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Abstra
t

Let G be a simple graph on n verti
es. A 
onje
ture of Bollob�as and Eldridge

asserts that if Æ(G) �

kn�1

k+1

then G 
ontains any n vertex graph H with

�(H) = k. We strengthen this 
onje
ture: we prove that if H is bipartite,

3 � �(H) = � is bounded and n is suÆ
iently large , then there exists � > 0

su
h that if Æ(G) �

�

�+1

(1� �)n, then H � G.
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1 Introdu
tion

In this paper we will 
onsider only simple graphs. Let us denote by Æ(F ) the

minimum degree and by �(F ) the maximum degree of the graph F . In 1978

the following 
onje
ture was formulated by Bollob�as and Eldridge in [4℄:

Conje
ture 1 (Bollob�as-Eldridge) If G is a simple graph on n verti
es

with

Æ(G) �

kn� 1

k + 1

then G 
ontains any n vertex simple graph H with �(H) = k.

The simplest spe
ial 
ase of Conje
ture 1 is �(H) = 1, whi
h 
an be

solved easily. Mu
h harder 
ases of this 
onje
ture have been proved by

Hajnal and Corr�adi [5℄, Hajnal and Szemer�edi [7℄, Aigner and Brandt [2℄

and Alon and Fis
her [3℄, Csaba, Shokoufandeh and Szemer�edi [6℄. However,

the 
onje
ture is wide open for most 
ases.

In this paper we show that a stronger version of this 
onje
ture is true

for all suÆ
iently large n when H is bipartite and 3 � �(H) is bounded:

Theorem 2 Given � � 3 integer, there exists an n

0

and a � > 0 real su
h

that for all n � n

0

the following statement holds: Let H be a simple bipartite

graph on n verti
es, with 3 � �(H) = �. Then if G is any n vertex simple

graph having minimum degree

Æ(G) �

�

�+ 1

(1� �)n

then it 
ontains H as a spanning subgraph.

Remark 1 The 
ase �(H) = 1 of Conje
ture 1 is easily seen to be tight,

while �(H) = 2 and �(H) = 2 { in whi
h 
ase Æ(G) �

n

2

is suÆ
ient { is a

spe
ial 
ase of El-Zahar's 
onje
ture, whi
h was shown in [1℄.

In understanding the proof of the result some familiarity with the Regu-

larity Lemma of Szemer�edi [11℄ will be helpful, although we will give a brief

survey on the ne
essary notions in the se
ond se
tion. In the third se
tion we

will formulate and prove another important tool for this graph embedding

problem, a modi�ed version of the Blow-up Lemma [8℄, [9℄. A spe
ial 
ase

of this version (for embedding graphs of maximum degree three) appeared

in [6℄, although it was not stated expli
itly there, and perhaps it is not easy

to separate the lemma from the main result of that paper. In the fourth

se
tion we will prove Theorem 2, and will give another embedding result,

too.
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2 Notation and De�nitions

For a graph G, V (G) and E(G) will denote its vertex-set and edge-set, re-

spe
tively. For any vertex v, deg

G

(v) is the degree of vertex v, deg

G

(v;X)

is the number of neighbors of v in X, and e(X; Y ) is the number of edges

between X and Y . N

G

(v) is the set of neighbors of v and N

G

(v;X) is the

set of neighbors of v in X. Throughout the paper we will apply the relation

\�": a� b, if a is suÆ
iently smaller, than b.

A bipartite graph G with 
olor-
lasses A and B and edge-set E will be

denoted by G = (A;B;E). The density between disjoint sets X and Y is

de�ned as:

d(X; Y ) =

e(X; Y )

jXjjY j

:

In the proof of Theorem 2, Szemer�edi's Regularity Lemma [11℄, [10℄ plays

a pivotal role. We will need the following de�nition to state the Regularity

Lemma.

De�nition 1 (Regularity 
ondition) Let " > 0. A pair (A;B) of disjoint

vertex-sets in G is "-regular if for every X � A and Y � B, satisfying

jXj > "jAj; jY j > "jBj

we have

jd(X; Y )� d(A;B)j < ":

This de�nition implies that regular pairs are highly uniform bipartite graphs;

namely, the density of any reasonably large subgraph is almost the same as

the density of the regular pair.

We will use the following form of the Regularity Lemma:

Lemma 3 (Degree Form) For every " > 0 there is an M = M(") su
h

that if G = (V;E) is any graph and d 2 [0; 1℄ is any real number, then there

is a partition of the vertex set V into `+ 1 
lusters V

0

; V

1

; : : : ; V

`

, and there

is a subgraph G

0

of G with the following properties:

� ` �M ,

� jV

0

j � "jV j,

� all 
lusters V

i

, i � 1, are of the same size m

�

� b

jV j

`


 < "jV j

�

,

� deg

G

0

(v) > deg

G

(v)� (d+ ")jV j for all v 2 V ,
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� G

0

j

V

i

= ; (V

i

is an independent set in G

0

) for all i � 1,

� all pairs (V

i

; V

j

), 1 � i < j � `, are "-regular, ea
h with density either

0 or greater than d in G

0

.

Often we 
all V

0

the ex
eptional 
luster. In the rest of the paper we assume

that 0 < "� d� 1.

De�nition 2 (Redu
ed graph) Apply Lemma 3 to the graph G = (V;E)

with parameters " and d, and denote the 
lusters of the resulting partition by

V

0

; V

1

; : : : ; V

`

, V

0

being the ex
eptional 
luster. We 
onstru
t a new graph G

r

,

the redu
ed graph of G

0

in the following way: The non-ex
eptional 
lusters

of G

0

are the verti
es of the redu
ed graph G

r

(hen
e jV (G

r

)j = `). We


onne
t two verti
es of G

r

by an edge if the 
orresponding two 
lusters form

an "-regular pair with density at least d

The following 
orollary is immediate:

Corollary 4 Apply Lemma 3 to the n-graph G = (V;E) satisfying Æ(G) �


n for some 
 > 0 with parameters " and d. Denote G

r

the redu
ed graph of

G

0

. Then Æ(G

r

) � (
 � �)`, where � = 2"+ d.

Remark 2 In our appli
ation of Lemma 3 we will assume that all densities

equal to d { for a regular pair with density ex
eeding this number one 
an

randomly dis
ard edges to a
hieve the desired density without ruining the

"-regularity 
ondition.

A stronger one-sided property of regular pairs is super-regularity:

De�nition 3 (Super-Regularity 
ondition) Given a graph G and two

disjoint subsets of its verti
es A and B, the pair (A;B) is ("; d)-super-regular,

if it is "-regular and furthermore,

deg(a) > djBj; for all a 2 A;

and

deg(b) > djAj; for all b 2 B:

3



2.1 A rough outline of the proof

Our goal is to embedH into the host graph G. For a
hieving this goal �rst we

apply the Regularity Lemma to G. Then we distribute (but not embed) the

verti
es of H among the non-ex
eptional 
lusters of G

0

. It is important to do

this distribution evenly and 
onsistently. That is, we assign m+ jV

0

j=`�o(n)

H-verti
es to ea
h non-ex
eptional 
luster, and if (x; y) 2 E(H) and x is

assigned to the 
luster V

x

and y is assigned to V

y

, then (V

x

; V

y

) 2 E(G

r

).

Then we embed appropriately 
hosen H-verti
es to V

0

. After this step we will

have m H-verti
es assigned to ea
h non-ex
eptional 
luster. For embedding

these H-verti
es we will apply the modi�ed Blow-up Lemma.

3 Modi�ed Blow-up Lemma

As it was mentioned above, most of H will be embedded by a similar pro-


edure to that of the Blow-up Lemma. Readers familiar with the lemma

may observe that unlike in our setup, the Blow-up Lemma applies for a �xed

redu
ed graph whi
h does not depend on the parameters " and d, and all the

edges of that (�xed) redu
ed graph are super-regular pairs. Besides, as we

will see, there will be restri
tions for the embedding of 
ertain H-verti
es.

Hen
e, we need a stronger statement than the Blow-up Lemma, but that will

require several new 
onditions, and this version below will be more te
hni
al.

