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Abstrat

The unapaitated faility loation problem (UFLP) is a problem that has

been studied intensively in operational researh. Reently a variety of new

deterministi and heuristi approximation algorithms have evolved. In this

paper, we ompare �ve new approahes to this problem - the JMS- and the

MYZ-approximation algorithms, a version of loal searh, a Tabu Searh

algorithm as well as a version of the Volume algorithm with randomized

rounding. We ompare solution quality and running times on di�erent stan-

dard benhmark instanes. With these instanes and additional material a

web page was set up [26℄, where the material used in this study is aessible.
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1 Introdution

The problem of loating failities and onneting lients at minimum ost has been

one of the most studied problems in Operations Researh. In this paper we fous

on one of the simplest settings, the unapaitated faility loation problem (UFLP).

The UFLP an be desribed as follows. We are given n possible faility loations

and m ities. Let F denote the set of failities and C the set of ities. Furthermore

there are non-negative opening osts f

i

for eah faility i 2 F and onnetion osts



ij

for eah onnetion between a faility i and a ity j. The problem is to open a

olletion of failities and onnet eah ity to exatly one faility at minimum ost.

The integer programming formulation of the UFLP is due to Balinski [5℄:

Min z =

P

ij



ij

x

ij

+

P

i

y

i

f

i

,

subjet to

P

i

x

ij

= 1 for all j 2 C,

y

i

� x

ij

� 0 for all j 2 C, i 2 F ,

x

ij

; y

i

2 f0; 1g.

We get the LP relaxation of this problem by setting x

ij

; y

i

2 [0; 1℄. This LP

relaxation is known to provide exellent lower bounds.

Instead of solving this problem to optimality, we will fous on �nding approximate

solutions. In the following we will present �ve methods, whih are originating in

di�erent areas of optimization researh. We will ompare two approximation algo-

rithms, two heuristis based on loal searh and one on LP-based approximation

and rounding, whih were reently developed and found to work good in pratie.

2 Methods

2.1 Approximation algorithms

Reently a lot of approximation algorithms have evolved for the metri version of

the UFLP in whih the onnetion ost funtion  satis�es the triangular inequality.

A ouple of di�erent tehniques were used in these algorithms like LP-rounding

([12, 24℄), greedy augmentation ([11℄) or primal-dual methods ([20, 11℄). In terms

of omputational hardness Guha and Khuller [14℄ showed that it is impossible to

ahieve an approximation guarantee of 1.463 unless NP 2 DTIME[n

O(log log n)

℄.

From the �eld of approximation algorithms we hose two of the newest and most

promising variants.
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2.1.1 JMS-Algorithm

The JMS-Algorithm uses a greedy method to improve the solution. The notion of

time that is involved was introdued in an earlier 3-approximation algorithm by Jain

and Vazirani [20℄. Later on Mahdian et al. [21℄ translated the primal-dual sheme

into a greedy 1.861-approximation algorithm. In the third paper Jain, Mahdian and

Sabieri [19℄ presented the JMS-Algorithm (JMS), whih improved the approximation

bound to 1.61. However, it had a slightly worse omplexity of O(n

3

) instead of

O(n

2

log n).

The following sketh of JMS is taken from [22℄:

1. At �rst all ities are unonneted, all failities unopened, and the budget of

every ity j, denoted by B

j

, is initialized to 0. At every moment, eah ity j

o�ers some money from its budget to eah unopened faility i. The amount of

this o�er is equal to max(B

j

� 

ij

; 0) if j is unonneted, and max(

i

0

j

� 

ij

; 0)

if it is onneted to some other faility i

0

.

2. While there is an unonneted ity, inrease the budget of eah unonneted

ity at the same rate, until one of the following events ours:

(a) For some unopened faility i, the total o�er that it reeives from ities

is equal to the ost of opening i. In this ase, we open faility i, and for

every ity j (onneted or unonneted) whih has a non-zero o�er to i,

we onnet j to i.

(b) For some unonneted ity j, and some faility i that is already open, the

budget of j is equal to the onnetion ost 

ij

. In this ase, we onnet j

to i.

One important property of the solution of this algorithm is that it annot be im-

proved by simply opening an unopened faility. This is the main advantage over the

previous 1.861-algorithm in [21℄. In [19℄ experiments revealed an appealing behavior

of JMS in pratie.

