
'$�

�

'$

Æ

��

I N F O R M A T I K

 	

� �

Asyn
hronous Parallel Disk

Sorting

Roman Dementiev

1

and Peter Sanders

1

.

MPI{I{2003{1{001 February 2003

FORSCHUNGSBERICHT RESEARCH REPORT

M A X - P L A N C K - I N S T I T U T

F

�

UR

I N F O R M A T I K

Stuhlsatzenhausweg 85 66123 Saarbr�u
ken Germany

Authors' Addresses

Roman Dementiev, Peter Sanders

Stuhlsatzenhausweg 85

Max-Plan
k-Institut f�ur Informatik,

66123 Saarbr�u
ken, Germany

email: {dementiev,sanders}�mpi-sb.mpg.de

Abstra
t

We develop an algorithm for parallel disk sorting, whose I/O
ost approa
hes

the lower bound and that guarantees almost perfe
t overlap between I/O

and
omputation. Previous algorithms have either suboptimal I/O volume

or
annot guarantee that I/O and
omputations
an always be overlapped.

We give an eÆ
ient implementation that
an (at least)
ompete with the

best pra
ti
al implementations but gives additional performan
e guarantees.

For the experiments we have
on�gured a state of the art ma
hine that
an

sustain full bandwidth I/O with eight disks and is very
ost e�e
tive.

Keywords

external memory, sorting, large data sets, overlapping I/O and
omputation

1 Introdu
tion

Sorting is one of the most important operations performed on
omputers. In parti
ular, sort-

ing is a
ru
ial tool when it
omes to pro
essing large volumes of data in se
ondary memory.

Sin
e a single disk is mu
h
heaper than a high performan
e
omputer, a high performan
e

external sorting algorithm needs to be able to exploit many disks. Interestingly, parallel disk

sorting is a nontrivial problem. Asymptoti
ally I/O optimal deterministi
 algorithms [16, 17℄

are
ompli
ated and have rather large
onstant fa
tors. There are relatively simple random-

ized algorithms that approa
h the lower bound of 2N=DB log

M=B

N=B I/Os for sorting N

elements using D disks, fast memory of size M , and blo
ks of size B [11℄. These algorithms

are so
lose to algorithms used in pra
ti
e that theory and pra
ti
e seem to be in harmony

here. However, at least two issues remain before we
an
laim that the best randomized the-

oreti
al algorithms are also good in pra
ti
e: We need a high performan
e implementation

and we have to re
onsider the model of
omputation when talking about
onstant fa
tors.

Perhaps the main issue for sorting is that I/O and internal work are
ompletely separate

issues in the I/O model of Vitter and Shriver [28℄. In this paper we therefore design an

algorithm that overlaps I/O and
omputation and give an eÆ
ient implementation.

Perhaps the most widely used external sorting algorithm is k-way merge sort. In Se
-

tion 2, we explain how its best known randomized parallel disk version [11℄
an be adapted to

allow almost perfe
t overlapping of I/O and
omputation. The idea is straight-forward: Use

an additional overlap bu�er that de
ouples I/O and
omputation. We prove that k +�(D)

blo
ks bu�er size are ne
essary and suÆ
ient to allow almost perfe
t overlap. This is non-

trivial to prove be
ause we have to take into a

ount the intera
tions between input, disk

load balan
ing, merging, and output.

Whereas Se
tion 2 uses syn
hronized parallel disk I/O steps to obtain a simple
ost

model, Se
tion 3 explains how to implement the algorithm portably and eÆ
iently in a fully

asyn
hronous manner. The implementation is part of <stxxl>, a C++ library for external

memory algorithms that we are
urrently developing. <stxxl> implements algorithms and

data stru
tures from the standard template library STL for massive data sets. The I/O

layer | the lowest layer of <stxxl> | supports eÆ
ient asyn
hronous I/O that is
urrently

implemented using multi-threading and unbu�ered blo
king �le system I/O.

In Se
tion 4 we des
ribe how to a
hieve 375 MByte/s measured I/O bandwidth for

about 3000 ¤ using a dual-Xeon server board with multiple PCI busses, four
heap IDE

disk
ontrollers, and eight 80 GByte disks. This is about one third of the measured main

memory bandwidth of this system so that one
an
on
lude that on ma
hines
on�gured

for high bandwidth I/O, the I/O bandwidth is hardly a limiting fa
tor even if
ost is an

issue. Although the parti
ular hardware
on�guration is a very dated result, we believe that

a detailed des
ription exempli�es an approa
h to
on�gure hardware that will be valid for

some time to
ome.

Se
tion 5 summarizes the results of more than 1000 hours of experiments. <stxxl> is

up to three times faster than previous libraries sustaining an I/O bandwidth of up to 315

MByte/s overlapped with sorting. It turns out that optimizing the number of I/O steps using

the prefet
hing algorithm [11℄ does not optimize the overall exe
ution time. Rather, the best

results use an additional overlap bu�er. The blo
ks sizes needed for good performan
e are

1

several MBytes so that for large inputs, we enter the area where supposedly theoreti
al

algorithms outperform plain striping that in
reases the blo
k size requirement by another

fa
tor D. Perhaps the best way to
hara
terize the bottom line performan
e of our system

bought in July 2002 is to note that it sorts more
ost e�e
tively than the system that won

the April 2002 Penny

2

Sort Ben
hmark but it does that about 6.5 times

3

faster than this

low end system with two disks.

Related Work

The design of the <stxxl> library owes a lot to the previous external memory libraries

TPIE [26, 4℄, LEDA-SM[10℄, and JavaXXL [24, 25℄. <stxxl> adds emphasis on high perfor-

man
e, i.e., parallel disks, overlapping of I/O and
omputation, large inputs, and low internal

overhead. None of the above libraries expli
itly handles parallel disks and overlapping I/O

and
omputation relies largely on the operating system. We view this as problemati

4

for

leading edge performan
e be
ause prefet
hing and
a
hing of the operating system knows

less about the appli
ation, leaves less memory for sorting itself, and often requires additional

opies of the data. LEDA-SM, TPIE, and [9, 8℄ allow only 2GByte input size.

Barve and Vitter [6℄ implement a parallel disk algorithm [5℄ that
an be viewed as the

immediate an
estor of our algorithm. Innovations with respe
t to this work are: A di�er-

ent allo
ation strategy that enables better theoreti
al I/O bounds [12, 11℄; a prefet
hing

algorithm that optimizes I/O steps and never evi
ts data previously fet
hed; overlapping

of I/O and
omputation; a
ompletely asyn
hronous implementation that rea
ts
exibly to

u
tuations in disk speeds; and an implementation that sorts many GBytes and does not

have to arti�
ially limit internal memory size to obtain a nontrivial number of runs.

Chaudhry and Cormen [9, 8℄ give a sophisti
ated external memory implementation of

olumn sort that uses parallel disks and pro
essors. The algorithm also has the theoreti
al

advantage of being deterministi
. This theoreti
al advantage translates into the pra
ti
al

bene�t that disk a

ess patterns are very regular and easy to overlap with
omputation. A

drawba
k of
olumn sort is that even in its most sophisti
ated form, it needs about 50 % larger

I/O volume than multi-way merge sort (three versus two passes over the data). Another

drawba
k is that
olumn sort seems to need rather �ne grained I/O be
ause the maximum

possible blo
k size for about half of the I/Os is about N

1=3

. For example, for 2GByte of 128

byte re
ords this would be blo
ks of 32KByte whi
h is far from the optimal blo
k sizes that

are nowadays measured in MBytes (see Figure 13). A theoreti
al disadvantage is that the

maximal input size for whi
h the three-pass algorithm works is O

�

M

3=2

�

. For
omparison,

multi-way merge sort allows O(M

2

=B) elements for a two-pass algorithm and O(M

3

=B

2

)

for a three-pass algorithm. Column sort
an be applied to larger inputs using re
ursion but

this does not lead to asymptoti
ally optimal performan
e.

2

The
ost of the hardware is spread over three years. Then it is measured how mu
h data
an be sorted in

an interval of time that
osts one US-
ent. See http://resear
h.mi
rosoft.
om/bar
/sortben
hmark/.

3

We sort the same amount of 125 million 100 byte elements but use 8 byte keys rather than 10 byte keys.

