
'$�

�

'$

Æ

��

I N F O R M A T I K


 	

� �

Improving Linear Programming

Approahes for the Steiner Tree

Problem

Ernst Althaus Tobias Polzin

Siavash Vahdati Daneshmand

MPI{I{2003{1{004 February 2003

FORSCHUNGSBERICHT RESEARCH REPORT

M A X - P L A N C K - I N S T I T U T

F

�

UR

I N F O R M A T I K

Stuhlsatzenhausweg 85 66123 Saarbr�uken Germany





Authors' Addresses

Ernst Althaus, Tobias Polzin

Max-Plank-Institut f�ur Informatik,

Stuhlsatzenhausweg 85

66123 Saarbr�uken, Germany

email: {althaus,polzin}�mpi-sb.mpg.de

Siavash Vahdati Daneshmand

Theoretishe Informatik, Universit�at Mannheim,

68131 Mannheim, Germany

email: vahdati�informatik.uni-mannheim.de



Abstrat

We present two theoretially interesting and empirially suessful tehniques

for improving the linear programming approahes, namely graph transfor-

mation and loal uts, in the ontext of the Steiner problem. We show the

impat of these tehniques on the solution of the largest benhmark instanes

ever solved.

Keywords

Steiner problem; Lower Bounds; Linear Programming; Loal Cuts



1 Introdution

In ombinatorial optimization many algorithms are based (expliitly or impliitly) on lin-

ear programming approahes. A typial appliation of linear programming to optimization

problems works as follows: First, the ombinatorial problem is reformulated as an integer

linear program. Then, some integrality onstraints are relaxed and one of the numerous

methods for solving (or approximating) a linear program is applied. For NP-hard op-

timization problems, any linear relaxation of polynomial size (and any polynomial time

solvable relaxation) is bound to have an integrality gap (unless P = NP). So the quality

of the underlying relaxation an have a deisive impat on the performane of the overall

algorithm. As a onsequene, methods for generating tight lower bounds are signi�ant

ontributions to elaborated algorithms for ombinatorial optimization problems, see for

example the long history of researh for the Traveling Salesman Problem (TSP) fousing

on linear programming [2, 3, 13, 14℄.

In this work, we improve the linear programming based tehniques for the Steiner tree

problem in networks, whih is the problem of onneting a given subset of the verties

of a weighted graph at minimum ost. It is a lassial NP-hard problem [11℄ with many

important appliations in network design in general and VLSI design in partiular. For

bakground information on this problem, see [5, 10℄.

For the Steiner problem, linear programming approahes are partiularly important,

sine the best known pratial algorithms for optimal solutions, for heuristi Steiner trees,

and for preproessing tehniques, whih redue the size of the problem instane without

hanging an optimal solution, all make frequent use of linear programming tehniques

[16, 17, 18, 19℄. Typial situations where linear programming is used are the omputation

of lower bounds in the ontext of an exat algorithm, bound-based redution tehniques

[16℄, and partitioning-based redution tehniques [17℄. Espeially for large and omplex

problem instanes, very small di�erenes in the integrality gap an ause an enormous

additional omputational e�ort in the ontext of an exat algorithm. Therefore, methods

for improving the quality of the lower bounds are very important.

In Setion 2, we give some de�nitions, inluding the direted ut relaxation, whih is

the basis for many linear programming approahes for the Steiner problem. Then, we will

present two approahes for improving the lower bound provided by this relaxation:

� In Setion 3, we introdue the \vertex splitting" tehnique: We identify loations in

the network that ontribute to the integrality gap and split up the deisive verties

in these loations. Thereby, we transform the problem instane into one that is

equivalent with respet to the integral solution, but the solution of the relaxation

may improve.

This idea is inspired by the olumn replaement tehniques that were introdued

by Balas and Padberg [4℄ and generalized by Haus et. al. [9℄ and Gentile et. al.

[8℄. In these and other papers a general tehnique for solving integer programs is

developed. However, these tehniques are mainly viewed as primal algorithms, and

extensions for ombinatorial optimization problems are presented for the Stable Set

problem only. Furthermore, these extensions are not yet part of a pratial algorithm

(the general integer programming tehniques have been applied suessfully). Thus,

1



we are the �rst to apply this basi idea in a pratial algorithm for a onrete

ombinatorial optimization problem.

� In Setion 4, we show how to adopt the \loal uts" approah, introdued by Apple-

gate, Bixby, Chv�atal, and Cook [3℄ in the ontext of the TSP: Additional onstraints

are generated using projetion, lifting and optimal solutions of subinstanes of the

problem. To apply this approah to the Steiner problem, we develop new shrinking

operations and separation tehniques.

In Setion 5, we embed these two approahes into our suessful algorithm for solving

Steiner tree problems and present some experimental results. Like many other elaborated

optimization pakages our program onsists of many parts (the soure ode has approxi-

mately 30000 instrutions, not inluding the LP-solver ode). Thus, this paper desribes

only a small part of the whole program. However, among other results, we will show

that this part is deisive for the solution of the problem instane d15112, whih is to our

knowledge the largest benhmark Steiner tree instane ever solved. Furthermore, we be-

lieve that these new tehniques are also interesting for other ombinatorial optimization

problems.

The other parts of the program pakage are desribed in a series of papers [16, 17, 18,

19℄. Note that there is no overlapping between these papers and the work presented here.

2 De�nitions

The Steiner problem in networks an be stated as follows (see [10℄ for details): Given an

(undireted, onneted) network G = (V;E; ) (with verties V = fv

1

; : : : ; v

n

g, edges E

and edge weights 

e

> 0 for all e 2 E) and a set R; ; 6= R � V , of required verties (or

terminals), �nd a minimum weight tree in G that spans R (a Steiner minimal tree). If

we want to stress that v

i

is a terminal, we will write z

i

instead of v

i

. We also look at a

reformulation of this problem using the (bi-)direted version of the graph, beause it yields

stronger relaxations: Given G = (V;E; ) and R, �nd a minimum weight arboresene in

~

G = (V;A; ) (A := f[v

i

; v

j

℄; [v

j

; v

i

℄ j (v

i

; v

j

) 2 Eg,  de�ned aordingly) with a terminal

(say z

1

) as the root that spans R

z

1

:= R n fz

1

g.

A ut in

~

G = (V;A; ) (or in G = (V;E; )) is de�ned as a partition C = fW;Wg of

V (; � W � V ;V = W

_

[W ). We use Æ

�

(W ) to denote the set of ars [v

i

; v

j

℄ 2 A with

v

i

2 W and v

j

2 W . For simpliity, we write Æ

�

(v

i

) instead of Æ

�

(fv

i

g). The sets Æ

+

(W )

and, for the undireted version, Æ(W ) are de�ned similarly.

In the integer programming formulations we use (binary) variables x

[v

i

;v

j

℄

for eah ar

[v

i

; v

j

℄ 2 A, indiating whether this ar is in the solution (x

[v

i

;v

j

℄

= 1) or not (x

[v

i

;v

j

℄

= 0).

For any B � A, x(B) is short for

P

a2B

x

a

.

For every integer program P , LP denotes the linear relaxation of P , and v(LP ) denotes

the value of an optimal solution for LP .

Other de�nitions an be found in [7, 10℄.

2



2.1 The Direted Cut Formulation

The direted ut formulation P

C

was stated in [24℄. An undireted version was already

introdued in [1℄, but the direted variant yields a stronger relaxation.

 � x ! min;

x(Æ

�

(W )) � 1 (z

1

62 W;R \W 6= ;); (1)

x 2 f0; 1g

jAj

: (2)

The onstraints (1) are alled Steiner ut onstraints. They guarantee that in any ar set

orresponding to a feasible solution, there is a path from z

1

to any other terminal.

There is a group of onstraints (see for example [12℄) that an make LP

C

stronger.

We all them ow-balane onstraints:

x(Æ

�

(v

i

)) � x(Æ

+

(v

i

)) (v

i

2 V nR): (3)

We denote the linear program that onsists of LP

C

and (3) by LP

C+FB

. In [15℄ we

gave a omprehensive overview on relaxations for the Steiner tree problem.

