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Abstrat

Cirular assume-guarantee reasoning is used for the ompositional veri�a-

tion of onurrent systems. Its soundness has been studied in depth, perhaps

beause irularity makes it anything but obvious. In this paper, we inves-

tigate ompleteness. We show that ompositional irular assume-guarantee

rules annot be both sound and omplete.
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1 Introdution

The goal in ompositional veri�ation of onurrent systems is to prove that

a omplex system, a parallel omposition of several subsystems, satis�es a

omplex property, a onjuntion of several simpler properties. In priniple,

veri�ation tools an attak suh a goal diretly, at least if the omplex

system is �nite still. However, the state spae of the system may be expo-

nentially larger than that of any subsystem | a phenomenon alled state

explosion | whih may ause veri�ation to beome intratable in pratie.

Compositional veri�ation tries to use the modular struture of omplex

systems and properties to deompose intratable veri�ation tasks into a

bunh of smaller, hopefully tratable subtasks; ideally, eah subtask only

establishes properties of a single subsystem in isolation. Later, one dedues

from all these subtasks via a suitable proof rule that the original omplex

system satis�es the desired omplex property.

Systems, Properties. We model systems and properties uniformly as

elements of S = hS;^; 1;�i, a meet-semilattie with one, i. e., a partial

order hS;�i with greatest element 1 in whih the greatest lower bound x^y

of any two elements x and y exists. In this model, the expression x � y an

have three di�erent readings depending on whether x and y denote systems

or properties, respetively. If both are systems then x � y means that x

re�nes y, if both are properties then it means that x entails y, and if x is a

system and y a property then x � y expresses that x satis�es y. Likewise,

x ^ y denotes omposition if x and y are systems, it denotes onjuntion

if x and y are properties, and if x is system and y a property then x ^ y

| x onstrained by y | is the oarsest re�nement of x that satis�es y.

Thus, all we require of systems (properties) is that re�nement (entailment)

is an order and that omposition (onjuntion) is an assoiative ommutative

and idempotent operation whih respets the order. Setion 4 will show that

this abstrat algebrai setting already suÆes for proving inompleteness of

irular assume-guarantee reasoning. In partiular, no notion of omputation

is required, unlike in the proofs for soundness.

Example 1. Meet-semilatties are a natural model for systems and prop-

erties. For instane, in (linear-time) temporal veri�ation, often one views

systems and properties as languages over some non-empty (and possibly

in�nite) alphabet �. In this setting, re�nement and entailment orrespond

to language inlusion, and omposition and onjuntion orrespond to lan-

guage intersetion, so we have a meet-semilattie struture. How that meet-

semilattie atually looks like, depends on the type of properties we want to

verify.

By the haraterization in [3℄, safety properties are expressible as pre�x-

losed �-languages. I. e., a safety property may be viewed as a subset L of
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�

�

suh that for all w 2 �

�

, if w belongs to L then all pre�xes of w belong

to L, too. So for veri�ation of safety properties, the meet-semilattie is the

set of pre�x-losed �-languages (over �). Note that these are exatly the

languages generated by (possibly in�nite) labeled state transition graphs,

whih are a natural representation of systems. In general, when verifying

arbitrary temporal properties, the meet-semilattie will be the set of !-

languages (over �), i. e., the power set of �

!

. Here, natural representations of

systems and properties are some more elaborate variants of state transition

graphs, for instane fair transition systems [15℄ or (possibly in�nite state)

!-automata [21℄.

Proof Rules. In general, there are two kinds of proof rules for omposi-

tional veri�ation, non-irular and irular ones. We show some examples

to demonstrate the di�erene. Let s

1

; s

2

2 S be systems and let p

1

; p

2

2 S

be properties and suppose we want to verify that the omposition of s

1

and

s

2

satis�es the onjuntion of p

1

and p

2

. (1) shows two non-irular rules

for this purpose. Both rules deompose the goal into two subgoals, where

the subgoals of the �rst rule state that system s

i

satis�es property p

i

, or

in other words: s

i

guarantees p

i

. The seond rule di�ers only in the se-

ond subgoal, whih states that s

2

onstrained by p

1

satis�es p

2

, or in other

words: if p

1

is assumed then s

2

guarantees p

2

| hene the wide-spread term

assume-guarantee rule.

s

1

� p

1

s

2

� p

2

s

1

^ s

2

� p

1

^ p

2

s

1

� p

1

p

1

^ s

2

� p

2

s

1

^ s

2

� p

1

^ p

2

(1)

Going one step further and also introduing an assumption in the �rst sub-

goal, we obtain the irular rule (2).

p

2

^ s

1

� p

1

p

1

^ s

2

� p

2

s

1

^ s

2

� p

1

^ p

2

(2)

Unlike the non-irular rules, (2) is unsound; for instane, if both systems

are 1, the greatest element in S, and both properties are equal and di�erent

from 1 then both premises hold but the onlusion does not. As soundness is

indispensable, rule (2) must be restrited by a side ondition whih exludes

ases as the one above. Suh irularity-breaking side onditions do exist;

in fat, quite a number of restrited variants of (2) are proven sound (by

indution usually) in the literature, see [1, 4, 13, 18, 22℄ to name just a few.

Completeness. As there are many variants of sound irular assume-

guarantee rules, the question arises whether some are better than others.

An important riterion for rating rules is the restritiveness of the side on-

dition; if the side ondition is overly restritive the rule is appliable to few

ases only, hene it is onsidered worse than a variant with a less restritive
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side ondition (as long as that variant is sound still). In the best ase, the

rule is omplete, i. e., the side ondition is true whenever premises and on-

lusion are true. Thus, the side ondition of a omplete rule does not restrit

the rule unneessarily sine it is true whenever the rule should be appliable.

Note however, that the side ondition is not redundant in omplete rules; it

may still be indispensable for proving soundness.

Compositionality. Reall that ompositional veri�ation seeks to redue

a large, intratable goal into many smaller subgoals. The rules in (1) and (2)

support this approah as the premises of these rules are less omplex than

their onlusions. In partiular, no premise involves the omposition of the

systems s

1

and s

2

any more, so veri�ation of the subgoals is more likely to be

tratable than diret veri�ation of the goal. However, when using a irular

rule whih is restrited by a side ondition, it does not suÆe to verify

the subgoals that arise from the premises; additionally, we need to prove

that the side ondition holds. It may be the ase that this proof requires to

onsider both systems simultaneously | e. g., for establishing some mutual

exlusion property | and thus involves some aspets of the omposition,

whih is against the spirit of ompositional veri�ation. Therefore, a rule

an be alled ompositional only if heking the side ondition is possible

without taking into aount both systems simultaneously, i. e., only if the

side ondition is expressible as a boolean ombination of sub-onditions,

eah of whih involves at most one of the systems.

