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Abstra
t

Model 
he
king is an automated method to prove safety and liveness prop-

erties for �nite systems. Software model 
he
king uses predi
ate abstra
tion

to 
ompute invariants and thus prove safety properties for in�nite-state pro-

grams. We address the limitation of 
urrent software model 
he
king meth-

ods to safety properties. Our results are a 
hara
terization of the validity of

a liveness property by the existen
e of transition invariants, and a method

that uses transition predi
ate abstra
tion to 
ompute transition invariants

and thus prove liveness properties for in�nite-state programs.

Keywords
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stra
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1 Introdu
tion

Software model 
he
king is an approa
h for extending the appli
ability of

�nite-state model 
he
king to software systems with in�nite state spa
es

(see [1, 14, 15, 16, 18, 22, 27, 29, 35℄). The extension works via an abstra
-

tion step, whi
h is essentially the 
onstru
tion of a �nite-state system.
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The

�nite-state abstra
tion step restri
ts the resulting method to safety proper-

ties. This is be
ause it does in general not preserve liveness properties. For

intuition, we take termination as an example of a liveness property; a �nite

system is terminating only if its exe
ution tra
es do not 
ontain loops; but

then, it 
an not simulate exe
ution tra
es of unbounded length (say, of the

program while (i>0) f i:=i-1; g; see also [19, 24℄.) This paper addresses

the limitation of 
urrent software model 
he
king methods to safety proper-

ties.

The terminology safety vs. liveness is standard to distinguish two kinds of

program properties in the s
ope of model 
he
king. An example of a safety

property is (from the interfa
e spe
i�
ation of an operating system kernel [1℄):

ea
h time a lo
k is a
quired, it will get released before the end of the fun
tion


all. An example of a liveness property is: ea
h time a lo
k is a
quired, it

will get released. That is, a liveness property expresses a guarantee, without

�xing a time bound. Termination is the standard example of a liveness

property; its proof is required in the 
ontext of program 
orre
tness proofs

with intera
tive theorem provers. Formally, the di�eren
e signi�es whether

the negation of the property 
an be redu
ed to rea
hability (of a `bad' state)

or to the existen
e of an in�nite tra
e (without a `good' state). Thus, the

di�eren
e also signi�es whether the property 
ould in prin
iple be 
he
ked

at runtime, or not.

In this paper, we give a 
hara
terization of the validity of a liveness prop-

erty via the existen
e of transition invariants. This leads to a dedu
tive

proof s
hema, where a given transition invariant is 
he
ked for indu
tiveness

(i.e. 
losure under an operator that we introdu
e). Roughly, in its restri
-

tion to termination, the s
hema repla
es the well-foundedness argument for

a ranking relation by a weaker argument for the transition invariant. We

show that the s
hema is suitable for automatization. For this purpose, we

introdu
e transition predi
ate abstra
tion. This te
hnique generalizes predi-


ate abstra
tion, the basi
 abstra
t interpretation te
hnique of the existing

software model 
he
king methods for safety properties. We use transition

predi
ate abstra
tion as the parameter in a general method to 
ompute tran-

1

The abstra
tion step is formalized as the de�nition of an over-approximating �xed

point operator over �nitely many (in general in�nite) sets of states in [10℄.
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sition invariants, whi
h again we 
an use to prove the liveness property of

the in�nite-state program.

As with every automated method for an unde
idable problem, the best we


an hope for is a semi-test (for safety but not for liveness, a semi-algorithm

is another option). That is, if the abstra
tion is too 
oarse, the 
omputed

transition invariant is not `strong enough' (in that 
ase one re�nes the ab-

stra
tion by adding more transition predi
ates). We 
an show, however, that

our method is 
omplete wrt. a �xed abstra
tion. Finally, we determine the


omplexity of the `abstra
t model 
he
king problem for LTL' (in the number

of transition predi
ates); it is PSPACE-
omplete. I.e., it has the same 
om-

plexity as in the spe
ial 
ase of �nite models (when ea
h edge is expressed

by one transition predi
ate).

To explain the approa
h of this paper, we look at the role that invariants

play in the proof of a safety property. The safety property is translated

to the non-rea
hability of a `bad' state from an initial state. Its proof is

phrased as the proof of a `strong enough' invariant (an invariant is a state

assertion that holds for every rea
hable state; `strong enough' means that it

does not hold for any bad state). The dedu
tive proof s
hema 
onsists of

showing the indu
tiveness of a `strong enough' invariant (the indu
tiveness

is the 
losure under the su

essor operator post). The approa
h of this paper

is to introdu
e 
on
epts analogous to [`strong enough', indu
tive℄ invariants

and show that they 
an be used to 
hara
terize the validity of a liveness

property.

Following the abstra
t interpretation framework [10℄, an indu
tive invari-

ant is obtained me
hani
ally as the least �xed point of an abstra
tion of

the post operator over a subdomain of the domain of sets of states. The

subdomain 
onsists of equivalen
e 
lasses of states when predi
ate abstra
-

tion is used, as in software model 
he
king (equivalent states satisfy the

same predi
ates). A

ordingly, the approa
h of this paper is to introdu
e the

appropriate least �xed point operator and the appropriate domain and the

appropriate predi
ate abstra
tion and to use these ingredients of the abstra
t

interpretation framework to formulate algorithms 
omputing transition in-

variants.

2 Examples

This se
tion is informal. The formal exposition starts in the next se
tion.

Termination We use the following simple program to illustrate the use of

transition invariants for termination.
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int n,i,j,A[n℄;

i=n;

l1: while (i>=0) {

j=0;

l2: while (j<=i-1) {

if (A[j℄>=A[j+1℄)

swap(A[j℄,A[j+1℄);

j=j+1;

}

i=i-1;

}

l1: if (i>=0) j=0;

l2: if (i-j>=1) {

j=j+1;

goto l2;

} else {

i=i-1;

goto l1;

}

For legibility, we 
on
entrate on the skeleton shown on the right, whi
h


onsists of the statements st1, st2, st3.

l1: if (i>=0) { i:=i; j:=0; goto l2; } - st1

l2: if (i-j>=1) { i:=i; j:=j+1; goto l2; } - st2

l2: if (i-j<1) { i:=i-1; j:=j; goto l1; } - st3

Ea
h of the abstra
t statements below must be read as a one-line program.

l1: if (true) {i:=Any; j:=Any; goto l2; } - a1

l2: if (true) {i:=Any; j:=Any; goto l1; } - a2

l1: if (i>=0) {i:=i-Pos; j:=Any; goto l1; } - a3

l2: if (i>=0) {i:=i-Pos; j:=Any; goto l2; } - a4

l2: if (i-j>=1) {i:=i-Nat; j:=j+Pos; goto l2; } - a5

We noti
e that st1 is approximated by a1, st2 by a5 and st3 by a2. In

fa
t, every sequen
e of program statements is approximated by one of a1,

. . . , a5. This means that the set fa1; : : : ; a5g is a transition invariant in our

terminology.