3 Graph Transformation: Vertex Splitting

In this setion, we desribe a new tehnique for e�etively improving the lower bound

orresponding to the direted ut relaxation by manipulating the underlying network.

z

1

v



z

1

v



v

j

z

4

z

2

z

3

z

4

z

3

z

2

v

b

v

b

v

a

v

a

v

a

j

v

b

j

v



j

Figure 1: Splitting of vertex v

j

. The �lled irles are terminals, z

1

is the root, all ars have

ost 1. An optimal Steiner arboresene has value 6 in eah network. In the left network

v(LP

C+FB

) is 5.5 (set the x-values of the dashed ars to 0.5 and of [v

j

; z

4

℄ to 1), but 6 in

the right network (again, set the x-values of the dashed ars and of [v

a

j

; z

4

℄ and [v

b

j

; z

4

℄ to

0.5). The di�erene is that in the left network, there is a situation that is alled \rejoining

of ows": Flows from z

1

to z

2

and from z

1

to z

3

enter v

j

on di�erent ars, but leave on

the same ar, so they are aounted in the x variables only one. Before splitting, the

x-value orresponding to the ar [v

j

; v



℄ is 0.5, after splitting the orresponding x-values

sum up to 1.

We use the property that in an optimal direted Steiner tree, eah vertex has in-degree

at most 1. Impliitly, we realize a ase distintion: If an ar [v

i

; v

j

℄ is in an optimal Steiner

3



tree, we know that other ars in Æ

�

(v

j

) annot be in the tree. The only neessary operation

to realize this ase distintion for the Steiner problem is the splitting of a vertex. A vertex

v

j

is replaed by several verties v

i

j

, one for eah ar [v

i

; v

j

℄ entering v

j

. Eah new vertex

v

i

j

has only one inoming ar [v

i

; v

i

j

℄, and essentially the same outgoing ars as v

j

. In

Figure 1, the splitting of vertex v

j

is depited. The explanation of the �gure also provides

some intuition how splitting an be useful. In Setion 3.3 we desribe how we identify

andidates for splitting.

The splitting operation is desribed formally by the pseudoode below. We maintain

an array orig that points for eah vertex in the transformed network to the vertex in

the original network that it derives from. Initially, orig[v

j

℄ = v

j

for all v

j

2 V . With

P (v

i

) we denote the longest ommon suÆx of all paths from z

1

to v

i

after every path is

translated bak to the original network. The intuition behind this de�nition is that if v

i

is in an optimal Steiner arboresene, P (v

i

) must also be in the arboresene after it is

translated into the original network. Note that the path P (v

i

) onsists of verties in the

original network and may ontain yles; in this ase, v

i

annot be part of an optimal

arboresene. In Figure 1, P (v

a

) onsists of v

a

and P (v

a

j

) is the path of length 1 from v

a

to v

j

. To ompute P (v

i

), one an reverse all ars and use breadth-�rst-searh. The main

purpose of using P (v

i

) is to avoid inserting unneessary ars. This an improve the value

of and the omputation times for the lower bound. It is also neessary for the proof of

termination in Setion 3.2.

For the ease of presentation, we assume that the root terminal z

1

has no inoming

ars, and that all other terminals have no outgoing ars. If this is not the ase, we simply

add opies of the terminals and onnet them with appropriate zero ost ars to the old

terminals.

SPLIT-VERTEX(G; v

j

;orig) : (assuming v

j

62 R)

1 forall [v

i

; v

j

℄ 2 Æ

�

(v

j

) :

2 if P (v

i

) ontains a yle or orig [v

j

℄ in P (v

i

) :

3 ontinue with next ar in Æ

�

(v

j

)

4 insert a new vertex v

i

j

into G, orig[v

i

j

℄ := orig [v

j

℄

5 insert an ar [v

i

; v

i

j

℄ with ost (v

i

; v

j

) into G

6 forall [v

j

; v

k

℄ 2 Æ

+

(v

j

) :

7 if orig[v

k

℄ not in P (v

i

) :

8 insert an ar [v

i

j

; v

k

℄ with ost (v

j

; v

k

) into G

9 delete v

j

10 delete all verties that are not reahable from z

1

3.1 Corretness

In this setion, we prove that the transformation is valid, i.e., it does not hange the value

of an optimal Steiner arboresene.

Lemma 1 Any optimal Steiner arboresene with root z

1

in the original network an be

transformed into a feasible Steiner arboresene with root z

1

in the transformed network

with the same ost and vie versa.

4



Proof We onsider one splitting operation on vertex v

j

2 V nR, transforming a network

G into G

0

. Repeating the argumentation extends the result to multiple splits. We use a

ondition (y) for a tree T denoting that for every v

k

; v

l

in T; it holds: orig[v

k

℄ = orig [v

l

℄,

v

k

= v

l

. Note that ondition (y) holds for an optimal Steiner arboresene in the original

network.

Let T be an optimal Steiner arboresene with root z

1

for G satisfying (y). If v

j

62 T ,

T is part of G

0

and we are done. If v

j

2 T , there is exatly one ar [v

i

; v

j

℄ 2 T . When

[v

i

; v

j

℄ is onsidered in the splitting, P (v

i

) is a subpath of the path from z

1

to v

i

in T after

it is translated to the original network. Together with (y) follows that neither orig [v

j

℄,

nor orig[v

k

℄ for any [v

j

; v

k

℄ 2 T is in P (v

i

). Therefore, all ars [v

j

; v

k

℄ 2 T an be replaed

by ars [v

i

j

; v

k

℄ and the ar [v

i

; v

j

℄ an be replaed by [v

i

; v

i

j

℄. The transformed T is part

of G

0

, onnets all terminals, has the same ost as T and satis�es ondition (y).

Now, let T

0

be an optimal Steiner arboresene for G

0

. Obviously, T

0

an be trans-

formed into a feasible solution T with no higher ost for G.

3.2 Termination

In this setion, we show that iterating the splitting operation will terminate.

Lemma 2 For all non-terminals v

j

, P (v

j

) is the ommon suÆx of all paths P (v

i

) ap-

pended by orig[v

j

℄ for all v

i

; [v

i

; v

j

℄ 2 Æ

�

(v

j

).

Proof As the Line 10 of SPLIT-VERTEX guarantees that there is always a path from

z

1

to v

j

, the laim follows diretly from the de�nition of P (v

j

).

Lemma 3 For any two non-terminals v

s

and v

t

; v

s

6= v

t

; P (v

s

) is not a suÆx of P (v

t

).

Proof Assume the lemma is not true. We hoose two verties v

s

and v

t

; v

s

6= v

t

; P (v

s

) is

a suÆx of P (v

t

) suh that the length of P (v

s

) is minimal. Obviously, orig [v

s

℄ = orig[v

t

℄.

Thus, v

s

and v

t

were inserted in some splits. After these splits, v

s

and v

t

have in-degree

1. Only splitting a vertex v

0

s

with [v

0

s

; v

s

℄ 2 Æ

�

(v

s

) an inrease the in-degree of v

s

, but

orig[v

0

s

℄ is the same for all [v

0

s

; v

s

℄ 2 Æ

�

(v

s

). Together with Lemma 2 for P (v

s

) follows that

P (v

s

) ontains at least two verties. As it is a suÆx of P (v

t

), this also holds for P (v

t

).

For any two verties v

0

s

; v

0

t

with [v

0

s

; v

s

℄ 2 Æ

�

(v

s

) and [v

0

t

; v

t

℄ 2 Æ

�

(v

t

) it holds that v

0

s

6= v

0

t

,

P (v

0

s

) is a suÆx of P (v

0

t

) and it is shorter than P (v

s

), a ontradition.

Lemma 4 After splitting a vertex v

j

with in-degree greater than 1, for any newly inserted

vertex v

i

j

it holds that P (v

i

j

) is longer than P (v

j

) was before the split.

