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Abstract

We prove the PSPACE-completeness of the subsumption problem for
(cyclic) terminologies with respect to descriptive semantics in a simple De-
scription Logic F Ly, which allows for conjunctions and universal value re-
strictions only, thus solving the problem which was open for more than ten

years.
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1 Introduction

FLy is a Description Logic where concepts can be constructed by using conjunctions and
universal value restrictions only. The concept subsumption problem in FL, for (cyclic)
terminologies was investigated in [Baa90], [Baa96] and [Neb91] for the three kinds of se-
mantics: the least fixpoint (Ifp), the greatest fixpoint (gfp) and the descriptive semantics.
These papers provide a PSPACE decision procedure for the subsumption problem with
respect to all three kinds of semantics. In addition, in [Baa90] and [Baa96] it was shown
that this problem is PSPACE-hard both for gfp- and Ifp-semantics. For the descriptive
semantics, however, the highest known lower bound was found to be co-NP [Nebh91], which
provides a complete characterization for acyclic terminologies. So, the question about the
exact complexity of the subsumption problem for the descriptive semantics with respect
to (cyclic) terminologies has been open.

In this paper we prove the PSPACE-hardness of this problem (and thus, eliminate the
remaining complexity gap) by reduction from the universality problem for automata on
infinite words with prefix acceptance condition.

2 Description Logic FL

FLy is a simple Description Logic, which allows for conjunctions and universal value re-
strictions of concepts only. Formally, given a signature ¥ = (A, R) consisting of concept
names A and role names R, the set of (generalized) concepts Cs, of DL FLy is defined by
the grammar:

CZ = A | Cl |_|CQ | VRC

were A € A are usually called atomic concepts; Cy, Cy, C are arbitrary generalized concepts
of FLy and R € R.

A terminology (or T Box for short) is a finite set of concept definitions of the form
A=C, where A is an atomic concept called defined concept and C' is a generalized concept.

The semantics for FLg is defined by means of interpretations T = (AZ,-T), were Al is
a set called the domain of Z and -T assigns to every concept name A € A a set AT C AT
and to every role name R € R a relation RT C AT x AZ. The interpretation Z can be
extended to generalized concepts of FL, by defining:

(CinCyt:=0CcInCE (VRO :={de AT |Veec AL (de) € RT implies e € CT}
An interpretation Z is a model of T Box T iff AT = C7 for all definitions A= B of T. Given
a terminology 7 we say that a concept A is subsumed by a concept B w.r.t. descriptive
semantics (notation: A Ty B) iff AL C BZ for all models Z of 7. The associated decision
problem for 7, A and B is called the concept subsumption problem.

Since we are interested in proving the hardness result for the concept subsumption
problem, we may consider restricted forms of terminologies. Thus, in the rest of the paper
we assume that T'Box contains only definitions of the form:

A =VR\.B,N...NMVYR,.By, (1)



were A, B; are atomic concepts (1 < i < 1[) and [ > 1. We also assume that exactly one
definition is given for every atomic concept.

With every terminology 7 of the form (1) we associate a non-deterministic semi-
automaton Ay = (2,Q,0) consisting of the finite alphabet of letters ¥, the finite set of
states @ and the transition relation § C @ x ¥ x ). We proceed similarly as in [Baa96],
[Neb91]:

e the alphabet ¥ of A7 is the set of role names of T;
e the set of states () is the set of concept names in 7 and
e the transition relation 6 = {(4,R,B) | A=...NMVR.BN...€T}.

Note that this construction gives a one-to-one correspondence between terminologies of
the form (1) and semi-automata without blocking states: for every state ¢ € ) there exist
some a € ¥ and ¢’ € @ such that (¢,a,q¢") € 0.

A run of a semi-automaton A over an (in)finite word w = a;-ay---a;(---)EX* ) is
an (in)finite sequence of states 7 : qo,qu, ..., (...)EQ*™) such that (¢;_y,a;,¢;) € 6 for
any ¢ > 1. With every two states ¢;, ¢ € @ of a semi-automaton A = (X, Q,0) one can
associate the regular language L 4(q1,q2) := {w € ¥* | there exists a run ¢, ..., g over w}.

Now we give the automata-theoretic characterization of the concept subsumption prob-
lem. Theorem 29 in [Baa96] provides the characterization for the general terminologies,
however we may give a simplified variant for the restricted form of terminologies.

Theorem 1 (Characterization of concept subsumption) Let T be a terminology of
the form (1) and Ar = (X,Q,0) be the corresponding semi-automaton. Then Ay C7 By
iff for every word w € ¥ and for every run

rg: By, By,...,B;, ... in Ar over w there exists a run

ra: Ag, A1, ..., A; ... in Ar over w and an integer k > 0 such that A = By.

