
'$�

�

'$

Æ

��

I N F O R M A T I K

 	

� �

Software Model Che
king of

Liveness Properties via Transition

Invariants

Andreas Podelski Andrey Rybal
henko

MPI{I{2003{2{004 De
ember 2003

FORSCHUNGSBERICHT RESEARCH REPORT

M A X - P L A N C K - I N S T I T U T

F

�

UR

I N F O R M A T I K

Stuhlsatzenhausweg 85 66123 Saarbr�u
ken Germany

Authors' Addresses

Andreas Podelski

Max-Plan
k-Institut f�ur Informatik

Stuhlsatzenhausweg 85

66123 Saarbr�u
ken

podelski�mpi-sb.mpg.de

Andrey Rybal
henko

Max-Plan
k-Institut f�ur Informatik

Stuhlsatzenhausweg 85

66123 Saarbr�u
ken

rybal�mpi-sb.mpg.de

Abstra
t

Model
he
king is an automated method to prove safety and liveness prop-

erties for �nite systems. Software model
he
king uses predi
ate abstra
tion

to
ompute invariants and thus prove safety properties for in�nite-state pro-

grams. We address the limitation of
urrent software model
he
king meth-

ods to safety properties. Our results are a
hara
terization of the validity of

a liveness property by the existen
e of transition invariants, and a method

that uses transition predi
ate abstra
tion to
ompute transition invariants

and thus prove liveness properties for in�nite-state programs.

Keywords

Transition Invariants, Software Model Che
king, Liveness, Predi
ate Ab-

stra
tion, Termination

1 Introdu
tion

Software model
he
king is an approa
h for extending the appli
ability of

�nite-state model
he
king to software systems with in�nite state spa
es

(see [1, 14, 15, 16, 18, 22, 27, 29, 35℄). The extension works via an abstra
-

tion step, whi
h is essentially the
onstru
tion of a �nite-state system.

1

The

�nite-state abstra
tion step restri
ts the resulting method to safety proper-

ties. This is be
ause it does in general not preserve liveness properties. For

intuition, we take termination as an example of a liveness property; a �nite

system is terminating only if its exe
ution tra
es do not
ontain loops; but

then, it
an not simulate exe
ution tra
es of unbounded length (say, of the

program while (i>0) f i:=i-1; g; see also [19, 24℄.) This paper addresses

the limitation of
urrent software model
he
king methods to safety proper-

ties.

The terminology safety vs. liveness is standard to distinguish two kinds of

program properties in the s
ope of model
he
king. An example of a safety

property is (from the interfa
e spe
i�
ation of an operating system kernel [1℄):

ea
h time a lo
k is a
quired, it will get released before the end of the fun
tion

all. An example of a liveness property is: ea
h time a lo
k is a
quired, it

will get released. That is, a liveness property expresses a guarantee, without

�xing a time bound. Termination is the standard example of a liveness

property; its proof is required in the
ontext of program
orre
tness proofs

with intera
tive theorem provers. Formally, the di�eren
e signi�es whether

the negation of the property
an be redu
ed to rea
hability (of a `bad' state)

or to the existen
e of an in�nite tra
e (without a `good' state). Thus, the

di�eren
e also signi�es whether the property
ould in prin
iple be
he
ked

at runtime, or not.

In this paper, we give a
hara
terization of the validity of a liveness prop-

erty via the existen
e of transition invariants. This leads to a dedu
tive

proof s
hema, where a given transition invariant is
he
ked for indu
tiveness

(i.e.
losure under an operator that we introdu
e). Roughly, in its restri
-

tion to termination, the s
hema repla
es the well-foundedness argument for

a ranking relation by a weaker argument for the transition invariant. We

show that the s
hema is suitable for automatization. For this purpose, we

introdu
e transition predi
ate abstra
tion. This te
hnique generalizes predi-

ate abstra
tion, the basi
 abstra
t interpretation te
hnique of the existing

software model
he
king methods for safety properties. We use transition

predi
ate abstra
tion as the parameter in a general method to
ompute tran-

1

The abstra
tion step is formalized as the de�nition of an over-approximating �xed

point operator over �nitely many (in general in�nite) sets of states in [10℄.

1

sition invariants, whi
h again we
an use to prove the liveness property of

the in�nite-state program.

As with every automated method for an unde
idable problem, the best we

an hope for is a semi-test (for safety but not for liveness, a semi-algorithm

is another option). That is, if the abstra
tion is too
oarse, the
omputed

transition invariant is not `strong enough' (in that
ase one re�nes the ab-

stra
tion by adding more transition predi
ates). We
an show, however, that

our method is
omplete wrt. a �xed abstra
tion. Finally, we determine the

omplexity of the `abstra
t model
he
king problem for LTL' (in the number

of transition predi
ates); it is PSPACE-
omplete. I.e., it has the same
om-

plexity as in the spe
ial
ase of �nite models (when ea
h edge is expressed

by one transition predi
ate).

To explain the approa
h of this paper, we look at the role that invariants

play in the proof of a safety property. The safety property is translated

to the non-rea
hability of a `bad' state from an initial state. Its proof is

phrased as the proof of a `strong enough' invariant (an invariant is a state

assertion that holds for every rea
hable state; `strong enough' means that it

does not hold for any bad state). The dedu
tive proof s
hema
onsists of

showing the indu
tiveness of a `strong enough' invariant (the indu
tiveness

is the
losure under the su

essor operator post). The approa
h of this paper

is to introdu
e
on
epts analogous to [`strong enough', indu
tive℄ invariants

and show that they
an be used to
hara
terize the validity of a liveness

property.

Following the abstra
t interpretation framework [10℄, an indu
tive invari-

ant is obtained me
hani
ally as the least �xed point of an abstra
tion of

the post operator over a subdomain of the domain of sets of states. The

subdomain
onsists of equivalen
e
lasses of states when predi
ate abstra
-

tion is used, as in software model
he
king (equivalent states satisfy the

same predi
ates). A

ordingly, the approa
h of this paper is to introdu
e the

appropriate least �xed point operator and the appropriate domain and the

appropriate predi
ate abstra
tion and to use these ingredients of the abstra
t

interpretation framework to formulate algorithms
omputing transition in-

variants.

2 Examples

This se
tion is informal. The formal exposition starts in the next se
tion.

Termination We use the following simple program to illustrate the use of

transition invariants for termination.

2

int n,i,j,A[n℄;

i=n;

l1: while (i>=0) {

j=0;

l2: while (j<=i-1) {

if (A[j℄>=A[j+1℄)

swap(A[j℄,A[j+1℄);

j=j+1;

}

i=i-1;

}

l1: if (i>=0) j=0;

l2: if (i-j>=1) {

j=j+1;

goto l2;

} else {

i=i-1;

goto l1;

}

For legibility, we
on
entrate on the skeleton shown on the right, whi
h

onsists of the statements st1, st2, st3.

l1: if (i>=0) { i:=i; j:=0; goto l2; } - st1

l2: if (i-j>=1) { i:=i; j:=j+1; goto l2; } - st2

l2: if (i-j<1) { i:=i-1; j:=j; goto l1; } - st3

Ea
h of the abstra
t statements below must be read as a one-line program.

l1: if (true) {i:=Any; j:=Any; goto l2; } - a1

l2: if (true) {i:=Any; j:=Any; goto l1; } - a2

l1: if (i>=0) {i:=i-Pos; j:=Any; goto l1; } - a3

l2: if (i>=0) {i:=i-Pos; j:=Any; goto l2; } - a4

l2: if (i-j>=1) {i:=i-Nat; j:=j+Pos; goto l2; } - a5

We noti
e that st1 is approximated by a1, st2 by a5 and st3 by a2. In

fa
t, every sequen
e of program statements is approximated by one of a1,

. . . , a5. This means that the set fa1; : : : ; a5g is a transition invariant in our

terminology.

For example, every sequen
e of program statements that leads from l2

to l2 is approximated by a4 if it passes through l1, and by a5 otherwise.

The following table assigns to ea
h abstra
t statement the set of sequen
es

of program statements that it approximates. All non-assigned sequen
es are

not feasible.

a1 st1(st2jst3st1)

�

a2 (st2jst3st1)

�

st3

a3 st1(st2jst3st1)

�

st3

a4 (st2jst3st1)

�

st3st1(st2jst3st1)

�

a5 st2

+

3

A

ording to our formal development in the following se
tions (see Theo-

rem 1), the transition invariant above is `strong enough' to prove termination,

whi
h means: ea
h of its abstra
t statements, viewed in isolation as a one-line

program, is terminating.

To prove that a set of abstra
t statements is indeed a transition invariant,

we show that it is indu
tive or that it
an be strengthened by an indu
tive

one. The indu
tiveness of the transition invariant means that ea
h
omposi-

tion of an abstra
t statement with a program statement is approximated by

the transition invariant. This is in general weaker than requiring that ea
h

omposition of abstra
t statements must be approximated by the transition

invariant.

