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1 Introduction and Previous Work

The global illumination problem is a long-standing problem in computer graphics
and a huge amount of research has been spent on it already. The only way known
today to reliably solve the problem in a general setting is by means of Monte
Carlo methods, inherited from related fields such as neutron transport [16, 9].
One can distinguish two classes of Monte Carlo methods for global illumination,
here called pixel-based methods and surface-based methods.

Pixel-based methods Pixel-based methods compute the light flux through every
virtual screen pixel directly. They avoid pre-computing and storing an approxi-
mation to the illumination on surfaces in a scene to be rendered. Because of this,
they are very flexible and can handle a wide variety of geometry and light emis-
sion and scattering descriptions. Stochastic ray tracing [4, 8] and bi-directional
path tracing [20, 10] are algorithms belonging to this class.

Bi-directional path tracing is a generalization of stochastic ray tracing and
light path tracing. For each image pixel, a pair of random walks are traced, one
from the observer position and one from a light source in the scene. The vertices
of the light and eye path in the pair are connected by means of shadow rays. In
this way, multiple alternative Monte Carlo estimators for direct illumination, first-
order indirect illumination, second order indirect illumination etc. . . are obtained.
These alternatives are weighed in a way that gives priority to the best available
strategy for calculating any light transport path.

Unfortunately, bi-directional path tracing often leads to unacceptable compu-
tation times (hours or even days for complex scenes). The main causes are dense
occlusion, the presence of difficult lighting effects such as reflections of caustics
and the lack of data coherence in the algorithm.

In densely occluded environments, the probability of obtaining unoccluded
connections between a pair of a light and eye path vertices is small. This problem
is reduced, but not eliminated, by stochastically accepting or rejecting shadow
tests based on the distance between and surface orientation at path vertices [19,
§10.4] and by metropolis sampling [21].

In the second case, none of the sampling strategies in bi-directional path trac-
ing is well suited for this kind of lighting effects so that there is no good combi-
nation. This results in spike noise that disappears only extremely slowly from the
images. It can be translated in a smooth, perceptually less objectionable, bias by
using adaptive image-space filtering techniques [17].

In addition, visibility tests are performed in an order requiring to access data
almost randomly, thus defeating fast but rather small memory caches. Enforcing
and exploiting ray coherence can speed up execution by half an order of magnitude
and more [13, 22].
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Surface-based methods Surface-based global illumination algorithms on the
other hand, do pre-compute and store an approximation for the illumination on
the surfaces of a scene. In order to generate an image for a particular viewing
position, the stored solution is queried and reconstructed at the surface points that
are visible in the view. The principle of Monte Carlo surface-based illumination
computations is as follows: first, the trajectory of light particles is simulated ac-
cording to the light emission and scattering properties of the surfaces in a scene.
The resulting particle hit points then form the input data for a density estimation
method [15].

In the simplest case, the scene to be rendered is discretized into small surface
elements and the number of particle hit points on each element is essentially just
counted [12]. Numerous variants exist on this scheme [2]. They correspond with
the histogram method for density estimation.

Similar algorithms for higher-order polynomial approximations of the radios-
ity on surface elements [3, 5] are known in density estimation literature as orthog-
onal series estimation methods.

Yet other algorithms place normalized kernel functions at the particle hit points
[14, 23]. The illumination intensity at an arbitrary surface point is reconstructed
by adding up the value at the query point of the kernel functions placed at neigh-
boring particle hit points. Such density estimation methods are called kernel meth-
ods.

Photon mapping [7] corresponds with nearest neighbor density estimation: in
order to reconstruct the illumination at an arbitrary surface point, an a-priori fixed
number of nearest particle hit points is determined. The reconstructed illumi-
nation intensity is essentially the number of nearest particle hits, divided by the
projected area of the smallest sphere containing the nearest particles. Since the
precomputed illumination is stored independently of the surface geometry of the
scene, photon mapping trivially handles curved surfaces, object instancing and
procedural geometry descriptions. The high cost of the nearest neighbor queries
is an important bottleneck.

All above algorithms rely on generic density estimation methods. They do
not take into account the fact that the input data consists of particle hit points
resulting from a random walk simulation as dictated by the rendering integral
equation. Their bias manifests itself in the form of blurred illumination detail, for
instance at sharp shadow boundaries, and other disturbing image artefacts such as
light and shadow leaks (see figure 1). They are also limited to the computation of
diffuse or nearly diffuse illumination in a scene.

