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Abstract

Let G be a simple graph on n vertices. A conjecture of Bollobas and Eldridge
asserts that if 6(G) > kk’:ll then G contains any n vertex graph H with
A(H) = k. We strengthen this conjecture: we prove that if H is bipartite,
3 < A(H) = Ais bounded and n is sufficiently large , then there exists 5 > 0

such that if §(G) > AAH(I — B)n, then H C G.
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1 Introduction

In this paper we will consider only simple graphs. Let us denote by 6(F) the
minimum degree and by A(F) the maximum degree of the graph F'. In 1978
the following conjecture was formulated by Bollobds and Eldridge in [4]:

Conjecture 1 (Bollobas-Eldridge) If G is a simple graph on n vertices
with

kn—1
>
5(G) 2 k+1

then G contains any n vertex simple graph H with A(H) = k.

The simplest special case of Conjecture 1 is A(H) = 1, which can be
solved easily. Much harder cases of this conjecture have been proved by
Hajnal and Corradi [5], Hajnal and Szemerédi [7], Aigner and Brandt [2]
and Alon and Fischer [3], Csaba, Shokoufandeh and Szemerédi [6]. However,
the conjecture is wide open for most cases.

In this paper we show that a stronger version of this conjecture is true
for all sufficiently large n when H is bipartite and 3 < A(H) is bounded:

Theorem 2 Given A > 3 integer, there exists an ny and a B > 0 real such
that for all n > ng the following statement holds: Let H be a simple bipartite
graph on n vertices, with 3 < A(H) = A. Then if G is any n vertex simple
graph having minimum degree

A

>
R

then it contains H as a spanning subgraph.

(1—=8)n

Remark 1 The case A(H) = 1 of Conjecture 1 is easily seen to be tight,
while A(H) =2 and x(H) = 2 — in which case 6(G) > 5 is sufficient — is a
special case of El-Zahar’s conjecture, which was shown in [1].

In understanding the proof of the result some familiarity with the Regu-
larity Lemma of Szemerédi [11] will be helpful, although we will give a brief
survey on the necessary notions in the second section. In the third section we
will formulate and prove another important tool for this graph embedding
problem, a modified version of the Blow-up Lemma [8], [9]. A special case
of this version (for embedding graphs of maximum degree three) appeared
in [6], although it was not stated explicitly there, and perhaps it is not easy
to separate the lemma from the main result of that paper. In the fourth
section we will prove Theorem 2, and will give another embedding result,
too.



2 Notation and Definitions

For a graph G, V(G) and E(G) will denote its vertex-set and edge-set, re-
spectively. For any vertex v, degg(v) is the degree of vertex v, degg(v, X)
is the number of neighbors of v in X, and e(X,Y") is the number of edges
between X and Y. Ng(v) is the set of neighbors of v and Ng(v, X) is the
set of neighbors of v in X. Throughout the paper we will apply the relation
“<”: a < b, if a is sufficiently smaller, than b.

A bipartite graph G with color-classes A and B and edge-set F will be
denoted by G = (A, B, E). The density between disjoint sets X and Y is
defined as:

e(X,Y)
XY

In the proof of Theorem 2, Szemerédi’s Regularity Lemma [11], [10] plays
a pivotal role. We will need the following definition to state the Regularity
Lemma.

d(X,Y) =

Definition 1 (Regularity condition) Lete > 0. A pair (A, B) of disjoint
vertex-sets in G is e-reqular if for every X C A and Y C B, satisfying

| X[ > elAl, [Y]> ¢[B]|

we have

d(X,Y) — d(A, B)| < =.

This definition implies that regular pairs are highly uniform bipartite graphs;
namely, the density of any reasonably large subgraph is almost the same as
the density of the regular pair.

We will use the following form of the Regularity Lemma:

Lemma 3 (Degree Form) For every ¢ > 0 there is an M = M(e) such
that if G = (V, E) is any graph and d € [0,1] is any real number, then there
is a partition of the vertex set V into £ + 1 clusters Vi, Vi, ..., Vy, and there
is a subgraph G' of G with the following properties:

o /< M,
o [Vof <efV],
e all clusters V;, i > 1, are of the same size m (§ L%J < €|V|),

e deger(v) > degg(v) — (d+¢€)|V| for allv €V,



o (&

vi =0 (V; is an independent set in G') for all i > 1,

e all pairs (V;,V;), 1 <i < j </, are e-regular, each with density either
0 or greater than d in G'.

Often we call Vi the ezceptional cluster. In the rest of the paper we assume
that 0 < e < d < 1.

Definition 2 (Reduced graph) Apply Lemma 3 to the graph G = (V, E)
with parameters £ and d, and denote the clusters of the resulting partition by
Vo, Vi, ..., Vi, Vi being the exceptional cluster. We construct a new graph G,
the reduced graph of G' in the following way: The non-exceptional clusters
of G' are the vertices of the reduced graph G, (hence |V(G,)| = £). We
connect two vertices of G, by an edge if the corresponding two clusters form
an e-reqular pair with density at least d

The following corollary is immediate:

Corollary 4 Apply Lemma 3 to the n-graph G = (V, E) satisfying 6(G) >
yn for some v > 0 with parameters € and d. Denote G, the reduced graph of
G'. Then 6(G,) > (v — 0)¢, where 6 = 2¢ + d.

Remark 2 In our application of Lemma 3 we will assume that all densities
equal to d — for a reqular pair with density exceeding this number one can
randomly discard edges to achieve the desired density without ruining the
e-regularity condition.

A stronger one-sided property of regular pairs is super-regularity:
Definition 3 (Super-Regularity condition) Given a graph G and two
disjoint subsets of its vertices A and B, the pair (A, B) is (¢, d)-super-regular,
if it is e-reqular and furthermore,

deg(a) > d|B|, for all a € A,

and
deg(b) > d|A|, for all b € B.



2.1 A rough outline of the proof

Our goal is to embed H into the host graph G. For achieving this goal first we
apply the Regularity Lemma to G. Then we distribute (but not embed) the
vertices of H among the non-exceptional clusters of G'. Tt is important to do
this distribution evenly and consistently. That is, we assign m+|Vy|/f+0(n)
H-vertices to each non-exceptional cluster, and if (z,y) € E(H) and z is
assigned to the cluster V, and y is assigned to Vj, then (V,,V,) € E(G,).
Then we embed appropriately chosen H-vertices to V. After this step we will
have m H-vertices assigned to each non-exceptional cluster. For embedding
these H-vertices we will apply the modified Blow-up Lemma.