For example, every sequen
e of program statements that leads from l2

to l2 is approximated by a4 if it passes through l1, and by a5 otherwise.

The following table assigns to ea
h abstra
t statement the set of sequen
es

of program statements that it approximates. All non-assigned sequen
es are

not feasible.

a1 st1(st2jst3st1)

�

a2 (st2jst3st1)

�

st3

a3 st1(st2jst3st1)

�

st3

a4 (st2jst3st1)

�

st3st1(st2jst3st1)

�

a5 st2

+
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A

ording to our formal development in the following se
tions (see Theo-

rem 1), the transition invariant above is `strong enough' to prove termination,

whi
h means: ea
h of its abstra
t statements, viewed in isolation as a one-line

program, is terminating.

To prove that a set of abstra
t statements is indeed a transition invariant,

we show that it is indu
tive or that it 
an be strengthened by an indu
tive

one. The indu
tiveness of the transition invariant means that ea
h 
omposi-

tion of an abstra
t statement with a program statement is approximated by

the transition invariant. This is in general weaker than requiring that ea
h


omposition of abstra
t statements must be approximated by the transition

invariant.

The 
omposition of the abstra
t statement a1 with

the program statement st3 yields the abstra
t statement

l1: if (true) f i:=Any; j:=Any; goto l1; g, whi
h is not approximated by

the transition invariant. Thus, the transition invariant is not indu
tive. We

strengthen it by the indu
tive transition invariant given below.

l1: if (i>=0) { i:=i-Nat; j:=Any; goto l2; }

l2: if (true) { i:=i-Pos; j:=Any; goto l1; }

l1: if (i>=0) { i:=i-Pos; j:=Any; goto l1; }

l2: if (i>=0) { i:=i-Pos; j:=Any; goto l2; }

l2: if (i-j>=1) { i:=i-Nat; j:=j+Pos; goto l2; }

This transition invariant is 
omputed by our method; it 
orresponds to the

output produ
ed by our implementation.

Fairness We use the following simple program \Up-down" to illustrate the

use of transition invariants for fair termination.

int x=0, y=0;

l0: while (x=0) y++;

l1: while (y>0) y--;

l2:

m0: x=1;

m1:

Termination is the inevitability of the lo
ation (l2, m1). For formal reason,

the program has a self-loop in this lo
ation.

Termination 
an be proven only under the fairness assumption that the

pro
ess on the right-hand side will eventually move from m0 to m1. This

assumption is en
oded by the B�u
hi automaton below.

q

0

q

1

p
=m1

p
=m0

4



The transition invariant that we 
ompute for this problem 
ontains 49

abstra
t statements. Below we give the two 
riti
al ones.

l0_m0_q0: if (true) { x:=Any;

y:=y+Pos; goto l0_m0_q0; } - a1

l1_m1_q1: if (y>0) { x:=Any;

y:=y-Pos; goto l1_m1_q1; } - a2

The abstra
t statement a1 does not terminate. However, by the formal

theory that we establish, its termination is not needed be
ause its exe
utions

do not visit the B�u
hi a

epting state q

1

in�nitely often. This is where the

fairness assumption 
omes in; the loop in l0 m0 is not a fair exe
ution. The

`fair' abstra
t statement a2 terminates.

3 Transition Invariants

Our formal exposition is based on 
ommand formulas.

Example 1 The 
ommand formula 
 below represents the statement

if y>=0 then x=x+1;

of a program over variables x and y where l

1

and l

2

are the labels before and

after the statement.




def

= p
=l

1

^ y � 0

| {z }

guard

^ x

0

= x + 1 ^ y

0

= y ^ p


0

=l

2

| {z }

a
tion

In a 
ommand formula, the subformula over unprimed variables x

1

; : : : ; x

n

forms the guard (enabling 
ondition). The remaining 
onjun
ts form the

a
tion (update of the variables). Usually, they are of the form x

0

= E, where

E is the update expression over unprimed variables (translating assignments

x := E).

From now on, we assume that the program is given as a set C of 
ommand

formulas. The translation from programs to sets of 
ommand formulas is

standard for many programming languages, in
luding 
on
urrent ones.

A basi
 observation is that one 
an use 
ommand formulas of a more

general form than the one that 
orresponds to programs in order to denote

relations between states of a more general kind than the transition relations

denoted by programs. We will next introdu
e some notation and de�ne how

general 
ommand formulas � denote relations between states.

The n-tuple X = (x

1

; : : : ; x

n

) 
onsists of the variables appearing in the

program. Usually, one or many program 
ounter variables (\p
") appear

5



among the x

i

's; they range over the program labels. The free variables of

a 
ommand formula � are among the variables x

1

; : : : ; x

n

and their primed

versions x

0

1

; : : : ; x

0

n

.

A state s is a valuation of the program variables x

1

; : : : ; x

n

. The set of

all states is denoted by S. The value of the program variable x in a state

s is s(x). A pair of program states s and s

0

satis�es a 
ommand formula �,

formally (s; s

0

) � �, if � evaluates to true after interpreting x

i

by s(x

i

) and x

0

i

by s

0

(x

i

) for all i. The transition relation denoted by the 
ommand formula

� is the set of all state pairs that satisfy �.

!

�

def

= f(s; s

0

) j (s; s

0

) � �g

Given the program in the form of the 
ommand formula �, the state s

0

is

rea
hable from the state s in one exe
ution step if s !

�

s

0

(whi
h means

that the pair (s; s

0

) satis�es �), and rea
hable in a non-empty sequen
e of

exe
ution steps if s!

�

+

s

0

. As usual, !

+

denotes the transitive (but not

re
exive) 
losure of the relation !.

A transition formula � is a set of 
ommand formulas. An example of a

transition formula is the program C. We use the terms disjun
tion and set

of 
ommand formulas inter
hangeably. The terminology and notation above

for 
ommand formulas extend 
anoni
ally to sets.

De�nition 1 Transition Invariant.