In order to avoid image artefacts and to add non-diffuse illumination contribu-
tions to an image, a final gather pass is required. In such a final gather pass, the
pre-computed illumination solution is used only indirectly. Direct illumination,
one bounce of indirect diffuse illumination and all indirect non-diffuse illumina-
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tion are computed with stochastic ray tracing. Interpolation of diffuse indirect illu-
mination with irradiance caching [24] is required in order to make final gathering
efficient. (The visualization of bright caustics in photon mapping is an exception
to this rule.)

Figure 1: Bias artefacts. Both images show only direct illumination. Left: vi-
sualization of a photon map without final gather, showing blurred shadows and
light leak artefacts; Right: the method proposed in this paper does not result in
such disturbing artefacts. It produces convincing images without the need for a
separate final gather pass. Computation times are about equal.

Contribution of this paper We present a generalization of the kernel method
for density estimation, especially designed for solving integral equations such as
the rendering equation [8].

Like bi-directional path tracing (BPT), the algorithm it results in can be viewed
as a two-pass algorithm in which both passes are tightly coupled allowing to au-
tomatically select the best estimation strategy for a wide range of illumination ef-
fects. Unlike BPT, the new algorithm ensures effective connections between light
and eye paths, and it automatically generates highly coherent shadow rays. Dif-
ficult lighting effects lead to a smooth and perceptually non-objectionable bias,
rather than spike noise. Because of this, computation times are in the order of
minutes rather than hours or days for highly complex scenes.

Compared with generic density estimation methods, our algorithm faithfully
reproduces fine illumination detail like sharp shadows and a wide range of non-
diffuse effects without the need for a separate final gather pass (see figure 1).
Like photon mapping, it stores illumination information independent of scene ge-
ometry, allowing to handle highly complex scenes with object instantiation and
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procedural geometry descriptions. Stored illumination queries are however sig-
nificantly more simple and less costly. In addition, the method proposed in this
paper is easy to use as it automatically calibrates its parameters depending on
viewpoint and scene. It provides feedback to a user in seconds and converges
gracefully until a high quality image is obtained.

This paper proceeds in §2 with a derivation of our generalized kernel method.
A practical kernel is proposed next in §3. Some cost reduction techniques follow
in §4. Our implementation is described in §5. The paper concludes with some
preliminary results in §6.

2 The Generalized Kernel Method

We derive our generalized kernel estimator first in the context of the direct illumi-
nation problem. Its extension for indirect illumination is discussed in §2.2

2.1 Direct Illumination

In order to compute the direct illumination Ld(y1 → y0) at a surface point y1 in a
scene and observed from a position y0, the following integral needs to be solved:

Ld(y1 → y0) =

∫

S

Le(x0 → y1)G(x0, y1)fr(y1; x0 ↔ y0)dAx0
. (1)

The meaning of the symbols in this paper is summarized in table 1. We discuss
briefly how this integral can be estimated using Monte Carlo integration and den-
sity estimation methods, before introducing our generalized kernel method.

Monte Carlo integration Equation (1) can be estimated by randomly picking
N points x0 with probability density p(x0) and computing the sum:

1

N

N
∑

s=1

Le(xs
0 → y1)G(xs

0, y1)fr(y1; x
s
0 ↔ y0)

p(xs
0)

≈ Ld(y1 → y0). (2)

If p(x0) is non-zero whenever the numerator — the integrand of (1) — is non-
zero, the estimates (2) will converge to the true value of Ld(y1 → y0) as the
number of trials N increases. The number of trials needed for achieving a given
accuracy with given confidence is proportional to the square root of the variance
of the estimator [16, 9]. The variance can be kept low by chosing p(x0) so that the
terms of (2), the outcome of the trials, are much as possible constant. Common
choices for p(x0) are:
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x0, x1, . . . Light path vertices: x0 is on a light source
y0, y1, . . . Eye path vertices: y0 is at the virtual camera

L(y1 → y0) Radiance at y1 emitted towards y0

Le, Ld, L(2) Self-emitted, direct and first-order indirect radiance
fr(y1;x0 ↔ y0) BSDF at y1 for scattering to/from x0 and y0

Θy|x Direction from x to y (read y|x as “y after x”)
cos θy|x Cosine of angle between Θy|x and the surface normal at x

rxy Distance between x and y
vis(x, y) Visibility predicate
G(x, y) Geometric factor cos θx|y cos θy|x/r

2
xy · vis(x, y)

p(x) Probability of sampling x: pL, pE for light/eye path tracing
p(xk|xk−1, xk−2) Probability of sampling a path from xk−2, xk−1 to xk

K(xk|xk−1, . . . , x0; yl) Generalized kernel value for combining a light path vertex xk,
successor of xk−1, . . ., with an eye path vertex yl

χS(x) Characteristic function of a point set S: 1 if x ∈ S, 0 otherwise
F (xk|xk−1, . . . , x0) Footprint region associated with a light path vertex xk

R(xk|xk−1, . . . , x0) Radius of the footprint region

Table 1: The main symbols used in this paper.

