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Abstrat

Let G be a simple graph on n verties. A onjeture of Bollob�as and Eldridge

asserts that if Æ(G) �

kn�1

k+1

then G ontains any n vertex graph H with

�(H) = k. We strengthen this onjeture: we prove that if H is bipartite,

3 � �(H) = � is bounded and n is suÆiently large , then there exists � > 0

suh that if Æ(G) �

�

�+1

(1� �)n, then H � G.
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1 Introdution

In this paper we will onsider only simple graphs. Let us denote by Æ(F ) the

minimum degree and by �(F ) the maximum degree of the graph F . In 1978

the following onjeture was formulated by Bollob�as and Eldridge in [4℄:

Conjeture 1 (Bollob�as-Eldridge) If G is a simple graph on n verties

with

Æ(G) �

kn� 1

k + 1

then G ontains any n vertex simple graph H with �(H) = k.

The simplest speial ase of Conjeture 1 is �(H) = 1, whih an be

solved easily. Muh harder ases of this onjeture have been proved by

Hajnal and Corr�adi [5℄, Hajnal and Szemer�edi [7℄, Aigner and Brandt [2℄

and Alon and Fisher [3℄, Csaba, Shokoufandeh and Szemer�edi [6℄. However,

the onjeture is wide open for most ases.

In this paper we show that a stronger version of this onjeture is true

for all suÆiently large n when H is bipartite and 3 � �(H) is bounded:

Theorem 2 Given � � 3 integer, there exists an n

0

and a � > 0 real suh

that for all n � n

0

the following statement holds: Let H be a simple bipartite

graph on n verties, with 3 � �(H) = �. Then if G is any n vertex simple

graph having minimum degree

Æ(G) �

�

�+ 1

(1� �)n

then it ontains H as a spanning subgraph.

Remark 1 The ase �(H) = 1 of Conjeture 1 is easily seen to be tight,

while �(H) = 2 and �(H) = 2 { in whih ase Æ(G) �

n

2

is suÆient { is a

speial ase of El-Zahar's onjeture, whih was shown in [1℄.

In understanding the proof of the result some familiarity with the Regu-

larity Lemma of Szemer�edi [11℄ will be helpful, although we will give a brief

survey on the neessary notions in the seond setion. In the third setion we

will formulate and prove another important tool for this graph embedding

problem, a modi�ed version of the Blow-up Lemma [8℄, [9℄. A speial ase

of this version (for embedding graphs of maximum degree three) appeared

in [6℄, although it was not stated expliitly there, and perhaps it is not easy

to separate the lemma from the main result of that paper. In the fourth

setion we will prove Theorem 2, and will give another embedding result,

too.
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2 Notation and De�nitions

For a graph G, V (G) and E(G) will denote its vertex-set and edge-set, re-

spetively. For any vertex v, deg

G

(v) is the degree of vertex v, deg

G

(v;X)

is the number of neighbors of v in X, and e(X; Y ) is the number of edges

between X and Y . N

G

(v) is the set of neighbors of v and N

G

(v;X) is the

set of neighbors of v in X. Throughout the paper we will apply the relation

\�": a� b, if a is suÆiently smaller, than b.

A bipartite graph G with olor-lasses A and B and edge-set E will be

denoted by G = (A;B;E). The density between disjoint sets X and Y is

de�ned as:

d(X; Y ) =

e(X; Y )

jXjjY j

:

In the proof of Theorem 2, Szemer�edi's Regularity Lemma [11℄, [10℄ plays

a pivotal role. We will need the following de�nition to state the Regularity

Lemma.

De�nition 1 (Regularity ondition) Let " > 0. A pair (A;B) of disjoint

vertex-sets in G is "-regular if for every X � A and Y � B, satisfying

jXj > "jAj; jY j > "jBj

we have

jd(X; Y )� d(A;B)j < ":

This de�nition implies that regular pairs are highly uniform bipartite graphs;

namely, the density of any reasonably large subgraph is almost the same as

the density of the regular pair.

We will use the following form of the Regularity Lemma:

Lemma 3 (Degree Form) For every " > 0 there is an M = M(") suh

that if G = (V;E) is any graph and d 2 [0; 1℄ is any real number, then there

is a partition of the vertex set V into `+ 1 lusters V

0

; V

1

; : : : ; V

`

, and there

is a subgraph G

0

of G with the following properties:

� ` �M ,

� jV

0

j � "jV j,

� all lusters V

i

, i � 1, are of the same size m

�

� b

jV j

`

 < "jV j

�

,

� deg

G

0

(v) > deg

G

(v)� (d+ ")jV j for all v 2 V ,

2



� G

0

j

V

i

= ; (V

i

is an independent set in G

0

) for all i � 1,

� all pairs (V

i

; V

j

), 1 � i < j � `, are "-regular, eah with density either

0 or greater than d in G

0

.

Often we all V

0

the exeptional luster. In the rest of the paper we assume

that 0 < "� d� 1.

De�nition 2 (Redued graph) Apply Lemma 3 to the graph G = (V;E)

with parameters " and d, and denote the lusters of the resulting partition by

V

0

; V

1

; : : : ; V

`

, V

0

being the exeptional luster. We onstrut a new graph G

r

,

the redued graph of G

0

in the following way: The non-exeptional lusters

of G

0

are the verties of the redued graph G

r

(hene jV (G

r

)j = `). We

onnet two verties of G

r

by an edge if the orresponding two lusters form

an "-regular pair with density at least d

The following orollary is immediate:

Corollary 4 Apply Lemma 3 to the n-graph G = (V;E) satisfying Æ(G) �

n for some  > 0 with parameters " and d. Denote G

r

the redued graph of

G

0

. Then Æ(G

r

) � ( � �)`, where � = 2"+ d.

Remark 2 In our appliation of Lemma 3 we will assume that all densities

equal to d { for a regular pair with density exeeding this number one an

randomly disard edges to ahieve the desired density without ruining the

"-regularity ondition.

A stronger one-sided property of regular pairs is super-regularity:

De�nition 3 (Super-Regularity ondition) Given a graph G and two

disjoint subsets of its verties A and B, the pair (A;B) is ("; d)-super-regular,

if it is "-regular and furthermore,

deg(a) > djBj; for all a 2 A;

and

deg(b) > djAj; for all b 2 B:
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2.1 A rough outline of the proof

Our goal is to embedH into the host graph G. For ahieving this goal �rst we

apply the Regularity Lemma to G. Then we distribute (but not embed) the

verties of H among the non-exeptional lusters of G

0

. It is important to do

this distribution evenly and onsistently. That is, we assign m+ jV

0

j=`�o(n)

H-verties to eah non-exeptional luster, and if (x; y) 2 E(H) and x is

assigned to the luster V

x

and y is assigned to V

y

, then (V

x

; V

y

) 2 E(G

r

).

Then we embed appropriately hosen H-verties to V

0

. After this step we will

have m H-verties assigned to eah non-exeptional luster. For embedding

these H-verties we will apply the modi�ed Blow-up Lemma.

3 Modi�ed Blow-up Lemma

As it was mentioned above, most of H will be embedded by a similar pro-

edure to that of the Blow-up Lemma. Readers familiar with the lemma

may observe that unlike in our setup, the Blow-up Lemma applies for a �xed

redued graph whih does not depend on the parameters " and d, and all the

edges of that (�xed) redued graph are super-regular pairs. Besides, as we

will see, there will be restritions for the embedding of ertain H-verties.

Hene, we need a stronger statement than the Blow-up Lemma, but that will

require several new onditions, and this version below will be more tehnial.