The
omposition of the abstra
t statement a1 with

the program statement st3 yields the abstra
t statement

l1: if (true) f i:=Any; j:=Any; goto l1; g, whi
h is not approximated by

the transition invariant. Thus, the transition invariant is not indu
tive. We

strengthen it by the indu
tive transition invariant given below.

l1: if (i>=0) { i:=i-Nat; j:=Any; goto l2; }

l2: if (true) { i:=i-Pos; j:=Any; goto l1; }

l1: if (i>=0) { i:=i-Pos; j:=Any; goto l1; }

l2: if (i>=0) { i:=i-Pos; j:=Any; goto l2; }

l2: if (i-j>=1) { i:=i-Nat; j:=j+Pos; goto l2; }

This transition invariant is
omputed by our method; it
orresponds to the

output produ
ed by our implementation.

Fairness We use the following simple program \Up-down" to illustrate the

use of transition invariants for fair termination.

int x=0, y=0;

l0: while (x=0) y++;

l1: while (y>0) y--;

l2:

m0: x=1;

m1:

Termination is the inevitability of the lo
ation (l2, m1). For formal reason,

the program has a self-loop in this lo
ation.

Termination
an be proven only under the fairness assumption that the

pro
ess on the right-hand side will eventually move from m0 to m1. This

assumption is en
oded by the B�u
hi automaton below.

q

0

q

1

p
=m1

p
=m0

4

The transition invariant that we
ompute for this problem
ontains 49

abstra
t statements. Below we give the two
riti
al ones.

l0_m0_q0: if (true) { x:=Any;

y:=y+Pos; goto l0_m0_q0; } - a1

l1_m1_q1: if (y>0) { x:=Any;

y:=y-Pos; goto l1_m1_q1; } - a2

The abstra
t statement a1 does not terminate. However, by the formal

theory that we establish, its termination is not needed be
ause its exe
utions

do not visit the B�u
hi a

epting state q

1

in�nitely often. This is where the

fairness assumption
omes in; the loop in l0 m0 is not a fair exe
ution. The

`fair' abstra
t statement a2 terminates.

3 Transition Invariants

Our formal exposition is based on
ommand formulas.

Example 1 The
ommand formula
 below represents the statement

if y>=0 then x=x+1;

of a program over variables x and y where l

1

and l

2

are the labels before and

after the statement.

def

= p
=l

1

^ y � 0

| {z }

guard

^ x

0

= x + 1 ^ y

0

= y ^ p

0

=l

2

| {z }

a
tion

In a
ommand formula, the subformula over unprimed variables x

1

; : : : ; x

n

forms the guard (enabling
ondition). The remaining
onjun
ts form the

a
tion (update of the variables). Usually, they are of the form x

0

= E, where

E is the update expression over unprimed variables (translating assignments

x := E).

From now on, we assume that the program is given as a set C of
ommand

formulas. The translation from programs to sets of
ommand formulas is

standard for many programming languages, in
luding
on
urrent ones.

A basi
 observation is that one
an use
ommand formulas of a more

general form than the one that
orresponds to programs in order to denote

relations between states of a more general kind than the transition relations

denoted by programs. We will next introdu
e some notation and de�ne how

general
ommand formulas � denote relations between states.

The n-tuple X = (x

1

; : : : ; x

n

)
onsists of the variables appearing in the

program. Usually, one or many program
ounter variables (\p
") appear

5

among the x

i

's; they range over the program labels. The free variables of

a
ommand formula � are among the variables x

1

; : : : ; x

n

and their primed

versions x

0

1

; : : : ; x

0

n

.

A state s is a valuation of the program variables x

1

; : : : ; x

n

. The set of

all states is denoted by S. The value of the program variable x in a state

s is s(x). A pair of program states s and s

0

satis�es a
ommand formula �,

formally (s; s

0

) � �, if � evaluates to true after interpreting x

i

by s(x

i

) and x

0

i

by s

0

(x

i

) for all i. The transition relation denoted by the
ommand formula

� is the set of all state pairs that satisfy �.

!

�

def

= f(s; s

0

) j (s; s

0

) � �g

Given the program in the form of the
ommand formula �, the state s

0

is

rea
hable from the state s in one exe
ution step if s !

�

s

0

(whi
h means

that the pair (s; s

0

) satis�es �), and rea
hable in a non-empty sequen
e of

exe
ution steps if s!

�

+

s

0

. As usual, !

+

denotes the transitive (but not

re
exive)
losure of the relation !.

A transition formula � is a set of
ommand formulas. An example of a

transition formula is the program C. We use the terms disjun
tion and set

of
ommand formulas inter
hangeably. The terminology and notation above

for
ommand formulas extend
anoni
ally to sets.

De�nition 1 Transition Invariant.

A transition invariant of a program C is a transition formula 	 that holds of

every pair of states s and s

0

su
h that s

0

is rea
hable from s in a non-empty

sequen
e of exe
ution steps.

That is, the transition relation of a transition invariant 	
ontains the transi-

tive
losure of the transition relation of the program C, formally!

C

+

� !

	

.

Invariants We assume that the given program
omes with a state formula

Init denoting the set of initial states. A state formula or state assertion

is a formula whose free variables are the program variables (in
luding the

program
ounter p
); it denotes a set of states. An invariant Inv is a state

assertion that holds for every rea
hable state (rea
hable from an initial state).

We
onstru
t the formula Inv

	

from a transition invariant 	 as the dis-

jun
tion of Init with the formula that denotes the set of dire
t su

essor

states of initial states of C under statements in 	 (here [X=X

0

℄ refers to the

renaming of the primed by the unprimed version of ea
h program variable).

Inv

	

def

= Init _ (9X (Init ^))[X=X

0

℄

6

Remark 1 Given the transition invariant 	 and the state formula Init de-

noting the set of initial states, the formula Inv

	

is an invariant of the program.

Conversely, given an invariant Inv of the program C, the transition for-

mula Inv^ Inv[X

0

=X℄ is a transition invariant not for the program C itself but

for the program Inv^C obtained by strengthening the guards with informa-

tion about rea
hable states. As usual, we extend
onjun
tion to sets of for-

mulas in the
anoni
al way, i.e., �

1

^�

2

def

= f�

1

^�

2

j �

1

2 �

1

and �

1

2 �

2

g.

Well-founded Command Formulas The
ommand formula � is well-

founded if the transition relation !

�

(stri
tly speaking, its inverse) is well-

founded, i.e., there is no in�nite sequen
e of states fs

i

g

1

i=1

su
h that ea
h

onse
utive pair of states satis�es the
ommand formula, formally (s

i

; s

i+1

) �

� for all i. In terms of program exe
utions this means that the one-line

program represented by the
ommand formula is terminating whatever its

initial states are (i.e., if its initial
ondition is true).

Notation of Meta-Variables We use � for general
ommand formulas,

 for those in transition invariants,
 for those in the program, and their

upper
ase version to sets thereof, i.e., � for general transition formulas, 	

for transition invariants and C for the program.

4 Termination

The program is terminating if every exe
ution starting in an initial state is

�nite. This is a spe
ial
ase of an LTL property; te
hni
ally this se
tion is

subsumed by the next one. We single out termination be
ause of its singular

importan
e. Its treatment is possible without introdu
ing B�u
hi automata.

Theorem 1 (Transition Invariants and Termination) The program

represented by the set of
ommand formulas C is terminating if there exists

a �nite transition invariant 	 su
h that all
ommand formulas in Inv

	

^ 	

are well-founded.

Proof. Assume, for a proof by
ontraposition, that 	 is a �nite transition

invariant for C, and that C is not terminating. We show that at least one

ommand formula in Inv

	

^ 	 is not well-founded.

By the assumption that C is not terminating, there exists an in�nite

sequen
e of states �

def

= fs

i

g

1

i=1

su
h that s

1

is an initial state and s

i

!

i

s

i+1

for all i, where

i

2 C.

7

We de�ne a fun
tion f that maps an ordered pair of indi
es of elements

in the sequen
e � to one of the
ommand formulas in the transition invariant

	 as follows.

f(k; l)

def

= 2 	; where (s

k

; s

l

) �

The fun
tion f exists be
ause 	 is a transition invariant for C, and thus we

an
hoose arbitrarily one
ommand formula from the (�nite) set f 2 	 j

(s

k

; s

l

) � g as the image of the pair (k; l). The range of the fun
tion f is

�nite sin
e 	 is �nite.

� � � ! s

k

! � � � ! s

l

! : : :

Given �, the fun
tion f indu
es an equivalen
e relation � on pairs of

positive integers (in this proof we always
onsider pairs whose �rst element

is smaller than the se
ond one).

(k; l) � (k

0

; l

0

)

def

= f(k; l) = f(k

0

; l

0

)

The equivalen
e relation � has �nite index, sin
e the range of f is �nite.

By Ramsey's theorem [28℄, there exists an in�nite set of positive integers

K su
h that all pairs of elements in K belong to the same equivalen
e
lass,

say [(m;n)℄

�

with m;n 2 K. That is, for all k; l 2 K su
h that k < l we

have (k; l) � (m;n). We �x m and n.