• BSDF sampling: a direction Θx0|y1
is sampled according to a pdf which

is proportional to the BSDF fr times cos θx0|y1
and a ray is shot into the

chosen direction. The nearest surface point hit by this ray is x0. Variations
in the self-emitted radiance Le(x0 → y1) are not accounted for and cause
potentially high variance;

• Light source sampling: a point x0 is chosen randomly on a light source,
with a probability proportional to Le(x0 → y1). Evaluation of (2) requires
to compute mutual visibility between x0 and y1 by tracing a shadow ray.
Variance is due to variations in the BSDF and geometric factors (distance,
cosines, visibility), not taken into account during sampling.

With multiple importance sampling [20], the two strategies can be combined into
a single strategy that will behave well whenever at least one has low variance.

In graphics, one typically needs to compute not a single integral (1), but hun-
dreds of thousands of those. Using different light source samples for all queries
can be highly inefficient. The method in this paper can be viewed as an effective
way to use a single set of light source samples for all illumination queries.
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Figure 2: Direct illumination (DI) solution strategies. Left: Monte Carlo inte-
gration (MCI): a point x0 is sampled. Using correct factors for visibility, cosines,
BSDF, . . . , leads to unbiased estimation; Middle: generic density estimation (DE)
: DI is computed as a weighed average score of light particles x1 arriving in the
neighborhood of y1. DE computes a convolution of DI; Right: generalized ker-
nel method: like in DE, DI is computed from light particles x1 landing in the
neighborhood of y1, but like in MCI, correct factors are used in estimation. This
requires to shoot back a ray from y1 to the origin x0 of the light particle x1. Blue
lines indicate eye paths, red lines light paths.

Density estimation methods The basic idea of density estimation methods is to
estimate Ld(y1 → y0) as

1

N

N
∑

s=1

Le(xs
0 → xs

1)G(xs
0, x

s
1)

pL(xs
0)p

L(xs
1|xs

0)
fr(x

s
1; x

s
0 ↔ y0)K(xs

1, y1) (3)

pL(x0) denotes the pdf of sampling a light source point x0. pL(x1|x0) is the pdf of
continuing a light particle path from x0 to x1, including sampling the directional
distribution of self-emitted radiance at x0 and the pdf corresponding to shooting a
ray from x0 to x1. K(x1, y1) is a density estimation weight function [15]:

• Kernel method: K(x1, y1) is the kernel function being used (Gaussian,
Epanechnikov, . . . );

• Histogram method: K(x1, y1) = χSy1
(x1)/Area(Sy1

) where Sy1
is a surface

element containing y1, χSy1
is its characteristic function (see table 1) and

Area(Sy1
) is the surface area of Sy1

;

• Nearest neighbor method: K(x1, y1) = χDy1
(x1)/Area(Dy1

) where Dy1
is

a a-posteriori determined disc with radius equal to the radius of the smallest
sphere centered at y1 that contains a required number of nearest neighbor
particle hit points x1;

• Orthogonal series estimation: K(x1, y1) =
∑

α φ̃α(x1)φα(y1), where φα are
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a set of basis functions defined on a surface element containing y1 and φ̃α

are the corresponding set of dual basis functions.

Density estimation methods effectively re-use a single set of light source sam-
ples for all required illumination queries, but they are biased: the estimates (3)
converge to a convolution of the direct illumination distribution:

lim
N→∞

(3) =

∫

S

Ld(x1 → y0)K(x1, y1)dAx1
6= Ld(y1 → y0).

Intuitively, the bias is due to using incorrect values for the self-emitted radiance at
x0 (to x1 instead of to y1), the BSDF and the geometric factors (cosines, distance,
visibility).

The generalized kernel method The key feature of our generalized kernels is
that they compensate for using the “wrong” values for cosines, distance, visibility
and light scattering and emission properties, using a correction factor C(x1, x0; y1, y0):

K?(x0, x1, y0, y1) = C(x1, x0; y1, y0)K(x1|x0; y1) (4)

C(x1, x0; y1, y0) =
Le(x0 → y1)G(x0, y1)fr(y1; x0 ↔ y0)

Le(x0 → x1)G(x0, x1)fr(x1; x0 ↔ y0)

In order to obtain unbiased estimation, the weight function K shall satisfy the
following conditions:

1.
∫

S
K(x1|x0; y1)dAx1

= 1, ∀x0, y1 ∈ S (normalization);

2. K(x1|x0; y1) = 0 whenever pL(x1|x0) = 0 (good sampling).

Proof: Substitute the above kernel in the estimates (3). Multiply with the sampling pdf
pL(x0)p

L(x1|x0) and integrate over x0 and x1. Demanding that the resulting double
integral equals the single integral (1) yields the normalization condition. The condition for
good sampling states that no non-zero contributions shall be overlooked in the sampling
process. It is a general requirement for unbiased estimation in Monte Carlo methods.