However, the main message have not 
hanged: if 
ertain 
onditions are satis-

�ed, one 
an embed bounded degree spanning subgraphs into pseudo-random

graphs. In this se
tion we dis
uss this embedding algorithm, and then prove

its 
orre
tness.

Given H and G our goal is to �nd a subgraph of G whi
h is isomorphi
 to

H. Let us denote by I

0

� V (H) a set the elements of whi
h are of distan
e at

least 4 from ea
h other, and I

0

>

n

�

5

- the existen
e of I

0


an be shown easily

by the help of a greedy algorithm. We assume that the vertex set of G is

partitioned into 
lusters V

0

; V

1

; : : : ; V

`

, and the vertex set of H is partitioned

into 
lusters L

0

; L

1

; L

2

; : : : ; L

`

, and there is a bije
tive mapping ' between

L

0

and V

0

. I

0

i

will denote L

i

\ I

0

.

Lemma 5 (Modi�ed Blow-up lemma) For all positive integer � there

exists n

0

and "; d > 0 su
h that if n > n

0

, H and G are two n-graphs,

�(H) = �,

0 < "� "

0

� "

00

� "

000

� Æ

000

� Æ

00

� Æ

0

� d� 1;

for 1 � i < j � ` the pair (V

i

; V

j

) is "-regular, with density 0 or d, and all

4



the 
onditions listed below hold, then H is embeddable to G by a randomized

algorithm. These 
onditions are the following:

Conditions

C1 jL

0

j = jV

0

j � K

1

dn,

C2 L

0

� I

0

,

C3 jL

i

j = jV

i

j = m for 1 � i � `,

C4 L

i

s (1 � i � `) are independent in H,

C5 jN(L

0

) \ L

i

j � K

2

dm for 1 � i � `,

C6 for 1 � i � ` there is a set B

i

� I

0

i

with B

i

� L

i

and jB

i

j = Æ

0

m,

B = [

i

B

i

su
h that jjN

H

(B)\L

i

j�jN

H

(B)\L

j

jj < "n for 1 � i; j � `,

C7 if (x; y) 2 E(H) and x 2 L

i

, y 2 L

j

(1 � i; j � `) then (V

i

; V

j

) is

"-regular pair with density d,

C8 if (x; y) 2 E(H) and x 2 L

0

, y 2 L

j

(1 � j � `) then deg('(x); V

j

) �




1

jV

j

j = 


1

m.

For 1 � i � ` v 2 V

i

is good for x 2 L

i

, if for all y adja
ent to x, if y 2 L

j

,

then

deg

G

(v; V

j

) � (d� ")m.

C9 For 1 � i � ` all v 2 V

i

is good for at least 


2

m L

i

-verti
es.

Let E

i

� V

i

be a set of size at most "

00

m for 1 � i � `.

C10 For 1 � i � ` there exists a bije
tion  : E

i

! F

i

� L

i

\ (I

0

�B) su
h

that for all v 2 E

i

v is good for  (v):

C11 Let F = [F

i

, then jN

H

(F ) \ L

i

j � K

3

"

00

m.

Here K

1

; K

2

; K

3

and 


1

and 


2

are positive numbers, whi
h may depend on

�, but not on " and d.

The elements ofB will be 
alled bu�er verti
es, and E

i

is the set of ex
eptional

G-verti
es in V

i

.

Let us explaine the role of these 
onditions. We want to embed L

i

-verti
es

to V

i

(0 � i � `). First, x 2 L

0

will be embedded to '(x) 2 V

0

, that is why

we need C1 and C2. We have C3 and C4 sin
e L

i

will be embedded to V

i

5



(1 � i � `). C7 and C8 are so 
alled 
onsisten
y 
onditions. The meaning

of C5-C6 will be 
lear later, these are measures for the "evenness" of the

distribution of H-verti
es among the 
lusters of G. C9 is analogous to C8.

We need C10 and C11 sin
e we have to take spe
ial 
are of the ex
eptional

G-verti
es, and we want to 
over them with su
h H-verti
es for whi
h their

neighbors are well-spread among the L

i

-
lusters.

3.1 The embedding algorithm

From now on we suppose that the requirements of Lemma 5 are satis�ed.

Sin
e L

0

has already been embedded, we will 
onsider only the verti
es of

H�L

0

. Let n

0

= jV (H�L

0

)j, we order the verti
es of H�L

0

into a sequen
e

S = (x

1

; x

2

; : : : ; x

n

0

) whi
h is almost the order in whi
h V (H � L

0

) will be

embedded. For ea
h 1 � i � `, we have a subset B

i

of L

i

of size Æ

0

m, the

bu�er verti
es. Re
all, that B = [

i

B

i

. LetM = jBj, and b

1

; b

2

; : : : ; b

M

be the

bu�er verti
es, then they will form the last part of S. The sequen
e S starts

with the verti
es of N

H

(L

0

), followed by fN

H

(b

1

); N

H

(b

2

); : : : ; N

H

(b

M

)g, the

neighbors of the bu�ers. We let T

0

= jN

H

(L

0

)j and T

1

=

P

M

i=1

jN

H

(b

i

)j. Then

we add all the other verti
es to the sequen
e, in su
h a way that the bu�er

verti
es form the tail of S. For te
hni
al reasons we assume that S is ordered

evenly a

ording to the L

i

lists, i.e., the 
onse
utive segments of length Æ

00

n

0

have the same number of verti
es from every list. Later we may pla
e some

verti
es forward, but then we rearrange S to maintain this property.

The embedding of the verti
es of H�L

0

o

urs in three separate phases.

In the �rst phase we are going to embed the verti
es of N

H

(L

0

). In the se
ond

phase will 
ome the embedding of the next verti
es of S after ea
h other

a

ording to their position in the sequen
e (some reordering is possible),

until only bu�er verti
es are left in S. In the third phase, by a mat
hing

pro
edure we embed the remaining bu�er verti
es. The phase for embedding

N

H

(L

0

) is a randomized pro
edure, while the other two are deterministi
.

In the next subse
tion we outline our method for the embedding, with

the ex
eption of sele
ting a vertex to be 
overed. That will be done in a

separate subse
tion.

3.1.1 Outline

For an unembedded vertex x 2 L

i

we will denote by H

t;x

its monotoni
ally

shrinking host set in V

i

at time t. Also, for te
hni
al reasons we keep tra
k

of another set, C

t;x

. By Z

t

we denote the set of o

upied verti
es (note that

Z

0

= V

0

), and we also maintain a set Bad

t

of ex
eptional pairs in H � L

0

.

6



At time 0, we set C

0;x

= H

0;x

= V

i

, where x 2 L

i

, and x does not have

any neighbor in L

0

. For those verti
es having neighbors in L

0

the setup is

di�erent. Let x in L

0

have neighbors y

1

2 L

i

1

; y

2

2 L

i

2

; : : : ; y

�

2 L

i

�

, and

v = �(x). By virtue of 
ondition C8 we have ensured that v has at least 


1

m

neighbors in V

i

1

; V

i

2

; : : : ; V

i

�

. These neighborhoods give C

0;y

1

= H

0;y

1

; C

0;y

2

=

H

0;y

2

; : : : ; C

0;y

�

= H

0;y

�

, respe
tively.

Re
all, that T

0

= jN

H

(L

0

)j and T

1

=

P

M

i=1

jN

H

(b

i

)j. We let T

2

= Æ

00

n

0

.

Given the initial host sets, the embedding algorithm will go as follows:

Phase 0. For 1 � t � T

0

repeat the following steps

Pi
k an appropriate vertex v

t

for x

t

2 N

H

(L

0

) randomly and uni-

formly from H

t�1;x

t

using the Sele
tion Algorithm of se
tion 3.1.2.

Update

Z

t

= Z

t�1

[ fv

t

g

and for all unembedded verti
es x

i

, with t < i � n

0

C

t;x

i

=

(

C

t�1;x

i

\N

G

(v

t

) if (x

i

; x

t

) 2 E(H);

C

t�1;x

i

otherwise;

and

H

t;x

i

= C

t;x

i

� Z

t

Phase 1. For t � T

0

+ 1 repeat the following steps

Step 1. Embed the vertex x

t

from the sequen
e S: using the

Sele
tion Algorithm 
hoose an appropriate vertex v

t

from the set

H

t�1;x

t

as x

t

's image.