3 Modified Blow-up Lemma

As it was mentioned above, most of H will be embedded by a similar pro-
cedure to that of the Blow-up Lemma. Readers familiar with the lemma
may observe that unlike in our setup, the Blow-up Lemma applies for a fixed
reduced graph which does not depend on the parameters £ and d, and all the
edges of that (fixed) reduced graph are super-regular pairs. Besides, as we
will see, there will be restrictions for the embedding of certain H-vertices.
Hence, we need a stronger statement than the Blow-up Lemma, but that will
require several new conditions, and this version below will be more technical.
However, the main message have not changed: if certain conditions are satis-
fied, one can embed bounded degree spanning subgraphs into pseudo-random
graphs. In this section we discuss this embedding algorithm, and then prove
its correctness.

Given H and G our goal is to find a subgraph of G which is isomorphic to
H. Let us denote by I' C V(H) a set the elements of which are of distance at
least 4 from each other, and I" > {5 - the existence of I’ can be shown easily
by the help of a greedy algorithm. We assume that the vertex set of G is
partitioned into clusters V4, Vi, ..., V,, and the vertex set of H is partitioned

into clusters Ly, Ly, Lo, ..., Ly, and there is a bijective mapping ¢ between
Ly and V;. I} will denote L; N I'.

Lemma 5 (Modified Blow-up lemma) For all positive integer A there
exists ng and €,d > 0 such that if n > ng, H and G are two n-graphs,
A(H) = A,

l<exédxd <<« "< <xdk 1,

for 1 <i < j </ the pair (V;,V;) is e-reqular, with density 0 or d, and all



the conditions listed below hold, then H is embeddable to G by a randomized
algorithm. These conditions are the following:

Conditions
C1 |Lo| = |Vo| < Kydn,
C2L,CT,
C3 |L;|=|Vi|=m for1 <i<U,
C4 L;s (1 <i < /¥) are independent in H,
C5 |N(Ly) N L;| < Kodm for 1 <i </,

C6 for 1 < i < ( there is a set B; C I} with B; C L; and |B;| = 'm,
B = U;B; such that ||Ng(B)NL;|— |Ng(B)NLj|| < en for1 <i,j </,

C7 if (v,y) € E(H) and x € L;, y € L; (1 < i,5 < () then (V;,V;) is
e-reqular pair with density d,

C8 if (v,y) € E(H) and v € Ly, y € L;j (1 < j < 1) then deg(p(w),V;) >
a|V;| = em.

For1 <1 </{wveVisgood for v € L;, if for all y adjacent to x, if y € L;,
then
dega(v,Vy) > (d— )m.

C9 For1 <i< /[t allveV;is good for at least com L;-vertices.
Let E; C V; be a set of size at most e"m for 1 <i < /.

C10 For 1 < i < /{ there exists a bijection ¢ : F; — F; C L; N (I' — B) such
that for all v € E;
v is good for (v).

C11 Let F = UF;, then |[Nyg(F) N L;| < Kze"m.

Here K1, K9, K3 and ¢, and cy are positive numbers, which may depend on
A, but not on £ and d.

The elements of B will be called buffer vertices, and E; is the set of exceptional
G-vertices in V.

Let us explaine the role of these conditions. We want to embed L;-vertices
to V; (0 <i < /(). First, z € Ly will be embedded to ¢(z) € V4, that is why
we need C1 and C2. We have C3 and C4 since L; will be embedded to V;
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(1 <i<?¢). C7 and C8 are so called consistency conditions. The meaning
of C5-C6 will be clear later, these are measures for the ”evenness” of the
distribution of H-vertices among the clusters of GG. C9 is analogous to C8.
We need C10 and C11 since we have to take special care of the exceptional
G-vertices, and we want to cover them with such H-vertices for which their
neighbors are well-spread among the L;-clusters.

3.1 The embedding algorithm

From now on we suppose that the requirements of Lemma 5 are satisfied.
Since Ly has already been embedded, we will consider only the vertices of
H—Ly. Let ' = |V(H — Ly)|, we order the vertices of H— L, into a sequence
S = (z1,22,...,%y) which is almost the order in which V(H — Ly) will be
embedded. For each 1 < i < /, we have a subset B; of L; of size §'m, the
buffer vertices. Recall, that B = U;B;. Let M = |B|, and by, bs, . .., bys be the
buffer vertices, then they will form the last part of S. The sequence S starts
with the vertices of Ny (Ly), followed by { Ny (b1), Ny (b2), ..., Ny(ba)}, the
neighbors of the buffers. We let Ty = | Ny (Lo)| and Ty = S, | Ny (b;)|. Then
we add all the other vertices to the sequence, in such a way that the buffer
vertices form the tail of S. For technical reasons we assume that S is ordered
evenly according to the L; lists, i.e., the consecutive segments of length §"n’
have the same number of vertices from every list. Later we may place some
vertices forward, but then we rearrange S to maintain this property.

The embedding of the vertices of H — L occurs in three separate phases.
In the first phase we are going to embed the vertices of Ng(Lg). In the second
phase will come the embedding of the next vertices of S after each other
according to their position in the sequence (some reordering is possible),
until only buffer vertices are left in §. In the third phase, by a matching
procedure we embed the remaining buffer vertices. The phase for embedding
Np(Lo) is a randomized procedure, while the other two are deterministic.

In the next subsection we outline our method for the embedding, with
the exception of selecting a vertex to be covered. That will be done in a
separate subsection.

3.1.1 Outline

For an unembedded vertex x € L; we will denote by H,, its monotonically
shrinking host set in V; at time ¢. Also, for technical reasons we keep track
of another set, C;,. By Z; we denote the set of occupied vertices (note that
Zy = Vp), and we also maintain a set Bad; of exceptional pairs in H — Ly.



At time 0, we set Cy, = Hp, = V;, where x € L;, and = does not have
any neighbor in Ly. For those vertices having neighbors in Ly the setup is
different. Let x in Ly have neighbors 4y, € L; ,y» € L;,,...,ya € L;,, and
v = ¢(z). By virtue of condition C8 we have ensured that v has at least ¢;m
neighborsin V; ,V;,,...,V;,. These neighborhoods give Cy,, = Hy,,,Coy, =
Hyyy,. .., Coyn = Hoy,, respectively.

Recall, that Ty = |Ny(Lo)| and Ty = =M, [Ny (b;)]. We let Ty = §"n'.
Given the initial host sets, the embedding algorithm will go as follows:

Phase 0. For 1 <t <Tj repeat the following steps
Pick an appropriate vertex v, for x; € Ng(Lg) randomly and uni-

formly from H,_; 4, using the Selection Algorithm of section 3.1.2.