Within these constraints, the weight function K(x1|x0; y1) can be chosen at
will in order to minimize the computation cost. Since the computation of direct
illumination turns out to be a special case of the computation of full global illu-
mination, we will work out a practical kernel directly for the general case.

2.2 Full Global illumination

The total radiance L(y1 → y0) emitted at a point y1 in the direction of y0 is the
solution of the rendering integral equation, first introduced in graphics in [8]. The
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common approach to solve this equation is to develop its solution into a Neumann
expansion. The Neumann expansion is a sum, the first term being the self-emitted
radiance Le(y1 → y0), the second term being the direct illumination Ld(y1 → y0),
next first-order indirect illumination etc. . . . The terms of the Neumann expansion
are sampled by means of random walks: by simulating the trajectory x0, x1, x2, . . .
of light particles originating at the light sources in the scene. Each time such
a virtual light particle hits a surface of the scene, a decision is made whether
the random walk is terminated (absorption), or continued (survival). In case of
survival, a scattered direction is sampled according to the BSDF at the hit surface
point, and a ray is shot into the sampled direction to yield a subsequent particle
surface hit point at which the game of chance is repeated (see e.g. [19] or [9,
§6,7]).

The generalized kernel method is identical as for direct illumination, except
that:

• The estimates (3) include also surface hit points xs
k from particles that do

not immediately originate from a light source (k > 1);

• For k > 1, the correction factor C(xk, xk−1; y1, y0) compensates for using a
“wrong” value of the BSDF at the light path parent vertex xk−1 rather than
for self-emitted radiance;

• The weight function K(xk|xk−1, xk−2, . . . , x0; y1) can depend on the whole
light path history up to xk.

3 A Practical Generalized Kernel

The most simple generalized kernels contain a weight function of the following
form:

K(xk|xk−1, . . . , x0; y1) =
χF (xk|xk−1,...,x0)(y1)

N(y1|xk−1, . . . , x0)
pL(xk|xk−1, xk−2). (5)

F (xk|xk−1, . . . , x0) denotes a footprint region associated with the light path vertex
xk. χF (xk|...)(y1) is the characteristic function of this footprint region. N(y1|xk−1,
. . . , x0) is a normalization factor. Unbiased estimation follows if

N(y1|xk−1, . . . , x0) =

∫

S

χF (xk|xk−1,...,x0)(y1)p
L(xk|xk−1, xk−2)dAxk

. (6)

Our choice of the footprint regions and the normalization are discussed further
below.
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Interpretation The generalized kernel method with above weight function can
be interpreted as follows: whenever a light particle xk arrives in the neighborhood
of a point y1 where we want to query the illumination, a shadow ray is shot back
from y1 to xk−1, the point where the light particle came from (see figure 2). The
point y1 is considered to be in the neighborhood of xk, if it is contained in the
footprint region F (xk| . . .) associated with xk. The shadow ray shot back from y1

to xk−1 has a high chance of being unoccluded, because it is known that xk−1 casts
illumination into the neighborhood of y1 (to the point xk). Since the distribution
of incoming light particles in the neighborhood of y1 reflects the incoming light
distribution, more visibility tests will be done with regions from which bright illu-
mination is received. In the limit for small footprints, perfect sampling according
to incident illumination follows.

The Footprints With proper normalization (see below), any choice of the foot-
prints will result in unbiased estimation. An appropriate footprint definition is
however important for the efficiency of the method. Footprint functions associated
with rays have been used previously for texture filtering in classical and stochas-
tic ray tracing, as well as in a hierarchical refinement criterion for Monte Carlo
radiosity [6, 18]. The footprints are defined according to the following principles:

• The footprint size depends on the light particle density: we desire small
footprints where sampling is dense and larger footprints where sampling is
more sparse. The density reflects the light path sampling probabilities;

• The footprint filter after a scattering event is, under certain approximations,
the convolution of a filter associated with an incident particle and a filter
associated with the scattering event.

Since the choice of the footprint filters is not so critical in the generalized kernel
method as it is in other applications, we propose to use a very simple constant
footprint filter in a spherical region centered at the light particles position. The
radius of the spherical regions is chosen as follows:

R(xk|xk−1, . . . , x0) (7)

= h/
√

pL(x1|x0) if k = 1,

= h/
√

pL(xk|xk−1, xk−2) + R(xk−1|xk−2, . . . , x0) k > 1.