Proof Assume that there is a newly inserted vertex v

a

j

suh that P (v

a

j

) is not longer

than P (v

j

). From Lemma 2 for P (v

a

j

) and P (v

j

) follows that P (v

a

j

) = P (v

a

) appended

by orig[v

j

℄ and that P (v

j

) is a suÆx of P (v

a

j

). Together with the assumption follows

P (v

j

) = P (v

a

j

). As v

j

had in-degree greater than 1 before the split, we know that there

was a vertex v

b

; v

b

6= v

a

; [v

b

; v

j

℄ 2 Æ

�

(v

j

). From Lemma 3 follows that P (v

a

) was not

a suÆx of P (v

b

). Thus, the ommon suÆx of P (v

a

) and P (v

b

) did not ontain P (v

a

).

Using Lemma 2 for P (v

j

), it follows that P (v

j

) did not ontain P (v

a

), a ontradition to

P (v

j

) = P (v

a

j

).

5



Lemma 5 Repeated splitting of verties with in-degree greater than 1 will stop with a

network in whih all non-terminals have in-degree 1. As a onsequene, there is exatly

one path from z

1

to v

i

for all non-terminals v

i

.

Proof As long as there is a non-terminal with in-degree greater than 1, we an split it,

whih will delete the vertex and possibly replae it by some verties with in-degree 1. We

only have to show that this proedure terminates, as a split may inrease the in-degree

of other verties.

If splitting a vertex v

j

deletes it without inserting any new vertex, we label v

j

as

invalid.

Now, we examine the hanges in the network as an arbitrary vertex v

j

with in-degree

greater than 1 is split. Let v

m

be any non-terminal after the split that was not newly

inserted. From the de�nition of P (v

m

) follows that P (v

m

) an only hange if some vertex

or ar is not inserted beause of the onditions in lines 2 and 7 of SPLIT-VERTEX and

some paths from z

1

to v

m

do not exist any longer. Sine there is sill a path from z

1

to

v

m

left, P (v

m

) an only beome longer, it may even visit some vertex twie (i.e., P (v

m

)

ontains a yle). In the latter ase, v

m

beomes invalid.

From Lemma 1 follows that a transformed optimal tree will always be ontained in

the urrent network, thus after at most jV j splits, there will be a split of a valid vertex. If

a split is performed on a valid vertex v

j

, at least one new vertex v

i

j

will be inserted. From

Lemma 4 follows that P (v

i

j

) is longer than P (v

j

) was before the split. But as P (v

i

j

) does

not ontain a yle (Line 2 of SPLIT-VERTEX ), its length is bounded by the number of

verties in the original network. Thus, the proedure terminates.

3.3 Implementation Issues

Of ourse, for a pratial appliation one does not want to split all verties, whih ould

blow up the network exponentially. In a utting plane algorithm one �rst adds violated

Steiner ut or ow-balane onstraints. They an be found by min-ut omputations

[16℄, respetively with a summation of the inoming and outgoing ars variables of non-

terminals. If no suh onstraint an be found, we searh for good andidates for the

splitting proedure, i.e., verties where more than one inoming ar and at least one

outgoing ar have an x-value greater than zero. After splitting these verties, the modi�ed

network will be used for the omputation of new onstraints, using the same algorithms

as before. To represent this transformation in the linear program, we add new variables

for the newly added ars, and additional onstraints that the x-values for all newly added

ars orresponding to an original ar [v

i

; v

j

℄ must sum up to x

[v

i

;v

j

℄

. Using this proedure

the onstraints alulated for the original network an still be used.

4 Projet, Separate, and Lift: Loal Cuts

Let S = (G;R) = (V;E; ; R) be an instane of the Steiner problem. Let ST (S) be

the set of all inidene vetors of Steiner trees of S and SG(S) = ST (S) + R

jEj

+

. We

all the elements of SG(S) the Steiner graphs of S. We onsider Steiner graphs, sine

Steiner graphs are invariant under the shrink operation (de�ned in Setion 4.1). Note that

6



l

1

l

2

Figure 2: The feasible integer solutions are marked as dots, the frational solution to

separate by the ross. If we projet the solutions to the line l

1

, we an obtain a valid

violated inequality and lift it bak to the original spae. If we projet to the line l

2

, the

frational solution falls into the onvex hull of the integer solutions and no suh inequality

an be found.

the values x

(v

i

;v

j

)

are not restrited to be integral or bounded. It is obvious that if the

objetive funtion is non-negative, there exists a minimum Steiner graph that is a Steiner

tree. Thus all verties of the polyhedron onv(SG(S)) are Steiner trees. Furthermore,

onv(SG(S)) is full dimensional if G is onneted.

From a high level view, loal uts an be desribed as follows. Assume we want to sep-

arate x

�

from onv(SG(S)). Using a linear mapping �, we projet the given point x

�

into

a small-dimensional vetor �(x

�

) and solve the separation problem over onv(�(SG(S))).

If we an �nd a violated inequality a � ~x � b that separates �(x

�

) from onv(�(SG(S))), we

know that the linear inequality a � �(x) � b separates x

�

from onv(SG(S)). The method

is illustrated in Figure 2.

To make this method work, we have to hoose � suh that

1. there is a good hane that �(x

�

) =2 onv(�(SG(S))) if x

�

=2 onv(SG(S)),

2. we an solve the separation problem over onv(�(SG(S))) eÆiently and

3. the inequalities a � �(x) � b are strong.

We hoose � in suh a way that for every solution x 2 SG(S) of our Steiner problem

instane S, the projeted �(x) is a Steiner graph of a small Steiner problem instane S

�

,

i.e., onv(�(SG(S))) = onv(SG(S

�

)) for an instane S

�

of the Steiner problem. Sine our

Steiner tree program pakage tends to be very eÆient for solving small Steiner problem

instanes, we an handle the separation problem, as we will see in Setion 4.2.

We use iterative shrinking to obtain the linear mappings. We review the well-known

onept of shrinking in the next setion. After that, we introdue our separation algorithm

for small Steiner graph instanes. So far, we always assumed that we are looking at the

undireted version of the Steiner problem, sine our separation algorithm is muh faster

for this variant. As seen above, the direted ut relaxation is stronger than the undireted

variant. In Setion 4.3, we disuss how we an use the direted formulation without solving

direted Steiner graph instanes in the separation algorithm.

7



4.1 Shrinking

We de�ne our linear mappings as an iterative appliation of the following simple, well-

known mapping, alled shrinking. For the Steiner problem, shrinking was indrodued by

Chopra and Rao [6℄.

Shrinking means to replae two verties v

a

and v

b

by a new vertex hv

a

; v

b

i and replae

edges (v

i

; v

a

) and (v

i

; v

b

) by an edge (v

i

; hv

a

; v

b

i) with value x

�

(v

i

;v

a

)

+ x

�

(v

i

;v

b

)

(We assume

x

�

(v

i

;v

j

)

= 0 if (v

i

; v

j

) =2 E). The new vertex hv

a

; v

b

i is in the set of terminals R if v

a

or

v

b

(or both) are in R. This informally de�nes the mapping � and the instane S

�

. Note

that for any inidene vetor of a Steiner graph for the original problem, the new vetor

is the inidene vetor of a Steiner graph in the redued problem. Furthermore, for every

Steiner graph ~x in S

�

there is a Steiner graph x 2 SG(S) suh that �(x) = ~x. Thus

onv(�(SG(S))) = onv(SG(S

�

)).

Note that if we iteratively shrink a set of verties W � V into one vertex hW i, the

obtained linear mapping is independent of the order in whih we apply the shrinks. We

denote the unique linear mapping whih shrinks a subset W � V into one vertex by �

W

:

We have developed onditions on x

�

under whih we an prove that �(x

�

) is not in

the onvex hull of SG(S

�

) if x

�

is not in the onvex hull of SG(S).

Lemma 6 Let x

�

� 0.

1. (edge of value 1): Let x

�

(v

a

;v

b

)

� 1 and W = fv

a

; v

b

g. x

�

2 onv(SG(S)), �

W

(x

�

) 2

onv(SG(S

�

W

)).

