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Abstra
t

We prove the PSPACE-
ompleteness of the subsumption problem for

(
y
li
) terminologies with respe
t to des
riptive semanti
s in a simple De-

s
ription Logi
 FL

0

, whi
h allows for 
onjun
tions and universal value re-

stri
tions only, thus solving the problem whi
h was open for more than ten

years.

Keywords

Des
ription Logi
, Automata Theory



1 Introdu
tion

FL

0

is a Des
ription Logi
 where 
on
epts 
an be 
onstru
ted by using 
onjun
tions and

universal value restri
tions only. The 
on
ept subsumption problem in FL

0

for (
y
li
)

terminologies was investigated in [Baa90℄, [Baa96℄ and [Neb91℄ for the three kinds of se-

manti
s: the least �xpoint (lfp), the greatest �xpoint (gfp) and the des
riptive semanti
s.

These papers provide a PSPACE de
ision pro
edure for the subsumption problem with

respe
t to all three kinds of semanti
s. In addition, in [Baa90℄ and [Baa96℄ it was shown

that this problem is PSPACE-hard both for gfp- and lfp-semanti
s. For the des
riptive

semanti
s, however, the highest known lower bound was found to be 
o-NP [Neb91℄, whi
h

provides a 
omplete 
hara
terization for a
y
li
 terminologies. So, the question about the

exa
t 
omplexity of the subsumption problem for the des
riptive semanti
s with respe
t

to (
y
li
) terminologies has been open.

In this paper we prove the PSPACE-hardness of this problem (and thus, eliminate the

remaining 
omplexity gap) by redu
tion from the universality problem for automata on

in�nite words with pre�x a

eptan
e 
ondition.

2 Des
ription Logi
 FL

0

FL

0

is a simple Des
ription Logi
, whi
h allows for 
onjun
tions and universal value re-

stri
tions of 
on
epts only. Formally, given a signature � = (A;R) 
onsisting of 
on
ept

names A and role names R, the set of (generalized) 
on
epts C

�

of DL FL

0

is de�ned by

the grammar:

C

�

::= A j C

1

u C

2

j 8R:C

were A 2 A are usually 
alled atomi
 
on
epts; C

1

, C

2

, C are arbitrary generalized 
on
epts

of FL

0

and R 2 R.

A terminology (or TBox for short) is a �nite set of 
on
ept de�nitions of the form

A

�

=C, where A is an atomi
 
on
ept 
alled de�ned 
on
ept and C is a generalized 
on
ept.

The semanti
s for FL

0

is de�ned by means of interpretations I = (�

I

; �

I

), were �

I

is

a set 
alled the domain of I and �

I

assigns to every 
on
ept name A 2 A a set A

I

� �

I

and to every role name R 2 R a relation R

I

� �

I

� �

I

. The interpretation I 
an be

extended to generalized 
on
epts of FL

0

by de�ning:

(C

1

u C

2

)

I

:= C

I

1

\ C

I

2

; (8R:C)

I

:= fd 2 �

I

j 8 e 2 �

I

; (d; e) 2 R

I

implies e 2 C

I

g

An interpretation I is a model of TBox T i� A

I

= C

I

for all de�nitions A

�

=B of T . Given

a terminology T we say that a 
on
ept A is subsumed by a 
on
ept B w.r.t. des
riptive

semanti
s (notation: A v

T

B) i� A

I

� B

I

for all models I of T . The asso
iated de
ision

problem for T , A and B is 
alled the 
on
ept subsumption problem.

Sin
e we are interested in proving the hardness result for the 
on
ept subsumption

problem, we may 
onsider restri
ted forms of terminologies. Thus, in the rest of the paper

we assume that TBox 
ontains only de�nitions of the form:

A

�

= 8R

1

:B

1

u : : : u 8R

l

:B

l

; (1)

1



were A, B

i

are atomi
 
on
epts (1 � i � l) and l � 1. We also assume that exa
tly one

de�nition is given for every atomi
 
on
ept.

With every terminology T of the form (1) we asso
iate a non-deterministi
 semi-

automaton A

T

= (�; Q; Æ) 
onsisting of the �nite alphabet of letters �, the �nite set of

states Q and the transition relation Æ � Q � � � Q. We pro
eed similarly as in [Baa96℄,

[Neb91℄:

� the alphabet � of A

T

is the set of role names of T ;

� the set of states Q is the set of 
on
ept names in T and

� the transition relation Æ = f(A;R;B) j A

�

= : : : u 8R:B u : : :2T g.

