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Abstrat

We prove the PSPACE-ompleteness of the subsumption problem for

(yli) terminologies with respet to desriptive semantis in a simple De-

sription Logi FL

0

, whih allows for onjuntions and universal value re-

stritions only, thus solving the problem whih was open for more than ten

years.
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1 Introdution

FL

0

is a Desription Logi where onepts an be onstruted by using onjuntions and

universal value restritions only. The onept subsumption problem in FL

0

for (yli)

terminologies was investigated in [Baa90℄, [Baa96℄ and [Neb91℄ for the three kinds of se-

mantis: the least �xpoint (lfp), the greatest �xpoint (gfp) and the desriptive semantis.

These papers provide a PSPACE deision proedure for the subsumption problem with

respet to all three kinds of semantis. In addition, in [Baa90℄ and [Baa96℄ it was shown

that this problem is PSPACE-hard both for gfp- and lfp-semantis. For the desriptive

semantis, however, the highest known lower bound was found to be o-NP [Neb91℄, whih

provides a omplete haraterization for ayli terminologies. So, the question about the

exat omplexity of the subsumption problem for the desriptive semantis with respet

to (yli) terminologies has been open.

In this paper we prove the PSPACE-hardness of this problem (and thus, eliminate the

remaining omplexity gap) by redution from the universality problem for automata on

in�nite words with pre�x aeptane ondition.

2 Desription Logi FL

0

FL

0

is a simple Desription Logi, whih allows for onjuntions and universal value re-

stritions of onepts only. Formally, given a signature � = (A;R) onsisting of onept

names A and role names R, the set of (generalized) onepts C

�

of DL FL

0

is de�ned by

the grammar:

C

�

::= A j C

1

u C

2

j 8R:C

were A 2 A are usually alled atomi onepts; C

1

, C

2

, C are arbitrary generalized onepts

of FL

0

and R 2 R.

A terminology (or TBox for short) is a �nite set of onept de�nitions of the form

A

�

=C, where A is an atomi onept alled de�ned onept and C is a generalized onept.

The semantis for FL

0

is de�ned by means of interpretations I = (�

I

; �

I

), were �

I

is

a set alled the domain of I and �

I

assigns to every onept name A 2 A a set A

I

� �

I

and to every role name R 2 R a relation R

I

� �

I

� �

I

. The interpretation I an be

extended to generalized onepts of FL

0

by de�ning:

(C

1

u C

2

)

I

:= C

I

1

\ C

I

2

; (8R:C)

I

:= fd 2 �

I

j 8 e 2 �

I

; (d; e) 2 R

I

implies e 2 C

I

g

An interpretation I is a model of TBox T i� A

I

= C

I

for all de�nitions A

�

=B of T . Given

a terminology T we say that a onept A is subsumed by a onept B w.r.t. desriptive

semantis (notation: A v

T

B) i� A

I

� B

I

for all models I of T . The assoiated deision

problem for T , A and B is alled the onept subsumption problem.

Sine we are interested in proving the hardness result for the onept subsumption

problem, we may onsider restrited forms of terminologies. Thus, in the rest of the paper

we assume that TBox ontains only de�nitions of the form:

A

�

= 8R

1

:B

1

u : : : u 8R

l

:B

l

; (1)

1



were A, B

i

are atomi onepts (1 � i � l) and l � 1. We also assume that exatly one

de�nition is given for every atomi onept.

With every terminology T of the form (1) we assoiate a non-deterministi semi-

automaton A

T

= (�; Q; Æ) onsisting of the �nite alphabet of letters �, the �nite set of

states Q and the transition relation Æ � Q � � � Q. We proeed similarly as in [Baa96℄,

[Neb91℄:

� the alphabet � of A

T

is the set of role names of T ;

� the set of states Q is the set of onept names in T and

� the transition relation Æ = f(A;R;B) j A

�

= : : : u 8R:B u : : :2T g.