The global bandwidth parameter h is determined automatically in our implemen-
tation (§5).
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Normalization The normalization condition (6) is unfortunately hard to satisfy
exactly. Though introducing bias (discussed below), we obtained good results by
approximating the normalization as the product of the two following factors, as
well as slight variations on this theme:

N(y1|xk−1, . . . , x0) ≈ Ω̃(y1|xk−1, . . . , x0) · pL(Θy1|xk−1
|xk−1, xk−2)

with

• Ω̃(y1|xk−1, . . . , x0) is a disc approximation for the solid angle at xk−1, sub-
tended by surface hit points xk that can be reached by sampling from xk−1

and that have a footprint associated with them that overlaps y1 (see figure
3):

Ω̃(y1|xk−1, . . . , x0) =
πR2(xk|xk−1, . . . , x0) cos θxk−1|xk

r2
xk−1,y1

;

• pL(Θy1|xk−1
|xk−1, xk−2) is the probability of sampling a scattered (or emit-

ted, if k = 1) light direction towards y1 from xk−1 for light particles com-
ing from xk−2: pL(y1|xk−1, xk−2) = pL(Θy1|xk−1

|xk−1, xk−2)· vis(xk−1, y1)
cos θxk−1|y1

/r2
xk−1y1

.

xk−1

y1

y0

xk

Figure 3: Footprint normalisation. The factor Ω̃ is an approximation for the
solid angle Ω at the parent light path vertex xk−1, subtended by the set (green el-
lipse) of all surface points xk (red arrows) with footprint (red ellipses) overlapping
y1. We approximate the average probability of expanding the path at xk−1 into this
solid angle Ω, by the probability towards y1.

Bias Inexact normalisation introduces bias in the resulting images (see figure
4). In particular, there will be bias near object silhouettes and after strongly direc-
tional light scattering or emission. In the former case, the approximation of Ω as
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the solid angle πR2 cos /r2 subtended by a disc will fail. Rather, the projection of
the set of possible path vertices xk with footprint overlapping y1 will be similar to
the projection of a partial disc. In the latter case, p(Θ|xk−1, xk−2) may vary too
strongly over Ω.

The amount of bias depends on the footprint radius. Small footprints will yield
a lower bias than large footprints. The footprint size can be controlled globally
using the bandwidth parameter h. Our choice of the footprint radius (7) results in
a low bias for important illumination contributions such as direct lighting. Most of
the bias will be in unimportant contributions, sampled with low probability, such
as higher order diffuse interreflections.

Even so, the bias by our approximations is smooth and less objectionable to the
human eye than the blurred shadow boundaries and light leaks of generic density
estimation algorithms. Plenty of ad-hoc measures are possible in order to reduce
the bias, by better approximating the exact normalization (6) in special cases.

Figure 4: Bias artefacts in our algorithm. Left: unbiased solution; Right: in-
exact normalisation causes bias in our algorithm. Bias artefacts are usually much
less noticable than in this exaggerated example however. The line on top is at
grazing angles w.r.t. to planar blue light source. The image is also slightly noisy.

Noise In order to study in what cases our generalized kernel will lead to estima-
tion with low variance and to detect cases where it behaves not so good, we need
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to have a look at the resulting estimates a la (3):

1

N

∑ Le(x0 → x1)G(x0, x1) · · ·fr(xk−1; xk−2 ↔ y1) cos θy1|xk−1

pL(x0) · · ·pL(y1|xk−1, xk−2)

× fr(y1; y0 ↔ xk−1) cos θxk−1|y1
(8a)

× χF (xk|xk−1,...,x0)(y1)

πR2(xk|xk−1, . . . , x0) cos θxk−1|xk

· vis(y1, xk−1). (8b)

The first factor is called the partial score associated with a light path x0, . . . , xk−1, y1.
Usually, variations in self-emitted radiance, BSDFs, etc. . . are compensated for by
appropriate sampling so that this factor does not introduce significant noise. The
main sources of noise in the estimates will be due to:

• variations in the BSDF times cosine at y1, term (8a). Such variations can
be compensated for by using rejection techniques [9, §3.5] or by means of
bi-directional sampling, discussed below in §4.1;

• variations in kernel value and visibility, term (8b). The denominator does
not introduce significant noise since the cosine factor is compensated for
in the R2 factor. The numerator results in a varying number of non-zero
contributions at different y1 query locations: some locations will receive
more contributions than other nearby locations, yielding the same type of
noisy artefacts that is also found in other density estimation methods. The
rejection sampling technique proposed below in §4.2 tends to replace this
“footprint clumping” noise by less noticable noise, uncorrelated between
pixels.