Step 2. Update

Z

t

= Z

t�1

[ fv

t

g

and for all unembedded verti
es x

i

, with t < i � n

0

C

t;x

i

=

(

C

t�1;x

i

\N

G

(v

t

) if (x

i

; x

t

) 2 E(H);

C

t�1;x

i

otherwise;

and

H

t;x

i

= C

t;x

i

� Z

t

Step 3. Ex
eptional verti
es in G

1. If t 6= T

0

+ T

1

go to step 4.

7



2. If t = T

0

+ T

1

then for every 
luster V

i

form a set E

i


ontaining those un
overed verti
es satisfying

jfb : b 2 B

i

; v 2 C

t;b

gj < Æ

00

jB

i

j:

We will 
over them right after the neighbors of the bu�er

verti
es, thereby eliminating a possible obje
tion to embed

the bu�er verti
es in Phase 2. We slightly 
hange the ordering

of S. From every list L(V

i

) we take jE

i

j verti
es belonging to

I

0

to form the set  (E

i

) = F

i

. Let F = [F

i

. We pla
e the

verti
es of F forward, x =  (v) 2 F

i

will be embedded to v 2

E

i

. The requirements for 
hoosing F have been formulated in

C10 and C11. We will maintain the even ordering of S.

Step 4. Ex
eptional verti
es in H � L

0

1. If T

2

does not divide t, then go to Step 5.

2. If T

2

divides t, we will �nd all ex
eptional unembedded

verti
es y 2 H � L

0

su
h that jH

t;y

j � (Æ

0

)

2

m. We again

slightly 
hange the order of the remaining verti
es in S by

bringing these ex
eptional verti
es forward in S (in
luding

the ex
eptional bu�er verti
es) and will maintain the even

distribution of verti
es assigned to di�erent 
lusters. This

is possible be
ause of the very small number of ex
eptional

verti
es we 
an �nd in this step.

Step 5. If the unembedded verti
es are all bu�er verti
es, go to

Phase 2., otherwise set t t+ 1 and go ba
k to Step 1.

Phase 2. Find a system of distin
t representatives of the sets H

t;y

for

all unembedded verti
es.

3.1.2 Sele
tion Algorithm

There 
an be two possible 
ases.

Case 1. x

t

62 F .

As the image of x

t

, we will 
hoose some v

t

2 H

t�1;x

t

su
h that the

following 
onditions are satis�ed for every unembedded vertex y with

(x

t

; y) 2 E(H):

(d� ")jH

t�1;y

j � deg

G

(v

t

; H

t�1;y

) � (d+ ")jH

t�1;y

j; (3)

(d� ")jC

t�1;y

j � deg

G

(v

t

; C

t�1;y

) � (d+ ")jC

t�1;y

j; (4)

8



and

(d�")jC

t�1;y

\C

t�1;y

0

j � deg

G

(v

t

; C

t�1;y

\C

t�1;y

0

) � (d+")jC

t�1;y

\C

t�1;y

0

j; (5)

for at least (1 � "

0

) portion of the unembedded verti
es y

0

so that y

and y

0

are assigned to the same 
luster V

i

, and fy; y

0

g 62 Bad

t�1

. The

set Bad

t

will be formed as the union of Bad

t�1

and those pairs fy; y

0

g

whi
h does not satisfy (5) for v

t

. Clearly, at most �"

0

m new verti
es

will be added to Bad

t

.

Case 2. x

t

2 F .

By the virtue of C10 we will assign x

t

2 L(V

i

) to an ex
eptional v

t

2 E

i

so that for all unembedded y 2 N

H

(x

t

) the following is satis�ed:

deg

G

(v

t

; C

t�1;y

) = deg

G

(v

t

) � (d� ")m � (d� ")jC

t�1;y

j; (6)

and

deg

G

(v

t

; H

t�1;y

) � deg

G

(v

t

)�2�Æ

0

m�jE

i

j � (d�")m�2(�+1)Æ

0

m �

d

2

m: (7)

In (7) we use C6 and the fa
t that for ea
h i jE

i

j � Æ

0

m. We will prove this

in Lemma 9.

3.2 Corre
tness

We start by proving that Phase 0 of the algorithm su

eeds with high prob-

ability. First we show that the Sele
tion Algorithm su

eeds for 1 � t � T

0

in �nding the v

t

-verti
es.

Lemma 6 Assuming that Phase 0 su

eeds for all t

0

, with t

0

< t � T

0

and

H

t�1;x

t

� Æ

00

m, then it su

eeds for t.

Proof. We only need to 
onsider Case 1 of the Sele
tion Algorithm. The

sele
ted vertex v

t

2 H

t�1;x

t

should satisfy 
onditions (3), (4), and (5). By

"-regularity we will have at most 2"m verti
es in H

t�1;x

t

whi
h do not satisfy

(3), and the same holds for (4). For 
ondition (5) we will de�ne a bipartite

graph B = (W

1

;W

2

; E(B)). Here W

1

= H

t�1;x

t

, and the elements of W

2

are

the sets C

t�1;y

\ C

t�1;y

0

for all pairs fy; y

0

g where (x

t

; y) 2 E(H), y and y

0

are both assigned to the same 
luster, and fy; y

0

g 62 Bad

t�1

. For v 2 W

1

and u 2 W

2

, we have (v; u) 2 E(B) if (5) does not hold for v and the pairs


orresponding to u. If we assume that there are more than "

0

m verti
es

9



v 2 W

1

with deg

B

(v) > "

0

jW

2

j, then there should be a vertex u 2 W

2

su
h

that

deg

B

(u) > "

02

m� "m:

But this is a 
ontradi
tion with the "-regularity sin
e the pair fy

u

; y

0

u

g 
or-

responding to u does not belong to Bad

t�1

and

jC

t�1;y

u

\ C

t�1;y

0

u

j � (Æ � ")

2�

m� "m:

This in turn implies that H

t�1;x

t


an 
ontain at most 4"m + "

0

m � Æ

00

m

verti
es whi
h 
annot be used to map x

t

, proving the su

ession of Phase 0.

Observe, that when we progress to Phase 1 (after the su

essful 
omple-

tion of Phase 0), the aformentioned proof will work. We will be able to �nd

a vertex to 
over if the host sets are not too small.

What is left to show is that for all time t, 1 � t � T

0

, the host sets do

not be
ome too small. A
tually, we prove this not just for the host sets for

the unembedded N

H

(L

0

){verti
es, but for all unembedded H{verti
es.

Lemma 7 If Phase 0 su

eeds for all t, with t < T

0

then for all t

0

> t

H

t�1;x

t

0

� Æ

0

m with high probability.

Proof. For x 2 N

H

(L

0

) jH

0;x

j � 


1

m. In Lemma 6 we proved that if

the algorithm su

eeds up to time t and jH

t;x

j � Æ

00

m, we 
an �nd a v

t

to

embed x. Sin
e no two verti
es in N

H

(L

0

) are adja
ent, the only way the

host set of x de
reases is that we 
over some verti
es of it by other N

H

(L

0

)-

verti
es. When de
iding whi
h G{vertex to 
over by an N

H

(L

0

){vertex x,

the Sele
tion Algorithm will always provide almost all of H

t;x

as a possibility

{ a subset of size Æ

00

m 
an be left out. Out of those possibilities we 
hoose

the host vertex randomly and uniformly. Re
all that a

ording to C5, the at

most �jV

0

j restri
ted verti
es of N

H

(L

0

) are distributed among a 
onstant

proportion of the 
lusters, as evenly as possible. We 
an 
on
lude that only a

very small number of verti
es (K

2

dm) have a restri
tion to embed them into

a set of size at least 


1

m in ea
h 
luster. Now, by applying the statement

of Lemma 6 one 
an easily 
on
lude that up to time T

0

all the unembedded

N

H

(L

0

)-verti
es have a host set of size at least (


1

� 2K

2

d)m.