However, the main message have not hanged: if ertain onditions are satis-

�ed, one an embed bounded degree spanning subgraphs into pseudo-random

graphs. In this setion we disuss this embedding algorithm, and then prove

its orretness.

Given H and G our goal is to �nd a subgraph of G whih is isomorphi to

H. Let us denote by I

0

� V (H) a set the elements of whih are of distane at

least 4 from eah other, and I

0

>

n

�

5

- the existene of I

0

an be shown easily

by the help of a greedy algorithm. We assume that the vertex set of G is

partitioned into lusters V

0

; V

1

; : : : ; V

`

, and the vertex set of H is partitioned

into lusters L

0

; L

1

; L

2

; : : : ; L

`

, and there is a bijetive mapping ' between

L

0

and V

0

. I

0

i

will denote L

i

\ I

0

.

Lemma 5 (Modi�ed Blow-up lemma) For all positive integer � there

exists n

0

and "; d > 0 suh that if n > n

0

, H and G are two n-graphs,

�(H) = �,

0 < "� "

0

� "

00

� "

000

� Æ

000

� Æ

00

� Æ

0

� d� 1;

for 1 � i < j � ` the pair (V

i

; V

j

) is "-regular, with density 0 or d, and all
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the onditions listed below hold, then H is embeddable to G by a randomized

algorithm. These onditions are the following:

Conditions

C1 jL

0

j = jV

0

j � K

1

dn,

C2 L

0

� I

0

,

C3 jL

i

j = jV

i

j = m for 1 � i � `,

C4 L

i

s (1 � i � `) are independent in H,

C5 jN(L

0

) \ L

i

j � K

2

dm for 1 � i � `,

C6 for 1 � i � ` there is a set B

i

� I

0

i

with B

i

� L

i

and jB

i

j = Æ

0

m,

B = [

i

B

i

suh that jjN

H

(B)\L

i

j�jN

H

(B)\L

j

jj < "n for 1 � i; j � `,

C7 if (x; y) 2 E(H) and x 2 L

i

, y 2 L

j

(1 � i; j � `) then (V

i

; V

j

) is

"-regular pair with density d,

C8 if (x; y) 2 E(H) and x 2 L

0

, y 2 L

j

(1 � j � `) then deg('(x); V

j

) �



1

jV

j

j = 

1

m.

For 1 � i � ` v 2 V

i

is good for x 2 L

i

, if for all y adjaent to x, if y 2 L

j

,

then

deg

G

(v; V

j

) � (d� ")m.

C9 For 1 � i � ` all v 2 V

i

is good for at least 

2

m L

i

-verties.

Let E

i

� V

i

be a set of size at most "

00

m for 1 � i � `.

C10 For 1 � i � ` there exists a bijetion  : E

i

! F

i

� L

i

\ (I

0

�B) suh

that for all v 2 E

i

v is good for  (v):

C11 Let F = [F

i

, then jN

H

(F ) \ L

i

j � K

3

"

00

m.

Here K

1

; K

2

; K

3

and 

1

and 

2

are positive numbers, whih may depend on

�, but not on " and d.

The elements ofB will be alled bu�er verties, and E

i

is the set of exeptional

G-verties in V

i

.

Let us explaine the role of these onditions. We want to embed L

i

-verties

to V

i

(0 � i � `). First, x 2 L

0

will be embedded to '(x) 2 V

0

, that is why

we need C1 and C2. We have C3 and C4 sine L

i

will be embedded to V

i

5



(1 � i � `). C7 and C8 are so alled onsisteny onditions. The meaning

of C5-C6 will be lear later, these are measures for the "evenness" of the

distribution of H-verties among the lusters of G. C9 is analogous to C8.

We need C10 and C11 sine we have to take speial are of the exeptional

G-verties, and we want to over them with suh H-verties for whih their

neighbors are well-spread among the L

i

-lusters.

3.1 The embedding algorithm

From now on we suppose that the requirements of Lemma 5 are satis�ed.

Sine L

0

has already been embedded, we will onsider only the verties of

H�L

0

. Let n

0

= jV (H�L

0

)j, we order the verties of H�L

0

into a sequene

S = (x

1

; x

2

; : : : ; x

n

0

) whih is almost the order in whih V (H � L

0

) will be

embedded. For eah 1 � i � `, we have a subset B

i

of L

i

of size Æ

0

m, the

bu�er verties. Reall, that B = [

i

B

i

. LetM = jBj, and b

1

; b

2

; : : : ; b

M

be the

bu�er verties, then they will form the last part of S. The sequene S starts

with the verties of N

H

(L

0

), followed by fN

H

(b

1

); N

H

(b

2

); : : : ; N

H

(b

M

)g, the

neighbors of the bu�ers. We let T

0

= jN

H

(L

0

)j and T

1

=

P

M

i=1

jN

H

(b

i

)j. Then

we add all the other verties to the sequene, in suh a way that the bu�er

verties form the tail of S. For tehnial reasons we assume that S is ordered

evenly aording to the L

i

lists, i.e., the onseutive segments of length Æ

00

n

0

have the same number of verties from every list. Later we may plae some

verties forward, but then we rearrange S to maintain this property.

The embedding of the verties of H�L

0

ours in three separate phases.

In the �rst phase we are going to embed the verties of N

H

(L

0

). In the seond

phase will ome the embedding of the next verties of S after eah other

aording to their position in the sequene (some reordering is possible),

until only bu�er verties are left in S. In the third phase, by a mathing

proedure we embed the remaining bu�er verties. The phase for embedding

N

H

(L

0

) is a randomized proedure, while the other two are deterministi.

In the next subsetion we outline our method for the embedding, with

the exeption of seleting a vertex to be overed. That will be done in a

separate subsetion.

3.1.1 Outline

For an unembedded vertex x 2 L

i

we will denote by H

t;x

its monotonially

shrinking host set in V

i

at time t. Also, for tehnial reasons we keep trak

of another set, C

t;x

. By Z

t

we denote the set of oupied verties (note that

Z

0

= V

0

), and we also maintain a set Bad

t

of exeptional pairs in H � L

0

.
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At time 0, we set C

0;x

= H

0;x

= V

i

, where x 2 L

i

, and x does not have

any neighbor in L

0

. For those verties having neighbors in L

0

the setup is

di�erent. Let x in L

0

have neighbors y

1

2 L

i

1

; y

2

2 L

i

2

; : : : ; y

�

2 L

i

�

, and

v = �(x). By virtue of ondition C8 we have ensured that v has at least 

1

m

neighbors in V

i

1

; V

i

2

; : : : ; V

i

�

. These neighborhoods give C

0;y

1

= H

0;y

1

; C

0;y

2

=

H

0;y

2

; : : : ; C

0;y

�

= H

0;y

�

, respetively.

Reall, that T

0

= jN

H

(L

0

)j and T

1

=

P

M

i=1

jN

H

(b

i

)j. We let T

2

= Æ

00

n

0

.

Given the initial host sets, the embedding algorithm will go as follows:

Phase 0. For 1 � t � T

0

repeat the following steps

Pik an appropriate vertex v

t

for x

t

2 N

H

(L

0

) randomly and uni-

formly from H

t�1;x

t

using the Seletion Algorithm of setion 3.1.2.

Update

Z

t

= Z

t�1

[ fv

t

g

and for all unembedded verties x

i

, with t < i � n

0

C

t;x

i

=

(

C

t�1;x

i

\N

G

(v

t

) if (x

i

; x

t

) 2 E(H);

C

t�1;x

i

otherwise;

and

H

t;x

i

= C

t;x

i

� Z

t

Phase 1. For t � T

0

+ 1 repeat the following steps

Step 1. Embed the vertex x

t

from the sequene S: using the

Seletion Algorithm hoose an appropriate vertex v

t

from the set

H

t�1;x

t

as x

t

's image.