2. (non-terminal of degree 2): Let v

a

be in V n R and the verties (v

1

; : : : v

k

) in V

be ordered aording to their x

�

(�;v

a

)

value (in dereasing order). Furthermore, let

W = fv

a

; v

1

g. If x

�

(v

3

;v

a

)

= 0, then x

�

2 onv(SG(S)), �

W

(x

�

) 2 onv(SG(S

�

W

)).

3. (ut of value 1): Let W be suh that x

�

(Æ(W )) = 1 and ; 6= R \W 6= R. Let W =

V nW . x

�

2 onv(SG(S)), �

W

(x

�

) 2 onv(SG(S

�

W

))^�

W

(x

�

) 2 onv(SG(S

�

W

)).

4. (bionneted omponents): Let U;W � V and v

a

2 V be suh that U [W = V ,

U \W = fv

a

g and x

�

(v

k

;v

l

)

= 0 for all v

k

2 U nfv

a

g and v

l

2 W nfv

a

g. Furthermore,

let ; 6= R \W 6= R. x

�

2 onv(SG(S)) , �

U

(x

�

) 2 onv(SG(S

�

U

)) ^ �

W

(x

�

) 2

onv(SG(S

�

W

)).

5. (trionneted omponents): Let U;W � V and v

a

; v

b

2 V be suh that U [W =

V n fv

a

g, U \W = fv

b

g and x

�

(v

k

;v

l

)

= 0 for all v

k

2 U n fv

b

g and v

l

2 W n fv

b

g.

Let furthermore x

�

(Æ(v

a

)) = 1 and v

a

; v

b

2 R. x

�

2 onv(SG(S)) , �

U

(x

�

) 2

onv(SG(S

�

U

)) ^ �

W

(x

�

) 2 onv(SG(S

�

W

)).

Proof We already argued that if x

�

2 onv(SG(S)) then �(x

�

) 2 onv(SG(S

�

)) for every

linear mapping obtained by iterative shrinking independent of x

�

. Thus we only have to

show the reverse diretion of the laims, i.e., if �(x

�

) 2 onv(SG(S

�

)) (for the last three

laims, if both projetions are in the onvex hull) then x

�

2 onv(SG(S)).

It suÆes to prove the laims for the ase that x

�

is rational.

8



1. We an �nd a large integer N and, for 1 � i � N , inidene vetors of Steiner trees

~

t

i

in S

�

W

suh that N�

W

(x

�

) �

P

1�i�N

~

t

i

.

The idea is as follows: We will reate Steiner trees t

i;j

out of

~

t

i

by inluding the edge

(v

a

; v

b

) in every tree and for every edge (v

k

; hW i) in

~

t

i

we use either the edge (v

k

; v

a

)

or (v

k

; v

b

). The number of Steiner trees in whih we use a spei� edge (v

k

; v

a

) or

(v

k

; v

b

) is determined by the ratio between x

�

(v

k

;v

a

)

and x

�

(v

k

;v

b

)

.

Let M be a large integer suh that Mx

�

(v

k

;v

l

)

=�

W

(x

�

)

(v

k

;hW i)

is integral for every

v

k

2 V nW and v

l

2 W . We know that �

W

(x

�

)

(hW i;v

k

)

= x

�

(v

a

;v

k

)

+ x

�

(v

b

;v

k

)

for all

v

k

2 V nW . For every

~

t

i

and 1 � j �M we de�ne t

i;j

with

� t

i;j

(v

a

;v

b

)

= 1,

� t

i;j

(v

k

;v

l

)

=

~

t

i

(v

k

;v

l

)

for v

k

; v

l

2 V n fv

a

; v

b

g,

� for v

k

2 V n fv

a

; v

b

g we make a ase distintion:

If j �Mx

�

(v

a

;v

k

)

=�

W

(x

�

)

(hW i;v

k

)

: t

i;j

(v

a

;v

k

)

=

~

t

i

(hW i;v

k

)

; t

i;j

(v

b

;v

k

)

= 0,

otherwise: t

i;j

(v

a

;v

k

)

= 0; t

i;j

(v

b

;v

k

)

=

~

t

i

(hW i;v

k

)

:

As t

i;j

(v

a

;v

k

)

+ t

i;j

(v

b

;v

k

)

=

~

t

i

(hW i;v

k

)

, it an be veri�ed that NMx

�

�

P

1�i�N

P

1�j�M

t

i;j

.

It also follows that if

~

t

i

ontained a path from a vertex v

k

to v

hW i

, eah t

i;j

ontains

a path from v

k

to v

a

and to v

b

. As a onsequene, eah pair of terminals is onneted

in t

i;j

.

2. We an �nd a large integer N and, for 1 � i � N , inidene vetors of Steiner trees

~

t

i

in S

�

W

; suh that N�

W

(x

�

) �

P

1�i�N

~

t

i

.

The idea is as follows: We only need to onsider the ase that hW i is used in a tree

~

t

i

. Sine there are at most two edges with positive x

�

-values adjaent to v

a

, we an

replae all edges in the tree

~

t

i

adjaent to hW i (exept (v

2

; hW i)) by edges adjaent

to v

1

. Further, we have to take are of the edge (v

2

; hW i), if it is in

~

t

i

. In this

ase, we reate trees t

i;j

using either the edge (v

2

; v

1

) or the two edges (v

2

; v

a

) and

(v

a

; v

1

). Again the number of trees in whih we use the two alternatives is given by

the ratio of x

�

(v

2

;v

1

)

and x

�

(v

2

;v

a

)

.

Let M be a large integer suh that Mx

�

(v

2

;v

l

)

=�

W

(x

�

)

(v

2

;hW i)

is integral for v

l

2

fv

1

; v

a

g. For every

~

t

i

and 1 � j �M we de�ne t

i;j

with

� t

i;j

(v

k

;v

l

)

=

~

t

i

(v

k

;v

l

)

for every v

k

; v

l

2 V n fv

a

; v

1

g,

� t

i;j

(v

k

;v

1

)

=

~

t

i

(v

k

;hW i)

for v

k

2 V n fv

2

g,

� t

i;j

(v

k

;v

a

)

= 0 for v

k

2 V n fv

2

g,

� If j �Mx

�

(v

1

;v

2

)

=�

W

(x

�

)

(hW i;v

2

)

: t

i;j

(v

2

;v

1

)

=

~

t

i

(v

2

;hW i)

, t

i;j

(v

2

;v

a

)

= 0,

otherwise: t

i;j

(v

2

;v

1

)

= 0, t

i;j

(v

2

;v

a

)

=

~

t

i

(v

2

;hW i)

,

� t

i;j

(v

a

;v

1

)

= t

i;j

(v

2

;v

a

)

.

9



As x

�

(v

a

;v

1

)

� x

�

(v

a

;v

2

)

, it an be veri�ed that NMx

�

�

P

1�i�N

P

1�j�M

t

i;j

.

If there is an edge (v

k

; hW i) in

~

t

i

, then in eah t

i;j

there is either the edge (v

k

; v

1

)

or (in the ase that k = 2 and j is large enough) the two edges (v

k

; v

a

) and (v

1

; v

a

).

Thus t

i;j

is a Steiner tree.

3. We an �nd a large integer N and, for 1 � i � N , Steiner trees t

i

in S

�

W

and

Steiner trees

�

t

i

in S

�

W

suh that N�

W

(x

�

) �

P

1�i�N

t

i

and N�

W

(x

�

) �

P

1�i�N

�

t

i

.

Sine x

�

(Æ(W )) = 1, it follows that in eah tree t

i

there is exatly one edge in

Æ(hW i) and in eah tree

�

t

i

there is exatly one edge in Æ(hW i). For eah edge

(v

k

; hW i); v

k

2 W , there are N�

W

(x

�

)

(v

k

;hW i)

trees t

i

ontaining this edge. We

assign eah suh tree t

i

to one edge (v

k

; v

l

); v

l

2 W suh that there are Nx

�

(v

k

;v

l

)

trees

assigned to this edge. This is possible beause �

W

(x

�

)

(v

k

;hW i)

=

P

v

l

2W

x

�

(v

k

;v

l

)

. We

do the same for all trees

�

t

i

. Now, we join the trees t

a

nf(v

k

; hW i)g and

�

t

b

nf(v

l

; hW i)g

by an edge (v

k

; v

l

) to a new tree

^

t

i

if they are assigned to this edge.