Let fk

i

g

1

i=1

be the as
ending sequen
e of elements ofK. Let the
ommand

formula denote the
ommand formula f(m;n). Sin
e (k

i

; k

i+1

) � (m;n),

the fun
tion f maps ea
h pair (k

i

; k

i+1

) to .

� � � ! s

k

i

! � � � ! s

k

j

! � � � ! s

k

l

! : : :

Hen
e, the in�nite sequen
e fs

k

i

g

1

i=1

is indu
ed by .

s

k

i

!

s

k

i+1

; for all i � 1

Sin
e we assume that s

1

is an initial state, every state s

k

i

satis�es the invari-

ant Inv

	

, and hen
e the in�nite sequen
e is indu
ed also by Inv

	

^ . Hen
e,

the
ommand formula Inv

	

^ is not well-founded. Therefore at least one

ommand formula in Inv

	

^ 	 is not well-founded. � The statement of the

theorem still holds when one repla
es the invariant Inv

	

by any other �nite

invariant.

8

The suÆ
ient
ondition for program termination given in Theorem 1 has

three
omponents: the `transitive
losure' property of transition invariants,

the �niteness and the `disjun
tive well-foundedness'. The examples below

show that the �rst resp. the se
ond
omponent
an not be omitted.

2

Example 2 The transition formula 	 = f

1

;

2

g given by the two
ommand

formulas

1

� x > 0 ^ x

0

< x and

2

� y > 0 ^ y

0

< y is �nite

and `disjun
tively well-founded'. The transition relation indu
ed by 	 is not

terminating, as
an be seen from the in�nite sequen
e (0; 1); (1; 0); (0; 1); : : :

of states.

Example 3 The program given by the single
ommand formula
 below

(translating \while (x>=0) x++;") does not terminate for initial states

where x � 0.

def

= x � 0 ^ x

0

= x+ 1

The transition formula 	 below denotes a transition invariant for f
g that

onsists of in�nitely many well-founded
ommand formulas (here Inv

	

^	 is

equivalent to).

	

def

= fx = k ^ x

0

> x j k 2 Ng

The strongest transition invariant (whi
h denotes the transitive
losure of

the transition relation of the program)
an in general not be used for the

suÆ
ient
ondition of termination (sin
e it is in�nite in general).

2

To
ompare the standard approa
h to termination proof and our approa
h (in its

restri
tion to termination), we view a ranking fun
tion (de�ned by the expression e[X ℄ in

the program variables) as a (transitive) ranking relation (the transition formula e[X

0

℄ <

e[X ℄ in primed and unprimed program variables). The ranking relation approximates the

transition relation of the program (and also its transitive
losure). Termination follows

from the well-foundedness of the ranking relation. By de�nition, a transition invariant

approximates the transitive
losure of the transition relation of the program (in general, a

transition invariant is not transitive, even when it is indu
tive as de�ned in De�nition 3).

Termination then follows already from the `disjun
tive well-foundedness' of the transition

invariant (by an argument that exploits the
ombinatorial property of Ramsey's theorem).

Disjun
tive well-foundedness is weaker than well-foundedness (take the disjun
tively well-

founded relation given by x

0

< x _ y

0

< y). Theorem 1 states a
ondition under whi
h

disjun
tive well-foundedness does imply well-foundedness. Namely, stated in terms of

relations r and R instead of transition formulas:

If R
an be de
omposed into a union of well-founded relations (R = R

1

[: : : [R

n

, and

R

1

; : : : ; R

n

are well-founded) and r

+

� R, then r (as well as r

+

) is well-founded.

9

5 LTL

We follow the automata-theoreti
 approa
h to veri�
ation [34℄ (see [33℄ for

the generalization to in�nite-state systems). We assume that the given LTL

(Linear Temporal Logi
 [25℄) property ' is represented by a B�u
hi automaton

A

:'

for its negation (more pre
isely, an LTL formula ' over the �nite set

of atomi
 propositions AP is represented by a B�u
hi automaton A

:'

that

a

epts exa
tly the in�nite sequen
es of program states that do not satisfy ').

We thus need not introdu
e the syntax of LTL. We use B�u
hi automata and

their syn
hronous parallel
omposition with programs in the usual way, with

the only di�eren
e that atomi
 propositions denote in�nite sets of program

states (i.e., an atomi
 proposition is a formula in the program variables X).

The B�u
hi automaton A

:'

= (Q;�;�; q

init

; A

)
onsists of the �nite

set of states Q, the �nite alphabet � = 2

AP

, the transition relation � �

Q���Q, the initial state q

init

2 Q, and the set of a

epting states A

 � Q.

A run of A

:'

on the in�nite sequen
e �

1

; �

2

; : : : is an in�nite sequen
e of

states q

1

; q

2

; : : : su
h that q

1

is q

init

and (q

i

; �

i

; q

i+1

) 2 � for all i � 1. The

run q

1

; q

2

; : : : is a

epting if an a

epting state q

a

2 A

 appears in�nitely

often. An in�nite sequen
e w = �

1

; �

2

; : : : is a

epted by A

:'

if there exists

an in�nite run on w.

Let L : S ! 2

AP

be a labelling fun
tion on program states that provides

the set of all atomi
 propositions satis�ed by the given program state. An

in�nite sequen
e of program states s

1

; s

2

; : : : satis�es :' if and only if the

in�nite sequen
e of state labels L(s

1

); L(s

2

); : : : is a

epted by A

:'

.

The program C satis�es the LTL property ' if there exists no in�nite

sequen
e of program states that is a program tra
e of C and satis�es :',

i.e., that is a a

epting run of the syn
hronous parallel
omposition of C and

A

:'

, to be introdu
ed next.

We introdu
e a new program variable, the program
ounter p

A

ranging

over the set of automaton states Q. A state of the produ
t program is a

valuation over the tuple of program variables X and the variable p

A

; we

write it as a pair (s; q) of states of C and A

:'

, respe
tively.

De�nition 2 Syn
hronous Parallel Composition C�A

:'

.

The syn
hronous parallel
omposition of the program C and the B�u
hi au-

tomaton A

:'

(with transition relation �) is the transition formula

C�A

:'

def

= f
 ^

(q;�;q

0

)

j
 2 C and (q; �; q

0

) 2 �g;

10

where

(q;�;q

0

)

def

= p

A

=q ^ p

0

A

=q

0

^

^

p2�

p ^

^

p62�

:p:

A run of C�A

:'

is an in�nite sequen
e of state pairs (s

1

; q

1

); (s

2

; q

2

); : : :

that starts in initial states of C resp. A

:'

, and su
h that ea
h
onse
utive pair

of state pairs satis�es the transition formula C�A

:'

. The run is a

epting

if an a

epting state of A

:'

appears in�nitely often in the in�nite sequen
e

q

1

; q

2

; : : :.

Remark 2 The run s

1

; s

2

; : : : of the program C does not satisfy the LTL

property ' if and only if (s

1

; q

1

); (s

2

; q

2

); : : : is an a

epting run of C�A

:'

.

In the statement below, we
an use any other invariant instead of Inv

	

(whi
h

is the invariant obtained from a given transition invariant; see Remark 1).

Theorem 2 (Transition Invariants and LTL) The program C satis�es

the LTL property ' if there exists a �nite transition invariant 	 for C�A

:'

su
h that ea
h
ommand formula of the form

Inv

	

^ p

A

=q

a

^

is well-founded, where is a
ommand formula in 	 and q

a

is an a

epting

state of A

:'

.

Proof. For a proof by
ontraposition, assume that 	 is a �nite transition

invariant for C�A

:'

, and that the program C does not satisfy the LTL

property '. By Remark 2, there exists an a

epting run (s

1

; q

1

); (s

2

; q

2

); : : :

of C�A

:'

(starting in initial states of C resp. A

:'

) and an a

epting state

q

a

that appears in the sequen
e q

1

; q

2

; : : : in�nitely often, say at ea
h index

in the in�nite set of indi
es P .

P

def

= fi j q

i

� q

a

g

Sin
e 	 is a transition invariant, we
an de�ne a fun
tion f from the set of

ordered pairs of indi
es in P to the set of
ommand formulas in 	 as below.

f(k; l)

def

= 2 	; where ((s

k

; q

k

); (s

l

; q

l

)) �

By Ramsey's theorem [28℄, there exists a
ommand formula in 	 and

an in�nite set of indi
es K that is a subset of P , su
h that ea
h pair of

onse
utive indi
es in K is mapped to , formally f(k

i

; k

i+1

) = where k

i

and k

i+1

in K for i � 1.

11

In summary, ea
h
onse
utive pair of state pairs ((s

k

i

; q

k

i

); (s

k

i+1

; q

k

i+1

))

satis�es the
ommand formula , ea
h state pair satis�es the guard p

A

=

q

a

, and, sin
e the �rst element (s

1

; q

1

) of the in�nite sequen
e is a pair of

initial states (of C resp. A

:'

), every subsequent element and in parti
ular

every element of the form (s

k

i

; q

k

i

) satis�es the invariant Inv

	

of C � A

:'

.