Step 2. Update

Z

t

= Z

t�1

[ fv

t

g

and for all unembedded verties x

i

, with t < i � n

0

C

t;x

i

=

(

C

t�1;x

i

\N

G

(v

t

) if (x

i

; x

t

) 2 E(H);

C

t�1;x

i

otherwise;

and

H

t;x

i

= C

t;x

i

� Z

t

Step 3. Exeptional verties in G

1. If t 6= T

0

+ T

1

go to step 4.

7



2. If t = T

0

+ T

1

then for every luster V

i

form a set E

i

ontaining those unovered verties satisfying

jfb : b 2 B

i

; v 2 C

t;b

gj < Æ

00

jB

i

j:

We will over them right after the neighbors of the bu�er

verties, thereby eliminating a possible objetion to embed

the bu�er verties in Phase 2. We slightly hange the ordering

of S. From every list L(V

i

) we take jE

i

j verties belonging to

I

0

to form the set  (E

i

) = F

i

. Let F = [F

i

. We plae the

verties of F forward, x =  (v) 2 F

i

will be embedded to v 2

E

i

. The requirements for hoosing F have been formulated in

C10 and C11. We will maintain the even ordering of S.

Step 4. Exeptional verties in H � L

0

1. If T

2

does not divide t, then go to Step 5.

2. If T

2

divides t, we will �nd all exeptional unembedded

verties y 2 H � L

0

suh that jH

t;y

j � (Æ

0

)

2

m. We again

slightly hange the order of the remaining verties in S by

bringing these exeptional verties forward in S (inluding

the exeptional bu�er verties) and will maintain the even

distribution of verties assigned to di�erent lusters. This

is possible beause of the very small number of exeptional

verties we an �nd in this step.

Step 5. If the unembedded verties are all bu�er verties, go to

Phase 2., otherwise set t t+ 1 and go bak to Step 1.

Phase 2. Find a system of distint representatives of the sets H

t;y

for

all unembedded verties.

3.1.2 Seletion Algorithm

There an be two possible ases.

Case 1. x

t

62 F .

As the image of x

t

, we will hoose some v

t

2 H

t�1;x

t

suh that the

following onditions are satis�ed for every unembedded vertex y with

(x

t

; y) 2 E(H):

(d� ")jH

t�1;y

j � deg

G

(v

t

; H

t�1;y

) � (d+ ")jH

t�1;y

j; (3)

(d� ")jC

t�1;y

j � deg

G

(v

t

; C

t�1;y

) � (d+ ")jC

t�1;y

j; (4)

8



and

(d�")jC

t�1;y

\C

t�1;y

0

j � deg

G

(v

t

; C

t�1;y

\C

t�1;y

0

) � (d+")jC

t�1;y

\C

t�1;y

0

j; (5)

for at least (1 � "

0

) portion of the unembedded verties y

0

so that y

and y

0

are assigned to the same luster V

i

, and fy; y

0

g 62 Bad

t�1

. The

set Bad

t

will be formed as the union of Bad

t�1

and those pairs fy; y

0

g

whih does not satisfy (5) for v

t

. Clearly, at most �"

0

m new verties

will be added to Bad

t

.

Case 2. x

t

2 F .

By the virtue of C10 we will assign x

t

2 L(V

i

) to an exeptional v

t

2 E

i

so that for all unembedded y 2 N

H

(x

t

) the following is satis�ed:

deg

G

(v

t

; C

t�1;y

) = deg

G

(v

t

) � (d� ")m � (d� ")jC

t�1;y

j; (6)

and

deg

G

(v

t

; H

t�1;y

) � deg

G

(v

t

)�2�Æ

0

m�jE

i

j � (d�")m�2(�+1)Æ

0

m �

d

2

m: (7)

In (7) we use C6 and the fat that for eah i jE

i

j � Æ

0

m. We will prove this

in Lemma 9.

3.2 Corretness

We start by proving that Phase 0 of the algorithm sueeds with high prob-

ability. First we show that the Seletion Algorithm sueeds for 1 � t � T

0

in �nding the v

t

-verties.

Lemma 6 Assuming that Phase 0 sueeds for all t

0

, with t

0

< t � T

0

and

H

t�1;x

t

� Æ

00

m, then it sueeds for t.

Proof. We only need to onsider Case 1 of the Seletion Algorithm. The

seleted vertex v

t

2 H

t�1;x

t

should satisfy onditions (3), (4), and (5). By

"-regularity we will have at most 2"m verties in H

t�1;x

t

whih do not satisfy

(3), and the same holds for (4). For ondition (5) we will de�ne a bipartite

graph B = (W

1

;W

2

; E(B)). Here W

1

= H

t�1;x

t

, and the elements of W

2

are

the sets C

t�1;y

\ C

t�1;y

0

for all pairs fy; y

0

g where (x

t

; y) 2 E(H), y and y

0

are both assigned to the same luster, and fy; y

0

g 62 Bad

t�1

. For v 2 W

1

and u 2 W

2

, we have (v; u) 2 E(B) if (5) does not hold for v and the pairs

orresponding to u. If we assume that there are more than "

0

m verties

9



v 2 W

1

with deg

B

(v) > "

0

jW

2

j, then there should be a vertex u 2 W

2

suh

that

deg

B

(u) > "

02

m� "m:

But this is a ontradition with the "-regularity sine the pair fy

u

; y

0

u

g or-

responding to u does not belong to Bad

t�1

and

jC

t�1;y

u

\ C

t�1;y

0

u

j � (Æ � ")

2�

m� "m:

This in turn implies that H

t�1;x

t

an ontain at most 4"m + "

0

m � Æ

00

m

verties whih annot be used to map x

t

, proving the suession of Phase 0.

Observe, that when we progress to Phase 1 (after the suessful omple-

tion of Phase 0), the aformentioned proof will work. We will be able to �nd

a vertex to over if the host sets are not too small.

What is left to show is that for all time t, 1 � t � T

0

, the host sets do

not beome too small. Atually, we prove this not just for the host sets for

the unembedded N

H

(L

0

){verties, but for all unembedded H{verties.

Lemma 7 If Phase 0 sueeds for all t, with t < T

0

then for all t

0

> t

H

t�1;x

t

0

� Æ

0

m with high probability.

Proof. For x 2 N

H

(L

0

) jH

0;x

j � 

1

m. In Lemma 6 we proved that if

the algorithm sueeds up to time t and jH

t;x

j � Æ

00

m, we an �nd a v

t

to

embed x. Sine no two verties in N

H

(L

0

) are adjaent, the only way the

host set of x dereases is that we over some verties of it by other N

H

(L

0

)-

verties. When deiding whih G{vertex to over by an N

H

(L

0

){vertex x,

the Seletion Algorithm will always provide almost all of H

t;x

as a possibility

{ a subset of size Æ

00

m an be left out. Out of those possibilities we hoose

the host vertex randomly and uniformly. Reall that aording to C5, the at

most �jV

0

j restrited verties of N

H

(L

0

) are distributed among a onstant

proportion of the lusters, as evenly as possible. We an onlude that only a

very small number of verties (K

2

dm) have a restrition to embed them into

a set of size at least 

1

m in eah luster. Now, by applying the statement

of Lemma 6 one an easily onlude that up to time T

0

all the unembedded

N

H

(L

0

)-verties have a host set of size at least (

1

� 2K

2

d)m.