4 Cost Reduction Techniques

In this section, we propose two techniques for reducing the computation cost of
the generalized kernel method with the kernel proposed in the previous section.
They are by no means the only possible cost reduction techniques. Many more
techniques remain to be investigated.

4.1 Bi-Directional Estimation

Expression (8a) indicates that naive application of the above generalized kernel
method will result in disturbing spike noise if the BSDF at y1 varies considerably.
This will be the case if y1 is on a surface with strongly directional light scattering
or emission. This phenomenon can easily be understood as follows: if the parent
vertex xk−1 of a light path vertex xk in the neighborhood of y1 happens to be near
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the ideal reflected direction at y1, the BSDF at y1 can assume a very large value.
Such events are however sampled with a low probability, so that bright spike noise
results. Such noise disappears only very slowly in the resulting images.

In such cases, better estimates for the illumination at y1 will be obtained by
sampling the BSDF at y1 and querying the illumination using the neighboring
light particles at the point y2 where a ray shot into the sampled direction lands.
This leads to multiple alternative sampling strategies for direct illumination, first
order indirect illumination, etc. . . in exactly the same manner as in bi-directional
path tracing [20, 10]. It turns out that also the same combination weights can be
used. We illustrate this by means of first-order indirect illumination (two bounces
of light between a light source and the observer, see figure 5).

z0

z1

z3
z’

z2

z0

z1

z3

z’ z2

Figure 5: Bi-directional estimation of first-order indirect illumination. Left:
strategy 1, combining at z1; Right: strategy 2, combining at z2. Both strategies
can be combined with multiple importance sampling, using the same weights as
in bi-directional path tracing.

First-order indirect illumination is described by the following integral:

L(2) =

∫∫∫∫

S

L(z0, z1, z2, z3)dAz0
dAz1

dAz2
dAz3

L(z0, z1, z2, z3) = Le(z0 → z1)G(z0, z1)fr(z1; z0 ↔ z2)G(z1, z2)

× fr(z2; z1 ↔ z3)G(z2, z3)M(z2 → z3).

z0 denotes a point on a light source and z3 is a point on the camera film plane.
M(z2 → z3) denotes a camera pixel filter function. In the simplest case, this can
be a box filter associated with a given image pixel. This integral can be estimated
by combining light and eye paths either at z1 or at z2:
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Strategy 1: merging at z1 A light particle path (z0, z
′) of length 1 is traced as

well as an eye particle path (z3, z2, z1) of length 2. A connection is made whenever
z1 is contained in the footprint of the light particle at z ′. The resulting estimate
turns out to be:

L̃
(2)
1 =

L(z0, z1, z2, z3)χF (z′|z0)(z1)/πR2(z′|z0) cos θz0|z′

pL(z0) · pE(z3)pE(z2|z3)pE(z1|z2, z3) · pL(z1|z0)
.

Strategy 2: merging at z2 In this case, a light particle path (z0, z1, z
′) of length

2 and an eye path (z3, z2) of length 1 are traced. A non-zero contribution can
result if z2 is within the footprint of z′. The resulting estimate is:

L̃
(2)
2 =

L(z0, z1, z2, z3)χF (z′|z1,z0)(z2)/πR2(z′|z1, z0) cos θz1|z′

pL(z0)pL(z1|z0) · pE(z3)pE(z2|z3) · pL(z2|z1, z0)
.

Combination of both strategies Any weighted sum w1(z0, z1, z2, z3)L̃
(2)
1 +

w2(z0, z1, z2, z3)L̃
(2)
2 of both estimates, with weights adding up to 1 and chosen

so that they do not make any contributions vanish, will also be unbiased. In the
balance heuristic [20], the weights are chosen proportional with the probability
of sampling according to each strategy. Taking weights proportional with the de-
nominators in the estimates L̃

(2)
1 and L̃

(2)
2 , one obtains the same weights as in

bi-directional path tracing with the balance heuristic:

w1(z0, z1, z2, z3) =
pE(z1|z2, z3)

pE(z1|z2, z3) + pL(z2|z1, z0)
(9)

w2(z0, z1, z2, z3) =
pL(z2|z1, z0)

pE(z1|z2, z3) + pL(z2|z1, z0)

Note that the weights do not reflect the sampling probabilities exactly in our case,
but this is also not required for unbiased combination.

In our implementation, we attenuated each path score resulting from connect-
ing a light and eye sub-path with the above weights. The attenuation accounts
(only) for the fact that a connection could have been made at a light path parent
vertex xk−1, by expanding the eye path, rather than at a child vertex xk.