Note that this onstrution gives a one-to-one orrespondene between terminologies of

the form (1) and semi-automata without bloking states: for every state q 2 Q there exist

some a 2 � and q

0

2 Q suh that (q; a; q

0

) 2 Æ.

A run of a semi-automaton A over an (in)�nite word w = a

1

�a

2

� � �a

i

(� � � )2�

�(!)

is

an (in)�nite sequene of states r : q

0

; q

1

; : : : ; q

i

; (: : : )2Q

�(!)

suh that (q

i�1

; a

i

; q

i

) 2 Æ for

any i � 1. With every two states q

1

; q

2

2 Q of a semi-automaton A = (�; Q; Æ) one an

assoiate the regular language L

A

(q

1

; q

2

) := fw 2 �

�

j there exists a run q

1

; : : : ; q

2

over wg.

Now we give the automata-theoreti haraterization of the onept subsumption prob-

lem. Theorem 29 in [Baa96℄ provides the haraterization for the general terminologies,

however we may give a simpli�ed variant for the restrited form of terminologies.

Theorem 1 (Charaterization of onept subsumption) Let T be a terminology of

the form (1) and A

T

= (�; Q; Æ) be the orresponding semi-automaton. Then A

0

v

T

B

0

i� for every word w 2 �

!

and for every run

r

B

: B

0

; B

1

; : : : ; B

i

; : : : in A

T

over w there exists a run

r

A

: A

0

; A

1

; : : : ; A

i

; : : : in A

T

over w and an integer k � 0 suh that A

k

= B

k

.

Proof. We prove the theorem by inspeting the tableau algorithm for heking onept

subsumption. We try to refute A

0

v

T

B

0

in some model I of T with the domain N .

Every node of the tableau will desribe neessary onditions of the form n : A, n : :B or

(n;m) : R for A;B 2 A and R 2 R, whih shell be imposed on a model I. The semantial

meanings of these restritions are n 2 A

I

, n =2 B

I

and (n;m) 2 R

I

respetively. We start

with the node f0 : A

0

; 0 : :B

0

g and apply expansion rules. Every de�nition

A

�

= 8R

1

:B

1

u : : : u 8R

l

:B

l

of T enfores two sorts of rules:

(8

i

A)

n : A; (n;m) : R

i

m : B

i

; (9A)

n : :A

: : : j (n; n+ 1) : R

i

; (n+ 1) : :B

i

j : : :

A rule is applied to a node by forming a hild of this node ontaining all formulas of parent

and the onlusion of the rule; (9A)-rule assumes branhing over i � i � l. The rules

are applied fairly: the appliation of a rule annot be postponed forever. Some branhes

2



of the tableau an lead to the inonsistent node ontaining a lash fn : A; n : :Ag.

In this ase the branh is losed, otherwise it is open. The tableau is losed i� all its

branhes are losed. The presented tableau proedure is sound and omplete for the onept

subsumption problem:

Proposition 2 The tableau for A

0

; B

0

and T is losed i� A

0

v

T

B

0

.

Proof. The proof of this proposition an be found in the Appendix A. �

Now, to prove the theorem, observe that for every branh � of the tableau:

1. There is exatly one negative expression of the form n : :B

n

for every n � 0;

2. There is exatly one positive expression of the form (m;n) : R

n

for every n � 1, and

only for m = n� 1.

3. The sequene r

�

B

0

: B

0

; : : : ; B

i

; : : : is a run over the word w

�

= R

1

�R

2

� � �R

i

� � � in

A

T

. Additionally, every run r : B

0

0

; : : : ; B

0

i

; : : : orresponds to some branh of the

tableau.

4. For every positive expression m : A

0

in the branh � either m = 0 and A

0

= A

0

or

m > 0 and (A

00

; R

m

; A

0

) 2 Æ for some A

00

2 � , where R

m

is the m-th letter of w

�

.

