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Abstra
t

The un
apa
itated fa
ility lo
ation problem (UFLP) is a problem that has

been studied intensively in operational resear
h. Re
ently a variety of new

deterministi
 and heuristi
 approximation algorithms have evolved. In this

paper, we 
ompare �ve new approa
hes to this problem - the JMS- and the

MYZ-approximation algorithms, a version of lo
al sear
h, a Tabu Sear
h

algorithm as well as a version of the Volume algorithm with randomized

rounding. We 
ompare solution quality and running times on di�erent stan-

dard ben
hmark instan
es. With these instan
es and additional material a

web page was set up [26℄, where the material used in this study is a

essible.
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1 Introdu
tion

The problem of lo
ating fa
ilities and 
onne
ting 
lients at minimum 
ost has been

one of the most studied problems in Operations Resear
h. In this paper we fo
us

on one of the simplest settings, the un
apa
itated fa
ility lo
ation problem (UFLP).

The UFLP 
an be des
ribed as follows. We are given n possible fa
ility lo
ations

and m 
ities. Let F denote the set of fa
ilities and C the set of 
ities. Furthermore

there are non-negative opening 
osts f

i

for ea
h fa
ility i 2 F and 
onne
tion 
osts




ij

for ea
h 
onne
tion between a fa
ility i and a 
ity j. The problem is to open a


olle
tion of fa
ilities and 
onne
t ea
h 
ity to exa
tly one fa
ility at minimum 
ost.

The integer programming formulation of the UFLP is due to Balinski [5℄:

Min z =

P

ij




ij

x

ij

+

P

i

y

i

f

i

,

subje
t to

P

i

x

ij

= 1 for all j 2 C,

y

i

� x

ij

� 0 for all j 2 C, i 2 F ,

x

ij

; y

i

2 f0; 1g.

We get the LP relaxation of this problem by setting x

ij

; y

i

2 [0; 1℄. This LP

relaxation is known to provide ex
ellent lower bounds.

Instead of solving this problem to optimality, we will fo
us on �nding approximate

solutions. In the following we will present �ve methods, whi
h are originating in

di�erent areas of optimization resear
h. We will 
ompare two approximation algo-

rithms, two heuristi
s based on lo
al sear
h and one on LP-based approximation

and rounding, whi
h were re
ently developed and found to work good in pra
ti
e.

2 Methods

2.1 Approximation algorithms

Re
ently a lot of approximation algorithms have evolved for the metri
 version of

the UFLP in whi
h the 
onne
tion 
ost fun
tion 
 satis�es the triangular inequality.

A 
ouple of di�erent te
hniques were used in these algorithms like LP-rounding

([12, 24℄), greedy augmentation ([11℄) or primal-dual methods ([20, 11℄). In terms

of 
omputational hardness Guha and Khuller [14℄ showed that it is impossible to

a
hieve an approximation guarantee of 1.463 unless NP 2 DTIME[n

O(log log n)

℄.

From the �eld of approximation algorithms we 
hose two of the newest and most

promising variants.
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2.1.1 JMS-Algorithm

The JMS-Algorithm uses a greedy method to improve the solution. The notion of

time that is involved was introdu
ed in an earlier 3-approximation algorithm by Jain

and Vazirani [20℄. Later on Mahdian et al. [21℄ translated the primal-dual s
heme

into a greedy 1.861-approximation algorithm. In the third paper Jain, Mahdian and

Sabieri [19℄ presented the JMS-Algorithm (JMS), whi
h improved the approximation

bound to 1.61. However, it had a slightly worse 
omplexity of O(n

3

) instead of

O(n

2

log n).

The following sket
h of JMS is taken from [22℄:

1. At �rst all 
ities are un
onne
ted, all fa
ilities unopened, and the budget of

every 
ity j, denoted by B

j

, is initialized to 0. At every moment, ea
h 
ity j

o�ers some money from its budget to ea
h unopened fa
ility i. The amount of

this o�er is equal to max(B

j

� 


ij

; 0) if j is un
onne
ted, and max(


i

0

j

� 


ij

; 0)

if it is 
onne
ted to some other fa
ility i

0

.

2. While there is an un
onne
ted 
ity, in
rease the budget of ea
h un
onne
ted


ity at the same rate, until one of the following events o

urs:

(a) For some unopened fa
ility i, the total o�er that it re
eives from 
ities

is equal to the 
ost of opening i. In this 
ase, we open fa
ility i, and for

every 
ity j (
onne
ted or un
onne
ted) whi
h has a non-zero o�er to i,

we 
onne
t j to i.

(b) For some un
onne
ted 
ity j, and some fa
ility i that is already open, the

budget of j is equal to the 
onne
tion 
ost 


ij

. In this 
ase, we 
onne
t j

to i.

One important property of the solution of this algorithm is that it 
annot be im-

proved by simply opening an unopened fa
ility. This is the main advantage over the

previous 1.861-algorithm in [21℄. In [19℄ experiments revealed an appealing behavior

of JMS in pra
ti
e.

2.1.2 MYZ Algorithm

The MYZ algorithm 
ould further improve the approximation fa
tor of JMS. Mah-

dian, Ye and Zhang [22℄ applied s
aling and greedy augmentation to the algorithm.

For the resulting MYZ Algorithm (MYZ) the authors 
ould prove an approximation

fa
tor of 1.52 for the metri
 UFLP, whi
h is the best known so far for this problem

for any algorithm.

MYZ is outlined below. In step 4 of the algorithm C is the total 
onne
tion 
ost of

the present solution and C

0

the 
onne
tion 
ost after opening a fa
ility u.
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1. S
ale up all opening 
osts by a fa
tor of Æ = 1:504

2. Solve the s
aled instan
e with JMS

3. S
ale down all opening 
osts by the same fa
tor Æ

4. while there is a unopened fa
ility u, for whi
h the ratio (C � C

0

� f

u

)=f

u

is

maximized and positive, open fa
ility u and update solution

2.2 Heuristi
 and randomized algorithms

In terms of meta-heuristi
s there has not been su
h an intense resear
h a
tivity.

A simulated annealing algorithm [3℄ was developed, whi
h produ
es good results

to the expense of high 
omputation 
osts. Tabu sear
h algorithms have been very

su

essful in solving the UFLP (see [2, 23, 25℄). A very elaborate geneti
 algorithm

has been proposed by Krati
a et al. over a series of papers ([16, 17, 18℄). Their �nal

version involves 
lever implementation te
hniques and �nds optimal solutions for all

the examined ben
hmarks.

2.2.1 Tabu Sear
h

In [23℄ Van Hentenry
k and Mi
hel proposed a simple tabu sear
h algorithm that

works very fast and outperforms the geneti
 algorithm in [18℄ in terms of solution

quality, robustness and exe
ution time. Therefore we used this algorithm in our


omparative study.

The tabu sear
h algorithm uses a slightly di�erent representation of the problem.

For a solution of the UFLP it is enough to know the set S � F of opened fa
ilities.