2.1.2 MYZ Algorithm

The MYZ algorithm ould further improve the approximation fator of JMS. Mah-

dian, Ye and Zhang [22℄ applied saling and greedy augmentation to the algorithm.

For the resulting MYZ Algorithm (MYZ) the authors ould prove an approximation

fator of 1.52 for the metri UFLP, whih is the best known so far for this problem

for any algorithm.

MYZ is outlined below. In step 4 of the algorithm C is the total onnetion ost of

the present solution and C

0

the onnetion ost after opening a faility u.
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1. Sale up all opening osts by a fator of Æ = 1:504

2. Solve the saled instane with JMS

3. Sale down all opening osts by the same fator Æ

4. while there is a unopened faility u, for whih the ratio (C � C

0

� f

u

)=f

u

is

maximized and positive, open faility u and update solution

2.2 Heuristi and randomized algorithms

In terms of meta-heuristis there has not been suh an intense researh ativity.

A simulated annealing algorithm [3℄ was developed, whih produes good results

to the expense of high omputation osts. Tabu searh algorithms have been very

suessful in solving the UFLP (see [2, 23, 25℄). A very elaborate geneti algorithm

has been proposed by Kratia et al. over a series of papers ([16, 17, 18℄). Their �nal

version involves lever implementation tehniques and �nds optimal solutions for all

the examined benhmarks.

2.2.1 Tabu Searh

In [23℄ Van Hentenryk and Mihel proposed a simple tabu searh algorithm that

works very fast and outperforms the geneti algorithm in [18℄ in terms of solution

quality, robustness and exeution time. Therefore we used this algorithm in our

omparative study.

The tabu searh algorithm uses a slightly di�erent representation of the problem.

For a solution of the UFLP it is enough to know the set S � F of opened failities.

Cities are onneted to the heapest opened faility, i.e. ity j is onneted to i 2 S

with 

ij

= min

i

0

2S



i

0

j

. A neighborhood move from S to S

0

is de�ned as ipping the

status of a faility from opened to losed (S

0

= Sni) or vie versa (S

0

= S[ i). When

the status of a faility was ipped, ipping bak this faility beomes prohibited

(i.e. tabu) for a number of iterations. The number of iterations is adjusted using

a standard sheme (see [23℄ for details). The high level algorithm an be stated as

follows:

1. S  an arbitrary feasible solution

2. Set ost(S

�

) =1

3. do

4. bestgain = maximum ost savings over all possible non-tabu ips

5. if (bestgain > 0)
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6. Apply random ip with best gain, update tabu lists and list length

7. else lose random faility

8. Update S - onnetions of ities and datastrutures

9. if (ost(S) < ost(S

�

)) do S

�

 S

10. while hange of S

�

in the last 500 iterations

11. return S

�

For every ity j the algorithm uses three piees of information: The number of

the opened faility with the heapest onnetion to j, the ost of this onnetion

and the ost of the seond heapest onnetion to an opened faility. With this

information the gains of opening and losing a faility an be updated inrementally

in step 8. Thereby a diret evaluation of the objetive funtion an be avoided. The

algorithm uses priority queues to determine the seond heapest onnetions for

eah ity. Due to these tehniques the algorithm has a running time of O(m log n)

in eah iteration.

2.2.2 Loal Searh

The loal searh ommunity has only paid limited attention to the UFLP so far.

Apart from the tabu searh algorithms there have been a few simple loal searh

proedures proposed in [15, 11℄. In this paper we use the simple version of Arya et

al [4℄, whih an be stated as follows:

1. S  an arbitrary feasible solution

2. while there is an operation op suh that

ost of op(S) � (1�

�

p(n;m)

)ost(S)

do S  op(S)

3. return S

The solution S again is the set of opened failities. The operation op is de�ned

as opening or losing a faility or exhanging the status of an opened and a losed

faility. The parameters were set to � = 0:1 and p(n;m) = n+m. For this algorithm

the authors ould prove an approximation guarantee of 3 on metri instanes.

