ol

INFORMATTIK

Performance of heuristic and
approximation algorithms for the
uncapacitated facility location
problem

Martin Hoefer

MPI-1-2002-1-005 December 2002

\ J

FORSCHUNGSBERICHT RESEARCH REPORT

MAX-PLANCK-INSTITUT
FUR
INFORMATIK

Stuhlsatzenhausweg 85 66123 Saarbriicken Germany

Authors’ Addresses

Martin Hoefer

Technische Universitat Clausthal
Marie-Hedwig-Strafle 13

38678 Clausthal-Zellerfeld, Germany
email: Martin.Hoefer@TU-Clausthal.de

Max-Planck-Institut fiir Informatik
Stuhlsatzenhausweg 85

66123 Saarbriicken, Germany
email: mhoefer@mpi-sb.mpg.de

Abstract

The uncapacitated facility location problem (UFLP) is a problem that has
been studied intensively in operational research. Recently a variety of new
deterministic and heuristic approximation algorithms have evolved. In this
paper, we compare five new approaches to this problem - the JMS- and the
MYZ-approximation algorithms, a version of local search, a Tabu Search
algorithm as well as a version of the Volume algorithm with randomized
rounding. We compare solution quality and running times on different stan-
dard benchmark instances. With these instances and additional material a
web page was set up [26], where the material used in this study is accessible.

Keywords

facility location; experimental study; benchmark library

1 Introduction

The problem of locating facilities and connecting clients at minimum cost has been
one of the most studied problems in Operations Research. In this paper we focus
on one of the simplest settings, the uncapacitated facility location problem (UFLP).
The UFLP can be described as follows. We are given n possible facility locations
and m cities. Let F' denote the set of facilities and C' the set of cities. Furthermore
there are non-negative opening costs f; for each facility ¢« € F' and connection costs
c;j for each connection between a facility ¢ and a city j. The problem is to open a
collection of facilities and connect each city to exactly one facility at minimum cost.
The integer programming formulation of the UFLP is due to Balinski [5]:

Min z= Zij CijTij + 2 Yifis

subject to Y, z;; =1 for all j € C,
yi—x;; >0 foralljeC,icF,

Zij, Yi € {0,1}.

We get the LP relaxation of this problem by setting x;;,y; € [0,1]. This LP
relaxation is known to provide excellent lower bounds.
Instead of solving this problem to optimality, we will focus on finding approximate
solutions. In the following we will present five methods, which are originating in
different areas of optimization research. We will compare two approximation algo-
rithms, two heuristics based on local search and one on LP-based approximation
and rounding, which were recently developed and found to work good in practice.

2 Methods

2.1 Approximation algorithms

Recently a lot of approximation algorithms have evolved for the metric version of
the UFLP in which the connection cost function c satisfies the triangular inequality.
A couple of different techniques were used in these algorithms like LP-rounding
([12, 24]), greedy augmentation ([11]) or primal-dual methods ([20, 11]). In terms
of computational hardness Guha and Khuller [14] showed that it is impossible to
achieve an approximation guarantee of 1.463 unless NP € DTIM E[nOUoglosn)],
From the field of approximation algorithms we chose two of the newest and most
promising variants.

2.1.1 JMS-Algorithm

The JMS-Algorithm uses a greedy method to improve the solution. The notion of
time that is involved was introduced in an earlier 3-approximation algorithm by Jain
and Vazirani [20]. Later on Mahdian et al. [21] translated the primal-dual scheme
into a greedy 1.861-approximation algorithm. In the third paper Jain, Mahdian and
Sabieri [19] presented the JMS-Algorithm (JMS), which improved the approximation
bound to 1.61. However, it had a slightly worse complexity of O(n?) instead of
O(n? log n).

The following sketch of JMS is taken from [22]:

1. At first all cities are unconnected, all facilities unopened, and the budget of
every city j, denoted by B;, is initialized to 0. At every moment, each city j
offers some money from its budget to each unopened facility 7. The amount of
this offer is equal to max(B; — ¢;;,0) if j is unconnected, and maz(c;; — ¢;;,0)
if it is connected to some other facility 7’.

2. While there is an unconnected city, increase the budget of each unconnected
city at the same rate, until one of the following events occurs:

(a) For some unopened facility i, the total offer that it receives from cities
is equal to the cost of opening ¢. In this case, we open facility ¢, and for
every city j (connected or unconnected) which has a non-zero offer to i,
we connect j to i.

(b) For some unconnected city j, and some facility i that is already open, the
budget of j is equal to the connection cost ¢;;. In this case, we connect j
to 7.

One important property of the solution of this algorithm is that it cannot be im-
proved by simply opening an unopened facility. This is the main advantage over the
previous 1.861-algorithm in [21]. In [19] experiments revealed an appealing behavior
of JMS in practice.

2.1.2 MY?Z Algorithm

The MYZ algorithm could further improve the approximation factor of JMS. Mah-
dian, Ye and Zhang [22] applied scaling and greedy augmentation to the algorithm.
For the resulting MY7Z Algorithm (MYZ) the authors could prove an approximation
factor of 1.52 for the metric UFLP, which is the best known so far for this problem
for any algorithm.

MYZ is outlined below. In step 4 of the algorithm C' is the total connection cost of
the present solution and C’ the connection cost after opening a facility wu.

1. Scale up all opening costs by a factor of § = 1.504
2. Solve the scaled instance with JMS
3. Scale down all opening costs by the same factor o

4. while there is a unopened facility u, for which the ratio (C' — C' — f,)/fu is
maximized and positive, open facility u and update solution

2.2 Heuristic and randomized algorithms

In terms of meta-heuristics there has not been such an intense research activity.
A simulated annealing algorithm [3] was developed, which produces good results
to the expense of high computation costs. Tabu search algorithms have been very
successful in solving the UFLP (see [2, 23, 25]). A very elaborate genetic algorithm
has been proposed by Kratica et al. over a series of papers ([16, 17, 18]). Their final
version involves clever implementation techniques and finds optimal solutions for all
the examined benchmarks.

2.2.1 Tabu Search

In [23] Van Hentenryck and Michel proposed a simple tabu search algorithm that
works very fast and outperforms the genetic algorithm in [18] in terms of solution
quality, robustness and execution time. Therefore we used this algorithm in our
comparative study.

The tabu search algorithm uses a slightly different representation of the problem.
For a solution of the UFLP it is enough to know the set S C F' of opened facilities.
Cities are connected to the cheapest opened facility, i.e. city j is connected to ¢ € S
with ¢;; = minycg ¢y ;. A neighborhood move from S to S’ is defined as flipping the
status of a facility from opened to closed (S" = S\i) or vice versa (S’ = SU7). When
the status of a facility was flipped, flipping back this facility becomes prohibited
(i.e. tabu) for a number of iterations. The number of iterations is adjusted using
a standard scheme (see [23] for details). The high level algorithm can be stated as
follows:

1. S < an arbitrary feasible solution

2. Set cost(S*) = oo

3. do

4. bestgain = maximum cost savings over all possible non-tabu flips

5. if (bestgain > 0)

6. Apply random flip with best gain, update tabu lists and list length
7. else close random facility
8. Update S - connections of cities and datastructures
9. if (cost(S) < cost(S*)) do S* «— S
10. while change of S* in the last 500 iterations

11. return S*

For every city j the algorithm uses three pieces of information: The number of
the opened facility with the cheapest connection to j, the cost of this connection
and the cost of the second cheapest connection to an opened facility. With this
information the gains of opening and closing a facility can be updated incrementally
in step 8. Thereby a direct evaluation of the objective function can be avoided. The
algorithm uses priority queues to determine the second cheapest connections for
each city. Due to these techniques the algorithm has a running time of O(m log n)
in each iteration.

2.2.2 Local Search

The local search community has only paid limited attention to the UFLP so far.
Apart from the tabu search algorithms there have been a few simple local search
procedures proposed in [15, 11]. In this paper we use the simple version of Arya et
al [4], which can be stated as follows:

1. S < an arbitrary feasible solution

2. while there is an operation op such that
cost of op(S) < (1 — m)cost(S)
do S + op(S)

3. return S

The solution S again is the set of opened facilities. The operation op is defined
as opening or closing a facility or exchanging the status of an opened and a closed
facility. The parameters were set to € = 0.1 and p(n, m) = n+m. For this algorithm
the authors could prove an approximation guarantee of 3 on metric instances.