Note that this 
onstru
tion gives a one-to-one 
orresponden
e between terminologies of

the form (1) and semi-automata without blo
king states: for every state q 2 Q there exist

some a 2 � and q

0

2 Q su
h that (q; a; q

0

) 2 Æ.

A run of a semi-automaton A over an (in)�nite word w = a

1

�a

2

� � �a

i

(� � � )2�

�(!)

is

an (in)�nite sequen
e of states r : q

0

; q

1

; : : : ; q

i

; (: : : )2Q

�(!)

su
h that (q

i�1

; a

i

; q

i

) 2 Æ for

any i � 1. With every two states q

1

; q

2

2 Q of a semi-automaton A = (�; Q; Æ) one 
an

asso
iate the regular language L

A

(q

1

; q

2

) := fw 2 �

�

j there exists a run q

1

; : : : ; q

2

over wg.

Now we give the automata-theoreti
 
hara
terization of the 
on
ept subsumption prob-

lem. Theorem 29 in [Baa96℄ provides the 
hara
terization for the general terminologies,

however we may give a simpli�ed variant for the restri
ted form of terminologies.

Theorem 1 (Chara
terization of 
on
ept subsumption) Let T be a terminology of

the form (1) and A

T

= (�; Q; Æ) be the 
orresponding semi-automaton. Then A

0

v

T

B

0

i� for every word w 2 �

!

and for every run

r

B

: B

0

; B

1

; : : : ; B

i

; : : : in A

T

over w there exists a run

r

A

: A

0

; A

1

; : : : ; A

i

; : : : in A

T

over w and an integer k � 0 su
h that A

k

= B

k

.

Proof. We prove the theorem by inspe
ting the tableau algorithm for 
he
king 
on
ept

subsumption. We try to refute A

0

v

T

B

0

in some model I of T with the domain N .

Every node of the tableau will des
ribe ne
essary 
onditions of the form n : A, n : :B or

(n;m) : R for A;B 2 A and R 2 R, whi
h shell be imposed on a model I. The semanti
al

meanings of these restri
tions are n 2 A

I

, n =2 B

I

and (n;m) 2 R

I

respe
tively. We start

with the node f0 : A

0

; 0 : :B

0

g and apply expansion rules. Every de�nition

A

�

= 8R

1

:B

1

u : : : u 8R

l

:B

l

of T enfor
es two sorts of rules:

(8

i

A)

n : A; (n;m) : R

i

m : B

i

; (9A)

n : :A

: : : j (n; n+ 1) : R

i

; (n+ 1) : :B

i

j : : :

A rule is applied to a node by forming a 
hild of this node 
ontaining all formulas of parent

and the 
on
lusion of the rule; (9A)-rule assumes bran
hing over i � i � l. The rules

are applied fairly: the appli
ation of a rule 
annot be postponed forever. Some bran
hes

2



of the tableau 
an lead to the in
onsistent node 
ontaining a 
lash fn : A; n : :Ag.

In this 
ase the bran
h is 
losed, otherwise it is open. The tableau is 
losed i� all its

bran
hes are 
losed. The presented tableau pro
edure is sound and 
omplete for the 
on
ept

subsumption problem:

Proposition 2 The tableau for A

0

; B

0

and T is 
losed i� A

0

v

T

B

0

.

Proof. The proof of this proposition 
an be found in the Appendix A. �

Now, to prove the theorem, observe that for every bran
h � of the tableau:

1. There is exa
tly one negative expression of the form n : :B

n

for every n � 0;

2. There is exa
tly one positive expression of the form (m;n) : R

n

for every n � 1, and

only for m = n� 1.

3. The sequen
e r

�

B

0

: B

0

; : : : ; B

i

; : : : is a run over the word w

�

= R

1

�R

2

� � �R

i

� � � in

A

T

. Additionally, every run r : B

0

0

; : : : ; B

0

i

; : : : 
orresponds to some bran
h of the

tableau.

4. For every positive expression m : A

0

in the bran
h � either m = 0 and A

0

= A

0

or

m > 0 and (A

00

; R

m

; A

0

) 2 Æ for some A

00

2 � , where R

m

is the m-th letter of w

�

.