It an be veri�ed that Nx

�

�

P

1�i�N

^

t

i

.

It remains to show that there is a path between eah pair of terminals z

1

; z

2

in eah

tree

^

t

i

, originating from t

a

and

�

t

b

, both assigned to an edge (v

k

; v

l

). If z

1

; z

2

2 W ,

they were onneted in t

a

and as t

a

ontained only one edge (v

k

; hW i), they are still

onneted in

^

t

i

. The ase z

1

; z

2

2 W is similar. For z

1

2 W; z

2

2 W , we an use the

path between z

1

and hW i in t

a

, the edge (v

k

; v

l

) and the path between hW i and z

2

in

�

t

b

.

4. We an �nd a large integer N and, for 1 � i � N , Steiner trees t

i

in S

�

W

and

Steiner trees s

i

in S

�

U

suh that N�

W

(x

�

) �

P

1�i�N

t

i

and N�

U

(x

�

) �

P

1�i�N

s

i

.

We join the trees t

i

with hW i replaed by v

a

and s

i

with hUi replaed by v

a

to a

new tree

^

t

i

.

It an be veri�ed that Nx

�

�

P

1�i�N

^

t

i

.

Sine

^

t

i

ontains the omplete Steiner trees t

i

and s

i

with the respetive shrunken

vertex replaed by v

a

, we know that

^

t

i

is a Steiner tree.

5. We an �nd a large integer N and, for 1 � i � N , Steiner trees t

i

in S

�

W

and

Steiner trees s

i

in S

�

U

suh that N�

W

(x

�

) �

P

1�i�N

t

i

and N�

U

(x

�

) �

P

1�i�N

s

i

.

Note that �

W

(x

�

)(Æ(v

a

)) = 1 and thus every t

i

has exatly one edge adjaent to

v

a

. Thus there are i

0

= N � N�

W

(x

�

)

(v

a

;hW i)

Steiner trees t

i

that do not use the

edge (v

a

; hW i). Let these be the Steiner trees 1 to i

0

. Analogously there are i

00

=

N �N�

U

(x

�

)

(v

a

;hUi)

Steiner trees s

i

that do not use the edge (v

a

; hUi). Let these be

the Steiner trees i

0

+ 1 to i

0

+ i

00

. First, we replae hW i and hUi by v

b

in all t

i

and

s

i

.

For i � i

0

we join t

i

and the subgraph s

i

n f(v

a

; hUi)g to

^

t

i

.

For i

0

< i � i

00

we join the subgraph t

i

n f(v

a

; hW i)g and s

i

to

^

t

i

.

Finally, for i > i

0

+ i

00

we join the subgraph t

i

n f(v

a

; hW i)g, the subgraph s

i

n

f(v

a

; hUi)g, and the edge (v

a

; v

b

) to

^

t

i

.

10



As

P

1�i�N

^

t

i

(v

a

;v

b

)

= N(�

W

(x

�

)

(v

a

;hW i)

+�

U

(x

�

)

(v

a

;hUi)

�1) = N(x

�

(Æ(v

a

))+x

�

(v

a

;v

b

)

�

1) = Nx

�

(v

a

;v

b

)

, it an be veri�ed that Nx

�

�

P

1�i�N

^

t

i

.

Finally, we show that all

^

t

i

are Steiner trees. If i � i

0

,

^

t

i

ontains the omplete Steiner

tree t

i

with hW i replaed by v

b

. Thus all terminals in U [fv

a

g are onneted. Sine

s

i

ontains (v

a

; hUi) and two subtrees onneting eah terminal inW nfv

b

g either to

v

a

or to v

b

and sine v

a

and v

b

are onneted in t

i

, we know that

^

t

i

is a Steiner tree.

A similar argument holds for i

0

< i � i

0

+ i

00

. For i > i

0

+ i

00

, we know that v

a

and

v

b

are onneted diretly by the edge (v

a

; v

b

) and every other terminal is onneted

either to v

a

or to v

b

. Thus

^

t

i

is a Steiner tree.

Applying these \exat" shrinks does not projet the solution of the urrent linear

program into the projeted onvex hull of all integer solutions, i.e., if the solution of

the urrent linear program has not reahed the value of the integer optimum, we an

�nd a valid, violated onstraint in the shrunken graphs. Unfortunately, in many ases

the graphs are still too large after applying these shrinks and we have to apply some

\heuristi" shrinks afterwards.

In the implementation, we use a parameter max-omponent-size, whih is initially

15. If the number of verties in a graph after applying all \exat" shrinks is not higher

than max-omponent-size, we start FIND-FACET (see Setion 4.2), otherwise, we start

a breadth-�rst-searh from di�erent starting positions, shrink everything exept the �rst

max-omponent-size verties visited by the BFS, try the \exat" shrinks again and start

FIND-FACET. If it turns out that we ould not �nd a valid, violated onstraint, we

inrease max-omponent-size. We also tried other \heuristi" shrinks by relaxing \exat"

shrinks, e.g., aepting minimum Steiner uts with value above 1, or edges that have an

x-value lose to 1. But we ould not ome up with a de�nitive onlusion whih shrinks

are best, and we believe that there is still room for improvement.

As we will see in the next setion, our separation algorithm �nds a faet of onv(SG(S

�

)).

As shown in Theorem 4.1 of [6℄, the lifted inequality is then a faet of onv(SG(S)).

4.2 Separation: Finding Faets

Assume we want to separate x

�

from onv(SG(S)). Note that we atually separate �(x

�

)

from onv(SG(S

�

)), but this problem an be solved with the same algorithm.

As we will see, the separation problem an be formulated as a linear program with a

row for every Steiner graph. Trying to solve this linear program using utting planes, we

have the problem that the number of Steiner graphs (ontrary to the ase of Steiner trees)

is in�nite and optimal Steiner graphs need not exist. Note that the same ompliation

arises when applying loal uts to the Traveling Salesman Problem.

The solution for the separation problem is muh simpler and more elegant for the

Steiner tree ase than for the Traveling Salesman ase. The key is the following Lemma,

a slight variation of Lemma 3.1.2 in [6℄.

Lemma 7 All faets of onv(SG(S)) di�erent from x

(v

a

;v

b

)

� 0 for an edge (v

a

; v

b

) 2 E

an be written in the form a � x � 1 with a � 0.

11



Thus, if x

�

=2 onv(SG(S)), we an �nd an inequality of the form a � x � 1, a � 0,

that separates x

�

from onv(SG(S)). Note that if a � 0, there is a Steiner tree t 2 SG(S)

minimizing a � t.

Thus an exat separation algorithm an be stated as follows (the name arises from the

fat that the algorithm will �nd a faet of onv(SG(S)), as we will see later).

FIND-FACET (G = (V;E); R; x

�

)

1 T := inidene vetor of a Steiner tree for G;R

2 repeat:

3 solve LP: minx

�

� �; T� � 1; � � 0 (basi solution)

4 if x

�

� � � 1 : return \x

�

2 onv(SG(S))"

5 �nd minimum Steiner tree t for G = (V;E; �); R

6 if t � � < 1 : add t as a new row to matrix T

7 else: return � � x � 1

The algorithm terminates, sine there are only a �nite number of Steiner trees in

ST (S) and as soon as the minimum Steiner tree t omputed in Line 5 is already in T , we

terminate beause � � t � 1 is an inequality of the linear program solved in Line 3.

Lemma 8 If FIND-FACET does not return an inequality, x

�

2 onv(SG(S)).

