Deutsch
 
Hilfe Datenschutzhinweis Impressum
  DetailsucheBrowse

Datensatz

DATENSATZ AKTIONENEXPORT

Freigegeben

Bericht

Random knapsack in expected polynomial time

MPG-Autoren
/persons/resource/persons44108

Beier,  René
Algorithms and Complexity, MPI for Informatics, Max Planck Society;

/persons/resource/persons45673

Vöcking,  Berthold
Algorithms and Complexity, MPI for Informatics, Max Planck Society;

Externe Ressourcen
Es sind keine externen Ressourcen hinterlegt
Volltexte (beschränkter Zugriff)
Für Ihren IP-Bereich sind aktuell keine Volltexte freigegeben.
Volltexte (frei zugänglich)

2003-1-003
(beliebiger Volltext), 11KB

Ergänzendes Material (frei zugänglich)
Es sind keine frei zugänglichen Ergänzenden Materialien verfügbar
Zitation

Beier, R., & Vöcking, B.(2003). Random knapsack in expected polynomial time (MPI-I-2003-1-003). Saarbrücken: Max-Planck-Institut für Informatik.


Zitierlink: https://hdl.handle.net/11858/00-001M-0000-0014-6BBC-9
Zusammenfassung
In this paper, we present the first average-case analysis proving an expected polynomial running time for an exact algorithm for the 0/1 knapsack problem. In particular, we prove, for various input distributions, that the number of {\em dominating solutions\/} (i.e., Pareto-optimal knapsack fillings) to this problem is polynomially bounded in the number of available items. An algorithm by Nemhauser and Ullmann can enumerate these solutions very efficiently so that a polynomial upper bound on the number of dominating solutions implies an algorithm with expected polynomial running time. The random input model underlying our analysis is very general and not restricted to a particular input distribution. We assume adversarial weights and randomly drawn profits (or vice versa). Our analysis covers general probability distributions with finite mean, and, in its most general form, can even handle different probability distributions for the profits of different items. This feature enables us to study the effects of correlations between profits and weights. Our analysis confirms and explains practical studies showing that so-called strongly correlated instances are harder to solve than weakly correlated ones.