o

INFORMATTIK

Asynchronous Parallel Disk
Sorting

Roman Dementiev! and Peter Sanders!.

MPI-1-2003-1-001 February 2003

\ J

FORSCHUNGSBERICHT RESEARCH REPORT

MAX-PLANCK-INSTITUT
FUR
INFORMATIK

Stuhlsatzenhausweg 85 66123 Saarbriicken ~Germany

Authors’ Addresses

Roman Dementiev, Peter Sanders
Stuhlsatzenhausweg 85

Max-Planck-Institut fiir Informatik,

66123 Saarbriicken, Germany

email: {dementiev, sanders}@mpi-sb.mpg.de

Abstract

We develop an algorithm for parallel disk sorting, whose I/O cost approaches
the lower bound and that guarantees almost perfect overlap between 1/0
and computation. Previous algorithms have either suboptimal I/O volume
or cannot guarantee that I/O and computations can always be overlapped.
We give an efficient implementation that can (at least) compete with the
best practical implementations but gives additional performance guarantees.
For the experiments we have configured a state of the art machine that can
sustain full bandwidth I/O with eight disks and is very cost effective.

Keywords

external memory, sorting, large data sets, overlapping I/O and computation

1 Introduction

Sorting is one of the most important operations performed on computers. In particular, sort-
ing is a crucial tool when it comes to processing large volumes of data in secondary memory.
Since a single disk is much cheaper than a high performance computer, a high performance
external sorting algorithm needs to be able to exploit many disks. Interestingly, parallel disk
sorting is a nontrivial problem. Asymptotically I/O optimal deterministic algorithms [16, 17]
are complicated and have rather large constant factors. There are relatively simple random-
ized algorithms that approach the lower bound of 2N/DB log,;/z N/B 1/Os for sorting N
elements using D disks, fast memory of size M, and blocks of size B [11]. These algorithms
are so close to algorithms used in practice that theory and practice seem to be in harmony
here. However, at least two issues remain before we can claim that the best randomized the-
oretical algorithms are also good in practice: We need a high performance implementation
and we have to reconsider the model of computation when talking about constant factors.
Perhaps the main issue for sorting is that I/O and internal work are completely separate
issues in the I/O model of Vitter and Shriver [28]. In this paper we therefore design an
algorithm that overlaps I/O and computation and give an efficient implementation.

Perhaps the most widely used external sorting algorithm is k-way merge sort. In Sec-
tion 2, we explain how its best known randomized parallel disk version [11] can be adapted to
allow almost perfect overlapping of I/O and computation. The idea is straight-forward: Use
an additional overlap buffer that decouples I/O and computation. We prove that & + ©(D)
blocks buffer size are necessary and sufficient to allow almost perfect overlap. This is non-
trivial to prove because we have to take into account the interactions between input, disk
load balancing, merging, and output.

Whereas Section 2 uses synchronized parallel disk I/O steps to obtain a simple cost
model, Section 3 explains how to implement the algorithm portably and efficiently in a fully
asynchronous manner. The implementation is part of <stxx1>, a C++ library for external
memory algorithms that we are currently developing. <stxx1> implements algorithms and
data structures from the standard template library STL for massive data sets. The I/0O
layer — the lowest layer of <stxx1> — supports efficient asynchronous I/O that is currently
implemented using multi-threading and unbuffered blocking file system 1/0.

In Section 4 we describe how to achieve 375 MByte/s measured 1/O bandwidth for
about 3000 € using a dual-Xeon server board with multiple PCI busses, four cheap IDE
disk controllers, and eight 80 GByte disks. This is about one third of the measured main
memory bandwidth of this system so that one can conclude that on machines configured
for high bandwidth I/O, the I/O bandwidth is hardly a limiting factor even if cost is an
issue. Although the particular hardware configuration is a very dated result, we believe that
a detailed description exemplifies an approach to configure hardware that will be valid for
some time to come.

Section 5 summarizes the results of more than 1000 hours of experiments. <stxx1> is
up to three times faster than previous libraries sustaining an I/O bandwidth of up to 315
MByte/s overlapped with sorting. It turns out that optimizing the number of I/O steps using
the prefetching algorithm [11] does not optimize the overall execution time. Rather, the best
results use an additional overlap buffer. The blocks sizes needed for good performance are

several MBytes so that for large inputs, we enter the area where supposedly theoretical
algorithms outperform plain striping that increases the block size requirement by another
factor D. Perhaps the best way to characterize the bottom line performance of our system
bought in July 2002 is to note that it sorts more cost effectively than the system that won
the April 2002 Penny? Sort Benchmark but it does that about 6.5 times® faster than this
low end system with two disks.

Related Work

The design of the <stxx1> library owes a lot to the previous external memory libraries
TPIE [26, 4], LEDA-SM[10], and JavaXXL [24, 25]. <stxx1> adds emphasis on high perfor-
mance, i.e., parallel disks, overlapping of I/O and computation, large inputs, and low internal
overhead. None of the above libraries explicitly handles parallel disks and overlapping I/O
and computation relies largely on the operating system. We view this as problematic? for
leading edge performance because prefetching and caching of the operating system knows
less about the application, leaves less memory for sorting itself, and often requires additional
copies of the data. LEDA-SM, TPIE, and [9, 8] allow only 2GByte input size.

Barve and Vitter [6] implement a parallel disk algorithm [5] that can be viewed as the
immediate ancestor of our algorithm. Innovations with respect to this work are: A differ-
ent allocation strategy that enables better theoretical I/O bounds [12, 11]; a prefetching
algorithm that optimizes 1/O steps and never evicts data previously fetched; overlapping
of I/O and computation; a completely asynchronous implementation that reacts flexibly to
fluctuations in disk speeds; and an implementation that sorts many GBytes and does not
have to artificially limit internal memory size to obtain a nontrivial number of runs.

Chaudhry and Cormen [9, 8] give a sophisticated external memory implementation of
column sort that uses parallel disks and processors. The algorithm also has the theoretical
advantage of being deterministic. This theoretical advantage translates into the practical
benefit that disk access patterns are very regular and easy to overlap with computation. A
drawback of column sort is that even in its most sophisticated form, it needs about 50 % larger
I/O volume than multi-way merge sort (three versus two passes over the data). Another
drawback is that column sort seems to need rather fine grained I/O because the maximum
possible block size for about half of the I/Os is about N'/3. For example, for 2GByte of 128
byte records this would be blocks of 32KByte which is far from the optimal block sizes that
are nowadays measured in MBytes (see Figure 13). A theoretical disadvantage is that the
maximal input size for which the three-pass algorithm works is O (M?*/?). For comparison,
multi-way merge sort allows O(M?/B) elements for a two-pass algorithm and O(M?/B?)
for a three-pass algorithm. Column sort can be applied to larger inputs using recursion but
this does not lead to asymptotically optimal performance.

2The cost of the hardware is spread over three years. Then it is measured how much data can be sorted in
an interval of time that costs one US-cent. See http://research.microsoft.com/barc/sortbenchmark/.

3We sort the same amount of 125 million 100 byte elements but use 8 byte keys rather than 10 byte keys.
We believe that for a tuned implementation and random keys this makes little difference.

4We observed an extreme example on an earlier Solaris based experimental platform: The system dis-
carded cached blocks more slowly than they came in from parallel disks. The result was that all the
application memory was swapped out in favor of cached disk blocks that were not needed at all

Rajasekaran [21] gives another asymptotically suboptimal deterministic parallel disk sort-
ing algorithm that runs in three passes for not too large inputs.