To improve the running time of the algorithm we incorporated the use of incremental
datastructures from the Tabu search algorithm and preferences for the simple moves
as follows. We generally prefer applying the simple flips of opening and closing a
facility (denoted as ops). As in the Tabu Search we apply one random flip of the

4

flips resulting in best gain of the cost function. When these flips do not satisfy the
acceptance condition, we pick an exchange move that would give enough improve-
ment. If there is no such move left the algorithm stops. The modified version can be
stated as follows:

1. S < an arbitrary feasible solution

[\

. exitloop < false
3. while exitloop = false

4. while there is an ops such that cost(ops(S)) < (1 — ———) cost(.5)

p(n,m)
5. find a random ops* of the ops with best gain
6. do S < ops*(95)
7. if there is an op such that cost(op(S)) < (1 — p(ne’m)) cost(.S)
8. do S « op(95)
9. else exitloop < true
10. return S

Arya et al. suggested that the algorithm should be combined with the standard
scaling techniques [11] to improve the approximation factor to 2.414. Interestingly
this version performs inferior in practice. Therefore the version without scaling (de-
noted as LOCAL) was used for the comparison with the other algorithms. A com-
parison between the unscaled and scaled versions can be found in section 3.5.

2.2.3 Volume algorithm

For some of the test instances we obtained a lower bound using a version of the
Volume algorithm, which was developed by Barahona in [7]. The Volume algorithm
is an iterated subgradient optimization procedure, which is able to provide a primal
solution and a lower bound on the optimal solution cost. To improve solution quality
and speed up the computation Barahona and Chudak [8] used the rounding heuristic
(RRWC) presented in [12] to find good upper bounds on the optimal dual solution
cost and therefore reduce the iterations of the Volume algorithm. However, this
approach has generally very high execution times in comparison to the other methods
presented here. Instead we used a faster version of this algorithm which uses only
a basic randomized rounding procedure and slightly different parameter settings. It
will be denoted by V&RR and is available on the web page of the COIN-OR project

by IBM [6]. Regarding solution quality and running time this algorithm is generally
inferior to the other algorithms. The results should only be seen as benchmark values
of available optimization code. We will not go into detail describing the method, the
code or the parameter settings here. The interested reader is referred to [6, 7, 8] for
the specific details of the algorithm and the implementation.

3 Experiments

We tested all given algorithms on several sets of benchmark instances. The instances
were chosen to cover different types of facility location problems. First we studied
the Bilde-Krarup benchmarks, which were proposed in [10]. These are non-metric
small scale instances with n x m = 30 x 80 - 50 x 100. Next we focused on small
scale benchmarks proposed by Galvao and Raggi in [13]. These are metric instances
with n = m = 50 - 200. Then we examined the performance on the cap instances
from the ORLIB [9] and the M* instances, which were proposed in [18]. These are
non-metric small and medium sized instances with n x m = 16 x 50 - 2000 x 2000.
Finally we studied metric large scale instances with n = m = 500 — 3000, which were
proposed in [1] and used as UFLP benchmarks in [7]. On all instances we averaged
over the performance of 20 runs for each algorithm. The experiments were done on
a 866Mhz Intel Pentium IIT running Linux. For most problems we used CPLEX to
solve the problems to optimality. The CPLEX-runs were done on a 333Mhz Sun
Enterprise 10000 with UltraSPARC processors running UNIX. The execution times
are about a factor of 2.5 times higher than the times for the algorithms.

With all benchmark instances, implementations of all algorithms and benchmark
generators a web page was set up. All material used in this study can be accessed
online at the UflLib [26].

3.1 Bilde-Krarup Instances

The Bilde-Krarup instances are small scale instances of 22 different types. The costs
for the different types are calculated with the parameters given in Table 1. As the
exact instances are not known, we generated 10 test instances for each problem type.
In Table 2 we report the results for the deterministic algorithms and in Table 3 the
results for the heuristic and randomized algorithms. In columns ’Opt’ we report the
number of instances that could be solved to optimality. For the heuristic algorithms
we also report the average percentage of runs on the instances solved to optimality
that ended with an optimal solution. In columns "Error’ we report the average error
of the final solution, in columns "Time’ the average execution time in seconds. In
column "CPX’ we denoted the average running time of CPLEX to solve the instances.

The deterministic algorithms perform quite good in these instances. The average
error is 2.607% at maximum although the problems are not of metric nature. MYZ

6

Type Size fi Cij
B 50x100 | Discrete Uniform (1000, 10000) | Discrete Uniform (0,1000)
C 50x100| Discrete Uniform (1000, 2000) |Discrete Uniform (0,1000)
Dqg* | 30x80 Identical, 1000*q Discrete Uniform (0,1000)
Eq* [50x100 Identical, 1000*q Discrete Uniform (0,1000)
* q=1,...,10
Table 1: Parameters for the Bilde-Krarup problem classes
Type CPX JMS MYZ
Opt ‘ Error ‘ Time || Opt ‘ Error ‘ Time

B 6.859 51 0.416% | 0.003 41 0.588% | 0.003

C 107.558 1| 1.750% | 0.003 310.886% | 0.003

D1 21.591 0| 2.445% | 0.001 1| 1.689% | 0.002

D2 30.990 1|1.675% | 0.002 21 1.133% | 0.002

D3 28.103 1|2.607% | 0.002 410.923% | 0.002

D4 26.685 310.796% | 0.002 310.597% | 0.002

D5 22.368 410.647% | 0.002 7 10.085% | 0.002

D6 28.393 2| 1.042% | 0.002 31 1.315% | 0.002

D7 24.484 1| 1.771% | 0.002 6 | 0.664% | 0.002

D8 20.947 41 1.587% | 0.002 41 1.044% | 0.002

D9 22.326 710.846% | 0.002 910.012% | 0.002

D10 19.122 710.252% | 0.002 8 [0.189% | 0.002

El 133.839 2 12.265% | 0.003 311.317% | 0.003

E2 229.305 21 1.650% | 0.003 410.845% | 0.003

E3 190.860 21 1.610% | 0.003 21 0.940% | 0.003

E4 185.168 311.192% | 0.003 310.781% | 0.004

E5 163.571 1|2.560% | 0.003 7 10.690% | 0.004

E6 173.918 41 1.049% | 0.003 510.661% | 0.004

E7 164.845 510.759% | 0.004 510.613% | 0.004

E8 180.186 1| 1.474% | 0.004 410.887% | 0.004

E9 174.150 31 1.232% | 0.004 6 | 0.674% | 0.004

E10 | 148.229 410.775% | 0.004 6 | 0.404% | 0.004

Table 2: Results for the deterministic algorithms

Type LOCAL TABU-Search V&RR

Opt | Error | Time Opt | Error | Time Error | Time
B 0.046% | 0.012 || 10, [100] | 0.000% | 0.053 0.419% | 0.421
C , 0.848% | 0.014 || 7, [91.43] | 0.245% | 0.055 4.454% | 0.525
D1 3 1.678% | 0.006 6,/90.8] | 0.241% | 0.038 3.719% | 0.239
D2 2 1.758% | 0.006 9,[73.9] | 0.537% | 0.044 3.083% | 0.254
D3 3 0.879% | 0.006 9,/99.4] | 0.073% | 0.042 2.245% | 0.235
D4 8 0.530% | 0.006 || 10,[100] | 0.000% | 0.041 1.248% | 0.243
D5 6 0.402% | 0.006 || 10,[94.0] | 0.004% | 0.040 0.995% | 0.246
D6 0, 0.882% | 0.006 9,/96.7] | 0.146% | 0.042 0.919% | 0.259
D7 8, 0.354% | 0.005 || 10,[100] | 0.000% | 0.042 0.214% | 0.251
D8 7 1.000% | 0.006 9,100] | 0.166% | 0.043 1.390% | 0.259
D9 8, 0.285% | 0.006 || 10,[100] | 0.000% | 0.043 0.496% | 0.256
D10 7 0.760% | 0.006 || 10,[92.5] | 0.139% | 0.043 0.506% | 0.268
E1l 1, 1.430% | 0.013 || 10,[57.0] | 0.388% | 0.062 5.712% | 0.516
E2 3 2.712% | 0.013 || 10,[93.5] | 0.006% | 0.067 4.479% | 0.560
E3 4, 0.784% | 0.012 7,089.3] | 0.268% | 0.061 3.419% | 0.553
E4 3, 1.577% | 0.013 9,/100] | 0.013% | 0.060 2.505% | 0.581
E5 4, 2.019% | 0.013 || 10,[100] | 0.000% | 0.062 1.924% | 0.546
E6 7, 0.969% | 0.013 || 10,[100] | 0.000% | 0.062 1.981% | 0.602
E7 6 0.996% | 0.015 || 10,[100] | 0.000% | 0.063 1.802% | 0.586
ES8 4, 1.043% | 0.014 | 10,[89.5] | 0.177% | 0.067 1.318% | 0.585
E9 7 0.655% | 0.013 || 10,[100] | 0.000% | 0.066 0.896% | 0.592
E10 8 0.948% | 0.013 || 10,[100] | 0.000% | 0.066 0.864% | 0.598

Table 3: Results for the heuristic and randomized algorithms

Size 0 | Parameters for f;

mean stand. dev.
50 | 0.061 | 25.1 14.1
70 | 0.043 | 42.3 20.7
100 | 0.025 | 51.7 28.9
150 | 0.018 | 186.1 101.5
200 | 0.015 | 149.5 94.4

Table 4: Parameters for the Galvao-Raggi problem classes

performs significantly better than JMS in terms of solution quality. It can solve 37
more problems to optimality and also has a lower average error. The execution time
is slightly higher because it uses JMS as a subroutine.