Plan. Setion 2 formally presents proof rules whih are restrited by a

side ondition and de�nes soundness and ompleteness. Setion 3 spei�es

what we mean by irular assume-guarantee reasoning in the ontext of

ompositional veri�ation and formalizes the preise requirements for rules

to be ompositional. Setion 4 proves the main result that ompositional

irular assume-guarantee rules annot be both sound and omplete. Finally,

Setion 5 disusses related work and Setion 6 onludes.

2 Inferene Rules

Terms, Formulas. We �x a set of variables Var. Terms are built indu-

tively from variables in Var, the nullary operator >, alled top, and the

binary operator u, alled meet. We onsider top neutral w. r. t. meet, whih

is seen as assoiative, ommutative and idempotent. We all a term t atomi

i� t is a variable or t is top. By var(t), we denote the set of variables ouring

in t, and we say that a term t

0

is a subterm of t i� var(t

0

) � var(t).

A formula ' is a pair ht; t

0

i of terms, written as t v t

0

. We refer to t as

the left-, to t

0

as the right-hand side of '. We all a formula trivial i� its

right-hand side is >. We denote the set of variables ouring in ' by var('),
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i. e., var(') = var(t) [ var(t

0

), and for every set of formulas �, we de�ne

var(�) =

S

'2�

var(').

Truth, Entailment. We �x S = hS;^; 1;�i, a non-trivial meet-semilat-

tie with one. By Val, we denote the set of valuations, i. e., the set of total

funtions from Var to S. We extend a valuation � to terms in the anonial

way, i. e., �(>) = 1 and �(t

1

ut

2

) = �(t

1

)^�(t

2

). Note that we may view any

term t as a total funtion from Val to S by de�ning the funtion appliation

t(�) as �(t).

We say that a formula t v t

0

is true under a valuation �, denoted by

� j= t v t

0

, i� �(t) � �(t

0

). We extend truth to sets of formulas, i. e., � j= �

i� � j= ' for all ' 2 �.

We say that � entails 	, denoted by � j= 	, i� for all � 2 Val, � j= �

implies � j= 	. We say that � is equivalent to 	, denoted by � � 	, i�

� j= 	 and 	 j= �. Note that in sets of formulas the operators top and

meet are redundant on right-hand sides sine for terms t; t

0

1

; t

0

2

, we have the

equivalenes ft v >g � ; and ft v t

0

1

u t

0

2

g � ft v t

0

1

; t v t

0

2

g.

Complexity of Entailment. We have de�ned entailment relative to a

�xed semilattie S. We may abstrat from this struture and de�ne entail-

ment w. r. t. the variety of meet-semilatties with one. However, this would

not hange anything, as entailment w. r. t. that variety orresponds to entail-

ment w. r. t. the two-element meet-semilattie 2 = hf0; 1g;^; 1;�i, and vie

versa. The deeper reason for this is a representation theorem [5, 20℄ whih

states that every meet-semilattie is isomorphi to a sub-meet-semilattie

of a produt of opies of 2. This implies that in every non-trivial meet-

semilattie, uniform word problems yield the same answers as in 2. The

same holds for entailment, for one an translate every formula t v t

0

into

the equation t u t

0

:

= t and every equation t

:

= t

0

into the set of formulas

ft v t

0

; t

0

v tg. As a onsequene, deiding entailment is in Co-NP.

Atually given a �nite set of formulas � and a formula  , deiding � j=  

is linear in the size of � and  . To see this, note that we an atten � and

 suh that all right-hand sides are variables

1

and every left-hand side is

either a variable or a meet of two variables. This an be done by repeatedly

replaing every subterm xuy with x; y 2 Var by a new variable z and adding

the equation z

:

= x u y (translated into the three formulas z v x, z v y and

x u y v z) to �. This transformation preserves entailment and the blow up

of � is only linear in the size of the original formulas. Now, we may view

2 as the two-element boolean algebra beause ^ orresponds to onjuntion

and (the harateristi funtion of) � to impliation. Thus in 2, the formula

x

1

u : : : u x

m

v y

1

u : : : u y

n

may be seen as the propositional formula

stating that the onjuntion of the x

i

implies the onjuntion of the y

j

. In

1

We assume without loss of generality that � [ f g does not ontain trivial formulas.
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fat, if � and  are attened, then eah formula diretly orresponds to a

propositional Horn lause. Hene, the problem of deiding � j=  is redued

(with a linear blowup due to attening) to entailment of propositional Horn

lauses, whih is known to be deidable in linear time [6℄.

Relations. Let X, Y and Z be sets and let n 2 N. Given n funtions

f

1

; : : : ; f

n

: X ! Y and an n-ary funtion g : Y

n

! Z, we de�ne the n-ary

omposition of g and f

1

; : : : ; f

n

as the funtion g[f

1

; : : : ; f

n

℄ : X ! Z suh

that for all x 2 X, g[f

1

; : : : ; f

n

℄(x) = g(f

1

(x); : : : ; f

n

(x)).

Let n 2 N, let t

1

; : : : ; t

n

be n terms and let C : S

n

! f0; 1g, i. e., C is

the harateristi funtion of an n-ary relation on S, the arrier of our �xed

meet-semilattie S. Viewing terms as funtions from Val to S, the funtion

C[t

1

; : : : ; t

n

℄ : Val! f0; 1g is well-de�ned | it is the harateristi funtion

of some set of valuations | and we say that C is assoiated with the terms

t

1

; : : : ; t

n

. Note that for every enumeration x

1

; : : : ; x

m

of a superset of the

variables ouring in the terms t

1

; : : : ; t

n

there is a unique funtion C

0

:

S

m

! f0; 1g suh that C

0

[x

1

; : : : ; x

m

℄ = C[t

1

; : : : ; t

n

℄. Therefore, without

loss of generality, we may assume that the assoiated terms are variables.

A relation � is an n-ary funtion C : S

n

! f0; 1g assoiated with n

variables x

1

; : : : ; x

n

, i. e., � = C[x

1

; : : : ; x

n

℄. We denote the set of variables

ouring in � by var(�), i. e., var(�) = fx

1

; : : : ; x

n

g.