We believe that for a tuned implementation and random keys this makes little di�eren
e.

4

We observed an extreme example on an earlier Solaris based experimental platform: The system dis-

arded
a
hed blo
ks more slowly than they
ame in from parallel disks. The result was that all the

appli
ation memory was swapped out in favor of
a
hed disk blo
ks that were not needed at all : : : .

2

Rajasekaran [21℄ gives another asymptoti
ally suboptimal deterministi
 parallel disk sort-

ing algorithm that runs in three passes for not too large inputs.

Prefet
h bu�ers for disk load balan
ing and overlapping of I/O and
omputation has

been intensively studied [20, 7, 3, 13, 12, 11℄. But we have not seen results that guarantee

overlapping of I/O and
omputation during parallel disks merging of arbitrary runs.

There are many good pra
ti
al implementations of sorting (e.g. [18, 1, 29, 19℄) that ad-

dress parallel disks, overlapping of I/O and
omputation, and low internal overhead. How-

ever, we are not aware of fast implementations that give theoreti
al performan
e guarantees

on a
hieving asymptoti
ally optimal I/O. Most pra
ti
al implementations use a form of strip-

ing that requiresO(N=DB log

�(M=DB)

N=B) I/Os rather than the optimalO(N=DB log

�(M=B)

N=B).

This di�eren
e is usually
onsidered insigni�
ant for pra
ti
al purposes. But on our system

we already have to go somewhat below the blo
k sizes that give best performan
e in Fig-

ure 13 if the input size is 128 GBytes. Another redu
tion of the blo
k size by a fa
tor of

eight
ould in
rease the run time signi�
antly. We are also not aware of high performan
e

implementations that guarantee overlap of I/O and
omputation during merging for inputs

su
h as the one des
ribed in the beginning of Se
tion 2.3.

On the other hand, many of the pra
ti
al merits of our implementation are at least

omparable with the best a
tual implementations: We are
lose to the peak performan
e of

our system and its pri
e performan
e ratio is better than anything we have seen. Our library

should also be easy to use sin
e it is based on the well known interfa
e of the STL.

2 Multi-way Merge Sort with Overlapped I/Os

This se
tion derives an parallel disk sorting algorithm that almost perfe
tly overlaps I/O

and
omputation. More formally, the following theorem is shown.

Theorem 1. Let L denote the time needed for a

essing one blo
k of size B on ea
h of D

disks. Let T

sort

(n) denote the time needed to sort n elements internally and `(k) the time

needed to produ
e one element of output in internal k-way merging. If I/O and
omputation

an be overlapped, N elements
an be sorted in time

max

�

k

0

T

sort

�

N

k

0

�

;

2LN

DB

�

+O

�

LM

DB

�

+

�

log

�(M=B)

k

0

�

�

max

�

2LN

(1� �)DB

; `(k)N

�

+O

�

Lmin

�

M

B

;

D

�

log

D

�

���

where k

0

= O(N=M) is the total number of runs, k = �(M=B) is the merging degree used,

and � = �(DB=M).

To help reading this
ompli
ated formula, one
an note that in all pra
ti
al
ases, k = k

0

,

�

log

�(M=B)

k

0

�

= 1, and � is some small
onstant. The �rst line
orresponds to a run formation

phase that reads bat
hes of size �(M) from disk, sorts them internally, and writes them

ba
k to disk. Se
tion 2.1 establishes that any internal sorting algorithm
an be perfe
tly

overlapped with I/O ex
ept for O(M=DB) I/Os at the beginning and at the end.

The se
ond line of the time bound
orresponds to merging the sorted runs into a single

sorted run. Sin
e this result is signi�
antly more diÆ
ult to establish, it is obtained in three

3

.

.

..

read buffers

.

.

..

k+O(D)
overlap buffers

merging

−ping disk scheduling

1

k

m
erg

e

2
D

 w
rite b

u
ffers

D blocks

m
erg

e b
u
ffers

overlap−

elements

O
(D

) p
refetch

 b
u
ffers

Figure 1: Data
ow through the di�erent kinds of bu�ers for overlapped parallel disk multi-

way merging. Data is moved in units of blo
ks ex
ept between the merger and the write

bu�er.

sort

read

write

1 2

2

2

1

1

3

3

3

4

4

4

k−1

k−1

k−1

k

k

k

...

...

...

compute

bound

case

I/O

bound

case

time

control flow in thread A

sort

read

write

1

1

1

2

2

3

2

3

3

4

4

4

...

...

...

k−1

k−1

k−1

k

k

k

control flow in thread B

Figure 2: Overlapping I/O and
omputation during run formation.

steps. Se
tion 2.2 des
ribes merging from the point of view of a merging thread that reads

blo
ks in an order predi
ted during run formation and writes individual elements. Ea
h

blo
k has to be read exa
tly on
e using one merge bu�er blo
k for ea
h run. Se
tion 2.3

explains how an I/O thread interfa
es this view with a I/O model that allows parallel a

ess

to D arbitrary blo
ks in an I/O step [2℄. The I/O thread is responsible for overlapping I/O

with
omputation. Using an overlap bu�er the algorithm a
hieves perfe
t overlapping of

I/O and
omputation up to a small overhead for �lling and emptying the merge bu�ers.

Se
tion 2.4 explains how a prefet
h bu�er
an be used to implement this parallel a

ess

model on D parallel disks. This emulation
osts a
onstant fa
tor
lose to one in I/O

overhead plus a logarithmi
 additive term. Figure 1 illustrates the data
ow between these

omponents of parallel disk multi-way merging.

4

2.1 Run Formation

There are many ways to overlap I/O and run formation. We start with a very simple method

that treats internal sorting as a bla
k box and hen
e
an use the fastest available internal

sorters.

5

Two threads
ooperate to build k runs of size M=2:

post a read request for runs 1 and 2

thread A: | thread B:

for r:=1 to k do | for r:=1 to k-2 do

wait until run r is read | wait until run r is written

sort run r | post a read request for run r+2

post a write request for run r |

Figure 2 illustrates how I/O and
omputation is overlapped by this algorithm. We omit the

proof of the following theorem that would essentially be a simple formalization of Figure 2.

Corollary 2. An input of size N
an be transformed into sorted runs of size �(M=2) in

time max(2T

sort

(

M

2

)

N

M

;

2LN

DB

)+O(

LM

DB

) where T

sort

(n) denotes the time for sorting n elements

internally and where L is the time needed for an I/O step.

A natural question arising from this dis
ussion is how long the runs
an be if we want to

overlap I/O and
omputation. Knuth [14, Se
tion 5.4.1℄ des
ribes an algorithm that a
hieves

average run length 2M . A re
ent implementation that even works for variable length re
ords

has been des
ribed by Larson and Graefe [15℄. However, this algorithm is not
a
he eÆ
ient

and requires an additional pointer for ea
h element in the input. We therefore outline a

relatively simple reformulation that is spa
e eÆ
ient even for small re
ords,
a
he eÆ
ient,

and provably allows overlapping of I/O and
omputation.

An more abstra
t formulation is a good starting point: The algorithm maintains two

priority queues Q and Q

0

. Initially,M elements are inserted into Q. The following operations

are repeated until Q is empty:

q := deleteMinimum(Q)

read a new element q

0

from the input

if q

0

< q then Q

0

:insert(q

0

) else Q:insert(q

0

)

write(q)

Then one run is �nished, and a new run is started based on the now M elements in Q

0

.

Although there are
a
he eÆ
ient priority queues [23℄, these have a too large worst
ase

a

ess time and we have to explain how to make the queues spa
e eÆ
ient. The following

representation solves both problems: Let � denote some small
onstant. We represent the

priority queues by
olle
tions of sorted sequen
es of size up to �M . Q additionally has a

bu�er priority queue Q

0

of size up to �M . Q

0

also has an insertion bu�er Q

0

0

that is an

unsorted bag of up to �M elements. Insertions into Q or Q

0

go into these bu�ers. When

they are �lled, they are sorted and added to the
olle
tion of sorted sequen
es for the

queues. This takes time T

sort

(�M). Sin
e the size of a run in
reases by �M whenever a

5

If this method has not been published yet, we would still guess that it is folklore.