Claims 1{4 an be proved by indution on n. Now, to onlude the result of the theorem:

A

0

v

T

B

0

i� (by soundness and ompleteness of the tableau proedure)

every branh � of the tableau is losed

i� (by 3. and by the de�nition of the losed branh)

for every run r

�

B

0

: B

0

; : : : ; B

i

; : : : over w 2 �

!

there is some A

0

(k) = B

k

(k) 2 �

i� (by 4.)

for every run r

B

0

: B

0

; : : : ; B

i

; : : : over w 2 �

!

there exists a run r

A

0

: A

0

; : : : ; A

k

= B

k

; B

k+1

; : : : over w

i�

for every run r

B

0

: B

0

; : : : ; B

i

; : : : over w 2 �

!

there exists a run r

A

0

: A

0

; : : : ; A

i

; : : : over w and k � 0 suh that A

k

= B

k

. �

2.1 The redution.

Now we onsider an instane of the onept subsumption problem whih suÆes to prove

PSPACE-hardness. Take a semi-automaton A = (�; Q; Æ) and two states q

1

; q

2

2 Q.

We onstrut a new semi-automaton A

0

from A by adding a new state q

0

and making it

reahable from q

2

and itself by any transition: A

0

= (�; Q

0

; Æ

0

), where Q

0

= Q [ q

0

and

Æ

0

= Æ [ f(q

2

; a; q

0

); (q

0

; a; q

0

) j a 2 �g.

3



A

A

0

q

1

A

q

2 q

0

B

b b

w

0

w

Figure 1: The redution

If A

0

does not have bloking states then we an onsider

the terminology T

0

orresponding to A

0

, so q

1

orresponds to

some onept A of T

0

and q

0

orresponds to some onept B

of T

0

. By Theorem 1, B subsumes A i� for every run from

q

0

over some word w 2 �

!

there exists a run in A

0

from q

1

over w suh that both runs share at least one state. Sine

every run from q

0

an ontain the state q

0

only and for every

w 2 �

!

suh a run always exists, we obtain: \B subsumes

A i� for every w 2 �

!

there exists a run over w from q

1

ontaining q

0

." Note that in the last sentene we an replae

q

0

by q

2

. Thus onept subsumption problem is not easier than the problem:

\given a semi-automaton A = (�; Q; Æ) and two states q

1

; q

2

2 Q suh

that all states in Q n fq

2

g are not bloking, hek whether any word

w 2 �

!

has a �nite pre�x w

0

2 L

A

(q

1

; q

2

)."

In the next setion we reformulate this problem in terms of automata on in�nite words as

the universality problem and prove that it is PSPACE-hard.

3 Automata on in�nite words and the universality

problem

Many kinds of �nite automata on in�nite words (!-automata) have been investigated in

the literature (for a survey see [Tho90℄). There is a lassi�ation of automata aording

to aeptane onditions. B�uhi automata, for instane, aept an in�nite word if there

exists a run over this word in whih some aepting state is enountered in�nitely often.

Although many algorithms for automata are desribed in the literature, the orrespond-

ing omplexity issues are usually not well-studied. The (non)universality problem: \given

an automaton A hek if it does (not) aept all words" is known to be PSPACE-omplete

for non-deterministi B�uhi automata as well as for non-deterministi �nite automata on

�nite words. We introdue a pre�x aeptane ondition for !-automata and show that

the universality problem is also PSPACE-hard for this automata. One of the impliations

of this result is the PSPACE-hardness of the subsumption problem for the desriptive

semantis.

A non-deterministi �nite automaton (NFA) is a tuple A = (�; Q; Æ; Q

0

; F ), whih is a

semi-automaton (�; Q; Æ) extended with a set of initial states Q

0

� Q and a set of aepting

states F � Q. The size of the automaton A = (�; Q; Æ; Q

0

; F ) is jAj = jQj + jÆj. We

distinguish several kinds of non-deterministi �nite automata aording to the aeptane

ondition:

1. An automaton on �nite words NFA

�

is an NFA = (�; Q; Æ; Q

0

; F ) whih aepts a

�nite word w 2 �

�

i� there exists a run r : q

1

; : : : ; q

n

over w with q

1

2 Q

0

, q

n

2 F .

4



2. A B�uhi automatonNFA

!

b

is anNFA = (�; Q; Æ; Q

0

; F ) on in�nite words. It aepts

w 2 �

!

i� there exists a run r : q

1

; : : : ; q

i

; : : : over w whih repeats some state from

F in�nitely often.