Update
Zy = Zy1 U {u}

and for all unembedded vertices x;, with ¢t < i < n/

C . = Ct—l,aci N Ng(’l)t) if (Q?i,ﬂft) S E(H),
BT Gl otherwise,

and
Ht,l‘i — Ct,x,' - Zt

Phase 1. For t > Ty + 1 repeat the following steps

Step 1. Embed the vertex x; from the sequence S: using the
Selection Algorithm choose an appropriate vertex v, from the set
H; 1,4, as x,’s image.

Step 2. Update
Zt = Zt—l U {'Ut}

and for all unembedded vertices x;, with ¢ < i < n/

C = Ct—l,aci N Ng(’l)t) if (Q?i,ﬂft) S E(H),
LI RO otherwise,

and
Ht,l‘i — Ct,x,' - Zt

Step 3. Exceptional vertices in G
1. If t # Ty + T go to step 4.



2. If t = Ty + T then for every cluster V; form a set E;
containing those uncovered vertices satisfying

|{b :bhe BZ',’U € Ct,b}| < 6”|BZ|

We will cover them right after the neighbors of the buffer
vertices, thereby eliminating a possible objection to embed
the buffer vertices in Phase 2. We slightly change the ordering
of §. From every list L(V;) we take |E;| vertices belonging to
I' to form the set ¢(E;) = F;. Let F = UF;. We place the
vertices of F' forward, x = ¢(v) € F; will be embedded to v €
E;. The requirements for choosing F' have been formulated in
C10 and C11. We will maintain the even ordering of S.

Step 4. Exceptional vertices in H — L

1. If T5 does not divide ¢, then go to Step 5.

2. If T5 divides t, we will find all exceptional unembedded
vertices y € H — Lo such that |Hy,| < (§")?*m. We again
slightly change the order of the remaining vertices in & by
bringing these exceptional vertices forward in S (including
the exceptional buffer vertices) and will maintain the even
distribution of vertices assigned to different clusters. This
is possible because of the very small number of exceptional
vertices we can find in this step.

Step 5. 1f the unembedded vertices are all buffer vertices, go to
Phase 2., otherwise set t «— ¢t + 1 and go back to Step 1.

Phase 2. Find a system of distinct representatives of the sets H,, for
all unembedded vertices.

3.1.2 Selection Algorithm

There can be two possible cases.

Case 1. x; ¢ F.

As the image of x;, we will choose some v, € H; ;,, such that the
following conditions are satisfied for every unembedded vertex y with
(z1,y) € E(H):

(d = &)|Hi—1y| < dega(vy, Himry) < (d+€)|[Hiy

, (3)
(d—¢e)|Ciry| < dega(vy, Cimry) < (d+€)|Croryl,  (4)



and

(d—e)|C1—1 yNCi1 | < dega(vy, Crm1 yNCioyyy) < (d42)|Cim1 yNCior |, (5)

for at least (1 — ¢’) portion of the unembedded vertices y' so that y
and gy’ are assigned to the same cluster V;, and {y,y'} ¢ Bad,_;. The
set Bad,; will be formed as the union of Bad; ; and those pairs {y,y'}
which does not satisfy (5) for v;. Clearly, at most Ae'm new vertices
will be added to Bad;.

Case 2. z; € F.
By the virtue of C10 we will assign z; € L(V;) to an exceptional v, € E;
so that for all unembedded y € Ny (z;) the following is satisfied:

dege(vi, Ci1y) = dega(vy) > (d—e)m > (d —¢)|Ciz1yl,  (6)

and

d
dega(vy, Hi—1,) > degg(vi)—2A8'm—|E;| > (d—e)m—2(A+1)8'm > 5 (7)

In (7) we use C6 and the fact that for each i |E;| < ¢'m. We will prove this
in Lemma 9.

3.2 Correctness

We start by proving that Phase 0 of the algorithm succeeds with high prob-
ability. First we show that the Selection Algorithm succeeds for 1 <t < Tj
in finding the v;-vertices.

Lemma 6 Assuming that Phase 0 succeeds for all t', with t' < t < Ty and
Hi_y 4, > 6"m, then it succeeds for t.

Proof. We only need to consider Case 1 of the Selection Algorithm. The
selected vertex v, € H;_i,, should satisfy conditions (3), (4), and (5). By
e-regularity we will have at most 2em vertices in H;_; 5, which do not satisfy
(3), and the same holds for (4). For condition (5) we will define a bipartite
graph B = (W, Ws, E(B)). Here W, = H;_1,,, and the elements of W, are
the sets Cy_y, N Cy_y, for all pairs {y,y'} where (x,,y) € E(H), y and ¢’
are both assigned to the same cluster, and {y,y'} & Bad, ;. For v € W,
and u € Wy, we have (v,u) € E(B) if (5) does not hold for v and the pairs
corresponding to u. If we assume that there are more than &'m vertices



v € Wy with degg(v) > &'|Ws], then there should be a vertex u € Wj such
that
degp(u) > £”m > em.

But this is a contradiction with the e-regularity since the pair {y,,y.} cor-
responding to u does not belong to Bad;_; and

1Cy 14y NCyry | > (6 —&)*2m > em.

This in turn implies that H; ., can contain at most 4em + ¢'m < §"m
vertices which cannot be used to map x;, proving the succession of Phase 0.

Observe, that when we progress to Phase 1 (after the successful comple-
tion of Phase (), the aformentioned proof will work. We will be able to find
a vertex to cover if the host sets are not too small.

What is left to show is that for all time ¢, 1 < t < Ty, the host sets do
not become too small. Actually, we prove this not just for the host sets for
the unembedded Ny (Lg)—vertices, but for all unembedded H-vertices.

Lemma 7 If Phase 0 succeeds for all t, with t < Ty then for all t' > t
Hy 14, > 6'm with high probability.

Proof. For v € Ny(Lo) |Hox| > ¢ym. In Lemma 6 we proved that if
the algorithm succeeds up to time ¢ and |H;,| > §"m, we can find a v; to
embed z. Since no two vertices in Ny (L) are adjacent, the only way the
host set of x decreases is that we cover some vertices of it by other Ny (Ly)-
vertices. When deciding which G-vertex to cover by an Ny (Ly)-vertex z,
the Selection Algorithm will always provide almost all of H; , as a possibility
— a subset of size 6”m can be left out. Out of those possibilities we choose
the host vertex randomly and uniformly. Recall that according to C5, the at
most A|Vp| restricted vertices of Np(Lg) are distributed among a constant
proportion of the clusters, as evenly as possible. We can conclude that only a
very small number of vertices (Kydm) have a restriction to embed them into
a set of size at least ¢ym in each cluster. Now, by applying the statement
of Lemma 6 one can easily conclude that up to time 7} all the unembedded
Np(Lo)-vertices have a host set of size at least (¢; — 2Kad)m.