A vertex y from the rest of H an have � neighbors embedded by time

T

0

. This means its starting host set H

0;y

may shrink up to � times, eah

time the sizes are multiplied by a number between d� " and d+ ". We also

lose some plaes beause of the embedded N

H

(L

0

)-verties. The randomness

in the Seletion Algorithm helps us. The expeted number of overed ver-

ties in this host set is proportional to its size. Suppose that y's host set

10



shrinks at time t

1

and the next shrinking is at time t

2

(t

1

; t

2

� T

0

). Denote

hm the size of y's host set at time t

1

. Then we an use Hoe�ding's bound

between these two shrinkages. Easy alulation shows that with probability

1 � 2e

2K

2

dmh

2

the size of y's host set is of size at least h(1 � 2K

2

d)m at

time t

2

� 1. Therefore, after shrinking � times, with very high probability

(remember, n is larger than some threshold!) the size of y's host set will

be at least (d� ")

�

(1� 2K

2

d)

�

m > d

�+1

m. Observing that we have linear

number of host sets in a luster, we get that with high probability, for every

unembedded vertex x at time t, 1 � t � T

1

, jH

t;x

j � d

�+1

m.

One an easily onlude from the above that Phase 0 sueeds with prob-

ability 1� o(1).

For t > T

0

we will need a more thorough analysis. At time t for the

luster V

i

and a subset of the unembedded verties Q

i

� L

i

, we de�ne a

bipartite graph U

t

= (V

i

; Q

i

; E(U

t

)). Here if x 2 Q

i

, v 2 V

i

, and v 2 C

t;x

then (x; v) 2 E(U

t

).

The following lemma is pivotal for the proof of the orretness of Phase

1.

Lemma 8 For every 1 � i � ` and T

0

+ 1 � t � T

0

+ T

1

and any set

of unembedded verties Q

i

� L

i

at time t, with jQ

i

j � (Æ

000

)

2

m, if Phase 1

sueeds for all t

0

� t, then apart from an exeptional set J of size at most

"

00

m the following will hold for every v 2 V

i

:

deg

U

t

(v) � (1� "

00

)d(V

i

; Q

i

)jQ

i

j:

Proof. We use the so alled \defet form" of the Cauhy-Shwarz inequality,

that states: if for some p � q

p

X

i=1

�

i

=

p

q

q

X

i=1

�

i

+ �

then

q

X

i=1

�

2

i

�

1

q

 

q

X

i=1

�

i

!

2

+

�

2

q

p(q � p)

:

Assume to the ontrary that the lemma is not true, that is, jJ j > "

00

m.

Choose J

0

� J with jJ

0

j = "

00

m. De�ne �(t; x) as the number of embedded

neighbors of x by time t. Observe that if x has a neighbor in L

0

, then

�(0; x) � 1, otherwise it is 0. Then

jE(U

t

)j =

X

x2Q

i

jC

t;x

j �

X

x2Q

i

(d� ")

�(t;x)

m: (8)

11



We also have

X

x2Q

i

X

x

0

2Q

i

jC

t;x

\ C

t;x

0

j

�

X

x2Q

i

X

x

0

2Q

i

(d+ ")

�(t;x)+�(t;x

0

)

m+ jQ

i

jm+�

2

jQ

i

jm+ 2�"

0

m

3

�

X

x2Q

i

X

x

0

2Q

i

(d+ ")

�(t;x)+�(t;x

0

)

m+ 4�"

0

m

3

(9)

For eah pair fx; x

0

g, we an upper-bound jC

t;x

\ C

t;x

0

j by m. The diagonal

terms (x = x

0

) result in error jQ

i

jm. For the non-diagonal terms for whih

N

H

(x) \N

H

(x

0

) 6= ; we have the term �

2

jQ

i

jm. If fx; x

0

g 2 Bad

t

, by Case

1 of the Seletion Algorithm either x or x

0

an appear in at most �"

0

m

bad pairs. Hene there will be at most �"

0

m

2

bad pairs assoiated with the

luster V

i

. Using the Cauhy-Shwarz inequality with p = "

00

m, q = m and

the variables �

k

= deg

U

t

(v

k

), 1 � k � m with v

k

2 V

i

and the �rst "

00

m

values set to degrees in J

0

, we have:

j�j = "

00

X

v2V

i

deg

U

t

(v)�

X

v2J

0

deg

U

t

(v)

� "

00

X

v2V

i

deg

U

t

(v)� "

00

(1� "

00

)d(V

i

; Q

i

)jQ

i

jm

= ("

00

)

2

X

v2V

i

deg

U

t

(v): (10)

Then using (8), (10) and the Cauhy-Shwarz inequality we get

X

x2Q

i

X

x

0

2Q

i

jC

t;x

\ C

t;x

0

j

=

X

v2V

i

(deg

U

t

(v))

2

�

1

m

0

�

X

v2V

i

deg

U

t

(v)

1

A

2

+ ("

00

)

3

d(V

i

; Q

i

)

2

mjQ

i

j

2

�

1

m

0

�

X

x2Q

i

(d� ")

�(t;x)

m

1

A

2

+ ("

00

)

3

(d� ")

2�

mjQ

i

j

2

�

X

x2Q

i

X

x

0

2Q

i

(d� ")

�(t;x)+�(t;x

0

)

m+ ("

00

)

3

(d� ")

2�

mjQ

i

j

2

whih is a ontradition to (9), sine jQ

i

j � (Æ

000

)

2

m,

("

00

)

3

(d� ")

2�

(Æ

000

)

2

� 4"

0

� 4"

and

(d+ ")

�(t;x)+�(t;x

0

)

� (d� ")

�(t;x)+�(t;x

0

)

� 4":

12



As a onsequene we will have the following bound on the size of the

exeptional sets E

i

:

Lemma 9 In Step 3, for eah 1 � i � ` we have jE

i

j � "

00

m.

Proof. Applying the previous lemma with t = T

0

and Q

i

= B

i

, whih means

jQ

i

j � (Æ

000

)

2

m, we will have

(1� "

00

)d(V

i

; Q

i

)jQ

i

j �

d

�

2

jQ

i

j > Æ

00

jQ

i

j

and E

i

� J .

Next we will prove a result similar to Lemma 8 for t > T

0

+ T

1

.

Lemma 10 For every 1 � i � ` and T

0

+ T

1

< t � T and any set of

unembedded verties Q

i

� L

i

at time t, with jQ

i

j � (Æ

000

)

2

m, if Phase 1

sueeds for all t

0

� t, then apart from an exeptional set of size at most "

000

m

the following will hold for every v 2 V

i

:

deg

U

t

(v) � (1� "

000

)d(V

i

; Q

i

)jQ

i

j:

Proof. The proof follows the same line of argument as Lemma 8 with pa-

rameter "

000

, exept those verties in the neighborhood of F . The inequality

in (8) will hold with the same parameters, sine for all x 2 N

H

(F ) we have

jC

t;x

j � (d� ")

�(t;x)

m:

Here we used ondition C10 and the fat that �(t; x) = 1 sine x 2 I

0

.

In (9) there are more bad pairs. More preisely, based on Step 3 of the

embedding algorithm, there will be an additional error term of 2�K

3

"

00

m

2

jQ

i

j

by ondition C11. Using the fat that

("

000

)

3

(d� ")

2�

(Æ

000

)

2

� "

00

we an see that the ontradition still holds.

The following lemma is an easy onsequene of Lemmas 8 and 10.