Cities are 
onne
ted to the 
heapest opened fa
ility, i.e. 
ity j is 
onne
ted to i 2 S

with 


ij

= min

i

0

2S




i

0

j

. A neighborhood move from S to S

0

is de�ned as 
ipping the

status of a fa
ility from opened to 
losed (S

0

= Sni) or vi
e versa (S

0

= S[ i). When

the status of a fa
ility was 
ipped, 
ipping ba
k this fa
ility be
omes prohibited

(i.e. tabu) for a number of iterations. The number of iterations is adjusted using

a standard s
heme (see [23℄ for details). The high level algorithm 
an be stated as

follows:

1. S  an arbitrary feasible solution

2. Set 
ost(S

�

) =1

3. do

4. bestgain = maximum 
ost savings over all possible non-tabu 
ips

5. if (bestgain > 0)
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6. Apply random 
ip with best gain, update tabu lists and list length

7. else 
lose random fa
ility

8. Update S - 
onne
tions of 
ities and datastru
tures

9. if (
ost(S) < 
ost(S

�

)) do S

�

 S

10. while 
hange of S

�

in the last 500 iterations

11. return S

�

For every 
ity j the algorithm uses three pie
es of information: The number of

the opened fa
ility with the 
heapest 
onne
tion to j, the 
ost of this 
onne
tion

and the 
ost of the se
ond 
heapest 
onne
tion to an opened fa
ility. With this

information the gains of opening and 
losing a fa
ility 
an be updated in
rementally

in step 8. Thereby a dire
t evaluation of the obje
tive fun
tion 
an be avoided. The

algorithm uses priority queues to determine the se
ond 
heapest 
onne
tions for

ea
h 
ity. Due to these te
hniques the algorithm has a running time of O(m log n)

in ea
h iteration.

2.2.2 Lo
al Sear
h

The lo
al sear
h 
ommunity has only paid limited attention to the UFLP so far.

Apart from the tabu sear
h algorithms there have been a few simple lo
al sear
h

pro
edures proposed in [15, 11℄. In this paper we use the simple version of Arya et

al [4℄, whi
h 
an be stated as follows:

1. S  an arbitrary feasible solution

2. while there is an operation op su
h that


ost of op(S) � (1�

�

p(n;m)

)
ost(S)

do S  op(S)

3. return S

The solution S again is the set of opened fa
ilities. The operation op is de�ned

as opening or 
losing a fa
ility or ex
hanging the status of an opened and a 
losed

fa
ility. The parameters were set to � = 0:1 and p(n;m) = n+m. For this algorithm

the authors 
ould prove an approximation guarantee of 3 on metri
 instan
es.

To improve the running time of the algorithm we in
orporated the use of in
remental

datastru
tures from the Tabu sear
h algorithm and preferen
es for the simple moves

as follows. We generally prefer applying the simple 
ips of opening and 
losing a

fa
ility (denoted as ops). As in the Tabu Sear
h we apply one random 
ip of the
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ips resulting in best gain of the 
ost fun
tion. When these 
ips do not satisfy the

a

eptan
e 
ondition, we pi
k an ex
hange move that would give enough improve-

ment. If there is no su
h move left the algorithm stops. The modi�ed version 
an be

stated as follows:

1. S  an arbitrary feasible solution

2. exitloop false

3. while exitloop = false

4. while there is an ops su
h that 
ost(ops(S)) � (1�

�

p(n;m)

) 
ost(S)

5. �nd a random ops

�

of the ops with best gain

6. do S  ops

�

(S)

7. if there is an op su
h that 
ost(op(S)) � (1�

�

p(n;m)

) 
ost(S)

8. do S  op(S)

9. else exitloop true

10. return S

Arya et al. suggested that the algorithm should be 
ombined with the standard

s
aling te
hniques [11℄ to improve the approximation fa
tor to 2.414. Interestingly

this version performs inferior in pra
ti
e. Therefore the version without s
aling (de-

noted as LOCAL) was used for the 
omparison with the other algorithms. A 
om-

parison between the uns
aled and s
aled versions 
an be found in se
tion 3.5.

2.2.3 Volume algorithm

For some of the test instan
es we obtained a lower bound using a version of the

Volume algorithm, whi
h was developed by Barahona in [7℄. The Volume algorithm

is an iterated subgradient optimization pro
edure, whi
h is able to provide a primal

solution and a lower bound on the optimal solution 
ost. To improve solution quality

and speed up the 
omputation Barahona and Chudak [8℄ used the rounding heuristi


(RRWC) presented in [12℄ to �nd good upper bounds on the optimal dual solution


ost and therefore redu
e the iterations of the Volume algorithm. However, this

approa
h has generally very high exe
ution times in 
omparison to the other methods

presented here. Instead we used a faster version of this algorithm whi
h uses only

a basi
 randomized rounding pro
edure and slightly di�erent parameter settings. It

will be denoted by V&RR and is available on the web page of the COIN-OR proje
t
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by IBM [6℄. Regarding solution quality and running time this algorithm is generally

inferior to the other algorithms. The results should only be seen as ben
hmark values

of available optimization 
ode. We will not go into detail des
ribing the method, the


ode or the parameter settings here. The interested reader is referred to [6, 7, 8℄ for

the spe
i�
 details of the algorithm and the implementation.

3 Experiments

We tested all given algorithms on several sets of ben
hmark instan
es. The instan
es

were 
hosen to 
over di�erent types of fa
ility lo
ation problems. First we studied

the Bilde-Krarup ben
hmarks, whi
h were proposed in [10℄. These are non-metri


small s
ale instan
es with n � m = 30 � 80 - 50 � 100. Next we fo
used on small

s
ale ben
hmarks proposed by Galv~ao and Raggi in [13℄. These are metri
 instan
es

with n = m = 50 - 200. Then we examined the performan
e on the 
ap instan
es

from the ORLIB [9℄ and the M* instan
es, whi
h were proposed in [18℄. These are

non-metri
 small and medium sized instan
es with n�m = 16� 50 - 2000� 2000.

Finally we studied metri
 large s
ale instan
es with n = m = 500�3000, whi
h were

proposed in [1℄ and used as UFLP ben
hmarks in [7℄. On all instan
es we averaged

over the performan
e of 20 runs for ea
h algorithm. The experiments were done on

a 866Mhz Intel Pentium III running Linux. For most problems we used CPLEX to

solve the problems to optimality. The CPLEX-runs were done on a 333Mhz Sun

Enterprise 10000 with UltraSPARC pro
essors running UNIX. The exe
ution times

are about a fa
tor of 2.5 times higher than the times for the algorithms.

With all ben
hmark instan
es, implementations of all algorithms and ben
hmark

generators a web page was set up. All material used in this study 
an be a

essed

online at the U
Lib [26℄.

3.1 Bilde-Krarup Instan
es

The Bilde-Krarup instan
es are small s
ale instan
es of 22 di�erent types. The 
osts

for the di�erent types are 
al
ulated with the parameters given in Table 1. As the

exa
t instan
es are not known, we generated 10 test instan
es for ea
h problem type.

In Table 2 we report the results for the deterministi
 algorithms and in Table 3 the

results for the heuristi
 and randomized algorithms. In 
olumns 'Opt' we report the

number of instan
es that 
ould be solved to optimality. For the heuristi
 algorithms

we also report the average per
entage of runs on the instan
es solved to optimality

that ended with an optimal solution. In 
olumns 'Error' we report the average error

of the �nal solution, in 
olumns 'Time' the average exe
ution time in se
onds. In


olumn 'CPX' we denoted the average running time of CPLEX to solve the instan
es.