We de�ne a notion of truth for relations, similar to the one for for-

mulas. We say that a relation C[x

1

; : : : ; x

n

℄ is true under a valuation �,

denoted by � j= C[x

1

; : : : ; x

n

℄, i� C[x

1

; : : : ; x

n

℄(�) = 1. Rewriting this

with the de�nition of n-ary omposition, we see that � j= C[x

1

; : : : ; x

n

℄

i� C(�(x

1

); : : : ; �(x

n

)) = 1. We say that a relation � is true i� � j= � for all

� 2 Val. Note that every set of formulas � may be expressed by an equiv-

alent relation �

�

with var(�

�

) = var(�), where for all valuations �, � j= �

i� � j= �

�

. However, relations are stritly more expressive than formulas.

For instane, inequality of two distint variables x and y is not expressible

by formulas, i. e., there is no set of formulas � suh that for all � 2 Val,

� j= � i� �(x) 6= �(y).

Inferene Rules. An inferene rule (or rule, for short) R is a triple

h�;  ;�i, where the premises � are a �nite set of formulas, the onlu-

sion  is a formula, and the side ondition � is a relation. We say that R is

syntati i� the side ondition � is true. We write a rule R as R : �= if �

or

R :

'

1

: : : '

m

 

if C[x

1

; : : : ; x

n

℄

when � = f'

1

; : : : ; '

m

g and � = C[x

1

; : : : ; x

n

℄. If R is syntati then we may

omit the side ondition and write R : �= , simply. Without loss of generality

we will assume that the right-hand sides of all premises are atomi and that
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var( ) [ var(�) � var(�), i. e., every variable of the onlusion or the side

ondition ours in the premises.

Soundness, Completeness. Let R : �= if � be an inferene rule. We say

that R is sound i� for all valuations �, � j= � and � j= � implies � j=  . We

say that R is syntatially sound i� � j=  . Note that syntatial soundness

implies soundness, and every sound syntati rule is syntatially sound. To

point out a di�erene between the two notions of soundness, note that we an

hek algorithmially (and eÆiently) whether a ruleR : �= if C[x

1

; : : : ; x

n

℄

is syntatially sound, whereas heking whether R is sound may well be

undeidable, depending on the properties of the meet-semilattie S and the

funtion C : S

n

! f0; 1g.

We say that R is omplete i� for all valuations �, � j= � and � j=  

implies � j= �. Note that every syntati rule is omplete, trivially. Also

note that for syntatially sound rules ompleteness is not an issue, as every

syntatially sound rule R : �= if � an be transformed by omitting the

side ondition into the (sound and omplete) syntati rule R

0

: �= . Hene,

there is no reason why a syntatially sound rule should be restrited by a

side ondition.

Example 2. Assume that S = hS;^; 1;�i is the four-element meet-semilat-

tie whih is not a hain. Let s

1

, s

2

, p

1

and p

2

be four distint variables,

where we think of the s

i

as representing systems and of the p

j

as representing

properties. We de�ne the rules R

1

and R

2

, where

R

k

:

p

2

u s

1

v p

1

p

1

u s

2

v p

2

s

1

u s

2

v p

1

u p

2

if C

k

[s

1

; s

2

; p

1

; p

2

℄

and for all a; b; ; d 2 S, C

1

(a; b; ; d) = 1 i�  and d are inomparable,

and C

2

(a; b; ; d) = 1 i� a ^ b �  and a ^ b � d. Both rules are sound

as both side onditions are restritive enough to prevent unsound irular

reasoning. R

2

is trivially omplete as C

2

[s

1

; s

2

; p

1

; p

2

℄ is equivalent to the

onlusion. However, R

1

is inomplete as, for instane, it is not appliable

to the (trivial) ase when both properties equal 1. Note that the relation

C

1

[s

1

; s

2

; p

1

; p

2

℄ is not expressible by formulas, whih demonstrates that the

language of side onditions is more expressive than languages of premises

and onlusions.

3 Assume-Guarantee Rules

Assume-Guarantee Rules. We all an inferene rule R : �= if � an

assume-guarantee rule (or A-G rule, for short) i� for all premises ' 2 �, the

left-hand side of  and the right-hand side of ' do not share any variables.

We all an A-G rule R : �= if � irular i� � 6j=  .
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R

3

:

s

1

v p

1

s

2

v p

2

s

1

u s

2

v p

1

u p

2

R

6

:

p

2

u s

1

v p

1

p

1

u s

2

v p

2

s

1

u s

2

v p

1

u p

2

R

4

:

s

1

v p

1

p

1

u s

2

v p

2

s

1

u s

2

v p

1

u p

2

R

7

:

p

3

u s

1

v p

1

p

1

u s

2

v p

2

s

1

u s

2

v p

1

u p

2

R

5

:

p

3

u s

1

v p

1

p

1

u s

2

v p

2

p

3

u s

1

u s

2

v p

1

u p

2

R

8

:

p

1

u s

1

v > p

2

v s

2

p

1

u s

1

v s

2

u p

2

Figure 1: Sample assume-guarantee rules

Example 3. As the de�nition of A-G rules does not involve the side on-

dition, we may illustrate it using syntati rules only, see �gure 1. There,

s

1

, s

2

, p

1

, p

2

and p

3

are �ve distint variables, where the system/property

distintion is as in example 2.

The rules R

3

, R

4

and R

5

are non-irular A-G rules. Note the seond

premise of R

4

, whih may be read as assuming the property p

1

the system

s

2

guarantees the property p

2

. Likewise, the onlusion of R

5

may be read

as assuming p

3

the omposition of s

1

and s

2

guarantees both p

1

and p

2

. This

should explain where the term assume-guarantee rule omes from.

The rules R

6

, R

7

and R

8

(and also R

1

and R

2

from example 2) are ir-

ular A-G rules as they are not syntatially sound. The term irular is

justi�ed for R

6

, whose premises express irular assume-guarantee depen-

denies between the properties p

1

and p

2

. For R

7

and R

8

, however, there is

no irularity in the premises. In the ase of R

7

, unsoundness arises from the

unresolved assumption p

3

; ompare to R

5

where that assumption is resolved.

R

8

is unsound beause it is nonsense, it serves to demonstrate that not ev-

ery assume-guarantee rule has a meaningful reading. So, the term irular

should not be taken literally, rather it is an abstration apturing the most

important property of irular assume-guarantee reasoning, namely its lak

of syntatial soundness.

The following propositions provide an alternative haraterization of iru-

larity resp. a suÆient riterion for the truth of the premises of an A-G

rule.

Proposition 1. An A-G rule R : �=t

 

v t

 

0

if � is irular if and only if

� 6j= t

 

v x for some x 2 var(t

 

0

).

Proof. This follows from the obvious onverse that � j= t

 

v t

 

0

if and only

if for all x 2 var(t

 

0

), � j= t

 

v x.