A vertex y from the rest of H 
an have � neighbors embedded by time

T

0

. This means its starting host set H

0;y

may shrink up to � times, ea
h

time the sizes are multiplied by a number between d� " and d+ ". We also

lose some pla
es be
ause of the embedded N

H

(L

0

)-verti
es. The randomness

in the Sele
tion Algorithm helps us. The expe
ted number of 
overed ver-

ti
es in this host set is proportional to its size. Suppose that y's host set

10



shrinks at time t

1

and the next shrinking is at time t

2

(t

1

; t

2

� T

0

). Denote

hm the size of y's host set at time t

1

. Then we 
an use Hoe�ding's bound

between these two shrinkages. Easy 
al
ulation shows that with probability

1 � 2e

2K

2

dmh

2

the size of y's host set is of size at least h(1 � 2K

2

d)m at

time t

2

� 1. Therefore, after shrinking � times, with very high probability

(remember, n is larger than some threshold!) the size of y's host set will

be at least (d� ")

�

(1� 2K

2

d)

�

m > d

�+1

m. Observing that we have linear

number of host sets in a 
luster, we get that with high probability, for every

unembedded vertex x at time t, 1 � t � T

1

, jH

t;x

j � d

�+1

m.

One 
an easily 
on
lude from the above that Phase 0 su

eeds with prob-

ability 1� o(1).

For t > T

0

we will need a more thorough analysis. At time t for the


luster V

i

and a subset of the unembedded verti
es Q

i

� L

i

, we de�ne a

bipartite graph U

t

= (V

i

; Q

i

; E(U

t

)). Here if x 2 Q

i

, v 2 V

i

, and v 2 C

t;x

then (x; v) 2 E(U

t

).

The following lemma is pivotal for the proof of the 
orre
tness of Phase

1.

Lemma 8 For every 1 � i � ` and T

0

+ 1 � t � T

0

+ T

1

and any set

of unembedded verti
es Q

i

� L

i

at time t, with jQ

i

j � (Æ

000

)

2

m, if Phase 1

su

eeds for all t

0

� t, then apart from an ex
eptional set J of size at most

"

00

m the following will hold for every v 2 V

i

:

deg

U

t

(v) � (1� "

00

)d(V

i

; Q

i

)jQ

i

j:

Proof. We use the so 
alled \defe
t form" of the Cau
hy-S
hwarz inequality,

that states: if for some p � q

p

X

i=1

�

i

=

p

q

q

X

i=1

�

i

+ �

then

q

X

i=1

�

2

i

�

1

q

 

q

X

i=1

�

i

!

2

+

�

2

q

p(q � p)

:

Assume to the 
ontrary that the lemma is not true, that is, jJ j > "

00

m.

Choose J

0

� J with jJ

0

j = "

00

m. De�ne �(t; x) as the number of embedded

neighbors of x by time t. Observe that if x has a neighbor in L

0

, then

�(0; x) � 1, otherwise it is 0. Then

jE(U

t

)j =

X

x2Q

i

jC

t;x

j �

X

x2Q

i

(d� ")

�(t;x)

m: (8)

11



We also have

X

x2Q

i

X

x

0

2Q

i

jC

t;x

\ C

t;x

0

j

�

X

x2Q

i

X

x

0

2Q

i

(d+ ")

�(t;x)+�(t;x

0

)

m+ jQ

i

jm+�

2

jQ

i

jm+ 2�"

0

m

3

�

X

x2Q

i

X

x

0

2Q

i

(d+ ")

�(t;x)+�(t;x

0

)

m+ 4�"

0

m

3

(9)

For ea
h pair fx; x

0

g, we 
an upper-bound jC

t;x

\ C

t;x

0

j by m. The diagonal

terms (x = x

0

) result in error jQ

i

jm. For the non-diagonal terms for whi
h

N

H

(x) \N

H

(x

0

) 6= ; we have the term �

2

jQ

i

jm. If fx; x

0

g 2 Bad

t

, by Case

1 of the Sele
tion Algorithm either x or x

0


an appear in at most �"

0

m

bad pairs. Hen
e there will be at most �"

0

m

2

bad pairs asso
iated with the


luster V

i

. Using the Cau
hy-S
hwarz inequality with p = "

00

m, q = m and

the variables �

k

= deg

U

t

(v

k

), 1 � k � m with v

k

2 V

i

and the �rst "

00

m

values set to degrees in J

0

, we have:

j�j = "

00

X

v2V

i

deg

U

t

(v)�

X

v2J

0

deg

U

t

(v)

� "

00

X

v2V

i

deg

U

t

(v)� "

00

(1� "

00

)d(V

i

; Q

i

)jQ

i

jm

= ("

00

)

2

X

v2V

i

deg

U

t

(v): (10)

Then using (8), (10) and the Cau
hy-S
hwarz inequality we get

X

x2Q

i

X

x

0

2Q

i

jC

t;x

\ C

t;x

0

j

=

X

v2V

i

(deg

U

t

(v))

2

�

1

m

0

�

X

v2V

i

deg

U

t

(v)

1

A

2

+ ("

00

)

3

d(V

i

; Q

i

)

2

mjQ

i

j

2

�

1

m

0

�

X

x2Q

i

(d� ")

�(t;x)

m

1

A

2

+ ("

00

)

3

(d� ")

2�

mjQ

i

j

2

�

X

x2Q

i

X

x

0

2Q

i

(d� ")

�(t;x)+�(t;x

0

)

m+ ("

00

)

3

(d� ")

2�

mjQ

i

j

2

whi
h is a 
ontradi
tion to (9), sin
e jQ

i

j � (Æ

000

)

2

m,

("

00

)

3

(d� ")

2�

(Æ

000

)

2

� 4"

0

� 4"

and

(d+ ")

�(t;x)+�(t;x

0

)

� (d� ")

�(t;x)+�(t;x

0

)

� 4":
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As a 
onsequen
e we will have the following bound on the size of the

ex
eptional sets E

i

:

Lemma 9 In Step 3, for ea
h 1 � i � ` we have jE

i

j � "

00

m.

Proof. Applying the previous lemma with t = T

0

and Q

i

= B

i

, whi
h means

jQ

i

j � (Æ

000

)

2

m, we will have

(1� "

00

)d(V

i

; Q

i

)jQ

i

j �

d

�

2

jQ

i

j > Æ

00

jQ

i

j

and E

i

� J .

Next we will prove a result similar to Lemma 8 for t > T

0

+ T

1

.

Lemma 10 For every 1 � i � ` and T

0

+ T

1

< t � T and any set of

unembedded verti
es Q

i

� L

i

at time t, with jQ

i

j � (Æ

000

)

2

m, if Phase 1

su

eeds for all t

0

� t, then apart from an ex
eptional set of size at most "

000

m

the following will hold for every v 2 V

i

:

deg

U

t

(v) � (1� "

000

)d(V

i

; Q

i

)jQ

i

j:

Proof. The proof follows the same line of argument as Lemma 8 with pa-

rameter "

000

, ex
ept those verti
es in the neighborhood of F . The inequality

in (8) will hold with the same parameters, sin
e for all x 2 N

H

(F ) we have

jC

t;x

j � (d� ")

�(t;x)

m:

Here we used 
ondition C10 and the fa
t that �(t; x) = 1 sin
e x 2 I

0

.

In (9) there are more bad pairs. More pre
isely, based on Step 3 of the

embedding algorithm, there will be an additional error term of 2�K

3

"

00

m

2

jQ

i

j

by 
ondition C11. Using the fa
t that

("

000

)

3

(d� ")

2�

(Æ

000

)

2

� "

00

we 
an see that the 
ontradi
tion still holds.

The following lemma is an easy 
onsequen
e of Lemmas 8 and 10.