Prefetch buffers for disk load balancing and overlapping of I/O and computation has
been intensively studied [20, 7, 3, 13, 12, 11]. But we have not seen results that guarantee
overlapping of I/O and computation during parallel disks merging of arbitrary runs.

There are many good practical implementations of sorting (e.g. [18, 1, 29, 19]) that ad-
dress parallel disks, overlapping of I/O and computation, and low internal overhead. How-
ever, we are not aware of fast implementations that give theoretical performance guarantees
on achieving asymptotically optimal I/O. Most practical implementations use a form of strip-
ing that requires O(N/D B logg s/ pg) IV/B) 1/Os rather than the optimal O(N/D B loge sy N/B).
This difference is usually considered insignificant for practical purposes. But on our system
we already have to go somewhat below the block sizes that give best performance in Fig-
ure 13 if the input size is 128 GBytes. Another reduction of the block size by a factor of
eight could increase the run time significantly. We are also not aware of high performance
implementations that guarantee overlap of I/O and computation during merging for inputs
such as the one described in the beginning of Section 2.3.

On the other hand, many of the practical merits of our implementation are at least
comparable with the best actual implementations: We are close to the peak performance of
our system and its price performance ratio is better than anything we have seen. Our library
should also be easy to use since it is based on the well known interface of the STL.

2 Multi-way Merge Sort with Overlapped 1/0s

This section derives an parallel disk sorting algorithm that almost perfectly overlaps I/O
and computation. More formally, the following theorem is shown.

Theorem 1. Let L denote the time needed for accessing one block of size B on each of D
disks. Let Tyori(n) denote the time needed to sort n elements internally and ((k) the time
needed to produce one element of output in internal k-way merging. If I/O and computation
can be overlapped, N elements can be sorted in time

N\ 2LN LM
I JR— J— [
maX<kTS°rt<k’>’DB>+O<DB>

2LN . (M D D
+ ’—logg(M/B) kl-‘ (max (m,g(lk)]\[) + O(L min (E, ? IOg :)))
where k' = O(N/M) is the total number of runs, k = ©(M/B) is the merging degree used,
and e = ©(DB/M).

To help reading this complicated formula, one can note that in all practical cases, k = £/,
’—log@(M/B) k’-‘ = 1, and € is some small constant. The first line corresponds to a run formation
phase that reads batches of size ©(M) from disk, sorts them internally, and writes them
back to disk. Section 2.1 establishes that any internal sorting algorithm can be perfectly
overlapped with 1/O except for O(M/DB) 1/Os at the beginning and at the end.

The second line of the time bound corresponds to merging the sorted runs into a single
sorted run. Since this result is significantly more difficult to establish, it is obtained in three

elements

IV N 5
o 8 S read buffers 5 n
v} = o
2 <]
z 8 g, Lo/ k+0(D) |8
o - || 8 > overlap buffers - |0
g i g
=8 : g
P O)E n
N e —
—=Z =D blocks l—,merging
I L Il
—ping disk scheduling overlap—

Figure 1: Data flow through the different kinds of buffers for overlapped parallel disk multi-
way merging. Data is moved in units of blocks except between the merger and the write

buffer.

control flow in thread A control flow in thread B
— —

time

1 2 3 4

read ’ Vo
1 2 3 4 bound
sort case
write 1 2 3 4 ..
k-1 k
compute
bound

case

1 2 3 4
read
1 2 3 4
Sort “ee
. 1 2 3 ; 4
write

Figure 2: Overlapping I/O and computation during run formation.

steps. Section 2.2 describes merging from the point of view of a merging thread that reads
blocks in an order predicted during run formation and writes individual elements. Each
block has to be read exactly once using one merge buffer block for each run. Section 2.3
explains how an I/0 thread interfaces this view with a I/O model that allows parallel access
to D arbitrary blocks in an I/O step [2]. The I/O thread is responsible for overlapping I/O
with computation. Using an overlap buffer the algorithm achieves perfect overlapping of
I/O and computation up to a small overhead for filling and emptying the merge buffers.
Section 2.4 explains how a prefetch buffer can be used to implement this parallel access
model on D parallel disks. This emulation costs a constant factor close to one in I/O
overhead plus a logarithmic additive term. Figure 1 illustrates the data flow between these

components of parallel disk multi-way merging.

2.1 Run Formation

There are many ways to overlap I/O and run formation. We start with a very simple method
that treats internal sorting as a black box and hence can use the fastest available internal
sorters.” Two threads cooperate to build k runs of size M/2:

post a read request for runs 1 and 2

thread A: thread B:
for r:=1 to k do for r:=1 to k-2 do

sort run r post a read request for run r+2

wait until run r is read | wait until run r is written
I
post a write request for run r |

Figure 2 illustrates how I/O and computation is overlapped by this algorithm. We omit the
proof of the following theorem that would essentially be a simple formalization of Figure 2.

Corollary 2. An input of size N can be transformed into sorted runs of size ©(M/2) in

time max(2Tyor (2) L, 2L8) + O(EL) where Tyori(n) denotes the time for sorting n elements

internally and where L is the time needed for an I/0 step.

A natural question arising from this discussion is how long the runs can be if we want to
overlap I/O and computation. Knuth [14, Section 5.4.1] describes an algorithm that achieves
average run length 2M. A recent implementation that even works for variable length records
has been described by Larson and Graefe [15]. However, this algorithm is not cache efficient
and requires an additional pointer for each element in the input. We therefore outline a
relatively simple reformulation that is space efficient even for small records, cache efficient,
and provably allows overlapping of 1/O and computation.

An more abstract formulation is a good starting point: The algorithm maintains two
priority queues () and @'. Initially, M elements are inserted into). The following operations
are repeated until @) is empty:

q := deleteMinimum(Q)

read a new element ¢’ from the input

if ¢’ < ¢ then @Q'.insert(q’) else Q.insert(q’)
write(q)

Then one run is finished, and a new run is started based on the now M elements in (.
Although there are cache efficient priority queues [23], these have a too large worst case
access time and we have to explain how to make the queues space efficient. The following
representation solves both problems: Let ¢ denote some small constant. We represent the
priority queues by collections of sorted sequences of size up to eM. () additionally has a
buffer priority queue @y of size up to eM. @' also has an insertion buffer @ that is an
unsorted bag of up to €M elements. Insertions into @ or @' go into these buffers. When
they are filled, they are sorted and added to the collection of sorted sequences for the
queues. This takes time Ty (eM). Since the size of a run increases by eM whenever a

5Tf this method has not been published yet, we would still guess that it is folklore.

new sorted sequence is added, the average number of sequences in a run is 2/e. Using a
binary heap for)y and multi-way merging for @), a deleteMinimum can be implemented in
time O(1/€). The average case insertion time into the buffers is O(1) even if binary heaps
are used. Using O(max(DB,eM)) additional space for buffering input and output, perfect
overlapping between I/O and computation is possible. The sorted sequences can be made
space efficient by representing them as a linked list of small blocks of elements. As soon as
the last element of a block is removed, the block is put into a free list that supplies empty
blocks when building new sorted sequences.

In the full paper we will describe a further algorithm with similar properties that does not
require binary heaps and replaces multi-way merging by distribution of elements to buckets
and hence might be faster for “well behaved” integer keys.