This means, the in�nite sequen
e ((s

k

1

; q

k

1

); ((s

k

2

; q

k

2

) : : : is indu
ed by the

ommand formula Inv

	

^ p

A

=q

a

^ . Whi
h is, this
ommand formula is

not well-founded. �

6 Synthesis of Indu
tive Transition Invari-

ants via Transition Predi
ate Abstra
tion

We will develop a veri�
ation method for LTL properties via the automated

synthesis of indu
tive transition invariants by iteration of the best abstra
-

tion of a �xed point operator over an abstra
t domain de�ned by predi
ates.

This is akin to the automated synthesis of indu
tive invariants in the soft-

ware model
he
king method for safety properties; the di�eren
e is that the

�xed point operator is based on sequential
omposition of
ommands and

the predi
ates range over transitions instead of states. The program C to

whi
h we refer in this se
tion is either the program whose termination we

want to
he
k, or (more generally) its produ
t with a B�u
hi automaton for

the negation of the LTL formula that we want to
he
k.

Indu
tive Transition Invariants From now on, we use a given logi
al

onsequen
e ordering j= over transition formulas. If the transition relation

of one transition formula �

2

is a
onsequen
e of another one �

1

, then its tran-

sition relation
ontains the other one (formally, if �

1

j= �

2

then!

�

1

�!

�

2

).

We do not require the
onverse. This means that j= is a sound but not ne
-

essarily
omplete implementation of the validity of impli
ation (a sound and

omplete implementation may be too ineÆ
ient or not even exist).

We de�ne a
omposition operator Æ on
ommand formulas that
orre-

sponds to the
omposition of transition relations, i.e., !

�

1

Æ�

2

=!

�

1

Æ !

�

2

.

�

1

Æ �

2

def

= 9X

00

(�

1

[X

00

=X

0

℄ ^ �

2

[X

00

=X℄)

Here we repla
e ea
h primed variable in �

1

and ea
h unprimed variable in

�

2

by the
orresponding double-primed one. The
omposition of transition

formulas �

1

Æ �

2

is the set of
ommand formulas obtained by pairwise
om-

position of those in �

1

and �

2

.

�

1

Æ �

2

= f�

1

Æ �

2

j �

1

2 �

1

and �

2

2 �

2

g (1)

12

The transition formula � is a transition invariant for the program C if the

formula � is a
onsequen
e of the
omposition of every non-empty sequen
e

of
ommand formulas in C (the
onverse is not ne
essarily true sin
e the

onsequen
e relation j= is not ne
essarily
omplete).

1

Æ : : : Æ

n

j= �; for all n � 1 and

1

; : : : ;

n

2 C

Using the Kleene star operator for the iterative
omposition, we
an write

the above suÆ
ient
ondition for transition invariants as C Æ C

?

j= �.

De�nition 3 Indu
tion.

The transition formula � is indu
tive for the program C if � is a
onse-

quen
e of C and of �
omposed with C.

C _ � Æ C j= �

The
ondition in De�nition 3 is weaker (not stronger) than �Æ� j= �, i.e., an

indu
tive transition formula is not ne
essarily
losed under
omposition. By

the next statement, we have a suÆ
ient
ondition for transition invariants

that it is e�e
tively testable whenever j= is.

Remark 3 A transition formula is a transition invariant if it is indu
tive.

Dedu
tive Proof S
hema By Remark 3 and Theorem 1, in order to prove

that the program C is terminating it is suÆ
ient to provide a �nite set of

well-founded
ommand formulas and show that is indu
tive for C.

Similarly, we derive an indu
tive proof s
heme for LTL properties from

Remark 3 and and Theorem 2.

The dedu
tive proof s
hema is
omplete in the sense of dedu
tive
om-

pleteness investigated e.g. in [19℄. This is be
ause the well-founded ranking

relation indu
ed by a ranking fun
tion is a transition invariant whi
h
onsists

of one well-founded
ommand formula (see Footnote 2).

As with the proofs of safety properties, it is in general not possible to �nd

`strong enough' transition invariants automati
ally; thus, we design system-

ati
 methods that �nd transition invariants `in the best possible way', in the

sense made pre
ise in abstra
t interpretation [10℄.

Transition Predi
ates We will obtain indu
tive transition invariants as

least �xed points of abstra
tions of the
on
rete �xed point operator F that

we de�ne as follows.

F (�)

def

= � Æ C

13

We
an de�ne the ba
kward version by

B(�)

def

= fg ^ �[e=X℄ j� 2 � and
 2 C;

where
 is g ^X

0

=eg;

whi
h does not require elimination of existentially quanti�ed variables. Ev-

erything in the following also holds analogously for B. The least �xed points

of F and B are equivalent; this is no longer the
ase when we abstra
t the

two �xed point operators. That is, in the appli
ation of our algorithms to

programs, the result returned may depend on the
hoi
e of the �xed point

operator, F vs. B.

The (in general in�nite)
on
rete domain D
ontains all transition for-

mulas (i.e., all sets of
ommand formulas in the given formalism); its partial

ordering is the given
onsequen
e relation j=. The least �xed point of the

operator F over the (upwards-
omplete) domain D always exists (it is possi-

bly an in�nite set). It is the strongest (indu
tive) transition invariant of the

program.

Following [10℄, we may de�ne the abstra
t domainD

#

to be a �nite subset

of D su
h that D

#

is a Moore family, i.e., D

#

ontains the supremum of D

and is
losed under
onjun
tion. As a
onsequen
e (Theorem 5.1.0.3 in [10℄),

every formula in D has a minimal
onsequen
e in D

#

. The abstra
t domain

D

#

determines the best abstra
tion fun
tion from D into D

#

by

�(�)

def

=

^

f	 2 D

#

j � j= 	g: (2)

In the
ase of predi
ate abstra
tion, the abstra
t domain D

#

onsists of the

�nite formulas built up from a given �nite subset of D of `atomi
' formu-

las. The atomi
 formulas de�ne a �nite number of transition predi
ates. In

ontrast to predi
ates that are de�ned by formulas over unprimed program

variables and apply to states, the (more general) transition predi
ates are

de�ned by formulas over primed and unprimed variables and apply to tran-

sitions (i.e., pairs of states).

For example, given the transition predi
ates p
 = l

i

, p

0

=l

i

(for ea
h

label l

i

), z � k, and z

0

� z + k for z 2 fx; yg and k 2 f�1; 0; 1g, the

abstra
tion of the
ommand formula
 in Example 1 is

�(
) � p
=l

1

^ y � 0 ^ x

0

� x+ 1 ^ y

0

� y ^ p

0

=l

2

:

Given the abstra
t domain D

#

, the best abstra
tion of the �xed point

operator F is the operator F

#

de�ned below (for transition formulas 	 in

14

D

#

).

3

F

#

()

def

= �(Æ C): (3)

The monotoni
ity of the �xed point operator F

#

is a dire
t
onsequen
e

of the monotoni
ity of the
omposition and the abstra
tion fun
tion. By

Tarski's �xed point theorem, the least �xed point of F

#

exists. We denote

the least �xed point of F

#

above C by lfp(F

#

; C). The �xed point lfp(F

#

; C)

is
omputed in the usual fashion.

lfp(F

#

; C) = 	

1

_ : : : _ 	

n

, where

	

1

= f�(
) j
 2 Cg

	

i+1

= f�(Æ
) j 2 	

i

and
 2 Cg

	

n+1

j= 	

1

_ : : : _ 	

n

Here, we impli
itly apply (1) and the additivity of the abstra
tion fun
tion �.

Sin
e D

#

is �nite, the �xed point
omputation terminates after �nitely many

iterations.

Strengthening Transition Invariants Given an invariant Inv, we
an

obtain a stronger transition invariant 	 by using (an abstra
tion of) the

�xed point operator F for the program fInv ^
 j
 2 Cg where ea
h guard

is strengthened by the invariant. The stronger transition invariant 	
an in

turn be used to
onstru
t a stronger invariant Inv

	

(see Remark 1).

LTL Software Model Che
king The algorithm de�ned in Figure 1 is

a semi-test for the validity of an LTL property for a program. We
all

it the `LTL software model
he
king algorithm' be
ause it uses the same

main ingredient of the already
ited algorithms known under software model

he
king for safety, namely �xed point iteration over an abstra
t domain

de�ned by predi
ates. The
orre
tness of a semi-test is the soundness of its

de�nite answers.

Theorem 3 (Soundness) The LTL software model
he
king algorithm is

orre
t, i.e., if the algorithm returns \LTL Property Holds" then the input

LTL property ' holds for the input program C.

3

The asso
iativity of the
omposition operator Æ is not preserved under predi
ate ab-

stra
tion. I.e., the abstra
t
omposition Æ

#

de�ned by

1

Æ

#

2

= �(

1

Æ

2

) is not

asso
iative. In other words, the abstra
tions of the
ommand formulas do not generate

a monoid. This is be
ause we use the best possible abstra
tions. Similarly, the operator

F

##

de�ned by F

##

() = 	 Æ

#

�(C) is not the best abstra
tion of F .