Proof. We prove the theorem by inspecting the tableau algorithm for checking concept
subsumption. We try to refute Ay =5 By in some model Z of 7 with the domain N.
Every node of the tableau will describe necessary conditions of the form n: A, n: =B or
(n,m): Rfor A, B € Aand R € R, which shell be imposed on a model Z. The semantical
meanings of these restrictions are n € A7, n ¢ BT and (n,m) € RT respectively. We start
with the node {0: Ay, 0: By} and apply expansion rules. Every definition
A =VR.B,N...NMVR.B,
of T enforces two sorts of rules:

n:A, (n,m):R; n:-A

A rule is applied to a node by forming a child of this node containing all formulas of parent
and the conclusion of the rule; (3A)-rule assumes branching over i < i < [. The rules
are applied fairly: the application of a rule cannot be postponed forever. Some branches



of the tableau can lead to the inconsistent node containing a clash {n : A, n : —A}.
In this case the branch is closed, otherwise it is open. The tableau is closed iff all its
branches are closed. The presented tableau procedure is sound and complete for the concept
subsumption problem:

Proposition 2 The tableau for Aq, By and T is closed iff Aqg T By.
Proof. The proof of this proposition can be found in the Appendix A. OJ

Now, to prove the theorem, observe that for every branch 7 of the tableau:

1. There is exactly one negative expression of the form n : =B, for every n > 0;

2. There is exactly one positive expression of the form (m,n) : R, for every n > 1, and
only for m =n — 1.

3. The sequence rp : By,...,Bj, ... is a run over the word w™ = Ry-Ry--- R;--- in
Ar. Additionally, every run r : B{,..., B!, ... corresponds to some branch of the
tableau.

4. For every positive expression m : A" in the branch 7 either m = 0 and A’ = A, or
m >0 and (A", R, A") € 0 for some A” € 7, where R, is the m-th letter of w.

Claims 1-4 can be proved by induction on n. Now, to conclude the result of the theorem:
Ao E7 By
iff (by soundness and completeness of the tableau procedure)
every branch 7 of the tableau is closed
iff (by 3. and by the definition of the closed branch)
for every run 75 : By,...,B;, ... over w € ¥ there is some A'(k) = By(k) € T

iff (by 4.)

for every run rp, : By,...,B;, ... over w € ¥¥
there exists a run ry, : Ag,..., Ay = Bg, Bry1,... over w
iff
for every run rp, : By,...,B;, ... over w € X¥
there exists a run r4, : Ag,..., A4;,... over w and k > 0 such that A, = By. O]

2.1 The reduction.

Now we consider an instance of the concept subsumption problem which suffices to prove
PSPACE-hardness. Take a semi-automaton A = (X,Q,d) and two states ¢i,¢q2 € Q.
We construct a new semi-automaton A’ from A by adding a new state ¢’ and making it
reachable from ¢, and itself by any transition: A" = (X,Q',4"), where Q' = Q U ¢ and

61 = 6 U {(q27a7q,)7 (qlaaaq,) | ac E}



If A’ does not have blocking states then we can consider ;
the terminology 17" corresponding to A’, so ¢; corresponds to A A
some concept A of T" and ¢’ corresponds to some concept B w’ - w
of T'. By Theorem 1, B subsumes A iff for every run from .
q' over some word w € ¥¥ there exists a run in A’ from ¢; @
over w such that both runs share at least one state. Since A B
every run from ¢’ can contain the state ¢’ only and for every
w € X¥ such a run always exists, we obtain: “B subsumes
A iff for every w € ¢ there exists a run over w from ¢
containing ¢'.” Note that in the last sentence we can replace
¢' by ¢o. Thus concept subsumption problem is not easier than the problem:

Figure 1: The reduction

“given a semi-automaton A = (X, @, d) and two states ¢i,qy € @ such
that all states in @ \ {¢2} are not blocking, check whether any word
w € ¥¥ has a finite prefix w' € La(q1,q).”

In the next section we reformulate this problem in terms of automata on infinite words as
the universality problem and prove that it is PSPACE-hard.

3 Automata on infinite words and the universality
problem

Many kinds of finite automata on infinite words (w-automata) have been investigated in
the literature (for a survey see [Tho90]). There is a classification of automata according
to acceptance conditions. Biichi automata, for instance, accept an infinite word if there
exists a run over this word in which some accepting state is encountered infinitely often.