The deterministi
 algorithms perform quite good in these instan
es. The average

error is 2.607% at maximum although the problems are not of metri
 nature. MYZ
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Type Size f

i




ij

B 50x100 Dis
rete Uniform (1000, 10000) Dis
rete Uniform (0,1000)

C 50x100 Dis
rete Uniform (1000, 2000) Dis
rete Uniform (0,1000)

Dq* 30x80 Identi
al, 1000*q Dis
rete Uniform (0,1000)

Eq* 50x100 Identi
al, 1000*q Dis
rete Uniform (0,1000)

* q=1,...,10

Table 1: Parameters for the Bilde-Krarup problem 
lasses

Type CPX JMS MYZ

Opt Error Time Opt Error Time

B 6.859 5 0.416% 0.003 4 0.588% 0.003

C 107.558 1 1.750% 0.003 3 0.886% 0.003

D1 21.591 0 2.445% 0.001 1 1.689% 0.002

D2 30.990 1 1.675% 0.002 2 1.133% 0.002

D3 28.103 1 2.607% 0.002 4 0.923% 0.002

D4 26.685 3 0.796% 0.002 3 0.597% 0.002

D5 22.368 4 0.647% 0.002 7 0.085% 0.002

D6 28.393 2 1.042% 0.002 3 1.315% 0.002

D7 24.484 1 1.771% 0.002 6 0.664% 0.002

D8 20.947 4 1.587% 0.002 4 1.044% 0.002

D9 22.326 7 0.846% 0.002 9 0.012% 0.002

D10 19.122 7 0.252% 0.002 8 0.189% 0.002

E1 133.839 2 2.265% 0.003 3 1.317% 0.003

E2 229.305 2 1.650% 0.003 4 0.845% 0.003

E3 190.860 2 1.610% 0.003 2 0.940% 0.003

E4 185.168 3 1.192% 0.003 3 0.781% 0.004

E5 163.571 1 2.560% 0.003 7 0.690% 0.004

E6 173.918 4 1.049% 0.003 5 0.661% 0.004

E7 164.845 5 0.759% 0.004 5 0.613% 0.004

E8 180.186 1 1.474% 0.004 4 0.887% 0.004

E9 174.150 3 1.232% 0.004 6 0.674% 0.004

E10 148.229 4 0.775% 0.004 6 0.404% 0.004

Table 2: Results for the deterministi
 algorithms
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Type LOCAL TABU-Sear
h V&RR

Opt Error Time Opt Error Time Opt Error Time

B 8, [100 ℄ 0.046% 0.012 10, [100 ℄ 0.000% 0.053 10, [69.5℄ 0.419% 0.421

C 5, [84.0℄ 0.848% 0.014 7, [91.43℄ 0.245% 0.055 1, [5.0℄ 4.454% 0.525

D1 3,[81.7℄ 1.678% 0.006 6,[90.8℄ 0.241% 0.038 1,[15.0℄ 3.719% 0.239

D2 2,[100 ℄ 1.758% 0.006 9,[73.9℄ 0.537% 0.044 2,[22.5℄ 3.083% 0.254

D3 3,[96.7℄ 0.879% 0.006 9,[99.4℄ 0.073% 0.042 3,[30.0℄ 2.245% 0.235

D4 8,[89.4℄ 0.530% 0.006 10,[100 ℄ 0.000% 0.041 9,[36.1℄ 1.248% 0.243

D5 6,[97.5℄ 0.402% 0.006 10,[94.0℄ 0.004% 0.040 8,[47.5℄ 0.995% 0.246

D6 5,[100 ℄ 0.882% 0.006 9,[96.7℄ 0.146% 0.042 7,[60.0℄ 0.919% 0.259

D7 8,[100 ℄ 0.354% 0.005 10,[100 ℄ 0.000% 0.042 10,[79.5℄ 0.214% 0.251

D8 7,[90.0℄ 1.000% 0.006 9,[100 ℄ 0.166% 0.043 8,[50.6℄ 1.390% 0.259

D9 8,[100 ℄ 0.285% 0.006 10,[100 ℄ 0.000% 0.043 10,[73.0℄ 0.496% 0.256

D10 7,[90.7℄ 0.760% 0.006 10,[92.5℄ 0.139% 0.043 10,[74.0℄ 0.506% 0.268

E1 1,[100 ℄ 1.430% 0.013 10,[57.0℄ 0.388% 0.062 0,[ 0.0℄ 5.712% 0.516

E2 3,[45.0℄ 2.712% 0.013 10,[93.5℄ 0.006% 0.067 0,[ 0.0℄ 4.479% 0.560

E3 4,[93.8℄ 0.784% 0.012 7,[89.3℄ 0.268% 0.061 5,[10.0℄ 3.419% 0.553

E4 3,[80.0℄ 1.577% 0.013 9,[100 ℄ 0.013% 0.060 4,[11.3℄ 2.505% 0.581

E5 4,[73.8℄ 2.019% 0.013 10,[100 ℄ 0.000% 0.062 9,[23.3℄ 1.924% 0.546

E6 7,[79.3℄ 0.969% 0.013 10,[100 ℄ 0.000% 0.062 10,[22.0℄ 1.981% 0.602

E7 6,[86.7℄ 0.996% 0.015 10,[100 ℄ 0.000% 0.063 6,[19.2℄ 1.802% 0.586

E8 4,[100 ℄ 1.043% 0.014 10,[89.5℄ 0.177% 0.067 6,[61.7℄ 1.318% 0.585

E9 7,[92.9℄ 0.655% 0.013 10,[100 ℄ 0.000% 0.066 9,[46.7℄ 0.896% 0.592

E10 8,[92.5℄ 0.948% 0.013 10,[100 ℄ 0.000% 0.066 10,[50.0℄ 0.864% 0.598

Table 3: Results for the heuristi
 and randomized algorithms
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Size Æ Parameters for f

i

mean stand. dev.

50 0.061 25.1 14.1

70 0.043 42.3 20.7

100 0.025 51.7 28.9

150 0.018 186.1 101.5

200 0.015 149.5 94.4

Table 4: Parameters for the Galv~ao-Raggi problem 
lasses

performs signi�
antly better than JMS in terms of solution quality. It 
an solve 37

more problems to optimality and also has a lower average error. The exe
ution time

is slightly higher be
ause it uses JMS as a subroutine.

For the heuristi
 algorithms TABU provides the best results. It was able to solve

problems of all 
lasses to optimality in a high number of runs. Unfortunately it also

is mu
h slower than LOCAL, MYZ and JMS.

LOCAL also performs 
ompetitive on most of these problem 
lasses. Compared to

TABU it is able to solve problems of all 
lasses to optimality, but the overall number

of instan
es solved is very mu
h lower. In terms of the running time it is mu
h faster

though.

V&RR is outperformed by any of the other algorithms. It reveals the highest running

time and the worst solution quality.