Proposition 2. Let R : �=t

 

v t

 

0

if � be an A-G rule and let � be a

valuation. If for all x; y 2 var(�) n var(t

 

),
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1. � j= t

 

v x implies �(x) = 1, and

2. � 6j= t

 

v x and � 6j= t

 

v y implies �(x) = �(y),

then � j= �.

Proof. Assume that the onditions 1 and 2 hold for all x; y 2 var(�)nvar(t

 

).

Let t v t

0

2 �. If t

0

= > then obviously � j= t v t

0

. If t

0

6= > then t

0

= x

for some x 2 var(�) beause we assume all right-hand sides of premises

to be atomi. Furthermore, x =2 var(t

 

) by de�nition of A-G rules. Case

distintion.

� � j= t

 

v x. Then �(x) = 1 by ondition 1, so �(t) � �(t

0

), i. e.,

� j= t v t

0

.

� � 6j= t

 

v x. Then there exists y 2 var(t) suh that � 6j= t

 

v y.

To see this, assume that � j= t

 

v y for all y 2 var(t); this would

mean � j= t

 

v t, whih by t v x 2 � would yield the ontradition

� j= t

 

v x. Furthermore, y =2 var(t

 

) as otherwise � j= t

 

v y

trivially. Hene, we know that �(x) = �(y) by ondition 2, whih

yields �(t) � �(t

0

), i. e., � j= t v t

0

.

A-G Rules for Compositional Veri�ation. As already hinted in ex-

ample 3, for the purpose of veri�ation we distinguish systems and prop-

erties, so we partition our variable set Var into system variables s

i

and

property variables p

j

. Setion 4 will show that already the omposition

of only two systems exhibits the inompleteness of ompositional irular

assume-guarantee reasoning, so atually we an restrit the variable set to

Var = fs

1

; s

2

g ℄ fp

1

; p

2

; p

3

; : : : g.

The goal of ompositional veri�ation is to establish that the ompo-

sition of some systems (in our ase, s

1

and s

2

) guarantees some property

(possibly assuming some other property). So for an A-G rule to be useful

for ompositional veri�ation, s

1

u s

2

must be a subterm of the left-hand

side of the onlusion, whih we will impliitly assume heneforth. Thus,

without loss of generality we may assume that an A-G rule R is presented

in the form

R :

'

1

: : : '

m

t

 

v t

 

0

if C[s

1

; s

2

; p

1

; : : : ; p

n

℄

where s

1

u s

2

ours as a subterm in t

 

and var(f'

1

; : : : ; '

m

; t

 

v t

 

0

g) =

fs

1

; s

2

; p

1

; : : : ; p

n

g. The latter requirement an always be ahieved by re-

naming some property variables and extending and reordering the assoi-

ated variables in the side ondition. By the de�nition of A-G rules, var(t

 

)\

var(t

0

) = ; for every premise t v t

0

, so t

0

2 f>; p

1

; : : : ; p

n

g as we assume the

right-hand sides of premises to be atomi.

8



Compositionality. Let R : �= if C[s

1

; s

2

; p

1

; : : : ; p

n

℄ be an A-G rule. We

will all R ompositional if it avoids the system omposition s

1

u s

2

in the

premises as well as in the side ondition. Formally, we say that R is ompo-

sitional in the premises i� s

1

us

2

is not a subterm of any left-hand side in �.

We say that R is ompositional in the side ondition i� C[s

1

; s

2

; p

1

; : : : ; p

n

℄ is

expressible as a boolean ombination of relations whose assoiated variables

either do not inlude s

1

or s

2

. I. e., R is ompositional in the side ondition i�

there are r

1

; r

2

2 N, a (r

1

+r

2

)-ary boolean funtion F : f0; 1g

r

1

+r

2

! f0; 1g

and r

1

+ r

2

(n + 1)-ary funtions C

1

1

; : : : ; C

r

1

1

; C

1

2

; : : : ; C

r

2

2

: S

n+1

! f0; 1g

suh that

C[s

1

; s

2

; ~p℄ = F

�

C

1

1

[s

1

; ~p℄; : : : ; C

r

1

1

[s

1

; ~p℄; C

1

2

[s

2

; ~p℄; : : : ; C

r

2

2

[s

2

; ~p℄

�

(3)

where ~p abbreviates the enumeration p

1

; : : : ; p

n

. We say that R is omposi-

tional i� it is ompositional in the premises and in the side ondition.

One may think of the above funtions C

k

i

as abstrating the system s

i

together with the properties p

1

; : : : ; p

n

to a boolean value. Atually, we an

relax the above de�nition of ompositionality in the side ondition from

boolean to arbitrary �nitary abstrations C

k

i

. I. e., R is ompositional in the

side ondition i� there are a �nite set D and r

1

; r

2

2 N and F : D

r

1

+r

2

!

f0; 1g and C

1

1

; : : : ; C

r

1

1

; C

1

2

; : : : ; C

r

2

2

: S

n+1

! D suh that the equation (3)

holds.

Example 4. Reall the A-G rules R

1

to R

8

from the examples 2 and 3.

All these rules are ompositional in the premises, and the syntati rules R

3

to R

8

are ompositional in the side ondition, trivially. The rule R

1

is also

ompositional in the side ondition but R

2

is not.

4 Inompleteness of Compositional Rules

Before we go about to establish our main inompleteness result, we need to

set up two tehnial piees of mahinery. First, we prove Lemma 3, a purely

ombinatorial proposition about the infeasibility of ertain boolean equation

systems. Seond, we introdue speial substrutures of a meet-semilattie,

the so-alled forks.

Lemma 3. Let m;n 2 N and F : f0; 1g

m+n

! f0; 1g. Then the system of

equations E

F

over the variables u

k

i

(0 � i � 2

minfm;ng

; 1 � k � m) and v

l

j

(0 � j � 2

minfm;ng

; 1 � l � n) has no solutions, where E

F

is de�ned as

E

F

= fF (u

1

i

; : : : ; u

m

i

; v

1

j

; : : : ; v

n

j

) = 1 j 0 � i; j � 2

minfm;ng

; i 6= jg

[ fF (u

1

i

; : : : ; u

m

i

; v

1

i

; : : : ; v

n

i

) = 0 j 1 � i � 2

minfm;ng

g:

Proof. Obviously, the system E

F

has solutions if and only if the system

fF

0

(u

1

i

; : : : ; u

n

i

; v

1

j

; : : : ; v

m

j

) = 1 j 0 � i; j � 2

minfm;ng

; i 6= jg

[ fF

0

(u

1

i

; : : : ; u

n

i

; v

1

i

; : : : ; v

m

i

) = 0 j 1 � i � 2

minfm;ng

g

9



over the variables u

l

i

and v

k

j

(0 � i; j � 2

minfm;ng

; 1 � l � n; 1 � k � m)

has solutions, where F

0

: f0; 1g

m+n

! f0; 1g is de�ned by swapping the

�rst m and the last n arguments to F , i. e., F

0

(b

1

; : : : ; b

n

; a

1

; : : : ; a

m

) =

F (a

1

; : : : ; a

m

; b

1

; : : : ; b

n

) for all a

1

; : : : ; a

m

; b

1

; : : : ; b

n

2 f0; 1g. Therefore, we

an without loss of generality assume that m = minfm;ng and proeed by

indution on m.