15

input

program C with initial states Init

transition predi
ates de�ning abstra
t domain D

#

B�u
hi automaton A

:'

with initial state q

init

and

a

epting states A

begin

C := C�A

:'

Init := Init ^ p

A

=q

init

� := ��:

V

f	 2 D

#

j � j= 	g

F

#

:= �	: �(Æ C)

	 := lfp(F

#

; C)

Inv

	

:= Init _ (9X (Init ^))[X=X

0

℄

if forea
h in 	 and q

a

2 A

well-founded(Inv

	

^ p

A

=q

a

^)

then

return(\LTL Property Holds")

else

return(\Don't Know")

end.

Figure 1: LTL software model
he
king.

The program is given as a set C of
ommand formulas; its set of initial

states is denoted by the state formula Init; the abstra
t domain D

#

with

glb operator

V

is given through a �nite set of transition predi
ates (D

#

onsists of all Boolean
ombinations of those predi
ates); the operator Æ

over transition formulas is sequential
omposition; the B�u
hi automaton

A

:'

represents the negation of the LTL property ' to be
he
ked; the

operator � is the syn
hronous parallel
omposition of a program and the

B�u
hi automaton.

16

input

program C with initial states Init,

transition predi
ates de�ning abstra
t domain D

#

begin

� := ��:

V

f	 2 D

#

j � j= 	g

F

#

:= �	: �(Æ C)

	 := lfp(F

#

; C)

Inv

	

:= Init _ (9X (Init ^))[X=X

0

℄

if forea
h in 	

well-founded(Inv

	

^)

then

return(\Terminating")

else

return(\Don't Know")

end.

Figure 2: Termination algorithm (spe
ial
ase of LTL algorithm)

Proof. The
orre
tness follows from the fa
t that a �xed point of an

abstra
tion of an operator is also a �xed point of that operator [10℄, the fa
t

that a �xed point of the
omposition operator F is an indu
tive transition

formula, Remark 3 and Theorem 2. �

The algorithm in Figure 2 is a semi-test for termination. It is the spe
ial

ase of the one in Figure 1 where the B�u
hi automaton
onsists of one state

(whi
h is both initial and a

epting, and whi
h has a transition to itself). Its

orre
tness
an be shown using Theorem 1 instead of Theorem 2.

The LTL algorithm (or its restri
tion to termination)
annot be
omplete

(result a de�nite answer always if the program is terminating) for de
idability

reasons. Instead, we have a di�erent kind of
ompleteness.

Theorem 4 (Abstra
tion Completeness) If the abstra
t domain D

#

ontains a �nite indu
tive transition invariant for the program C �A

:'

that

onsists of well-founded
ommand formulas, then the LTL software model

he
king algorithm will su

eed in proving the LTL property, i.e., it will re-

turn a de�nite answer (\LTL Property Holds").

Proof. [Sket
h℄ We use the
hara
teristi
 property of best abstra
tions in

the same way as for the
ompleteness of abstra
tion-based proofs for safety

properties (see [2, 9℄). �

17

In this se
tion, we have
onstru
ted one parti
ular abstra
tion, based on

transition predi
ates. Many more
onstru
tions are possible; see [10, 9℄. The

orre
tness of the algorithm will hold for any sound abstra
tion F

#

of the

on
rete
omposition operator F .

Well-foundedness of Command Formulas The algorithms are

parametrized by a test of (a suÆ
ient
ondition for) the well-foundedness

of the
ommand formulas in the abstra
t domains D

#

. This test returns

the value of the expression \well-founded()".

In the implementation of the algorithm that we used for our examples,

the test is based on linear programming. It is a de
ision pro
edure for a
lass

of
ommand formulas in linear arithmeti
 [26℄.

If the repetition Æ Æ : : :Æ of any length is di�erent from false, then the

ommand formula translates a program that
onsists of one while loop.

We
all it a simple while loop be
ause its body
onsists of straight-line
ode

(without if-then-else bran
hing). Given a
lass of programs we want to verify,

and given the
orresponding abstra
t domain, the next step is to determine

good suÆ
ient termination
onditions for the
orresponding
lass of simple

while loops.

Complexity We will next show that, in a
omplexity-theoreti
 sense, the

semi-test that we have given is not optimal for the problem that it `solves'.

First we formally de�ne what problem that is. We introdu
e the problem to

de
ide, given a program and an abstra
tion (a set of transition predi
ates),

whether `the abstra
t program' satis�es the LTL property. Formally, whether

the program has an indu
tive transition invariant, with well-founded
om-

mand formulas, in the abstra
t domain de�ned by the transition predi
ates.

(This is in analogy with the setting of Boolean programs with predi
ate

abstra
tion in [1℄: a Boolean program satis�es the given safety property if

and only if the program has an indu
tive invariant, without `bad' states, in

the abstra
t domain de�ned by the predi
ates. We omit a formalization of

`Boolean transition programs'; their operational semanti
s would be based

on sequential
omposition.)

We give an optimal algorithm and a lower bound and thus determine

the
omplexity of the de
ision problem in the size of the set of transition

predi
ates (whi
h depend on the given program; the program is either the

one whose termination we want to
he
k, or more generally its produ
t with a

B�u
hi automaton for the negation of the LTL formula that we want to
he
k;

the transition predi
ates in
lude usually the formulas p
 = l

n

and p

0

= l

n

and p

A

= q and p

0

A

= q for program labels l

n

of the program and states q

18

of the B�u
hi automaton).

Theorem 5 (Complexity of Abstra
t LTL Model Che
king) Given

a �xed program and a set of transition predi
ates, the problem to de
ide

whether the program has an indu
tive transition invariant with well-

founded
ommand formulas in the abstra
t domain de�ned by the transition

predi
ates, is PSPACE-
omplete in the number of transition predi
ates.

Proof. [Sket
h℄ For the upper bound, we use not �xed point iteration but a

non-deterministi
 algorithm that explores lfp(F

#

; C); again, as in the proof

of Theorem 4, we use the
hara
teristi
 property of best abstra
tions in

the same way as for the
ompleteness of abstra
tion-based proofs for safety

properties (see [2, 9℄). The lower bound is obvious from the �nite-state

ase (the only values are the labels of
on
urrent programs; the strongest

transition invariant is indu
tive and �nite, hen
e the well-foundedness of

its
ommand formulas is a suÆ
ient and ne
essary
ondition for program

orre
tness). �

7 Related Work

Our use of Ramsey's theorem in the proofs of Theorems 1 and 2 is reminis
ent

of its use in B�u
hi's theory of !-regular languages over a �nite alphabet

(see [32℄). This theory is the basis of the automata-theoreti
 approa
h to

LTL model
he
king [34℄. The equivalen
e
lasses over segments
orrespond

to the transformer fun
tions of the B�u
hi automaton. We, however, restri
t

ourselves to �nite sets of transformers over an in�nite state spa
e, as opposed

to restri
ting oneself to transformers over a �nite state spa
e (in both
ases,

the sets of transformers are �nite and thus indu
e an equivalen
e relation

of �nite index, whi
h is the raison d'être of the �niteness restri
tion). As

a
onsequen
e, we infer the existen
e of an ultimately periodi
 sequen
e of

transformers (

0

Æ

!

or, in the notation of [32℄, [v℄

�

� [w℄

�

!

), as opposed

to an ultimately periodi
 sequen
e of states. For a more subtle di�eren
e, in

our setting (see Footnote 3), the mapping of ea
h �nite segment of an in�nite

tra
e to its equivalen
e
lass is not a monoid homomorphism.

In [23℄, Lee, Jones and Ben-Amram present a termination analysis for

fun
tional programs; the analysis is based on the
omparison of in�nite paths

in the
ontrol
ow graph and in `size-
hanging graphs'; that
omparison
an

be redu
ed to the in
lusion test for B�u
hi automata. Our work takes what

we think is the essen
e in [23℄, formulates it in a logi
-based setting
ombined

with abstra
t interpretation,
onne
ts it with predi
ate abstra
tion and ex-

plores how far one
an get, pushing for greater generality. We use a di�erent

19

setting (imperative and
on
urrent instead of fun
tional programs). That

taken aside, a bold way to state the
ontribution of our work in
omparison

to theirs is that we go from termination to general LTL properties, and that

we go from one �xed abstra
tion to generi
 abstra
t domains (spe
i�ed by

transition predi
ates). The spe
i�
ation of an abstra
t domain allows one

to �ne-tune an abstra
tion to the property one tries to prove; in a way, this

possibility turns a program analysis into a veri�
ation method.

One
an su

essively re�ne abstra
tion by adding more transition predi-

ates. For example, adding x

0

< x and then x

0

< x � 1 allows one to
he
k

the termination of the program while(x>=0)fx:=x+1; x:=x-2g.

One pra
ti
al advantage of our logi
-based setup over the graph-based

one of [23℄ is the possibility to take into a

ount the spe
i�
ation of the

initial states of a program (without it, one
he
ks a|too strong|
ondition

for termination, namely under the|too weak|assumption that every state

an be an initial state); we do so in Theorems 1 and 2 by adding an invariant

as a
onjun
t to ea
h
ommand formula in the transition invariant (e.g. the

invariant Inv

	

derived from the transition invariant).