A vertex y from the rest of H can have A neighbors embedded by time
Tp. This means its starting host set Hy, may shrink up to A times, each
time the sizes are multiplied by a number between d — ¢ and d + . We also
lose some places because of the embedded Ny (Lg)-vertices. The randomness
in the Selection Algorithm helps us. The expected number of covered ver-
tices in this host set is proportional to its size. Suppose that y’s host set
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shrinks at time #; and the next shrinking is at time ¢y (¢1,%; < Tp). Denote
hm the size of y’s host set at time t;. Then we can use Hoeffding’s bound
between these two shrinkages. Easy calculation shows that with probability
1 — 2e2K2dmh” the size of 1’s host set is of size at least h(1 — 2K,d)m at
time ty — 1. Therefore, after shrinking A times, with very high probability
(remember, n is larger than some threshold!) the size of y’s host set will
be at least (d — £)2(1 — 2K,d)*m > d®*'m. Observing that we have linear
number of host sets in a cluster, we get that with high probability, for every
unembedded vertex x at time ¢, 1 <t < Ty, |H; .| > d*'m. |

One can easily conclude from the above that Phase 0 succeeds with prob-
ability 1 — o(1).

For t > T, we will need a more thorough analysis. At time ¢ for the
cluster V; and a subset of the unembedded vertices ); C L;, we define a
bipartite graph U, = (V;, Q;, E(U;)). Here if x € Q;, v € V;, and v € Cy,
then (z,v) € E(Uy).

The following lemma is pivotal for the proof of the correctness of Phase
1.

Lemma 8 For every 1 < i < f and Ty +1 < t < Ty + T, and any set
of unembedded vertices Q; C L; at time t, with |Q;| > (6")?m, if Phase 1
succeeds for all t' < t, then apart from an exceptional set J of size at most
e"m the following will hold for every v € V;:

degy,(v) > (1 —&")d(Vi, Q;)|Q:l.

Proof. We use the so called “defect form” of the Cauchy-Schwarz inequality,
that states: if for some p < ¢

P » q
Zai:—Zai+6
qi=1

=1

then
q

q 2 2
st (Zai> e
i=1 q i=1 p(q_p)
Assume to the contrary that the lemma is not true, that is, |J| > £"m.
Choose Jy C J with |Jy| = ¢”"m. Define v(t,z) as the number of embedded
neighbors of = by time ¢. Observe that if x has a neighbor in Ly, then
v(0,z) > 1, otherwise it is 0. Then

[BU)| =3 [Cral = 3 (d—2)"m. (8)

TEQ; TEQ;

11



We also have

Z Z |Ct,x N Ct,ac’

z€EQ; T EQ;
< S ST (d o) 4 |Qilm 4 A%|Qym 4 2Ae'm?
TEQ; ' €Q; ,
<N N (d+ o) BTy, AN m? (9)

T€EQ; ' €Q;

For each pair {z,z'}, we can upper-bound |C;, N Cy | by m. The diagonal
terms (z = 2') result in error |@Q;|m. For the non-diagonal terms for which
Ny (x) N Ng(z') # 0 we have the term A?|Q;|m. If {z,2'} € Bad;, by Case
1 of the Selection Algorithm either x or z’ can appear in at most A&'m
bad pairs. Hence there will be at most Ae'm? bad pairs associated with the
cluster V;. Using the Cauchy-Schwarz inequality with p = ¢"m, ¢ = m and
the variables oy, = degy,(vi), 1 < k < m with vy € V; and the first ¢"m
values set to degrees in .Jy, we have:

8] =e"3_ degy,(v) = 3 degy,(v)

’Ue‘/i ’UE-]O
> "y degy,(v) —"(1 = &")d(Vi, Q:)|Qilm
veEV;
= (8”)2 Z degUt(U)' (10)
veV;

Then using (8), (10) and the Cauchy-Schwarz inequality we get

Z Z |Ct,z N Ct,x’|

TEQ; ' €Q; )
=Y (degr,(v))
veV;
2
> (Z degm(“)) + (£")%d(V;, Qi)?m| Qi
veV; )
> 5 ( > (d—e)"m |+ (") (d — )* m|Qif?
TEQ;
> 3 3 (d—e)" I m 4 (") (d - £)2m| Qi

TEQ; 'EQ;
which is a contradiction to (9), since |Q;] > (6")*m,
(8”)3(d _ 6)2A(5W)2 > 4¢' > 4e

and
(d + 5)Ij(t,av)Jrll(t,z') - (d o g)ll(t,z)Jru(t,x’) < de.

12



As a consequence we will have the following bound on the size of the
exceptional sets Fj;:

Lemma 9 In Step 3, for each 1 <i < { we have |E;| < &"m.

Proof. Applying the previous lemma with ¢ = T, and @); = B;, which means
|Qs| > (6™)%m, we will have

n dA 1
(1 —e")d(V;, Q:)|Qi| > 7|Qz| > 0"[Qi
and F; C J. |

Next we will prove a result similar to Lemma 8 for ¢ > T + 1.

Lemma 10 For every 1 < i < { and Ty + Ty, < t < T and any set of
unembedded vertices Q; C L; at time t, with |Q;| > (6")*m, if Phase 1
succeeds for all t' < t, then apart from an exceptional set of size at most £"'m
the following will hold for every v € V;:

degy, (v) > (1 —")d(V;, Q)| Qil.

Proof. The proof follows the same line of argument as Lemma 8 with pa-
rameter "', except those vertices in the neighborhood of F'. The inequality
in (8) will hold with the same parameters, since for all x € Ny (F') we have

Cral > (d — )",

Here we used condition C10 and the fact that v(¢,x) = 1 since = € I'.

In (9) there are more bad pairs. More precisely, based on Step 3 of the
embedding algorithm, there will be an additional error term of 2A K3e"m?|Q;|
by condition C11. Using the fact that

(6”’)3(d _ 6)2A(6///)2 > g

we can see that the contradiction still holds. |

The following lemma is an easy consequence of Lemmas 8 and 10.