3. We introdue the !-automaton with the pre�x aeptane ondition NFA

!

p

as a

NFA = (�; Q; Æ; Q

0

; F ) whih aepts w 2 �

!

i� there exist a �nite pre�x w

0

of

w and a run r : q

1

; : : : ; q

n

over w

0

with q

1

2 Q

0

and q

n

2 F . In other words, NFA

!

p

aepts an in�nite word if it aepts a �nite pre�x of this word as NFA

�

.

In setion 2.1 we have shown that a ertain problem for semi-automata A = (�; Q; Æ)

an be seen as an instane of the onept-subsumption problem and thus should be not

harder. After we have introdued the automata with the pre�x aeptane ondition, we

an reformulate this problem as: \given NFA

!

p

= (�; Q; Æ; fq

1

g; fq

2

g) without bloking

states in Qnfq

2

g, hek whether all words w 2 �

!

are aepted." Suh a problem appears

in the literature as a (non)universality problem for �nite automata [Var95℄. The NFA

�

(NFA

!

b

, NFA

!

p

) is universal i� it aepts any word w 2 �

�

(w 2 �

!

). The assoiated

deision problem is alled the universality problem. This problem is known to be PSPACE-

omplete for NFA

�

and NFA

!

b

(f. [Var95℄). It is not surprising that we an obtain the

similar result for the NFA

!

p

.

Theorem 3 The universality problem for NFA

!

p

is in PSPACE.

Proof. The proof is by the redution to the universality problem for B�uhi automata.

Given NFA

!

p

A = (�; Q; Æ; Q

0

; F ) we proeed similarly as in the setion 2.1: Consider the

B�uhi automaton A

0

= (�; Q

0

; Æ

0

; Q

0

; fq

0

g), where q

0

is a new state, Q

0

= Q [ fq

0

g and

Æ

0

= Æ [ f(q; a; q

0

) ; (q

0

; a; q

0

) j q 2 F; a 2 �g. A aepts w 2 �

!

i� A

0

does, so A is

universal i� A

0

is universal. �

Theorem 4 The universality problem for NFA

!

p

is PSPACE-hard.

Proof. The proof is given by the redution from polynomial-spae Turing mahines. The

idea is quite standard for proving suh results. For every Turing mahine and input we

onstrut the automaton whih aepts every word exept the legal omputation of the

Turing mahine: given some andidate word it \guesses" the position of the possible error

and aepts the word if it is the error indeed. So the onstruted automaton is universal

i� the Turing mahine does not aept the input. The details of the proof an be found in

the Appendix B. �

Corollary 5 The universality problem for NFA

!

p

is PSPACE-omplete.

We have proved the PSPACE-hardness of the universality problem for NFA

!

p

A =

(�; Q; Æ; Q

0

; F ), however we need to prove the hardness for the instane when we have only

one initial, one aepting state and do not have bloking states among the non-aepting

states. The next proposition shows that we an assume these restritions without loss of

generality.

5



Proposition 6 For any NFA

!

p

A = (�; Q; Æ; Q

0

; F ) one an onstrut an NFA

!

p

A

0

=

(�; Q

0

; Æ

0

; fq

0

0

g; ff

0

g) without bloking states in Q

0

n ff

0

g in linear size of jAj whih aepts

exatly the same words as A.

Proof. We onsider two ases:

1. Q

0

\ F 6= ;. Then A trivially aepts all words and we an take say

A

0

:= f�; fqg; ;; fqg; fqgg for some state q.