In [7, 8℄, Colon and Sipma give methods to prove termination that are

highly su

essful in pra
ti
e. The methods are based on linear arithmeti
, as

opposed to being parametrized by theorem provers. They work by isolating

strongly
onne
ted
omponents in the
ontrol
ow graph of a program and

by
omputing ranking fun
tions for ea
h one of them. No
omposition of

program statements is
onsidered, i.e., the program while (x>=0) fx=x+1;

x=x-2;g
annot be proven terminating.

In [33℄, Vardi provides an automata-theoreti
 framework for veri�
ation

of
on
urrent systems by appying in�nite automata. The system satis�es is

orre
t if its parallel
omposition with the automaton that a

epts
ompu-

tations violating the property does not have in�nite
omputations. Our LTL

he
king setup follows this framework.

In [19℄, Kesten, Pnueli and Vardi `augment' �nite-state abstra
tions with

progress monitors to verify liveness properties. They were perhaps the �rst

to point out �nite-state abstra
tions as su
h are not suÆ
ient for automated

liveness proofs. The progress monitors in
arnate ranking fun
tions that have

to be provided manually. Ranking fun
tions are to liveness what invariants

are to safety; in automated methods for safety, invariants are synthesized.

Previous approa
hes to automated liveness
he
king for in�nite-state sys-

tems are based on the iteration of �xpoint operators over sets of states.

When they a

ount for fairness assumptions (as e.g. [31℄), they need to under -

approximate sets of states, whi
h seems hard. Without fairness assumptions,

liveness proofs for
on
urrent systems are in general
awed (for example, the

non-starvation proofs for integer-valued
ommuni
ation proto
ols in [5, 11℄

20

are based on models where no pro
essor is allowed to idle).

We are not aware of previous formalizations of transition invariants. The

notion has appeared impli
itely in spe
ial instan
es. For example, the meta-

transitions of Boigelot and Wolper e.g. in [3℄ are (in fa
t, the strongest)

transition invariants for simple loops. They may be useful for showing the

well-foundedness of
ommand formulas in transition invariants, as the work

in [4℄ already indi
ates. The modifies
lauses used by Rustan Leino and

Kun
ak e.g. in [20℄; the
lause modifies x expresses the the
onjun
tion of

y

0

= y for all other variable y di�erent from x is a transition invariant.

8 Con
lusion, Future Work

Verifying liveness properties of software will always be a hard problem; any

automated method will work at most in examples where no ingeniousness

or
reativity is required. We have presented a formal framework that may

serve as a starting point for designing automated methods in a
ertain style.

Namely, it suggets using least �xed point iteration in
ombination with ab-

stra
t interpretation te
hniques and in parti
ular transition predi
ate ab-

stra
tion. I.e., this style relies on the same basis as the methods known under

software model
he
king, whi
h have demonstrated their strong potential in

automated tools for verifying safety properties of software systems.

It is not at all obvious, however, whether the su

ess of the software model

he
king method will extend from safety to liveness. We
annot predi
t

whether one
an a
hieve s
alability. We still have to develop te
hniques for

onstru
ting abstra
t domains that are as ri
h for transition formulas as for

state formulas. These te
hniques need to balan
e the
ost for
omputing the

abstra
tion with the
ost for the test of well-foundedness (see also below).

We have done some preliminary pra
ti
al experiments with a prototypi-

al implementation in Si
stus Prolog [21℄ with a
onstraint solver for linear

arithmeti
 (
lpqr [17℄); we use the CMU BDD pa
kage for the eÆ
ient im-

plementation of the �xpoint test. We used our tool to prove non-starvation

for the 2-pro
ess version of the bakery proto
ol. Non-starvation expresses

that ea
h time a pro
ess requests a resour
e it will �nally a

ess it. Its proof

requires fairness assumptions (ea
h pro
ess must make progress, at
ertain

program lo
ations). We express the fairness assumptions in the LTL formula

\if fair then non-starvation" and use the tool LTL2BA [12℄ to translate its

negation into a B�u
hi automaton. We then
ompute transition invariants

for the `syn
hronous parallel
omposition' of the proto
ol and the B�u
hi au-

tomaton, in the `forward' (F) and the `ba
kward' (B) way. We give some

measurements in Table 1. The experiments indi
ate that the size of the

21

time
ommand formulas

Program S P (ms) total loop fair

Bakery(B) 218 0 1740 815 17 8

Bakery(F) 218 0 4480 815 17 8

Table 1: Transition invariants in numbers.

B and F stands for the ba
kward and forward �xed point operators; S is

the number of guarded
ommands in the
omposition of the proto
ol with

the B�u
hi automaton for the negation of the LTL property \if fair then non-

starvation"; P denotes the number of transition predi
ates in the abstra
t

domain (ex
luding the ones for the program
ounters); the three numbers

total, loops and a

-loops refer to the total number of
ommand formulas

in the transition invariants, the ones that
orrespond to loops in the
ontrol

ow graph (the others are trivially terminating) and the ones that start from

B�u
hi a

epting lo
ations (i.e.
orrespond to fair exe
ution paths), respe
-

tively.

transition invariants gets too large when one en
odes fairness assumptions

by B�u
hi automata. We work on more dire
t ways to en
ode relevant spe
i�

kinds of fairness su
h as weak fairness.

Predi
ate abstra
tion is a way to delegate the
reativity part of the syn-

thesis of invariants to the
hoi
e of a set of predi
ates and defer the te-

diousness to the
omputation over an exponentially large abstra
t domain.

The method be
omes fully automated (and then the semi-test loses its ter-

mination guarantee) if
ombined with an automated pro
edure for
ounter-

example guided abstra
tion re�nement [6, 1, 16, 2℄. In our experiments, we

have generated the transition predi
ates using su
h a pro
edure (whi
h we

did not des
ribe sin
e it is quite analogous to the one for state predi
ates

in [2℄). Future work in
ludes the investigation of eÆ
ient spe
ialized pro
e-

dures and their fundamental properties as in [13, 2℄.

The interest of transition invariants goes beyond liveness
he
king. It

may be relevant for interpro
edural safety
he
king, sin
e the synthesis of

transition invariants generalizes the fun
tional approa
h to program analysis

of Sharir/Pnueli [30℄.

A
knowledgements This work started with dis
ussions with Chin Soon

Lee and Neil Jones during their visit in Saarbr�u
ken in September 2002. We

thank Patri
k Cousot, Kedar Namjoshi and Amir Pnueli for their remarks

on ranking fun
tions and �nite-state abstra
tion during VMCAI in January

2003. Amir Pnueli
ontributed the insights formulated in Footnote 2. We

22

thank Bernd Finkbeiner for insightful
omments and suggestions.

Referen
es

[1℄ T. Ball, R. Majumdar, T. Millstein, and S. Rajamani. Automati
 pred-

i
ate abstra
tion of C programs. In Pro
eedings of the ACM SIGPLAN

'01 Conferen
e on Programming Language Design and Implementation

(PLDI-01), volume 36 of ACM SIGPLAN Noti
es, pages 203{213. ACM

Press, 2001.

[2℄ T. Ball, A. Podelski, and S. K. Rajamani. Relative Completeness of

Abstra
tion Re�nement for Software Model Che
king. In J.-P. Katoen

and P. Stevens, editors, Pro
eedings of TACAS: Tools and Algorithms

for the Constru
tion and Analysis of Systems, volume 2280 of LNCS,

pages 158{172. Springer-Verlag, 2002.

[3℄ B. Boigelot and P. Wolper. Symboli
 veri�
ation with periodi
 sets. In

D. L. Dill, editor, CAV'94: Computer Aided Veri�
ation, volume 818 of

LNCS, pages 55{67. Springer, 1994.

[4℄ A. Bouajjani, A. Collomb-Anni
hini, Y. Lakhne
h, and M. Sighireanu.

Analyzing fair parametri
 extended automata. In P. Cousot, editor,

SAS'01: Stati
 Analysis Symposium, volume 2126 of LNCS, pages 335{

355. Springer, 2001.

[5℄ T. Bultan, R. Gerber, andW. Pugh. Symboli
 model
he
king of in�nite-

state systems using Presburger arithmeti
s. In O. Grumberg, editor,

Pro
eedings of the Ninth Conferen
e on Computer Aided Veri�
ation

(CAV'97), volume 1254 of LNCS, pages 400{411. Springer-Verlag, 1997.

[6℄ E. M. Clarke, O. Grumberg, S. Jha, Y. Lu, and H. Veith.

Counterexample-guided abstra
tion re�nement. In CAV 00: Computer-

Aided Veri�
ation, LNCS 1855, pages 154{169. Springer-Verlag, 2000.

[7℄ M. Colon and H. Sipma. Synthesis of linear ranking fun
tions. In T. Mar-

garia and W. Yi, editors, Tools and Algorithms for the Constru
tion and

Analysis of Systems, 7th International Conferen
e, TACAS 2001, Gen-

ova, Italy, April 2-6, 2001, Pro
eedings, volume 2031 of LNCS, pages

67{81. Springer-Verlag, 2001.