Proof Consider the dual of the linear program in Line 3: max

P

i

�

i

; T

T

� � x

�

, whih has

the optimal value x

�

� � � 1. We divide � by x

�

� �, with the onsequene that

P

i

�

i

= 1.

Now, T

T

� is a onvex ombination of Steiner trees and it still holds T

T

� � x

�

.

Lemma 9 If FIND-FACET returns an inequality � � x � 1, this inequality is a valid,

separating, and faet-de�ning inequality.

Proof The value of the last omputed minimum Steiner tree t is t � � � 1. Therefore, if

x 2 SG(S), the value an only be greater and it holds x � � � t � � � 1.

As x

�

� � < 1, the inequality is separating.

From the basi solution of the linear program, we an extrat jEj linearly independent

rows that are satis�ed with equality. For eah suh row of the form � � t � 1, we add

the tree t to a set S

�

and for eah row �

e

� 0, we add the edge e to a set S

�

. Note

that jS

�

j + jS

�

j = jEj and the inidene vetors orresponding to S

�

[ S

�

are linearly

independent.

There is at least one tree t

j

in S

�

. For eah edge e 2 S

�

we add to S

�

a new Steiner

graph t

k

that onsists of t

j

added by the edge e. Sine �

e

= 0 we know that � � t

k

= 1.

Sine the inidene vetors orresponding to S

�

[S

�

were linearly independent, replaing

e with the t

k

yields a new set of linearly independent vetors.

Repeating this proedure yields jEj linearly independent t

i

2 S

�

with � � t

i

= 1. Thus,

� � x � 1 is a faet.

As in [3℄, we an improve the running time of the algorithm by using the following

fat. If we know some valid inequalities a �x � b with a �x

�

= b then x

�

2 onv(SG(S)),

x

�

2 onv(SG(S) \ fx 2 R

jEj

j a � x = bg). Thus we an temporarily remove all edges

12



(v

i

; v

j

) with x

�

(v

i

;v

j

)

= 0, sine x

�

(v

i

;v

j

)

� 0 is a valid inequality. Call the resulting instane

S

0

. We use our algorithm to �nd a faet of onv(SG(S

0

)). We an use sequential lifting

to obtain a faet of onv(SG(S)). For details see [3℄ and Theorem 4.2 of [6℄.

4.3 Direted versus Undireted Formulations

For omputing the lower bounds, we fous on the direted ut formulation, beause its

relaxation is stronger than the undireted variant. However, in the loal ut separation

algorithm we want to solve undireted Steiner graph instanes, sine they an be solved

muh faster.

The solution is to use another linear mapping that maps ar-values of a bidireted

Steiner graph instane

~

S = (V;A; ; R) to edge-values of an undireted Steiner graph

instane S = (V;E; 

0

; R).

We de�ne S by E = f(v

i

; v

j

) j [v

i

; v

j

℄ 2 Ag and 

0

(v

i

;v

j

)

= 

[v

i

;v

j

℄

= 

[v

j

;v

i

℄

. For a vetor

x 2 R

jAj

we de�ne  (x) 2 R

jEj

by  (x)

(v

i

;v

j

)

= x

[v

i

;v

j

℄

+ x

[v

j

;v

i

℄

.

Lemma 10 x

�

2 onv(SG(

~

S)))  (x

�

) 2 onv(SG(S)).

�x 2 onv(SG(S))) 9x

�

2 onv(SG(

~

S)) with  (x

�

) = �x.

If  � x

�

is smaller than the ost of an optimal Steiner arboresene, then  (x

�

) =2

onv(SG(S)).

Proof Let z

1

be the root in the direted formulation. It suÆes to prove the laims for

the ase that x

�

is rational. We show the two laims in turn.

If x

�

2 onv(SG(

~

S)), we an �nd a large integer N and direted Steiner trees t

i

2

ST (

~

S) suh that Nx

�

�

P

1�i�N

t

i

. Clearly N (x

�

) �

P

1�i�N

 (t

i

). Furthermore,  (t

i

)

are Steiner graphs, sine eah direted path in t

i

from the root z

1

to a terminal z

k

gives

an undireted path between z

1

and z

k

in  (t

i

).

If �x 2 onv(SG(S)), we an �nd a large integer N and undireted Steiner trees t

i

2

ST (S) suh that N �x �

P

1�i�N

t

i

. Let

~

t

i

be the direted tree obtained by rooting t

i

at

z

1

. Clearly

~

t

i

is a direted Steiner tree and  (

~

t

i

) = t

i

. Let x

0

= N

�1

P

1�i�N

~

t

i

. We know

that x

0

2 onv(SG(

~

S)) and  (x

0

) � �x. Thus there exists x

�

� x

0

with x

�

2 onv(SG(

~

S))

and  (x

�

) = �x.

Note that we have de�ned the objetive funtion 

0

of the undireted Steiner graph

instane suh that 

0

�  (x) =  � x for all x 2 R

jAj

. Assume  (x

�

) 2 onv(SG(S)). We

know that there is x

0

2 onv(SG(

~

S)) with  (x

0

) =  (x

�

). Thus there is a Steiner tree

t 2 SG(

~

S) with  � t �  � x

0

= 

0

�  (x

0

) = 

0

�  (x

�

) =  � x

�

.

For lifting the undireted edges to direted ars, one an use the omputation of

optimal Steiner arboresenes. For the atual implementation, we used a faster lifting

using a lower bound to the value of an optimal Steiner arboresene, provided by the

fast algorithm DUAL-ASCENT [16, 24℄. For produing faets for the direted Steiner

problem, one ould ompute optimal Steiner arboresenes in the FIND-FACET algorithm

of Setion 4.2.

13



5 Some Experimental Results

In this setion, we present experimental results showing the impat of the methods de-

sribed before. In this paper we on�ne ourselves to the presentation of some highlights,

namely the largest benhmark instanes ever solved (Table 1). Experiments on smaller

instanes show that vertex splitting an also signi�antly improve the solution time (Ta-

ble 2). Note that in the TSP ontext, loal uts were helpful partiularly for the solution

of very large instanes.

We have hosen the approah of applying these tehniques together with the redution

methods [16℄, beause this is the way they are atually used in our program pakage.

Note that without the redutions, the impat of these tehniques would be even more

impressive, but then these instanes ould not be handled in reasonable time.

All results were obtained with a single-threaded run on a Sun�re 15000 with 900 MHz

SPARC III+ CPUs, using the operating system SunOS 5.9. We used the GNU g++

2.95.3 ompiler with the -O4 ag and the LP-solver CPLEX version 8.0.

Instane Orig. Size Red. Red. Size LP

C+FB

+ vertex splitting + loal uts

jV j jRj time jV j jRj val time val time val time

d15112 51886 15112 5h 22666 7465 1553831.5 20.4h 1553995 21.9h 1553998 21.9h

es10000 27019 10000 988s 4061 1563 716141953.5 251s 716174280 284s |

fnl4461 17127 4461 995s 8483 2682 182330.8 5299s 182361 6353s |

lin37 38418 172 28h 2529 106 99554.5 1810s 99560 1860s |

Table 1: Results on large benhmark instanes. In all ases, the lower bound reahed the value

of the integer optimum (and a tree with the same value was found). A dash means that the

instane was already solved to optimality without loal uts. For the instane d15112, we used

the program pakage GeoSteiner-3.1 [23℄ to translate the TSPLIB [20℄ instane into an instane

of the Steiner problem in networks with retilinear metri. No benhmark instane of this size

has been solved before. The SteinLib [21℄ instanes es10000 and fnl4461 were obtained in the

same way. Warme et. al. solved the es10000 instane using the MSTH-approah [22℄ and

loal uts. They needed months of pu time. The instane fnl4461 was the largest previously

unsolved geometri instane in SteinLib. The SteinLib instane lin37 originates from some VLSI-

layout problem, is not geometri, and was not solved by other authors. Without lower bound

improvement tehniques, the solution of the instanes would take muh longer (or was not even

possible in ase of d15112). The number of vertex splits varied between 8 (lin37), 21 (es10000),

173 (fnl4461) and 321 (d15112). For d15112 only one additional loal ut omputation was

neessary.