3.2 Galv~ao-Raggi Instan
es

Galv~ao and Raggi proposed unique ben
hmarks for the UFLP. A graph is given with

an ar
 density Æ, whi
h is de�ned as Æ = 
onne
tions present =(m �n). Ea
h present


onne
tion has a 
ost sampled from a uniform distribution in the range [1; n℄ (ex
ept

for n = 150, where the range is [1; 500℄). The 
onne
tion 
osts between a fa
ility i

and a 
ity j are determined by the shortest path from i to j in the given graph. The

opening 
osts f

i

are assumed to 
ome from a Normal distribution. Originally Galv~ao

and Raggi proposed problems with n = m = 10; 20; 30; 50; 70; 100; 150 and 200. We

will 
onsider the 5 largest types. The density values and the parameters for the

Normal distribution are listed in Table 4. The exa
t instan
es for these ben
hmarks

are not known. So as for the Bilde-Krarup ben
hmarks we generated 10 instan
es

for ea
h 
lass. The results for the deterministi
 algorithms are reported in Table 5

and for the randomized and heuristi
 algorithms in Table 6. In 
olumns 'Opt' the

number of instan
es solved to optimality is reported. For the instan
es solved to

optimality by a spe
i�
 algorithm we averaged the per
entage of runs that ended

with the optimal solution and report this number in bra
kets. In 
olumns 'Error' we

9



Type CPX JMS MYZ

Opt Error Time Opt Error Time

50 0.200 10 0.000% 0.001 10 0.032% 0.001

70 0.332 9 0.038% 0.003 7 0.065% 0.003

100 0.677 9 0.014% 0.006 8 0.099% 0.007

150 1.623 7 0.059% 0.016 6 0.111% 0.016

200 3.355 6 0.071% 0.036 7 0.032% 0.036

Table 5: Results for the deterministi
 algorithms

Type LOCAL TABU V&RR

Opt Error Time Opt Error Time Opt Error Time

50 9,[99.5℄ 0.236% 0.006 10,[100 ℄ 0.000% 0.026 10,[97.0℄ 0.007% 0.112

70 7,[80.0℄ 0.063% 0.013 9,[100 ℄ 0.061% 0.037 10,[93.0℄ 0.001% 0.238

100 4,[86.3℄ 0.022% 0.026 10,[83.5℄ 0.039% 0.055 10,[90.0℄ 0.002% 0.965

150 5,[92.0℄ 0.020% 0.062 9,[55.6℄ 0.239% 0.085 9, [94.4℄ 0.001% 3.375

200 6,[65.8℄ 0.022% 0.127 9,[53.9℄ 0.131% 0.133 10,[68.0℄ 0.011% 7.363

Table 6: Results for the heuristi
 algorithms

report the average error, in 
olumns 'Time' the average exe
ution time in se
onds.

We also in
luded the average running times of CPLEX in 
olumn 'CPX' of Table 5.

JMS performs on these metri
 instan
es slightly better than MYZ. For the heuris-

ti
 and randomized algorithms V&RR performs very good - even better than TABU

- to the expense of high exe
ution times. In fa
t, the times are prohibitively high

as the algorithm needs mu
h more time than CPLEX to solve the instan
es to

optimality.

3.3 ORLIB and M* Instan
es

The 
ap problems from the ORLIB are non-metri
 medium sized instan
es. The

M* instan
es were designed to represent 
lasses of real UFLPs. They are very 
hal-

lenging for mathemati
al programming methods be
ause they have a large number

of suboptimal solutions. In Table 7 we report the results for the deterministi
 and

in Tables 8 and 9 the results for the heuristi
 and randomized algorithms. For the

deterministi
 algorithms we indi
ate with a star in 
olumns 'Opt', whether an in-

stan
e was solved to optimality or not. For the heuristi
 and randomized algorithms


olumns 'Opt' show the per
entage of runs in whi
h the algorithm was able to solve

the problem to optimality. In Columns 'Cost' and 'Error' we report the average 
ost

and the error of the �nal solution over all runs. For the heuristi
 and randomized al-
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gorithms we report the average solution ('Avg') and the standard deviation ('�(S)')

expressed as a per
entage of the average solution. We separately report the best

solution ('Best') if it is not equal to the optimum or the average solution. As TABU

always managed to �nd optimal solutions, we omit the 
olumn 'Best' here.

For the larger ben
hmarks the optimal solutions are not known. Instead we used the

best solutions found as a referen
e, whi
h for all ben
hmarks were en
ountered by

TABU. All values that do not relate to an optimal solution are denoted in bra
kets.

Running times for all algorithms 
an be found in Table 10. In Columns 'Time' we

report the average running time in se
onds. For the heuristi
 and randomized algo-

rithms we also in
luded the standard deviation ('Std') for the running time expressed

as a per
entage of the average running time.

At the end of ea
h table we summarized the results for the groups with more than

one instan
e. We put the data in the format of the previous tables for the Galv~ao-

Raggi and Bilde-Krarup instan
es.
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Ben
h Size Opt Cost JMS MYZ

Opt Cost Error Opt Cost Error


ap71 16x50 932615.75 932615.75 0.000% * 932615.75 0.000%


ap72 16x50 977799.40 981538.85 0.382% 981538.85 0.382%


ap73 16x50 1010641.45 1015508.94 0.482% 1012643.69 0.198%


ap74 16x50 1034976.98 1042643.69 0.741% 1045383.79 1.006%


ap101 25x50 796648.44 798591.13 0.244% 797508.73 0.108%


ap102 25x50 854704.20 858109.33 0.398% * 854704.20 0.000%


ap103 25x50 893782.11 902413.26 0.966% 895027.19 0.139%


ap104 25x50 928941.75 932527.19 0.386% 932007.96 0.330%


ap131 50x50 793439.56 795382.25 0.245% 794299.85 0.108%


ap132 50x50 851495.33 854900.45 0.400% * 851495.33 0.000%


ap133 50x50 893076.71 901481.84 0.941% 894095.76 0.114%


ap134 50x50 928941.75 932527.19 0.386% 932007.96 0.330%


apa 100x1000 17156454.48 17765201.95 3.548% 17902353.24 4.348%


apb 100x1000 12979071.58 13070745.09 0.706% 13271844.16 2.256%


ap
 100x1000 11505594.33 11702914.76 1.715% 11681971.18 1.533%

MO1 100x100 1305.95 * 1305.95 0.000% * 1305.95 0.000%

MO2 100x100 1432.36 1479.11 3.264% 1460.29 1.950%

MO3 100x100 1516.77 1521.47 0.310% 1521.47 0.310%

MO4 100x100 1442.24 * 1442.24 0.000% * 1442.24 0.000%

MO5 100x100 1408.77 1413.81 0.358% * 1408.77 0.000%

MP1 200x200 2686.48 * 2686.48 0.000% * 2686.48 0.000%

MP2 200x200 2904.86 2914.42 0.329% 2914.42 0.329%

MP3 200x200 2623.71 2658.98 1.345% * 2623.71 0.000%

MP4 200x200 2938.75 * 2938.75 0.000% * 2938.75 0.000%

MP5 200x200 2932.33 2939.95 0.260% 2939.95 0.260%

MQ1 300x300 4091.01 * 4091.01 0.000% * 4091.01 0.000%

MQ2 300x300 4028.33 * 4028.33 0.000% * 4028.33 0.000%

MQ3 300x300 4275.43 4307.97 0.761% * 4275.43 0.000%

MQ4 300x300 4235.15 4273.05 0.895% 4239.23 0.096%

MQ5 300x300 4080.74 4103.75 0.564% 4103.75 0.564%

MR1 500x500 [2608.15℄ 2614.72 [0.252%℄ 2609.13 [0.038%℄

MR2 500x500 [2654.74℄ [*℄ 2654.74 [0.000%℄ [*℄ 2654.74 [0.000%℄

MR3 500x500 [2788.25℄ 2794.41 [0.221%℄ 2794.41 [0.221%℄

MR4 500x500 [2756.04℄ 2782.28 [0.952%℄ 2773.89 [0.648%℄

MR5 500x500 [2505.05℄ 2517.10 [0.481%℄ 2529.87 [0.991%℄

MS1 1000x1000 [5283.76℄ [*℄ 5283.76 [0.000%℄ [*℄ 5283.76 [0.000%℄

MT1 2000x2000 [10069.80℄ 10090.49 [0.205%℄ 10090.49 [0.205%℄


ap7* 0 0.401% 1 0.397%


ap10* 0 0.499% 1 0.144%


ap13* 0 0.493% 1 0.138%


apa-
 0 1.990% 0 2.712%

MO* 2 0.786% 3 0.452%

MP* 2 0.387% 3 0.118%

MQ* 2 0.444% 3 0.132%

MR* [1℄ [0.381%℄ [1℄ [0.380%℄

Table 7: Solution quality of the deterministi
 algorithms
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Ben
h LOCAL TABU V&RR