Lemma 11 For every 1 <i¢ </l and Ty <t <T and any set of unembedded
vertices Q; C L; at time t, with |Q;| > 0"m and a set A C V; with |A| > 6"'m,
if Phase 1 succeeds for all t' <t then apart from an exceptional set J of size
at most (6")*m, the following will hold for every x € Q;:

A
AN Cyy| > |2—7r|z|ct’x|'
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Proof. Let us suppose that the lemma is not true, there exists a set J C Q);
such that [J| > (6")%*m, and for every = € J the inequality of the statement
does not hold. We again consider the bipartite graph U; = Uy(.J, V).

A
Z degy,(v) = Z IANC,,| < | |d(J, Vi)|J|m.

vEA z€J 2m

Applying Lemmas 8 or 10 with J, we get
Z degUt (U) > (1 _ &J”)d(J, V;)|J|(|A| B Smm),

vEA

which is a contradiction. |

In the following lemma we show that the host sets do not become too
small.

Lemma 12 For every Ty +1 < t < T and for every H-verter y which is
unembedded at time t, if Phase 1 succeeds for all ' < t then the following
holds:

|Hyy| > 0"m.

Proof. Let @); be the set of all the unembedded vertices in V; at time ¢, and
let Ay =V; — Z;. Applying Lemma 11 we can see that for all x € Q); (except
at most (6")%*m vertices)

A ’

4]
|Ht,x| = |At N Ct,x| > 2—T;L||Ct’x| > Z(d_ €)Am > (5')2m,

if Ay > %'m. Next we prove this statement. Let us suppose indirectly that
there is a 7" such that 7} +1 < 7T’ < T and

! !

J J
|AT’| 2 §m but |ATI+1| < §m

We know that at any time ¢, where T divides ¢, there are at most (6")*m
exceptional unembedded vertices. Thus, up to time 7" we can find at most

1

5
exceptional vertices. This implies that at time 7" there are many more than
(0" — §")m unembedded buffer vertices, thus, on the contrary, |Ap 4| >
(0" — §")ym. Note, that we also proved that T" < ¢m — £§'m + £6"m. Let us
consider now an arbitrary y € L(V;) unembedded at time ¢ (1 < ¢ < T'), and

let k0"n' = kTy <t < (k4 1)T; for some 0 < k < T/T;. There are two cases
to discuss:

(5///)2m >> 5/lm

14



Case 1. If y was not among the at most (6"”)? exceptional vertices of
Step 4, then

A
ol > (3) 6 -

where K is the number of vertices covered in V; during the period
between kT, and (k + 1)T,. Recall that the sequence S is as balanced
as possible; hence, K < 26"”m, where 26”m comes from the reordering
of § because of the exceptional vertices of G and H. Also, at time kT,
we had that |Hyr, ,| > (6')?>m. These facts imply that in this case the
statement of the lemma holds.

Case 2. If y was among the at most (6")? exceptional vertices of Step
4, then

A
d
ol = (5) 6Pm-

where K’ is the number of vertices covered in V; during the period be-
tween (k—1)T, and (k+ 1)T,. Now K’ can be as big as (6" + (6")?)m,
because at time (k — 1)T, at most (6™)%*m exceptional vertices were
placed forward. Again, by observing that at time (k — 1)73 we had
that |Hpk—1yr,,| > (8')m, the proof of the lemma is finished. [

Now it is easy to show the succession of the Selection Algorithm in find-
ing the v;-vertices. We have just proved that the host sets can never get too
small. In Lemma 6 we proved that Phase 0 succeeds for time ¢, whenever it
succeeds for all ¢’ with ¢’ < t < T} and the host set is big enough. It is easy
to check that exactly the same proof works for Phase 1 and up to time 7.
Putting these together, we have that Phase 1 of the algorithm succeeds.

To prove that Phase 2 of the algorithm succeeds, we will show that for
all 1 <1 </ there is a system of distinct representatives between the unem-
bedded vertices of L; and the remaining buffer vertices of V;. Let Q; C L;
denote the set of unembedded vertices assigned to the cluster V;, and Y; C V;
be the remaining vertices of the cluster V;, with M; = |Q;| = |Yi|. Then by
Lemma 12 for every = € @; we will have Hy, > 6" M;. Furthermore, for all
subsets S C @, if |S| > 0" M; then by Lemma 10

> (1 - 6"\ M,

U HT,:E

€S
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Finally, for any v € Y}, since v cannot be exceptional in GG, by Step 3 there
are at least 0" M; host sets Hp, containing v implies that for the subsets
S C Q; with |S| > (1 — ¢"M;) we have

= M,

U HT,:D

T€eS

which in turn implies the existence of the system of distinct representatives.
This finishes the proof of Lemma 5. |

4 Assigning H to clusters of G,

The process of embedding will go as follows: First, we apply the degree form
of the Regularity Lemma for G with parameters ¢ and d. As a result we will
have a partitioning of the vertex set into the clusters V4, Vi, V5, ..., V. Now
our goal will be to find an assignment of H-vertices to the clusters of G, so
as to satisfy conditions C1-C11.

Let us denote the color classes of H by A and B, and suppose that
|A| < |BJ|. We randomly distribute the A-vertices among the non-exceptional
clusters. Then we are going to map the B-vertices to non-exceptional clusters
consistently and evenly. That is, if y € B has the neighbors {x1, 2, ..., 2},
and the x;s are mapped to the clusters V;,,...,V;,, then y will be mapped
to a cluster V; which is connected to Vj,...,V}, by regular edges. Besides,
we require that the number of mapped A-vertices and B-vertices to all non-
exceptional clusters are %io(n) and %io(n), respectively. The assignment,
of B-vertices will be done by the help of matching.

Still, there is no H-vertex assigned to V4, (and hence all non-exceptional
clusters are over-saturated). For dealing with this problem we first discard
some B-vertices (the surplus) from each non-exceptional cluster, these will
form Ly, and the H-vertices assigned to Vi give the set Ly for 1 < s < /.
This may not be the final partitioning of H — for satisfying C8 we may
have to switch between some Lg-vertex and another Lg-vertex. When all the
requirements of C1-C11 will be satisfied, the actual embedding can be done
by the help of the modified Blow-up lemma.

4.1 Assigning A

We start by assigning the vertices of A to the non-exceptional clusters of
G,. For every vertex x € A choose a non-exceptional cluster randomly and
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independently. It is easy to see that this procedure will guarantee an almost
even distribution of the vertices of A among the clusters of G,:

Lemma 13 Let A;, 1 < i </ denote the set of vertices assigned to V; after
distributing the vertices of A wusing the above procedure. Then, with high
probability |A;| = % + o(n).