To improve the running time of the algorithm we inorporated the use of inremental

datastrutures from the Tabu searh algorithm and preferenes for the simple moves

as follows. We generally prefer applying the simple ips of opening and losing a

faility (denoted as ops). As in the Tabu Searh we apply one random ip of the
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ips resulting in best gain of the ost funtion. When these ips do not satisfy the

aeptane ondition, we pik an exhange move that would give enough improve-

ment. If there is no suh move left the algorithm stops. The modi�ed version an be

stated as follows:

1. S  an arbitrary feasible solution

2. exitloop false

3. while exitloop = false

4. while there is an ops suh that ost(ops(S)) � (1�

�

p(n;m)

) ost(S)

5. �nd a random ops

�

of the ops with best gain

6. do S  ops

�

(S)

7. if there is an op suh that ost(op(S)) � (1�

�

p(n;m)

) ost(S)

8. do S  op(S)

9. else exitloop true

10. return S

Arya et al. suggested that the algorithm should be ombined with the standard

saling tehniques [11℄ to improve the approximation fator to 2.414. Interestingly

this version performs inferior in pratie. Therefore the version without saling (de-

noted as LOCAL) was used for the omparison with the other algorithms. A om-

parison between the unsaled and saled versions an be found in setion 3.5.

2.2.3 Volume algorithm

For some of the test instanes we obtained a lower bound using a version of the

Volume algorithm, whih was developed by Barahona in [7℄. The Volume algorithm

is an iterated subgradient optimization proedure, whih is able to provide a primal

solution and a lower bound on the optimal solution ost. To improve solution quality

and speed up the omputation Barahona and Chudak [8℄ used the rounding heuristi

(RRWC) presented in [12℄ to �nd good upper bounds on the optimal dual solution

ost and therefore redue the iterations of the Volume algorithm. However, this

approah has generally very high exeution times in omparison to the other methods

presented here. Instead we used a faster version of this algorithm whih uses only

a basi randomized rounding proedure and slightly di�erent parameter settings. It

will be denoted by V&RR and is available on the web page of the COIN-OR projet
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by IBM [6℄. Regarding solution quality and running time this algorithm is generally

inferior to the other algorithms. The results should only be seen as benhmark values

of available optimization ode. We will not go into detail desribing the method, the

ode or the parameter settings here. The interested reader is referred to [6, 7, 8℄ for

the spei� details of the algorithm and the implementation.

3 Experiments

We tested all given algorithms on several sets of benhmark instanes. The instanes

were hosen to over di�erent types of faility loation problems. First we studied

the Bilde-Krarup benhmarks, whih were proposed in [10℄. These are non-metri

small sale instanes with n � m = 30 � 80 - 50 � 100. Next we foused on small

sale benhmarks proposed by Galv~ao and Raggi in [13℄. These are metri instanes

with n = m = 50 - 200. Then we examined the performane on the ap instanes

from the ORLIB [9℄ and the M* instanes, whih were proposed in [18℄. These are

non-metri small and medium sized instanes with n�m = 16� 50 - 2000� 2000.

Finally we studied metri large sale instanes with n = m = 500�3000, whih were

proposed in [1℄ and used as UFLP benhmarks in [7℄. On all instanes we averaged

over the performane of 20 runs for eah algorithm. The experiments were done on

a 866Mhz Intel Pentium III running Linux. For most problems we used CPLEX to

solve the problems to optimality. The CPLEX-runs were done on a 333Mhz Sun

Enterprise 10000 with UltraSPARC proessors running UNIX. The exeution times

are about a fator of 2.5 times higher than the times for the algorithms.

With all benhmark instanes, implementations of all algorithms and benhmark

generators a web page was set up. All material used in this study an be aessed

online at the ULib [26℄.

3.1 Bilde-Krarup Instanes

The Bilde-Krarup instanes are small sale instanes of 22 di�erent types. The osts

for the di�erent types are alulated with the parameters given in Table 1. As the

exat instanes are not known, we generated 10 test instanes for eah problem type.

In Table 2 we report the results for the deterministi algorithms and in Table 3 the

results for the heuristi and randomized algorithms. In olumns 'Opt' we report the

number of instanes that ould be solved to optimality. For the heuristi algorithms

we also report the average perentage of runs on the instanes solved to optimality

that ended with an optimal solution. In olumns 'Error' we report the average error

of the �nal solution, in olumns 'Time' the average exeution time in seonds. In

olumn 'CPX' we denoted the average running time of CPLEX to solve the instanes.