2.2 Multi-way Merging

We want to merge k sorted sequences comprising N’ elements stored in N'/B blocks (In
practical situation, where a single merging phase suffices, we will have N’ = N). In each
iteration the merging thread chooses the smallest remaining element from the k sequences and
hands it over to the I/O thread. Prediction of read operations is based on the observation
that the merging thread need not access a block until its smallest element becomes the
smallest unread element. We therefore record the smallest keys of each block during run
formation. By merging the resulting k£ sequences of smallest elements, we can produce a
sequence o of block identifiers that indicates the exact order in which blocks are logically
read by the merging thread. The overhead for producing and storing the prediction data
structure is negligible because its size is a factor at least B smaller than the input.

The prediction sequence o is used as follows. The merging thread maintains the invariant
that it always buffers the £ first blocks in ¢ that contain unselected elements, i.e., initially,
the first £ blocks from o are read into these merge buffers. When the last element of a merge
buffer block is selected, the now empty buffer frame is returned to the I/O thread and the
next block in ¢ is read.

The keys of the smallest elements in each buffer block are kept in a tournament tree data
structure [14] so that the currently smallest element can be selected in time O(log k). Hence,
the total internal work for merging is O(N'logk). To establish that this strategy correctly
merges the sequences, we have to show that the smallest element not selected yet resides in
a block that is buffered.

Lemma 3. At any point during multi-way merging, the smallest element among the elements
in the k merge buffer blocks is minimal among all elements not yet selected by the merging
thread.

Proof. Suppose there is an unselected element e that is smaller than all unselected elements
in the merge buffer blocks. Element e must be the smallest element of some block b in some
sequence j such that none of the blocks of sequence j are in a merge buffer block. Since
there are only k input sequences, there must be another sequence j' for which at least two
blocks " and b are buffered. Call the first element of the second block e”. Since b” was read
before b we must have e” < e. Furthermore, there must be an unselected element ¢’ in b' and

we have ¢/ < e” < e. This contradicts the assumption that e is smaller than any buffered
unselected element. O

We have now defined multi-way merging from the point of view of the sorting algorithm.
Our approach to merging slightly deviates from previous approaches that assign each merge
buffer block to one input sequence and where the last key in the previous block decides
about the position of a block in 0. With respect to performance, both approaches should be
similar. Our approach is somewhat simpler however — the merging thread need not know
anything about the £ input runs and how they are allocated. Its only input is the prediction
sequence o. In a sense, we are merging blocks and the order in ¢ makes sure that the overall
effect is that the input runs are merged. A conceptual advantage is that data within a block
decides about when a block is read.

2.3 Overlapping I/O and Merging

Although we can predict the order in which blocks are read, we cannot easily predict how
much internal work is done between two reads. For example, consider £ identical runs storing
the sequence [18-12[38-14[5B-16] . .. After initializing the merge buffers, the merging thread
will consume k(B — 1) values ‘1’ before it posts another read. Then it will post one read
after selecting each of the next k values (2). Then there will be a pause of another k(B — 1)
steps and another k reads quickly following each other, etc. We explain how to overlap I/O
and computation despite of this irregularity using the I/O model of Aggarwal and Vitter
[2] that allows access to D arbitrary blocks within one I/O step. To model overlapping of
I/O and computation, we assume that an I/O step takes time L and can be done in parallel
with internal computations. We maintain an overlap buffer that stores up to k + 3D blocks
in a FIFO manner. Whenever the overlap buffer is nonempty, a read can be served from
it without blocking. Writing is implemented using a write buffer FIFO with 2D B elements
capacity. An I/0 thread inputs or outputs D blocks in time L using the following strategy:
Whenever no 1/0 is active and at least DB elements are present in the write buffer, an
output step is started. When no I/O is active, less than D output blocks are available, and
at least D overlap buffers are unused, then the next D blocks from o are fetched into the
overlap buffer.

The following theorem states that this simple strategy allows almost perfect overlapping
of I/O and computation.

Theorem 4. Merging k sorted sequences with a total of N' elements can be implemented to

run in time LN L
I R
max(DB ,€N> +(’)<L [D-D

where { 1s the time needed by the merging thread to produce one element of output and L is
the time needed to input or output D arbitrary blocks.

The most basic tool for the proof of Theorem 4, is the following sufficient condition for
the availability of input for the merging thread.

T
KB+3DB a0 :

KB+2DB-+y [+ blocking | /=

kB+2DB POR . - - - dutput """

KB+DBA4Y |- ey oo oo 3

kB+DB e IRRRRAE IREEEEEEEES
: : : LW
DB-y DB 2DB-y 2DB

Figure 3: Proof of Lemma 6.

Lemma 5. Whenever the overlap buffer and merge buffer together contain at least kB ele-
ments, then at least one element can be merged without fetching additional blocks.

Proof. Suppose to the contrary that a new block needs to be fetched. This can only be the
case if the overlap buffer is empty. But this implies that all £ merge buffers are full. This
contradicts the assumption that no elements can be merged. O

The key to the proof of Theorem 4 are the following two lemmas that represent the I/O
bound respectively the compute bound case.

Lemma 6. If 2L > DB{ then the I/0 thread never blocks until all input blocks are fetched.

Proof. We describe the state of the system by the pair (w,r) where w is the number of
elements in the write buffer and r is the total number of elements in the overlap buffer and
the merge buffers. Let y = [L/{] denote the number of elements that can be merged during
one I/O step. Since 2L > DB/, we have y > DB/2. If y > DB, Lemma 5 implies that r
can never exceed kB 4+ DB so that the overlap buffer always has enough space to fetch D
additional blocks. The interesting case is DB/2 < y < DB.

We want to show that the system never enters a state where the I/O thread can block.
This can only happen if w < DB and r > kB + 2DB because otherwise we can either
output or fetch D blocks. The dark shaded area in Figure 3 defines this area. If r > kB +y
there are two sub-cases: If w < DB, a fetch step is executed leading to the state transition
(w,r) ~ (w+y,r+ DB —y). If w > DB, an output step leads to the state transition
(w,r) ~ (w— DB+ y,r —y). With the help of Figure 3 it is now easy to see that only
the light shaded regions can lead to a transition into the blocking region. But there are no
transitions into the light shaded regions. This remains true for r < kB + y because from
there we cannot get to a state with r > kB 4+ DB. O

Lemma 7. If 2L < DB{ then after k/D + 1 I/0 steps, the merging thread never blocks
until all elements are merged.

kB+3DB
blockI/O\
\B+2DB \ 1.
output
fetch 7,
kB+DB """"
KB+2y [
KBty — pmsmsns / -------
A :
kB block nerging =
w

DB 2DB-y2DB

Figure 4: Proof of Lemma 7.

Proof. Define w, r, and y as in the proof of Lemma 6. Since 2L < DB/, we have y < DB/2.
We want to show that the system never enters a state where the merging thread can block.
This can only happen if w > 2DB — y or r < kB + y. Otherwise, we can distinguish
three cases illustrated in Figure 4. If the I/O thread is active, we have the same state
transitions as in Lemma 6, (w,)~ (w+y,r+ DB —y)if w < DB and r < kB+2DB and
(w,r)~ (w—DB+y,r—y) if w> DB. Otherwise, the I/O thread blocks and the merging
thread moves elements to the write buffer until there is room for fetching or writing another
D blocks. These transitions imply that the only region in the state space that can lead to a
state where the merging thread is blocked, is w > DB and r € [kB + y, kB + 2y). But this
region cannot be reached from a state where the merging thread is active. O

Now it is easy to establish Theorem 4.