For the heuristic algorithms TABU provides the best results. It was able to solve
problems of all classes to optimality in a high number of runs. Unfortunately it also
is much slower than LOCAL, MYZ and JMS.

LOCAL also performs competitive on most of these problem classes. Compared to
TABU it is able to solve problems of all classes to optimality, but the overall number
of instances solved is very much lower. In terms of the running time it is much faster
though.

V&RR is outperformed by any of the other algorithms. It reveals the highest running
time and the worst solution quality.

3.2 Galvao-Raggi Instances

Galvao and Raggi proposed unique benchmarks for the UFLP. A graph is given with
an arc density ¢, which is defined as = connections present /(m *n). Each present
connection has a cost sampled from a uniform distribution in the range [1, n] (except
for n = 150, where the range is [1,500]). The connection costs between a facility i
and a city j are determined by the shortest path from ¢ to j in the given graph. The
opening costs f; are assumed to come from a Normal distribution. Originally Galvao
and Raggi proposed problems with n = m = 10, 20, 30, 50, 70, 100, 150 and 200. We
will consider the 5 largest types. The density values and the parameters for the
Normal distribution are listed in Table 4. The exact instances for these benchmarks
are not known. So as for the Bilde-Krarup benchmarks we generated 10 instances
for each class. The results for the deterministic algorithms are reported in Table 5
and for the randomized and heuristic algorithms in Table 6. In columns 'Opt’ the
number of instances solved to optimality is reported. For the instances solved to
optimality by a specific algorithm we averaged the percentage of runs that ended
with the optimal solution and report this number in brackets. In columns "Error’ we

Type | CPX JMS MYZ

Opt ‘ Error ‘ Time || Opt ‘ Error ‘ Time
50 0.200 10 | 0.000% | 0.001 10 | 0.032% | 0.001
70 0.332 91 0.038% | 0.003 7 10.065% | 0.003
100 0.677 91 0.014% | 0.006 8 1 0.099% | 0.007
150 1.623 710.059% | 0.016 61| 0.111% | 0.016
200 3.355 61 0.071% | 0.036 710.032% | 0.036

Table 5: Results for the deterministic algorithms

Type LOCAL TABU V&RR

Opt ‘ Error ‘ Time Opt ‘ Error ‘ Time Opt ‘ Error ‘ Time
50 9,/99.5] | 0.236% | 0.006 || 10,[100] | 0.000% | 0.026 | 10,[97.0] | 0.007% | 0.112
70 7,080.0] | 0.063% | 0.013 || 9,[100] | 0.061% | 0.037 || 10,[93.0] | 0.001% | 0.238
100 4,186.3] | 0.022% | 0.026 || 10,[83.5] | 0.039% | 0.055 | 10,[90.0] | 0.002% | 0.965
150 5,092.0] | 0.020% | 0.062 || 9,[55.6] | 0.239% | 0.085 || 9, [94.4] | 0.001% | 3.375
200 6,[65.8] | 0.022% | 0.127 || 9,[53.9] | 0.131% | 0.133 || 10,[68.0] | 0.011% | 7.363

Table 6: Results for the heuristic algorithms

report the average error, in columns 'Time’ the average execution time in seconds.
We also included the average running times of CPLEX in column ’CPX’ of Table 5.

JMS performs on these metric instances slightly better than MYZ. For the heuris-
tic and randomized algorithms V&RR performs very good - even better than TABU
- to the expense of high execution times. In fact, the times are prohibitively high
as the algorithm needs much more time than CPLEX to solve the instances to
optimality.

3.3 ORLIB and M* Instances

The cap problems from the ORLIB are non-metric medium sized instances. The
M* instances were designed to represent classes of real UFLPs. They are very chal-
lenging for mathematical programming methods because they have a large number
of suboptimal solutions. In Table 7 we report the results for the deterministic and
in Tables 8 and 9 the results for the heuristic and randomized algorithms. For the
deterministic algorithms we indicate with a star in columns ’Opt’, whether an in-
stance was solved to optimality or not. For the heuristic and randomized algorithms
columns 'Opt’ show the percentage of runs in which the algorithm was able to solve
the problem to optimality. In Columns ’Cost’ and "Error’ we report the average cost
and the error of the final solution over all runs. For the heuristic and randomized al-

10

gorithms we report the average solution (Avg’) and the standard deviation ('o(S)’)
expressed as a percentage of the average solution. We separately report the best
solution ("Best’) if it is not equal to the optimum or the average solution. As TABU
always managed to find optimal solutions, we omit the column ’Best’ here.

For the larger benchmarks the optimal solutions are not known. Instead we used the
best solutions found as a reference, which for all benchmarks were encountered by
TABU. All values that do not relate to an optimal solution are denoted in brackets.
Running times for all algorithms can be found in Table 10. In Columns 'Time’ we
report the average running time in seconds. For the heuristic and randomized algo-
rithms we also included the standard deviation (’Std’) for the running time expressed
as a percentage of the average running time.

At the end of each table we summarized the results for the groups with more than
one instance. We put the data in the format of the previous tables for the Galvao-
Raggi and Bilde-Krarup instances.

11

Bench Size Opt Cost JMS MY7Z

Opt | Cost | Error || Opt | Cost | Error
cap71 16x50 932615.75 932615.75 0.000% * 932615.75 0.000%
cap72 16x50 977799.40 981538.85 0.382% 981538.85 0.382%
cap73 16x50 1010641.45 1015508.94 0.482% 1012643.69 0.198%
cap’74 16x50 1034976.98 1042643.69 0.741% 1045383.79 1.006%
capl101 25x50 796648.44 798591.13 0.244% 797508.73 0.108%
cap102 25x50 854704.20 858109.33 0.398% * 854704.20 0.000%
capl103 25x50 893782.11 902413.26 0.966% 895027.19 0.139%
capl04 25x50 928941.75 932527.19 0.386% 932007.96 0.330%
capl31 50x50 793439.56 795382.25 0.245% 794299.85 0.108%
capl132 50x50 851495.33 854900.45 0.400% * 851495.33 0.000%
capl33 50x50 893076.71 901481.84 0.941% 894095.76 0.114%
capl34 50x50 928941.75 932527.19 0.386% 932007.96 0.330%
capa 100x1000 | 17156454.48 17765201.95 3.548% 17902353.24 4.348%
capb 100x1000 | 12979071.58 13070745.09 0.706% 13271844.16 2.256%
capc 100x1000 | 11505594.33 11702914.76 1.715% 11681971.18 1.533%
MO1 100x100 1305.95 * 1305.95 0.000% * 1305.95 0.000%
MO2 100x100 1432.36 1479.11 3.264% 1460.29 1.950%
MO3 100x100 1516.77 1521.47 0.310% 1521.47 0.310%
MO4 100x100 1442.24 * 1442.24 0.000% 1442.24 0.000%
MO5 100x100 1408.77 1413.81 0.358% 1408.77 0.000%
MP1 200x200 2686.48 * 2686.48 0.000% 2686.48 0.000%
MP2 200x200 2904.86 2914.42 0.329% 2914.42 0.329%
MP3 200x200 2623.71 2658.98 1.345% * 2623.71 0.000%
MP4 200x200 2938.75 * 2938.75 0.000% * 2938.75 0.000%
MP5 200x200 2932.33 2939.95 0.260% 2939.95 0.260%
MQ1 300x300 4091.01 4091.01 0.000% * 4091.01 0.000%
MQ2 300x300 4028.33 4028.33 0.000% * 4028.33 0.000%
MQ3 300x300 4275.43 4307.97 0.761% * 4275.43 0.000%
MQ4 300x300 4235.15 4273.05 0.895% 4239.23 0.096%
MQ5 300x300 4080.74 4103.75 0.564% 4103.75 0.564%
MR1 500x500 [2608.15] 2614.72 | [0.252%] 2609.13 | [0.038%]
MR2 500x500 | [2654.74] | [¥] 2654.74 | [0.000%] || [*] 2654.74 | [0.000%]
MR3 500x500 | [2788.25] 9794.41 | [0.221%] 2794.41 | [0.221%)
MR4 500x500 | [2756.04] 2782.28 | [0.952%] 2773.89 | [0.648%]
MR5 500x500 2505.05 2517.10 | [0.481% 2529.87 | [0.991%
MS1 1000x1000 5283.76 [*] 5283.76 | [0.000% [*] 5283.76 | [0.000%
MT1 2000x2000 [10069.80 10090.49 | [0.205% 10090.49 | [0.205%
cap7* 0 0.401% 1 0.397%
capl0* 0 0.499% 1 0.144%
capl3* 0 0.493% 1 0.138%
capa-c 0 1.990% 0 2.712%
MO* 2 0.786% 3 0.452%
MP* 2 0.387% 3 0.118%
MQ* 2 0.444% 3 0.132%
MR* 1] 0.381%] | [1] [0.380%]