A transition invariant of a program C is a transition formula 	 that holds of

every pair of states s and s

0

su
h that s

0

is rea
hable from s in a non-empty

sequen
e of exe
ution steps.

That is, the transition relation of a transition invariant 	 
ontains the transi-

tive 
losure of the transition relation of the program C, formally!

C

+

� !

	

.

Invariants We assume that the given program 
omes with a state formula

Init denoting the set of initial states. A state formula or state assertion

is a formula whose free variables are the program variables (in
luding the

program 
ounter p
); it denotes a set of states. An invariant Inv is a state

assertion that holds for every rea
hable state (rea
hable from an initial state).

We 
onstru
t the formula Inv

	

from a transition invariant 	 as the dis-

jun
tion of Init with the formula that denotes the set of dire
t su

essor

states of initial states of C under statements in 	 (here [X=X

0

℄ refers to the

renaming of the primed by the unprimed version of ea
h program variable).

Inv

	

def

= Init _ (9X (Init ^ 	))[X=X

0

℄

6



Remark 1 Given the transition invariant 	 and the state formula Init de-

noting the set of initial states, the formula Inv

	

is an invariant of the program.

Conversely, given an invariant Inv of the program C, the transition for-

mula Inv^ Inv[X

0

=X℄ is a transition invariant not for the program C itself but

for the program Inv^C obtained by strengthening the guards with informa-

tion about rea
hable states. As usual, we extend 
onjun
tion to sets of for-

mulas in the 
anoni
al way, i.e., �

1

^�

2

def

= f�

1

^�

2

j �

1

2 �

1

and �

1

2 �

2

g.

Well-founded Command Formulas The 
ommand formula � is well-

founded if the transition relation !

�

(stri
tly speaking, its inverse) is well-

founded, i.e., there is no in�nite sequen
e of states fs

i

g

1

i=1

su
h that ea
h


onse
utive pair of states satis�es the 
ommand formula, formally (s

i

; s

i+1

) �

� for all i. In terms of program exe
utions this means that the one-line

program represented by the 
ommand formula is terminating whatever its

initial states are (i.e., if its initial 
ondition is true).

Notation of Meta-Variables We use � for general 
ommand formulas,

 for those in transition invariants, 
 for those in the program, and their

upper
ase version to sets thereof, i.e., � for general transition formulas, 	

for transition invariants and C for the program.

4 Termination

The program is terminating if every exe
ution starting in an initial state is

�nite. This is a spe
ial 
ase of an LTL property; te
hni
ally this se
tion is

subsumed by the next one. We single out termination be
ause of its singular

importan
e. Its treatment is possible without introdu
ing B�u
hi automata.

Theorem 1 (Transition Invariants and Termination) The program

represented by the set of 
ommand formulas C is terminating if there exists

a �nite transition invariant 	 su
h that all 
ommand formulas in Inv

	

^ 	

are well-founded.

Proof. Assume, for a proof by 
ontraposition, that 	 is a �nite transition

invariant for C, and that C is not terminating. We show that at least one


ommand formula in Inv

	

^ 	 is not well-founded.

By the assumption that C is not terminating, there exists an in�nite

sequen
e of states �

def

= fs

i

g

1

i=1

su
h that s

1

is an initial state and s

i

!




i

s

i+1

for all i, where 


i

2 C.
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We de�ne a fun
tion f that maps an ordered pair of indi
es of elements

in the sequen
e � to one of the 
ommand formulas in the transition invariant

	 as follows.

f(k; l)

def

=  2 	; where (s

k

; s

l

) �  

The fun
tion f exists be
ause 	 is a transition invariant for C, and thus we


an 
hoose arbitrarily one 
ommand formula from the (�nite) set f 2 	 j

(s

k

; s

l

) �  g as the image of the pair (k; l). The range of the fun
tion f is

�nite sin
e 	 is �nite.

� � � ! s

k

! � � � ! s

l

! : : :

 

Given �, the fun
tion f indu
es an equivalen
e relation � on pairs of

positive integers (in this proof we always 
onsider pairs whose �rst element

is smaller than the se
ond one).

(k; l) � (k

0

; l

0

)

def

= f(k; l) = f(k

0

; l

0

)

The equivalen
e relation � has �nite index, sin
e the range of f is �nite.

By Ramsey's theorem [28℄, there exists an in�nite set of positive integers

K su
h that all pairs of elements in K belong to the same equivalen
e 
lass,

say [(m;n)℄

�

with m;n 2 K. That is, for all k; l 2 K su
h that k < l we

have (k; l) � (m;n). We �x m and n.

Let fk

i

g

1

i=1

be the as
ending sequen
e of elements ofK. Let the 
ommand

formula  denote the 
ommand formula f(m;n). Sin
e (k

i

; k

i+1

) � (m;n),

the fun
tion f maps ea
h pair (k

i

; k

i+1

) to  .

� � � ! s

k

i

! � � � ! s

k

j

! � � � ! s

k

l

! : : :

  

 

Hen
e, the in�nite sequen
e fs

k

i

g

1

i=1

is indu
ed by  .

s

k

i

!

 

s

k

i+1

; for all i � 1

Sin
e we assume that s

1

is an initial state, every state s

k

i

satis�es the invari-

ant Inv

	

, and hen
e the in�nite sequen
e is indu
ed also by Inv

	

^ . Hen
e,

the 
ommand formula Inv

	

^  is not well-founded. Therefore at least one


ommand formula in Inv

	

^ 	 is not well-founded. � The statement of the

theorem still holds when one repla
es the invariant Inv

	

by any other �nite

invariant.

8



The suÆ
ient 
ondition for program termination given in Theorem 1 has

three 
omponents: the `transitive 
losure' property of transition invariants,

the �niteness and the `disjun
tive well-foundedness'. The examples below

show that the �rst resp. the se
ond 
omponent 
an not be omitted.

2

Example 2 The transition formula 	 = f


1

; 


2

g given by the two 
ommand

formulas 


1

� x > 0 ^ x

0

< x and 


2

� y > 0 ^ y

0

< y is �nite

and `disjun
tively well-founded'. The transition relation indu
ed by 	 is not

terminating, as 
an be seen from the in�nite sequen
e (0; 1); (1; 0); (0; 1); : : :

of states.

Example 3 The program given by the single 
ommand formula 
 below

(translating \while (x>=0) x++;") does not terminate for initial states

where x � 0.




def

= x � 0 ^ x

0

= x+ 1

The transition formula 	 below denotes a transition invariant for f
g that


onsists of in�nitely many well-founded 
ommand formulas (here Inv

	

^	 is

equivalent to 	).