Lemma 11 For every 1 � i � ` and T

0

< t � T and any set of unembedded

verti
es Q

i

� L

i

at time t, with jQ

i

j � Æ

000

m and a set A � V

i

with jAj � Æ

000

m,

if Phase 1 su

eeds for all t

0

� t then apart from an ex
eptional set J of size

at most (Æ

000

)

2

m, the following will hold for every x 2 Q

i

:

jA \ C

t;x

j �

jAj

2m

jC

t;x

j:

13



Proof. Let us suppose that the lemma is not true, there exists a set J � Q

i

su
h that jJ j > (Æ

000

)

2

m, and for every x 2 J the inequality of the statement

does not hold. We again 
onsider the bipartite graph U

t

= U

t

(J; V

i

).

X

v2A

deg

U

t

(v) =

X

x2J

jA \ C

t;x

j <

jAj

2m

d(J; V

i

)jJ jm:

Applying Lemmas 8 or 10 with J , we get

X

v2A

deg

U

t

(v) � (1� "

000

)d(J; V

i

)jJ j(jAj � "

000

m);

whi
h is a 
ontradi
tion.

In the following lemma we show that the host sets do not be
ome too

small.

Lemma 12 For every T

0

+ 1 � t � T and for every H-vertex y whi
h is

unembedded at time t, if Phase 1 su

eeds for all t

0

� t then the following

holds:

jH

t;y

j > Æ

00

m:

Proof. Let Q

i

be the set of all the unembedded verti
es in V

i

at time t, and

let A

t

= V

i

�Z

t

. Applying Lemma 11 we 
an see that for all x 2 Q

i

(ex
ept

at most (Æ

000

)

2

m verti
es)

jH

t;x

j = jA

t

\ C

t;x

j �

jA

t

j

2m

jC

t;x

j �

Æ

0

4

(d� ")

�

m� (Æ

0

)

2

m;

if jA

t

j �

Æ

0

2

m: Next we prove this statement. Let us suppose indire
tly that

there is a T

0

su
h that T

1

+ 1 � T

0

< T and

jA

T

0

j �

Æ

0

2

m but jA

T

0

+1

j <

Æ

0

2

m:

We know that at any time t, where T

2

divides t, there are at most (Æ

000

)

2

m

ex
eptional unembedded verti
es. Thus, up to time T

0

we 
an �nd at most

1

Æ

00

(Æ

000

)

2

m� Æ

00

m

ex
eptional verti
es. This implies that at time T

0

there are many more than

(Æ

0

� Æ

00

)m unembedded bu�er verti
es, thus, on the 
ontrary, jA

T

0

+1

j �

(Æ

0

� Æ

00

)m: Note, that we also proved that T � `m � `Æ

0

m + `Æ

00

m: Let us


onsider now an arbitrary y 2 L(V

i

) unembedded at time t (1 � t � T ), and

let kÆ

00

n

0

= kT

2

� t < (k + 1)T

2

for some 0 � k � T=T

2

: There are two 
ases

to dis
uss:

14



Case 1. If y was not among the at most (Æ

000

)

2

ex
eptional verti
es of

Step 4, then

jH

t;y

j �

 

d

2

!

�

(Æ

0

)

2

m�K;

where K is the number of verti
es 
overed in V

i

during the period

between kT

2

and (k + 1)T

2

. Re
all that the sequen
e S is as balan
ed

as possible; hen
e, K � 2Æ

00

m, where 2Æ

00

m 
omes from the reordering

of S be
ause of the ex
eptional verti
es of G and H. Also, at time kT

2

we had that jH

kT

2

;y

j � (Æ

0

)

2

m: These fa
ts imply that in this 
ase the

statement of the lemma holds.

Case 2. If y was among the at most (Æ

000

)

2

ex
eptional verti
es of Step

4, then

jH

t;y

j �

 

d

2

!

�

(Æ

0

)

2

m�K

0

;

where K

0

is the number of verti
es 
overed in V

i

during the period be-

tween (k� 1)T

2

and (k+1)T

2

. Now K

0


an be as big as (Æ

00

+(Æ

000

)

2

)m,

be
ause at time (k � 1)T

2

at most (Æ

000

)

2

m ex
eptional verti
es were

pla
ed forward. Again, by observing that at time (k � 1)T

2

we had

that jH

(k�1)T

2

;y

j � (Æ

0

)

2

m; the proof of the lemma is �nished.

Now it is easy to show the su

ession of the Sele
tion Algorithm in �nd-

ing the v

t

-verti
es. We have just proved that the host sets 
an never get too

small. In Lemma 6 we proved that Phase 0 su

eeds for time t, whenever it

su

eeds for all t

0

with t

0

< t � T

1

and the host set is big enough. It is easy

to 
he
k that exa
tly the same proof works for Phase 1 and up to time T .

Putting these together, we have that Phase 1 of the algorithm su

eeds.

To prove that Phase 2 of the algorithm su

eeds, we will show that for

all 1 � i � ` there is a system of distin
t representatives between the unem-

bedded verti
es of L

i

and the remaining bu�er verti
es of V

i

. Let Q

i

� L

i

denote the set of unembedded verti
es assigned to the 
luster V

i

, and Y

i

� V

i

be the remaining verti
es of the 
luster V

i

, with M

i

= jQ

i

j = jY

i

j. Then by

Lemma 12 for every x 2 Q

i

we will have H

T;x

> Æ

000

M

i

. Furthermore, for all

subsets S � Q

i

, if jSj � Æ

000

M

i

then by Lemma 10

�

�

�

�

�

[

x2S

H

T;x

�

�

�

�

�

� (1� Æ

000

)M

i

:
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Finally, for any v 2 Y

i

, sin
e v 
annot be ex
eptional in G, by Step 3 there

are at least Æ

000

M

i

host sets H

T;x


ontaining v implies that for the subsets

S � Q

i

with jSj � (1� Æ

000

M

i

) we have

�

�

�

�

�

[

x2S

H

T;x

�

�

�

�

�

=M

i

;

whi
h in turn implies the existen
e of the system of distin
t representatives.

This �nishes the proof of Lemma 5.

4 Assigning H to 
lusters of G

r

The pro
ess of embedding will go as follows: First, we apply the degree form

of the Regularity Lemma for G with parameters " and d. As a result we will

have a partitioning of the vertex set into the 
lusters V

0

; V

1

; V

2

; : : : ; V

`

. Now

our goal will be to �nd an assignment of H-verti
es to the 
lusters of G

r

so

as to satisfy 
onditions C1-C11.

Let us denote the 
olor 
lasses of H by A and B, and suppose that

jAj � jBj. We randomly distribute the A-verti
es among the non-ex
eptional


lusters. Then we are going to map the B-verti
es to non-ex
eptional 
lusters


onsistently and evenly. That is, if y 2 B has the neighbors fx

1

; x

2

; : : : ; x

�

g,

and the x

i

s are mapped to the 
lusters V

j

1

; : : : ; V

j

�

, then y will be mapped

to a 
luster V

s

whi
h is 
onne
ted to V

j

1

; : : : ; V

j

�

by regular edges. Besides,

we require that the number of mapped A-verti
es and B-verti
es to all non-

ex
eptional 
lusters are

jAj

`

�o(n) and

jBj

`

�o(n), respe
tively. The assignment

of B-verti
es will be done by the help of mat
hing.

Still, there is no H-vertex assigned to V

0

(and hen
e all non-ex
eptional


lusters are over-saturated). For dealing with this problem we �rst dis
ard

some B-verti
es (the surplus) from ea
h non-ex
eptional 
luster, these will

form L

0

, and the H-verti
es assigned to V

s

give the set L

s

for 1 � s � `.

This may not be the �nal partitioning of H { for satisfying C8 we may

have to swit
h between some L

0

-vertex and another L

s

-vertex. When all the

requirements of C1{C11 will be satis�ed, the a
tual embedding 
an be done

by the help of the modi�ed Blow-up lemma.

4.1 Assigning A

We start by assigning the verti
es of A to the non-ex
eptional 
lusters of

G

r

. For every vertex x 2 A 
hoose a non-ex
eptional 
luster randomly and
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independently. It is easy to see that this pro
edure will guarantee an almost

even distribution of the verti
es of A among the 
lusters of G

r

:

Lemma 13 Let A

i

, 1 � i � ` denote the set of verti
es assigned to V

i

after

distributing the verti
es of A using the above pro
edure. Then, with high

probability jA

i

j =

jAj

`

� o(n).