Proof. 1f 2L > DB/, Lemma 6 implies that after time LN’/D B, all blocks have been fetched.
It remains to merge O((k + D)B) elements from the merge and overlap buffer and to output
them. This takes time O({(k + D)B + L [k/D]) = O(L[4]).

If 2L < DB/, Lemma 7 implies that after k/D + 1 I/O steps (in time O(L [k/D]), the
merging thread will merge all elements in time ¢N’. Then at most two further I/O steps

suffice to flush the write buffer. The overall time needed is /N’ + LO([k/D]). O

2.4 Disk Scheduling

The 1/Os for run formation and for the output of merging are perfectly balanced over all
disks if all sequences are striped over the disks, i.e., sequences are stored in blocks of B
elements each and the blocks numbered ¢, ... ;i+ D —1 in a sequence are stored on different
disks for all 7. In particular, the original input and the final output of sorting can use any
kind of striping.

The situation is more complicated during merging. Although each run is striped over
the disks, the order o prescribed by the smallest elements in the runs can lead to highly
irregular access patterns. Vitter and Hutchinson [27] have shown that Randomized Cyclic
Allocation (RC) makes the accesses in o at least as well balanced as independent accesses
to random disks. In RC allocation, the i-th block of a run is stored on disk (i mod D)
where 7 is a random permutation that is chosen independently for each run. In [11] it is
then shown that an optimal prefetch order o' that uses a prefetch buffer of size m = ©(D)
blocks can be computed from o by simulating a simple optimal writing algorithm for the
reverse sequence o, It is also shown that after a startup phase of min(k + Dl];, = logm)
input steps, (1 — O(%))D blocks from o can be fetched per input step on the average (k is
the number of runs).

This is not quite sufficient for our purposes because overlapping I/O and computation
requires “uniform” progress during each I/O step. But going back to the probabilistic core of
the above analysis in [22] we see that the result can be strengthened: In almost every input
step, (1 —O(D/m))D blocks from o can be fetched. The failure probability is exponentially
small in D.

The bottom line is that a prefetch buffer of m blocks allows us to emulate the model
assumed in Section 2.3 except for a short startup phase, a reduction of the effective number
of disks by D/m, and possibly occasional “hiccups” that affect a negligible fraction of the
I/O steps. We obtain the following refined version of Theorem 4

Corollary 8. For anye > 0 and D = Q(1/¢),5 there is a prefetch buffer of size m = ©(D/e)
such that merging k sorted sequences with a total of N' elements can be implemented to run

mn time A L | D
(N’ L|— i —log —
maX((l—e)DB’é >—|—O< <D+m1n<k,eog€>>>

where { is the time needed by the merging thread to produce one element of output, L is the
time needed to input or output D arbitrary blocks, and m is the size of the prefetch buffer.

A further remark is necessary for the (unrealistic) case of very large inputs where several
merging phases are needed. In that case, a prefetching sequence ¢’ for all merging operations
in a phase should be computed. The additive term O(L(4 + min(k, 1 log 2))) then only
occurs once per phase.

3 Implementation

Our implementation of sorting is part of a new C++ library <stxx1> for external comput-
ing that is designed for maximum compatibility with the standard template library (STL).
Another goal of the library is very high performance with support for parallel disks and
overlapping of I/O and computation. We started with an implementation of sorting because
it already tests many of these properties and since an efficient sorter is a key ingredient for
many external algorithms.

6We believe that the last restriction is an artifact of the analysis in [22, 11] but a formal proof that lifts
it might be much more complicated without yielding much additional insight.

10

The I/O layer of <stxx1> implements asynchronous parallel block 1/O. This level sup-
ports the minimum functionality needed to abstract from details of the file system and the
operating system. Our current implementation runs on Linux using unbuffered synchronous
file system I/O and POSIX threads for supporting asynchrony: There is one thread for each
disk which maintains a read queue and a write queue. It arbitrates between these queues
using a strategy chosen by the higher levels of the library. In our sorting algorithm, writing
is prioritized, i.e., when the thread returns from an I/O operation, it first checks the write
queue and posts the next request if it is nonempty. Only if the write queue is empty it tries
the read queue. Later implementations might use completely different mechanism like the
high performance asynchronous 1/O supported by DAFS’.

Run Formation. We build runs of size close to M/2 but there are some differences to the
simple algorithm from Section 2.1. Overlapping of I/O and computation is achieved using a
call-back mechanism supported by the I/O layer of <stxx1> rather than by multi-threading.
Thus, the sorter remains portable over different operating systems with different interfaces
to threading.

To limit the memory bandwidth requirements for large elements with small key fields, we
implement key sorting, i.e., after reading elements using DMA, we extract pairs (key, pointerToElement),
sort, these pairs, and only then move elements in sorted order to write buffers from where
they are output using DMA.

Furthermore, we exploit random keys. We use two passes of MSD (most significant digit)
radix sort of the key-pointer pairs. The first pass uses the m most significant bits where m is
a tuning parameter depending on the size of the processor caches and of the TLB (translation
look-aside buffer). This pass consists of a counting phase that determines bucket sizes and
a distribution phase that moves pairs. The counting phase is fused into a single loop with
pair extraction. The second pass of radix sort uses a number of bits that brings us closest to
an expected bucket size of two. This two-pass algorithm is much more cache efficient than a
one-pass radix sort.® The remaining buckets are sorted using a comparison based algorithm:
Optimal straight line code for n < 4, insertion sort for n € {5..16}, and quicksort for n > 16.

Multi-way Merging. We have adapted the tuned multi-way merger from [23].

Overlapping I/O and Computation. We integrate the prefetch buffer and the overlap
buffer to a read buffer. We distribute the buffer space between the two purposes of minimizing
disk idle time and overlapping I/O and computation indirectly by computing an optimal
prefetch sequence for a smaller buffer space.

Asynchronous I/0. 1/0O is performed without any synchronization between the disks.
The prefetcher described in Section 2.4 computes a sequence o' of blocks indicating the
order in which blocks should be fetched. As soon as a buffer block becomes available for
prefetching, it is used to generate an asynchronous read request for the next block in ¢’. All
I/0O is implemented without superfluous copying. Blocks are moved by DMA (direct memory
access) directly to user memory. A fetched block then travels to the prefetch/overlap buffer

"http://www.dafscollaborative.org/

80n our system we get a factor 3.8 speedup over one pass radix sort and a factor 1.6 over STL’s sort
which in turn is faster than a hand tuned quicksort (for sorting 22! pairs storing a random four byte key
and a pointer).

11

and from there to a merge buffer simply by passing a pointer. Similarly, when an element
is merged, it is directly moved from the merge buffer to the write buffer and a block of the
write buffer is passed to the output queue of a disk simply by passing a pointer to the the
I/O layer of <stxx1> that then uses write to output the data using DMA.

4 Hardware

2x Xeon
4 Threads
400x64 Mb/s

Intel 1 GB
E7500 DDR
Chipset RAM

[128]

2x64x66 Mb/s

4x2x100
MB/s

PCI-Busses

8x45 8x80

Figure 5: Simplified scheme of our experimental 1/O-platform.