Table 7: Solution quality of the deterministic algorithms

12

€1

Bench LOCAL TABU V&RR

Opt | Best | Avg | Error | Std Opt | Avg | Error | Std Opt | Avg | Error | Std
cap71 100% 932615.75 | 0.000% | 0.000% 100% 932615.75 | 0.000% | 0.000% 100% 932615.75 | 0.000% | 0.000%
cap72 0% 979099.61 | 0.133% | 0.000% 100% 977799.40 | 0.000% | 0.000% 100% 977799.40 | 0.000% | 0.000%
cap73 0% 1011067.65 | 0.042% | 0.000% 100% 1010641.45 | 0.000% | 0.000% 100% 1010641.45 | 0.000% | 0.000%
cap’74 100% 1034976.98 | 0.000% | 0.000% 100% 1034976.98 | 0.000% | 0.000% 100% 1034976.98 | 0.000% | 0.000%
cap101 0% 797582.29 | 0.117% | 0.000% 100% 796648.44 | 0.000% | 0.000% 100% 796648.44 | 0.000% | 0.000%
capl102 100% 854704.20 | 0.000% | 0.000% 100% 854704.20 | 0.000% | 0.000% 100% 854704.20 | 0.000% | 0.000%
capl03 100% 893782.11 | 0.000% | 0.000% 100% 893782.11 | 0.000% | 0.000% 100% 893782.11 | 0.000% | 0.000%
capl04 0% 930026.55 | 0.117% | 0.000% 100% 928941.75 | 0.000% | 0.000% 100% 928941.75 | 0.000% | 0.000%
capl31 100% 793439.56 | 0.000% | 0.000% 100% 793439.56 | 0.000% | 0.000% 100% 793439.56 | 0.000% | 0.000%
capl132 100% 851495.33 | 0.000% | 0.000% 100% 851495.33 | 0.000% | 0.000% 100% 851495.33 | 0.000% | 0.000%
capl33 0% 895292.08 | 0.248% | 0.000% 100% 893076.71 | 0.000% | 0.000% 40% 893688.55 | 0.069% | 0.057%
capl34 0% 935422.70 | 0.698% | 0.000% 100% 928941.75 | 0.000% | 0.000% 100% 928941.75 | 0.000% | 0.000%
capa 100% 17156454.48 | 0.000% | 0.000% 100% | 17156454.48 | 0.000% | 0.000% 100% | 17156454.48 | 0.000% | 0.000%
capb 50% 13041143.92 | 0.478% | 0.575% 75% | 13000649.83 | 0.166% | 0.289% 100% | 12979071.58 | 0.000% | 0.000%
capc 0% | 11509361.7 | 11534161.39 | 0.248% | 0.084% 70% | 11513112.75 | 0.065% | 0.117% 10% | 11519212.05 | 0.100% | 0.130%
cap™ | 2,[100] 0.044% 4,100] 0.000% 4,100] 0.000%
capl0* || 2,[100] 0.059% 4,[100 | 0.000% 4,[100 | 0.000%
capl3* || 2,[100] 0.236% 4,[100 | 0.000% 4,[85.0] 0.017%
capa-c || 2,[75.0] 0.242% 3,[81.7] 0.077% 3,[70.0] 0.039%

Table 8: Solution quality of the heuristic and randomized algorithms

Al

Bench LOCAL TABU V&RR

Opt | Best | Avg | Error | Std Opt | Avg | Error | Std Opt | Best | Avg | Error | Std
MO1 100% 1305.95 0.000% | 0.000% 100% 1305.95 0.000% 0.000% 10% 1315.833 0.757 | 0.437%
MO2 15% 1450.81 1.288% | 0.534% 100% 1432.36 0.000% 0.000% 15% 1449.311 1.184 | 0.564%
MO3 0% 1521.47 0.310% | 0.000% 100% 1516.77 0.000% 0.000% 5% 1536.238 1.283 | 0.584%
MO4 100% 1442.24 0.000% | 0.000% 100% 1442.24 0.000% 0.000% 20% 1465.982 1.646 1.016%
MO5 100% 1408.77 0.000% | 0.000% 100% 1408.77 0.000% 0.000% 65% 1410.879 0.150 | 0.239%
MP1 100% 2686.48 0.000% | 0.000% 100% 2686.48 0.000% 0.000% 15% 2709.68 0.864% | 0.535%
MP2 100% 2904.86 0.000% | 0.000% 100% 2904.86 0.000% 0.000% 5% 2944.39 1.361% | 0.672%
MP3 100% 2623.71 0.000% | 0.000% 100% 2623.71 0.000% 0.000% 10% 2666.66 1.637% | 0.618%
MP4 0% | 2942.63 2943.99 0.178% | 0.051% 100% 2938.75 0.000% 0.000% 0% 2944.78 2983.59 1.526% | 0.680%
MP5 40% 2939.74 0.252% | 0.251% 100% 2932.33 0.000% 0.000% 0% 2939.95 2950.67 0.625% | 0.195%
MQ1 100% 4091.01 0.000% | 0.000% 100% 4091.01 0.000% 0.000% 15% 4151.64 1.482% | 0.834%
MQ2 100% 4028.33 0.000% | 0.000% 100% 4028.33 0.000% 0.000% 5% 4103.26 1.860% | 0.658%
MQ3 100% 4275.43 0.000% | 0.000% 100% 4275.43 0.000% 0.000% 10% 4326.12 1.186% | 0.694%
MQ4 100% 4235.15 0.000% | 0.000% 100% 4235.15 0.000% 0.000% 5% 4291.00 1.319% | 0.651%
MQ5 85% 4084.73 0.098% | 0.235% 100% 4080.74 0.000% 0.000% 0% 4127.22 4154.24 1.801% | 0.340%
MQ1 100% 4091.01 0.000% | 0.000% 100% 4091.01 0.000% 0.000% 0% 4114.94 4161.48 1.722% | 0.564%
MQ2 100% 4028.33 0.000% | 0.000% 100% 4028.33 0.000% 0.000% 5% 4096.23 1.686% | 0.679%
MQ3 100% 4275.43 0.000% | 0.000% 100% 4275.43 0.000% 0.000% 10% 4305.77 0.710% | 0.434%
MQ4 100% 4235.15 0.000% | 0.000% 100% 4235.15 0.000% 0.000% 0% 4239.24 4284.37 1.162% | 0.599%
MQ5 65% 4089.08 0.204% | 0.278% 100% 4080.74 0.000% 0.000% 5% 4144.23 1.556% | 0.607%
MR1 [20%)] 2612.76 | [0.177%) | 0.317% || [100%] | 2608.15 | [0.000%) 0.000% [0%] | 2614.70 | 2633.31 | [0.965%] | 0.434%
MR2 || [45%) 2679.61 | [0.936%)] | 0.864% || [100%] | 2654.74 | [0.000%] 0.000% [0%] | 2697.65 | 2729.38 | [2.812%] | 0.798%
MR3 [80%)] 2789.17 | [0.033%] | 0.066% || [100%] | 2788.25 | [0.000%] 0.000% [0%] | 2793.32 | 2838.13 | [1.789%] | 0.707%
MR4 || [100%)] 2756.04 | [0.000%] | 0.000% || [100%] | 2756.04 | [0.000%] 0.000% [0%] | 2784.47 | 2821.06 | [2.359%)] | 0.658%
MRS5S 100% 2505.05 0.000% 0.000% 100% 2505.05 0.000% 0.000% 0% 2532.28 2559.81 2.186% 0.614%
MS1 100% 5283.76 0.000% 0.000% 100% 5283.76 0.000% 0.000% 0% 5327.17 | 5380.411 1.829% 0.572%
MT1 [20% 10085.84 0.159% 0.080% [90% 10071.77 0.020% 0.059% [0% 10121.95 10252.72 [1.817%] 0.462%
MO* || 4,[78.8] 0.320% 5,1100] 0.000% 5,123.0] 1.004%
MP* || 4,[85.0] 0.086% 5,(100] 0.000% 3,[10.0] 1.203%
MQ* || 5,[93.0] 0.041% 5,[100] 0.000% 3,0 6.7] 1.367%
MR* || 5,(69.0] [0.229%] 5,(100] 0.000%] 0, 0.0] [2.022%]