5

new sorted sequen
e is added, the average number of sequen
es in a run is 2=�. Using a

binary heap for Q

0

and multi-way merging for Q, a deleteMinimum
an be implemented in

time O(1=�). The average
ase insertion time into the bu�ers is O(1) even if binary heaps

are used. Using O(max(DB; �M)) additional spa
e for bu�ering input and output, perfe
t

overlapping between I/O and
omputation is possible. The sorted sequen
es
an be made

spa
e eÆ
ient by representing them as a linked list of small blo
ks of elements. As soon as

the last element of a blo
k is removed, the blo
k is put into a free list that supplies empty

blo
ks when building new sorted sequen
es.

In the full paper we will des
ribe a further algorithm with similar properties that does not

require binary heaps and repla
es multi-way merging by distribution of elements to bu
kets

and hen
e might be faster for \well behaved" integer keys.

2.2 Multi-way Merging

We want to merge k sorted sequen
es
omprising N

0

elements stored in N

0

=B blo
ks (In

pra
ti
al situation, where a single merging phase suÆ
es, we will have N

0

= N). In ea
h

iteration the merging thread
hooses the smallest remaining element from the k sequen
es and

hands it over to the I/O thread. Predi
tion of read operations is based on the observation

that the merging thread need not a

ess a blo
k until its smallest element be
omes the

smallest unread element. We therefore re
ord the smallest keys of ea
h blo
k during run

formation. By merging the resulting k sequen
es of smallest elements, we
an produ
e a

sequen
e � of blo
k identi�ers that indi
ates the exa
t order in whi
h blo
ks are logi
ally

read by the merging thread. The overhead for produ
ing and storing the predi
tion data

stru
ture is negligible be
ause its size is a fa
tor at least B smaller than the input.

The predi
tion sequen
e � is used as follows. The merging thread maintains the invariant

that it always bu�ers the k �rst blo
ks in � that
ontain unsele
ted elements, i.e., initially,

the �rst k blo
ks from � are read into these merge bu�ers. When the last element of a merge

bu�er blo
k is sele
ted, the now empty bu�er frame is returned to the I/O thread and the

next blo
k in � is read.

The keys of the smallest elements in ea
h bu�er blo
k are kept in a tournament tree data

stru
ture [14℄ so that the
urrently smallest element
an be sele
ted in time O(log k). Hen
e,

the total internal work for merging is O(N

0

log k). To establish that this strategy
orre
tly

merges the sequen
es, we have to show that the smallest element not sele
ted yet resides in

a blo
k that is bu�ered.

Lemma 3. At any point during multi-way merging, the smallest element among the elements

in the k merge bu�er blo
ks is minimal among all elements not yet sele
ted by the merging

thread.

Proof. Suppose there is an unsele
ted element e that is smaller than all unsele
ted elements

in the merge bu�er blo
ks. Element e must be the smallest element of some blo
k b in some

sequen
e j su
h that none of the blo
ks of sequen
e j are in a merge bu�er blo
k. Sin
e

there are only k input sequen
es, there must be another sequen
e j

0

for whi
h at least two

blo
ks b

0

and b

00

are bu�ered. Call the �rst element of the se
ond blo
k e

00

. Sin
e b

00

was read

before b we must have e

00

� e. Furthermore, there must be an unsele
ted element e

0

in b

0

and

6

we have e

0

� e

00

� e. This
ontradi
ts the assumption that e is smaller than any bu�ered

unsele
ted element.

We have now de�ned multi-way merging from the point of view of the sorting algorithm.

Our approa
h to merging slightly deviates from previous approa
hes that assign ea
h merge

bu�er blo
k to one input sequen
e and where the last key in the previous blo
k de
ides

about the position of a blo
k in �. With respe
t to performan
e, both approa
hes should be

similar. Our approa
h is somewhat simpler however | the merging thread need not know

anything about the k input runs and how they are allo
ated. Its only input is the predi
tion

sequen
e �. In a sense, we are merging blo
ks and the order in � makes sure that the overall

e�e
t is that the input runs are merged. A
on
eptual advantage is that data within a blo
k

de
ides about when a blo
k is read.

2.3 Overlapping I/O and Merging

Although we
an predi
t the order in whi
h blo
ks are read, we
annot easily predi
t how

mu
h internal work is done between two reads. For example,
onsider k identi
al runs storing

the sequen
e
1

B�1

2 3

B�1

4 5

B�1

6
� � � . After initializing the merge bu�ers, the merging thread

will
onsume k(B � 1) values `1' before it posts another read. Then it will post one read

after sele
ting ea
h of the next k values (2). Then there will be a pause of another k(B � 1)

steps and another k reads qui
kly following ea
h other, et
. We explain how to overlap I/O

and
omputation despite of this irregularity using the I/O model of Aggarwal and Vitter

[2℄ that allows a

ess to D arbitrary blo
ks within one I/O step. To model overlapping of

I/O and
omputation, we assume that an I/O step takes time L and
an be done in parallel

with internal
omputations. We maintain an overlap bu�er that stores up to k + 3D blo
ks

in a FIFO manner. Whenever the overlap bu�er is nonempty, a read
an be served from

it without blo
king. Writing is implemented using a write bu�er FIFO with 2DB elements

apa
ity. An I/O thread inputs or outputs D blo
ks in time L using the following strategy:

Whenever no I/O is a
tive and at least DB elements are present in the write bu�er, an

output step is started. When no I/O is a
tive, less than D output blo
ks are available, and

at least D overlap bu�ers are unused, then the next D blo
ks from � are fet
hed into the

overlap bu�er.

The following theorem states that this simple strategy allows almost perfe
t overlapping

of I/O and
omputation.

Theorem 4. Merging k sorted sequen
es with a total of N

0

elements
an be implemented to

run in time

max

�

2LN

0

DB

; `N

0

�

+O

�

L

�

k

D

��

where ` is the time needed by the merging thread to produ
e one element of output and L is

the time needed to input or output D arbitrary blo
ks.

The most basi
 tool for the proof of Theorem 4, is the following suÆ
ient
ondition for

the availability of input for the merging thread.

7

blocking

r

DB−y DB 2DB−y 2DB

w

kB+2DB

kB+DB+y

kB+DB

kB+3DB

kB+2DB+y

fetch

output

Figure 3: Proof of Lemma 6.

Lemma 5. Whenever the overlap bu�er and merge bu�er together
ontain at least kB ele-

ments, then at least one element
an be merged without fet
hing additional blo
ks.

Proof. Suppose to the
ontrary that a new blo
k needs to be fet
hed. This
an only be the

ase if the overlap bu�er is empty. But this implies that all k merge bu�ers are full. This

ontradi
ts the assumption that no elements
an be merged.

The key to the proof of Theorem 4 are the following two lemmas that represent the I/O

bound respe
tively the
ompute bound
ase.

Lemma 6. If 2L � DB` then the I/O thread never blo
ks until all input blo
ks are fet
hed.

Proof. We des
ribe the state of the system by the pair (w; r) where w is the number of

elements in the write bu�er and r is the total number of elements in the overlap bu�er and

the merge bu�ers. Let y = bL=`
 denote the number of elements that
an be merged during

one I/O step. Sin
e 2L � DB`, we have y � DB=2. If y � DB, Lemma 5 implies that r

an never ex
eed kB + DB so that the overlap bu�er always has enough spa
e to fet
h D

additional blo
ks. The interesting
ase is DB=2 � y < DB.

We want to show that the system never enters a state where the I/O thread
an blo
k.

This
an only happen if w < DB and r > kB + 2DB be
ause otherwise we
an either

output or fet
h D blo
ks. The dark shaded area in Figure 3 de�nes this area. If r > kB + y

there are two sub-
ases: If w < DB, a fet
h step is exe
uted leading to the state transition

(w; r) ; (w + y; r + DB � y). If w � DB, an output step leads to the state transition

(w; r) ; (w � DB + y; r � y). With the help of Figure 3 it is now easy to see that only

the light shaded regions
an lead to a transition into the blo
king region. But there are no

transitions into the light shaded regions. This remains true for r � kB + y be
ause from

there we
annot get to a state with r > kB +DB.

Lemma 7. If 2L < DB` then after k=D + 1 I/O steps, the merging thread never blo
ks

until all elements are merged.