Proof. Applying Chebyshev's inequality gives the proof of the lemma.

Let B

0

� B is a maximal set in whi
h any two verti
es are of distan
e at

least 4 from ea
h other. (Note that jB

0

j=jBj depends on �, but not on " or d.)

Now we will argue that an appropriate distribution of A among the 
lusters

of G

r

will fa
ilitate an even assignment of the verti
es of B

0

and B�B

0

to the


lusters of G

r

. Let V

i

be a 
luster in G

r

, we de�ne the asso
iated list Q(V

i

)

as fy : y 2 B; x 2 A

i

; (x; y) 2 E(H)g, whi
h is the set of B-verti
es with a

neighbor assigned to the 
luster V

i

. Let V

s

1

; V

s

2

; : : : ; V

s

�

be any � 
lusters

of G

r

. We de�ne the random variables R and R

0

: R

0

(V

s

1

; V

s

2

; : : : ; V

s

�

) =

jB

0

\Q(V

s

1

) \Q(V

s

2

) \ : : : \Q(V

s

�

)j and R(V

s

1

; V

s

2

; : : : ; V

s

�

) = j(B �B

0

) \

Q(V

s

1

) \Q(V

s

2

) \ : : : \Q(V

s

�

)j.

We are going to measure the evenness of the distribution of A in terms

of these random variables.

Lemma 14 For any � 
lusters V

s

1

; V

s

2

; : : : ; V

s

�

of G

r

the following inequal-

ities hold:

Pr

h

jR(V

s

1

; V

s

2

; : : : ; V

s

�

)� E[R(V

s

1

; V

s

2

; : : : ; V

s

�

)℄j = 
(n

4

5

)

i

= o(1);

Pr

h

jR

0

(V

s

1

; V

s

2

; : : : ; V

s

�

)� E[R

0

(V

s

1

; V

s

2

; : : : ; V

s

�

)℄j = 
(n

4

5

)

i

= o(1):

Proof. Similar to the proof of Lemma 13, again we omit the details.

We need the following simple 
orollary of the above lemmas.

Corollary 15 For any two �-tuples of 
lusters V

s

1

; V

s

2

; : : : ; V

s

�

and V

0

s

1

; V

0

s

2

; : : : ; V

0

s

�

in G

r

the following inequalities hold:

Pr

h

jR(V

s

1

; V

s

2

; : : : ; V

s

�

)� R(V

0

s

1

; V

0

s

2

; : : : ; V

0

s

�

)j = 
(n

4

5

)

i

= o(1);

Pr

h

jR

0

(V

s

1

; V

s

2

; : : : ; V

s

�

)� R

0

(V

0

s

1

; V

0

s

2

; : : : ; V

0

s

�

)j = 
(n

4

5

)

i

= o(1):
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In other words, Lemma 13 and Corollary 15 states that most of the possible

assignments of A are even assignments.

Let N be a positive integer, depending only on ". For all s (1 � s � `) we

randomly divideB

0

\Q(V

s

) intoN equal sized subsets, gettingQ

1

(V

s

); Q

2

(V

s

); : : : ; Q

N

(V

s

).

We de�ne a new set of random variables: R

0

p

(V

s

1

; V

s

2

; : : : ; V

s

�

) = jQ

p

(V

s

1

) \

Q

p

(V

s

2

)\ : : :\Q

p

(V

s

�

)j, for all 1 � p � N . Then the following is implied by

Lemma 13 and 14:

Corollary 16 For any two �-tuples of 
lusters V

s

1

; V

s

2

; : : : ; V

s

�

and V

0

s

1

; V

0

s

2

; : : : ; V

0

s

�

in G

r

and two integers p and q (1 � p; q � N) the following inequalities hold:

Pr

h

jR

0

p

(V

s

1

; V

s

2

; : : : ; V

s

�

)�R

0

q

(V

0

s

1

; V

0

s

2

; : : : ; V

0

s

�

)j = 
(n

4

5

)

i

= o(1):

4.2 Pre-assigning B

In this se
tion we will present a 
onsistent assignment of the verti
es in B

to the 
lusters of G

r

. As we will see, su
h assignments 
an be formulated

as spe
ial mat
hing problems. (In order to �nish the embedding of H into

G, some of the H-verti
es should be assigned to the ex
eptional 
luster V

0

.

This will be 
arried out in another se
tion.)

We repeat the de�nitions of [6℄. For a bipartite graph F = (V; T; E(F ))

where jT j = qjV j for some positive integer q, M � E(F ) is a proportional

mat
hing if every v 2 V is adja
ent to exa
tly q verti
es in T and every u 2 T

is adja
ent to exa
tly one V vertex in M . In order to show that F 
ontains

a proportional mat
hing we will 
he
k the K�onig{Hall 
onditions, that is, for

every subset U of V , its neighborhood in T should satisfy jN

F

(U; T )j � qjU j.

One 
an easily see this from the 
onstru
tion of an auxiliary graph: substitute

every v 2 V with q instan
es v

1

; : : : ; v

q

, and if (v; u) (u 2 T ) was an edge,

then 
onne
t the v

i

s to u for all 1 � i � q. This auxiliary graph has a perfe
t

mat
hing if and only if F has a proportional mat
hing.

Besides this kind of mat
hing we are going to need another kind of mat
h-

ing about whi
h we demand that the \loads of the verti
es" are distributed

more evenly. We say F allows a strong proportional mat
hing with respe
t to

� (0 < � � 1) if there is a proportional mat
hing in the following bipartite

graph F

0

. Its 
olor 
lasses are V and T

0

. For every vertex u 2 T , we add

`

�


opies, u

1

; : : : ; u `

�

, to T

0

. If N

F

(u) = fv

1

; : : : ; v

s

g then we will have the

following edges: (u

i

; v

i

) for 1 � i � s, and (u

j

; v

i

) where 1 � i � s and

s < j �

`

�

. In other words, the �rst s 
opies of u have degree 1, while

the others have the same degree, s. The existen
e of a strong proportional

mat
hing 
an be 
he
ked through the strong K�onig-Hall 
onditions: one 
an

see that for U � V jN

F

(U)j(1� �) � jN

F

0

(U)j. Using this fa
t we 
an prove
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the existen
e of a strong proportional mat
hing, and at the same time the

existen
e of a proportional mat
hing as well. We will see that both these

mat
hings are needed to assign the verti
es of I and Q to 
lusters of G

r

.

Re
all that G

r

is an `{graph with Æ(G

r

) = (1�

1

�+1

)(1��)(1��)`, where

0 < � = " + d � 1 and 0 < � < 1 are two 
onstants. We will denote Æ(G

r

)

by Æ.

Let us 
onstru
t a bipartite graph F = (V (G

r

); T; E(F )). One 
olor 
lass

is V (G

r

) (the non-ex
eptional 
lusters), the other, T is the set of all possible

�{tuples 
omposed of G

r

{
lusters. There is an edge between V

j

2 V (G

r

)

and a �{tuple t = (V

s

1

; V

s

2

; : : : ; V

s

�

) i� for 1 � i � � (V

j

; V

s

i

) 2 E(G

r

). Let

us denote (1 � �)(1 � �)(1 � �) by (1 � �) (here � is the 
onstant for the

strong proportional mat
hing).

The following lemma is the 
ornerstone of our proof.

Lemma 17 There is a strong proportional mat
hing in F with respe
t to �

if � is small enough.

For proving Lemma 17 we will need the following statement.

Lemma 18 For 0 � i � � � 2 if � is small enough, then Æ

��i

(1 � �) >

(i + 1)(1� Æ).

Proof. We are going to prove a stronger statement: (

�

�+1

)

��i

(1 � �)

�

>

i+1

�+1

(1 + ��).