Table 9: Solution quality of the heuristic and randomized algorithms

Again the deterministic algorithms perform very well on the benchmarks. The
maximum error for both methods was produced on the capa benchmark. Of the
deterministic algorithms MYZ did perform better than JMS. Tt was able to solve
additional 6 problems to optimality. JMS could only achieve a better performance
in 4 of the 37 benchmarks. In terms of running time MYZ becomes slightly less
competitive on larger problems because the additional calculations of the greedy
augmentation procedure need more time.

With a maximum average error of 0.289% TABU is again the algorithm with the
best performance on these benchmarks. It is able to solve all problems to optimality
- in most cases with a high frequency. Here our results are consistent with the values
reported in [23]. However, the running times of our code are significantly faster than
the times needed by the implementation of Michel and Van Hentenryck (a factor of
2 and more).

Compared to TABU the solution quality of LOCAL is not very competitive. It
fails to find optimal solutions on 9 problems, while 7 of them are cap-benchmarks.
The running times, however, are very competitive, as it performs in most cases
significantly better than TABU.

The performance of V&RR is not very good in comparison to the other methods. On
some of the cap instances the algorithm achieves good solution quality. On the M*-
instances, however, it performs worse than all other algorithms in terms of solution
quality and execution time. The execution times for the small problems exceed the
times of CPLEX again. The practical use of this algorithm for smaller problems
should therefore be avoided. For problems with m,n > 100, however, execution
times of CPLEX become significantly higher.

Interestingly there is hardly any variation of the running times of V&RR on the
M*-instances.

3.4 k-median Instances

In this section we take a look at large scale instances for the UFLP. The benchmarks
considered here were originally introduced for the k-median problem in [1]. In [8] they
were used as test instances for the UFLP. To construct an instance, we pick n points
independent uniformly at random in the unit square. Each point is simultaneously
city and facility. The connection costs are the Euklidian distances in the plane. All
facility opening costs are identical. To prevent numerical problems and preserve the
metric properties, we rounded up all data to 4 significant digits and then made all
the data entries integer.

In [1] the authors showed that, when n is large, any enumerative method based on
the lower bound of the relaxed LP would need to explore an exponential number of
solutions. They also showed that the solution of the relaxed LP is, asymptotically
in the number of points, about 0.998% of the optimum.

15

Bench CPX JMS MYZ LOCAL TABU V&RR
Time || Time || Time | Std || Time | Std Time | Std
cap71 0.109 0.001 0.001 0.002 1.176% 0.022 0.114% 0.060 3.275%
cap72 0.067 0.001 0.001 0.002 0.420% 0.022 1.103% 0.051 7.031%
cap73 0.078 0.001 0.001 0.002 0.516% 0.023 0.075% 0.043 0.094%
cap74 0.068 0.001 0.001 0.002 0.379% 0.024 0.277% 0.033 4.221%
cap101 0.106 0.001 0.001 0.003 0.456% 0.024 0.096% 0.086 4.019%
cap102 0.093 0.001 0.001 0.003 0.437% 0.023 0.060% 0.078 2.091%
cap103 0.094 0.001 0.001 0.005 0.294% 0.026 | 24.885% 0.064 6.961%
capl04 0.098 0.001 0.001 0.003 4.750% 0.024 0.071% 0.063 8.096%
cap131 0.206 0.002 0.002 0.006 0.372% 0.026 0.094% 0.200 5.441%
cap132 0.186 0.002 0.002 0.007 0.329% 0.025 0.086% 0.148 4.138%
capl33 0.192 0.002 0.002 0.005 0.387% 0.027 7.594% 0.146 | 11.840%
capl34 0.199 0.002 0.002 0.006 0.492% 0.030 2.150% 0.141 | 20.066%
capa 48.834 0.153 0.162 0.404 | 17.640% 1.343 4.517% 15.371 | 11.267%
capb 37.746 0.151 0.158 0.545 | 21.985% 0.948 | 11.628% 20.505 7.117%
capc 146.654 0.152 0.155 0.480 | 27.173% 0.924 | 16.881% 22.495 | 12.788%
MO1 165.811 0.008 0.008 0.025 7.546% 0.060 0.317% 1.940 3.616%
MO2 154.922 0.008 0.008 0.024 9.879% 0.063 3.647% 2.077 2.925%
MO3 201.240 0.008 0.008 0.028 5.489% 0.082 | 17.751% 1.663 2.281%
MO4 80.766 0.008 0.008 0.035 0.335% 0.060 1.178% 1.516 4.701%
MO5 115.189 0.008 0.008 0.024 0.262% 0.069 3.456% 2.012 3.111%
MP1 4442.243 0.049 0.050 0.180 | 10.829% 0.228 3.055% 9.812 0.458%
MP2 9307.855 0.050 0.051 0.169 | 31.750% 0.225 2.385% 9.826 0.350%
MP3 1183.319 0.049 0.051 0.196 | 23.053% 0.224 1.966% 11.573 1.618%
MP4 11219.924 0.049 0.050 0.154 | 19.691% 0.267 | 17.672% 12.210 2.110%
MP5 13288.276 0.049 0.051 0.129 7.645% 0.230 6.578% 12.725 1.194%
MQ1 25876.314 0.141 0.143 0.563 | 19.773% 0.668 1.613% 24.667 2.603%
MQ2 44236.625 0.141 0.142 0.507 | 20.969% 0.646 2.563% 26.538 1.597%
MQ3 21227.507 0.146 0.144 0.603 | 16.013% 0.683 1.499% 27.111 0.356%
MQ4 28484.952 0.143 0.145 0.471 | 11.159% 0.671 2.145% 20.732 0.495%
MQ5 126890.793 0.139 0.141 0.472 | 21.826% 0.675 4.890% 26.088 0.473%
MR1 0.468 0.481 2.388 | 33.574% 1.796 | 11.183% 78.575 0.902%
MR2 0.455 0.472 1.879 | 18.124% 1.958 7.453% 78.762 0.500%
MR3 0.464 0.480 2.112 8.349% 2.051 | 15.839% 85.650 0.476%
MR4 0.471 0.477 1.961 | 16.183% 1.656 1.825% 77.825 0.417%
MR5 0.461 0471 2.339 | 21.605% 1.664 3.037% 76.141 0.478%
MS1 2.281 2.323 || 11.720 | 14.147% 6.366 1.705% 304.066 0.978%
MT1 11.079 || 11.241 || 89.592 | 22.647% || 31.505 | 16.838% || 1283.285 0.594%
cap7* 0.001 0.001 0.002 0.023 0.047
capl0* 0.001 0.001 0.003 0.024 0.073
capl3* 0.002 0.002 0.006 0.027 0.159
capa-c 0.152 0.159 0.476 1.072 19.457
MO* 0.008 0.008 0.027 0.067 1.842
MP* 0.049 0.050 0.166 0.235 11.229
MQ* 0.142 0.143 0.523 0.669 25.027
MR* 0.464 0.476 2.136 1.825 79.391