Opt Best Avg Error Std Opt Avg Error Std Opt Avg Error Std


ap71 100% 932615.75 0.000% 0.000% 100% 932615.75 0.000% 0.000% 100% 932615.75 0.000% 0.000%


ap72 0% 979099.61 0.133% 0.000% 100% 977799.40 0.000% 0.000% 100% 977799.40 0.000% 0.000%


ap73 0% 1011067.65 0.042% 0.000% 100% 1010641.45 0.000% 0.000% 100% 1010641.45 0.000% 0.000%


ap74 100% 1034976.98 0.000% 0.000% 100% 1034976.98 0.000% 0.000% 100% 1034976.98 0.000% 0.000%


ap101 0% 797582.29 0.117% 0.000% 100% 796648.44 0.000% 0.000% 100% 796648.44 0.000% 0.000%


ap102 100% 854704.20 0.000% 0.000% 100% 854704.20 0.000% 0.000% 100% 854704.20 0.000% 0.000%


ap103 100% 893782.11 0.000% 0.000% 100% 893782.11 0.000% 0.000% 100% 893782.11 0.000% 0.000%


ap104 0% 930026.55 0.117% 0.000% 100% 928941.75 0.000% 0.000% 100% 928941.75 0.000% 0.000%


ap131 100% 793439.56 0.000% 0.000% 100% 793439.56 0.000% 0.000% 100% 793439.56 0.000% 0.000%


ap132 100% 851495.33 0.000% 0.000% 100% 851495.33 0.000% 0.000% 100% 851495.33 0.000% 0.000%


ap133 0% 895292.08 0.248% 0.000% 100% 893076.71 0.000% 0.000% 40% 893688.55 0.069% 0.057%


ap134 0% 935422.70 0.698% 0.000% 100% 928941.75 0.000% 0.000% 100% 928941.75 0.000% 0.000%


apa 100% 17156454.48 0.000% 0.000% 100% 17156454.48 0.000% 0.000% 100% 17156454.48 0.000% 0.000%


apb 50% 13041143.92 0.478% 0.575% 75% 13000649.83 0.166% 0.289% 100% 12979071.58 0.000% 0.000%


ap
 0% 11509361.7 11534161.39 0.248% 0.084% 70% 11513112.75 0.065% 0.117% 10% 11519212.05 0.100% 0.130%


ap7* 2,[100 ℄ 0.044% 4,[100 ℄ 0.000% 4,[100 ℄ 0.000%


ap10* 2,[100 ℄ 0.059% 4,[100 ℄ 0.000% 4,[100 ℄ 0.000%


ap13* 2,[100 ℄ 0.236% 4,[100 ℄ 0.000% 4,[85.0℄ 0.017%


apa-
 2,[75.0℄ 0.242% 3,[81.7℄ 0.077% 3,[70.0℄ 0.039%

Table 8: Solution quality of the heuristi
 and randomized algorithms
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Ben
h LOCAL TABU V&RR