Claims 1{4 
an be proved by indu
tion on n. Now, to 
on
lude the result of the theorem:

A

0

v

T

B

0

i� (by soundness and 
ompleteness of the tableau pro
edure)

every bran
h � of the tableau is 
losed

i� (by 3. and by the de�nition of the 
losed bran
h)

for every run r

�

B

0

: B

0

; : : : ; B

i

; : : : over w 2 �

!

there is some A

0

(k) = B

k

(k) 2 �

i� (by 4.)

for every run r

B

0

: B

0

; : : : ; B

i

; : : : over w 2 �

!

there exists a run r

A

0

: A

0

; : : : ; A

k

= B

k

; B

k+1

; : : : over w

i�

for every run r

B

0

: B

0

; : : : ; B

i

; : : : over w 2 �

!

there exists a run r

A

0

: A

0

; : : : ; A

i

; : : : over w and k � 0 su
h that A

k

= B

k

. �

2.1 The redu
tion.

Now we 
onsider an instan
e of the 
on
ept subsumption problem whi
h suÆ
es to prove

PSPACE-hardness. Take a semi-automaton A = (�; Q; Æ) and two states q

1

; q

2

2 Q.

We 
onstru
t a new semi-automaton A

0

from A by adding a new state q

0

and making it

rea
hable from q

2

and itself by any transition: A

0

= (�; Q

0

; Æ

0

), where Q

0

= Q [ q

0

and

Æ

0

= Æ [ f(q

2

; a; q

0

); (q

0

; a; q

0

) j a 2 �g.

3



A

A

0

q

1

A

q

2 q

0

B

b b

w

0

w

Figure 1: The redu
tion

If A

0

does not have blo
king states then we 
an 
onsider

the terminology T

0


orresponding to A

0

, so q

1


orresponds to

some 
on
ept A of T

0

and q

0


orresponds to some 
on
ept B

of T

0

. By Theorem 1, B subsumes A i� for every run from

q

0

over some word w 2 �

!

there exists a run in A

0

from q

1

over w su
h that both runs share at least one state. Sin
e

every run from q

0


an 
ontain the state q

0

only and for every

w 2 �

!

su
h a run always exists, we obtain: \B subsumes

A i� for every w 2 �

!

there exists a run over w from q

1


ontaining q

0

." Note that in the last senten
e we 
an repla
e

q

0

by q

2

. Thus 
on
ept subsumption problem is not easier than the problem:

\given a semi-automaton A = (�; Q; Æ) and two states q

1

; q

2

2 Q su
h

that all states in Q n fq

2

g are not blo
king, 
he
k whether any word

w 2 �

!

has a �nite pre�x w

0

2 L

A

(q

1

; q

2

)."

In the next se
tion we reformulate this problem in terms of automata on in�nite words as

the universality problem and prove that it is PSPACE-hard.

3 Automata on in�nite words and the universality

problem

Many kinds of �nite automata on in�nite words (!-automata) have been investigated in

the literature (for a survey see [Tho90℄). There is a 
lassi�
ation of automata a

ording

to a

eptan
e 
onditions. B�u
hi automata, for instan
e, a

ept an in�nite word if there

exists a run over this word in whi
h some a

epting state is en
ountered in�nitely often.

Although many algorithms for automata are des
ribed in the literature, the 
orrespond-

ing 
omplexity issues are usually not well-studied. The (non)universality problem: \given

an automaton A 
he
k if it does (not) a

ept all words" is known to be PSPACE-
omplete

for non-deterministi
 B�u
hi automata as well as for non-deterministi
 �nite automata on

�nite words. We introdu
e a pre�x a

eptan
e 
ondition for !-automata and show that

the universality problem is also PSPACE-hard for this automata. One of the impli
ations

of this result is the PSPACE-hardness of the subsumption problem for the des
riptive

semanti
s.

A non-deterministi
 �nite automaton (NFA) is a tuple A = (�; Q; Æ; Q

0

; F ), whi
h is a

semi-automaton (�; Q; Æ) extended with a set of initial states Q

0

� Q and a set of a

epting

states F � Q. The size of the automaton A = (�; Q; Æ; Q

0

; F ) is jAj = jQj + jÆj. We

distinguish several kinds of non-deterministi
 �nite automata a

ording to the a

eptan
e


ondition:

1. An automaton on �nite words NFA

�

is an NFA = (�; Q; Æ; Q

0

; F ) whi
h a

epts a

�nite word w 2 �

�

i� there exists a run r : q

1

; : : : ; q

n

over w with q

1

2 Q

0

, q

n

2 F .

4



2. A B�u
hi automatonNFA

!

b

is anNFA = (�; Q; Æ; Q

0

; F ) on in�nite words. It a

epts

w 2 �

!

i� there exists a run r : q

1

; : : : ; q

i

; : : : over w whi
h repeats some state from

F in�nitely often.