We pro
eed by indu
tion. First we prove the 
ase i = �� 2:

(

�

� + 1

)

2

(1� �)

�

>

�� 1

� + 1

(1 + ��);

sin
e by multiplying both sides by

�+1

�

we get the true inequality

�

�+ 1

(1� �)

�

>

�� 1

�

(1 + ��):

So now we may assume that (

�

�+1

)

��i

(1��)

�

>

i+1

�+1

(1+��). De
reasing

i by 1 we have to 
he
k the inequality below:

(

�

�+ 1

)

��i+1

(1� �)

�

>

i

�+ 1

(1 + ��):

Multiplying both sides by

�+1

�

we get the inequality

(

�

� + 1

)

��i

(1� �)

�

>

i

�

(1 + ��):
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Now sin
e (

�

�+1

)

��i

(1� �)

�

>

i+1

�+1

(1+ ��), and the latter is larger than

i

�

(1 + ��) for i < �, we have �nished the proof of the lemma.

We 
an start proving Lemma 17.

Proof. We will 
he
k the strong K�onig{Hall 
onditions.

� Let v 2 V (G

r

) be an arbitrary 
luster. Then jN(v; T )j(1��) � Æ

�

(1�

�)jT j, therefore it is larger than (1� Æ)jT j by Lemma 18.

� Let U

i

� V (G

r

) is a set of size greater than i(1� Æ)` for some 1 � i �

� � 2. From the minimum degree 
ondition of G

r

every i vertex will

have a 
ommon neighbor in U

i

. Now jN(U

i

; T )j(1��) � Æ

��i

(1��)jT j,

and by Lemma 18 the latter is larger than (i + 1)(1 � Æ), therefore

jN(U

i

; T )j(1� �) > (i+ 1)(1� Æ). Noti
e that by the above argument

we 
an jump up to jU

��2

j > (�� 1)(1� Æ)` (in 
ase i = �� 2).

� Assume that U � V (G

r

) with jU j = (� � 1)(1 � Æ)`. Then every

��1 vertex will have a 
ommon neighbor in U by the minimum degree


ondition of G

r

. Thus, jN(U; T )j � Æ(1� �)jT j.

� Assume that U � V (G

r

) with jU j = Æ(1 � �)`. We will estimate the

number of (� � 1){tuples having more than

1

�+1

` U{neighbors. First

of all, there are at least Æ(1� �)`Æ

��1

�

`

��1

�

edges going from U to the

set T

0

of (� � 1){tuples. We divide T

0

into two parts, T

0

1

and T

0

2

. In

T

0

1

all the tuples has at most (1� Æ)` neighbors in U , while in T

0

2

it is

possible that the tuples are 
onne
ted to all of U . Denote

jT

0

1

j

jT

0

j

by x,

then we will have the following inequality:

x(1� Æ) + (1� x)Æ(1� �) � Æ

�

(1� �):

That is, x �

(1��)(Æ�Æ

�

)

2Æ�1

. It 
an be shown dire
tly, that this expression

is less than 0:7 for � � 3 if � is small. Sin
e all the tuples of T

0

2

has

degree larger than (1� Æ)` to U , all of them with any other 
luster will

form a �-tuple whi
h is 
onne
ted to some U -
luster. This is enough

for us to 
on
lude that jN(U; T )j(1� �) > Æ`.

� Assume that U � V (G

r

) with jU j > Æ`. Now every �-tuple will have

a U -neighbor, ex
ept those having only one neighbor out of U . (This

is enough for the existen
e of a proportional mat
hing.)

� For proving the existen
e of a strong proportional mat
hing assume

that U � V (G

r

) with jU j = (1 � !)` (0 � ! < �). Sin
e every �-

tuple having more than one neighbor is 
onne
ted to this U , we have
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to 
onsider only the tuples with only one neighbor. Now jU j = !`, and


lusters from U are 
onne
ted to at most !`

�

`

�

�

tuples whi
h have one

neighbor. Hen
e, the proportion of tuples whi
h are not neighbors of

some U -
luster is at most �! < !. In other words, jN(U)j >

jU j

`

jT j for

any 0 � ! < �.

Now we are ready to present the pro
edure for assigning the verti
es in

B to G

r

-
lusters. We start with the verti
es in B � B

0

. First let L

i

= A

i

for 1 � i � `. Assume M denotes the mat
hing provided by Lemma 17

with respe
t to the graph F . For a 
luster V

t

, let fV

i

1

; : : : ; V

i

�

g be one of

the �-tuples mat
hed to it inM. We will assign the verti
es of (B � B

0

) \

Q(V

i

1

) \ : : : \ Q(V

i

�

) to the 
luster V

t

by adding them to the set L

t

. Using

Lemma 15, j(B�B

0

)\Q(V

i

1

)\ : : :\Q(V

i

�

)j is almost the same for all 
hoi
es

of �-tuples, whi
h in turn implies that the set L

t

for all V

t

2 G

r

will have

almost the same size after the distribution of B � B

0

. Also, note that the


onstru
tion of F (G

r

) and the stru
ture of the proportional mat
hing M

implies that if x 2 B � B

0

is assigned to L

t

then the N

H

(x)-verti
es are

assigned to neighboring 
lusters of V

t

.

The verti
es of B

0

will be mapped by the help of strong proportional

mat
hing, on the same way as we did for B�B

0

. The only di�eren
e is that

sin
e every �-tuple V

i

1

; : : : ; V

i

�

has

`

�


opies, the elements of Q(V

i

1

) \ : : : \

Q(V

i

�

) will be distributed randomly among these 
opies. It is easy to see

that the strong proportional mat
hing assigns B

0

-verti
es evenly - we refer

to Corollary 16.

We remark that there are other 
ases to 
onsider: e.g., some of B-verti
es


an have all their neighbors assigned to �� 1 
lusters. But it is easy to see

that those mat
hings are easy to �nd on
e the harder 
ases are dealt with.

Then mapping su
h B-verti
es 
an be done in a similar way as we did for

others.

4.3 Finishing the assignment

Now we have to make sure that all 
onditions of Lemma 5 are satis�ed.

Obviously, some of them are violated at this moment. E.g. C1 and C3, sin
e

so far we have not mapped any vertex to V

0

(L

0

is empty). Therefore, there

are more H-verti
es assigned to every non-ex
eptional 
luster than its size.

We will take 
are of these problems in separate subse
tions.
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4.3.1 Bad verti
es in G

Every vertex in a 
luster of a super-regular pair has big degree to the other


luster. Our edges inG

r

are regular pairs, some verti
es may have just a small

number of neighbors in the other 
luster (this number 
an be even zero). To

avoid problems whi
h 
an be 
aused by this, we are going to dis
ard some

verti
es from the 
lusters and put them into V

0

, this way C9 will be satis�ed.

Let M be the mat
hing provided by Lemma 17. For a �xed 
luster

V

t

2 V (G

r

) let T denote the set of �-tuples mat
hed to V

t

in M. We say

that v 2 V (G

r

) has small degree to a �-tuple, if v has less than (d � ")m

neighbors in one of the 
lusters 
omposing that tuple. Let us 
all a vertex

v 2 V

t

bad, if v has small degree to at least half of the �-tuples in T .

Lemma 19 No 
luster in G

r


an 
ontain more than 2�"m bad verti
es.

Proof. For a 
luster V

t

2 V (G

r

) whi
h is mat
hed to the �-tuples of T , let

fv

1

; : : : ; v

s

g denote the set of bad verti
es. If s > 2�"m then there should

be a tuple � 2 T to whi
h more than �"m verti
es of V

t

have small degree.

Thus to one of the 
lusters of this triplet there are more than "m verti
es

with degree less than (d� ")m, whi
h 
ontradi
ts the "-regularity 
ondition.

By removing the 2�"m bad verti
es from every 
luster, we 
an guarantee

that all of their remaining verti
es have big degrees to at least half of the

mat
hed triplets, and overall at most 2�"n bad verti
es will be added to V

0

.

4.3.2 Sele
ting the L

0

-verti
es

As we mentioned earlier, every 
luster has a surplus, that is, more H-verti
es

are assigned to them than the 
lustersize m. We will form L

0

by removing a

subset of B

0

verti
es from the L

i

sets, a
hieving that jL

i

j = m for 1 � i � `.