The deterministi algorithms perform quite good in these instanes. The average

error is 2.607% at maximum although the problems are not of metri nature. MYZ
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Type Size f

i



ij

B 50x100 Disrete Uniform (1000, 10000) Disrete Uniform (0,1000)

C 50x100 Disrete Uniform (1000, 2000) Disrete Uniform (0,1000)

Dq* 30x80 Idential, 1000*q Disrete Uniform (0,1000)

Eq* 50x100 Idential, 1000*q Disrete Uniform (0,1000)

* q=1,...,10

Table 1: Parameters for the Bilde-Krarup problem lasses

Type CPX JMS MYZ

Opt Error Time Opt Error Time

B 6.859 5 0.416% 0.003 4 0.588% 0.003

C 107.558 1 1.750% 0.003 3 0.886% 0.003

D1 21.591 0 2.445% 0.001 1 1.689% 0.002

D2 30.990 1 1.675% 0.002 2 1.133% 0.002

D3 28.103 1 2.607% 0.002 4 0.923% 0.002

D4 26.685 3 0.796% 0.002 3 0.597% 0.002

D5 22.368 4 0.647% 0.002 7 0.085% 0.002

D6 28.393 2 1.042% 0.002 3 1.315% 0.002

D7 24.484 1 1.771% 0.002 6 0.664% 0.002

D8 20.947 4 1.587% 0.002 4 1.044% 0.002

D9 22.326 7 0.846% 0.002 9 0.012% 0.002

D10 19.122 7 0.252% 0.002 8 0.189% 0.002

E1 133.839 2 2.265% 0.003 3 1.317% 0.003

E2 229.305 2 1.650% 0.003 4 0.845% 0.003

E3 190.860 2 1.610% 0.003 2 0.940% 0.003

E4 185.168 3 1.192% 0.003 3 0.781% 0.004

E5 163.571 1 2.560% 0.003 7 0.690% 0.004

E6 173.918 4 1.049% 0.003 5 0.661% 0.004

E7 164.845 5 0.759% 0.004 5 0.613% 0.004

E8 180.186 1 1.474% 0.004 4 0.887% 0.004

E9 174.150 3 1.232% 0.004 6 0.674% 0.004

E10 148.229 4 0.775% 0.004 6 0.404% 0.004

Table 2: Results for the deterministi algorithms
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Type LOCAL TABU-Searh V&RR