� m = 0. Then 2

m

= 1 so E

F

ontains the equations F (v

1

1

; : : : ; v

n

1

) = 1

and F (v

1

1

; : : : ; v

n

1

) = 0, hene E

F

annot have solutions.

� m > 0. Towards a ontradition assume that there exists a funtion

F : f0; 1g

m+n

! f0; 1g suh that E

F

has solutions. Fix suh a solution

and let a

m

i

2 f0; 1g be the value of u

m

i

(0 � i � 2

m

). Then obviously,

the system

fF (u

1

i

; : : : ; u

m�1

i

; a

m

i

; v

1

j

; : : : ; v

n

j

) = 1 j 0 � i; j � 2

m

; i 6= jg

[ fF (u

1

i

; : : : ; u

m�1

i

; a

m

i

; v

1

i

; : : : ; v

n

i

) = 0 j 1 � i � 2

m

g

(4)

also has solutions. Let I

0

; I

1

� f0; : : : ; 2

m

g suh that I

0

= fi j a

m

i

= 0g

and I

1

= fi j a

m

i

= 1g. As jI

0

j+ jI

1

j = 2

m

+ 1, there is a 2 f0; 1g suh

that jI

a

j � 2

m�1

+ 1; let I

0

a

� I

a

suh that jI

0

a

j = 2

m�1

+ 1. Beause

the system (4) has solutions, the subsystem

fF (u

1

i

; : : : ; u

m�1

i

; a; v

1

j

; : : : ; v

n

j

) = 1 j i; j 2 I

0

a

; i 6= jg

[ fF (u

1

i

; : : : ; u

m�1

i

; a; v

1

i

; : : : ; v

n

i

) = 0 j i 2 I

0

a

; i 6= min I

0

a

g

(5)

also has solutions. Let � : f0; : : : ; 2

m�1

g ! I

0

a

be a bijetion with

�(0) = min I

0

a

, and de�ne F

a

: f0; 1g

m+n�1

! f0; 1g by

F

a

(a

1

; : : : ; a

m�1

; b

1

; : : : ; b

n

) = F (a

1

; : : : ; a

m�1

; a; b

1

; : : : ; b

n

)

for all a

1

; : : : ; a

m�1

; b

1

; : : : ; b

n

2 f0; 1g. Thus, (5) an be written as

fF

a

(u

1

�(i)

; : : : ; u

m�1

�(i)

; v

1

�(j)

; : : : ; v

n

�(j)

) = 1 j 0 � i; j � 2

m�1

; i 6= jg

[ fF

a

(u

1

�(i)

; : : : ; u

m�1

�(i)

; v

1

�(i)

; : : : ; v

n

�(i)

) = 0 j 1 � i � 2

m�1

g:

(6)

We reah a ontradition, as the system of equations E

F

a

, whih equals

(6) up to variable renaming, does not have solutions by indution

hypothesis.

Forks. We say that Y � S is a fork i� there is x 2 Y suh that for all

y; z 2 Y , y 6= z implies x = y ^ z; if Y is in�nite then we say that Y is a

fork of in�nite width, otherwise the size of Y is m 2 N and we say that Y is

a fork of width m � 1. Note that if S ontains a fork of in�nite width then

it also ontains forks of width m for every m 2 N.

10



0 1 2 3 4

Figure 2: Forks of width 0 to 4

Example 5. Some forks of �nite width are depited in �gure 2. Note that

if S is a hain then it ontains only forks of width 1, and if S is the power

set meet-semilattie of an arbitrary set X then it ontains forks of in�nite

width i� X is in�nite. In partiular, the meet-semilattie of !-languages

over some alphabet � (see example 1) ontains forks of in�nite width i�

� is not unary. The same holds for the meet-semilattie of pre�x-losed �-

languages over �. This is so beause if � is unary then the pre�x-losed

�-languages form a hain. And if � ontains the distint letters a and b,

then Y = fa

�

g [ fa

�

[ a

i

b

�

j i 2 Ng is a fork of in�nite width.

Inompleteness Lemma. Our proof of the inompleteness of sound and

ompositional irular A-G rules works by ontradition. Its main part

(Lemma 4) redues the existene of a sound and omplete irular A-G

rule R whih is ompositional in the side ondition to the feasibility of a

boolean equation system, whih is known to be be infeasible by Lemma 3.

The resulting ontradition implies that R must be unsound or inomplete.

For the redution to work, Lemma 4 has to assume that the meet-

semilattie S ontains forks of suÆient width. However, this is not a re-

strition as all interesting semilatties (in veri�ation) in fat do ontain

forks of in�nite width, see example 5.

Lemma 4. Let R : �= if C[s

1

; s

2

; p

1

; : : : ; p

n

℄ be a irular A-G rule. Let

r

1

; r

2

2 N, let F : f0; 1g

r

1

+r

2

! f0; 1g be a (r

1

+ r

2

)-ary boolean funtion

and let C

1

1

; : : : ; C

r

1

1

; C

1

2

; : : : ; C

r

2

2

: S

n+1

! f0; 1g be (n + 1)-ary funtions

suh that

C[s

1

; s

2

; ~p℄ = F

�

C

1

1

[s

1

; ~p℄; : : : ; C

r

1

1

[s

1

; ~p℄; C

1

2

[s

2

; ~p℄; : : : ; C

r

2

2

[s

2

; ~p℄

�

(7)

where ~p stands for p

1

; : : : ; p

n

. If S ontains a fork of width 2

minfr

1

;r

2

g

then

R is unsound or inomplete.

Proof. Let  be t

 

v t

 

0

and reall that var(� [ f g) = fs

1

; s

2

; p

1

; : : : ; p

n

g.

Without loss of generality we may assume that there is some m 2 f0; : : : ; ng

suh that for all j � 1, � j= t

 

v p

j

i� j � m; this an always be ahieved

by renaming some property variables.