Table 10: Running times of the algorithms

16

Problem LB JMS MYZ
Cost‘ Error‘ Time Cost‘ Error‘ Time

500,10 798399 || 808090 | 1.214% | 0.364 | 813800 | 1.929% | 0.375
500,100 326754 || 330758 | 1.225% | 0.359 || 331183 | 1.355% | 0.364
500,1000 99099 99245 | 0.147% | 0.353 99208 | 0.110% | 0.362
1000,10 1432737 || 1448286 | 1.085% | 1.758 || 1454031 | 1.486% | 1.810
1000,100 607591 | 613182 0.920% | 1.758 | 613070 | 0.902% | 1.799
1000,1000 | 220479 | 221942 | 0.664% | 1.767 | 221437 | 0.435% | 1.802
1500,10 1997302 || 2029316 | 1.603% | 4.428 || 2032631 | 1.769% | 4.543
1500,100 866231 || 875247 | 1.041% | 4.409 || 875828 | 1.108% | 4.467
1500,1000 | 334859 | 337307 | 0.731% | 4.472 | 337015 | 0.644% | 4.541
2000,10 2556794 || 2587422 | 1.198% | 8.651 || 2587945 | 1.218% | 8.921
2000,100 | 1122455 || 1133639 | 0.996% | 8.516 || 1140205 | 1.581% | 8.684
2000,1000 | 437553 || 441283 | 0.852% | 8.599 || 441269 | 0.849% | 8.730
2500,10 3095135 || 3142386 | 1.527% | 14.514 || 3150382 | 1.785% | 14.544
2500,100 | 1346924 || 1365831 | 1.404% | 14.383 || 1369077 | 1.645% | 14.548
2500,1000 | 534147 || 538463 | 0.808% | 14.605 | 537891 | 0.701% | 14.852
3000,10 3567125 || 3620604 | 1.499% | 21.924 || 3637504 | 1.973% | 22.310
3000,100 | 1600551 || 1618821 | 1.141% | 21.660 || 1624535 | 1.498% | 22.008
3000,1000 | 643265 || 648977 | 0.888% | 21.630 | 649422 | 0.957% | 21.914

Table 11: Results for the deterministic algorithms

For each set of points, we generated 3 instances. We set all opening costs to \/n/10,
v/n/100 and /n/1000. Each opening cost defines a different instance with different
properties.

In the following Tables we report the results of our experiments. In column LB’
of Table 11 we provide the lower bound on each problem calculated by V&RR. In
Tables 11 and 12 we report for each algorithm the average cost of the final solution,
the average error and the average execution time of the algorithm. All errors were
calculated using the lower bound in 'LB’.

17

81

Problem LOCAL TABU V&RR

Cost Error Time Cost Error | Time Cost Error Time
500,10 802178.35 | 0.473% 2.240 | 800478.70 | 0.260% | 0.991 || 830634.10 | 4.037% 66.727
500,100 329126.95 | 0.726% 4.790 | 328539.60 | 0.546% | 1.214 || 333459.55 | 2.052% 55.659
500,1000 99374.25 | 0.277% 2.167 99324.70 | 0.227% | 1.755 || 104756.45 | 5.709% 43.099
1000,10 1439284.80 | 0.457% 17.282 || 1439905.55 | 0.500% | 4.713 || 1532623.90 | 6.972% | 356.955
1000,100 609825.80 | 0.358% 48.320 || 609577.65 | 0.327% | 5.166 | 636226.65 | 4.713% | 245.225
1000,1000 | 221736.45 | 0.570% 62.622 | 224990.50 | 2.046% | 2.856 || 230848.05 | 4.703% | 187.718
1500,10 2008847.75 | 0.578% 38.097 || 2005876.60 | 0.429% | 10.288 || 2182858.00 | 9.290% | 719.641
1500,100 870231.25 | 0.462% | 150.230 || 870181.70 | 0.456% | 11.285 || 903989.40 | 4.359% | 556.186
1500,1000 | 336950.35 | 0.625% | 257.636 || 336263.10 | 0.419% | 18.786 || 347227.65 | 3.694% | 479.491
2000,10 2570347.80 | 0.530% 85.863 || 2570231.45 | 0.526% | 16.797 || 2804650.45 | 9.694% | 1172.350
2000,100 | 1128591.55 | 0.547% | 289.785 | 1128392.40 | 0.529% | 18.803 || 1197988.15 | 6.729% | 1000.169
2000,1000 || 439874.60 | 0.531% | 682.241 || 439597.15 | 0.467% | 88.423 || 452279.35 | 3.366% | 912.588
2500,10 3114457.80 | 0.624% | 196.352 || 3118274.75 | 0.748% | 28.344 || 3414448.30 | 10.317% | 2224.532
2500,100 | 1353003.85 | 0.451% | 429.241 || 1352321.90 | 0.401% | 29.282 || 1452854.95 | 7.865% | 1728.433
2500,1000 || 536890.20 | 0.514% | 1297.672 || 536545.95 | 0.449% | 50.488 || 555853.25 | 4.064% | 1401.563
3000,10 3586598.90 | 0.546% | 228.680 | 3586916.35 | 0.555% | 39.209 || 4018137.40 | 12.644% | 2951.249
3000,100 | 1611474.10 | 0.682% | 892.870 || 1611186.25 | 0.664% | 44.901 || 1773741.80 | 10.821% | 2677.263
3000,1000 || 646277.00 | 0.468% | 2188.568 | 645680.15 | 0.375% | 67.246 || 670984.45 | 4.309% | 2008.729

Table 12: Results for the heuristic and randomized algorithms

On these metric benchmarks JMS again delivers slightly better results than MYZ.
TABU is the best algorithm in terms of solution quality. LOCAL manages to find
better solutions than the deterministic algorithms, but it is much slower than TABU,
JMS and MYZ. The performance of V&RR is not competitive in comparison to the
other algorithms. It is outperformed in terms of solution quality and execution time
by all algorithms on nearly all benchmarks. Only on the larger benchmarks with
small opening costs the running time of LOCAL is equally slow. Part of the reason
for this is the use of priority queues. For the problems with smaller opening cost
optimal solutions have a high number of opened facilities. Here the operations on the
queues are getting expensive. A better implementation of LOCAL for these kinds of
problems would omit the use of queues. Then the adjustment of the datastructures
when opening a facility (which is the operation used more often here) could be
executed in O(m). The closing operation would need O(nm), which leads to inferior
execution times on average. However, here most of the time the closing operation
is used in the exchange step, which is invoked after nearly all facilities have been
opened. When nearly all facilities are opened, most of the cities are connected to
the facility located at the same site. Then closing a facility affects basically only one
city. In this case finding the new closest and second closest facilities can be done in
O(m). Thus, it is not surprising that an implementation without queues was able to
improve the execution times on the large problems with n = m > 1500 by factors
of up to 3. Nevertheless we chose to implement priority queues in our version of
LOCAL as their theoretical advantage leads to shorter execution times on average.

3.5 Scaling and Local Search

In [11] a scaling technique was proposed to improve the approximation bound of
local search for the metric UFLP. In the beginning all costs are scaled up by a factor
of /2. Then the search is run on the scaled instance. Of all candidates found the
algorithm exits with the one having the smallest cost for the unscaled instance.
With this technique the search is advised to open the most economical facilities.
In practice, however, we cannot guarantee that the scaled local search picks better
solutions. It is quite likely that the scaled version exits with inferior solutions as the
solution space of the scaled instance might not reveal the same properties as the
unscaled instance. Especially because the errors for the benchmarks are far lower
than the approximation guarantee, it becomes obvious that this adjustment is only
a way of lowering theoretical bounds and has limited practical use.

In Table 13 we report experimental results on a selection of benchmarks for the
two versions of Local Search. The scaling technique method was proposed for Local
Search on the metric UFLP. However, it deteriorates the performance of Local Search
on metric as well as non-metric instances.

19

Bench LOCAL Scaled Local

Error ‘ Time Error ‘ Time
Galvao and
50 0.236% 0.006 0.484% 0.006
70 0.063% 0.013 0.704% 0.011
100 0.022% 0.026 0.650% 0.025
150 0.020% 0.062 0.682% 0.059
200 0.022% 0.127 0.819% 0.115
ORLIB
cap71-74 0.044% 0.002 0.659% 0.002
capl01-104 0.059% 0.003 0.373% 0.004
capl31-134 0.236% 0.006 0.746% 0.006
capa-c 0.242% 0.476 1.243% 0.445
NF
MO* 0.320% 0.027 0.720% 0.027
MP* 0.086% 0.166 0.822% 0.161
MQ* 0.041% 0.523 0.533% 0.590
MR*+ 0.229% 2.136 0.877% 2.513
MS* 0.000% 11.720 0.666% 12.170
MT+ 0.159% 89.592 0.784% | 118.443
k-median
1000,107 0.457% 17.282 1.416% 15.166
1000,1001 0.358% 48.320 1.663% 40.412
1000,10007 0.570% 62.622 2.438% 75.220
2000,107 0.530% 85.863 1.519% 99.594
2000,100" 0.547% | 289.785 1.506% | 246.756
2000,1000f 0.531% | 682.241 2.074% | 648.900
3000,10f 0.546% | 228.680 1.459% | 205.410
3000,1007 0.682% | 892.870 1.489% | 684.214
3000,10007 0.468% | 2188.568 2.011% | 1816.916

* Error and Opt regarding best found solutions
f Error and Opt regarding lower bound by V&RR

Table 13: Results for the versions of Local Search

20

4 Conclusions

The uncapacitated facility location problem was solved by 5 different algorithms
from different areas of optimization research. The deterministic algorithms manage
to find good solutions on the benchmarks in short running times. Generally MYZ
can improve the performance of JMS to the expense of little extra running time.
On the tested metric instances the performance of the algorithms is competitive
to the heuristic and randomized algorithms tested while the running times remain
significantly shorter. Here JMS offers slightly better solution than MYZ. The approx-
imation algorithms reveal higher errors only on a few tested non-metric instances,
but always deliver solutions that are within 5% of optimum.