Opt Error Time Opt Error Time Opt Error Time

B 8, [100 ℄ 0.046% 0.012 10, [100 ℄ 0.000% 0.053 10, [69.5℄ 0.419% 0.421

C 5, [84.0℄ 0.848% 0.014 7, [91.43℄ 0.245% 0.055 1, [5.0℄ 4.454% 0.525

D1 3,[81.7℄ 1.678% 0.006 6,[90.8℄ 0.241% 0.038 1,[15.0℄ 3.719% 0.239

D2 2,[100 ℄ 1.758% 0.006 9,[73.9℄ 0.537% 0.044 2,[22.5℄ 3.083% 0.254

D3 3,[96.7℄ 0.879% 0.006 9,[99.4℄ 0.073% 0.042 3,[30.0℄ 2.245% 0.235

D4 8,[89.4℄ 0.530% 0.006 10,[100 ℄ 0.000% 0.041 9,[36.1℄ 1.248% 0.243

D5 6,[97.5℄ 0.402% 0.006 10,[94.0℄ 0.004% 0.040 8,[47.5℄ 0.995% 0.246

D6 5,[100 ℄ 0.882% 0.006 9,[96.7℄ 0.146% 0.042 7,[60.0℄ 0.919% 0.259

D7 8,[100 ℄ 0.354% 0.005 10,[100 ℄ 0.000% 0.042 10,[79.5℄ 0.214% 0.251

D8 7,[90.0℄ 1.000% 0.006 9,[100 ℄ 0.166% 0.043 8,[50.6℄ 1.390% 0.259

D9 8,[100 ℄ 0.285% 0.006 10,[100 ℄ 0.000% 0.043 10,[73.0℄ 0.496% 0.256

D10 7,[90.7℄ 0.760% 0.006 10,[92.5℄ 0.139% 0.043 10,[74.0℄ 0.506% 0.268

E1 1,[100 ℄ 1.430% 0.013 10,[57.0℄ 0.388% 0.062 0,[ 0.0℄ 5.712% 0.516

E2 3,[45.0℄ 2.712% 0.013 10,[93.5℄ 0.006% 0.067 0,[ 0.0℄ 4.479% 0.560

E3 4,[93.8℄ 0.784% 0.012 7,[89.3℄ 0.268% 0.061 5,[10.0℄ 3.419% 0.553

E4 3,[80.0℄ 1.577% 0.013 9,[100 ℄ 0.013% 0.060 4,[11.3℄ 2.505% 0.581

E5 4,[73.8℄ 2.019% 0.013 10,[100 ℄ 0.000% 0.062 9,[23.3℄ 1.924% 0.546

E6 7,[79.3℄ 0.969% 0.013 10,[100 ℄ 0.000% 0.062 10,[22.0℄ 1.981% 0.602

E7 6,[86.7℄ 0.996% 0.015 10,[100 ℄ 0.000% 0.063 6,[19.2℄ 1.802% 0.586

E8 4,[100 ℄ 1.043% 0.014 10,[89.5℄ 0.177% 0.067 6,[61.7℄ 1.318% 0.585

E9 7,[92.9℄ 0.655% 0.013 10,[100 ℄ 0.000% 0.066 9,[46.7℄ 0.896% 0.592

E10 8,[92.5℄ 0.948% 0.013 10,[100 ℄ 0.000% 0.066 10,[50.0℄ 0.864% 0.598

Table 3: Results for the heuristi and randomized algorithms
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Size Æ Parameters for f

i

mean stand. dev.

50 0.061 25.1 14.1

70 0.043 42.3 20.7

100 0.025 51.7 28.9

150 0.018 186.1 101.5

200 0.015 149.5 94.4

Table 4: Parameters for the Galv~ao-Raggi problem lasses

performs signi�antly better than JMS in terms of solution quality. It an solve 37

more problems to optimality and also has a lower average error. The exeution time

is slightly higher beause it uses JMS as a subroutine.

For the heuristi algorithms TABU provides the best results. It was able to solve

problems of all lasses to optimality in a high number of runs. Unfortunately it also

is muh slower than LOCAL, MYZ and JMS.

LOCAL also performs ompetitive on most of these problem lasses. Compared to

TABU it is able to solve problems of all lasses to optimality, but the overall number

of instanes solved is very muh lower. In terms of the running time it is muh faster

though.

V&RR is outperformed by any of the other algorithms. It reveals the highest running

time and the worst solution quality.

3.2 Galv~ao-Raggi Instanes

Galv~ao and Raggi proposed unique benhmarks for the UFLP. A graph is given with

an ar density Æ, whih is de�ned as Æ = onnetions present =(m �n). Eah present

onnetion has a ost sampled from a uniform distribution in the range [1; n℄ (exept

for n = 150, where the range is [1; 500℄). The onnetion osts between a faility i

and a ity j are determined by the shortest path from i to j in the given graph. The

opening osts f

i

are assumed to ome from a Normal distribution. Originally Galv~ao

and Raggi proposed problems with n = m = 10; 20; 30; 50; 70; 100; 150 and 200. We

will onsider the 5 largest types. The density values and the parameters for the

Normal distribution are listed in Table 4. The exat instanes for these benhmarks

are not known. So as for the Bilde-Krarup benhmarks we generated 10 instanes

for eah lass. The results for the deterministi algorithms are reported in Table 5

and for the randomized and heuristi algorithms in Table 6. In olumns 'Opt' the

number of instanes solved to optimality is reported. For the instanes solved to

optimality by a spei� algorithm we averaged the perentage of runs that ended

with the optimal solution and report this number in brakets. In olumns 'Error' we

9



Type CPX JMS MYZ

Opt Error Time Opt Error Time

50 0.200 10 0.000% 0.001 10 0.032% 0.001

70 0.332 9 0.038% 0.003 7 0.065% 0.003

100 0.677 9 0.014% 0.006 8 0.099% 0.007

150 1.623 7 0.059% 0.016 6 0.111% 0.016

200 3.355 6 0.071% 0.036 7 0.032% 0.036

Table 5: Results for the deterministi algorithms

Type LOCAL TABU V&RR

Opt Error Time Opt Error Time Opt Error Time

50 9,[99.5℄ 0.236% 0.006 10,[100 ℄ 0.000% 0.026 10,[97.0℄ 0.007% 0.112

70 7,[80.0℄ 0.063% 0.013 9,[100 ℄ 0.061% 0.037 10,[93.0℄ 0.001% 0.238

100 4,[86.3℄ 0.022% 0.026 10,[83.5℄ 0.039% 0.055 10,[90.0℄ 0.002% 0.965

150 5,[92.0℄ 0.020% 0.062 9,[55.6℄ 0.239% 0.085 9, [94.4℄ 0.001% 3.375

200 6,[65.8℄ 0.022% 0.127 9,[53.9℄ 0.131% 0.133 10,[68.0℄ 0.011% 7.363

Table 6: Results for the heuristi algorithms

report the average error, in olumns 'Time' the average exeution time in seonds.