Although many algorithms for automata are described in the literature, the correspond-
ing complexity issues are usually not well-studied. The (non)universality problem: “given
an automaton A check if it does (not) accept all words” is known to be PSPACE-complete
for non-deterministic Biichi automata as well as for non-deterministic finite automata on
finite words. We introduce a prefir acceptance condition for w-automata and show that
the universality problem is also PSPACE-hard for this automata. One of the implications
of this result is the PSPACE-hardness of the subsumption problem for the descriptive
semantics.

A non-deterministic finite automaton (NFA) is a tuple A = (X, @, J, Qo, F'), which is a
semi-automaton (3, @, d) extended with a set of initial states Qy C @ and a set of accepting
states F C (). The size of the automaton A = (,Q,0,Qo, F) is |A| = |Q| + |0]. We
distinguish several kinds of non-deterministic finite automata according to the acceptance
condition:

1. An automaton on finite words NFA™ is an NFA = (¥, Q, J, Qy, F') which accepts a
finite word w € ¥* iff there exists arun r: ¢,...,q, over w with ¢; € Qo, ¢, € F.



2. A Biichi automaton NFAY is an NFA = (X, Q, §, Qo, F) on infinite words. It accepts
w € X iff there exists a run r : ¢y,...,q;,... over w which repeats some state from
F infinitely often.

3. We introduce the w-automaton with the prefiz acceptance condition NFA} as a
NFA = (%,Q,0,Qq, F) which accepts w € ¢ iff there exist a finite prefic w' of
wand arTun 7 : qp,...,q, over w' with ¢ € Qp and ¢, € F. In other words, NFAY
accepts an infinite word if it accepts a finite prefix of this word as NFA™.

In section 2.1 we have shown that a certain problem for semi-automata A = (3, @, 9)
can be seen as an instance of the concept-subsumption problem and thus should be not
harder. After we have introduced the automata with the prefix acceptance condition, we
can reformulate this problem as: “given NFA; = (¥,Q,0,{q:}, {q2}) without blocking
states in @\ {g2}, check whether all words w € 3* are accepted.” Such a problem appears
in the literature as a (non)universality problem for finite automata [Var95]. The NFA*
(NFA}, NFAY) is universal iff it accepts any word w € ¥* (w € X¢). The associated
decision problem is called the universality problem. This problem is known to be PSPACE-
complete for NFA* and NFAY (cf. [Var95]). It is not surprising that we can obtain the
similar result for the NFA.

Theorem 3 The universality problem for NFAJ is in PSPACE.

Proof. The proof is by the reduction to the universality problem for Biichi automata.
Given NFA) A = (X,Q, 6, Qo, F') we proceed similarly as in the section 2.1: Consider the
Biichi automaton A" = (2,Q’,d",Qo, {¢'}), where ¢’ is a new state, @' = Q U {¢'} and
d =5U{(q,a,q) ,(d,a,¢') | g € F, a € }. A accepts w € X¢ iff A’ does, so A is
universal iff A’ is universal. O

Theorem 4 The universality problem for NFAJ is PSPACE-hard.

Proof. The proof is given by the reduction from polynomial-space Turing machines. The
idea is quite standard for proving such results. For every Turing machine and input we
construct the automaton which accepts every word except the legal computation of the
Turing machine: given some candidate word it “guesses” the position of the possible error
and accepts the word if it is the error indeed. So the constructed automaton is universal
iff the Turing machine does not accept the input. The details of the proof can be found in
the Appendix B. O

Corollary 5 The universality problem for NFAJ is PSPACE-complete.

We have proved the PSPACE-hardness of the universality problem for NFAY A =
(3,Q,0,Qo, F), however we need to prove the hardness for the instance when we have only
one initial, one accepting state and do not have blocking states among the non-accepting
states. The next proposition shows that we can assume these restrictions without loss of
generality.



Proposition 6 For any NFA) A = (X,Q,0,Qo, I') one can construct an NFA) A" =
(3,Q", " {qp}, {f'}) without blocking states in Q' \ {f'} in linear size of |A| which accepts
exactly the same words as A.

Proof. We consider two cases:

1. QoNF #0. Then A trivially accepts all words and we can take say
A" :=1{%,{q},0,{q}, {q}} for some state g.

2. Qo N F = (. Tt suffices to construct A" which accepts exactly the same finite words
as A by the NFA*-acceptance condition. We simply take A" = (%, Q", ¢, {q,}, {f'})
with the new states ¢} and f’, and define Q' = Q U {q}, f'},

6 =0 U{(qp,a,q) | g0 € Qo : (q0,0,q) € 6}
U{(g,a,f") | 3f € F:(q,a,f) €6}

U{(qaaaafl) | 3@0 € QO)Elf €F: (qaaaf) € 5}
If some state ¢ € @\ {f'} is blocking then we can remove it together with the
involved transitions since no run from ¢f to f’ can contain ¢'. 0

Corollary 7 The concept subsumption problem for DL FLy with cyclic terminologies
w.r.t. descriptive semantics is PSPACE-complete.