3. We introdu
e the !-automaton with the pre�x a

eptan
e 
ondition NFA

!

p

as a

NFA = (�; Q; Æ; Q

0

; F ) whi
h a

epts w 2 �

!

i� there exist a �nite pre�x w

0

of

w and a run r : q

1

; : : : ; q

n

over w

0

with q

1

2 Q

0

and q

n

2 F . In other words, NFA

!

p

a

epts an in�nite word if it a

epts a �nite pre�x of this word as NFA

�

.

In se
tion 2.1 we have shown that a 
ertain problem for semi-automata A = (�; Q; Æ)


an be seen as an instan
e of the 
on
ept-subsumption problem and thus should be not

harder. After we have introdu
ed the automata with the pre�x a

eptan
e 
ondition, we


an reformulate this problem as: \given NFA

!

p

= (�; Q; Æ; fq

1

g; fq

2

g) without blo
king

states in Qnfq

2

g, 
he
k whether all words w 2 �

!

are a

epted." Su
h a problem appears

in the literature as a (non)universality problem for �nite automata [Var95℄. The NFA

�

(NFA

!

b

, NFA

!

p

) is universal i� it a

epts any word w 2 �

�

(w 2 �

!

). The asso
iated

de
ision problem is 
alled the universality problem. This problem is known to be PSPACE-


omplete for NFA

�

and NFA

!

b

(
f. [Var95℄). It is not surprising that we 
an obtain the

similar result for the NFA

!

p

.

Theorem 3 The universality problem for NFA

!

p

is in PSPACE.

Proof. The proof is by the redu
tion to the universality problem for B�u
hi automata.

Given NFA

!

p

A = (�; Q; Æ; Q

0

; F ) we pro
eed similarly as in the se
tion 2.1: Consider the

B�u
hi automaton A

0

= (�; Q

0

; Æ

0

; Q

0

; fq

0

g), where q

0

is a new state, Q

0

= Q [ fq

0

g and

Æ

0

= Æ [ f(q; a; q

0

) ; (q

0

; a; q

0

) j q 2 F; a 2 �g. A a

epts w 2 �

!

i� A

0

does, so A is

universal i� A

0

is universal. �

Theorem 4 The universality problem for NFA

!

p

is PSPACE-hard.

Proof. The proof is given by the redu
tion from polynomial-spa
e Turing ma
hines. The

idea is quite standard for proving su
h results. For every Turing ma
hine and input we


onstru
t the automaton whi
h a

epts every word ex
ept the legal 
omputation of the

Turing ma
hine: given some 
andidate word it \guesses" the position of the possible error

and a

epts the word if it is the error indeed. So the 
onstru
ted automaton is universal

i� the Turing ma
hine does not a

ept the input. The details of the proof 
an be found in

the Appendix B. �

Corollary 5 The universality problem for NFA

!

p

is PSPACE-
omplete.

We have proved the PSPACE-hardness of the universality problem for NFA

!

p

A =

(�; Q; Æ; Q

0

; F ), however we need to prove the hardness for the instan
e when we have only

one initial, one a

epting state and do not have blo
king states among the non-a

epting

states. The next proposition shows that we 
an assume these restri
tions without loss of

generality.

5



Proposition 6 For any NFA

!

p

A = (�; Q; Æ; Q

0

; F ) one 
an 
onstru
t an NFA

!

p

A

0

=

(�; Q

0

; Æ

0

; fq

0

0

g; ff

0

g) without blo
king states in Q

0

n ff

0

g in linear size of jAj whi
h a

epts

exa
tly the same words as A.

Proof. We 
onsider two 
ases:

1. Q

0

\ F 6= ;. Then A trivially a

epts all words and we 
an take say

A

0

:= f�; fqg; ;; fqg; fqgg for some state q.