	

def

= fx = k ^ x

0

> x j k 2 Ng

The strongest transition invariant (whi
h denotes the transitive 
losure of

the transition relation of the program) 
an in general not be used for the

suÆ
ient 
ondition of termination (sin
e it is in�nite in general).

2

To 
ompare the standard approa
h to termination proof and our approa
h (in its

restri
tion to termination), we view a ranking fun
tion (de�ned by the expression e[X ℄ in

the program variables) as a (transitive) ranking relation (the transition formula e[X

0

℄ <

e[X ℄ in primed and unprimed program variables). The ranking relation approximates the

transition relation of the program (and also its transitive 
losure). Termination follows

from the well-foundedness of the ranking relation. By de�nition, a transition invariant

approximates the transitive 
losure of the transition relation of the program (in general, a

transition invariant is not transitive, even when it is indu
tive as de�ned in De�nition 3).

Termination then follows already from the `disjun
tive well-foundedness' of the transition

invariant (by an argument that exploits the 
ombinatorial property of Ramsey's theorem).

Disjun
tive well-foundedness is weaker than well-foundedness (take the disjun
tively well-

founded relation given by x

0

< x _ y

0

< y). Theorem 1 states a 
ondition under whi
h

disjun
tive well-foundedness does imply well-foundedness. Namely, stated in terms of

relations r and R instead of transition formulas:

If R 
an be de
omposed into a union of well-founded relations (R = R

1

[ : : : [ R

n

, and

R

1

; : : : ; R

n

are well-founded) and r

+

� R, then r (as well as r

+

) is well-founded.

9



5 LTL

We follow the automata-theoreti
 approa
h to veri�
ation [34℄ (see [33℄ for

the generalization to in�nite-state systems). We assume that the given LTL

(Linear Temporal Logi
 [25℄) property ' is represented by a B�u
hi automaton

A

:'

for its negation (more pre
isely, an LTL formula ' over the �nite set

of atomi
 propositions AP is represented by a B�u
hi automaton A

:'

that

a

epts exa
tly the in�nite sequen
es of program states that do not satisfy ').

We thus need not introdu
e the syntax of LTL. We use B�u
hi automata and

their syn
hronous parallel 
omposition with programs in the usual way, with

the only di�eren
e that atomi
 propositions denote in�nite sets of program

states (i.e., an atomi
 proposition is a formula in the program variables X).

The B�u
hi automaton A

:'

= (Q;�;�; q

init

; A

) 
onsists of the �nite

set of states Q, the �nite alphabet � = 2

AP

, the transition relation � �

Q���Q, the initial state q

init

2 Q, and the set of a

epting states A

 � Q.

A run of A

:'

on the in�nite sequen
e �

1

; �

2

; : : : is an in�nite sequen
e of

states q

1

; q

2

; : : : su
h that q

1

is q

init

and (q

i

; �

i

; q

i+1

) 2 � for all i � 1. The

run q

1

; q

2

; : : : is a

epting if an a

epting state q

a



2 A

 appears in�nitely

often. An in�nite sequen
e w = �

1

; �

2

; : : : is a

epted by A

:'

if there exists

an in�nite run on w.

Let L : S ! 2

AP

be a labelling fun
tion on program states that provides

the set of all atomi
 propositions satis�ed by the given program state. An

in�nite sequen
e of program states s

1

; s

2

; : : : satis�es :' if and only if the

in�nite sequen
e of state labels L(s

1

); L(s

2

); : : : is a

epted by A

:'

.

The program C satis�es the LTL property ' if there exists no in�nite

sequen
e of program states that is a program tra
e of C and satis�es :',

i.e., that is a a

epting run of the syn
hronous parallel 
omposition of C and

A

:'

, to be introdu
ed next.

We introdu
e a new program variable, the program 
ounter p


A

ranging

over the set of automaton states Q. A state of the produ
t program is a

valuation over the tuple of program variables X and the variable p


A

; we

write it as a pair (s; q) of states of C and A

:'

, respe
tively.

De�nition 2 Syn
hronous Parallel Composition C�A

:'

.

The syn
hronous parallel 
omposition of the program C and the B�u
hi au-

tomaton A

:'

(with transition relation �) is the transition formula

C�A

:'

def

= f
 ^ 


(q;�;q

0

)

j 
 2 C and (q; �; q

0

) 2 �g;

10



where




(q;�;q

0

)

def

= p


A

=q ^ p


0

A

=q

0

^

^

p2�

p ^

^

p62�

:p:

A run of C�A

:'

is an in�nite sequen
e of state pairs (s

1

; q

1

); (s

2

; q

2

); : : :

that starts in initial states of C resp. A

:'

, and su
h that ea
h 
onse
utive pair

of state pairs satis�es the transition formula C�A

:'

. The run is a

epting

if an a

epting state of A

:'

appears in�nitely often in the in�nite sequen
e

q

1

; q

2

; : : :.

Remark 2 The run s

1

; s

2

; : : : of the program C does not satisfy the LTL

property ' if and only if (s

1

; q

1

); (s

2

; q

2

); : : : is an a

epting run of C�A

:'

.

In the statement below, we 
an use any other invariant instead of Inv

	

(whi
h

is the invariant obtained from a given transition invariant; see Remark 1).

Theorem 2 (Transition Invariants and LTL) The program C satis�es

the LTL property ' if there exists a �nite transition invariant 	 for C�A

:'

su
h that ea
h 
ommand formula of the form

Inv

	

^ p


A

=q

a



^  

is well-founded, where  is a 
ommand formula in 	 and q

a



is an a

epting

state of A

:'

.

Proof. For a proof by 
ontraposition, assume that 	 is a �nite transition

invariant for C�A

:'

, and that the program C does not satisfy the LTL

property '. By Remark 2, there exists an a

epting run (s

1

; q

1

); (s

2

; q

2

); : : :

of C�A

:'

(starting in initial states of C resp. A

:'

) and an a

epting state

q

a



that appears in the sequen
e q

1

; q

2

; : : : in�nitely often, say at ea
h index

in the in�nite set of indi
es P .

P

def

= fi j q

i

� q

a



g

Sin
e 	 is a transition invariant, we 
an de�ne a fun
tion f from the set of

ordered pairs of indi
es in P to the set of 
ommand formulas in 	 as below.

f(k; l)

def

=  2 	; where ((s

k

; q

k

); (s

l

; q

l

)) �  

By Ramsey's theorem [28℄, there exists a 
ommand formula  in 	 and

an in�nite set of indi
es K that is a subset of P , su
h that ea
h pair of


onse
utive indi
es in K is mapped to  , formally f(k

i

; k

i+1

) =  where k

i

and k

i+1

in K for i � 1.