[8℄ M. Colon and H. Sipma. Pra
ti
al methods for proving program termi-

nation. In E. Brinksma and K. G. Larsen, editors, Computer Aided Ver-

23

i�
ation, 14th International Conferen
e, CAV 2002,Copenhagen, Den-

mark, July 27-31, 2002, Pro
eedings, volume 2404, pages 442{454.

Springer, 2002.

[9℄ P. Cousot. Partial
ompleteness of abstra
t �xpoint
he
king. In B. Y.

Choueiry and T. Walsh, editors, Abstra
tion, Reformulation, and Ap-

proximation, 4th International Symposium, SARA 2000, Horseshoe Bay,

Texas, USA, July 26-29, 2000, Pro
eedings, volume 1864 of LNCS, pages

1{15. Springer, 2000.

[10℄ P. Cousot and R. Cousot. Systemati
 design of program analysis frame-

works. In Conferen
e Re
ord of the Sixth Annual ACM SIGPLAN-

SIGACT Symposium on Prin
iples of Programming Languages, pages

269{282, San Antonio, Texas, 1979. ACM Press, New York, NY.

[11℄ G. Delzanno and A. Podelski. Model
he
king in CLP. In R. Cleave-

land, editor, Pro
eedings of TACAS'99: Tools and Algorithms for the

Constru
tion and Analysis of Systems, volume 1579 of Springer LNCS,

pages 223{239. Springer-Verlag, 1999.

[12℄ P. Gastin and D. Oddoux. Fast LTL to B�u
hi automata translation.

In G. Berry, H. Comon, and A. Finkel, editors, Pro
eedings of the 13th

Conferen
e on Computer Aided Veri�
ation (CAV'01), volume 2102 of

LNCS, pages 53{65. Springer Verlag, 2001.

[13℄ R. Gia
obazzi, F. Ranzato, and F. S
ozzari. Making abstra
t interpre-

tations
omplete. Journal of the ACM (JACM), 47(2):361{416, 2000.

[14℄ S. Graf and H. Sa��di. Constru
tion of abstra
t state graphs with PVS.

In O. Grumberg, editor, CAV'97: Computer Aided Veri�
ation, volume

1254 of LNCS, pages 72{83. Springer, 1997.

[15℄ J. Hat
li� and M. B. Dwyer. Using the Bandera tool set to model-
he
k

properties of
on
urrent Java software. In K. G. Larsen and M. Nielsen,

editors, CONCUR 2001 - Con
urren
y Theory, 12th International Con-

feren
e, Aalborg, Denmark, August 20-25, 2001, Pro
eedings, volume

2154 of LNCS, pages 39{58. Springer, 2001.

[16℄ T. A. Henzinger, R. Jhala, R. Majumdar, G. C. Ne
ula, G. Sutre, and

W. Weimer. Temporal-safety proofs for systems
ode. In E. Brinksma

and K. G. Larsen, editors, Computer Aided Veri�
ation, 14th Interna-

tional Conferen
e, CAV 2002, Copenhagen, Denmark, July 27-31, 2002,

Pro
eedings, volume 2404 of LNCS, pages 526{538. Springer, 2002.

24

[17℄ C. Holzbaur. OFAI
lp(q,r) Manual, Edition 1.3.3. Austrian Resear
h

Institute for Arti�
ial Intelligen
e, Vienna, 1995. TR-95-09.

[18℄ G. J. Holzmann. Software analysis and model
he
king. In E. Brinksma

and K. G. Larsen, editors, Computer Aided Veri�
ation, 14th Interna-

tional Conferen
e, CAV 2002, Copenhagen, Denmark, July 27-31, 2002,

Pro
eedings, volume 2404 of LNCS, pages 1{16. Springer, 2002.

[19℄ Y. Kesten, A. Pnueli, and M. Y. Vardi. Veri�
ation by augmented

abstra
tion: The automata-theoreti
 view. Journal of Computer and

System S
ien
es, 62(4):668{690, 2001.

[20℄ V. Kun
ak and R. Leino. In-pla
e re�nement for e�e
t
he
king. In

Se
ond International Workshop on Automated Veri�
ation of In�nite-

State Systems (AVIS'03), Warsaw, Poland, April 2003.

[21℄ T. I. S. Laboratory. SICStus Prolog User's Manual. Swedish Institute

of Computer S
ien
e, PO Box 1263 SE-164 29 Kista, Sweden, O
tober

2001. Release 3.8.7.

[22℄ Y. Lakhne
h, S. Bensalem, S. Berezin, and S. Owre. In
remental veri-

�
ation by abstra
tion. In T. Margaria and W. Yi, editors, Tools and

Algorithms for the Constru
tion and Analysis of Systems, 7th Interna-

tional Conferen
e, TACAS 2001, Genova, Italy, April 2-6, 2001, Pro-

eedings, volume 2031 of LNCS, pages 98{112. Springer-Verlag, 2001.

[23℄ C. S. Lee, N. D. Jones, and A. M. Ben-Amram. The size-
hange prin-

iple for program termination. In C. Norris and J. James B. Fenwi
k,

editors, Pro
eedings of the 28th ACM SIGPLAN-SIGACT Symposium

on Prin
iples of Programming Languages (POPL-01), volume 36, 3 of

ACM SIGPLAN Noti
es, pages 81{92. ACM Press, 2001.

[24℄ K. S. Namjoshi. Lifting temporal proofs through abstra
tions. In L. D.

Zu
k, P. C. Attie, A. Cortesi, and S. Mukhopadhyay, editors, Veri�
a-

tion, model
he
king, and abstra
t interpretation : 4th International

Conferen
e, VMCAI 2003 ; New York, NY, USA, January 9 - 11,

2003, volume 2575 of Le
ture notes in
omputer s
ien
e, pages 174{188.

Springer, 2003.

[25℄ A. Pnueli. The temporal logi
 of programs. In 18th Annual Symposium

on Foundations of Computer S
ien
e (FOCS '77), pages 46{57. IEEE

Computer So
iety Press, 1977.

25

[26℄ A. Podelski and A. Rybal
henko. A
omplete method for the synthesis

of linear ranking fun
tions. In B. Ste�en and G. Levi, editors, Pro
. of

VMCAI 2004: Veri�
ation, Model Che
king, and Abstra
t Interpreta-

tion, volume 2937 of LNCS, pages 239{251. Springer-Verlag, 2003.

[27℄ G. Ramalingam, A. Warshavsky, J. Field, D. Goyal, and M. Sagiv. De-

riving spe
ialized program analyses for
ertifying
omponent-
lient
on-

forman
e. In Pro
eeding of the ACM SIGPLAN 2002 Conferen
e on

Programming language design and implementation, pages 83{94. ACM

Press, 2002.

[28℄ F. P. Ramsey. On a problem of formal logi
. In Pro
. London Math.

So
., volume 30, pages 264{285, 1930.

[29℄ M. Sagiv, T. Reps, and R. Wilhelm. Parametri
 shape analysis via

3-valued logi
. ACM Transa
tions on Programming Languages and Sys-

tems (TOPLAS), 24(3):217{298, 2002.

[30℄ M. Sharir and A. Pnueli. Two approa
hes to interpro
edural data
ow

analysis. In S. S. Mu
hni
k and N. D. Jones, editors, Program Flow

Analysis: Theory and Appli
ations, Prenti
e-Hall Software Series, pages

189{233. Prenti
e-Hall, Englewood Cli�s , NJ , USA, 1981.

[31℄ H. B. Sipma, T. E. Uribe, and Z. Manna. Dedu
tive model
he
king.

In Pro
. of CAV 1996, volume 1102 of LNCS, pages 208{219. Springer-

Verlag, 1996.

[32℄ W. Thomas. Automata on in�nite obje
ts. In J. van Leeuwen, editor,

Handbook of Theoreti
al Computer S
ien
e, Volume B: Formal Models

and Semati
s, pages 133{192. Elsevier and MIT Press, 1990.

[33℄ M. Y. Vardi. Veri�
ation of
on
urrent programs | the automata-

theoreti
 framework. Annals of Pure and Applied Logi
, 51:79{98, 1991.

[34℄ M. Y. Vardi and P. Wolper. An automata-theoreti
 approa
h to auto-

mati
 program veri�
ation. In Pro
. 1st Symp. on Logi
 in Computer

S
ien
e, pages 332{344, Cambridge, June 1986.

[35℄ E. Yahav. Verifying safety properties of
on
urrent Java programs us-

ing 3-valued logi
. In H. R. Nielsen, editor, Pro
eedings of the 28th

ACM SIGPLAN-SIGACT Symposium on Prin
iples of Programming

Languages, pages 27{40. ACM Press, 2001.