Appendix A.
In this appendix we give a proof of Proposition 2.
Proposition 2 The tableau for Ay, By and T is closed iff A¢ T By.

Proof. To prove the soundness (=) note that any model Z of T in which A7 ¢ BZ can
guide an open branch of the tableau.

The completeness part (<) is more involved. Assume that S is a set of expressions on
the open branch of the tableau. Consider the closure ¢(S) of S under the rules:

m: _‘Bz’; (n,m) : RZ
n:—-A ’

(c'A) A=...NVR;.B;M---e€T.
Formally, ¢(S) = U;>0S", were S’ is obtained from S by adding a finite number of conclu-
sions of the rules (c'A) with n,m < i. Note that if S did not contain a clash then so is
c¢(S): Otherwise clash first appears in some S% i > 0. Then consider the first application
of the rule (¢’A) which produces a clash {n : A, n : =A} in S’. Sincen : A € S and S
is closed under the rules (V'A), the clash {m : B;, m : =B;} should have occurred in S
before the (presumably first) clash {n: A, n: A} has appeared. A contradiction.

Since S is a set of formulas of the open branch, we have proved that ¢(S) does not

contain a clash.
The set ¢(S) defines a model Z = (N, -7) were:

6



e (n,m) € R iff (n,m): R c(S) (iff (n,m): R€S), RE R,
enc Al iffn:=A ¢ c(S), Ac A
7 is indeed a model of T in which A} ¢ BE:
1. 0 € A since 0: Ag € S C ¢(S), thus 0: =4y ¢ ¢(S) (¢(S) is clash-free);
2. 0¢ B since 0: =By € S C ¢(9);
3. AT C (VR,.By N ...NVR,.B))¥ because ¢(9) is closed under the rules (V' A);

4. AT D (VR.ByM...NVR.B)*: n¢ AT iff n: ~A€c(S) iffn: mA€Sorn:-A
is obtained by some (c'A). In the first case the inclusion holds by the rule (3A4); In
the last case there are some (n,m) : R; € ¢(S), m : =B;, which make the right-hand
side not to contain n.

Note that we have also proved that the concept subsumption Ay C+ By has the linear
model property, i.e. we may consider only tree-models T of T with branching degree 1.
O

Appendix B.
In this appendix we give a proof of Theorem 4.
Theorem 4 The universality problem for NFA s PSPACE-hard.

Proof. We prove the theorem by the reduction from polynomial-space Turing machines
using the definition:

PSPACE = { L | L is a language decided by a deterministic
Turing machine in polynomial space }

The details of involved definitions can be found, for instance, in [Sip97], however in order
to be self-contained, we give the ones that are needed.

A Turing machine is a tuple M = (Q, X, T, 0, Go, Gaccept Greject), Were @ is the finite set
of states, ¥ is the finite input alphabet, I" is the finite tape alphabet containing the special
blank symbol Ly (X C T\ {w}), 0 : Q@ xT' = Q x T x {L, R} is the transition function,
qo € Q is the initial state, Quecepr € @Q is the accepting state and Greject € Q (@reject 7 Qaccept)
is the rejecting state.

A configuration of the Turing machine M = (Q, 3, T, 0, qo, Gaccepts Greject) 1S a string of
the form: ¢ = ajay...a,-1qa;...a;, were each a; € I', ¢ € (. One could think of the
configuration ¢ as the description of the Turing machine in the state ¢ with the head at
the i-th cell of the tape with the content a; - - - a.

The transition function § can be extended to configurations in the following way: Let
a,b €T, u,v € T'* and [c] denote the cut of the configuration ¢ by removing the rightmost
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blank symbols L from ¢. Then
- | wugjacv if §(¢i, b) = (g, ¢, L); - | gjev if §(qi, b) = (g, ¢, L);
0(uag;bv) = { uacq;v if §(gi, b) = (g5, ¢, R); 2(gibv) = { cq;v if §(qi, b) = (¢j,¢, R);
0(ug;) = [6(ug)];

A computation of the Turing machine M = (Q, X, T, 8, qo, Qaccept, Greject) from © € £* is
a sequence of configurations cg,cq,...,¢,... such that ¢g = gox and ¢;;1 = S(CZ) If the
computation ends with a configuration c, then if guecepr € ¢, We say that M accepts x; if
Qreject € Cn, We say that M rejects x.