2. Q

0

\ F = ;. It suÆes to onstrut A

0

whih aepts exatly the same �nite words

as A by the NFA

�

-aeptane ondition. We simply take A

0

= (�; Q

0

; Æ

0

; fq

0

0

g; ff

0

g)

with the new states q

0

0

and f

0

, and de�ne Q

0

= Q [ fq

0

0

; f

0

g,

Æ

0

= Æ [ f(q

0

0

; a; q) j 9q

0

2 Q

0

: (q

0

; a; q) 2 Æg

[ f(q; a; f

0

) j 9f 2 F : (q; a; f) 2 Æg

[ f(q

0

0

; a; f

0

) j 9q

0

2 Q

0

; 9f 2 F : (q; a; f) 2 Æg:

If some state q

0

2 Q

0

n ff

0

g is bloking then we an remove it together with the

involved transitions sine no run from q

0

0

to f

0

an ontain q

0

.

�

Corollary 7 The onept subsumption problem for DL FL

0

with yli terminologies

w.r.t. desriptive semantis is PSPACE-omplete.

Appendix A.

In this appendix we give a proof of Proposition 2.

Proposition 2 The tableau for A

0

; B

0

and T is losed i� A

0

v

T

B

0

.

Proof. To prove the soundness ()) note that any model I of T in whih A

I

0

6� B

I

0

an

guide an open branh of the tableau.

The ompleteness part (() is more involved. Assume that S is a set of expressions on

the open branh of the tableau. Consider the losure (S) of S under the rules:

(

i

A)

m : :B

i

; (n;m) : R

i

n : :A

; A

�

= : : : u 8R

i

:B

i

u � � � 2 T :

Formally, (S) = [

i�0

S

i

, were S

i

is obtained from S by adding a �nite number of onlu-

sions of the rules (

i

A) with n;m � i. Note that if S did not ontain a lash then so is

(S): Otherwise lash �rst appears in some S

i

, i > 0. Then onsider the �rst appliation

of the rule (

i

A) whih produes a lash fn : A; n : :Ag in S

i

. Sine n : A 2 S and S

is losed under the rules (8

i

A), the lash fm : B

i

; m : :B

i

g should have ourred in S

i

before the (presumably �rst) lash fn : A; n : :Ag has appeared. A ontradition.

Sine S is a set of formulas of the open branh, we have proved that (S) does not

ontain a lash.

The set (S) de�nes a model I = (N ; �

I

) were:

6



� (n;m) 2 R

I

i� (n;m) : R 2 (S) (i� (n;m) : R 2 S), R 2 R;

� n 2 A

I

i� n : :A =2 (S), A 2 A.

I is indeed a model of T in whih A

I

0

6� B

I

0

:

1. 0 2 A

I

0

sine 0 : A

0

2 S � (S), thus 0 : :A

0

=2 (S) ((S) is lash-free);

2. 0 =2 B

I

0

sine 0 : :B

0

2 S � (S);

3. A

I

� (8R

1

:B

1

u : : : u 8R

l

:B

l

)

I

beause (S) is losed under the rules (8

i

A);

4. A

I

� (8R

1

:B

1

u : : : u 8R

l

:B

l

)

I

: n =2 A

I

i� n : :A 2 (S) i� n : :A 2 S or n : :A

is obtained by some (

i

A). In the �rst ase the inlusion holds by the rule (9A); In

the last ase there are some (n;m) : R

i

2 (S), m : :B

i

, whih make the right-hand

side not to ontain n.

Note that we have also proved that the onept subsumption A

0

v

T

B

0

has the linear

model property, i.e. we may onsider only tree-models I of T with branhing degree 1.

�

Appendix B.

In this appendix we give a proof of Theorem 4.

Theorem 4 The universality problem for NFA

!

p

is PSPACE-hard.

Proof. We prove the theorem by the redution from polynomial-spae Turing mahines

using the de�nition:

PSPACE = f L j L is a language deided by a deterministi

Turing mahine in polynomial spae g

The details of involved de�nitions an be found, for instane, in [Sip97℄, however in order

to be self-ontained, we give the ones that are needed.