Our starting point was the belief that the gap between theory and practice in external
memory parallel disk sorting can only be closed by demonstrating close to peak performance
on state of the art hardware. For us and probably other groups this was a nontrivial problem.
When we started we had several year old parallel disk hardware with a factor of ten lower
bandwidth than the state of the art. More recent alternatives were PCs with a 32bit 33MHz
PCI bus that are hopelessly limited in I/O bandwidth; a file server that could not be used
for experiments because it serves hundreds of researchers; and a high end compute server for
which a matching equipments with disks would have cost a six digit amount of money.

We therefore decided to configure a hardware platform for testing external memory algo-
rithms from scratch. The machine was bought in July 2002. The design objectives were high
bandwidth at low cost, and the use of standard components. The first challenge was to find
an affordable main-board that breaks out of the limitations of a 32bit 33MHz PCI bus. We
decided on a Supermicro SUPER P4DPE dual processor board with two 2GHz Intel Xeon
processors (512 KByte cache and 2 threads per processor) at a cost around 675+ 2 x 415€.
The board supports several independent 64bit PCI busses. Although we have not explic-
itly parallelized the sorter yet, the second processor is probably useful because it makes
overlapping of I/O and computation more effective. We bought 1GByte of RAM.

The next important design decision was to use IDE disks rather than SCSI disks because
they have higher capacity and similar I/O bandwidth than SCSI disks but are much cheaper.
We decided on IBM 120GXP disks that have 80 GByte capacity at 120 € each.There were
two difficulties to overcome however. It turned out that 64bit controllers are very expensive.

12

Fortunately it turned out that dual channel Promise 100 TX2 controllers are very cheap
(around 40 € each). They work with 32 bits and 66MHz. Four of them on two 66 MHz PCI
busses are sufficient to support eight disks at full bandwidth.’

The second problem was to find a casing that allows to connect eight IDE disks given
the limited cable length of the ATA standard. We choose a casing that has the shape of a
double-bigtower. It is cheaper than a comparable rack-mount casing and works with shorter
disk cables because the motherboard in the middle. We also use round disk cables that are
less bulky than the usual flat ones.

We installed Debian Linux with kernel version 2.4.20 on this machine. Then we began
with basic performance tests. Originally we thought that disk access via raw devices would
give maximal bandwidth. Interestingly, this was only true up to four disks. Beyond that,
the system started thrashing. We traced this problem down to the fact that there is some
software intervention for each chunk of 512 bytes. Apparently, this overwhelms the operating
system for too many disks. Good performance is obtained using unbuffered I/O in the ext2
file system where files are opened with the option 0_DIRECT and where addresses and block
sizes are multiples of the virtual memory page size. Only then is it possible on PC hardware
to move data directly from disk to user memory using DMA. We also decreased the number
of inodes (blocks with meta-data) to reduce file system overhead.

With these measures we obtain an input bandwidth of up to 375 MByte/s on eight disks
using the outermost (fastest) zones'® of the disks. This is 97 % of the peak bandwidth
specified by IBM. It was possible to attach a ninth disk obtaining 418 MByte/s. Bandwidth
scaling stopped with the tenth disk. Figure 5 outlines the configuration of our hardware.

The bottom line is that for a system that costs three to four times as much as a standard
PC with a single disk, we obtain eight times the I/O bandwidth. We believe that such a
system is a more likely candidate for running applications with massive data sets than an
ordinary PC and should therefore be preferred for performance studies of external memory
algorithms.

An interesting observation is, that measuring the main memory bandwidth with the
stream benchmark'' we see 1200 MBytes/s. This implies that any external memory algo-
rithm that accesses four bytes of main memory for each byte of I/O may already be compute
bound.

5 Experiments

If not otherwise mentioned, we use random 32 bit integer keys to keep internal work limited.
Runs of size 256 MByte!? are build using key sorting with an initial iteration of 10 bit MSD

In reality, incompatibilities between Linux and the controllers forced us to use five controllers in the
following configuration: three controllers with one disk each on PCI-bus 1, two controllers with two disks
each on PCI-busses 2 and 3, and one disk on the on-board controller.

1OModern disks store data at a roughly constant density so that the higher absolute speed of the outer
parts of the disk allow around twice as high bandwidth as the inner parts.

Unhttp://www.cs.virginia.edu/stream/

12This leaves space for two runs build in an overlapped way, buffers, operating system, code, and, for large
inputs, the fact that the current implementation of the ext?2 file system needs 1 byte of internal memory for

13

radix sort. We choose block sizes in such a way that a single merging phase using 512 MBytes
for all buffers suffices. Input sizes are powers of two between 2 GByte and 128 GByte with
a default of 16 GByte'®. When not otherwise stated, we use eight disks, 2 MByte blocks,
and the input is stored on the fastest zones. All programs are compiled with g++ version 3.2
and optimization level -06.

800 , ,

I I
—+— LEDA-SM

700 --X--- TPIE
--¥--- <stxxI> comparison based

600 [~

500

400 -

sort time [s]

300 C

200 - A B

100 -

0 L L L L L

16 32 64 128 256 512 1024
element size [byte]

Figure 6: Comparison of the single disk performance of <stxx1>, LEDA-SM, and TPIE.

To compare our code with previous implementations, we have to run them on the same
machine because technological development in recent years has been very fast. Unfortunately,
the implementations we could obtain, LEDA-SM [10] and TPIE [25], are limited to inputs
of size 2 GByte which for our machine is a rather small input. Figure 6 compares the single
disk performance of the three libraries. Using the best block size for each library. The
flat curves for TPIE and <stxx1> indicate that both codes are I/O bound even for small
element sizes. This is even true for the fully comparison based version of <stxx1>. Still,
<stxx1> is significantly faster than TPIE. This could be due to better overlapping of I/O and
computation or due to higher bandwidth of the file system calls we use. <stxx1> sustains
an I/O bandwidth of 45.4 MByte/s which is 95 % of the 48 MByte/s peak bandwidth of the
disk at their outermost zone. LEDA-SM is compute bound for small keys and has the same
performance as TPIE for large keys.

To get some kind of comparison for parallel disks, we run the other codes using Linux
Software-RAID 0.9 and 8 x 128KByte stripes (larger stripes did not improve performance).
Here <stxx1> is between two and three times faster than TPIE and and sustains an I/O
bandwidth of 315 MByte/s for large elements. Much of this advantage is lost when <stxx1>
also runs on the Software-RAID. Although we view as likely that the Software-RAID driver

each KByte of disk space accessed via 0_DIRECT.
13We have a few measurements with 256 GBytes but the problem with ext2 mentioned above starts to
distort the results for this input size.

14

sort time [s]

616

T T T T T
500 —+— LEDA-SM Soft-RAID
400 1 --X--- TPIE Soft-RAID
-- K- - <stxxl> Soft-RAID
300 00 >N 0 B <stxxI> —
200 |- .
- == ——— - - HXeeo
100 I e =
*-- - K
75+ n
1 Koo Hommmm *
50 | .
40) —
QS
2L ! ! — Ml ["
16 32 64 128 256 512 1024

element size [byte]

Figure 7: Comparison of of <stxx1>, LEDA-SM, and TPIE for eight disks.

time [s]

400 T T T T T
1 —+— run formation
350 |\ ~~X - merging i
>--1/0 wait in merge phase
o+ 1/O wait in run formation phase
300
250
200
150
100
_____ EIRRREEEE 3
50 - ¥ X s R T
Y T Joooooo-- PR i |
16 32 64 128 256 512 1024

element size [byte]

Figure 8: Dependence execution time and I/O wait time on the element size.

can be improved, this performance difference might also be an indication that treating disks

as independent devices is better than striping (as predicted by theory).