Lemma 11 For every 1 � i � ` and T

0

< t � T and any set of unembedded

verties Q

i

� L

i

at time t, with jQ

i

j � Æ

000

m and a set A � V

i

with jAj � Æ

000

m,

if Phase 1 sueeds for all t

0

� t then apart from an exeptional set J of size

at most (Æ

000

)

2

m, the following will hold for every x 2 Q

i

:

jA \ C

t;x

j �

jAj

2m

jC

t;x

j:

13



Proof. Let us suppose that the lemma is not true, there exists a set J � Q

i

suh that jJ j > (Æ

000

)

2

m, and for every x 2 J the inequality of the statement

does not hold. We again onsider the bipartite graph U

t

= U

t

(J; V

i

).

X

v2A

deg

U

t

(v) =

X

x2J

jA \ C

t;x

j <

jAj

2m

d(J; V

i

)jJ jm:

Applying Lemmas 8 or 10 with J , we get

X

v2A

deg

U

t

(v) � (1� "

000

)d(J; V

i

)jJ j(jAj � "

000

m);

whih is a ontradition.

In the following lemma we show that the host sets do not beome too

small.

Lemma 12 For every T

0

+ 1 � t � T and for every H-vertex y whih is

unembedded at time t, if Phase 1 sueeds for all t

0

� t then the following

holds:

jH

t;y

j > Æ

00

m:

Proof. Let Q

i

be the set of all the unembedded verties in V

i

at time t, and

let A

t

= V

i

�Z

t

. Applying Lemma 11 we an see that for all x 2 Q

i

(exept

at most (Æ

000

)

2

m verties)

jH

t;x

j = jA

t

\ C

t;x

j �

jA

t

j

2m

jC

t;x

j �

Æ

0

4

(d� ")

�

m� (Æ

0

)

2

m;

if jA

t

j �

Æ

0

2

m: Next we prove this statement. Let us suppose indiretly that

there is a T

0

suh that T

1

+ 1 � T

0

< T and

jA

T

0

j �

Æ

0

2

m but jA

T

0

+1

j <

Æ

0

2

m:

We know that at any time t, where T

2

divides t, there are at most (Æ

000

)

2

m

exeptional unembedded verties. Thus, up to time T

0

we an �nd at most

1

Æ

00

(Æ

000

)

2

m� Æ

00

m

exeptional verties. This implies that at time T

0

there are many more than

(Æ

0

� Æ

00

)m unembedded bu�er verties, thus, on the ontrary, jA

T

0

+1

j �

(Æ

0

� Æ

00

)m: Note, that we also proved that T � `m � `Æ

0

m + `Æ

00

m: Let us

onsider now an arbitrary y 2 L(V

i

) unembedded at time t (1 � t � T ), and

let kÆ

00

n

0

= kT

2

� t < (k + 1)T

2

for some 0 � k � T=T

2

: There are two ases

to disuss:

14



Case 1. If y was not among the at most (Æ

000

)

2

exeptional verties of

Step 4, then

jH

t;y

j �

 

d

2

!

�

(Æ

0

)

2

m�K;

where K is the number of verties overed in V

i

during the period

between kT

2

and (k + 1)T

2

. Reall that the sequene S is as balaned

as possible; hene, K � 2Æ

00

m, where 2Æ

00

m omes from the reordering

of S beause of the exeptional verties of G and H. Also, at time kT

2

we had that jH

kT

2

;y

j � (Æ

0

)

2

m: These fats imply that in this ase the

statement of the lemma holds.

Case 2. If y was among the at most (Æ

000

)

2

exeptional verties of Step

4, then

jH

t;y

j �

 

d

2

!

�

(Æ

0

)

2

m�K

0

;

where K

0

is the number of verties overed in V

i

during the period be-

tween (k� 1)T

2

and (k+1)T

2

. Now K

0

an be as big as (Æ

00

+(Æ

000

)

2

)m,

beause at time (k � 1)T

2

at most (Æ

000

)

2

m exeptional verties were

plaed forward. Again, by observing that at time (k � 1)T

2

we had

that jH

(k�1)T

2

;y

j � (Æ

0

)

2

m; the proof of the lemma is �nished.

Now it is easy to show the suession of the Seletion Algorithm in �nd-

ing the v

t

-verties. We have just proved that the host sets an never get too

small. In Lemma 6 we proved that Phase 0 sueeds for time t, whenever it

sueeds for all t

0

with t

0

< t � T

1

and the host set is big enough. It is easy

to hek that exatly the same proof works for Phase 1 and up to time T .

Putting these together, we have that Phase 1 of the algorithm sueeds.

To prove that Phase 2 of the algorithm sueeds, we will show that for

all 1 � i � ` there is a system of distint representatives between the unem-

bedded verties of L

i

and the remaining bu�er verties of V

i

. Let Q

i

� L

i

denote the set of unembedded verties assigned to the luster V

i

, and Y

i

� V

i

be the remaining verties of the luster V

i

, with M

i

= jQ

i

j = jY

i

j. Then by

Lemma 12 for every x 2 Q

i

we will have H

T;x

> Æ

000

M

i

. Furthermore, for all

subsets S � Q

i

, if jSj � Æ

000

M

i

then by Lemma 10

�

�

�

�

�

[

x2S

H

T;x

�

�

�

�

�

� (1� Æ

000

)M

i

:
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Finally, for any v 2 Y

i

, sine v annot be exeptional in G, by Step 3 there

are at least Æ

000

M

i

host sets H

T;x

ontaining v implies that for the subsets

S � Q

i

with jSj � (1� Æ

000

M

i

) we have

�

�

�

�

�

[

x2S

H

T;x

�

�

�

�

�

=M

i

;

whih in turn implies the existene of the system of distint representatives.

This �nishes the proof of Lemma 5.

4 Assigning H to lusters of G

r

The proess of embedding will go as follows: First, we apply the degree form

of the Regularity Lemma for G with parameters " and d. As a result we will

have a partitioning of the vertex set into the lusters V

0

; V

1

; V

2

; : : : ; V

`

. Now

our goal will be to �nd an assignment of H-verties to the lusters of G

r

so

as to satisfy onditions C1-C11.

Let us denote the olor lasses of H by A and B, and suppose that

jAj � jBj. We randomly distribute the A-verties among the non-exeptional

lusters. Then we are going to map the B-verties to non-exeptional lusters

onsistently and evenly. That is, if y 2 B has the neighbors fx

1

; x

2

; : : : ; x

�

g,

and the x

i

s are mapped to the lusters V

j

1

; : : : ; V

j

�

, then y will be mapped

to a luster V

s

whih is onneted to V

j

1

; : : : ; V

j

�

by regular edges. Besides,

we require that the number of mapped A-verties and B-verties to all non-

exeptional lusters are

jAj

`

�o(n) and

jBj

`

�o(n), respetively. The assignment

of B-verties will be done by the help of mathing.

Still, there is no H-vertex assigned to V

0

(and hene all non-exeptional

lusters are over-saturated). For dealing with this problem we �rst disard

some B-verties (the surplus) from eah non-exeptional luster, these will

form L

0

, and the H-verties assigned to V

s

give the set L

s

for 1 � s � `.

This may not be the �nal partitioning of H { for satisfying C8 we may

have to swith between some L

0

-vertex and another L

s

-vertex. When all the

requirements of C1{C11 will be satis�ed, the atual embedding an be done

by the help of the modi�ed Blow-up lemma.

4.1 Assigning A

We start by assigning the verties of A to the non-exeptional lusters of

G

r

. For every vertex x 2 A hoose a non-exeptional luster randomly and
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independently. It is easy to see that this proedure will guarantee an almost

even distribution of the verties of A among the lusters of G

r

:

Lemma 13 Let A

i

, 1 � i � ` denote the set of verties assigned to V

i

after

distributing the verties of A using the above proedure. Then, with high

probability jA

i

j =

jAj

`

� o(n).