We also inluded the average running times of CPLEX in olumn 'CPX' of Table 5.

JMS performs on these metri instanes slightly better than MYZ. For the heuris-

ti and randomized algorithms V&RR performs very good - even better than TABU

- to the expense of high exeution times. In fat, the times are prohibitively high

as the algorithm needs muh more time than CPLEX to solve the instanes to

optimality.

3.3 ORLIB and M* Instanes

The ap problems from the ORLIB are non-metri medium sized instanes. The

M* instanes were designed to represent lasses of real UFLPs. They are very hal-

lenging for mathematial programming methods beause they have a large number

of suboptimal solutions. In Table 7 we report the results for the deterministi and

in Tables 8 and 9 the results for the heuristi and randomized algorithms. For the

deterministi algorithms we indiate with a star in olumns 'Opt', whether an in-

stane was solved to optimality or not. For the heuristi and randomized algorithms

olumns 'Opt' show the perentage of runs in whih the algorithm was able to solve

the problem to optimality. In Columns 'Cost' and 'Error' we report the average ost

and the error of the �nal solution over all runs. For the heuristi and randomized al-
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gorithms we report the average solution ('Avg') and the standard deviation ('�(S)')

expressed as a perentage of the average solution. We separately report the best

solution ('Best') if it is not equal to the optimum or the average solution. As TABU

always managed to �nd optimal solutions, we omit the olumn 'Best' here.

For the larger benhmarks the optimal solutions are not known. Instead we used the

best solutions found as a referene, whih for all benhmarks were enountered by

TABU. All values that do not relate to an optimal solution are denoted in brakets.

Running times for all algorithms an be found in Table 10. In Columns 'Time' we

report the average running time in seonds. For the heuristi and randomized algo-

rithms we also inluded the standard deviation ('Std') for the running time expressed

as a perentage of the average running time.

At the end of eah table we summarized the results for the groups with more than

one instane. We put the data in the format of the previous tables for the Galv~ao-

Raggi and Bilde-Krarup instanes.
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Benh Size Opt Cost JMS MYZ