6 Conluding Remarks

We presented two theoretially interesting and empirially suessful approahes for im-

proving lower bounds for the Steiner tree problem: vertex splitting and loal uts. Vertex

splitting is a new tehnique and improves the lower bounds muh faster than the loal ut

method, but the loal ut method has the potential of produing tighter bounds. Vertex

splitting, although inspired by a general approah (see Setion 1), is not diretly transfer-

able to other problems, while loal uts are a more general paradigm. On the other hand,

the appliation needs some e�ort, e.g., developing proofs for shrinks and implementation

using exat arithmeti. A ruial point is the development of heuristi shrinks, where a lot

14



instane LP

C+FB

LP

C+FB

LP

C+FB

+ vertex splitting + loal uts

es1000fst01 23.8 13.7 21.8

es1000fst02 34.4 33.5 33.5

es1000fst03 9.5 9.5 9.4

es1000fst04 15.1 13.7 15.4

es1000fst05 11.4 11.3 11.3

es1000fst06 41.8 20.2 516.2

es1000fst07 5.7 5.7 5.7

es1000fst08 22.2 17.7 17.5

es1000fst09 17.5 14.5 18.6

es1000fst10 5.5 5.6 5.6

es1000fst11 18.9 18.9 18.6

es1000fst12 23.9 19.0 19.4

es1000fst13 6.5 6.5 6.5

es1000fst14 23.9 16.4 65.9

es1000fst15 13.7 13.9 13.7

Average: 18.3 14.7 51.9

Table 2: Average times for optimal solution of instanes of the instane group ES1000FST,

using our program pakage for Steiner trees with di�erent variants of lower bound omputation.

For eah instane and eah variant the numbers give the average times of 5 runs. Note that using

loal uts may slow down the solution, as in some ases the bound-based redution tehniques

solve the instane faster using weaker but faster bounds. In the TSP ontext loal uts were

applied suessfully only on large instanes with long solution times. Looking at the results

for eah instane one an see that enabling vertex splitting never deteriorates the running time

signi�antly, but sometimes improves it by 50%. For those instanes where vertex splitting

had a visible impat, there have been 7.6 vertex splits on the average. If loal uts had a

visible impat, on the average 28.5 suessful and 229.2 unsuessful FIND-FACET alls were

performed. Adding loal uts to vertex splitting did not hange the empirial results as in the

relevant ases LP

C+FB

+vertex splitting was strong enough to solve the instanes.

of intuition omes into play and we believe that there is room for improvement. Although

the loal ut method was originally developed for the Traveling Salesman Problem, its

appliation is muh learer for the Steiner tree problem.

Both methods are partiularly suessful if there are some loal de�ienies in the

linear programming solution. On onstruted pathologial instanes the lower bounds are

still improved signi�antly, but the progress is not fast enough to solve suh instanes

eÆiently.

Another interesting observation is that the power of the vertex splitting approah an

be improved by looking at multiple roots simultaneously. In fat, we do not know any

instane where repeated vertex splittings would not bring the lower bound to the integer

optimum if multiple roots are used. It remains an open problem to �nd out if this is

always the ase.

15



Referenes

[1℄ Y. P. Aneja. An integer linear programming approah to the Steiner problem in

graphs. Networks, 10:167{178, 1980.

[2℄ D. Applegate, R. Bixby, V. Chv�atal, and W. Cook. Finding uts in the TSP (A pre-

liminary report). Tehnial report, Center for Disrete Mathematis and Theoretial

Computer Siene, Rutgers University, Pisataway, NJ, 1995.

[3℄ D. Applegate, R. Bixby, V. Chv�atal, and W. Cook. TSP uts whih do not onform to

the template paradigm. In Mihael J�unger and Denis Naddef, editors, Computational

Combinatorial Optimization, volume 2241 of Leture Notes in Computer Siene.

Springer, 2001.

[4℄ E. Balas and M. Padberg. On the set-overing problem: II. An algorithm for set

partitioning. Operations Researh, 23:74{90, 1975.

[5℄ X. Cheng and D.-Z. Du, editors. Steiner Trees in Industry, volume 11 of Combina-

torial Optimization. Kluwer Aademi Publishers, Dordreht, 2001.

[6℄ S. Chopra and M. R. Rao. The Steiner tree problem I: Formulations, ompositions

and extension of faets. Mathematial Programming, pages 209{229, 1994.

[7℄ T. H. Cormen, C. E. Leiserson, and R. L. Rivest. Introdution to Algorithms. MIT

Press, 1990.

[8℄ C. Gentile, U.-U. Haus, M. K�oppe, G. Rinaldi, and R.Weismantel. A primal approah

to the stable set problem. In R. M�ohring and R. Raman, editors, Algorithms - ESA

2002, volume 2461 of Leture Notes in Computer Siene, pages 525{537, Rom, Italy,

2002. Springer.

[9℄ U.-U. Haus, M. K�oppe, and R. Weismantel. The integral basis method for integer

programming. Mathematial Methods of Operations Researh, 53(3):353{361, 2001.

[10℄ F. K. Hwang, D. S. Rihards, and P. Winter. The Steiner Tree Problem, volume 53

of Annals of Disrete Mathematis. North-Holland, Amsterdam, 1992.

[11℄ R. M. Karp. Reduibility among ombinatorial problems. In R. E. Miller and J. W.

Thather, editors, Complexity of Computer Computations, pages 85{103. Plenum

Press, New York, 1972.

[12℄ T. Koh and A. Martin. Solving Steiner tree problems in graphs to optimality.

Networks, 32:207{232, 1998.

[13℄ D. Naddef and S. Thienel. EÆient separation routines for the symmetri traveling

salesman problem i: general tools and omb separation. Mathematial Programming,

92(2):237{255, 2002.

[14℄ D. Naddef and S. Thienel. EÆient separation routines for the symmetri traveling

salesman problem ii: separating multi handle inequalities. Mathematial Program-

ming, 92(2):257{283, 2002.

16



[15℄ T. Polzin and S. Vahdati Daneshmand. A omparison of Steiner tree relaxations.

Disrete Applied Mathematis, 112:241{261, 2001.

[16℄ T. Polzin and S. Vahdati Daneshmand. Improved algorithms for the Steiner problem

in networks. Disrete Applied Mathematis, 112:263{300, 2001.

[17℄ T. Polzin and S. Vahdati Daneshmand. Partitioning tehniques for the Steiner

problem. Researh Report MPI-I-2001-1-006, Max-Plank-Institut f�ur Informatik,

Stuhlsatzenhausweg 85, 66123 Saarbr�uken, Germany, 2001.

[18℄ T. Polzin and S. Vahdati Daneshmand. Extending redution tehniques for the

steiner tree problem. In R. M�ohring and R. Raman, editors, Algorithms - ESA 2002,

volume 2461 of Leture Notes in Computer Siene, pages 795{807, Rom, Italy, 2002.

Springer.

[19℄ T. Polzin and S. Vahdati Daneshmand. On Steiner trees and minimum spanning

trees in hypergraphs. Operations Researh Letters, 31, 2003.

[20℄ G. Reinelt. TSPLIB | a traveling salesman problem library. ORSA Journal on

Computing, 3:376 { 384, 1991.

[21℄ SteinLib. http://elib.zib.de/steinlib, 1997. T. Koh, A. Martin, and S. Vo�.

[22℄ D. M. Warme, P. Winter, and M. Zahariasen. Exat algorithms for plane Steiner tree

problems: A omputational study. In D-Z. Du, J. M. Smith, and J. H. Rubinstein,

editors, Advanes in Steiner Trees, pages 81{116. Kluwer Aademi Publishers, 2000.

[23℄ D. M. Warme, P. Winter, and M. Zahariasen. GeoSteiner 3.1. http://www.diku.

dk/geosteiner/, 2001.

[24℄ R. T. Wong. A dual asent approah for Steiner tree problems on a direted graph.

Mathematial Programming, 28:271{287, 1984.