8

r

kB+2DB

kB+DB

kB+3DB

block I/O

kB+y

output

fetch

block merging

DB 2DB

w

2DB−y

kB

kB+2y

Figure 4: Proof of Lemma 7.

Proof. De�ne w, r, and y as in the proof of Lemma 6. Sin
e 2L < DB`, we have y < DB=2.

We want to show that the system never enters a state where the merging thread
an blo
k.

This
an only happen if w > 2DB � y or r < kB + y. Otherwise, we
an distinguish

three
ases illustrated in Figure 4. If the I/O thread is a
tive, we have the same state

transitions as in Lemma 6, (w; r); (w+ y; r+DB� y) if w < DB and r < kB+2DB and

(w; r); (w�DB+ y; r� y) if w � DB. Otherwise, the I/O thread blo
ks and the merging

thread moves elements to the write bu�er until there is room for fet
hing or writing another

D blo
ks. These transitions imply that the only region in the state spa
e that
an lead to a

state where the merging thread is blo
ked, is w � DB and r 2 [kB + y; kB + 2y). But this

region
annot be rea
hed from a state where the merging thread is a
tive.

Now it is easy to establish Theorem 4.

Proof. If 2L � DB`, Lemma 6 implies that after time LN

0

=DB, all blo
ks have been fet
hed.

It remains to merge O((k +D)B) elements from the merge and overlap bu�er and to output

them. This takes time O(`(k +D)B + L dk=De) = O

�

L

�

k

D

��

.

If 2L < DB`, Lemma 7 implies that after k=D + 1 I/O steps (in time O(L dk=De), the

merging thread will merge all elements in time `N

0

. Then at most two further I/O steps

suÆ
e to
ush the write bu�er. The overall time needed is `N

0

+ LO(dk=De).

2.4 Disk S
heduling

The I/Os for run formation and for the output of merging are perfe
tly balan
ed over all

disks if all sequen
es are striped over the disks, i.e., sequen
es are stored in blo
ks of B

elements ea
h and the blo
ks numbered i, : : : ,i+D� 1 in a sequen
e are stored on di�erent

disks for all i. In parti
ular, the original input and the �nal output of sorting
an use any

kind of striping.

9

The situation is more
ompli
ated during merging. Although ea
h run is striped over

the disks, the order � pres
ribed by the smallest elements in the runs
an lead to highly

irregular a

ess patterns. Vitter and Hut
hinson [27℄ have shown that Randomized Cy
li

Allo
ation (RC) makes the a

esses in � at least as well balan
ed as independent a

esses

to random disks. In RC allo
ation, the i-th blo
k of a run is stored on disk �(i mod D)

where � is a random permutation that is
hosen independently for ea
h run. In [11℄ it is

then shown that an optimal prefet
h order �

0

that uses a prefet
h bu�er of size m = �(D)

blo
ks
an be
omputed from � by simulating a simple optimal writing algorithm for the

reverse sequen
e �

R

. It is also shown that after a startup phase of min(k +

N

0

DB

;

m

D

logm)

input steps, (1�O

�

D

m

�

)D blo
ks from �
an be fet
hed per input step on the average (k is

the number of runs).

This is not quite suÆ
ient for our purposes be
ause overlapping I/O and
omputation

requires \uniform" progress during ea
h I/O step. But going ba
k to the probabilisti

ore of

the above analysis in [22℄ we see that the result
an be strengthened: In almost every input

step, (1�O(D=m))D blo
ks from �
an be fet
hed. The failure probability is exponentially

small in D.

The bottom line is that a prefet
h bu�er of m blo
ks allows us to emulate the model

assumed in Se
tion 2.3 ex
ept for a short startup phase, a redu
tion of the e�e
tive number

of disks by D=m, and possibly o

asional \hi

ups" that a�e
t a negligible fra
tion of the

I/O steps. We obtain the following re�ned version of Theorem 4

Corollary 8. For any � > 0 and D =
(1=�),

6

there is a prefet
h bu�er of size m = �(D=�)

su
h that merging k sorted sequen
es with a total of N

0

elements
an be implemented to run

in time

max

�

2LN

0

(1� �)DB

; `N

0

�

+O

�

L

�

k

D

+min

�

k;

1

�

log

D

�

���

where ` is the time needed by the merging thread to produ
e one element of output, L is the

time needed to input or output D arbitrary blo
ks, and m is the size of the prefet
h bu�er.

A further remark is ne
essary for the (unrealisti
)
ase of very large inputs where several

merging phases are needed. In that
ase, a prefet
hing sequen
e �

0

for all merging operations

in a phase should be
omputed. The additive term O

�

L(

k

D

+min(k;

1

�

log

D

�

))

�

then only

o

urs on
e per phase.

3 Implementation

Our implementation of sorting is part of a new C++ library <stxxl> for external
omput-

ing that is designed for maximum
ompatibility with the standard template library (STL).

Another goal of the library is very high performan
e with support for parallel disks and

overlapping of I/O and
omputation. We started with an implementation of sorting be
ause

it already tests many of these properties and sin
e an eÆ
ient sorter is a key ingredient for

many external algorithms.

6

We believe that the last restri
tion is an artifa
t of the analysis in [22, 11℄ but a formal proof that lifts

it might be mu
h more
ompli
ated without yielding mu
h additional insight.

10

The I/O layer of <stxxl> implements asyn
hronous parallel blo
k I/O. This level sup-

ports the minimum fun
tionality needed to abstra
t from details of the �le system and the

operating system. Our
urrent implementation runs on Linux using unbu�ered syn
hronous

�le system I/O and POSIX threads for supporting asyn
hrony: There is one thread for ea
h

disk whi
h maintains a read queue and a write queue. It arbitrates between these queues

using a strategy
hosen by the higher levels of the library. In our sorting algorithm, writing

is prioritized, i.e., when the thread returns from an I/O operation, it �rst
he
ks the write

queue and posts the next request if it is nonempty. Only if the write queue is empty it tries

the read queue. Later implementations might use
ompletely di�erent me
hanism like the

high performan
e asyn
hronous I/O supported by DAFS

7

.

Run Formation. We build runs of size
lose to M=2 but there are some di�eren
es to the

simple algorithm from Se
tion 2.1. Overlapping of I/O and
omputation is a
hieved using a

all-ba
k me
hanism supported by the I/O layer of <stxxl> rather than by multi-threading.

Thus, the sorter remains portable over di�erent operating systems with di�erent interfa
es

to threading.

To limit the memory bandwidth requirements for large elements with small key �elds, we

implement key sorting, i.e., after reading elements using DMA, we extra
t pairs (key; pointerToElement),

sort these pairs, and only then move elements in sorted order to write bu�ers from where

they are output using DMA.

Furthermore, we exploit random keys. We use two passes of MSD (most signi�
ant digit)

radix sort of the key-pointer pairs. The �rst pass uses the m most signi�
ant bits where m is

a tuning parameter depending on the size of the pro
essor
a
hes and of the TLB (translation

look-aside bu�er). This pass
onsists of a
ounting phase that determines bu
ket sizes and

a distribution phase that moves pairs. The
ounting phase is fused into a single loop with

pair extra
tion. The se
ond pass of radix sort uses a number of bits that brings us
losest to

an expe
ted bu
ket size of two. This two-pass algorithm is mu
h more
a
he eÆ
ient than a

one-pass radix sort.

8

The remaining bu
kets are sorted using a
omparison based algorithm:

Optimal straight line
ode for n � 4, insertion sort for n 2 f5::16g, and qui
ksort for n > 16.

Multi-way Merging. We have adapted the tuned multi-way merger from [23℄.

Overlapping I/O and Computation. We integrate the prefet
h bu�er and the overlap

bu�er to a read bu�er. We distribute the bu�er spa
e between the two purposes of minimizing

disk idle time and overlapping I/O and
omputation indire
tly by
omputing an optimal

prefet
h sequen
e for a smaller bu�er spa
e.

Asyn
hronous I/O. I/O is performed without any syn
hronization between the disks.