11



In summary, ea
h 
onse
utive pair of state pairs ((s

k

i

; q

k

i

); (s

k

i+1

; q

k

i+1

))

satis�es the 
ommand formula  , ea
h state pair satis�es the guard p


A

=

q

a



, and, sin
e the �rst element (s

1

; q

1

) of the in�nite sequen
e is a pair of

initial states (of C resp. A

:'

), every subsequent element and in parti
ular

every element of the form (s

k

i

; q

k

i

) satis�es the invariant Inv

	

of C � A

:'

.

This means, the in�nite sequen
e ((s

k

1

; q

k

1

); ((s

k

2

; q

k

2

) : : : is indu
ed by the


ommand formula Inv

	

^ p


A

=q

a



^  . Whi
h is, this 
ommand formula is

not well-founded. �

6 Synthesis of Indu
tive Transition Invari-

ants via Transition Predi
ate Abstra
tion

We will develop a veri�
ation method for LTL properties via the automated

synthesis of indu
tive transition invariants by iteration of the best abstra
-

tion of a �xed point operator over an abstra
t domain de�ned by predi
ates.

This is akin to the automated synthesis of indu
tive invariants in the soft-

ware model 
he
king method for safety properties; the di�eren
e is that the

�xed point operator is based on sequential 
omposition of 
ommands and

the predi
ates range over transitions instead of states. The program C to

whi
h we refer in this se
tion is either the program whose termination we

want to 
he
k, or (more generally) its produ
t with a B�u
hi automaton for

the negation of the LTL formula that we want to 
he
k.

Indu
tive Transition Invariants From now on, we use a given logi
al


onsequen
e ordering j= over transition formulas. If the transition relation

of one transition formula �

2

is a 
onsequen
e of another one �

1

, then its tran-

sition relation 
ontains the other one (formally, if �

1

j= �

2

then!

�

1

�!

�

2

).

We do not require the 
onverse. This means that j= is a sound but not ne
-

essarily 
omplete implementation of the validity of impli
ation (a sound and


omplete implementation may be too ineÆ
ient or not even exist).

We de�ne a 
omposition operator Æ on 
ommand formulas that 
orre-

sponds to the 
omposition of transition relations, i.e., !

�

1

Æ�

2

=!

�

1

Æ !

�

2

.

�

1

Æ �

2

def

= 9X

00

(�

1

[X

00

=X

0

℄ ^ �

2

[X

00

=X℄)

Here we repla
e ea
h primed variable in �

1

and ea
h unprimed variable in

�

2

by the 
orresponding double-primed one. The 
omposition of transition

formulas �

1

Æ �

2

is the set of 
ommand formulas obtained by pairwise 
om-

position of those in �

1

and �

2

.

�

1

Æ �

2

= f�

1

Æ �

2

j �

1

2 �

1

and �

2

2 �

2

g (1)

12



The transition formula � is a transition invariant for the program C if the

formula � is a 
onsequen
e of the 
omposition of every non-empty sequen
e

of 
ommand formulas in C (the 
onverse is not ne
essarily true sin
e the


onsequen
e relation j= is not ne
essarily 
omplete).




1

Æ : : : Æ 


n

j= �; for all n � 1 and 


1

; : : : ; 


n

2 C

Using the Kleene star operator for the iterative 
omposition, we 
an write

the above suÆ
ient 
ondition for transition invariants as C Æ C

?

j= �.

De�nition 3 Indu
tion.

The transition formula � is indu
tive for the program C if � is a 
onse-

quen
e of C and of � 
omposed with C.

C _ � Æ C j= �

The 
ondition in De�nition 3 is weaker (not stronger) than �Æ� j= �, i.e., an

indu
tive transition formula is not ne
essarily 
losed under 
omposition. By

the next statement, we have a suÆ
ient 
ondition for transition invariants

that it is e�e
tively testable whenever j= is.

Remark 3 A transition formula is a transition invariant if it is indu
tive.

Dedu
tive Proof S
hema By Remark 3 and Theorem 1, in order to prove

that the program C is terminating it is suÆ
ient to provide a �nite set of

well-founded 
ommand formulas and show that is indu
tive for C.

Similarly, we derive an indu
tive proof s
heme for LTL properties from

Remark 3 and and Theorem 2.

The dedu
tive proof s
hema is 
omplete in the sense of dedu
tive 
om-

pleteness investigated e.g. in [19℄. This is be
ause the well-founded ranking

relation indu
ed by a ranking fun
tion is a transition invariant whi
h 
onsists

of one well-founded 
ommand formula (see Footnote 2).

As with the proofs of safety properties, it is in general not possible to �nd

`strong enough' transition invariants automati
ally; thus, we design system-

ati
 methods that �nd transition invariants `in the best possible way', in the

sense made pre
ise in abstra
t interpretation [10℄.

Transition Predi
ates We will obtain indu
tive transition invariants as

least �xed points of abstra
tions of the 
on
rete �xed point operator F that

we de�ne as follows.

F (�)

def

= � Æ C

13



We 
an de�ne the ba
kward version by

B(�)

def

= fg ^ �[e=X℄ j� 2 � and 
 2 C;

where 
 is g ^X

0

=eg;

whi
h does not require elimination of existentially quanti�ed variables. Ev-

erything in the following also holds analogously for B. The least �xed points

of F and B are equivalent; this is no longer the 
ase when we abstra
t the

two �xed point operators. That is, in the appli
ation of our algorithms to

programs, the result returned may depend on the 
hoi
e of the �xed point

operator, F vs. B.

The (in general in�nite) 
on
rete domain D 
ontains all transition for-

mulas (i.e., all sets of 
ommand formulas in the given formalism); its partial

ordering is the given 
onsequen
e relation j=. The least �xed point of the

operator F over the (upwards-
omplete) domain D always exists (it is possi-

bly an in�nite set). It is the strongest (indu
tive) transition invariant of the

program.