A Turing mahine is a tuple M = (Q;�;�; Æ; q

0

; q

aept

; q

rejet

), were Q is the �nite set

of states, � is the �nite input alphabet, � is the �nite tape alphabet ontaining the speial

blank symbol xy (� � � n fxyg), Æ : Q � � ! Q � � � fL;Rg is the transition funtion,

q

0

2 Q is the initial state, q

aept

2 Q is the aepting state and q

rejet

2 Q (q

rejet

6= q

aept

)

is the rejeting state.

A on�guration of the Turing mahine M = (Q;�;�; Æ; q

0

; q

aept

; q

rejet

) is a string of

the form:  = a

1

a

2

: : : a

i�1

qa

i

: : : a

k

, were eah a

j

2 �, q 2 Q. One ould think of the

on�guration  as the desription of the Turing mahine in the state q with the head at

the i-th ell of the tape with the ontent a

1

� � �a

k

.

The transition funtion Æ an be extended to on�gurations in the following way: Let

a; b 2 �, u; v 2 �

�

and [℄ denote the ut of the on�guration  by removing the rightmost
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blank symbols xy from . Then

^

Æ(uaq

i

bv) :=

�

uq

j

av if Æ(q

i

; b) = (q

j

; ; L);

uaq

j

v if Æ(q

i

; b) = (q

j

; ; R);

^

Æ(q

i

bv) :=

�

q

j

v if Æ(q

i

; b) = (q

j

; ; L);

q

j

v if Æ(q

i

; b) = (q

j

; ; R);

^

Æ(uq

i

) := [

^

Æ(uq

i

xy)℄;

A omputation of the Turing mahine M = (Q;�;�; Æ; q

0

; q

aept

; q

rejet

) from x 2 �

�

is

a sequene of on�gurations 

0

; 

1

; : : : ; 

i

; : : : suh that 

0

= q

0

x and 

i+1

=

^

Æ(

i

). If the

omputation ends with a on�guration 

n

then if q

aept

2 

n

, we say that M aepts x; if

q

rejet

2 

n

, we say that M rejets x.

The Turing mahine M deides the language L � �

�

if for every x 2 �

�

, x 2 L implies

M aepts x, and x =2 L implies M rejets x.

We say that M is a polynomial-spae Turing mahine if there exists a polynomial p(n)

suh that for any input x 2 �

�

and the omputation 

0

; 

1

; : : : ; 

i

; : : : from x the length of

every on�guration j

i

j � p(jxj).

Now we give a polynomial-time redution from the deision problem for any language

L 2 PSPACE to the universality problem for some set of NFA

!

p

.

Assume M = (Q;�;�; q

0

; q

aept

; q

rejet

) is a polynomial-spae Turing mahine that

deides L. We give an algorithm whih for every x 2 �

�

onstruts a NFA

!

p

A

x

in

polynomial size of jxj suh that A

x

aepts all words, exept the word:

w

0

= #�#�

0

�(xy)

l

0

�#�

1

�(xy)

l

1

�# � � �#�

k

�(xy)

l

k

�#�

k

�(xy)

l

k

� � �

were 

0

; 

1

; : : : ; 

k

is an aepting omputation for x (if any); l

i

= l � j

i

j, were l = p(jxj)

for polynomial p(n) bounding the size of on�gurations of M ; # is a new symbol (# =2 �).

Thus, x 2 L i� M rejets x i� M does not aept x i� A

x

is universal, and

we an obtain the redution sine PSPACE = o-PSPACE.

Consider the word w

0

. Note that every three subsequent symbols �

i�1

; �

i

; �

i+1

at the

positions i� 1; i; i+1 of w

0

uniquely determine the symbol �

i+l+1

at the position i+ l+1

of w

0

. To be preise, �

i+l+1

= Next(�

i�1

; �

i

; �

i+1

), were:

Next(q

i

; a; �

1

) = , Next(b; q

i

; a) = b, Next(#; q

i

; a) = q

j

, Next(�

1

; b; q

i

) = q

j

if Æ(q

i

; a) = (q

j

; ; L), q

i

6= q

aept

;

Next(q

i

; a; �

1

) = q

j

, Next(�

1

; q

i

; a) = , Next(�

1

; b; q

i

) = b

if Æ(q

i

; a) = (q

j

; ; R), q

i

6= q

aept

;

Next(�

1

; �

2

; �

3

) = �

2

in all other ases;

(a; b;  2 �, �

i

2 � [ f#g).