Proof. Applying Chebyshev's inequality gives the proof of the lemma.

Let B

0

� B is a maximal set in whih any two verties are of distane at

least 4 from eah other. (Note that jB

0

j=jBj depends on �, but not on " or d.)

Now we will argue that an appropriate distribution of A among the lusters

of G

r

will failitate an even assignment of the verties of B

0

and B�B

0

to the

lusters of G

r

. Let V

i

be a luster in G

r

, we de�ne the assoiated list Q(V

i

)

as fy : y 2 B; x 2 A

i

; (x; y) 2 E(H)g, whih is the set of B-verties with a

neighbor assigned to the luster V

i

. Let V

s

1

; V

s

2

; : : : ; V

s

�

be any � lusters

of G

r

. We de�ne the random variables R and R

0

: R

0

(V

s

1

; V

s

2

; : : : ; V

s

�

) =

jB

0

\Q(V

s

1

) \Q(V

s

2

) \ : : : \Q(V

s

�

)j and R(V

s

1

; V

s

2

; : : : ; V

s

�

) = j(B �B

0

) \

Q(V

s

1

) \Q(V

s

2

) \ : : : \Q(V

s

�

)j.

We are going to measure the evenness of the distribution of A in terms

of these random variables.

Lemma 14 For any � lusters V

s

1

; V

s

2

; : : : ; V

s

�

of G

r

the following inequal-

ities hold:

Pr

h

jR(V

s

1

; V

s

2

; : : : ; V

s

�

)� E[R(V

s

1

; V

s

2

; : : : ; V

s

�

)℄j = 
(n

4

5

)

i

= o(1);

Pr

h

jR

0

(V

s

1

; V

s

2

; : : : ; V

s

�

)� E[R

0

(V

s

1

; V

s

2

; : : : ; V

s

�

)℄j = 
(n

4

5

)

i

= o(1):

Proof. Similar to the proof of Lemma 13, again we omit the details.

We need the following simple orollary of the above lemmas.

Corollary 15 For any two �-tuples of lusters V

s

1

; V

s

2

; : : : ; V

s

�

and V

0

s

1

; V

0

s

2

; : : : ; V

0

s

�

in G

r

the following inequalities hold:

Pr

h

jR(V

s

1

; V

s

2

; : : : ; V

s

�

)� R(V

0

s

1

; V

0

s

2

; : : : ; V

0

s

�

)j = 
(n

4

5

)

i

= o(1);

Pr

h

jR

0

(V

s

1

; V

s

2

; : : : ; V

s

�

)� R

0

(V

0

s

1

; V

0

s

2

; : : : ; V

0

s

�

)j = 
(n

4

5

)

i

= o(1):
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In other words, Lemma 13 and Corollary 15 states that most of the possible

assignments of A are even assignments.

Let N be a positive integer, depending only on ". For all s (1 � s � `) we

randomly divideB

0

\Q(V

s

) intoN equal sized subsets, gettingQ

1

(V

s

); Q

2

(V

s

); : : : ; Q

N

(V

s

).

We de�ne a new set of random variables: R

0

p

(V

s

1

; V

s

2

; : : : ; V

s

�

) = jQ

p

(V

s

1

) \

Q

p

(V

s

2

)\ : : :\Q

p

(V

s

�

)j, for all 1 � p � N . Then the following is implied by

Lemma 13 and 14:

Corollary 16 For any two �-tuples of lusters V

s

1

; V

s

2

; : : : ; V

s

�

and V

0

s

1

; V

0

s

2

; : : : ; V

0

s

�

in G

r

and two integers p and q (1 � p; q � N) the following inequalities hold:

Pr

h

jR

0

p

(V

s

1

; V

s

2

; : : : ; V

s

�

)�R

0

q

(V

0

s

1

; V

0

s

2

; : : : ; V

0

s

�

)j = 
(n

4

5

)

i

= o(1):

4.2 Pre-assigning B

In this setion we will present a onsistent assignment of the verties in B

to the lusters of G

r

. As we will see, suh assignments an be formulated

as speial mathing problems. (In order to �nish the embedding of H into

G, some of the H-verties should be assigned to the exeptional luster V

0

.

This will be arried out in another setion.)

We repeat the de�nitions of [6℄. For a bipartite graph F = (V; T; E(F ))

where jT j = qjV j for some positive integer q, M � E(F ) is a proportional

mathing if every v 2 V is adjaent to exatly q verties in T and every u 2 T

is adjaent to exatly one V vertex in M . In order to show that F ontains

a proportional mathing we will hek the K�onig{Hall onditions, that is, for

every subset U of V , its neighborhood in T should satisfy jN

F

(U; T )j � qjU j.

One an easily see this from the onstrution of an auxiliary graph: substitute

every v 2 V with q instanes v

1

; : : : ; v

q

, and if (v; u) (u 2 T ) was an edge,

then onnet the v

i

s to u for all 1 � i � q. This auxiliary graph has a perfet

mathing if and only if F has a proportional mathing.

Besides this kind of mathing we are going to need another kind of math-

ing about whih we demand that the \loads of the verties" are distributed

more evenly. We say F allows a strong proportional mathing with respet to

� (0 < � � 1) if there is a proportional mathing in the following bipartite

graph F

0

. Its olor lasses are V and T

0

. For every vertex u 2 T , we add

`

�

opies, u

1

; : : : ; u `

�

, to T

0

. If N

F

(u) = fv

1

; : : : ; v

s

g then we will have the

following edges: (u

i

; v

i

) for 1 � i � s, and (u

j

; v

i

) where 1 � i � s and

s < j �

`

�

. In other words, the �rst s opies of u have degree 1, while

the others have the same degree, s. The existene of a strong proportional

mathing an be heked through the strong K�onig-Hall onditions: one an

see that for U � V jN

F

(U)j(1� �) � jN

F

0

(U)j. Using this fat we an prove
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the existene of a strong proportional mathing, and at the same time the

existene of a proportional mathing as well. We will see that both these

mathings are needed to assign the verties of I and Q to lusters of G

r

.

Reall that G

r

is an `{graph with Æ(G

r

) = (1�

1

�+1

)(1��)(1��)`, where

0 < � = " + d � 1 and 0 < � < 1 are two onstants. We will denote Æ(G

r

)

by Æ.

Let us onstrut a bipartite graph F = (V (G

r

); T; E(F )). One olor lass

is V (G

r

) (the non-exeptional lusters), the other, T is the set of all possible

�{tuples omposed of G

r

{lusters. There is an edge between V

j

2 V (G

r

)

and a �{tuple t = (V

s

1

; V

s

2

; : : : ; V

s

�

) i� for 1 � i � � (V

j

; V

s

i

) 2 E(G

r

). Let

us denote (1 � �)(1 � �)(1 � �) by (1 � �) (here � is the onstant for the

strong proportional mathing).

The following lemma is the ornerstone of our proof.

Lemma 17 There is a strong proportional mathing in F with respet to �

if � is small enough.

For proving Lemma 17 we will need the following statement.

Lemma 18 For 0 � i � � � 2 if � is small enough, then Æ

��i

(1 � �) >

(i + 1)(1� Æ).

Proof. We are going to prove a stronger statement: (

�

�+1

)

��i

(1 � �)

�

>

i+1

�+1

(1 + ��).