Following [10℄, we may de�ne the abstra
t domainD

#

to be a �nite subset

of D su
h that D

#

is a Moore family, i.e., D

#


ontains the supremum of D

and is 
losed under 
onjun
tion. As a 
onsequen
e (Theorem 5.1.0.3 in [10℄),

every formula in D has a minimal 
onsequen
e in D

#

. The abstra
t domain

D

#

determines the best abstra
tion fun
tion from D into D

#

by

�(�)

def

=

^

f	 2 D

#

j � j= 	g: (2)

In the 
ase of predi
ate abstra
tion, the abstra
t domain D

#


onsists of the

�nite formulas built up from a given �nite subset of D of `atomi
' formu-

las. The atomi
 formulas de�ne a �nite number of transition predi
ates. In


ontrast to predi
ates that are de�ned by formulas over unprimed program

variables and apply to states, the (more general) transition predi
ates are

de�ned by formulas over primed and unprimed variables and apply to tran-

sitions (i.e., pairs of states).

For example, given the transition predi
ates p
 = l

i

, p


0

=l

i

(for ea
h

label l

i

), z � k, and z

0

� z + k for z 2 fx; yg and k 2 f�1; 0; 1g, the

abstra
tion of the 
ommand formula 
 in Example 1 is

�(
) � p
=l

1

^ y � 0 ^ x

0

� x+ 1 ^ y

0

� y ^ p


0

=l

2

:

Given the abstra
t domain D

#

, the best abstra
tion of the �xed point

operator F is the operator F

#

de�ned below (for transition formulas 	 in

14



D

#

).

3

F

#

(	)

def

= �(	 Æ C): (3)

The monotoni
ity of the �xed point operator F

#

is a dire
t 
onsequen
e

of the monotoni
ity of the 
omposition and the abstra
tion fun
tion. By

Tarski's �xed point theorem, the least �xed point of F

#

exists. We denote

the least �xed point of F

#

above C by lfp(F

#

; C). The �xed point lfp(F

#

; C)

is 
omputed in the usual fashion.

lfp(F

#

; C) = 	

1

_ : : : _ 	

n

, where

	

1

= f�(
) j 
 2 Cg

	

i+1

= f�( Æ 
) j  2 	

i

and 
 2 Cg

	

n+1

j= 	

1

_ : : : _ 	

n

Here, we impli
itly apply (1) and the additivity of the abstra
tion fun
tion �.

Sin
e D

#

is �nite, the �xed point 
omputation terminates after �nitely many

iterations.

Strengthening Transition Invariants Given an invariant Inv, we 
an

obtain a stronger transition invariant 	 by using (an abstra
tion of) the

�xed point operator F for the program fInv ^ 
 j 
 2 Cg where ea
h guard

is strengthened by the invariant. The stronger transition invariant 	 
an in

turn be used to 
onstru
t a stronger invariant Inv

	

(see Remark 1).

LTL Software Model Che
king The algorithm de�ned in Figure 1 is

a semi-test for the validity of an LTL property for a program. We 
all

it the `LTL software model 
he
king algorithm' be
ause it uses the same

main ingredient of the already 
ited algorithms known under software model


he
king for safety, namely �xed point iteration over an abstra
t domain

de�ned by predi
ates. The 
orre
tness of a semi-test is the soundness of its

de�nite answers.

Theorem 3 (Soundness) The LTL software model 
he
king algorithm is


orre
t, i.e., if the algorithm returns \LTL Property Holds" then the input

LTL property ' holds for the input program C.

3

The asso
iativity of the 
omposition operator Æ is not preserved under predi
ate ab-

stra
tion. I.e., the abstra
t 
omposition Æ

#

de�ned by  

1

Æ

#

 

2

= �( 

1

Æ  

2

) is not

asso
iative. In other words, the abstra
tions of the 
ommand formulas do not generate

a monoid. This is be
ause we use the best possible abstra
tions. Similarly, the operator

F

##

de�ned by F

##

(	) = 	 Æ

#

�(C) is not the best abstra
tion of F .
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input

program C with initial states Init

transition predi
ates de�ning abstra
t domain D

#

B�u
hi automaton A

:'

with initial state q

init

and

a

epting states A



begin

C := C�A

:'

Init := Init ^ p


A

=q

init

� := ��:

V

f	 2 D

#

j � j= 	g

F

#

:= �	: �(	 Æ C)

	 := lfp(F

#

; C)

Inv

	

:= Init _ (9X (Init ^	))[X=X

0

℄

if forea
h  in 	 and q

a



2 A



well-founded(Inv

	

^ p


A

=q

a



^  )

then

return(\LTL Property Holds")

else

return(\Don't Know")

end.

Figure 1: LTL software model 
he
king.

The program is given as a set C of 
ommand formulas; its set of initial

states is denoted by the state formula Init; the abstra
t domain D

#

with

glb operator

V

is given through a �nite set of transition predi
ates (D

#


onsists of all Boolean 
ombinations of those predi
ates); the operator Æ

over transition formulas is sequential 
omposition; the B�u
hi automaton

A

:'

represents the negation of the LTL property ' to be 
he
ked; the

operator � is the syn
hronous parallel 
omposition of a program and the

B�u
hi automaton.
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input

program C with initial states Init,

transition predi
ates de�ning abstra
t domain D

#

begin

� := ��:

V

f	 2 D

#

j � j= 	g

F

#

:= �	: �(	 Æ C)

	 := lfp(F

#

; C)

Inv

	

:= Init _ (9X (Init ^	))[X=X

0

℄

if forea
h  in 	

well-founded(Inv

	

^  )

then

return(\Terminating")

else

return(\Don't Know")

end.

Figure 2: Termination algorithm (spe
ial 
ase of LTL algorithm)

Proof. The 
orre
tness follows from the fa
t that a �xed point of an

abstra
tion of an operator is also a �xed point of that operator [10℄, the fa
t

that a �xed point of the 
omposition operator F is an indu
tive transition

formula, Remark 3 and Theorem 2. �

The algorithm in Figure 2 is a semi-test for termination. It is the spe
ial


ase of the one in Figure 1 where the B�u
hi automaton 
onsists of one state

(whi
h is both initial and a

epting, and whi
h has a transition to itself). Its


orre
tness 
an be shown using Theorem 1 instead of Theorem 2.

The LTL algorithm (or its restri
tion to termination) 
annot be 
omplete

(result a de�nite answer always if the program is terminating) for de
idability

reasons. Instead, we have a di�erent kind of 
ompleteness.

Theorem 4 (Abstra
tion Completeness) If the abstra
t domain D

#


ontains a �nite indu
tive transition invariant for the program C �A

:'

that


onsists of well-founded 
ommand formulas, then the LTL software model


he
king algorithm will su

eed in proving the LTL property, i.e., it will re-

turn a de�nite answer (\LTL Property Holds").