Proof. Applying Chebyshev’s inequality gives the proof of the lemma. |

Let B’ C B is a maximal set in which any two vertices are of distance at
least 4 from each other. (Note that |B’|/|B| depends on A, but not on £ or d.)
Now we will argue that an appropriate distribution of A among the clusters
of G, will facilitate an even assignment of the vertices of B’ and B — B’ to the
clusters of G,. Let V; be a cluster in G, we define the associated list Q(V;)
as {y 1y € B,x € A;,(z,y) € E(H)}, which is the set of B-vertices with a
neighbor assigned to the cluster V;. Let V ,Vi,,..., Vi, be any A clusters
of G,. We define the random variables R and R: R'(Vy,,Vy,..., Vi ) =
[B'NQ(Ve,) NQ(V,) V... N Q(Viy )| and R(Vyy, Viy, ..., Vi) = [(B—B) N
Q) NQ(V;) ... N QY]

We are going to measure the evenness of the distribution of A in terms
of these random variables.

Lemma 14 For any A clusters V,,Vs,, ..., Vs, of G, the following inequal-
ities hold:

Pr[|R(Viy, Vs, - Vi) = BIR(V,, Vs -, Vi)l = Qn

ot
~—
—
I
)
—~
—_
~—

4
Pr{|R (Vay, Ve, -, Vas) = B[R (Viy, Vi, o, Vi)l = Q(n5) | = o(1).
Proof. Similar to the proof of Lemma 13, again we omit the details. |

We need the following simple corollary of the above lemmas.

Corollary 15 For any two A-tuples of clusters Vs, , V,, ..., Vs, and V! V!
in G, the following inequalities hold:

Pr{|R(Viy, Vass -, Vaa) = R(V], V] V! )| =9Q(n

s1° S93 %t SA

[SHE
~—
—
I
QS
—

—_
~—

Pr[|R Vi, Vay, .., Van) = RV, V] V! )| =Q(n

519 S99t SA

S
~
—
I
)
—~
—_
~—
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In other words, Lemma 13 and Corollary 15 states that most of the possible
assignments of A are even assignments.
Let N be a positive integer, depending only on €. Forall s (1 < s < /) we

randomly divide B'NQ(V;) into N equal sized subsets, getting Q1(V5), Q2(V5), ..., Qn(V5).

We define a new set of random variables: R (V;,, Vs,, ..., Vi) = [Qp(V5,) N
Qp(Vs,)N...N@p(Vs, )|, forall 1 < p < N. Then the following is implied by
Lemma 13 and 14:

Corollary 16 For any two A-tuples of clusters Vs, Vs, ..., Vs, and V] [ V! %

s Vsa 817 Vg7 Vga

in G, and two integers p and q (1 < p,q < N ) the following inequalities hold:

!
‘/;27'

Pr [|R;)(Vt91a ‘/;2, ceey V;A) _ R;(V’

S1?

LV =905)] =o(1).

4.2 Pre-assigning B

In this section we will present a consistent assignment of the vertices in B
to the clusters of G,. As we will see, such assignments can be formulated
as special matching problems. (In order to finish the embedding of H into
GG, some of the H-vertices should be assigned to the exceptional cluster Vj.
This will be carried out in another section.)

We repeat the definitions of [6]. For a bipartite graph F' = (V, T, E(F))
where |T| = ¢|V| for some positive integer ¢, M C E(F) is a proportional
matching if every v € V' is adjacent to exactly ¢ vertices in 1" and every u € T
is adjacent to exactly one V' vertex in M. In order to show that F' contains
a proportional matching we will check the Kénig-Hall conditions, that is, for
every subset U of V, its neighborhood in T should satisfy |Np(U,T)| > q|U].
One can easily see this from the construction of an auxiliary graph: substitute
every v € V with ¢ instances vy,...,v,, and if (v,u) (v € T) was an edge,
then connect the v;s to u for all 1 <4 < ¢. This auxiliary graph has a perfect
matching if and only if F' has a proportional matching.

Besides this kind of matching we are going to need another kind of match-
ing about which we demand that the “loads of the vertices” are distributed
more evenly. We say F' allows a strong proportional matching with respect to
i (0 < p < 1) if there is a proportional matching in the following bipartite
graph F'. Tts color classes are V and T". For every vertex u € T, we add

f copies, uq,...,uc, to T'. If Np(u) = {vy,...,vs} then we will have the
M

following edges: (u;,v;) for 1 < i <'s, and (uj,v;) where 1 < i < s and
s < g < ﬁ In other words, the first s copies of u have degree 1, while
the others have the same degree, s. The existence of a strong proportional

matching can be checked through the strong Konig-Hall conditions: one can
see that for U C V |Np(U)|(1 — ) < |Ng(U)|. Using this fact we can prove
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the existence of a strong proportional matching, and at the same time the
existence of a proportional matching as well. We will see that both these
matchings are needed to assign the vertices of I and @) to clusters of G,.

Recall that G, is an (-graph with §(G,) = (1—x7)(1—0)(1— )¢, where
0<f=c+d<1and 0 < f <1 are two constants. We will denote 0(G.,)
by 9.

Let us construct a bipartite graph F' = (V(G,), T, E(F)). One color class
is V(G,) (the non-exceptional clusters), the other, T is the set of all possible
A-tuples composed of G,—clusters. There is an edge between V; € V(G,)
and a A—tuple t = (V;,,V,,, ..., V;,) ifffor 1 <i <A (V},V},) € E(G,). Let
us denote (1 —0)(1 — 5)(1 — p) by (1 —v) (here p is the constant for the
strong proportional matching).

The following lemma is the cornerstone of our proof.

Lemma 17 There is a strong proportional matching in F with respect to
if v is small enough.

For proving Lemma 17 we will need the following statement.

Lemma 18 For 0 < i < A — 2 if v is small enough, then 671 (1 — p) >
(i +1)(1—9).

Proof. We are going to prove a stronger statement: (AAH)A_i(l —v)A >
1
KfH (1+vA).
We proceed by induction. First we prove the case i = A — 2:
— ) (1 — 1+vA
(A-i-l)( V) A-i-l( +vA),
since by multiplying both sides by A“ we get the true inequality
A A—1
——(1-v)*> 14 vA).
AL e
So now we may assume that (A+1)A "(1-v)* > 2L (1+vA). Decreasing

7 by 1 we have to check the inequality below:

( A i
A+1 A+1
Multiplying both sides by A“ we get the inequality

(307 1= > L (14wA)

)A—i-i—l(l - I/)A >

(1+vA).