4.2 Reducing the Number of Visibility Tests

Disregarding the effect of cosines and the BSDF at y1, expression (8b) indicates
that particles with a large footprint, for instance corresponding with higher order
indirect illumination, will result in small contributions. On the other hand, par-
ticles with a small footprint, for instance corresponding with direct illumination,
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will yield large contributions. Straightforward application of the above general-
ized kernel method will often lead to a large number of small contributions to the
illumination at y1 and a small number of large contributions.

A good way to reduce the number of visibility tests to be performed there-
fore is to probabilistically accept/reject a candidate contribution with acceptance
probability

paccept(xk) ∝ 1/R2(xk|xk−1, . . . , x0) cos θxk−1|xk
. (10)

The acceptance probabilities need to be normalized so that the sum of paccept(xk)
for all xk with footprint overlapping y1 equals unity.

5 Implementation

In our implementation, we carry out the computations in steps. Each step results
in an image, which exhibits some noise. By averaging these images, noise is
smoothly reduced.

Each step basically consists of three sub-tasks: 1) tracing eye paths through
each image pixel; 2) tracing a set of light paths and 3) combining the eye and light
path vertices that landed in each others neighborhood.

Light and eye path tracing Light and eye path tracing are done in the standard
way, except that the particle hit points are stored in main memory. For every light
particle hit point xk, we store a pointer to the BSDF/EDF at the hit point, the loca-
tion and surface normal at the hit point, a pointer to the parent path vertex xk−1, the
accumulated factors Le(x0 → x1)G(x0, x1) · · ·fr(xk−1|xk ↔ xk−1)G(xk−1, xk),
the accumulated probability density pL(x0)p

L(x1|x0) · · ·pL(xk|xk−1xk−2) as well
as the footprint radius (7). For eye particle hit points, corresponding values are
stored, except that eye particle hit points do not have an associated footprint ra-
dius.

Even without compression, it is possible to store millions of particle hit points
simultaneously in the main memory of state-of-the-art PC’s. In order to compute
very large images, or in a distributed implementation, one can apply the algorithm
consecutively on separate image tiles. The same light particles can be used for the
different image tiles without major overhead cost.

Combining the eye and light ray sets The combination of light and eye ray
sets is performed in the following stages:

1. Candidate link counting: first, we count for every eye path vertex y in
the eye ray set the number of light path vertices x with a footprint that
overlaps y. At the same time, the sum of the acceptance probabilities (10)
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is accumulated. This step involves spatial querying as explained below. We
call every pair (x, y) of a light path vertex x and and eye path vertex y
contained in its footprint, a candidate link;

2. Trial linking: the number of candidate links can be high. The next step
therefore consists in reducing the set of candidate links to a more manage-
able set of trial links by probabilistically accepting or rejecting candidate
links with probability (10). The number of trial links to accept is automati-
cally determined as discussed below. Trial linking requires spatial querying
a second time. We used an optimized version of the algorithm for stratified
sampling of a discrete pdf in [11]. In our implementation, the trial link test
takes only 2 floating point additions, 1 multiplication, 1 rounding operation
and 1 integer comparison per candidate link;

3. Visibility testing and scoring: shadow rays are cast between the parent
light path vertex and the eye path vertex in each trial link. In case of mutual
visibility, the score associated with the trial link is computed and accumu-
lated at the eye path vertices. The score is the product of the partial score as-
sociated with the light sub-path (first factor of (8)), the similar partial score
associated with the eye sub-path, and the factors (8a) and (8b) attenuated
with the bi-directional weights (9) and divided by the acceptance probabil-
ity (10). The image is obtained by averaging the scores accumulated for
each pixel.

Spatial Searching Candidate link counting and trial linking require to find for
each eye path vertex y, all the light path vertices x with a footprint overlapping
y, thus to find for each point P in a set of points, all the spheres S in a set of
spheres that contain P . Such queries can be solved significantly faster the other
way around, by querying for each sphere S the set of points P contained in the
sphere. The points are pre-sorted in a balanced box decomposition tree [1]. The
spatial queries in the algorithm proposed here are considerably more simple and
cheap than nearest neighbor queries in photon mapping.

The trial linking stage thus produces trial links in light path vertex order. Also
the scoring stage 3 is performed in this order, resulting in highly coherent bundles
of shadow rays: all rays in a bundle originate at same parent light path vertex and
are aimed towards all eye path vertices in the footprint region of a child light path
vertex.