Figure 8 shows the dependence of performance on element size in more detail.
element sizes > 64, the merging phase starts to wait for I/Os and hence is I/O bound. The
run formation phase only becomes I/O bound for element sizes around 128. This indicates
areas for further optimization. For small elements, it should be better to replace key sorting
by sorters that always (or more often) move the entire elements. For example, we have
observed that the very simple loop that moves elements to the write buffer when the key-

15

— . X
- - v\ -
P\i. 1 N
o \\ \
£ XL
s 2 3 <
e LR
2 ¥
g
a -3
)
=
c
c -4 -
o
8
[]
° 5|
(&)
h
[J]
=
©

-6 |- —— 48 read buffers
--X--- 112 read buffers
- - K-- 1176 read bufflers

| |

0 20 40 60 80 100
fraction of prefetch buffers

Figure 9: Change in input time due to optimal prefetching.

T T T T

1 176 read buffers —— //|
— 112 read buffers -->--/
X, 48 read buffers -- -
(=)}
£
§ 0 — Y —
L N S =
o SN x---X
5 X=X
2
= a1k |
<
e
% 1
o i
5 -2
—_ — >K\ -
£ ol
© s

3 ! ! KK g
0 20 40 60 80 100

fraction of prefetch buffers [%]

Figure 10: Change in total merge time due to “optimal” prefetching.

pointer pairs are already sorted can take up to 45 % of the CPU time of run formation. For
small keys it looks also promising to use parallelism. Already our cheap machine supports
four parallel threads.

We now turn to a more detailed analysis of prefetching and overlapping of I/O and
computation. We first focus on the read buffers and hence fix the write buffer size to 4D
blocks in Figures 9-11. Figure 9 compares the I/O time of the naive algorithm that tries to
fetch blocks in the order specified by o with optimal prefetching. It varies the fraction of the
read buffer devoted to prefetching. As one would expect from the theoretical analysis in [11],

16

150 T T T T T T T 1
no prefetch buffer —+—
145 heuristic schedule -->--- |
140 - _
)
g 13t i
= y
c \
S 130 | -
@ \
IS \
125 -\ -
\
X\
120 N _
X\\\
115 1 1 - --K———=——%——%—1+

16 32 48 64 80 96 112 128 144 160172
number of read buffers

Figure 11: Impact of prefetch and overlap buffers on merging time.

145 T T T

140 -

135 -

130 -]

125 -]

merge time [s]

120 -

115 -]

110]]]
0 50 100 150 200
number of read buffers

Figure 12: Tradeoff: write buffer size versus read buffer size.

the I/O time decreases as this fraction grows. However, Figure 10 indicates that the overall
time needed for merging is best if most of the read buffer is dedicated to overlapping I/O
and computation. Only for very small read buffers there is a significant difference between
the naive algorithm and optimal prefetching.

In Figure 11 we compare the overall merging time for the naive algorithm and the fol-
lowing heuristics for choosing the prefetch buffer size w as a function of the read buffer size
rew=2D + 1%(7‘ — 2D). We have not shown the empirically optimal choice because it is
very close to this heuristics.

17

26 T T T T T
128 GBytes 1x merge —+—
] 128 GBytes 2x merge -->--
24 16 GBytes ---%--- 7|
T X—mmm Xo=mm o K
=
o
B —
£
Q
E .
5
n —
B 3
K----ooo ¥ -
12]]]]]

128 256 512 1024 2048 4096 8192
block size [KByte]

Figure 13: Dependence of sorting time on the block size.

Based on this heuristics for the read buffer, Figure 12 explores the tradeoff between read
buffer size and write buffer size given a total buffer size of 188 blocks. Although we see
the asymmetry between read buffer size and write buffer size predicted by the theoretical
analysis, it turns out that write buffers much larger than 2D blocks can be profitable. A
likely reason is that a write buffer of size w = aD blocks leads to an effective output block
size of (a — 1) B thus reducing seek times and perhaps also rotational delays. Based on this
observation, we use the following heuristics for the write buffer size in the subsequent figures:
w = max(t/4,2D) when the total number of buffer blocks available for read and write buffers
is ¢. The total number of blocks available in our measurements is t = (M — kB)/B where
M =512 MByte and k = [2N/M] is the number of runs.

Figure 13 shows the dependence of the execution time on the block size. We see that
block sizes of several MBytes are needed for good performance. The main reason is the well
known observation that blocks should consist of several disk tracks to amortize seeks and
rotational delays over a large consecutive data transfer. This figure is much larger than the
block sizes used in older studies because the data density on hard disks has dramatically
increased in the last years. This effect is further amplified in comparison to the SCSI disks
used in most other studies because modern IDE disks have even higher data densities but
larger rotational delays and less opportunities for seek time optimization.

Nevertheless, the largest possible block size is not optimal because it leaves too little
room for read and write buffers. Hence, in most measurements we use the heuristics to
choose half the largest possible block size that is a power of two.

For very large inputs, Figure 13 shows that we already have to go below the “really
good” block sizes because of lack of buffer space. Still, it is not a good idea to switch to two
merge passes because the overall time increases even if we are able to stick to large block
sizes with more passes. The large optimal block sizes are an indicator that “asymptotically
efficient” can also translate into “practically relevant” because simpler suboptimal parallel

18

sort time [ns/byte]

5 | -
128-byte elements —+—
512-byte elements —-X--

| 4N/DBlbqu I/Os ---%--
0
16 32 64 128

input size [GByte]

Figure 14: Dependence of sorting time on the input size.

disk algorithms often use logical blocks striped over the disks. On our system this leads to
a further reduction of the possible block size by a factor of about eight.

Finally, Figure 14 shows the overall performance for different input size using all the
heuristics introduced above. Although we can stick to two passes, the execution time per
element goes up because we need to employ slower and slower zones, because the block sizes
go down, and because the seek times during merging go up.

6 Discussion

We have engineered a sorting algorithm that combines very high performance on state of the
art hardware with theoretical performance guarantees. This algorithm is compute bound
although we use small random keys and a tuned linear time algorithm for run formation.
Similar observations are likely to apply to all external memory algorithms that exhibit good
spatial locality, i.e. those dominated by scanning, sorting, and similar operations. This
indicates that bandwidth is no longer a limiting factor for external memory algorithms if
parallel disks are used. Furthermore, the low price of our hardware platform indicates that
whenever I/O bandwidth it an issue, the price performance ratio can actually improve by
adding disks.

On the other hand, the fact that it is challenging to sustain peak bandwidth for eight
disks on a dual processor system implies that using even more disks requires more aggressive
use of parallel processing. Currently it is not clear however how to achieve that in a cost
efficient way. Cheap networks with 100Mbit/s Ethernet support only about one fifth the
bandwidth of a cheap disk. Even Gigabit Ethernet is not an answer.

Algorithmically, several promising improvements remain even for small cheap machines:
There are several ways to speed up run formation for small elements. During merging,

19

it would be good to reduce seek times for large inputs, either by some clever compromise
between seek minimization and prefetching, or by switching to distribution sort that can be
implemented to have inherently low seek overhead.