We proeed by indution. First we prove the ase i = �� 2:

(

�

� + 1

)

2

(1� �)

�

>

�� 1

� + 1

(1 + ��);

sine by multiplying both sides by

�+1

�

we get the true inequality

�

�+ 1

(1� �)

�

>

�� 1

�

(1 + ��):

So now we may assume that (

�

�+1

)

��i

(1��)

�

>

i+1

�+1

(1+��). Dereasing

i by 1 we have to hek the inequality below:

(

�

�+ 1

)

��i+1

(1� �)

�

>

i

�+ 1

(1 + ��):

Multiplying both sides by

�+1

�

we get the inequality

(

�

� + 1

)

��i

(1� �)

�

>

i

�

(1 + ��):
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Now sine (

�

�+1

)

��i

(1� �)

�

>

i+1

�+1

(1+ ��), and the latter is larger than

i

�

(1 + ��) for i < �, we have �nished the proof of the lemma.

We an start proving Lemma 17.

Proof. We will hek the strong K�onig{Hall onditions.

� Let v 2 V (G

r

) be an arbitrary luster. Then jN(v; T )j(1��) � Æ

�

(1�

�)jT j, therefore it is larger than (1� Æ)jT j by Lemma 18.

� Let U

i

� V (G

r

) is a set of size greater than i(1� Æ)` for some 1 � i �

� � 2. From the minimum degree ondition of G

r

every i vertex will

have a ommon neighbor in U

i

. Now jN(U

i

; T )j(1��) � Æ

��i

(1��)jT j,

and by Lemma 18 the latter is larger than (i + 1)(1 � Æ), therefore

jN(U

i

; T )j(1� �) > (i+ 1)(1� Æ). Notie that by the above argument

we an jump up to jU

��2

j > (�� 1)(1� Æ)` (in ase i = �� 2).

� Assume that U � V (G

r

) with jU j = (� � 1)(1 � Æ)`. Then every

��1 vertex will have a ommon neighbor in U by the minimum degree

ondition of G

r

. Thus, jN(U; T )j � Æ(1� �)jT j.

� Assume that U � V (G

r

) with jU j = Æ(1 � �)`. We will estimate the

number of (� � 1){tuples having more than

1

�+1

` U{neighbors. First

of all, there are at least Æ(1� �)`Æ

��1

�

`

��1

�

edges going from U to the

set T

0

of (� � 1){tuples. We divide T

0

into two parts, T

0

1

and T

0

2

. In

T

0

1

all the tuples has at most (1� Æ)` neighbors in U , while in T

0

2

it is

possible that the tuples are onneted to all of U . Denote

jT

0

1

j

jT

0

j

by x,

then we will have the following inequality:

x(1� Æ) + (1� x)Æ(1� �) � Æ

�

(1� �):

That is, x �

(1��)(Æ�Æ

�

)

2Æ�1

. It an be shown diretly, that this expression

is less than 0:7 for � � 3 if � is small. Sine all the tuples of T

0

2

has

degree larger than (1� Æ)` to U , all of them with any other luster will

form a �-tuple whih is onneted to some U -luster. This is enough

for us to onlude that jN(U; T )j(1� �) > Æ`.

� Assume that U � V (G

r

) with jU j > Æ`. Now every �-tuple will have

a U -neighbor, exept those having only one neighbor out of U . (This

is enough for the existene of a proportional mathing.)

� For proving the existene of a strong proportional mathing assume

that U � V (G

r

) with jU j = (1 � !)` (0 � ! < �). Sine every �-

tuple having more than one neighbor is onneted to this U , we have
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to onsider only the tuples with only one neighbor. Now jU j = !`, and

lusters from U are onneted to at most !`

�

`

�

�

tuples whih have one

neighbor. Hene, the proportion of tuples whih are not neighbors of

some U -luster is at most �! < !. In other words, jN(U)j >

jU j

`

jT j for

any 0 � ! < �.

Now we are ready to present the proedure for assigning the verties in

B to G

r

-lusters. We start with the verties in B � B

0

. First let L

i

= A

i

for 1 � i � `. Assume M denotes the mathing provided by Lemma 17

with respet to the graph F . For a luster V

t

, let fV

i

1

; : : : ; V

i

�

g be one of

the �-tuples mathed to it inM. We will assign the verties of (B � B

0

) \

Q(V

i

1

) \ : : : \ Q(V

i

�

) to the luster V

t

by adding them to the set L

t

. Using

Lemma 15, j(B�B

0

)\Q(V

i

1

)\ : : :\Q(V

i

�

)j is almost the same for all hoies

of �-tuples, whih in turn implies that the set L

t

for all V

t

2 G

r

will have

almost the same size after the distribution of B � B

0

. Also, note that the

onstrution of F (G

r

) and the struture of the proportional mathing M

implies that if x 2 B � B

0

is assigned to L

t

then the N

H

(x)-verties are

assigned to neighboring lusters of V

t

.

The verties of B

0

will be mapped by the help of strong proportional

mathing, on the same way as we did for B�B

0

. The only di�erene is that

sine every �-tuple V

i

1

; : : : ; V

i

�

has

`

�

opies, the elements of Q(V

i

1

) \ : : : \

Q(V

i

�

) will be distributed randomly among these opies. It is easy to see

that the strong proportional mathing assigns B

0

-verties evenly - we refer

to Corollary 16.

We remark that there are other ases to onsider: e.g., some of B-verties

an have all their neighbors assigned to �� 1 lusters. But it is easy to see

that those mathings are easy to �nd one the harder ases are dealt with.

Then mapping suh B-verties an be done in a similar way as we did for

others.

4.3 Finishing the assignment

Now we have to make sure that all onditions of Lemma 5 are satis�ed.

Obviously, some of them are violated at this moment. E.g. C1 and C3, sine

so far we have not mapped any vertex to V

0

(L

0

is empty). Therefore, there

are more H-verties assigned to every non-exeptional luster than its size.

We will take are of these problems in separate subsetions.
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4.3.1 Bad verties in G

Every vertex in a luster of a super-regular pair has big degree to the other

luster. Our edges inG

r

are regular pairs, some verties may have just a small

number of neighbors in the other luster (this number an be even zero). To

avoid problems whih an be aused by this, we are going to disard some

verties from the lusters and put them into V

0

, this way C9 will be satis�ed.

Let M be the mathing provided by Lemma 17. For a �xed luster

V

t

2 V (G

r

) let T denote the set of �-tuples mathed to V

t

in M. We say

that v 2 V (G

r

) has small degree to a �-tuple, if v has less than (d � ")m

neighbors in one of the lusters omposing that tuple. Let us all a vertex

v 2 V

t

bad, if v has small degree to at least half of the �-tuples in T .

Lemma 19 No luster in G

r

an ontain more than 2�"m bad verties.

Proof. For a luster V

t

2 V (G

r

) whih is mathed to the �-tuples of T , let

fv

1

; : : : ; v

s

g denote the set of bad verties. If s > 2�"m then there should

be a tuple � 2 T to whih more than �"m verties of V

t

have small degree.

Thus to one of the lusters of this triplet there are more than "m verties

with degree less than (d� ")m, whih ontradits the "-regularity ondition.

By removing the 2�"m bad verties from every luster, we an guarantee

that all of their remaining verties have big degrees to at least half of the

mathed triplets, and overall at most 2�"n bad verties will be added to V

0

.

4.3.2 Seleting the L

0

-verties

As we mentioned earlier, every luster has a surplus, that is, more H-verties

are assigned to them than the lustersize m. We will form L

0

by removing a

subset of B

0

verties from the L

i

sets, ahieving that jL

i

j = m for 1 � i � `.