The prefet
her des
ribed in Se
tion 2.4
omputes a sequen
e �

0

of blo
ks indi
ating the

order in whi
h blo
ks should be fet
hed. As soon as a bu�er blo
k be
omes available for

prefet
hing, it is used to generate an asyn
hronous read request for the next blo
k in �

0

. All

I/O is implemented without super
uous
opying. Blo
ks are moved by DMA (dire
t memory

a

ess) dire
tly to user memory. A fet
hed blo
k then travels to the prefet
h/overlap bu�er

7

http://www.dafs
ollaborative.org/

8

On our system we get a fa
tor 3.8 speedup over one pass radix sort and a fa
tor 1.6 over STL's sort

whi
h in turn is faster than a hand tuned qui
ksort (for sorting 2

21

pairs storing a random four byte key

and a pointer).

11

and from there to a merge bu�er simply by passing a pointer. Similarly, when an element

is merged, it is dire
tly moved from the merge bu�er to the write bu�er and a blo
k of the

write bu�er is passed to the output queue of a disk simply by passing a pointer to the the

I/O layer of <stxxl> that then uses write to output the data using DMA.

4 Hardware

PCI−Busses

Controller

Channels

2x Xeon

2x64x66 Mb/s

4 Threads

E7500

1
2

8

400x64 Mb/s

MB/s
4x2x100

8x80
GBMB/s

Chipset

Intel

8x45

RAM

DDR

1 GB

Figure 5: Simpli�ed s
heme of our experimental I/O-platform.

Our starting point was the belief that the gap between theory and pra
ti
e in external

memory parallel disk sorting
an only be
losed by demonstrating
lose to peak performan
e

on state of the art hardware. For us and probably other groups this was a nontrivial problem.

When we started we had several year old parallel disk hardware with a fa
tor of ten lower

bandwidth than the state of the art. More re
ent alternatives were PCs with a 32bit 33MHz

PCI bus that are hopelessly limited in I/O bandwidth; a �le server that
ould not be used

for experiments be
ause it serves hundreds of resear
hers; and a high end
ompute server for

whi
h a mat
hing equipments with disks would have
ost a six digit amount of money.

We therefore de
ided to
on�gure a hardware platform for testing external memory algo-

rithms from s
rat
h. The ma
hine was bought in July 2002. The design obje
tives were high

bandwidth at low
ost, and the use of standard
omponents. The �rst
hallenge was to �nd

an a�ordable main-board that breaks out of the limitations of a 32bit 33MHz PCI bus. We

de
ided on a Supermi
ro SUPER P4DPE dual pro
essor board with two 2GHz Intel Xeon

pro
essors (512 KByte
a
he and 2 threads per pro
essor) at a
ost around 675+ 2� 415¤.

The board supports several independent 64bit PCI busses. Although we have not expli
-

itly parallelized the sorter yet, the se
ond pro
essor is probably useful be
ause it makes

overlapping of I/O and
omputation more e�e
tive. We bought 1GByte of RAM.

The next important design de
ision was to use IDE disks rather than SCSI disks be
ause

they have higher
apa
ity and similar I/O bandwidth than SCSI disks but are mu
h
heaper.

We de
ided on IBM 120GXP disks that have 80 GByte
apa
ity at 120 ¤ ea
h.There were

two diÆ
ulties to over
ome however. It turned out that 64bit
ontrollers are very expensive.

12

Fortunately it turned out that dual
hannel Promise 100 TX2
ontrollers are very
heap

(around 40 ¤ ea
h). They work with 32 bits and 66MHz. Four of them on two 66MHz PCI

busses are suÆ
ient to support eight disks at full bandwidth.

9

The se
ond problem was to �nd a
asing that allows to
onne
t eight IDE disks given

the limited
able length of the ATA standard. We
hoose a
asing that has the shape of a

double-bigtower. It is
heaper than a
omparable ra
k-mount
asing and works with shorter

disk
ables be
ause the motherboard in the middle. We also use round disk
ables that are

less bulky than the usual
at ones.

We installed Debian Linux with kernel version 2.4.20 on this ma
hine. Then we began

with basi
 performan
e tests. Originally we thought that disk a

ess via raw devi
es would

give maximal bandwidth. Interestingly, this was only true up to four disks. Beyond that,

the system started thrashing. We tra
ed this problem down to the fa
t that there is some

software intervention for ea
h
hunk of 512 bytes. Apparently, this overwhelms the operating

system for too many disks. Good performan
e is obtained using unbu�ered I/O in the ext2

�le system where �les are opened with the option O DIRECT and where addresses and blo
k

sizes are multiples of the virtual memory page size. Only then is it possible on PC hardware

to move data dire
tly from disk to user memory using DMA. We also de
reased the number

of inodes (blo
ks with meta-data) to redu
e �le system overhead.

With these measures we obtain an input bandwidth of up to 375 MByte/s on eight disks

using the outermost (fastest) zones

10

of the disks. This is 97 % of the peak bandwidth

spe
i�ed by IBM. It was possible to atta
h a ninth disk obtaining 418 MByte/s. Bandwidth

s
aling stopped with the tenth disk. Figure 5 outlines the
on�guration of our hardware.

The bottom line is that for a system that
osts three to four times as mu
h as a standard

PC with a single disk, we obtain eight times the I/O bandwidth. We believe that su
h a

system is a more likely
andidate for running appli
ations with massive data sets than an

ordinary PC and should therefore be preferred for performan
e studies of external memory

algorithms.

An interesting observation is, that measuring the main memory bandwidth with the

stream ben
hmark

11

we see 1200 MBytes/s. This implies that any external memory algo-

rithm that a

esses four bytes of main memory for ea
h byte of I/O may already be
ompute

bound.

5 Experiments

If not otherwise mentioned, we use random 32 bit integer keys to keep internal work limited.

Runs of size 256 MByte

12

are build using key sorting with an initial iteration of 10 bit MSD

9

In reality, in
ompatibilities between Linux and the
ontrollers for
ed us to use �ve
ontrollers in the

following
on�guration: three
ontrollers with one disk ea
h on PCI-bus 1, two
ontrollers with two disks

ea
h on PCI-busses 2 and 3, and one disk on the on-board
ontroller.

10

Modern disks store data at a roughly
onstant density so that the higher absolute speed of the outer

parts of the disk allow around twi
e as high bandwidth as the inner parts.

11

http://www.
s.virginia.edu/stream/

12

This leaves spa
e for two runs build in an overlapped way, bu�ers, operating system,
ode, and, for large

inputs, the fa
t that the
urrent implementation of the ext2 �le system needs 1 byte of internal memory for

13

radix sort. We
hoose blo
k sizes in su
h a way that a single merging phase using 512 MBytes

for all bu�ers suÆ
es. Input sizes are powers of two between 2 GByte and 128 GByte with

a default of 16 GByte

13

. When not otherwise stated, we use eight disks, 2 MByte blo
ks,

and the input is stored on the fastest zones. All programs are
ompiled with g++ version 3.2

and optimization level -O6.

0

100

200

300

400

500

600

700

800

16 32 64 128 256 512 1024

so
rt

 ti
m

e
[s

]

element size [byte]

LEDA-SM
TPIE
<stxxl> comparison based

Figure 6: Comparison of the single disk performan
e of <stxxl>, LEDA-SM, and TPIE.

To
ompare our
ode with previous implementations, we have to run them on the same

ma
hine be
ause te
hnologi
al development in re
ent years has been very fast. Unfortunately,

the implementations we
ould obtain, LEDA-SM [10℄ and TPIE [25℄, are limited to inputs

of size 2 GByte whi
h for our ma
hine is a rather small input. Figure 6
ompares the single

disk performan
e of the three libraries. Using the best blo
k size for ea
h library. The

at
urves for TPIE and <stxxl> indi
ate that both
odes are I/O bound even for small

element sizes. This is even true for the fully
omparison based version of <stxxl>. Still,

<stxxl> is signi�
antly faster than TPIE. This
ould be due to better overlapping of I/O and

omputation or due to higher bandwidth of the �le system
alls we use. <stxxl> sustains

an I/O bandwidth of 45.4 MByte/s whi
h is 95 % of the 48 MByte/s peak bandwidth of the

disk at their outermost zone. LEDA-SM is
ompute bound for small keys and has the same

performan
e as TPIE for large keys.

To get some kind of
omparison for parallel disks, we run the other
odes using Linux

Software-RAID 0.9 and 8� 128KByte stripes (larger stripes did not improve performan
e).