We will prove this lemma by ontradition, so assume that R is sound

and omplete and let Y � S be a fork of width 2

minfr

1

;r

2

g

, i. e., Y =

11



fx

0

; x

1

; : : : ; x

2

r

g with r = minfr

1

; r

2

g suh that for all i; j � 0 with i 6= j,

x

0

= x

i

^ x

j

. By Lemma 3, we know that the system of equations

fF (u

1

i

; : : : ; u

r

1

i

; v

1

j

; : : : ; v

r

2

j

) = 1 j 0 � i; j � 2

minfr

1

;r

2

g

; i 6= jg

[ fF (u

1

i

; : : : ; u

r

1

i

; v

1

i

; : : : ; v

r

2

i

) = 0 j 1 � i � 2

minfr

1

;r

2

g

g

(8)

over the variables u

k

i

and v

l

j

(0 � i; j � 2

minfr

1

;r

2

g

; 1 � k � r

1

; 1 � l � r

2

)

has no solutions. However, we will show that there is a solution to (8), namely

with C

k

1

(x

i

;

e

1;fx

0

) resp. C

l

2

(x

j

;

e

1;fx

0

) as the values of u

k

i

resp. v

l

j

, where

e

1

abbreviates the enumeration 1; : : : ; 1 of length m and fx

0

abbreviates the

enumeration x

0

; : : : ; x

0

of length n �m. To see that this is a solution, for

every i; j 2 f0; : : : ; 2

minfr

1

;r

2

g

g we hoose a valuation �

ij

suh that �

ij

(s

1

) =

x

i

, �

ij

(s

2

) = x

j

, �

ij

(p

1

) = � � � = �

ij

(p

m

) = 1 and �

ij

(p

m+1

) = � � � =

�

ij

(p

n

) = x

0

.

First, let i; j 2 f0; : : : ; 2

minfr

1

;r

2

g

g with i 6= j. Beause of the hoie of

�

ij

, Proposition 2 yields that �

ij

j= �. As s

1

us

2

is a subterm of t

 

, we have

�

ij

(t

 

) � �

ij

(s

1

u s

2

) = x

i

^ x

j

= x

0

. And as x

0

� �

ij

(t) for every term t,

we have �

ij

(t

 

) � �

ij

(t

 

0

), i. e., �

ij

j=  . Hene, premises and onlusion

of R are true under �

ij

. Due to ompleteness, the side ondition must be

true as well, so �

ij

j= C[s

1

; s

2

; ~p℄, i. e., C[s

1

; s

2

; ~p℄(�

ij

) = 1. With (7), the

deomposition of the side ondition C[s

1

; s

2

; ~p℄, this yields the equation

F

�

C

1

1

(x

i

;

e

1;fx

0

); : : : ; C

r

1

1

(x

i

;

e

1;fx

0

); C

1

2

(x

j

;

e

1;fx

0

); : : : ; C

r

2

2

(x

j

;

e

1;fx

0

)

�

= 1:

Seond, let i 2 f1; : : : ; 2

minfr

1

;r

2

g

g. Again, Proposition 2 yields that �

ii

j= �.

For every p

j

2 var(t

 

), � j= t

 

v p

j

trivially, so �

ii

(p

j

) = 1. Therefore,

�

ii

(t

 

) = �

ii

(s

1

u s

2

) = x

i

^ x

i

= x

i

. On the other hand by Proposition 1,

there is some p

j

2 var(t

 

0

) suh that � 6j= t

 

v p

j

, so �

ii

(p

j

) = x

0

, whih

implies �

ii

(t

 

0

) � x

0

. From the de�nition of forks, we know that x

0

� x

i

and x

0

6= x

i

, so x

i

6� x

0

. Therefore, �

ii

(t

 

) 6� �

ii

(t

 

0

), i. e., �

ii

6j=  . Hene,

the premises of R are true under �

ii

but the onlusion is not. Due to

soundness, the side ondition must not be true, so �

ii

6j= C[s

1

; s

2

; ~p℄, i. e.,

C[s

1

; s

2

; ~p℄(�

ii

) = 0. Using (7) again, we get the equation

F

�

C

1

1

(x

i

;

e

1;fx

0

); : : : ; C

r

1

1

(x

i

;

e

1;fx

0

); C

1

2

(x

i

;

e

1;fx

0

); : : : ; C

r

2

2

(x

i

;

e

1;fx

0

)

�

= 0:

Thus, the system of equations (8) indeed has a solution, whih ends this

proof by ontradition.

We have shown that an A-G rule whih is ompositional in the side ondition

annot be both sound and omplete | provided that the semilattie S

ontains forks of suÆient width. The latter is the ase trivially whenever S

ontains a fork of in�nite width.

Theorem 5. If S ontains forks of in�nite width then there exists no sound

and omplete ompositional irular assume-guarantee rule.

Proof. Follows from Lemma 4.
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5 Disussion of Related Work

Inompleteness of Other Rules. Our setting of inferene rules in meet-

semilatties is a very abstrat one. Most irular A-G rules in the literature

are presented in more onrete settings, i. e., they use more struture than

just meet and order | and that extra struture is usually indispensable for

proving soundness by a irularity-breaking indution. This raises the ques-

tion to what extent our inompleteness result is relevant for suh onrete

rules.

We laim that most irular A-G rules an be transformed | preserv-

ing soundness and ompositionality | into equivalent irular A-G rules

in meet-semilatties whih ontain forks of in�nite width. Inompleteness

of the transformed rule then points out a defet of the original rule: There

must be ases in whih the original rule is not appliable although soundness

is not in danger. Below, we will exemplify two suh transformations.

Various irular A-G rules have been proposed for settings, where sys-

tems and properties are presented as some form of transition graphs enrihed

with input and output, e. g., Moore or Mealy mahines [13, 11℄ or Rea-

tive Modules [4℄. These rules establish ertain re�nement relations, e. g.,

trae ontainment or simulation, between ompositions of transition graphs.

Thereby, omposition is a partial operation, whih is de�ned only if the

omponents satisfy some ondition alled ompatibility. These ompatibili-

ties form an impliit side ondition to the A-G rules, whih is made expliit

by the transformation. We demonstrate this in the following example by

means of the transformation of a irular A-G rule for Moore mahines.

Example 6. Let X be a �nite set of variables, ranging over an arbitrary

non-empty domain D. A Moore mahine M is a (possibly in�nite) state

transition graph with input variables I

M

� X and output variablesO

M

� X ,

where the nodes resp. edges of the graph are labeled by valuations of the

output resp. input variables; for a formal de�nition see for instane [11, 13℄.