26

���

�

��

k

I N F O R M A T I K

Below you �nd a list of the most re
ent te
hni
al reports of the Max-Plan
k-Institut f�ur Informatik. They

are available by anonymous ftp from ftp.mpi-sb.mpg.de under the dire
tory pub/papers/reports. Most

of the reports are also a

essible via WWW using the URL http://www.mpi-sb.mpg.de. If you have any

questions
on
erning ftp or WWW a

ess, please
onta
t reports�mpi-sb.mpg.de. Paper
opies (whi
h

are not ne
essarily free of
harge)
an be ordered either by regular mail or by e-mail at the address below.

Max-Plan
k-Institut f�ur Informatik

Library

attn. Anja Be
ker

Stuhlsatzenhausweg 85

66123 Saarbr�u
ken

GERMANY

e-mail: library�mpi-sb.mpg.de

MPI-I-2003-NWG2-002 F. Eisenbrand Fast integer programming in �xed dimension

MPI-I-2003-NWG2-001 L.S. Chandran, C.R. Subramanian Girth and Treewidth

MPI-I-2003-4-009 N. Zakaria Fa
eSket
h: An Interfa
e for Sket
hing and Coloring

Cartoon Fa
es

MPI-I-2003-4-008 C. Roessl, I. Ivrissimtzis, H. Seidel Tree-based triangle mesh
onne
tivity en
oding

MPI-I-2003-4-007 I. Ivrissimtzis, W. Jeong, H. Seidel Neural Meshes: Statisti
al Learning Methods in Surfa
e

Re
onstru
tion

MPI-I-2003-4-006 C. Roessl, F. Zeilfelder, G. Nrnberger,

H. Seidel

Visualization of Volume Data with Quadrati
 Super

Splines

MPI-I-2003-4-005 T. Hangelbroek, G. Nrnberger,

C. Roessl, H.S. Seidel, F. Zeilfelder

The Dimension of C

1

Splines of Arbitrary Degree on a

Tetrahedral Partition

MPI-I-2003-4-004 P. Bekaert, P. Slusallek, R. Cools,

V. Havran, H. Seidel

A
ustom designed density estimation method for light

transport

MPI-I-2003-4-003 R. Zayer, C. Roessl, H. Seidel Convex Boundary Angle Based Flattening

MPI-I-2003-4-002 C. Theobalt, M. Li, M. Magnor,

H. Seidel

A Flexible and Versatile Studio for Syn
hronized

Multi-view Video Re
ording

MPI-I-2003-4-001 M. Tarini, H.P.A. Lens
h, M. Goesele,

H. Seidel

3D A
quisition of Mirroring Obje
ts

MPI-I-2003-2-004 Software Model Che
king of Liveness Properties via

Transition Invariants

MPI-I-2003-2-003 Y. Kazakov, H. Nivelle Subsumption of
on
epts in DL FL

0

for (
y
li
)

terminologies with respe
t to des
riptive semanti
s is

PSPACE-
omplete

MPI-I-2003-2-002 M. Jaeger A Representation Theorem and Appli
ations to

Measure Sele
tion and Noninformative Priors

MPI-I-2003-2-001 P. Maier Compositional Cir
ular Assume-Guarantee Rules

Cannot Be Sound And Complete

MPI-I-2003-1-018 A Note on the Smoothed Complexity of the

Single-Sour
e Shortest Path Problem

MPI-I-2003-1-017 G. S
hfer, S. Leonardi Cross-Monotoni
 Cost Sharing Methods for Conne
ted

Fa
ility Lo
ation Games

MPI-I-2003-1-016 G. S
hfer, N. Sivadasan Topology Matters: Smoothed Competitive Analysis of

Metri
al Task Systems"

MPI-I-2003-1-015 A. Kov
s Sum-Multi
oloring on Paths

MPI-I-2003-1-014 G. S
hfer, L. Be

hetti, S. Leonardi,

A. Mar
hetti-Spa

amela,

T. Vredeveld

Average Case and Smoothed Competitive Analysis of

the Multi-Level Feedba
k Algorithm

MPI-I-2003-1-013 I. Katriel, S. Thiel Fast Bound Consisten
y for the Global Cardinality

Constraint

MPI-I-2003-1-012 - not published -

MPI-I-2003-1-011 P. Krysta, A. Czumaj, B. Voe
king Sel�sh TraÆ
 Allo
ation for Server Farms

MPI-I-2003-1-010 H. Tamaki A linear time heuristi
 for the bran
h-de
omposition of

planar graphs

MPI-I-2003-1-009 B. Csaba On the Bollob�as { Eldridge
onje
ture for bipartite

graphs

MPI-I-2003-1-008 P. Sanders Polynomial Time Algorithms for Network Information

Flow

MPI-I-2003-1-007 H. Tamaki Alternating
y
les
ontribution: a strategy of

tour-merging for the traveling salesman problem

MPI-I-2003-1-006 M. Dietzfelbinger, H. Tamaki On the probability of rendezvous in graphs

MPI-I-2003-1-005 M. Dietzfelbinger, P. Woelfel Almost Random Graphs with Simple Hash Fun
tions

MPI-I-2003-1-004 E. Althaus, T. Polzin,

S.V. Daneshmand

Improving Linear Programming Approa
hes for the

Steiner Tree Problem

MPI-I-2003-1-003 R. Beier, B. V
king Random Knapsa
k in Expe
ted Polynomial Time

MPI-I-2003-1-002 P. Krysta, P. Sanders, B. V
king S
heduling and TraÆ
 Allo
ation for Tasks with

Bounded Splittability

MPI-I-2003-1-001 P. Sanders, R. Dementiev Asyn
hronous Parallel Disk Sorting

MPI-I-2002-4-002 F. Drago, W. Martens,

K. Myszkowski, H. Seidel

Per
eptual Evaluation of Tone Mapping Operators with

Regard to Similarity and Preferen
e

MPI-I-2002-4-001 M. Goesele, J. Kautz, J. Lang,

H.P.A. Lens
h, H. Seidel

Tutorial Notes ACM SM 02 A Framework for the

A
quisition, Pro
essing and Intera
tive Display of High

Quality 3D Models

MPI-I-2002-2-008 W. Charatonik, J. Talbot Atomi
 Set Constraints with Proje
tion

MPI-I-2002-2-007 W. Charatonik, H. Ganzinger Symposium on the E�e
tiveness of Logi
 in Computer

S
ien
e in Honour of Moshe Vardi

MPI-I-2002-1-008 P. Sanders, J.L. Tr� The Fa
tor Algorithm for All-to-all Communi
ation on

Clusters of SMP Nodes

MPI-I-2002-1-005 M. Hoefer Performan
e of heuristi
 and approximation algorithms

for the un
apa
itated fa
ility lo
ation problem

MPI-I-2002-1-004 S. Hert, T. Polzin, L. Kettner,

G. S
hfer

Exp Lab A Tool Set for Computational Experiments

MPI-I-2002-1-003 I. Katriel, P. Sanders, J.L. Tr� A Pra
ti
al Minimum S
anning Tree Algorithm Using

the Cy
le Property

MPI-I-2002-1-002 F. Grandoni In
rementally maintaining the number of l-
liques

MPI-I-2002-1-001 T. Polzin, S. Vahdati Using (sub)graphs of small width for solving the Steiner

problem

MPI-I-2001-4-005 H.P.A. Lens
h, M. Goesele, H. Seidel A Framework for the A
quisition, Pro
essing and

Intera
tive Display of High Quality 3D Models

MPI-I-2001-4-004 S.W. Choi, H. Seidel Linear One-sided Stability of MAT for Weakly Inje
tive

Domain

MPI-I-2001-4-003 K. Daubert, W. Heidri
h, J. Kautz,

J. Dis
hler, H. Seidel

EÆ
ient Light Transport Using Pre
omputed Visibility

MPI-I-2001-4-002 H.P.A. Lens
h, J. Kautz, M. Goesele,

H. Seidel

A Framework for the A
quisition, Pro
essing,

Transmission, and Intera
tive Display of High Quality

3D Models on the Web

MPI-I-2001-4-001 H.P.A. Lens
h, J. Kautz, M. Goesele,

W. Heidri
h, H. Seidel

Image-Based Re
onstru
tion of Spatially Varying

Materials

MPI-I-2001-2-006 H. Nivelle, S. S
hulz Pro
eeding of the Se
ond International Workshop of the

Implementation of Logi
s

MPI-I-2001-2-005 V. Sofronie-Stokkermans Resolution-based de
ision pro
edures for the universal

theory of some
lasses of distributive latti
es with

operators

MPI-I-2001-2-004 H. de Nivelle Translation of Resolution Proofs into Higher Order

Natural Dedu
tion using Type Theory

MPI-I-2001-2-003 S. Vorobyov Experiments with Iterative Improvement Algorithms on

Completely Unimodel Hyper
ubes

MPI-I-2001-2-002 P. Maier A Set-Theoreti
 Framework for Assume-Guarantee

Reasoning

MPI-I-2001-2-001 U. Waldmann Superposition and Chaining for Totally Ordered

Divisible Abelian Groups

MPI-I-2001-1-007 T. Polzin, S. Vahdati Extending Redu
tion Te
hniques for the Steiner Tree

Problem: A Combination of Alternative-and

Bound-Based Approa
hes