As <stxx1> will grow beyond the limits of the STL, it is even more important to integrate
sorting tightly into the library. As in database systems, good implementations of external
memory algorithms move data in a pipelined fashion between various scanning and sorting
filters. This pipelining has to be supported in a robust way. For example, we need a memory
management that works robustly even if several sorts go on at the same time.

Acknowledgements

We would like to thank Andreas Crauser, David Hutchinson, Lutz Kettner, and Jeff Vitter
for valuable discussions. Soumyadeb Mitra and Nitin Rajput implemented a prototype par-
allel disk sorter during an internship. This experience helped with several design decisions.
Our computer support group made several useful recommendations about configuring the
machine. Andrew Morton helped with performance aspects of Linux.

References

[1] R. C. Agarwal. A super scalar sort algorithm for RISC processors. In SIGMOD, pages
240-247. ACM, 1996.

2] A. Aggarwal and J. S. Vitter. The input/output complexity of sorting and related
problems. Communications of the ACM, 31(9):1116-1127, 1988.

(3] S. Albers, N. Garg, and S. Leonardi. Minimizing stall time in single and parallel disk
systems. In Proceedings of the 30th Annual ACM Symposium on Theory of Computing
(STOC-98), pages 454-462, New York, May 23-26 1998. ACM Press.

[4] L. Arge, O. Procopiuc, and J. S. Vitter. Implementing i/o-efficient data structures using
TPIE. In 10th European Symposium on Algorithms (ESA), volume 2461 of LNCS, pages
88-100. Springer, 2002.

[5] R. D. Barve, E. F. Grove, and J. S. Vitter. Simple randomized mergesort on parallel
disks. Parallel Computing, 23(4):601-631, 1997.

6] R. D. Barve and J. S. Vitter. A simple and efficient parallel disk merge sort. In 11th
ACM Symposium on Parallel Algorithms and Architectures, pages 232-241, 1999.

[7] Pei Cao, Edward W. Felten, Anna R. Karlin, and Kai Li. Implementation and perfor-
mance of integrated application-controlled file caching, prefetching and disk scheduling.
ACM Transactions on Computer Systems, 14(4):311-343, November 1996.

[8] G. Chaudhry and T. H. Cormen. Getting more from out-of-core columnsort. In /th
Workshop on Algorithm Engineering and Ezperiments (ALENEX), number 2409 in
LNCS, pages 143-154, 2002.

20

9] G. Chaudhry, T. H. Cormen, and L. F. Wisniewski. Columnsort lives! an efficient
out-of-core sorting program. In 13th ACM Symposium on Parallel Algorithms and Ar-
chitectures, pages 169-178, 2001.

[10] A. Crauser and K. Mehlhorn. LEDA-SM a platform for secondary memory computa-
tions. Technical report, MPII, 2000. draft.

[11] D. A. Hutchinson, P. Sanders, and J. S. Vitter. Duality between prefetching and queued
writing with parallel disks. In 9th European Symposium on Algorithms (ESA), number
2161 in LNCS, pages 62-73. Springer, 2001.

[12] M. Kallahalla and P.J. Varman. Optimal prefetching and caching for parallel I/O
systems. In ACM Symposium on Parallel Architectures and Algorithms, pages 219-228,
2001.

[13] Tracy Kimbrel and Anna R. Karlin. Near-optimal parallel prefetching and caching.
SIAM Journal on Computing, 29(4):1051-1082, 2000.

[14] D. E. Knuth. The Art of Computer Programming — Sorting and Searching, volume 3.
Addison Wesley, 2nd edition, 1998.

[15] P. Larson and G. Graefe. Memory management during run generation in external
memory. In SIGMOD, pages 472-484. ACM, 1998.

[16] M. H. Nodine and J. S. Vitter. Deterministic distribution sort in shared and distributed
memory multiprocessors. In 5th ACM Symposium on Parallel Algorithms and Architec-
tures, pages 120-129, Velen, Germany, 1993.

[17] M. H. Nodine and J. S. Vitter. Greed sort: An optimal sorting algorithm for multiple
disks. Journal of the ACM, 42(4):919-933, 1995.

[18] C. Nyberg, T. Barclay, Z. Cvetanovic, J. Gray, and D. Lomet. AlphaSort: A RISC
machine sort. In SIGMOD, pages 233-242, 1994.

[19] C. Nyberg, C. Koester, and J. Gray. Nsort: A parallel sorting program for NUMA and
SMP machines, 2000. http://www.ordinal.com/lit.html.

[20] V. S. Pai and P. J. Varman. Prefetching with multiple disks for external mergesort:
Simulation and analysis. In ICDE, pages 273-282, 1992.

[21] S. Rajasekaran. A framework for simple sorting algorithms on parallel disk systems. In
10th ACM Symposium on Parallel Algorithms and Architectures, pages 88—98, 1998.

[22] P. Sanders, S. Egner, and J. Korst. Fast concurrent access to parallel disks. In 11th
ACM-SIAM Symposium on Discrete Algorithms, pages 849-858, 2000.

[23] Peter Sanders. Fast priority queues for cached memory. ACM Journal of Experimental
Algorithmics, 5, 2000.

21

[24]

[25]

[26]

[27]

28]

[29]

J. van den Bercken, B. Blohsfeld J-P. Dittrich, J. Kramer, T. Schafer, M. Schneider, and
B. Seeger. XXL - a library approach to supporting efficient implementations of advanced
database queries. In 27th International Conference on Very Large Data Bases, pages
39-48. Morgan Kaufmann, 2001.

J. van den Bercken, J-P. Dittrich, and B. Seeger. java.XXL: A prototype for a library
of query processing algorithms. In International Conference on Management of Data,
volume 29(2), page 588. ACM, 2000.

D. E. Vengroff. TPIE User Manual and Reference. Duke University, 1995. http:
//www.cs.duke.edu/"dev/tpie_home_page.html.

J. S. Vitter and D. A. Hutchinson. Distribution sort with randomized cycling. In 12th
ACM-SIAM Symposium on Discrete Algorithms, pages 77-86, 2001.

J.S. Vitter and E. A. M. Shriver. Algorithms for parallel memory, I: Two level memories.
Algorithmica, 12(2/3):110-147, 1994.

J. Wyllie. SPsort: How to sort a terabyte quickly. http://research.microsoft.com/
barc/SortBenchmark/SPsort.pdf, 1999.

22

o

INFORMATIK

Below you find a list of the most recent technical reports of the Max-Planck-Institut fiir Informatik. They
are available by anonymous ftp from ftp.mpi-sb.mpg.de under the directory pub/papers/reports. Most
of the reports are also accessible via WWW using the URL http://www.mpi-sb.mpg.de. If you have any
questions concerning ftp or WWW access, please contact reports@mpi-sb.mpg.de. Paper copies (which
are not necessarily free of charge) can be ordered either by regular mail or by e-mail at the address below.