The Turing machine M decides the language L C ¥* if for every x € ¥*, x € L implies
M accepts x, and = ¢ L implies M rejects z.

We say that M is a polynomial-space Turing machine if there exists a polynomial p(n)
such that for any input x € ¥* and the computation ¢y, ¢y, ...,¢;, ... from x the length of
every configuration |¢;| < p(|x]|).

Now we give a polynomial-time reduction from the decision problem for any language
L € PSPACE to the universality problem for some set of NFA.

Assume M = (Q,%, T, qo, Gaccept, Greject) 1S a polynomial-space Turing machine that
decides L. We give an algorithm which for every » € ¥* constructs a NFA, A, in
polynomial size of |z| such that A, accepts all words, except the word:

wy = #.#.CU.(l_,)lo.#.cl.(l_,)h.#...#.ck.(l_,)lk.#.ck.(l_,)lk e
were g, €1, ..., C is an accepting computation for = (if any); I; = [ — |¢;|, were | = p(|z|)
for polynomial p(n) bounding the size of configurations of M; # is a new symbol (# ¢ T').
Thus, =z €L iff M rejectsz iff M does not accept = iff A, is universal, and
we can obtain the reduction since PSPACE = co-PSPACE.

Consider the word wy. Note that every three subsequent symbols o; 1,0;,0;,1 at the
positions ¢ — 1,7,7+ 1 of wy uniquely determine the symbol o;,,,, at the position 7 41+ 1
of wq. To be precise, 0;,1,1 = Next(o;_1, 04, 0:11), were:

Next(q;,a,01) = ¢, Next(b, g;,a) = b, Next(#, q;,a) = q;, Next(o1,b,¢;) = ¢;

if 5((]2; Cl) - (qja C, L)a qi 7é GQaccept
Next(q;,a,01) = qj, Next(oy, ¢, a) = ¢, Next(o1,b,¢;) =b

if 5(%? a) = (Qja c, R)a qi 7£ Qaccepts
Next(oy,09,03) = 09 in all other cases;
(a,b,c €T, 0; € TU{#}).

The informal description of A, is as follows: given an infinite string w € (TU{#})¥, A,
accepts w if it can find that w # wg, which can be done by detecting one of the following:

1. First [ + 2 symbols of w differ from those of ##z ()" (I =1 — |z|);
2. For some i > 2 the symbol 0,441 # Next(o; 1,0, 0,11);
3. The string w contains the symbol g,¢ject-

Note that since M decides the language L C ¥*, every computation ¢y, ¢y, ..., ¢;,... from
the z € X* should end either with the accepting state guceepe Or With the rejecting state
Qreject- S0, W 7# wy iff w satisfies one of the 1-3 above.

8



Formally, A, = A, U A2 U A3 were: A is the NFAY over (I'U {#})" which accepts
a word w if the corresponding condition i above is fulfilled (i = 1,2,3). The union of
two automata A' = (3,Q', 6", QL F') and A% = (3,Q% 6% Q% F?) is the automaton
A=(Z,Q'UQ?*6"Ud* QU2 F'U F?). A accepts a word iff it is accepted by A" or
A?. The automata AL, A2 and A2 are constructed as follows:

LAy = (T U{#} Q% 0% {ao}, {f'}), were Q' = {ag, a1, .-, a1, 1
' ={(¢,o,qi Y U{(g} o, f1) | 1 <i <1, o# (i+1)-th element of ##x(_i)}

2. A2 = (TU{#},Q% 6% {q2}, {f?}), were
Q> =1{4Gs Gy Gy Gorososiv 47 | 01,002,038 ETU{#}; 1 <i <
0> ={(5,9,4)s (45,9,42)s (45,59, 5,5)s (@210ss T Uy 1)
(q3'10'20'3i’ g, q2'10'20'3(i—|—1)) | 0,01,02,03 € NG {#}’ 1 S 1< l} U
{(0310203“0, ) | o,01,00,03 € TU{#}; 0 # Next(o,0903)}

3. A = (TU{#}, Q% 6% {g3}. {f*}), were Q* = {q5, f*};
0° = {((]3,0', q(:))’)a (qgaqreject, f3) | cel'U {#}}

The size of automata AL, A2 and A2 are linear in [ = p(|x]) (T is fixed). So, the construction
of A, can be performed in polynomial time of |z|.

To summarize, we have constructed a polynomial time reduction from any language
L € PSPACE to the universality problem for NFA} and thus, have proven its PSPACE-
hardness. 0J
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