The informal desription of A

x

is as follows: given an in�nite string w 2 (�[f#g)

!

, A

x

aepts w if it an �nd that w 6= w

0

, whih an be done by deteting one of the following:

1. First l + 2 symbols of w di�er from those of ##x(xy)

l

0

(l

0

= l � jxj);

2. For some i � 2 the symbol �

i+l+1

6= Next(�

i�1

; �

i

; �

i+1

);

3. The string w ontains the symbol q

rejet

.

Note that sine M deides the language L � �

�

, every omputation 

0

; 

1

; : : : ; 

i

; : : : from

the x 2 �

�

should end either with the aepting state q

aept

or with the rejeting state

q

rejet

. So, w 6= w

0

i� w satis�es one of the 1-3 above.
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Formally, A

x

= A

1

x

[ A

2

x

[ A

3

x

were: A

i

x

is the NFA

!

p

over (� [ f#g)

w

whih aepts

a word w if the orresponding ondition i above is ful�lled (i = 1; 2; 3). The union of

two automata A

1

= (�; Q

1

; Æ

1

; Q

1

0

; F

1

) and A

2

= (�; Q

2

; Æ

2

; Q

2

0

; F

2

) is the automaton

A = (�; Q

1

[ Q

2

; Æ

1

[ Æ

2

; Q

1

0

[ Q

2

0

; F

1

[ F

2

). A aepts a word i� it is aepted by A

1

or

A

2

. The automata A

1

x

, A

2

x

and A

3

x

are onstruted as follows:

1. A

1

x

= (� [ f#g; Q

1

; Æ

1

; fq

1

0

g; ff

1

g), were Q

1

= fq

1

0

; q

1

1

; : : : ; q

1

l+1

; f

1

g;

Æ

1

= f(q

1

i

; �; q

1

i+1

g [ f(q

1

i

; �; f

1

) j 1 � i � l; � 6= (i+ 1)-th element of ##x(xy)

l

0

g

2. A

2

x

= (� [ f#g; Q

2

; Æ

2

; fq

2

0

g; ff

2

g), were

Q

2

= fq

2

0

; q

2

�

1

; q

2

�

1

�

2

; q

2

�

1

�

2

�

3

i

; q

2

f

j �

1

; �

2

; �

3

2 � [ f#g; 1 � i � lg;

Æ

2

= f(q

2

0

; �; q

2

0

); (q

2

0

; �; q

2

�

); (q

2

�

1

; �; q

2

�

1

�

); (q

2

�

1

�

2

; �; q

2

�

1

�

2

�1

);

(q

2

�

1

�

2

�

3

i

; �; q

2

�

1

�

2

�

3

(i+1)

) j �; �

1

; �

2

; �

3

2 � [ f#g; 1 � i < lg [

f(�

2

�

1

�

2

�

3

l

; �; f

2

) j �; �

1

; �

2

; �

3

2 � [ f#g; � 6= Next(�

1

�

2

�

3

)g

3. A

3

x

= (� [ f#g; Q

3

; Æ

3

; fq

3

0

g; ff

3

g), were Q

3

= fq

3

0

; f

3

g;

Æ

3

= f(q

3

0

; �; q

3

0

); (q

3

0

; q

rejet

; f

3

) j � 2 � [ f#gg

The size of automataA

1

x

,A

2

x

andA

3

x

are linear in l = p(jxj) (� is �xed). So, the onstrution

of A

x

an be performed in polynomial time of jxj.

To summarize, we have onstruted a polynomial time redution from any language

L 2 PSPACE to the universality problem for NFA

!

p

and thus, have proven its PSPACE-

hardness. �
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