The presented Local Search profits mainly from the intelligent use of datastructures.
On a number of instances the running times are able to compete with those of MYZ
and JMS. However, due to the changing starting points the algorithm is not very
robust. Scaling techniques that lead to improved approximation factors deteriorate
the performance of the algorithm in practice. The tested version of the Volume al-
gorithm V&RR is not competitive regarding solution quality and execution times.

TABU offers the best overall performance. In most cases TABU is able to find the
optimal solution. It is much faster than V&RR (and Local Search on large-scale
instances), but generally the running times cannot compete with those of MYZ and
JMS.

All algorithms show a very good performance on the UFLP. TABU achieves best
solution quality in a reasonable amount of time. It therefore should be the method
of choice for practitioners.

Finally, we present a graphical chart with the results of the algorithms compared to
the results of TABU. In Figure 1 we charted the results for the different benchmarks.
The y-coordinates are calculated by the solution cost found by the algorithm divided
by the solution cost found by TABU. x-coordinates are calculated accordingly with
execution times. The times and costs were taken from the tables presented above.
For the Bilde-Krarup Dg- and Eq-instances we averaged the results over all instances
as well as for the cap- and M* instances. For the k-median problems we averaged
the results over instances of the same size.

There are hardly any algorithms that have dots in the lower half of the plot. This
indicates that there has been no algorithm to constantly outperform TABU in terms
of solution cost. Moreover, there is hardly any dot in the lower left quadrangle. Dots
in this region would indicate that TABU was outperformed in terms of solution cost
and running times. The deterministic algorithms were faster than TABU, there-
fore there are some dots of JMS and MYZ in the upper left quadrangle with an
x-coordinate less than 1. Bad performances are plotted in the upper right quadran-
gle. The dots in this region indicate that algorithms ended with solutions of bad
quality and needed a high execution time. A lot of the dots of V&RR are located

21

1 . 1 T T T T TTT || T T T T TTTT T T T T TTTT T T T T TTTT
- i o .
i X JMS ! i
O MYZ : Y
- ® LOCAL : %S]
- O V&RR : .
i ! o o |
d 0
o o | o
0 - x ! & 1
9 L x X o ® ! Y 090
¢ 1l W5 MR g o owe 0 o -
1 L i _
) |
5 L . i
~ i
[o] | | .
7] i
o 1 1 | I I | | 1 1 | I I | i 1 1 | I I | | 1 1 | T |

‘0,01 0,1 1 10 100
Execution time

Figure 1: Plot of solution cost and execution times in comparison to TABU

here indicating the poor performance of this algorithm in comparison to TABU.
LOCAL performed faster than TABU on small instances, but it was slower on the
large instances. The solution cost was in most cases slightly worse in comparison to
TABU. Therefore the dots are spread above the line in the upper half of the plot.

Acknowledgement

The author would like to thank Tobias Polzin for helpful hints and advice in the
development of this study.

References

[1] S. Ahn, C. Cooper, G. Cornuéjols and A.M. Frieze. Probabilistic analysis of a
relaxation for the k-median problem. Mathematics of Operations Research, 13:1-
31, 1988.

22

[2] K.S. Al-Sultan and M.A. Al-Fawzan. A tabu search approach to the uncapaci-
tated facility location problem. Annals of Operations Research, 86:91-103, 1999.

[3] M.L. Alves and M.T. Almeida. Simulated annealing algorithm for simple plant
location problems. Rewv. Invest., 12, 1992.

[4] V. Arya, N. Garg, R. Khandekar, A. Meyerson, K. Munagala and V. Pandit. Lo-
cal search heuristics for k-median and facility location problems. ACM Symposium
on Theory of Computing, pages 21-29, 2001.

[5] M.L. Balinski. Integer programming: methods, uses, computation. Management
Science, 12(3):253-313, 1965.

[6] F. Barahona. An implementation of the Volume algorithm. IBM COIN-OR
website, hitp://o0ss.software.ibm.com/developerworks/opensource/coin, 2000.

[7] F. Barahona and R. Anbil. The volume algorithm: producing primal solutions
with the subgradient method. Technical Report, IBM Watson Research Center,
1998.

[8] F. Barahona and F.A. Chudak. Near-optimal solutions to large scale facility
location problems. Technical Report, IBM Watson Research Center, 2000.

[9] J.E. Beasley. Obtaining Test Problems via Internet. Journal of Global Optimiza-
tion, 8:429-433, 1996.

[10] O. Bilde and J. Krarup. Sharp lower bounds and efficient algorithms for the
simple plant location problem. Annals of Discrete Mathematics, 1:79-97, 1977.

[11] M. Charikar and S. Guha. Improved combinatorial algorithms for the facility
location and k-median problems. In Proceedings of the 40th Annual Symposium
on Foundations of Computer Science, 1999.

[12] F.A. Chudak. Improved approximation algorithms for uncapacitated facility
location. In Proceedings of the 6th IPCO Conference, pages 180-194, 1998.

[13] R.D. Galvao and L.A. Raggi A method for solving to optimality uncapacitated
facility location problems. Annals of Operations Research, 18:225-244, 1989.

[14] S. Guha and S. Khuller. Greedy strikes back: Improved facility location algo-
rithms. Journal of Algorithms, 31:228-248, 1999.

[15] M.R. Korupolu, C.G. Plaxton and R. Rajaraman. Analysis of a local search
heuristic for facility location problems. In Proceedings of the 9th ACM-SIAM
Symposium on Discrete Algorithms, pages 1-10, 1998.

23

[16] J. Kratica, V. Filipovic, V. Sesum and D. Tosic. Solving the uncapacitated
warehouse location problem using a simple genetic algorithm. In Proceedings of
the XIV International Conference on Material Handling and Warehousing, pages
3.33-3.37, 1996.

[17] J. Kratica, D. Tosic and V. Filipovic. Solving the uncapacitated warehouse lo-
cation problem by sga with add-heuristic. In XV ECPD International Conference
on Material Handling and Warehousing, 1998.

[18] J. Kratica, D. Tosic, V. Filipovic and I. Ljubic. Solving the simple plant location
problem by genetic algorithm. RAIRO Operations Research, 35:127-142. 2001.

[19] K. Jain, M. Mahdian and A. Sabieri. A new greedy approach for facility location
problems. In Proceedings of the 3/th ACM Symposium on Theory of Computing,
forthcoming, 2002.

[20] K. Jain and V.V. Vazirani. Approximation algorithms for metric facility lo-
cation and k-median problems using the primal-dual schema and langrangian
relaxation. Journal of the ACM, 48:274-296, 2001.

[21] M. Mahdian, E. Marakakis, A. Sabieri and V.V. Vazirani. A greedy facility
location algorithm analyzed using dual fitting. In Proceedings of 5th Interna-
tional Workshop on Randomization and Approximation Techniques in Computer
Science, Lecture Notes in Computer Science v. 2129, pages 127-133. Springer-
Verlag, 2001.

[22] M. Mahdian, Y. Ye and J. Zhang. Improved approximation algorithms for
metric facility location problems. In Proceedings of the 5th APPROX Conference,
forthcoming, 2002.

[23] P. Van Hentenryck and L. Michel. A simple tabu search for warehouse location.
Technical Report, CS-02-05, Brown University, 2002.

[24] M. Sviridenko. An Improved Approximation Algorithm for the Metric Unca-
pacitated Facility Location Problem. In Proceedings of the 10th IPCO Conference,
Lecture Notes in Computer Science v. 2337, pages 230 - 239, 2002.

[25] M. Sun. A Tabu Search Heuristic Procedure for the Uncapacitated Facility Lo-
cation Problem. In C. Rego and B. Alidaee (eds.) Adaptive Memory and Evolution:
Tabu Search and Scatter Search, Kluwer Academic Publishers, forthcoming, 2002.