Here <stxxl> is between two and three times faster than TPIE and and sustains an I/O

bandwidth of 315 MByte/s for large elements. Mu
h of this advantage is lost when <stxxl>

also runs on the Software-RAID. Although we view as likely that the Software-RAID driver

ea
h KByte of disk spa
e a

essed via O DIRECT.

13

We have a few measurements with 256 GBytes but the problem with ext2 mentioned above starts to

distort the results for this input size.

14

26
30

40
50

75

100

200

300

400
500
616

16 32 64 128 256 512 1024

so
rt

 ti
m

e
[s

]

element size [byte]

LEDA-SM Soft-RAID
TPIE Soft-RAID
<stxxl> Soft-RAID
<stxxl>

Figure 7: Comparison of of <stxxl>, LEDA-SM, and TPIE for eight disks.

0

50

100

150

200

250

300

350

400

16 32 64 128 256 512 1024

tim
e

[s
]

element size [byte]

run formation
merging
I/O wait in merge phase
I/O wait in run formation phase

Figure 8: Dependen
e exe
ution time and I/O wait time on the element size.

an be improved, this performan
e di�eren
e might also be an indi
ation that treating disks

as independent devi
es is better than striping (as predi
ted by theory).

Figure 8 shows the dependen
e of performan
e on element size in more detail. For

element sizes � 64, the merging phase starts to wait for I/Os and hen
e is I/O bound. The

run formation phase only be
omes I/O bound for element sizes around 128. This indi
ates

areas for further optimization. For small elements, it should be better to repla
e key sorting

by sorters that always (or more often) move the entire elements. For example, we have

observed that the very simple loop that moves elements to the write bu�er when the key-

15

-7

-6

-5

-4

-3

-2

-1

0

0 20 40 60 80 100

di
ffe

re
nc

e
to

 n
ai

ve
 p

re
fe

tc
hi

ng
 [%

]

fraction of prefetch buffers

48 read buffers
112 read buffers
176 read buffers

Figure 9: Change in input time due to optimal prefet
hing.

-3

-2

-1

0

1

0 20 40 60 80 100

di
ffe

re
nc

e
to

 n
ai

ve
 p

re
fe

tc
hi

ng
 [%

]

fraction of prefetch buffers [%]

176 read buffers
112 read buffers

48 read buffers

Figure 10: Change in total merge time due to \optimal" prefet
hing.

pointer pairs are already sorted
an take up to 45 % of the CPU time of run formation. For

small keys it looks also promising to use parallelism. Already our
heap ma
hine supports

four parallel threads.

We now turn to a more detailed analysis of prefet
hing and overlapping of I/O and

omputation. We �rst fo
us on the read bu�ers and hen
e �x the write bu�er size to 4D

blo
ks in Figures 9{11. Figure 9
ompares the I/O time of the naive algorithm that tries to

fet
h blo
ks in the order spe
i�ed by � with optimal prefet
hing. It varies the fra
tion of the

read bu�er devoted to prefet
hing. As one would expe
t from the theoreti
al analysis in [11℄,

16

115

120

125

130

135

140

145

150

16 32 48 64 80 96 112 128 144 160 172

m
er

gi
ng

 ti
m

e
[s

]

number of read buffers

no prefetch buffer
heuristic schedule

Figure 11: Impa
t of prefet
h and overlap bu�ers on merging time.

110

115

120

125

130

135

140

145

0 50 100 150 200

m
er

ge
 ti

m
e

[s
]

number of read buffers

Figure 12: Tradeo�: write bu�er size versus read bu�er size.

the I/O time de
reases as this fra
tion grows. However, Figure 10 indi
ates that the overall

time needed for merging is best if most of the read bu�er is dedi
ated to overlapping I/O

and
omputation. Only for very small read bu�ers there is a signi�
ant di�eren
e between

the naive algorithm and optimal prefet
hing.

In Figure 11 we
ompare the overall merging time for the naive algorithm and the fol-

lowing heuristi
s for
hoosing the prefet
h bu�er size w as a fun
tion of the read bu�er size

r: w = 2D +

3

10

(r � 2D). We have not shown the empiri
ally optimal
hoi
e be
ause it is

very
lose to this heuristi
s.

17

12

14

16

18

20

22

24

26

128 256 512 1024 2048 4096 8192

so
rt

 ti
m

e
[n

s/
by

te
]

block size [KByte]

128 GBytes 1x merge
128 GBytes 2x merge

16 GBytes

Figure 13: Dependen
e of sorting time on the blo
k size.

Based on this heuristi
s for the read bu�er, Figure 12 explores the tradeo� between read

bu�er size and write bu�er size given a total bu�er size of 188 blo
ks. Although we see

the asymmetry between read bu�er size and write bu�er size predi
ted by the theoreti
al

analysis, it turns out that write bu�ers mu
h larger than 2D blo
ks
an be pro�table. A

likely reason is that a write bu�er of size w = aD blo
ks leads to an e�e
tive output blo
k

size of (a� 1)B thus redu
ing seek times and perhaps also rotational delays. Based on this

observation, we use the following heuristi
s for the write bu�er size in the subsequent �gures:

w = max(t=4; 2D) when the total number of bu�er blo
ks available for read and write bu�ers

is t. The total number of blo
ks available in our measurements is t = (M � kB)=B where

M = 512 MByte and k = d2N=Me is the number of runs.

Figure 13 shows the dependen
e of the exe
ution time on the blo
k size. We see that

blo
k sizes of several MBytes are needed for good performan
e. The main reason is the well

known observation that blo
ks should
onsist of several disk tra
ks to amortize seeks and

rotational delays over a large
onse
utive data transfer. This �gure is mu
h larger than the

blo
k sizes used in older studies be
ause the data density on hard disks has dramati
ally

in
reased in the last years. This e�e
t is further ampli�ed in
omparison to the SCSI disks

used in most other studies be
ause modern IDE disks have even higher data densities but

larger rotational delays and less opportunities for seek time optimization.

Nevertheless, the largest possible blo
k size is not optimal be
ause it leaves too little

room for read and write bu�ers. Hen
e, in most measurements we use the heuristi
s to

hoose half the largest possible blo
k size that is a power of two.

For very large inputs, Figure 13 shows that we already have to go below the \really

good" blo
k sizes be
ause of la
k of bu�er spa
e. Still, it is not a good idea to swit
h to two

merge passes be
ause the overall time in
reases even if we are able to sti
k to large blo
k

sizes with more passes. The large optimal blo
k sizes are an indi
ator that \asymptoti
ally

eÆ
ient"
an also translate into \pra
ti
ally relevant" be
ause simpler suboptimal parallel

18

0

5

10

15

20

16 32 64 128

so
rt

 ti
m

e
[n

s/
by

te
]

input size [GByte]

128-byte elements
512-byte elements

4N/DB bulk I/Os

Figure 14: Dependen
e of sorting time on the input size.

disk algorithms often use logi
al blo
ks striped over the disks. On our system this leads to

a further redu
tion of the possible blo
k size by a fa
tor of about eight.

Finally, Figure 14 shows the overall performan
e for di�erent input size using all the

heuristi
s introdu
ed above. Although we
an sti
k to two passes, the exe
ution time per

element goes up be
ause we need to employ slower and slower zones, be
ause the blo
k sizes

go down, and be
ause the seek times during merging go up.

6 Dis
ussion

We have engineered a sorting algorithm that
ombines very high performan
e on state of the

art hardware with theoreti
al performan
e guarantees. This algorithm is
ompute bound

although we use small random keys and a tuned linear time algorithm for run formation.

Similar observations are likely to apply to all external memory algorithms that exhibit good

spatial lo
ality, i.e. those dominated by s
anning, sorting, and similar operations. This

indi
ates that bandwidth is no longer a limiting fa
tor for external memory algorithms if

parallel disks are used. Furthermore, the low pri
e of our hardware platform indi
ates that

whenever I/O bandwidth it an issue, the pri
e performan
e ratio
an a
tually improve by

adding disks.

On the other hand, the fa
t that it is
hallenging to sustain peak bandwidth for eight

disks on a dual pro
essor system implies that using even more disks requires more aggressive

use of parallel pro
essing. Currently it is not
lear however how to a
hieve that in a
ost

eÆ
ient way. Cheap networks with 100Mbit/s Ethernet support only about one �fth the

bandwidth of a
heap disk. Even Gigabit Ethernet is not an answer.