Opt Best Avg Error Std Opt Avg Error Std Opt Best Avg Error Std

MO1 100% 1305.95 0.000% 0.000% 100% 1305.95 0.000% 0.000% 10% 1315.833 0.757 0.437%

MO2 15% 1450.81 1.288% 0.534% 100% 1432.36 0.000% 0.000% 15% 1449.311 1.184 0.564%

MO3 0% 1521.47 0.310% 0.000% 100% 1516.77 0.000% 0.000% 5% 1536.238 1.283 0.584%

MO4 100% 1442.24 0.000% 0.000% 100% 1442.24 0.000% 0.000% 20% 1465.982 1.646 1.016%

MO5 100% 1408.77 0.000% 0.000% 100% 1408.77 0.000% 0.000% 65% 1410.879 0.150 0.239%

MP1 100% 2686.48 0.000% 0.000% 100% 2686.48 0.000% 0.000% 15% 2709.68 0.864% 0.535%

MP2 100% 2904.86 0.000% 0.000% 100% 2904.86 0.000% 0.000% 5% 2944.39 1.361% 0.672%

MP3 100% 2623.71 0.000% 0.000% 100% 2623.71 0.000% 0.000% 10% 2666.66 1.637% 0.618%

MP4 0% 2942.63 2943.99 0.178% 0.051% 100% 2938.75 0.000% 0.000% 0% 2944.78 2983.59 1.526% 0.680%

MP5 40% 2939.74 0.252% 0.251% 100% 2932.33 0.000% 0.000% 0% 2939.95 2950.67 0.625% 0.195%

MQ1 100% 4091.01 0.000% 0.000% 100% 4091.01 0.000% 0.000% 15% 4151.64 1.482% 0.834%

MQ2 100% 4028.33 0.000% 0.000% 100% 4028.33 0.000% 0.000% 5% 4103.26 1.860% 0.658%

MQ3 100% 4275.43 0.000% 0.000% 100% 4275.43 0.000% 0.000% 10% 4326.12 1.186% 0.694%

MQ4 100% 4235.15 0.000% 0.000% 100% 4235.15 0.000% 0.000% 5% 4291.00 1.319% 0.651%

MQ5 85% 4084.73 0.098% 0.235% 100% 4080.74 0.000% 0.000% 0% 4127.22 4154.24 1.801% 0.340%

MQ1 100% 4091.01 0.000% 0.000% 100% 4091.01 0.000% 0.000% 0% 4114.94 4161.48 1.722% 0.564%

MQ2 100% 4028.33 0.000% 0.000% 100% 4028.33 0.000% 0.000% 5% 4096.23 1.686% 0.679%

MQ3 100% 4275.43 0.000% 0.000% 100% 4275.43 0.000% 0.000% 10% 4305.77 0.710% 0.434%

MQ4 100% 4235.15 0.000% 0.000% 100% 4235.15 0.000% 0.000% 0% 4239.24 4284.37 1.162% 0.599%

MQ5 65% 4089.08 0.204% 0.278% 100% 4080.74 0.000% 0.000% 5% 4144.23 1.556% 0.607%

MR1 [ 20%℄ 2612.76 [0.177%℄ 0.317% [100%℄ 2608.15 [0.000%℄ 0.000% [ 0%℄ 2614.70 2633.31 [0.965%℄ 0.434%

MR2 [ 45%℄ 2679.61 [0.936%℄ 0.864% [100%℄ 2654.74 [0.000%℄ 0.000% [ 0%℄ 2697.65 2729.38 [2.812%℄ 0.798%

MR3 [ 80%℄ 2789.17 [0.033%℄ 0.066% [100%℄ 2788.25 [0.000%℄ 0.000% [ 0%℄ 2793.32 2838.13 [1.789%℄ 0.707%

MR4 [100%℄ 2756.04 [0.000%℄ 0.000% [100%℄ 2756.04 [0.000%℄ 0.000% [ 0%℄ 2784.47 2821.06 [2.359%℄ 0.658%

MR5 [100%℄ 2505.05 [0.000%℄ 0.000% [100%℄ 2505.05 [0.000%℄ 0.000% [ 0%℄ 2532.28 2559.81 [2.186%℄ 0.614%

MS1 [100%℄ 5283.76 [0.000%℄ 0.000% [100%℄ 5283.76 [0.000%℄ 0.000% [ 0%℄ 5327.17 5380.411 [1.829%℄ 0.572%

MT1 [ 20%℄ 10085.84 [0.159%℄ 0.080% [ 90%℄ 10071.77 [0.020%℄ 0.059% [ 0%℄ 10121.95 10252.72 [1.817%℄ 0.462%

MO* 4,[78.8℄ 0.320% 5,[100 ℄ 0.000% 5,[23.0℄ 1.004%

MP* 4,[85.0℄ 0.086% 5,[100 ℄ 0.000% 3,[10.0℄ 1.203%

MQ* 5,[93.0℄ 0.041% 5,[100 ℄ 0.000% 3,[ 6.7℄ 1.367%

MR* 5,[69.0℄ [0.229%℄ 5,[100 ℄ [0.000%℄ 0,[ 0.0℄ [2.022%℄

Table 9: Solution quality of the heuristi
 and randomized algorithms
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Again the deterministi
 algorithms perform very well on the ben
hmarks. The

maximum error for both methods was produ
ed on the 
apa ben
hmark. Of the

deterministi
 algorithms MYZ did perform better than JMS. It was able to solve

additional 6 problems to optimality. JMS 
ould only a
hieve a better performan
e

in 4 of the 37 ben
hmarks. In terms of running time MYZ be
omes slightly less


ompetitive on larger problems be
ause the additional 
al
ulations of the greedy

augmentation pro
edure need more time.

With a maximum average error of 0.289% TABU is again the algorithm with the

best performan
e on these ben
hmarks. It is able to solve all problems to optimality

- in most 
ases with a high frequen
y. Here our results are 
onsistent with the values

reported in [23℄. However, the running times of our 
ode are signi�
antly faster than

the times needed by the implementation of Mi
hel and Van Hentenry
k (a fa
tor of

2 and more).

Compared to TABU the solution quality of LOCAL is not very 
ompetitive. It

fails to �nd optimal solutions on 9 problems, while 7 of them are 
ap-ben
hmarks.

The running times, however, are very 
ompetitive, as it performs in most 
ases

signi�
antly better than TABU.

The performan
e of V&RR is not very good in 
omparison to the other methods. On

some of the 
ap instan
es the algorithm a
hieves good solution quality. On the M*-

instan
es, however, it performs worse than all other algorithms in terms of solution

quality and exe
ution time. The exe
ution times for the small problems ex
eed the

times of CPLEX again. The pra
ti
al use of this algorithm for smaller problems

should therefore be avoided. For problems with m;n � 100, however, exe
ution

times of CPLEX be
ome signi�
antly higher.

Interestingly there is hardly any variation of the running times of V&RR on the

M*-instan
es.

3.4 k-median Instan
es

In this se
tion we take a look at large s
ale instan
es for the UFLP. The ben
hmarks


onsidered here were originally introdu
ed for the k-median problem in [1℄. In [8℄ they

were used as test instan
es for the UFLP. To 
onstru
t an instan
e, we pi
k n points

independent uniformly at random in the unit square. Ea
h point is simultaneously


ity and fa
ility. The 
onne
tion 
osts are the Euklidian distan
es in the plane. All

fa
ility opening 
osts are identi
al. To prevent numeri
al problems and preserve the

metri
 properties, we rounded up all data to 4 signi�
ant digits and then made all

the data entries integer.

In [1℄ the authors showed that, when n is large, any enumerative method based on

the lower bound of the relaxed LP would need to explore an exponential number of

solutions. They also showed that the solution of the relaxed LP is, asymptoti
ally

in the number of points, about 0.998% of the optimum.
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Ben
h CPX JMS MYZ LOCAL TABU V&RR