Naturally, one assoiates a trae language JMK � �

�

withM , where � = D

X

is the set of valuations of all variables. The parallel omposition M

1

kM

2

of

two Moore mahines M

1

and M

2

orresponds to language intersetion, i. e.,

JM

1

kM

2

K = JM

1

K \ JM

2

K. Note that M

1

kM

2

is de�ned if and only if M

1

and M

2

are ompatible, i. e., O

M

1

and O

M

2

are disjoint.

For Moore mahines with trae semantis, the following irular proof

rule is known:

JP

2

k S

1

K � JP

1

K JP

1

k S

2

K � JP

2

K

JS

1

k S

2

K � JP

1

k P

2

K

(9)

where S

1

, S

2

, P

1

, P

2

are Moore mahines suh that all parallel ompositions

in (9) are de�ned. We transform this rule into the A-G rule R

Moore

for the

meet-semilattie hP(�

�

);\;�

�

;�i, the power set of �

�

:

R

Moore

:

p

2

u s

1

v p

1

p

1

u s

2

v p

2

s

1

u s

2

v p

1

u p

2

if F

�

C[s

1

℄; C[p

1

℄; C[s

2

℄; C[p

2

℄

�

13



where D = P(X ) ℄ f?g is a �nite set and C : P(�

�

) ! D is a �nitary

abstration mapping eah L 2 P(�

�

) to the least set of output variables

O

M

suh that M is a Moore mahine with JMK = L; if no suh Moore

mahine exists then C(L) = ?. The funtion F : D

4

! f0; 1g is de�ned by

F (O

s

1

; O

p

1

; O

s

2

; O

p

2

) = 1 i�

O

s

1

6= ? and O

p

1

6= ? and O

s

2

6= ? and O

p

2

6= ?

and O

s

1

\O

s

2

= O

p

1

\O

p

2

= O

p

2

\O

s

1

= O

p

1

\O

s

2

= ;:

R

Moore

is a ompositional irular A-G rule aording to Setion 3. Ciru-

larity and ompositionality in the premises are obvious. Compositionality in

the side ondition holds as obviously there exist funtions C

k

i

: P(�

�

)

3

! D

suh that

F

�

C[s

1

℄; C[p

1

℄; C[s

2

℄; C[p

2

℄

�

= F

�

C

1

1

[s

1

; p

1

; p

2

℄; C

2

1

[s

1

; p

1

; p

2

℄; C

1

2

[s

2

; p

1

; p

2

℄; C

2

2

[s

2

; p

1

; p

2

℄

�

:

Moreover, soundness of R

Moore

an be redued to soundness of the original

rule (9), and vie versa, so both rules are appliable in exatly the same

ases. To see how soundness of R

Moore

redues to (9), onsider the premises

and side ondition of R

Moore

to be true under a valuation �. Then there are

Moore mahines S

i

and P

j

suh that JS

i

K = �(s

i

) and JP

j

K = �(p

j

) and

S

1

and S

2

, P

1

and P

2

, P

2

and S

1

as well as P

1

and S

2

are ompatible, i. e.,

all parallel ompositions in (9) are de�ned. Furthermore, we have JP

2

K \

JS

1

K � JP

1

K and JP

1

K \ JS

2

K � JP

2

K, whih by language intersetion and

soundness of (9) implies JS

1

k S

2

K � JP

1

k P

2

K, whih in turn by language

intersetion implies that the onlusion of R

Moore

is true under �. To show

the onverse redution, let S

i

and P

j

be Moore mahines suh that all parallel

ompositions in (9) are de�ned, i. e., S

1

and S

2

, P

1

and P

2

, P

2

and S

1

as

well as P

1

and S

2

are ompatible. Obviously, soundness of (9) follows by

language intersetion and soundness of R

Moore

.

As the proof rule (9) has been proven sound in [13℄, R

Moore

is a sound

and ompositional irular A-G rule. Thus by Theorem 5, R

Moore

is inom-

plete beause the meet-semilattie hP(�

�

);\;�

�

;�i ontains forks of in�nite

width. Hene there are ases in whih irular reasoning is admissible yet

the rule (9) is not appliable, due to partiality of parallel omposition.

Other kinds of irular A-G rules fous on temporal logis to present prop-

erties (and sometimes systems also), see for instane [1, 2, 12℄. In order to

break the irularity, suh rules usually employ so-alled assume-guarantee

spei�ations, i. e., formulas of the form ' .  where . is a speial tempo-

ral operator ensuring that during any omputation the guarantee  holds

at least one step longer than the assumption '. In our meet-semilattie set-

ting, we annot express A-G spei�ations in the premises of inferene rules.

14



However, we an move A-G spei�ations to the side ondition, where their

truth is expressible as a relation. In the following example, we demonstrate

this transformation on a simple irular rule for A-G spei�ations.

Example 7. Let AP be a non-empty set of atomi propositions. We say that

� = P(AP) is the set of states, and �

!

is the set of omputations. A system

is a set of omputations, and the parallel omposition of two systems S

1

and

S

2

is their intersetion S

1

\S

2

. Likewise, a property is a set of omputations,

and we say that a property P entails another property Q i� P � Q. We

may represent ertain properties by formulas in linear-time temporal logi

(LTL), whih are onstruted from atomi propositions by means of boolean

operators and the standard temporal operators X (next-time), U (until), F

(eventually) and G (always); for a formal de�nition of syntax and semantis

of LTL see for instane [7℄. Heneforth, we will identify a formula ' with

the property it represents.

Given two formulas ' and  , we de�ne the assume-guarantee spei�ation

' B  as an abbreviation of the formula :(' U : ), f. [19℄. The temporal

operator B satis�es the following equalities and inequalities:

'B  =  ^

�

') X('B  )

�

(10)

G' ^ ('B  ) � G (11)

From the �x-point equation (10), we an read o� that 'B  is the weakest

property where  holds stritly longer than ' along every omputation.

For A-G spei�ations, the following irular proof rule is known:

S

1

� '

2

B '

1

S

2

� '

1

B '

2

S

1

\ S

2

� G('

1

^ '

2

)

(12)

where S

1

, S

2

are systems and '

1

, '

2

are LTL formulas. We transform this

rule into the A-G rule R

B

for the meet-semilattie of systems and properties

hP(�

!

);\;�

!

;�i:

R

B

:

p

4

u s

1

v p

3

p

3

u s

2

v p

4

s

1

u s

2

v p

3

u p

4

if C

1

1

[s

1

; p

1

; : : : ; p

4

℄ � C

1

2

[s

2

; p

1

; : : : ; p

4

℄

where � : f0; 1g

2

! f0; 1g denotes multipliation (i. e., onjuntion in logial

terms) and the funtions C

k

i

: P(�

!