2. Q

0

\ F = ;. It suÆ
es to 
onstru
t A

0

whi
h a

epts exa
tly the same �nite words

as A by the NFA

�

-a

eptan
e 
ondition. We simply take A

0

= (�; Q

0

; Æ

0

; fq

0

0

g; ff

0

g)

with the new states q

0

0

and f

0

, and de�ne Q

0

= Q [ fq

0

0

; f

0

g,

Æ

0

= Æ [ f(q

0

0

; a; q) j 9q

0

2 Q

0

: (q

0

; a; q) 2 Æg

[ f(q; a; f

0

) j 9f 2 F : (q; a; f) 2 Æg

[ f(q

0

0

; a; f

0

) j 9q

0

2 Q

0

; 9f 2 F : (q; a; f) 2 Æg:

If some state q

0

2 Q

0

n ff

0

g is blo
king then we 
an remove it together with the

involved transitions sin
e no run from q

0

0

to f

0


an 
ontain q

0

.

�

Corollary 7 The 
on
ept subsumption problem for DL FL

0

with 
y
li
 terminologies

w.r.t. des
riptive semanti
s is PSPACE-
omplete.

Appendix A.

In this appendix we give a proof of Proposition 2.

Proposition 2 The tableau for A

0

; B

0

and T is 
losed i� A

0

v

T

B

0

.

Proof. To prove the soundness ()) note that any model I of T in whi
h A

I

0

6� B

I

0


an

guide an open bran
h of the tableau.

The 
ompleteness part (() is more involved. Assume that S is a set of expressions on

the open bran
h of the tableau. Consider the 
losure 
(S) of S under the rules:

(


i

A)

m : :B

i

; (n;m) : R

i

n : :A

; A

�

= : : : u 8R

i

:B

i

u � � � 2 T :

Formally, 
(S) = [

i�0

S

i

, were S

i

is obtained from S by adding a �nite number of 
on
lu-

sions of the rules (


i

A) with n;m � i. Note that if S did not 
ontain a 
lash then so is


(S): Otherwise 
lash �rst appears in some S

i

, i > 0. Then 
onsider the �rst appli
ation

of the rule (


i

A) whi
h produ
es a 
lash fn : A; n : :Ag in S

i

. Sin
e n : A 2 S and S

is 
losed under the rules (8

i

A), the 
lash fm : B

i

; m : :B

i

g should have o

urred in S

i

before the (presumably �rst) 
lash fn : A; n : :Ag has appeared. A 
ontradi
tion.

Sin
e S is a set of formulas of the open bran
h, we have proved that 
(S) does not


ontain a 
lash.

The set 
(S) de�nes a model I = (N ; �

I

) were:
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� (n;m) 2 R

I

i� (n;m) : R 2 
(S) (i� (n;m) : R 2 S), R 2 R;

� n 2 A

I

i� n : :A =2 
(S), A 2 A.

I is indeed a model of T in whi
h A

I

0

6� B

I

0

:

1. 0 2 A

I

0

sin
e 0 : A

0

2 S � 
(S), thus 0 : :A

0

=2 
(S) (
(S) is 
lash-free);

2. 0 =2 B

I

0

sin
e 0 : :B

0

2 S � 
(S);

3. A

I

� (8R

1

:B

1

u : : : u 8R

l

:B

l

)

I

be
ause 
(S) is 
losed under the rules (8

i

A);

4. A

I

� (8R

1

:B

1

u : : : u 8R

l

:B

l

)

I

: n =2 A

I

i� n : :A 2 
(S) i� n : :A 2 S or n : :A

is obtained by some (


i

A). In the �rst 
ase the in
lusion holds by the rule (9A); In

the last 
ase there are some (n;m) : R

i

2 
(S), m : :B

i

, whi
h make the right-hand

side not to 
ontain n.

Note that we have also proved that the 
on
ept subsumption A

0

v

T

B

0

has the linear

model property, i.e. we may 
onsider only tree-models I of T with bran
hing degree 1.

�

Appendix B.

In this appendix we give a proof of Theorem 4.

Theorem 4 The universality problem for NFA

!

p

is PSPACE-hard.

Proof. We prove the theorem by the redu
tion from polynomial-spa
e Turing ma
hines

using the de�nition:

PSPACE = f L j L is a language de
ided by a deterministi


Turing ma
hine in polynomial spa
e g

The details of involved de�nitions 
an be found, for instan
e, in [Sip97℄, however in order

to be self-
ontained, we give the ones that are needed.