Time Time Time Std Time Std Time Std


ap71 0.109 0.001 0.001 0.002 1.176% 0.022 0.114% 0.060 3.275%


ap72 0.067 0.001 0.001 0.002 0.420% 0.022 1.103% 0.051 7.031%


ap73 0.078 0.001 0.001 0.002 0.516% 0.023 0.075% 0.043 0.094%


ap74 0.068 0.001 0.001 0.002 0.379% 0.024 0.277% 0.033 4.221%


ap101 0.106 0.001 0.001 0.003 0.456% 0.024 0.096% 0.086 4.019%


ap102 0.093 0.001 0.001 0.003 0.437% 0.023 0.060% 0.078 2.091%


ap103 0.094 0.001 0.001 0.005 0.294% 0.026 24.885% 0.064 6.961%


ap104 0.098 0.001 0.001 0.003 4.750% 0.024 0.071% 0.063 8.096%


ap131 0.206 0.002 0.002 0.006 0.372% 0.026 0.094% 0.200 5.441%


ap132 0.186 0.002 0.002 0.007 0.329% 0.025 0.086% 0.148 4.138%


ap133 0.192 0.002 0.002 0.005 0.387% 0.027 7.594% 0.146 11.840%


ap134 0.199 0.002 0.002 0.006 0.492% 0.030 2.150% 0.141 20.066%


apa 48.834 0.153 0.162 0.404 17.640% 1.343 4.517% 15.371 11.267%


apb 37.746 0.151 0.158 0.545 21.985% 0.948 11.628% 20.505 7.117%


ap
 146.654 0.152 0.155 0.480 27.173% 0.924 16.881% 22.495 12.788%

MO1 165.811 0.008 0.008 0.025 7.546% 0.060 0.317% 1.940 3.616%

MO2 154.922 0.008 0.008 0.024 9.879% 0.063 3.647% 2.077 2.925%

MO3 201.240 0.008 0.008 0.028 5.489% 0.082 17.751% 1.663 2.281%

MO4 80.766 0.008 0.008 0.035 0.335% 0.060 1.178% 1.516 4.701%

MO5 115.189 0.008 0.008 0.024 0.262% 0.069 3.456% 2.012 3.111%

MP1 4442.243 0.049 0.050 0.180 10.829% 0.228 3.055% 9.812 0.458%

MP2 9307.855 0.050 0.051 0.169 31.750% 0.225 2.385% 9.826 0.350%

MP3 1183.319 0.049 0.051 0.196 23.053% 0.224 1.966% 11.573 1.618%

MP4 11219.924 0.049 0.050 0.154 19.691% 0.267 17.672% 12.210 2.110%

MP5 13288.276 0.049 0.051 0.129 7.645% 0.230 6.578% 12.725 1.194%

MQ1 25876.314 0.141 0.143 0.563 19.773% 0.668 1.613% 24.667 2.603%

MQ2 44236.625 0.141 0.142 0.507 20.969% 0.646 2.563% 26.538 1.597%

MQ3 21227.507 0.146 0.144 0.603 16.013% 0.683 1.499% 27.111 0.356%

MQ4 28484.952 0.143 0.145 0.471 11.159% 0.671 2.145% 20.732 0.495%

MQ5 126890.793 0.139 0.141 0.472 21.826% 0.675 4.890% 26.088 0.473%

MR1 0.468 0.481 2.388 33.574% 1.796 11.183% 78.575 0.902%

MR2 0.455 0.472 1.879 18.124% 1.958 7.453% 78.762 0.500%

MR3 0.464 0.480 2.112 8.349% 2.051 15.839% 85.650 0.476%

MR4 0.471 0.477 1.961 16.183% 1.656 1.825% 77.825 0.417%

MR5 0.461 0.471 2.339 21.605% 1.664 3.037% 76.141 0.478%

MS1 2.281 2.323 11.720 14.147% 6.366 1.705% 304.066 0.978%

MT1 11.079 11.241 89.592 22.647% 31.505 16.838% 1283.285 0.594%


ap7* 0.001 0.001 0.002 0.023 0.047


ap10* 0.001 0.001 0.003 0.024 0.073


ap13* 0.002 0.002 0.006 0.027 0.159


apa-
 0.152 0.159 0.476 1.072 19.457

MO* 0.008 0.008 0.027 0.067 1.842

MP* 0.049 0.050 0.166 0.235 11.229

MQ* 0.142 0.143 0.523 0.669 25.027

MR* 0.464 0.476 2.136 1.825 79.391

Table 10: Running times of the algorithms
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Problem LB JMS MYZ

Cost Error Time Cost Error Time

500,10 798399 808090 1.214% 0.364 813800 1.929% 0.375

500,100 326754 330758 1.225% 0.359 331183 1.355% 0.364

500,1000 99099 99245 0.147% 0.353 99208 0.110% 0.362

1000,10 1432737 1448286 1.085% 1.758 1454031 1.486% 1.810

1000,100 607591 613182 0.920% 1.758 613070 0.902% 1.799

1000,1000 220479 221942 0.664% 1.767 221437 0.435% 1.802

1500,10 1997302 2029316 1.603% 4.428 2032631 1.769% 4.543

1500,100 866231 875247 1.041% 4.409 875828 1.108% 4.467

1500,1000 334859 337307 0.731% 4.472 337015 0.644% 4.541

2000,10 2556794 2587422 1.198% 8.651 2587945 1.218% 8.921

2000,100 1122455 1133639 0.996% 8.516 1140205 1.581% 8.684

2000,1000 437553 441283 0.852% 8.599 441269 0.849% 8.730

2500,10 3095135 3142386 1.527% 14.514 3150382 1.785% 14.544

2500,100 1346924 1365831 1.404% 14.383 1369077 1.645% 14.548

2500,1000 534147 538463 0.808% 14.605 537891 0.701% 14.852

3000,10 3567125 3620604 1.499% 21.924 3637504 1.973% 22.310

3000,100 1600551 1618821 1.141% 21.660 1624535 1.498% 22.008

3000,1000 643265 648977 0.888% 21.630 649422 0.957% 21.914

Table 11: Results for the deterministi
 algorithms

For ea
h set of points, we generated 3 instan
es. We set all opening 
osts to

p

n=10,

p

n=100 and

p

n=1000. Ea
h opening 
ost de�nes a di�erent instan
e with di�erent

properties.

In the following Tables we report the results of our experiments. In 
olumn 'LB'

of Table 11 we provide the lower bound on ea
h problem 
al
ulated by V&RR. In

Tables 11 and 12 we report for ea
h algorithm the average 
ost of the �nal solution,

the average error and the average exe
ution time of the algorithm. All errors were


al
ulated using the lower bound in 'LB'.
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Problem LOCAL TABU V&RR

Cost Error Time Cost Error Time Cost Error Time

500,10 802178.35 0.473% 2.240 800478.70 0.260% 0.991 830634.10 4.037% 66.727

500,100 329126.95 0.726% 4.790 328539.60 0.546% 1.214 333459.55 2.052% 55.659

500,1000 99374.25 0.277% 2.167 99324.70 0.227% 1.755 104756.45 5.709% 43.099

1000,10 1439284.80 0.457% 17.282 1439905.55 0.500% 4.713 1532623.90 6.972% 356.955

1000,100 609825.80 0.358% 48.320 609577.65 0.327% 5.166 636226.65 4.713% 245.225

1000,1000 221736.45 0.570% 62.622 224990.50 2.046% 2.856 230848.05 4.703% 187.718

1500,10 2008847.75 0.578% 38.097 2005876.60 0.429% 10.288 2182858.00 9.290% 719.641

1500,100 870231.25 0.462% 150.230 870181.70 0.456% 11.285 903989.40 4.359% 556.186

1500,1000 336950.35 0.625% 257.636 336263.10 0.419% 18.786 347227.65 3.694% 479.491

2000,10 2570347.80 0.530% 85.863 2570231.45 0.526% 16.797 2804650.45 9.694% 1172.350

2000,100 1128591.55 0.547% 289.785 1128392.40 0.529% 18.803 1197988.15 6.729% 1000.169

2000,1000 439874.60 0.531% 682.241 439597.15 0.467% 88.423 452279.35 3.366% 912.588

2500,10 3114457.80 0.624% 196.352 3118274.75 0.748% 28.344 3414448.30 10.317% 2224.532

2500,100 1353003.85 0.451% 429.241 1352321.90 0.401% 29.282 1452854.95 7.865% 1728.433

2500,1000 536890.20 0.514% 1297.672 536545.95 0.449% 50.488 555853.25 4.064% 1401.563

3000,10 3586598.90 0.546% 228.680 3586916.35 0.555% 39.209 4018137.40 12.644% 2951.249

3000,100 1611474.10 0.682% 892.870 1611186.25 0.664% 44.901 1773741.80 10.821% 2677.263

3000,1000 646277.00 0.468% 2188.568 645680.15 0.375% 67.246 670984.45 4.309% 2008.729

Table 12: Results for the heuristi
 and randomized algorithms
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On these metri
 ben
hmarks JMS again delivers slightly better results than MYZ.

TABU is the best algorithm in terms of solution quality. LOCAL manages to �nd

better solutions than the deterministi
 algorithms, but it is mu
h slower than TABU,

JMS and MYZ. The performan
e of V&RR is not 
ompetitive in 
omparison to the

other algorithms. It is outperformed in terms of solution quality and exe
ution time

by all algorithms on nearly all ben
hmarks. Only on the larger ben
hmarks with

small opening 
osts the running time of LOCAL is equally slow. Part of the reason

for this is the use of priority queues. For the problems with smaller opening 
ost

optimal solutions have a high number of opened fa
ilities. Here the operations on the

queues are getting expensive. A better implementation of LOCAL for these kinds of

problems would omit the use of queues. Then the adjustment of the datastru
tures

when opening a fa
ility (whi
h is the operation used more often here) 
ould be

exe
uted in O(m). The 
losing operation would need O(nm), whi
h leads to inferior

exe
ution times on average. However, here most of the time the 
losing operation

is used in the ex
hange step, whi
h is invoked after nearly all fa
ilities have been

opened. When nearly all fa
ilities are opened, most of the 
ities are 
onne
ted to

the fa
ility lo
ated at the same site. Then 
losing a fa
ility a�e
ts basi
ally only one


ity. In this 
ase �nding the new 
losest and se
ond 
losest fa
ilities 
an be done in

O(m). Thus, it is not surprising that an implementation without queues was able to

improve the exe
ution times on the large problems with n = m > 1500 by fa
tors

of up to 3. Nevertheless we 
hose to implement priority queues in our version of

LOCAL as their theoreti
al advantage leads to shorter exe
ution times on average.