)

5

! f0; 1g are de�ned by

C

1

1

(S

1

; P

1

; P

2

; P

3

; P

4

) = 1 i� P

3

= GP

1

and P

4

= GP

2

and S

1

� P

2

B P

1

;

C

1

2

(S

2

; P

1

; P

2

; P

3

; P

4

) = 1 i� P

3

= GP

1

and P

4

= GP

2

and S

2

� P

1

B P

2

:

Note that the equality P

3

= GP

1

is supposed to hold i� there exists an

LTL formula '

1

suh that '

1

and G'

1

represent the properties P

1

and P

3

,

respetively; P

4

= GP

2

is to be interpreted similarly.
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Obviously, R

B

is a ompositional irular A-G rule

2

aording to Se-

tion 3. Moreover, soundness of R

B

an be redued to soundness of the

original rule (12), and vie versa, so both rules are appliable in exatly

the same ases. To see how soundness of R

B

redues to (12), onsider the

premises and side ondition of R

B

to be true under a valuation �. Then

there are LTL formulas '

j

suh that G'

1

= �(p

3

) and G'

2

= �(p

4

) and

�(s

1

) � '

2

B '

1

and �(s

2

) � '

1

B '

2

. Using soundness of (12), we infer

�(s

1

)\�(s

2

) � G('

1

^ '

2

), whih implies that the onlusion of R

B

is true

under �. To show the onverse redution, let S

i

and '

j

be systems and for-

mulas, respetively, suh that the premises of rule (12) hold. By (11), these

premises imply G'

2

\ S

1

� G'

1

and G'

1

\ S

2

� G'

2

, respetively. Using

soundness of R

B

, we infer S

1

\ S

2

� G'

1

\ G'

2

, whih is equivalent to the

onlusion of (12).

As the proof rule (12) is sound, f. [17, 19℄, R

B

is a sound and ompo-

sitional irular A-G rule. Thus by Theorem 5, R

B

is inomplete beause

the meet-semilattie hP(�

!

);\;�

!

;�i ontains forks of in�nite width. As

a onsequene, the rule (12) does not apture all sound irular reasoning

patterns, i. e., there are ases in whih irular reasoning is admissible yet

(12) is not appliable.

In short, this paper shows that ompositionality implies inompleteness.

Yet, we did not enounter any omplete rule exept for the rather trivial

rule R

2

from example 2. This raises the question whether non-trivial sound

and omplete irular A-G rules do exist at all. They do | in [14℄, we

present a very general sound and omplete irular A-G rule for ertain

lasses of latties. Of ourse, that rule must be non-ompositional; in fat,

it is non-ompositional both in the premises and in the side ondition. Still,

that general rule an be instantiated to many known irular A-G rules, no

matter whether they are ompositional or not.

Other Notions of Completeness. When some omplex system should

be veri�ed against a onjuntion of properties, one usually applies bakward

reasoning, i. e., one mathes the veri�ation goal against the onlusion of

a proof rule and from the premises and the side ondition one infers the

subgoals that need to be established. In [19℄, the authors investigate a no-

tion of ompleteness that haraterizes rules whih always enable bakward

reasoning, so we will term this notion bakward ompleteness. Adopted to

our setting, a rule R : �= if � is alled bakward omplete i� for all val-

uations �, � j=  implies �

0

j= � and �

0

j= � for some valuation �

0

whih

agrees with � on the variables of  . Thus, truth of the onlusion implies

that the premises and the side ondition an be made true through hoosing

(i. e., guessing) appropriate values for the auxiliary variables, i. e., for those

2

The trivial premises p

1

v > and p

2

v > have been omitted from the de�nition of R

B

for the sake of readability.
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variables in the premises that do not our in the onlusion. Note that

bakward ompleteness does not distinguish premises and side ondition,

whereas this distintion is essential for our notion of ompleteness.

Our notion of ompleteness relates more to forward reasoning, i. e., from

prior knowledge whih subsystems guarantee whih properties assuming

whih other properties, we want to infer that the omplex system guar-

antees a onjuntion of properties. A omplete rule (in the sense of this

paper) will enable this inferene whenever the onlusion is onsistent with

our knowledge. Still, our inompleteness result bears some signi�ane for

bakward omplete rules. For a rule R : �= if � without auxiliary variables,

i. e., var( ) = var(�), bakward ompleteness implies ompleteness. Thus,

as a onsequene of Theorem 5, every sound and bakward omplete ompo-

sitional irular A-G rule neessarily needs to employ auxiliary variables. In

other words, bakward reasoning with ompositional irular rules is likely

to require guessing auxiliary assertions about the system. I. e., one trades

the lower omplexity of the (deomposed) system for a higher omplexity of

the proof searh.

6 Conlusion

We have shown that sound and ompositional irular assume-guarantee

rules, presented as inferene rules restrited by an arbitrary side ondition,

annot be omplete. I. e., the side ondition of a ompositional rule, no

matter how elaborate it is, annot apture all ases where irular reasoning

is admissible. Consequently, two important riteria for rating the quality of

inferene rules work against eah other in the realm of irular reasoning.

Upon designing assume-guarantee rules, this raises the question whether we

should settle for ompositionality or rather for ompleteness. The answer

depends on the intended use of the rule.

Over the years, the pratiality of irular assume-guarantee reasoning as

a tehnique for ompositional veri�ation has been doumented in a number

of ase studies, see [9, 10, 16℄ to name a few. In most ases, these assume-

guarantee rules were tailored for model heking, and as model hekers

partiularly su�er from the infamous state explosion problem, the design-

ers of the rules foussed on (automati) system deomposition rather than

on ompleteness. Consequently, these rules avoid to generate subgoals that

involve a omposition of subsystems. Here, ompositional rules whose side

onditions an be heked eÆiently (but are not too restritive) seem to be

very appropriate. There are tools that suessfully employ suh inomplete

ompositional rules, e. g., in the veri�ation of thread-parallel software [8℄.

To some extent, the loss of ompleteness an be mitigated against by hu-

man interation, e. g., in the form of auxiliary annotations (to the ode of

the system), whih provide more information about the system so the tools

17



may �nd better deompositions.

To the best of our knowledge, there is no data available on the pratial

use of omplete irular assume-guarantee rules in veri�ation. However, in

the ase of manual (or almost manual) veri�ation, we see no reason for

severely restriting the power of irular reasoning, so one might prefer a

omplete rule over a ompositional one. Of ourse, then one must takle

system deomposition in the subgoals by other means, e. g., by abstration.

Still, assume-guarantee reasoning may be superior to diret veri�ation, as

the additional assumptions in the subgoals may enable better abstrations.
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