A Turing ma
hine is a tuple M = (Q;�;�; Æ; q

0

; q

a

ept

; q

reje
t

), were Q is the �nite set

of states, � is the �nite input alphabet, � is the �nite tape alphabet 
ontaining the spe
ial

blank symbol xy (� � � n fxyg), Æ : Q � � ! Q � � � fL;Rg is the transition fun
tion,

q

0

2 Q is the initial state, q

a

ept

2 Q is the a

epting state and q

reje
t

2 Q (q

reje
t

6= q

a

ept

)

is the reje
ting state.

A 
on�guration of the Turing ma
hine M = (Q;�;�; Æ; q

0

; q

a

ept

; q

reje
t

) is a string of

the form: 
 = a

1

a

2

: : : a

i�1

qa

i

: : : a

k

, were ea
h a

j

2 �, q 2 Q. One 
ould think of the


on�guration 
 as the des
ription of the Turing ma
hine in the state q with the head at

the i-th 
ell of the tape with the 
ontent a

1

� � �a

k

.

The transition fun
tion Æ 
an be extended to 
on�gurations in the following way: Let

a; b 2 �, u; v 2 �

�

and [
℄ denote the 
ut of the 
on�guration 
 by removing the rightmost

7



blank symbols xy from 
. Then

^

Æ(uaq

i

bv) :=

�

uq

j

a
v if Æ(q

i

; b) = (q

j

; 
; L);

ua
q

j

v if Æ(q

i

; b) = (q

j

; 
; R);

^

Æ(q

i

bv) :=

�

q

j


v if Æ(q

i

; b) = (q

j

; 
; L);


q

j

v if Æ(q

i

; b) = (q

j

; 
; R);

^

Æ(uq

i

) := [

^

Æ(uq

i

xy)℄;

A 
omputation of the Turing ma
hine M = (Q;�;�; Æ; q

0

; q

a

ept

; q

reje
t

) from x 2 �

�

is

a sequen
e of 
on�gurations 


0

; 


1

; : : : ; 


i

; : : : su
h that 


0

= q

0

x and 


i+1

=

^

Æ(


i

). If the


omputation ends with a 
on�guration 


n

then if q

a

ept

2 


n

, we say that M a

epts x; if

q

reje
t

2 


n

, we say that M reje
ts x.

The Turing ma
hine M de
ides the language L � �

�

if for every x 2 �

�

, x 2 L implies

M a

epts x, and x =2 L implies M reje
ts x.

We say that M is a polynomial-spa
e Turing ma
hine if there exists a polynomial p(n)

su
h that for any input x 2 �

�

and the 
omputation 


0

; 


1

; : : : ; 


i

; : : : from x the length of

every 
on�guration j


i

j � p(jxj).

Now we give a polynomial-time redu
tion from the de
ision problem for any language

L 2 PSPACE to the universality problem for some set of NFA

!

p

.

Assume M = (Q;�;�; q

0

; q

a

ept

; q

reje
t

) is a polynomial-spa
e Turing ma
hine that

de
ides L. We give an algorithm whi
h for every x 2 �

�


onstru
ts a NFA

!

p

A

x

in

polynomial size of jxj su
h that A

x

a

epts all words, ex
ept the word:

w

0

= #�#�


0

�(xy)

l

0

�#�


1

�(xy)

l

1

�# � � �#�


k

�(xy)

l

k

�#�


k

�(xy)

l

k

� � �

were 


0

; 


1

; : : : ; 


k

is an a

epting 
omputation for x (if any); l

i

= l � j


i

j, were l = p(jxj)

for polynomial p(n) bounding the size of 
on�gurations of M ; # is a new symbol (# =2 �).

Thus, x 2 L i� M reje
ts x i� M does not a

ept x i� A

x

is universal, and

we 
an obtain the redu
tion sin
e PSPACE = 
o-PSPACE.