Algorithmi
ally, several promising improvements remain even for small
heap ma
hines:

There are several ways to speed up run formation for small elements. During merging,

19

it would be good to redu
e seek times for large inputs, either by some
lever
ompromise

between seek minimization and prefet
hing, or by swit
hing to distribution sort that
an be

implemented to have inherently low seek overhead.

As <stxxl> will grow beyond the limits of the STL, it is even more important to integrate

sorting tightly into the library. As in database systems, good implementations of external

memory algorithms move data in a pipelined fashion between various s
anning and sorting

�lters. This pipelining has to be supported in a robust way. For example, we need a memory

management that works robustly even if several sorts go on at the same time.

A
knowledgements

We would like to thank Andreas Crauser, David Hut
hinson, Lutz Kettner, and Je� Vitter

for valuable dis
ussions. Soumyadeb Mitra and Nitin Rajput implemented a prototype par-

allel disk sorter during an internship. This experien
e helped with several design de
isions.

Our
omputer support group made several useful re
ommendations about
on�guring the

ma
hine. Andrew Morton helped with performan
e aspe
ts of Linux.

Referen
es

[1℄ R. C. Agarwal. A super s
alar sort algorithm for RISC pro
essors. In SIGMOD, pages

240{247. ACM, 1996.

[2℄ A. Aggarwal and J. S. Vitter. The input/output
omplexity of sorting and related

problems. Communi
ations of the ACM, 31(9):1116{1127, 1988.

[3℄ S. Albers, N. Garg, and S. Leonardi. Minimizing stall time in single and parallel disk

systems. In Pro
eedings of the 30th Annual ACM Symposium on Theory of Computing

(STOC-98), pages 454{462, New York, May 23{26 1998. ACM Press.

[4℄ L. Arge, O. Pro
opiu
, and J. S. Vitter. Implementing i/o-eÆ
ient data stru
tures using

TPIE. In 10th European Symposium on Algorithms (ESA), volume 2461 of LNCS, pages

88{100. Springer, 2002.

[5℄ R. D. Barve, E. F. Grove, and J. S. Vitter. Simple randomized mergesort on parallel

disks. Parallel Computing, 23(4):601{631, 1997.

[6℄ R. D. Barve and J. S. Vitter. A simple and eÆ
ient parallel disk merge sort. In 11th

ACM Symposium on Parallel Algorithms and Ar
hite
tures, pages 232{241, 1999.

[7℄ Pei Cao, Edward W. Felten, Anna R. Karlin, and Kai Li. Implementation and perfor-

man
e of integrated appli
ation-
ontrolled �le
a
hing, prefet
hing and disk s
heduling.

ACM Transa
tions on Computer Systems, 14(4):311{343, November 1996.

[8℄ G. Chaudhry and T. H. Cormen. Getting more from out-of-
ore
olumnsort. In 4th

Workshop on Algorithm Engineering and Experiments (ALENEX), number 2409 in

LNCS, pages 143{154, 2002.

20

[9℄ G. Chaudhry, T. H. Cormen, and L. F. Wisniewski. Columnsort lives! an eÆ
ient

out-of-
ore sorting program. In 13th ACM Symposium on Parallel Algorithms and Ar-

hite
tures, pages 169{178, 2001.

[10℄ A. Crauser and K. Mehlhorn. LEDA-SM a platform for se
ondary memory
omputa-

tions. Te
hni
al report, MPII, 2000. draft.

[11℄ D. A. Hut
hinson, P. Sanders, and J. S. Vitter. Duality between prefet
hing and queued

writing with parallel disks. In 9th European Symposium on Algorithms (ESA), number

2161 in LNCS, pages 62{73. Springer, 2001.

[12℄ M. Kallahalla and P.J. Varman. Optimal prefet
hing and
a
hing for parallel I/O

systems. In ACM Symposium on Parallel Ar
hite
tures and Algorithms, pages 219{228,

2001.

[13℄ Tra
y Kimbrel and Anna R. Karlin. Near-optimal parallel prefet
hing and
a
hing.

SIAM Journal on Computing, 29(4):1051{1082, 2000.

[14℄ D. E. Knuth. The Art of Computer Programming | Sorting and Sear
hing, volume 3.

Addison Wesley, 2nd edition, 1998.

[15℄ P. Larson and G. Graefe. Memory management during run generation in external

memory. In SIGMOD, pages 472{484. ACM, 1998.

[16℄ M. H. Nodine and J. S. Vitter. Deterministi
 distribution sort in shared and distributed

memory multipro
essors. In 5th ACM Symposium on Parallel Algorithms and Ar
hite
-

tures, pages 120{129, Velen, Germany, 1993.

[17℄ M. H. Nodine and J. S. Vitter. Greed sort: An optimal sorting algorithm for multiple

disks. Journal of the ACM, 42(4):919{933, 1995.

[18℄ C. Nyberg, T. Bar
lay, Z. Cvetanovi
, J. Gray, and D. Lomet. AlphaSort: A RISC

ma
hine sort. In SIGMOD, pages 233{242, 1994.

[19℄ C. Nyberg, C. Koester, and J. Gray. Nsort: A parallel sorting program for NUMA and

SMP ma
hines, 2000. http://www.ordinal.
om/lit.html.

[20℄ V. S. Pai and P. J. Varman. Prefet
hing with multiple disks for external mergesort:

Simulation and analysis. In ICDE, pages 273{282, 1992.

[21℄ S. Rajasekaran. A framework for simple sorting algorithms on parallel disk systems. In

10th ACM Symposium on Parallel Algorithms and Ar
hite
tures, pages 88{98, 1998.

[22℄ P. Sanders, S. Egner, and J. Korst. Fast
on
urrent a

ess to parallel disks. In 11th

ACM-SIAM Symposium on Dis
rete Algorithms, pages 849{858, 2000.

[23℄ Peter Sanders. Fast priority queues for
a
hed memory. ACM Journal of Experimental

Algorithmi
s, 5, 2000.

21

[24℄ J. van den Ber
ken, B. Blohsfeld J-P. Dittri
h, J. Kr�amer, T. S
h�afer, M. S
hneider, and

B. Seeger. XXL - a library approa
h to supporting eÆ
ient implementations of advan
ed

database queries. In 27th International Conferen
e on Very Large Data Bases, pages

39{48. Morgan Kaufmann, 2001.

[25℄ J. van den Ber
ken, J-P. Dittri
h, and B. Seeger. java.XXL: A prototype for a library

of query pro
essing algorithms. In International Conferen
e on Management of Data,

volume 29(2), page 588. ACM, 2000.

[26℄ D. E. Vengro�. TPIE User Manual and Referen
e. Duke University, 1995. http:

//www.
s.duke.edu/~dev/tpie_home_page.html.

[27℄ J. S. Vitter and D. A. Hut
hinson. Distribution sort with randomized
y
ling. In 12th

ACM-SIAM Symposium on Dis
rete Algorithms, pages 77{86, 2001.

[28℄ J. S. Vitter and E. A. M. Shriver. Algorithms for parallel memory, I: Two level memories.

Algorithmi
a, 12(2/3):110{147, 1994.

[29℄ J. Wyllie. SPsort: How to sort a terabyte qui
kly. http://resear
h.mi
rosoft.
om/

bar
/SortBen
hmark/SPsort.pdf, 1999.

22

���

�

��

k

I N F O R M A T I K

Below you �nd a list of the most re
ent te
hni
al reports of the Max-Plan
k-Institut f�ur Informatik. They

are available by anonymous ftp from ftp.mpi-sb.mpg.de under the dire
tory pub/papers/reports. Most

of the reports are also a

essible via WWW using the URL http://www.mpi-sb.mpg.de. If you have any

questions
on
erning ftp or WWW a

ess, please
onta
t reports�mpi-sb.mpg.de. Paper
opies (whi
h

are not ne
essarily free of
harge)
an be ordered either by regular mail or by e-mail at the address below.