3.5 S
aling and Lo
al Sear
h

In [11℄ a s
aling te
hnique was proposed to improve the approximation bound of

lo
al sear
h for the metri
 UFLP. In the beginning all 
osts are s
aled up by a fa
tor

of

p

2. Then the sear
h is run on the s
aled instan
e. Of all 
andidates found the

algorithm exits with the one having the smallest 
ost for the uns
aled instan
e.

With this te
hnique the sear
h is advised to open the most e
onomi
al fa
ilities.

In pra
ti
e, however, we 
annot guarantee that the s
aled lo
al sear
h pi
ks better

solutions. It is quite likely that the s
aled version exits with inferior solutions as the

solution spa
e of the s
aled instan
e might not reveal the same properties as the

uns
aled instan
e. Espe
ially be
ause the errors for the ben
hmarks are far lower

than the approximation guarantee, it be
omes obvious that this adjustment is only

a way of lowering theoreti
al bounds and has limited pra
ti
al use.

In Table 13 we report experimental results on a sele
tion of ben
hmarks for the

two versions of Lo
al Sear
h. The s
aling te
hnique method was proposed for Lo
al

Sear
h on the metri
 UFLP. However, it deteriorates the performan
e of Lo
al Sear
h

on metri
 as well as non-metri
 instan
es.
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Ben
h LOCAL S
aled Lo
al

Opt Error Time Opt Error Time

Galv~ao and Raggi

50 9,[99.5℄ 0.236% 0.006 2,[90.0℄ 0.484% 0.006

70 7,[80.0℄ 0.063% 0.013 0,[ 0.0℄ 0.704% 0.011

100 4,[86.3℄ 0.022% 0.026 0,[ 0.0℄ 0.650% 0.025

150 5,[92.0℄ 0.020% 0.062 0,[ 0.0℄ 0.682% 0.059

200 6,[65.8℄ 0.022% 0.127 1,[ 7.0℄ 0.819% 0.115

ORLIB


ap71-74 2,[100 ℄ 0.044% 0.002 0,[ 0.0℄ 0.659% 0.002


ap101-104 2,[100 ℄ 0.059% 0.003 1,[100 ℄ 0.373% 0.004


ap131-134 2,[100 ℄ 0.236% 0.006 0,[ 0.0℄ 0.746% 0.006


apa-
 2,[75.0℄ 0.242% 0.476 1,[85.0℄ 1.243% 0.445

M*

MO* 4,[78.8℄ 0.320% 0.027 2,[100 ℄ 0.720% 0.027

MP* 4,[85.0℄ 0.086% 0.166 2,[50.0℄ 0.822% 0.161

MQ* 5,[93.0℄ 0.041% 0.523 4,[36.3℄ 0.533% 0.590

MR*

+

5,[69.0℄ 0.229% 2.136 2,[32.5℄ 0.877% 2.513

MS

+

1,[100 ℄ 0.000% 11.720 0,[ 0.0℄ 0.666% 12.170

MT

+

1,[20.0℄ 0.159% 89.592 0,[ 0.0℄ 0.784% 118.443

k-median

1000,10

y

0.457% 17.282 1.416% 15.166

1000,100

y

0.358% 48.320 1.663% 40.412

1000,1000

y

0.570% 62.622 2.438% 75.220

2000,10

y

0.530% 85.863 1.519% 99.594

2000,100

y

0.547% 289.785 1.506% 246.756

2000,1000

y

0.531% 682.241 2.074% 648.900

3000,10

y

0.546% 228.680 1.459% 205.410

3000,100

y

0.682% 892.870 1.489% 684.214

3000,1000

y

0.468% 2188.568 2.011% 1816.916

+

Error and Opt regarding best found solutions

y

Error and Opt regarding lower bound by V&RR

Table 13: Results for the versions of Lo
al Sear
h
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4 Con
lusions

The un
apa
itated fa
ility lo
ation problem was solved by 5 di�erent algorithms

from di�erent areas of optimization resear
h. The deterministi
 algorithms manage

to �nd good solutions on the ben
hmarks in short running times. Generally MYZ


an improve the performan
e of JMS to the expense of little extra running time.

On the tested metri
 instan
es the performan
e of the algorithms is 
ompetitive

to the heuristi
 and randomized algorithms tested while the running times remain

signi�
antly shorter. Here JMS o�ers slightly better solution than MYZ. The approx-

imation algorithms reveal higher errors only on a few tested non-metri
 instan
es,

but always deliver solutions that are within 5% of optimum.

The presented Lo
al Sear
h pro�ts mainly from the intelligent use of datastru
tures.

On a number of instan
es the running times are able to 
ompete with those of MYZ

and JMS. However, due to the 
hanging starting points the algorithm is not very

robust. S
aling te
hniques that lead to improved approximation fa
tors deteriorate

the performan
e of the algorithm in pra
ti
e. The tested version of the Volume al-

gorithm V&RR is not 
ompetitive regarding solution quality and exe
ution times.

TABU o�ers the best overall performan
e. In most 
ases TABU is able to �nd the

optimal solution. It is mu
h faster than V&RR (and Lo
al Sear
h on large-s
ale

instan
es), but generally the running times 
annot 
ompete with those of MYZ and

JMS.

All algorithms show a very good performan
e on the UFLP. TABU a
hieves best

solution quality in a reasonable amount of time. It therefore should be the method

of 
hoi
e for pra
titioners.

Finally, we present a graphi
al 
hart with the results of the algorithms 
ompared to

the results of TABU. In Figure 1 we 
harted the results for the di�erent ben
hmarks.

The y-
oordinates are 
al
ulated by the solution 
ost found by the algorithm divided

by the solution 
ost found by TABU. x-
oordinates are 
al
ulated a

ordingly with

exe
ution times. The times and 
osts were taken from the tables presented above.

For the Bilde-Krarup Dq- and Eq-instan
es we averaged the results over all instan
es

as well as for the 
ap- and M* instan
es. For the k-median problems we averaged

the results over instan
es of the same size.

There are hardly any algorithms that have dots in the lower half of the plot. This

indi
ates that there has been no algorithm to 
onstantly outperform TABU in terms

of solution 
ost. Moreover, there is hardly any dot in the lower left quadrangle. Dots

in this region would indi
ate that TABU was outperformed in terms of solution 
ost

and running times. The deterministi
 algorithms were faster than TABU, there-

fore there are some dots of JMS and MYZ in the upper left quadrangle with an

x-
oordinate less than 1. Bad performan
es are plotted in the upper right quadran-

gle. The dots in this region indi
ate that algorithms ended with solutions of bad

quality and needed a high exe
ution time. A lot of the dots of V&RR are lo
ated
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Figure 1: Plot of solution 
ost and exe
ution times in 
omparison to TABU

here indi
ating the poor performan
e of this algorithm in 
omparison to TABU.

LOCAL performed faster than TABU on small instan
es, but it was slower on the

large instan
es. The solution 
ost was in most 
ases slightly worse in 
omparison to

TABU. Therefore the dots are spread above the line in the upper half of the plot.
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