Max-Planck-Institut fiir Informatik
Library

attn. Anja Becker
Stuhlsatzenhausweg 85

66123 Saarbriicken

GERMANY

e-mail: library@mpi-sb.mpg.de

MPI-1-2003-2-001

MPI-1-2002-4-002

MPI-1-2002-4-001

MPI-1-2002-2-008

MPI-1-2002-2-007

MPI-1-2002-1-008

MPI-1-2002-1-005

MPI-1-2002-1-004
MPI-1-2002-1-003

MPI-1-2002-1-002
MPI-1-2002-1-001

MPI-1-2001-4-005

MPI-1-2001-4-004

MPI-1-2001-4-003

MPI-1-2001-4-002

MPI-1-2001-4-001

MPI-1-2001-2-006

MPI-1-2001-2-005

MPI-1-2001-2-004

P. Maier

F. Drago, W. Martens, K. Myszkowski,
H. Seidel

M. Goesele, J. Kautz, J. Lang,

H.P.A. Lensch, H. Seidel

W. Charatonik, J. Talbot
W. Charatonik, H. Ganzinger

P. Sanders, J.L. Traff

M. Hoefer

S. Hert, T. Polzin, L. Kettner, G. Schifer
I. Katriel, P. Sanders, J.L. Traff

F. Grandoni
T. Polzin, S. Vahdati

H.P.A. Lensch, M. Goesele, H. Seidel
S.W. Choi, H. Seidel

K. Daubert, W. Heidrich, J. Kautz,
J. Dischler, H. Seidel

H.P.A. Lensch, J. Kautz, M. Goesele,
H. Seidel

H.P.A. Lensch, J. Kautz, M. Goesele,
W. Heidrich, H. Seidel

H. Nivelle, S. Schulz

V. Sofronie-Stokkermans

H. de Nivelle

Compositional Circular Assume-Guarantee Rules
Cannot Be Sound And Complete

Perceptual Evaluation of Tone Mapping Operators with
Regard to Similarity and Preference

Tutorial Notes ACM SM 02 A Framework for the
Acquisition, Processing and Interactive Display of High
Quality 3D Models

Atomic Set Constraints with Projection

Symposium on the Effectiveness of Logic in Computer
Science in Honour of Moshe Vardi

The Factor Algorithm for All-to-all Communication on
Clusters of SMP Nodes

Performance of heuristic and approximation algorithms
for the uncapacitated facility location problem

Exp Lab A Tool Set for Computational Experiments

A Practical Minimum Scanning Tree Algorithm Using
the Cycle Property

Incrementally maintaining the number of I-cliques
Using (sub)graphs of small width for solving the Steiner
problem

A Framework for the Acquisition, Processing and
Interactive Display of High Quality 3D Models

Linear One-sided Stability of MAT for Weakly Injective

Domain

Efficient Light Transport Using Precomputed Visibility

A Framework for the Acquisition, Processing,
Transmission, and Interactive Display of High Quality
3D Models on the Web

Image-Based Reconstruction of Spatially Varying
Materials

Proceeding of the Second International Workshop of the
Implementation of Logics

Resolution-based decision procedures for the universal
theory of some classes of distributive lattices with
operators

Translation of Resolution Proofs into Higher Order
Natural Deduction using Type Theory

MPI-1-2001-2-003

MPI-1-2001-2-002

MPI-1-2001-2-001

MPI-1-2001-1-007

MPI-I-2001-1-006

MPI-I1-2001-1-005

MPI-1-2001-1-004

MPI-1-2001-1-003
MPI-1-2001-1-002

MPI-1-2001-1-001
MPI-1-2000-4-003

MPI-1-2000-4-002

MPI-1-2000-4-001

MPI-1-2000-2-001

MPI-I-2000-1-005

MPI-I-2000-1-004

MPI-I-2000-1-003

MPI-1-2000-1-002
MPI-I-2000-1-001

MPI-1-1999-4-001

MPI-1-1999-3-005
MPI-1-1999-3-004
MPI-1-1999-3-003

MPI-1-1999-3-002

MPI-1-1999-3-001

MPI-1-1999-2-008

MPI-1-1999-2-007
MPI-1-1999-2-006

MPI-1-1999-2-005
MPI-1-1999-2-004

MPI-1-1999-2-003

MPI-1-1999-2-001
MPI-1-1999-1-007

S. Vorobyov

P. Maier

U. Waldmann

T. Polzin, S. Vahdati

T. Polzin, S. Vahdati
T. Polzin, S. Vahdati

S. Hert, M. Hoffmann, L. Kettner, S. Pion,
M. Seel

M. Seel
U. Meyer

P. Krysta
S.W. Choi, H. Seidel

L.P. Kobbelt, S. Bischoff, K. Kéhler,
R. Schneider, M. Botsch, C. Rossl,
J. Vorsatz

J. Kautz, W. Heidrich, K. Daubert
F. Eisenbrand

M. Seel, K. Mehlhorn

K. Mehlhorn, S. Schirra

P. Fatourou

R. Beier, J. Sibeyn

E. Althaus, O. Kohlbacher, H. Lenhof,
P. Miiller

J. Haber, H. Seidel

T.A. Henzinger, J. Raskin, P. Schobbens
J. Raskin, P. Schobbens
T.A. Henzinger, J. Raskin, P. Schobbens

J. Raskin, P. Schobbens
S. Vorobyov

A. Bockmayr, F. Eisenbrand

G. Delzanno, J. Raskin
A. Nonnengart

J. Wu

V. Cortier, H. Ganzinger, F. Jacquemard,
M. Veanes

U. Waldmann

W. Charatonik
C. Burnikel, K. Mehlhorn, M. Seel

Experiments with Iterative Improvement Algorithms on
Completely Unimodel Hypercubes

A Set-Theoretic Framework for Assume-Guarantee
Reasoning

Superposition and Chaining for Totally Ordered
Divisible Abelian Groups

Extending Reduction Techniques for the Steiner Tree
Problem: A Combination of Alternative-and
Bound-Based Approaches

Partitioning Techniques for the Steiner Problem

On Steiner Trees and Minimum Spanning Trees in
Hypergraphs

An Adaptable and Extensible Geometry Kernel

Implementation of Planar Nef Polyhedra

Directed Single-Source Shortest-Paths in Linear
Average-Case Time

Approximating Minimum Size 1,2-Connected Networks

Hyperbolic Hausdorff Distance for Medial Axis
Transform

Geometric Modeling Based on Polygonal Meshes

Bump Map Shadows for OpenGL Rendering

Short Vectors of Planar Lattices Via Continued
Fractions

Infimaximal Frames: A Technique for Making Lines
Look Like Segments

Generalized and improved constructive separation
bound for real algebraic expressions

Low-Contention Depth-First Scheduling of Parallel
Computations with Synchronization Variables

A Powerful Heuristic for Telephone Gossiping

A branch and cut algorithm for the optimal solution of
the side-chain placement problem

A Framework for Evaluating the Quality of Lossy Image
Compression

Axioms for Real-Time Logics
Proving a conjecture of Andreka on temporal logic

Fully Decidable Logics, Automata and Classical
Theories for Defining Regular Real-Time Languages

The Logic of Event Clocks

New Lower Bounds for the Expressiveness and the
Higher-Order Matching Problem in the Simply Typed
Lambda Calculus

Cutting Planes and the Elementary Closure in Fixed
Dimension

Symbolic Representation of Upward-closed Sets

A Deductive Model Checking Approach for Hybrid
Systems

Symmetries in Logic Programs

Decidable fragments of simultaneous rigid reachability

Cancellative Superposition Decides the Theory of
Divisible Torsion-Free Abelian Groups

Automata on DAG Representations of Finite Trees

A simple way to recognize a correct Voronoi diagram of
line segments

MPI-1-1999-1-006 ~ M. Nissen Integration of Graph Iterators into LEDA
MPI-1-1999-1-005 J.F. Sibeyn Ultimate Parallel List Ranking ?

MPI-1-1999-1-004 M. Nissen, K. Weihe How generic language extensions enable “open-world”
desing in Java