Let � : L

0

! V

0

be any bije
tive mapping. We need to ensure that the

assignment of L

0

to V

0

is 
onsistent with E(H); that is, for any x 2 L

0

, with

(x; y

1

); (x; y

2

); : : : ; (x; y

�

) 2 E(H), if v = �(x), y

1

2 L

i

1

; y

2

2 L

i

2

; : : : ; y

�

2

L

i

�

then deg

G

(v; V

i

1

); deg

G

(v; V

i

2

); : : : ; deg

G

(v; V

i

�

) are all at least 


1

m (
on-

dition C8). If this 
ondition does not hold for a pair (x; v), a swit
hing will

be performed. In the swit
hing operation we �rst pi
k a 
luster V

s

and then

lo
ate a vertex x

0

in L

s

su
h that (V

i

1

; V

s

); (V

i

2

; V

s

); : : : ; (V

i

�

; V

s

) are all edges

in E(G

r

). Furthermore, if (x

0

; y

0

1

); (x

0

; y

0

2

); : : : ; (x

0

; y

0

�

) 2 E(H) with y

0

1

2

L

i

0

1

; y

0

2

2 L

i

0

2

; : : : ; y

0

�

2 L

i

0

�

then deg

G

(v; V

i

0

1

); deg

G

(v; V

i

0

2

); : : : ; deg

G

(v; V

i

0

�

)

are all at least 
m. We will see that su
h x

0


an always be found among

those verti
es assigned by the strong proportional mat
hing.
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Lemma 20 For every x 2 L

0

there exists an x

0

as required above.

Proof. It is easy to see that any v 2 V

0

has degree less than 


1

m to at

most

1�Æ

1�


1

proportion of all 
lusters. Let V

s

be as above, then a simple


al
ulation shows that the number of 
lusters in its neighborhood for whi
h

v has large degree (� 


1

m) is at least (1 �

1

�

)(

��1

�+1

)`. (We re
all that 


1

=




1

(�).) Hen
e these 
lusters in the 
ommon neighborhood will span at least

(1�

1

�

)

�

(

��1

�+1

)

�

�

`

�

�

�-tuples. This expression is larger than

1

27

�

`

�

�

for � � 3.

Any �-tuple � will allo
ate ! verti
es by the help of the strong proportional

mat
hing. This means V

s

re
eives at least ! verti
es from every tuple whi
h

is 
onne
ted to it.

Letting 
 =

`

�

�

`

�

�

!, the number of those verti
es assigned to V

s

by the

strong proportional mat
hing determined by this

1

27

proportion of all �-tuples

is at least

1

27

�

`


. Now, sin
e the 
ommon neighborhood of V

i

1

; V

i

2

; : : : ; V

i

�


ontains at least (1 � Æ)` 
lusters, the number of verti
es assigned to them

by the strong proportional mat
hing is by far larger than jV

0

j. Hen
e we 
an

�nd an appropriate x

0

for any x easily.

Remark 3 It should be pointed out that we 
an perform this swit
hing pro
e-

dure in su
h a way that the neighbors of the swit
hed x

0

s are s
attered almost

evenly in a 
onstant proportion of the �-tuples, and so in a 
onstant pro-

portion of the 
lusters. Whenever we are looking for an x

0

, we pi
k V

s

�rst

among the possible (1� Æ)` 
lusters randomly, and then V

i

0

1

; V

i

0

2

; : : : ; V

i

0

�

ran-

domly among the �-tuples in the 
ommon neighborhood of the 
orresponding

V

0

-vertex and V

s

. It is easy to see that there is a 
onstant K su
h that no


luster will 
ontain more than K

jV

0

j

`

neighbors.

Note, that by the help of the above remark we have found an assignment

of H-verti
es whi
h satis�es all requirements of C1{C11. In the rest of the

paper we are going to prove that we will be able to �nd H-verti
es a

ording

to C10 and C11 so as to 
over the ex
eptional G-verti
es of Step 3 of the

embedding algorithm.

Lemma 21 In Step 3 for ea
h 1 � i � ` and v 2 E

i

we 
an �nd an unem-

bedded x 2 L(V

i

) to 
over v. This x 2 B

0

, and its neighbors are assigned to

su
h 
lusters to whi
h v has degree at least (d � ")m. Also, the (assigned,

but not embedded) neighbors of these xs are well spread among the 
lusters

of G

r

, no 
luster will have more than 2�"

00

m.

Proof. Denote the proportional mat
hing by M. For a 
luster V

i

let T

i

denote the set of �-tuples mat
hed to it inM. Re
all that we removed the
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bad verti
es from every 
luster (Lemma 19). Hen
e, at time 0 all the verti
es

had degree more than (d� ")m to at least half of the tuples in T

i

, i.e., to all


lusters of those �-tuples.

We are at time T

0

+ T

1

now, after embedding N

H

(L

0

) and the neighbor-

hood of the bu�er verti
es. Note that we have payed attention to embed

these H{verti
es as evenly as possible. Not just the neighbors of the bu�ers

are well spread, but N

H

(L

0

) as well. Hen
e, even at time T

0

+ T

1

every

vertex in the 
luster V

i

has degrees big enough to at least 50% of the tuples

of T

i

(here we used the fa
t that the number of bu�er verti
es is very small,

and N

H

(L

0

) is embedded randomly). The ex
eptional sets of the 
lusters

are small, as we showed in Lemma 9, hen
e, there are enough 
andidates to


hoose.

Now we prove that the 
overing of the G{verti
es 
an be done in su
h a

way, that the neighbors of the embedded verti
es will not 
on
entrate in any

of the 
lusters.

First we will show a simple and easy-to-analyze algorithm for the ideal


ase when every vertex in V

i

to be 
overed is 
onne
ted to all the �-tuples

of T

i

for all i. Then we will modify it for our more general setup.

The algorithm is as follows: We start by 
ompleting all the E

i

sets by

arbitrary V

i

-verti
es obtaining equal size sets. Consider the tuples of T

1

:

�

1

; : : : ; �

k

. Pi
k one-one unembedded vertex from B

0

whi
h is assigned by

these tuples, and 
over k E

1

-verti
es with those B

0

-verti
es. Then repeat it

for all T

i

. When we are ready, we have �nished one round. It is easy to

see that in one round we 
overed exa
tly k verti
es from ea
h ex
eptional

set, and be
ause all 
luster appears in the same number of tuples, after these


overings we have the same number of neighbors in every 
luster, this number

is then �k`. Iterating the rounds at the end we will arrive to the situation

when no E

i

-verti
es are left, and for every 
luster the embedded verti
es have

the same number of assigned neighbors, whi
h is �"

00

m.

Let us return to the assumptions of the lemma. The modi�ed algorithm

for the general 
ase will be di�erent in two points. We again start by 
om-

pleting the sets to the same size by adding arbitrary verti
es from the 
orre-

sponding 
luster . We take the tuples of the mat
hing one by one, as we did

previously. But we 
annot always �nd a vertex to be 
overed for a tuple. In

su
h a 
ase, we take the next tuple. Even so in every round at least half of

the tuples will assign a vertex whi
h will 
over a G-vertex, and the embed-

ded verti
es will have at most �k` assigned neighbors in a 
luster. Iterate

this pro
edure, and stop, when a set gets empty. If no ex
eptional verti
es

are left (verti
es from the original E

i

sets before adding other verti
es), the

algorithm stops. If not, then 
omplete the sets to have the same size, and

restart. Note, that now every ex
eptional set is at most half the size of the
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beginning. Hen
e, with O(logm) restarts no ex
eptional verti
es are left un-


overed. Sin
e between any two restarts the number of ex
eptional verti
es

is 
ut in half, and the \fastest de
reasing" set has speed at most twi
e that

of the slowest, we get no 
luster that will have more than 2�"

00

m embedded

neighbors.

Proof of Theorem 2 Sin
e by the help of Lemmas 13, 14 and Corollar-

ies 15, 16 we 
an distribute the A-verti
es, and then by Lemmas 17, 19, 20

and 21 we 
an provide that all 
onditions of Lemma 5 are satis�ed, we 
an

embed H to G, and thus Theorem 2 is proved.

Remark 4 We have made no attempt to optimize on �. Simple but tedious


al
ulation shows that � 
an be as large as

1

�

4

. On the other hand we think

that this is still not the right value for �.
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