19



Now since (57)2 (1 —»)® > &L (1+vA), and the latter is larger than

L(1+vA) for i < A, we have finished the proof of the lemma. |

We can start proving Lemma 17.
Proof. We will check the strong Konig—Hall conditions.

e Let v € V(G,) be an arbitrary cluster. Then |N (v, T)|(1—pu) > §2(1—
w)|T'|, therefore it is larger than (1 — §)|T"| by Lemma 18.

e Let U; C V(G,) is a set of size greater than i(1 — §)¢ for some 1 < i <
A — 2. From the minimum degree condition of G, every i vertex will
have a common neighbor in U;. Now |N(U;, T)|(1—p) > 62741 —pu)|T|,
and by Lemma 18 the latter is larger than (i + 1)(1 — J), therefore
IN(U;, T)|(1 = ) > (i +1)(1 — §). Notice that by the above argument
we can jump up to |Ua_z| > (A —1)(1 — §)¢ (in case i = A — 2).

e Assume that U C V(G,) with |[U| = (A — 1)(1 — §)¢. Then every
A —1 vertex will have a common neighbor in U by the minimum degree
condition of G,. Thus, |[N(U,T)| > §(1 — p)|T.

e Assume that U C V(G,) with |U| = 6(1 — p)¢. We will estimate the

number of (A — 1)~tuples having more than x15¢ U-neighbors. First

of all, there are at least §(1 — p)£6>~! (Ae—l) edges going from U to the
set T' of (A — 1)—tuples. We divide 7" into two parts, 7] and Tj. In
T7 all the tuples has at most (1 — §)¢ neighbors in U, while in T3 it is
possible that the tuples are connected to all of U. Denote T3] by x,

"]
then we will have the following inequality:

(1 —0)+ (1 —2)5(1 — p) > 641 — p).

That is, x < %. It can be shown directly, that this expression
is less than 0.7 for A > 3 if v is small. Since all the tuples of T} has
degree larger than (1 — )¢ to U, all of them with any other cluster will
form a A-tuple which is connected to some U-cluster. This is enough

for us to conclude that |N(U,T)|(1 — u) > 6¢.

e Assume that U C V(G,) with |U| > 6¢. Now every A-tuple will have
a U-neighbor, except those having only one neighbor out of U. (This
is enough for the existence of a proportional matching.)

e For proving the existence of a strong proportional matching assume
that U C V(G,) with |U| = (1 —w)f (0 < w < p). Since every A-
tuple having more than one neighbor is connected to this U, we have
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to consider only the tuples with only one neighbor. Now |U| = w/, and
clusters from U are connected to at most w/ (i) tuples which have one
neighbor. Hence, the proportion of tuples which are not neighbors of
some U-cluster is at most puw < w. In other words, |[N(U)| > %|T| for
any 0 < w < p. |

Now we are ready to present the procedure for assigning the vertices in
B to G,-clusters. We start with the vertices in B — B’. First let L; = A;
for 1 < ¢ < /. Assume M denotes the matching provided by Lemma 17
with respect to the graph F. For a cluster V;, let {V;,,...,V;,} be one of
the A-tuples matched to it in M. We will assign the vertices of (B — B") N
Q(Viy) N...NnQ(V;,) to the cluster V; by adding them to the set L;. Using
Lemma 15, |(B—B')NQ(V;,)N...NQ(V;,)| is almost the same for all choices
of A-tuples, which in turn implies that the set L; for all V; € G, will have
almost the same size after the distribution of B — B’. Also, note that the
construction of F(G,) and the structure of the proportional matching M
implies that if z € B — B’ is assigned to L; then the Ng(z)-vertices are
assigned to neighboring clusters of V.

The vertices of B' will be mapped by the help of strong proportional
matching, on the same way as we did for B — B’. The only difference is that
since every A-tuple V; ,...,V;, has f copies, the elements of Q(V;,)N...N
Q(V;,) will be distributed randomly among these copies. It is easy to see
that the strong proportional matching assigns B’-vertices evenly - we refer
to Corollary 16.

We remark that there are other cases to consider: e.g., some of B-vertices
can have all their neighbors assigned to A — 1 clusters. But it is easy to see
that those matchings are easy to find once the harder cases are dealt with.
Then mapping such B-vertices can be done in a similar way as we did for
others.

4.3 Finishing the assignment

Now we have to make sure that all conditions of Lemma 5 are satisfied.
Obviously, some of them are violated at this moment. E.g. C1 and C3, since
so far we have not mapped any vertex to Vg (Lg is empty). Therefore, there
are more H-vertices assigned to every non-exceptional cluster than its size.
We will take care of these problems in separate subsections.
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4.3.1 Bad vertices in ¢

Every vertex in a cluster of a super-regular pair has big degree to the other
cluster. Our edges in GG, are regular pairs, some vertices may have just a small
number of neighbors in the other cluster (this number can be even zero). To
avoid problems which can be caused by this, we are going to discard some
vertices from the clusters and put them into Vj, this way C9 will be satisfied.

Let M be the matching provided by Lemma 17. For a fixed cluster
V; € V(G,) let T denote the set of A-tuples matched to V; in M. We say
that v € V(G,) has small degree to a A-tuple, if v has less than (d — e)m
neighbors in one of the clusters composing that tuple. Let us call a vertex
v € V; bad, if v has small degree to at least half of the A-tuples in 7.

Lemma 19 No cluster in G, can contain more than 2Aem bad vertices.

Proof. For a cluster V; € V(G,) which is matched to the A-tuples of T, let
{v1,...,vs} denote the set of bad vertices. If s > 2Aem then there should
be a tuple 7 € T to which more than Aem vertices of V; have small degree.
Thus to one of the clusters of this triplet there are more than em vertices
with degree less than (d — ¢)m, which contradicts the e-regularity condition.

By removing the 2Aem bad vertices from every cluster, we can guarantee
that all of their remaining vertices have big degrees to at least half of the
matched triplets, and overall at most 2Aen bad vertices will be added to V4.

4.3.2 Selecting the Lj-vertices

As we mentioned earlier, every cluster has a surplus, that is, more H-vertices
are assigned to them than the clustersize m. We will form L, by removing a
subset of B’ vertices from the L; sets, achieving that |L;| = m for 1 <i < /.