[26] UflLib. UFLP-benchmarks, optimization code and benchmark generators.
http://www.mpi-sb.mpg.de/units/agl/projects/benchmarks/Uf1Lib, 2002.

24

o

INFORMATIK

Below you find a list of the most recent technical reports of the Max-Planck-Institut fiir Informatik. They
are available by anonymous ftp from ftp.mpi-sb.mpg.de under the directory pub/papers/reports. Most
of the reports are also accessible via WWW using the URL http://www.mpi-sb.mpg.de. If you have any
questions concerning ftp or WWW access, please contact reports@mpi-sb.mpg.de. Paper copies (which
are not necessarily free of charge) can be ordered either by regular mail or by e-mail at the address below.

Max-Planck-Institut fiir Informatik
Library

attn. Anja Becker
Stuhlsatzenhausweg 85

66123 Saarbriicken

GERMANY

e-mail: library@mpi-sb.mpg.de

MPI-1-2002-4-002

MPI-1-2002-4-001

MPI-1-2002-2-008

MPI-1-2002-2-007

MPI-I-2002-1-008

MPI-1-2002-1-005
MPI-1-2002-1-004
MPI-1-2002-1-003

MPI-1-2002-1-002
MPI-1-2002-1-001

MPI-1-2001-4-005

MPI-1-2001-4-004

MPI-1-2001-4-003

MPI-1-2001-4-002

MPI-1-2001-4-001

MPI-I-2001-2-006

MPI-I-2001-2-005

MPI-I1-2001-2-004

MPI-1-2001-2-003

F. Drago, W. Martens, K. Myszkowski,
H. Seidel

M. Goesele, J. Kautz, J. Lang,
H.P.A. Lensch, H. Seidel

W. Charatonik, J. Talbot
W. Charatonik, H. Ganzinger

P. Sanders, J.L. Traff

T. Polzin

S. Hert, T. Polzin, L. Kettner, G. Schifer

1. Katriel, P. Sanders, J.L. Traff

F. Grandoni
T. Polzin, S. Vahdati

H.P.A. Lensch, M. Goesele, H. Seidel
S.W. Choi, H. Seidel

K. Daubert, W. Heidrich, J. Kautz,
J. Dischler, H. Seidel

H.P.A. Lensch, J. Kautz, M. Goesele,
H. Seidel

H.P.A. Lensch, J. Kautz, M. Goesele,
W. Heidrich, H. Seidel

H. Nivelle, S. Schulz

V. Sofronie-Stokkermans

H. de Nivelle

S. Vorobyov

Perceptual Evaluation of Tone Mapping Operators with
Regard to Similarity and Preference

Tutorial Notes ACM SM 02 A Framework for the
Acquisition, Processing and Interactive Display of High
Quality 3D Models

Atomic Set Constraints with Projection

Symposium on the Effectiveness of Logic in Computer
Science in Honour of Moshe Vardi

The Factor Algorithm for All-to-all Communication on
Clusters of SMP Nodes

?
Exp Lab A Tool Set for Computational Experiments

A Practical Minimum Scanning Tree Algorithm Using
the Cycle Property

Incrementally maintaining the number of I-cliques
Using (sub)graphs of small width for solving the Steiner
problem

A Framework for the Acquisition, Processing and
Interactive Display of High Quality 3D Models

Linear One-sided Stability of MAT for Weakly Injective

Domain

Efficient Light Transport Using Precomputed Visibility

A Framework for the Acquisition, Processing,
Transmission, and Interactive Display of High Quality
3D Models on the Web

Image-Based Reconstruction of Spatially Varying
Materials

Proceeding of the Second International Workshop of the
Implementation of Logics

Resolution-based decision procedures for the universal
theory of some classes of distributive lattices with
operators

Translation of Resolution Proofs into Higher Order
Natural Deduction using Type Theory

Experiments with Iterative Improvement Algorithms on
Completely Unimodel Hypercubes

MPI-I1-2001-2-002

MPI-1-2001-2-001

MPI-1-2001-1-007

MPI-I-2001-1-006

MPI-I-2001-1-005

MPI-1-2001-1-004

MPI-1-2001-1-003
MPI-1-2001-1-002

MPI-1-2001-1-001
MPI-1-2000-4-003

MPI-1-2000-4-002

MPI-1-2000-4-001

MPI-I-2000-2-001

MPI-I-2000-1-005

MPI-1-2000-1-004

MPI-I-2000-1-003

MPI-I-2000-1-002
MPI-I-2000-1-001

MPI-1-1999-4-001

MPI-I-1999-3-005
MPI-1-1999-3-004
MPI-I-1999-3-003

MPI-I-1999-3-002

MPI-I-1999-3-001

MPI-1-1999-2-008

MPI-1-1999-2-007
MPI-1-1999-2-006

MPI-I-1999-2-005
MPI-1-1999-2-004

MPI-1-1999-2-003

MPI-I-1999-2-001
MPI-1-1999-1-007

MPI-I-1999-1-006

P. Maier

U. Waldmann

T. Polzin, S. Vahdati

T. Polzin, S. Vahdati
T. Polzin, S. Vahdati

S. Hert, M. Hoffmann, L. Kettner, S. Pion,
M. Seel

M. Seel
U. Meyer

P. Krysta
S.W. Choi, H. Seidel

L.P. Kobbelt, S. Bischoff, K. Kéhler,
R. Schneider, M. Botsch, C. Réssl,
J. Vorsatz

J. Kautz, W. Heidrich, K. Daubert
F. Eisenbrand

M. Seel, K. Mehlhorn

K. Mehlhorn, S. Schirra

P. Fatourou

R. Beier, J. Sibeyn

E. Althaus, O. Kohlbacher, H. Lenhof,
P. Miiller

J. Haber, H. Seidel

T.A. Henzinger, J. Raskin, P. Schobbens
J. Raskin, P. Schobbens
T.A. Henzinger, J. Raskin, P. Schobbens

J. Raskin, P. Schobbens
S. Vorobyov

A. Bockmayr, F. Eisenbrand

G. Delzanno, J. Raskin
A. Nonnengart

J. Wu

V. Cortier, H. Ganzinger, F. Jacquemard,
M. Veanes

U. Waldmann

W. Charatonik
C. Burnikel, K. Mehlhorn, M. Seel

M. Nissen

A Set-Theoretic Framework for Assume-Guarantee
Reasoning

Superposition and Chaining for Totally Ordered
Divisible Abelian Groups

Extending Reduction Techniques for the Steiner Tree
Problem: A Combination of Alternative-and
Bound-Based Approaches

Partitioning Techniques for the Steiner Problem

On Steiner Trees and Minimum Spanning Trees in
Hypergraphs

An Adaptable and Extensible Geometry Kernel

Implementation of Planar Nef Polyhedra

Directed Single-Source Shortest-Paths in Linear
Average-Case Time

Approximating Minimum Size 1,2-Connected Networks

Hyperbolic Hausdorff Distance for Medial Axis
Transform

Geometric Modeling Based on Polygonal Meshes

Bump Map Shadows for OpenGL Rendering

Short Vectors of Planar Lattices Via Continued
Fractions

Infimaximal Frames: A Technique for Making Lines
Look Like Segments

Generalized and improved constructive separation
bound for real algebraic expressions

Low-Contention Depth-First Scheduling of Parallel
Computations with Synchronization Variables

A Powerful Heuristic for Telephone Gossiping

A branch and cut algorithm for the optimal solution of
the side-chain placement problem

A Framework for Evaluating the Quality of Lossy Image
Compression

Axioms for Real-Time Logics
Proving a conjecture of Andreka on temporal logic

Fully Decidable Logics, Automata and Classical
Theories for Defining Regular Real-Time Languages

The Logic of Event Clocks

New Lower Bounds for the Expressiveness and the
Higher-Order Matching Problem in the Simply Typed
Lambda Calculus

Cutting Planes and the Elementary Closure in Fixed
Dimension

Symbolic Representation of Upward-closed Sets

A Deductive Model Checking Approach for Hybrid
Systems

Symmetries in Logic Programs

Decidable fragments of simultaneous rigid reachability

Cancellative Superposition Decides the Theory of
Divisible Torsion-Free Abelian Groups

Automata on DAG Representations of Finite Trees

A simple way to recognize a correct Voronoi diagram of
line segments

Integration of Graph Iterators into LEDA

MPI-I-1999-1-005 J.F. Sibeyn Ultimate Parallel List Ranking ?

MPI-1-1999-1-004 M. Nissen, K. Weihe How generic language extensions enable “open-world”
desing in Java

MPI-1-1999-1-003 P. Sanders, S. Egner, J. Korst Fast Concurrent Access to Parallel Disks