Auto-calibration The parameters of our algorithm are calibrated automatically
in such a way that we always obtain about a fixed number M = 10 of unoccluded
trial links per eye path vertex.
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In order to obtain this effect, we need to request a potentially different number
M/Pvis(y) of trial links per eye path vertex y in the trial linking stage. Pvis(y)
denotes what fraction of the trial links at y is unoccluded. Pvis(y) is estimated
on the fly for each eye path vertex during the computations. If there are fewer
than M/Pvis(y) candidate links for a given eye path vertex, all candidate links are
accepted as trial links in stage 2. Of course, the scores then do not need division
by the trial linking acceptance probability in stage 3.

In order to assure that there will be a sufficient number of candidate links,
the global bandwidth parameter h in (7) is calibrated in the first iteration and
whenever the viewing position changes. It is chosen in such a way that there
will be on the average M footprints overlapping each eye path vertex, considering
only footprints from particles directly coming from a light source. The number of
overlaps can be counted very efficiently with a balanced box decomposition tree
data structure. It is to good approximation linear in the bandwidth parameter h, so
that optimization is very easy and takes only 1 or 2 iterations virtually independent
from any starting guess (we use 0.01 as a starting guess).

6 Results and Discussion

The implementation of the algorithm proposed in §5 amounts to about 1000 lines
of C++ code on top of an existing path tracer and available BBDTree library.

Figure 6 shows a view of a building floor model consisting of 315,000 triangles
of which more than 3000 are light sources. Most parts of the model are not seen
in this views. For this image, we ran 15 steps of the algorithm. In each step,
100,000 light paths were traced. The eye path set, with a single eye path per pixel,
was kept fixed. In order to obtain on the average 10 unoccluded connections per
eye path vertex in each step, we needed to request about 30 trial links per eye
path vertex in the trial linking stage. The image was generated at a resolution of
512 × 384 ≈ 200, 000 pixels. The computation time was about 5 minutes with
our prototype implementation running on a 1.5GHz AMD Athlon PC1. Candidate
link counting and trial linking took about 10% of the computation time. Most of
the remaining time was spent in visibility testing and especially BSDF and pdf
evaluations.

Bi-directional path tracing the same views resulted in highly noisy images
even after one night of computations, because of the high number of light sources.
Note that we have not performed any view-importance driven light source sam-

1We expect that with an optimized implementation, the computation times can be about 5 times
lower. Our current implementation also does not yet allow to use more than 1 eye path through
each pixel, which is not sufficient for non-diffuse lighting effects to the viewer in image 7.
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pling in either case. View-importance light source sampling would be highly ben-
eficial in both cases.

Figure 6: This image shows a view of a building floor model consisting of 315k
polygons of which over 3000 are light sources. It has been generated at a res-
olution of 512×384 in about 5 minutes on a PC. It illustrates the capability of
our algorithm to deal efficiently with large models containing a high number of
light sources, while convincingly reproducing delicate shading effects, such as
soft shadows.

7 Conclusion and Future Work

We have proposed a new Monte Carlo algorithm for global illumination, based on
a generalization of the kernel method for density estimation. The main strength of
the algorithm is its ability to efficiently deal with large models, containing a high
number of light sources casting subtle illumination effects without the need for a
separate final gather pass. Like previous, generic, density estimation algorithms,
also our algorithm is biased. The bias introduced by our algorithm is however
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Figure 7: This image demonstrates that our algorithm is also able to reproduce
non-diffuse lighting effects. Computation time and resolution are about the same
as in the previous image.

much less objectionable than the blurred shadow boundaries and light leaks of the
former. Our algorithm is self-calibrating and easy to use. It can provide feedback
in seconds, and converges gracefully to a high quality image in minutes.

The bias introduced by the algorithm is however our main concern for future
research. Bias reduction is possible by better approximating the kernel normal-
ization condition (6). This accurate prescription how bias can be reduced, is also
a unique feature of the generalized kernel method.

The algorithm is able to handle non-diffuse light emission and scattering. The
basic method as described in this paper is however not able to reproduce caustic
effects due to highly specular reflection or refraction (glossy caustics are repro-
duced). We expect this will be possible by incorporating additional sampling
strategies.

Footprint clumping is the most prominent source of noise in our algorithm.
Footprint clumping causes variations in the number of lighting contributions to
neighboring locations. Such noise is well known in generic density estimation
algorithms. It is straightforward to incorporate view-importance driven light path
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sampling and low-discrepancy sampling in order to reduce footprint clumping.
State-of-the-art Monte Carlo sampling techniques, promising geometric rather
than 1/

√
N error reduction rates, may also be applicable in this context.

Finally, our algorithm stores a lot of information about the illumination in the
scene and the current view. This information can be re-used for generating new
views of static scenes in a walk-through application, or for rendering animations.
Our algorithm is also very well suited for distributed implementation. We be-
lieve it might be a major step forward in the direction of interactive rendering of
global illumination effects complex environments with general light emission and
scattering properties.
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