Let ¢ : Ly — Vy be any bijective mapping. We need to ensure that the
assignment of Ly to Vj is consistent with E(H); that is, for any = € Ly, with
(z, 1), (2, y2), ..., (x,ya) € E(H), if v =¢(z), y1 € Liy,y2 € Liy,...,ya €
L;, then degg(v,V;,),dega(v,Vi,), ..., dega(v, Vi) are all at least ¢ym (con-
dition C8). If this condition does not hold for a pair (z,v), a switching will
be performed. In the switching operation we first pick a cluster V; and then
locate a vertex z' in Ly such that (V;,, V5), (Vi,, Vi), ..., (Vi,, Vs) are all edges
in F(G,). Furthermore, if (z',y}), (z',v5),..., (', yA) € E(H) with y] €
Lii,ys € Li,...,yn € Ly then degg(v,‘/;:) degg( Vi), dega(v, Vi)
are all at least cm. We will see that such z' can always be found among
those vertices assigned by the strong proportional matching.
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Lemma 20 For every x € Ly there exists an x' as required above.

Proof. It is easy to see that any v € Vj has degree less than ¢;m to at
most g proportion of all clusters. Let V; be as above, then a simple

calculation shows that the number of clusters in its neighborhood for which
v has large degree (> ¢;m) is at least (1 — %)(ﬁ—ﬁ)é. (We recall that ¢; =
c1(A).) Hence these clusters in the common neighborhood will span at least

(1- %)A(ﬁ—;})A (ﬁ) A-tuples. This expression is larger than 5 (ﬁ) for A > 3.
Any A-tuple 7 will allocate w vertices by the help of the strong proportional
matching. This means V receives at least w vertices from every tuple which
is connected to it.

Letting Q = ﬁ(ﬁ)w, the number of those vertices assigned to V; by the

strong proportional matching determined by this 2—17 proportion of all A-tuples
is at least 2—17%9 Now, since the common neighborhood of V; ,Vi,,..., Vi,

contains at least (1 — §)¢ clusters, the number of vertices assigned to them
by the strong proportional matching is by far larger than |V;|. Hence we can
find an appropriate z' for any z easily. |

Remark 3 It should be pointed out that we can perform this switching proce-
dure in such a way that the neighbors of the switched x's are scattered almost
evenly in a constant proportion of the A-tuples, and so in a constant pro-
portion of the clusters. Whenever we are looking for an x', we pick V first
among the possible (1 — §)0 clusters randomly, and then Vi, Vig, ..o, Vi, ran-
domly among the A-tuples in the common neighborhood of the corresponding
Vo-verter and Vy. It is easy to see that there is a constant K such that no
cluster will contain more than K% neighbors.

Note, that by the help of the above remark we have found an assignment
of H-vertices which satisfies all requirements of C1-C11. In the rest of the
paper we are going to prove that we will be able to find H-vertices according
to C10 and C11 so as to cover the exceptional G-vertices of Step 3 of the
embedding algorithm.

Lemma 21 In Step 3 for each 1 < i </ and v € E; we can find an unem-
bedded = € L(V;) to cover v. This x € B', and its neighbors are assigned to
such clusters to which v has degree at least (d — e)m. Also, the (assigned,
but not embedded) neighbors of these xs are well spread among the clusters
of G, no cluster will have more than 2A&"m.

Proof. Denote the proportional matching by M. For a cluster V; let T;
denote the set of A-tuples matched to it in M. Recall that we removed the
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bad vertices from every cluster (Lemma 19). Hence, at time 0 all the vertices
had degree more than (d — &)m to at least half of the tuples in T, i.e., to all
clusters of those A-tuples.

We are at time Ty + T now, after embedding Ng(Ly) and the neighbor-
hood of the buffer vertices. Note that we have payed attention to embed
these H—vertices as evenly as possible. Not just the neighbors of the buffers
are well spread, but Ny (Lg) as well. Hence, even at time Ty + 17 every
vertex in the cluster V; has degrees big enough to at least 50% of the tuples
of T; (here we used the fact that the number of buffer vertices is very small,
and Ng(Lp) is embedded randomly). The exceptional sets of the clusters
are small, as we showed in Lemma 9, hence, there are enough candidates to
choose.

Now we prove that the covering of the G—vertices can be done in such a
way, that the neighbors of the embedded vertices will not concentrate in any
of the clusters.

First we will show a simple and easy-to-analyze algorithm for the ideal
case when every vertex in V; to be covered is connected to all the A-tuples
of T; for all . Then we will modify it for our more general setup.

The algorithm is as follows: We start by completing all the F; sets by
arbitrary Vj-vertices obtaining equal size sets. Consider the tuples of T}:
T1,...,Tk. Pick one-one unembedded vertex from B’ which is assigned by
these tuples, and cover k F;-vertices with those B’-vertices. Then repeat it
for all T;. When we are ready, we have finished one round. It is easy to
see that in one round we covered exactly k vertices from each exceptional
set, and because all cluster appears in the same number of tuples, after these
coverings we have the same number of neighbors in every cluster, this number
is then Ak/. Iterating the rounds at the end we will arrive to the situation
when no Ej-vertices are left, and for every cluster the embedded vertices have
the same number of assigned neighbors, which is A&"m.

Let us return to the assumptions of the lemma. The modified algorithm
for the general case will be different in two points. We again start by com-
pleting the sets to the same size by adding arbitrary vertices from the corre-
sponding cluster . We take the tuples of the matching one by one, as we did
previously. But we cannot always find a vertex to be covered for a tuple. In
such a case, we take the next tuple. Even so in every round at least half of
the tuples will assign a vertex which will cover a G-vertex, and the embed-
ded vertices will have at most Akl assigned neighbors in a cluster. Iterate
this procedure, and stop, when a set gets empty. If no exceptional vertices
are left (vertices from the original E; sets before adding other vertices), the
algorithm stops. If not, then complete the sets to have the same size, and
restart. Note, that now every exceptional set is at most half the size of the
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beginning. Hence, with O(logm) restarts no exceptional vertices are left un-
covered. Since between any two restarts the number of exceptional vertices
is cut in half, and the “fastest decreasing” set has speed at most twice that
of the slowest, we get no cluster that will have more than 2A&”m embedded
neighbors. |

Proof of Theorem 2 Since by the help of Lemmas 13, 14 and Corollar-
ies 15, 16 we can distribute the A-vertices, and then by Lemmas 17, 19, 20
and 21 we can provide that all conditions of Lemma 5 are satisfied, we can
embed H to GG, and thus Theorem 2 is proved. |

Remark 4 We have made no attempt to optimize on 3. Simple but tedious
calculation shows that B can be as large as ﬁ. On the other hand we think
that this is still not the right value for 3.
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