17



���

�

��

k

I N F O R M A T I K

Below you �nd a list of the most reent tehnial reports of the Max-Plank-Institut f�ur Informatik. They

are available by anonymous ftp from ftp.mpi-sb.mpg.de under the diretory pub/papers/reports. Most

of the reports are also aessible via WWW using the URL http://www.mpi-sb.mpg.de. If you have any

questions onerning ftp or WWW aess, please ontat reports�mpi-sb.mpg.de. Paper opies (whih

are not neessarily free of harge) an be ordered either by regular mail or by e-mail at the address below.

Max-Plank-Institut f�ur Informatik

Library

attn. Anja Beker

Stuhlsatzenhausweg 85

66123 Saarbr�uken

GERMANY

e-mail: library�mpi-sb.mpg.de

MPI-I-2003-NWG2-002 F. Eisenbrand Fast integer programming in �xed dimension

MPI-I-2003-NWG2-001 L.S. Chandran, C.R. Subramanian Girth and Treewidth

MPI-I-2003-2-001 P. Maier Compositional Cirular Assume-Guarantee Rules

Cannot Be Sound And Complete

MPI-I-2003-1-002 P. Krysta, P. Sanders, B. Vking Sheduling and TraÆ Alloation for Tasks with

Bounded Splittability

MPI-I-2003-1-001 P. Sanders, R. Dementiev Asynhronous Parallel Disk Sorting

MPI-I-2002-4-002 F. Drago, W. Martens,

K. Myszkowski, H. Seidel

Pereptual Evaluation of Tone Mapping Operators with

Regard to Similarity and Preferene

MPI-I-2002-4-001 M. Goesele, J. Kautz, J. Lang,

H.P.A. Lensh, H. Seidel

Tutorial Notes ACM SM 02 A Framework for the

Aquisition, Proessing and Interative Display of High

Quality 3D Models

MPI-I-2002-2-008 W. Charatonik, J. Talbot Atomi Set Constraints with Projetion

MPI-I-2002-2-007 W. Charatonik, H. Ganzinger Symposium on the E�etiveness of Logi in Computer

Siene in Honour of Moshe Vardi

MPI-I-2002-1-008 P. Sanders, J.L. Tr� The Fator Algorithm for All-to-all Communiation on

Clusters of SMP Nodes

MPI-I-2002-1-005 M. Hoefer Performane of heuristi and approximation algorithms

for the unapaitated faility loation problem

MPI-I-2002-1-004 S. Hert, T. Polzin, L. Kettner,

G. Shfer

Exp Lab A Tool Set for Computational Experiments

MPI-I-2002-1-003 I. Katriel, P. Sanders, J.L. Tr� A Pratial Minimum Sanning Tree Algorithm Using

the Cyle Property

MPI-I-2002-1-002 F. Grandoni Inrementally maintaining the number of l-liques

MPI-I-2002-1-001 T. Polzin, S. Vahdati Using (sub)graphs of small width for solving the Steiner

problem

MPI-I-2001-4-005 H.P.A. Lensh, M. Goesele, H. Seidel A Framework for the Aquisition, Proessing and

Interative Display of High Quality 3D Models

MPI-I-2001-4-004 S.W. Choi, H. Seidel Linear One-sided Stability of MAT for Weakly Injetive

Domain

MPI-I-2001-4-003 K. Daubert, W. Heidrih, J. Kautz,

J. Dishler, H. Seidel

EÆient Light Transport Using Preomputed Visibility

MPI-I-2001-4-002 H.P.A. Lensh, J. Kautz, M. Goesele,

H. Seidel

A Framework for the Aquisition, Proessing,

Transmission, and Interative Display of High Quality

3D Models on the Web

MPI-I-2001-4-001 H.P.A. Lensh, J. Kautz, M. Goesele,

W. Heidrih, H. Seidel

Image-Based Reonstrution of Spatially Varying

Materials



MPI-I-2001-2-006 H. Nivelle, S. Shulz Proeeding of the Seond International Workshop of the

Implementation of Logis

MPI-I-2001-2-005 V. Sofronie-Stokkermans Resolution-based deision proedures for the universal

theory of some lasses of distributive latties with

operators

MPI-I-2001-2-004 H. de Nivelle Translation of Resolution Proofs into Higher Order

Natural Dedution using Type Theory

MPI-I-2001-2-003 S. Vorobyov Experiments with Iterative Improvement Algorithms on

Completely Unimodel Hyperubes

MPI-I-2001-2-002 P. Maier A Set-Theoreti Framework for Assume-Guarantee

Reasoning

MPI-I-2001-2-001 U. Waldmann Superposition and Chaining for Totally Ordered

Divisible Abelian Groups

MPI-I-2001-1-007 T. Polzin, S. Vahdati Extending Redution Tehniques for the Steiner Tree

Problem: A Combination of Alternative-and

Bound-Based Approahes

MPI-I-2001-1-006 T. Polzin, S. Vahdati Partitioning Tehniques for the Steiner Problem

MPI-I-2001-1-005 T. Polzin, S. Vahdati On Steiner Trees and Minimum Spanning Trees in

Hypergraphs

MPI-I-2001-1-004 S. Hert, M. Ho�mann, L. Kettner,

S. Pion, M. Seel

An Adaptable and Extensible Geometry Kernel

MPI-I-2001-1-003 M. Seel Implementation of Planar Nef Polyhedra

MPI-I-2001-1-002 U. Meyer Direted Single-Soure Shortest-Paths in Linear

Average-Case Time

MPI-I-2001-1-001 P. Krysta Approximating Minimum Size 1,2-Conneted Networks

MPI-I-2000-4-003 S.W. Choi, H. Seidel Hyperboli Hausdor� Distane for Medial Axis

Transform

MPI-I-2000-4-002 L.P. Kobbelt, S. Bisho�, K. Khler,

R. Shneider, M. Botsh, C. Rssl,

J. Vorsatz

Geometri Modeling Based on Polygonal Meshes

MPI-I-2000-4-001 J. Kautz, W. Heidrih, K. Daubert Bump Map Shadows for OpenGL Rendering

MPI-I-2000-2-001 F. Eisenbrand Short Vetors of Planar Latties Via Continued

Frations

MPI-I-2000-1-005 M. Seel, K. Mehlhorn In�maximal Frames: A Tehnique for Making Lines

Look Like Segments

MPI-I-2000-1-004 K. Mehlhorn, S. Shirra Generalized and improved onstrutive separation

bound for real algebrai expressions

MPI-I-2000-1-003 P. Fatourou Low-Contention Depth-First Sheduling of Parallel

Computations with Synhronization Variables

MPI-I-2000-1-002 R. Beier, J. Sibeyn A Powerful Heuristi for Telephone Gossiping

MPI-I-2000-1-001 E. Althaus, O. Kohlbaher, H. Lenhof,

P. Mller

A branh and ut algorithm for the optimal solution of

the side-hain plaement problem

MPI-I-1999-4-001 J. Haber, H. Seidel A Framework for Evaluating the Quality of Lossy Image

Compression

MPI-I-1999-3-005 T.A. Henzinger, J. Raskin,

P. Shobbens

Axioms for Real-Time Logis

MPI-I-1999-3-004 J. Raskin, P. Shobbens Proving a onjeture of Andreka on temporal logi

MPI-I-1999-3-003 T.A. Henzinger, J. Raskin,

P. Shobbens

Fully Deidable Logis, Automata and Classial

Theories for De�ning Regular Real-Time Languages

MPI-I-1999-3-002 J. Raskin, P. Shobbens The Logi of Event Cloks

MPI-I-1999-3-001 S. Vorobyov New Lower Bounds for the Expressiveness and the

Higher-Order Mathing Problem in the Simply Typed

Lambda Calulus

MPI-I-1999-2-008 A. Bokmayr, F. Eisenbrand Cutting Planes and the Elementary Closure in Fixed

Dimension

MPI-I-1999-2-007 G. Delzanno, J. Raskin Symboli Representation of Upward-losed Sets