Proof. [Sket
h℄ We use the 
hara
teristi
 property of best abstra
tions in

the same way as for the 
ompleteness of abstra
tion-based proofs for safety

properties (see [2, 9℄). �
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In this se
tion, we have 
onstru
ted one parti
ular abstra
tion, based on

transition predi
ates. Many more 
onstru
tions are possible; see [10, 9℄. The


orre
tness of the algorithm will hold for any sound abstra
tion F

#

of the


on
rete 
omposition operator F .

Well-foundedness of Command Formulas The algorithms are

parametrized by a test of (a suÆ
ient 
ondition for) the well-foundedness

of the 
ommand formulas  in the abstra
t domains D

#

. This test returns

the value of the expression \well-founded( )".

In the implementation of the algorithm that we used for our examples,

the test is based on linear programming. It is a de
ision pro
edure for a 
lass

of 
ommand formulas in linear arithmeti
 [26℄.

If the repetition  Æ Æ : : :Æ of any length is di�erent from false, then the


ommand formula  translates a program that 
onsists of one while loop.

We 
all it a simple while loop be
ause its body 
onsists of straight-line 
ode

(without if-then-else bran
hing). Given a 
lass of programs we want to verify,

and given the 
orresponding abstra
t domain, the next step is to determine

good suÆ
ient termination 
onditions for the 
orresponding 
lass of simple

while loops.

Complexity We will next show that, in a 
omplexity-theoreti
 sense, the

semi-test that we have given is not optimal for the problem that it `solves'.

First we formally de�ne what problem that is. We introdu
e the problem to

de
ide, given a program and an abstra
tion (a set of transition predi
ates),

whether `the abstra
t program' satis�es the LTL property. Formally, whether

the program has an indu
tive transition invariant, with well-founded 
om-

mand formulas, in the abstra
t domain de�ned by the transition predi
ates.

(This is in analogy with the setting of Boolean programs with predi
ate

abstra
tion in [1℄: a Boolean program satis�es the given safety property if

and only if the program has an indu
tive invariant, without `bad' states, in

the abstra
t domain de�ned by the predi
ates. We omit a formalization of

`Boolean transition programs'; their operational semanti
s would be based

on sequential 
omposition.)

We give an optimal algorithm and a lower bound and thus determine

the 
omplexity of the de
ision problem in the size of the set of transition

predi
ates (whi
h depend on the given program; the program is either the

one whose termination we want to 
he
k, or more generally its produ
t with a

B�u
hi automaton for the negation of the LTL formula that we want to 
he
k;

the transition predi
ates in
lude usually the formulas p
 = l

n

and p


0

= l

n

and p


A

= q and p


0

A

= q for program labels l

n

of the program and states q
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of the B�u
hi automaton).

Theorem 5 (Complexity of Abstra
t LTL Model Che
king) Given

a �xed program and a set of transition predi
ates, the problem to de
ide

whether the program has an indu
tive transition invariant with well-

founded 
ommand formulas in the abstra
t domain de�ned by the transition

predi
ates, is PSPACE-
omplete in the number of transition predi
ates.

Proof. [Sket
h℄ For the upper bound, we use not �xed point iteration but a

non-deterministi
 algorithm that explores lfp(F

#

; C); again, as in the proof

of Theorem 4, we use the 
hara
teristi
 property of best abstra
tions in

the same way as for the 
ompleteness of abstra
tion-based proofs for safety

properties (see [2, 9℄). The lower bound is obvious from the �nite-state


ase (the only values are the labels of 
on
urrent programs; the strongest

transition invariant is indu
tive and �nite, hen
e the well-foundedness of

its 
ommand formulas is a suÆ
ient and ne
essary 
ondition for program


orre
tness). �

7 Related Work

Our use of Ramsey's theorem in the proofs of Theorems 1 and 2 is reminis
ent

of its use in B�u
hi's theory of !-regular languages over a �nite alphabet

(see [32℄). This theory is the basis of the automata-theoreti
 approa
h to

LTL model 
he
king [34℄. The equivalen
e 
lasses over segments 
orrespond

to the transformer fun
tions of the B�u
hi automaton. We, however, restri
t

ourselves to �nite sets of transformers over an in�nite state spa
e, as opposed

to restri
ting oneself to transformers over a �nite state spa
e (in both 
ases,

the sets of transformers are �nite and thus indu
e an equivalen
e relation

of �nite index, whi
h is the raison d'être of the �niteness restri
tion). As

a 
onsequen
e, we infer the existen
e of an ultimately periodi
 sequen
e of

transformers ( 

0

Æ  

!

or, in the notation of [32℄, [v℄

�

� [w℄

�

!

), as opposed

to an ultimately periodi
 sequen
e of states. For a more subtle di�eren
e, in

our setting (see Footnote 3), the mapping of ea
h �nite segment of an in�nite

tra
e to its equivalen
e 
lass is not a monoid homomorphism.

In [23℄, Lee, Jones and Ben-Amram present a termination analysis for

fun
tional programs; the analysis is based on the 
omparison of in�nite paths

in the 
ontrol 
ow graph and in `size-
hanging graphs'; that 
omparison 
an

be redu
ed to the in
lusion test for B�u
hi automata. Our work takes what

we think is the essen
e in [23℄, formulates it in a logi
-based setting 
ombined

with abstra
t interpretation, 
onne
ts it with predi
ate abstra
tion and ex-

plores how far one 
an get, pushing for greater generality. We use a di�erent
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setting (imperative and 
on
urrent instead of fun
tional programs). That

taken aside, a bold way to state the 
ontribution of our work in 
omparison

to theirs is that we go from termination to general LTL properties, and that

we go from one �xed abstra
tion to generi
 abstra
t domains (spe
i�ed by

transition predi
ates). The spe
i�
ation of an abstra
t domain allows one

to �ne-tune an abstra
tion to the property one tries to prove; in a way, this

possibility turns a program analysis into a veri�
ation method.

One 
an su

essively re�ne abstra
tion by adding more transition predi-


ates. For example, adding x

0

< x and then x

0

< x � 1 allows one to 
he
k

the termination of the program while(x>=0)fx:=x+1; x:=x-2g.

One pra
ti
al advantage of our logi
-based setup over the graph-based

one of [23℄ is the possibility to take into a

ount the spe
i�
ation of the

initial states of a program (without it, one 
he
ks a|too strong|
ondition

for termination, namely under the|too weak|assumption that every state


an be an initial state); we do so in Theorems 1 and 2 by adding an invariant

as a 
onjun
t to ea
h 
ommand formula in the transition invariant (e.g. the

invariant Inv

	

derived from the transition invariant 	).