Let � : L

0

! V

0

be any bijetive mapping. We need to ensure that the

assignment of L

0

to V

0

is onsistent with E(H); that is, for any x 2 L

0

, with

(x; y

1

); (x; y

2

); : : : ; (x; y

�

) 2 E(H), if v = �(x), y

1

2 L

i

1

; y

2

2 L

i

2

; : : : ; y

�

2

L

i

�

then deg

G

(v; V

i

1

); deg

G

(v; V

i

2

); : : : ; deg

G

(v; V

i

�

) are all at least 

1

m (on-

dition C8). If this ondition does not hold for a pair (x; v), a swithing will

be performed. In the swithing operation we �rst pik a luster V

s

and then

loate a vertex x

0

in L

s

suh that (V

i

1

; V

s

); (V

i

2

; V

s

); : : : ; (V

i

�

; V

s

) are all edges

in E(G

r

). Furthermore, if (x

0

; y

0

1

); (x

0

; y

0

2

); : : : ; (x

0

; y

0

�

) 2 E(H) with y

0

1

2

L

i

0

1

; y

0

2

2 L

i

0

2

; : : : ; y

0

�

2 L

i

0

�

then deg

G

(v; V

i

0

1

); deg

G

(v; V

i

0

2

); : : : ; deg

G

(v; V

i

0

�

)

are all at least m. We will see that suh x

0

an always be found among

those verties assigned by the strong proportional mathing.
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Lemma 20 For every x 2 L

0

there exists an x

0

as required above.

Proof. It is easy to see that any v 2 V

0

has degree less than 

1

m to at

most

1�Æ

1�

1

proportion of all lusters. Let V

s

be as above, then a simple

alulation shows that the number of lusters in its neighborhood for whih

v has large degree (� 

1

m) is at least (1 �

1

�

)(

��1

�+1

)`. (We reall that 

1

=



1

(�).) Hene these lusters in the ommon neighborhood will span at least

(1�

1

�

)

�

(

��1

�+1

)

�

�

`

�

�

�-tuples. This expression is larger than

1

27

�

`

�

�

for � � 3.

Any �-tuple � will alloate ! verties by the help of the strong proportional

mathing. This means V

s

reeives at least ! verties from every tuple whih

is onneted to it.

Letting 
 =

`

�

�

`

�

�

!, the number of those verties assigned to V

s

by the

strong proportional mathing determined by this

1

27

proportion of all �-tuples

is at least

1

27

�

`


. Now, sine the ommon neighborhood of V

i

1

; V

i

2

; : : : ; V

i

�

ontains at least (1 � Æ)` lusters, the number of verties assigned to them

by the strong proportional mathing is by far larger than jV

0

j. Hene we an

�nd an appropriate x

0

for any x easily.

Remark 3 It should be pointed out that we an perform this swithing proe-

dure in suh a way that the neighbors of the swithed x

0

s are sattered almost

evenly in a onstant proportion of the �-tuples, and so in a onstant pro-

portion of the lusters. Whenever we are looking for an x

0

, we pik V

s

�rst

among the possible (1� Æ)` lusters randomly, and then V

i

0

1

; V

i

0

2

; : : : ; V

i

0

�

ran-

domly among the �-tuples in the ommon neighborhood of the orresponding

V

0

-vertex and V

s

. It is easy to see that there is a onstant K suh that no

luster will ontain more than K

jV

0

j

`

neighbors.

Note, that by the help of the above remark we have found an assignment

of H-verties whih satis�es all requirements of C1{C11. In the rest of the

paper we are going to prove that we will be able to �nd H-verties aording

to C10 and C11 so as to over the exeptional G-verties of Step 3 of the

embedding algorithm.

Lemma 21 In Step 3 for eah 1 � i � ` and v 2 E

i

we an �nd an unem-

bedded x 2 L(V

i

) to over v. This x 2 B

0

, and its neighbors are assigned to

suh lusters to whih v has degree at least (d � ")m. Also, the (assigned,

but not embedded) neighbors of these xs are well spread among the lusters

of G

r

, no luster will have more than 2�"

00

m.

Proof. Denote the proportional mathing by M. For a luster V

i

let T

i

denote the set of �-tuples mathed to it inM. Reall that we removed the
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bad verties from every luster (Lemma 19). Hene, at time 0 all the verties

had degree more than (d� ")m to at least half of the tuples in T

i

, i.e., to all

lusters of those �-tuples.

We are at time T

0

+ T

1

now, after embedding N

H

(L

0

) and the neighbor-

hood of the bu�er verties. Note that we have payed attention to embed

these H{verties as evenly as possible. Not just the neighbors of the bu�ers

are well spread, but N

H

(L

0

) as well. Hene, even at time T

0

+ T

1

every

vertex in the luster V

i

has degrees big enough to at least 50% of the tuples

of T

i

(here we used the fat that the number of bu�er verties is very small,

and N

H

(L

0

) is embedded randomly). The exeptional sets of the lusters

are small, as we showed in Lemma 9, hene, there are enough andidates to

hoose.

Now we prove that the overing of the G{verties an be done in suh a

way, that the neighbors of the embedded verties will not onentrate in any

of the lusters.

First we will show a simple and easy-to-analyze algorithm for the ideal

ase when every vertex in V

i

to be overed is onneted to all the �-tuples

of T

i

for all i. Then we will modify it for our more general setup.

The algorithm is as follows: We start by ompleting all the E

i

sets by

arbitrary V

i

-verties obtaining equal size sets. Consider the tuples of T

1

:

�

1

; : : : ; �

k

. Pik one-one unembedded vertex from B

0

whih is assigned by

these tuples, and over k E

1

-verties with those B

0

-verties. Then repeat it

for all T

i

. When we are ready, we have �nished one round. It is easy to

see that in one round we overed exatly k verties from eah exeptional

set, and beause all luster appears in the same number of tuples, after these

overings we have the same number of neighbors in every luster, this number

is then �k`. Iterating the rounds at the end we will arrive to the situation

when no E

i

-verties are left, and for every luster the embedded verties have

the same number of assigned neighbors, whih is �"

00

m.

Let us return to the assumptions of the lemma. The modi�ed algorithm

for the general ase will be di�erent in two points. We again start by om-

pleting the sets to the same size by adding arbitrary verties from the orre-

sponding luster . We take the tuples of the mathing one by one, as we did

previously. But we annot always �nd a vertex to be overed for a tuple. In

suh a ase, we take the next tuple. Even so in every round at least half of

the tuples will assign a vertex whih will over a G-vertex, and the embed-

ded verties will have at most �k` assigned neighbors in a luster. Iterate

this proedure, and stop, when a set gets empty. If no exeptional verties

are left (verties from the original E

i

sets before adding other verties), the

algorithm stops. If not, then omplete the sets to have the same size, and

restart. Note, that now every exeptional set is at most half the size of the
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beginning. Hene, with O(logm) restarts no exeptional verties are left un-

overed. Sine between any two restarts the number of exeptional verties

is ut in half, and the \fastest dereasing" set has speed at most twie that

of the slowest, we get no luster that will have more than 2�"

00

m embedded

neighbors.

Proof of Theorem 2 Sine by the help of Lemmas 13, 14 and Corollar-

ies 15, 16 we an distribute the A-verties, and then by Lemmas 17, 19, 20

and 21 we an provide that all onditions of Lemma 5 are satis�ed, we an

embed H to G, and thus Theorem 2 is proved.

Remark 4 We have made no attempt to optimize on �. Simple but tedious

alulation shows that � an be as large as

1

�

4

. On the other hand we think

that this is still not the right value for �.
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