Max-Plan
k-Institut f�ur Informatik

Library

attn. Anja Be
ker

Stuhlsatzenhausweg 85

66123 Saarbr�u
ken

GERMANY

e-mail: library�mpi-sb.mpg.de

MPI-I-2003-2-001 P. Maier Compositional Cir
ular Assume-Guarantee Rules

Cannot Be Sound And Complete

MPI-I-2002-4-002 F. Drago, W. Martens, K. Myszkowski,

H. Seidel

Per
eptual Evaluation of Tone Mapping Operators with

Regard to Similarity and Preferen
e

MPI-I-2002-4-001 M. Goesele, J. Kautz, J. Lang,

H.P.A. Lens
h, H. Seidel

Tutorial Notes ACM SM 02 A Framework for the

A
quisition, Pro
essing and Intera
tive Display of High

Quality 3D Models

MPI-I-2002-2-008 W. Charatonik, J. Talbot Atomi
 Set Constraints with Proje
tion

MPI-I-2002-2-007 W. Charatonik, H. Ganzinger Symposium on the E�e
tiveness of Logi
 in Computer

S
ien
e in Honour of Moshe Vardi

MPI-I-2002-1-008 P. Sanders, J.L. Tr�a� The Fa
tor Algorithm for All-to-all Communi
ation on

Clusters of SMP Nodes

MPI-I-2002-1-005 M. Hoefer Performan
e of heuristi
 and approximation algorithms

for the un
apa
itated fa
ility lo
ation problem

MPI-I-2002-1-004 S. Hert, T. Polzin, L. Kettner, G. S
h�afer Exp Lab A Tool Set for Computational Experiments

MPI-I-2002-1-003 I. Katriel, P. Sanders, J.L. Tr�a� A Pra
ti
al Minimum S
anning Tree Algorithm Using

the Cy
le Property

MPI-I-2002-1-002 F. Grandoni In
rementally maintaining the number of l-
liques

MPI-I-2002-1-001 T. Polzin, S. Vahdati Using (sub)graphs of small width for solving the Steiner

problem

MPI-I-2001-4-005 H.P.A. Lens
h, M. Goesele, H. Seidel A Framework for the A
quisition, Pro
essing and

Intera
tive Display of High Quality 3D Models

MPI-I-2001-4-004 S.W. Choi, H. Seidel Linear One-sided Stability of MAT for Weakly Inje
tive

Domain

MPI-I-2001-4-003 K. Daubert, W. Heidri
h, J. Kautz,

J. Dis
hler, H. Seidel

EÆ
ient Light Transport Using Pre
omputed Visibility

MPI-I-2001-4-002 H.P.A. Lens
h, J. Kautz, M. Goesele,

H. Seidel

A Framework for the A
quisition, Pro
essing,

Transmission, and Intera
tive Display of High Quality

3D Models on the Web

MPI-I-2001-4-001 H.P.A. Lens
h, J. Kautz, M. Goesele,

W. Heidri
h, H. Seidel

Image-Based Re
onstru
tion of Spatially Varying

Materials

MPI-I-2001-2-006 H. Nivelle, S. S
hulz Pro
eeding of the Se
ond International Workshop of the

Implementation of Logi
s

MPI-I-2001-2-005 V. Sofronie-Stokkermans Resolution-based de
ision pro
edures for the universal

theory of some
lasses of distributive latti
es with

operators

MPI-I-2001-2-004 H. de Nivelle Translation of Resolution Proofs into Higher Order

Natural Dedu
tion using Type Theory

MPI-I-2001-2-003 S. Vorobyov Experiments with Iterative Improvement Algorithms on

Completely Unimodel Hyper
ubes

MPI-I-2001-2-002 P. Maier A Set-Theoreti
 Framework for Assume-Guarantee

Reasoning

MPI-I-2001-2-001 U. Waldmann Superposition and Chaining for Totally Ordered

Divisible Abelian Groups

MPI-I-2001-1-007 T. Polzin, S. Vahdati Extending Redu
tion Te
hniques for the Steiner Tree

Problem: A Combination of Alternative-and

Bound-Based Approa
hes

MPI-I-2001-1-006 T. Polzin, S. Vahdati Partitioning Te
hniques for the Steiner Problem

MPI-I-2001-1-005 T. Polzin, S. Vahdati On Steiner Trees and Minimum Spanning Trees in

Hypergraphs

MPI-I-2001-1-004 S. Hert, M. Ho�mann, L. Kettner, S. Pion,

M. Seel

An Adaptable and Extensible Geometry Kernel

MPI-I-2001-1-003 M. Seel Implementation of Planar Nef Polyhedra

MPI-I-2001-1-002 U. Meyer Dire
ted Single-Sour
e Shortest-Paths in Linear

Average-Case Time

MPI-I-2001-1-001 P. Krysta Approximating Minimum Size 1,2-Conne
ted Networks

MPI-I-2000-4-003 S.W. Choi, H. Seidel Hyperboli
 Hausdor� Distan
e for Medial Axis

Transform

MPI-I-2000-4-002 L.P. Kobbelt, S. Bis
ho�, K. K�ahler,

R. S
hneider, M. Bots
h, C. R�ossl,

J. Vorsatz

Geometri
 Modeling Based on Polygonal Meshes

MPI-I-2000-4-001 J. Kautz, W. Heidri
h, K. Daubert Bump Map Shadows for OpenGL Rendering

MPI-I-2000-2-001 F. Eisenbrand Short Ve
tors of Planar Latti
es Via Continued

Fra
tions

MPI-I-2000-1-005 M. Seel, K. Mehlhorn In�maximal Frames: A Te
hnique for Making Lines

Look Like Segments

MPI-I-2000-1-004 K. Mehlhorn, S. S
hirra Generalized and improved
onstru
tive separation

bound for real algebrai
 expressions

MPI-I-2000-1-003 P. Fatourou Low-Contention Depth-First S
heduling of Parallel

Computations with Syn
hronization Variables

MPI-I-2000-1-002 R. Beier, J. Sibeyn A Powerful Heuristi
 for Telephone Gossiping

MPI-I-2000-1-001 E. Althaus, O. Kohlba
her, H. Lenhof,

P. M�uller

A bran
h and
ut algorithm for the optimal solution of

the side-
hain pla
ement problem

MPI-I-1999-4-001 J. Haber, H. Seidel A Framework for Evaluating the Quality of Lossy Image

Compression

MPI-I-1999-3-005 T.A. Henzinger, J. Raskin, P. S
hobbens Axioms for Real-Time Logi
s

MPI-I-1999-3-004 J. Raskin, P. S
hobbens Proving a
onje
ture of Andreka on temporal logi

MPI-I-1999-3-003 T.A. Henzinger, J. Raskin, P. S
hobbens Fully De
idable Logi
s, Automata and Classi
al

Theories for De�ning Regular Real-Time Languages

MPI-I-1999-3-002 J. Raskin, P. S
hobbens The Logi
 of Event Clo
ks

MPI-I-1999-3-001 S. Vorobyov New Lower Bounds for the Expressiveness and the

Higher-Order Mat
hing Problem in the Simply Typed

Lambda Cal
ulus

MPI-I-1999-2-008 A. Bo
kmayr, F. Eisenbrand Cutting Planes and the Elementary Closure in Fixed

Dimension

MPI-I-1999-2-007 G. Delzanno, J. Raskin Symboli
 Representation of Upward-
losed Sets

MPI-I-1999-2-006 A. Nonnengart A Dedu
tive Model Che
king Approa
h for Hybrid

Systems

MPI-I-1999-2-005 J. Wu Symmetries in Logi
 Programs

MPI-I-1999-2-004 V. Cortier, H. Ganzinger, F. Ja
quemard,

M. Veanes

De
idable fragments of simultaneous rigid rea
hability

MPI-I-1999-2-003 U. Waldmann Can
ellative Superposition De
ides the Theory of

Divisible Torsion-Free Abelian Groups

MPI-I-1999-2-001 W. Charatonik Automata on DAG Representations of Finite Trees

MPI-I-1999-1-007 C. Burnikel, K. Mehlhorn, M. Seel A simple way to re
ognize a
orre
t Voronoi diagram of

line segments

MPI-I-1999-1-006 M. Nissen Integration of Graph Iterators into LEDA

MPI-I-1999-1-005 J.F. Sibeyn Ultimate Parallel List Ranking ?

MPI-I-1999-1-004 M. Nissen, K. Weihe How generi
 language extensions enable \open-world"

desing in Java