Consider the word w

0

. Note that every three subsequent symbols �

i�1

; �

i

; �

i+1

at the

positions i� 1; i; i+1 of w

0

uniquely determine the symbol �

i+l+1

at the position i+ l+1

of w

0

. To be pre
ise, �

i+l+1

= Next(�

i�1

; �

i

; �

i+1

), were:

Next(q

i

; a; �

1

) = 
, Next(b; q

i

; a) = b, Next(#; q

i

; a) = q

j

, Next(�

1

; b; q

i

) = q

j

if Æ(q

i

; a) = (q

j

; 
; L), q

i

6= q

a

ept

;

Next(q

i

; a; �

1

) = q

j

, Next(�

1

; q

i

; a) = 
, Next(�

1

; b; q

i

) = b

if Æ(q

i

; a) = (q

j

; 
; R), q

i

6= q

a

ept

;

Next(�

1

; �

2

; �

3

) = �

2

in all other 
ases;

(a; b; 
 2 �, �

i

2 � [ f#g).

The informal des
ription of A

x

is as follows: given an in�nite string w 2 (�[f#g)

!

, A

x

a

epts w if it 
an �nd that w 6= w

0

, whi
h 
an be done by dete
ting one of the following:

1. First l + 2 symbols of w di�er from those of ##x(xy)

l

0

(l

0

= l � jxj);

2. For some i � 2 the symbol �

i+l+1

6= Next(�

i�1

; �

i

; �

i+1

);

3. The string w 
ontains the symbol q

reje
t

.

Note that sin
e M de
ides the language L � �

�

, every 
omputation 


0

; 


1

; : : : ; 


i

; : : : from

the x 2 �

�

should end either with the a

epting state q

a

ept

or with the reje
ting state

q

reje
t

. So, w 6= w

0

i� w satis�es one of the 1-3 above.
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Formally, A

x

= A

1

x

[ A

2

x

[ A

3

x

were: A

i

x

is the NFA

!

p

over (� [ f#g)

w

whi
h a

epts

a word w if the 
orresponding 
ondition i above is ful�lled (i = 1; 2; 3). The union of

two automata A

1

= (�; Q

1

; Æ

1

; Q

1

0

; F

1

) and A

2

= (�; Q

2

; Æ

2

; Q

2

0

; F

2

) is the automaton

A = (�; Q

1

[ Q

2

; Æ

1

[ Æ

2

; Q

1

0

[ Q

2

0

; F

1

[ F

2

). A a

epts a word i� it is a

epted by A

1

or

A

2

. The automata A

1

x

, A

2

x

and A

3

x

are 
onstru
ted as follows:

1. A

1

x

= (� [ f#g; Q

1

; Æ

1

; fq

1

0

g; ff

1

g), were Q

1

= fq

1

0

; q

1

1

; : : : ; q

1

l+1

; f

1

g;

Æ

1

= f(q

1

i

; �; q

1

i+1

g [ f(q

1

i

; �; f

1

) j 1 � i � l; � 6= (i+ 1)-th element of ##x(xy)

l

0

g

2. A

2

x

= (� [ f#g; Q

2

; Æ

2

; fq

2

0

g; ff

2

g), were

Q

2

= fq

2

0

; q

2

�

1

; q

2

�

1

�

2

; q

2

�

1

�

2

�

3

i

; q

2

f

j �

1

; �

2

; �

3

2 � [ f#g; 1 � i � lg;

Æ

2

= f(q

2

0

; �; q

2

0

); (q

2

0

; �; q

2

�

); (q

2

�

1

; �; q

2

�

1

�

); (q

2

�

1

�

2

; �; q

2

�

1

�

2

�1

);

(q

2

�

1

�

2

�

3

i

; �; q

2

�

1

�

2

�

3

(i+1)

) j �; �

1

; �

2

; �

3

2 � [ f#g; 1 � i < lg [

f(�

2

�

1

�

2

�

3

l

; �; f

2

) j �; �

1

; �

2

; �

3

2 � [ f#g; � 6= Next(�

1

�

2

�

3

)g

3. A

3

x

= (� [ f#g; Q

3

; Æ

3

; fq

3

0

g; ff

3

g), were Q

3

= fq

3

0

; f

3

g;

Æ

3

= f(q

3

0

; �; q

3

0

); (q

3

0

; q

reje
t

; f

3

) j � 2 � [ f#gg

The size of automataA

1

x

,A

2

x

andA

3

x

are linear in l = p(jxj) (� is �xed). So, the 
onstru
tion

of A

x


an be performed in polynomial time of jxj.

To summarize, we have 
onstru
ted a polynomial time redu
tion from any language

L 2 PSPACE to the universality problem for NFA

!

p

and thus, have proven its PSPACE-

hardness. �
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