In [7, 8℄, Colon and Sipma give methods to prove termination that are

highly su

essful in pra
ti
e. The methods are based on linear arithmeti
, as

opposed to being parametrized by theorem provers. They work by isolating

strongly 
onne
ted 
omponents in the 
ontrol 
ow graph of a program and

by 
omputing ranking fun
tions for ea
h one of them. No 
omposition of

program statements is 
onsidered, i.e., the program while (x>=0) fx=x+1;

x=x-2;g 
annot be proven terminating.

In [33℄, Vardi provides an automata-theoreti
 framework for veri�
ation

of 
on
urrent systems by appying in�nite automata. The system satis�es is


orre
t if its parallel 
omposition with the automaton that a

epts 
ompu-

tations violating the property does not have in�nite 
omputations. Our LTL


he
king setup follows this framework.

In [19℄, Kesten, Pnueli and Vardi `augment' �nite-state abstra
tions with

progress monitors to verify liveness properties. They were perhaps the �rst

to point out �nite-state abstra
tions as su
h are not suÆ
ient for automated

liveness proofs. The progress monitors in
arnate ranking fun
tions that have

to be provided manually. Ranking fun
tions are to liveness what invariants

are to safety; in automated methods for safety, invariants are synthesized.

Previous approa
hes to automated liveness 
he
king for in�nite-state sys-

tems are based on the iteration of �xpoint operators over sets of states.

When they a

ount for fairness assumptions (as e.g. [31℄), they need to under -

approximate sets of states, whi
h seems hard. Without fairness assumptions,

liveness proofs for 
on
urrent systems are in general 
awed (for example, the

non-starvation proofs for integer-valued 
ommuni
ation proto
ols in [5, 11℄
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are based on models where no pro
essor is allowed to idle).

We are not aware of previous formalizations of transition invariants. The

notion has appeared impli
itely in spe
ial instan
es. For example, the meta-

transitions of Boigelot and Wolper e.g. in [3℄ are (in fa
t, the strongest)

transition invariants for simple loops. They may be useful for showing the

well-foundedness of 
ommand formulas in transition invariants, as the work

in [4℄ already indi
ates. The modifies 
lauses used by Rustan Leino and

Kun
ak e.g. in [20℄; the 
lause modifies x expresses the the 
onjun
tion of

y

0

= y for all other variable y di�erent from x is a transition invariant.

8 Con
lusion, Future Work

Verifying liveness properties of software will always be a hard problem; any

automated method will work at most in examples where no ingeniousness

or 
reativity is required. We have presented a formal framework that may

serve as a starting point for designing automated methods in a 
ertain style.

Namely, it suggets using least �xed point iteration in 
ombination with ab-

stra
t interpretation te
hniques and in parti
ular transition predi
ate ab-

stra
tion. I.e., this style relies on the same basis as the methods known under

software model 
he
king, whi
h have demonstrated their strong potential in

automated tools for verifying safety properties of software systems.

It is not at all obvious, however, whether the su

ess of the software model


he
king method will extend from safety to liveness. We 
annot predi
t

whether one 
an a
hieve s
alability. We still have to develop te
hniques for


onstru
ting abstra
t domains that are as ri
h for transition formulas as for

state formulas. These te
hniques need to balan
e the 
ost for 
omputing the

abstra
tion with the 
ost for the test of well-foundedness (see also below).

We have done some preliminary pra
ti
al experiments with a prototypi-


al implementation in Si
stus Prolog [21℄ with a 
onstraint solver for linear

arithmeti
 (
lpqr [17℄); we use the CMU BDD pa
kage for the eÆ
ient im-

plementation of the �xpoint test. We used our tool to prove non-starvation

for the 2-pro
ess version of the bakery proto
ol. Non-starvation expresses

that ea
h time a pro
ess requests a resour
e it will �nally a

ess it. Its proof

requires fairness assumptions (ea
h pro
ess must make progress, at 
ertain

program lo
ations). We express the fairness assumptions in the LTL formula

\if fair then non-starvation" and use the tool LTL2BA [12℄ to translate its

negation into a B�u
hi automaton. We then 
ompute transition invariants

for the `syn
hronous parallel 
omposition' of the proto
ol and the B�u
hi au-

tomaton, in the `forward' (F ) and the `ba
kward' (B) way. We give some

measurements in Table 1. The experiments indi
ate that the size of the
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time 
ommand formulas

Program S P (ms) total loop fair

Bakery(B) 218 0 1740 815 17 8

Bakery(F ) 218 0 4480 815 17 8

Table 1: Transition invariants in numbers.

B and F stands for the ba
kward and forward �xed point operators; S is

the number of guarded 
ommands in the 
omposition of the proto
ol with

the B�u
hi automaton for the negation of the LTL property \if fair then non-

starvation"; P denotes the number of transition predi
ates in the abstra
t

domain (ex
luding the ones for the program 
ounters); the three numbers

total, loops and a

-loops refer to the total number of 
ommand formulas

in the transition invariants, the ones that 
orrespond to loops in the 
ontrol


ow graph (the others are trivially terminating) and the ones that start from

B�u
hi a

epting lo
ations (i.e. 
orrespond to fair exe
ution paths), respe
-

tively.

transition invariants gets too large when one en
odes fairness assumptions

by B�u
hi automata. We work on more dire
t ways to en
ode relevant spe
i�


kinds of fairness su
h as weak fairness.

Predi
ate abstra
tion is a way to delegate the 
reativity part of the syn-

thesis of invariants to the 
hoi
e of a set of predi
ates and defer the te-

diousness to the 
omputation over an exponentially large abstra
t domain.

The method be
omes fully automated (and then the semi-test loses its ter-

mination guarantee) if 
ombined with an automated pro
edure for 
ounter-

example guided abstra
tion re�nement [6, 1, 16, 2℄. In our experiments, we

have generated the transition predi
ates using su
h a pro
edure (whi
h we

did not des
ribe sin
e it is quite analogous to the one for state predi
ates

in [2℄). Future work in
ludes the investigation of eÆ
ient spe
ialized pro
e-

dures and their fundamental properties as in [13, 2℄.

The interest of transition invariants goes beyond liveness 
he
king. It

may be relevant for interpro
edural safety 
he
king, sin
e the synthesis of

transition invariants generalizes the fun
tional approa
h to program analysis

of Sharir/Pnueli [30℄.
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