Opt Cost Error Opt Cost Error

ap71 16x50 932615.75 932615.75 0.000% * 932615.75 0.000%

ap72 16x50 977799.40 981538.85 0.382% 981538.85 0.382%

ap73 16x50 1010641.45 1015508.94 0.482% 1012643.69 0.198%

ap74 16x50 1034976.98 1042643.69 0.741% 1045383.79 1.006%

ap101 25x50 796648.44 798591.13 0.244% 797508.73 0.108%

ap102 25x50 854704.20 858109.33 0.398% * 854704.20 0.000%

ap103 25x50 893782.11 902413.26 0.966% 895027.19 0.139%

ap104 25x50 928941.75 932527.19 0.386% 932007.96 0.330%

ap131 50x50 793439.56 795382.25 0.245% 794299.85 0.108%

ap132 50x50 851495.33 854900.45 0.400% * 851495.33 0.000%

ap133 50x50 893076.71 901481.84 0.941% 894095.76 0.114%

ap134 50x50 928941.75 932527.19 0.386% 932007.96 0.330%

apa 100x1000 17156454.48 17765201.95 3.548% 17902353.24 4.348%

apb 100x1000 12979071.58 13070745.09 0.706% 13271844.16 2.256%

ap 100x1000 11505594.33 11702914.76 1.715% 11681971.18 1.533%

MO1 100x100 1305.95 * 1305.95 0.000% * 1305.95 0.000%

MO2 100x100 1432.36 1479.11 3.264% 1460.29 1.950%

MO3 100x100 1516.77 1521.47 0.310% 1521.47 0.310%

MO4 100x100 1442.24 * 1442.24 0.000% * 1442.24 0.000%

MO5 100x100 1408.77 1413.81 0.358% * 1408.77 0.000%

MP1 200x200 2686.48 * 2686.48 0.000% * 2686.48 0.000%

MP2 200x200 2904.86 2914.42 0.329% 2914.42 0.329%

MP3 200x200 2623.71 2658.98 1.345% * 2623.71 0.000%

MP4 200x200 2938.75 * 2938.75 0.000% * 2938.75 0.000%

MP5 200x200 2932.33 2939.95 0.260% 2939.95 0.260%

MQ1 300x300 4091.01 * 4091.01 0.000% * 4091.01 0.000%

MQ2 300x300 4028.33 * 4028.33 0.000% * 4028.33 0.000%

MQ3 300x300 4275.43 4307.97 0.761% * 4275.43 0.000%

MQ4 300x300 4235.15 4273.05 0.895% 4239.23 0.096%

MQ5 300x300 4080.74 4103.75 0.564% 4103.75 0.564%

MR1 500x500 [2608.15℄ 2614.72 [0.252%℄ 2609.13 [0.038%℄

MR2 500x500 [2654.74℄ [*℄ 2654.74 [0.000%℄ [*℄ 2654.74 [0.000%℄

MR3 500x500 [2788.25℄ 2794.41 [0.221%℄ 2794.41 [0.221%℄

MR4 500x500 [2756.04℄ 2782.28 [0.952%℄ 2773.89 [0.648%℄

MR5 500x500 [2505.05℄ 2517.10 [0.481%℄ 2529.87 [0.991%℄

MS1 1000x1000 [5283.76℄ [*℄ 5283.76 [0.000%℄ [*℄ 5283.76 [0.000%℄

MT1 2000x2000 [10069.80℄ 10090.49 [0.205%℄ 10090.49 [0.205%℄

ap7* 0 0.401% 1 0.397%

ap10* 0 0.499% 1 0.144%

ap13* 0 0.493% 1 0.138%

apa- 0 1.990% 0 2.712%

MO* 2 0.786% 3 0.452%

MP* 2 0.387% 3 0.118%

MQ* 2 0.444% 3 0.132%

MR* [1℄ [0.381%℄ [1℄ [0.380%℄

Table 7: Solution quality of the deterministi algorithms
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Benh LOCAL TABU V&RR

Opt Best Avg Error Std Opt Avg Error Std Opt Avg Error Std

ap71 100% 932615.75 0.000% 0.000% 100% 932615.75 0.000% 0.000% 100% 932615.75 0.000% 0.000%

ap72 0% 979099.61 0.133% 0.000% 100% 977799.40 0.000% 0.000% 100% 977799.40 0.000% 0.000%

ap73 0% 1011067.65 0.042% 0.000% 100% 1010641.45 0.000% 0.000% 100% 1010641.45 0.000% 0.000%

ap74 100% 1034976.98 0.000% 0.000% 100% 1034976.98 0.000% 0.000% 100% 1034976.98 0.000% 0.000%

ap101 0% 797582.29 0.117% 0.000% 100% 796648.44 0.000% 0.000% 100% 796648.44 0.000% 0.000%

ap102 100% 854704.20 0.000% 0.000% 100% 854704.20 0.000% 0.000% 100% 854704.20 0.000% 0.000%

ap103 100% 893782.11 0.000% 0.000% 100% 893782.11 0.000% 0.000% 100% 893782.11 0.000% 0.000%

ap104 0% 930026.55 0.117% 0.000% 100% 928941.75 0.000% 0.000% 100% 928941.75 0.000% 0.000%

ap131 100% 793439.56 0.000% 0.000% 100% 793439.56 0.000% 0.000% 100% 793439.56 0.000% 0.000%

ap132 100% 851495.33 0.000% 0.000% 100% 851495.33 0.000% 0.000% 100% 851495.33 0.000% 0.000%

ap133 0% 895292.08 0.248% 0.000% 100% 893076.71 0.000% 0.000% 40% 893688.55 0.069% 0.057%

ap134 0% 935422.70 0.698% 0.000% 100% 928941.75 0.000% 0.000% 100% 928941.75 0.000% 0.000%

apa 100% 17156454.48 0.000% 0.000% 100% 17156454.48 0.000% 0.000% 100% 17156454.48 0.000% 0.000%

apb 50% 13041143.92 0.478% 0.575% 75% 13000649.83 0.166% 0.289% 100% 12979071.58 0.000% 0.000%

ap 0% 11509361.7 11534161.39 0.248% 0.084% 70% 11513112.75 0.065% 0.117% 10% 11519212.05 0.100% 0.130%

ap7* 2,[100 ℄ 0.044% 4,[100 ℄ 0.000% 4,[100 ℄ 0.000%

ap10* 2,[100 ℄ 0.059% 4,[100 ℄ 0.000% 4,[100 ℄ 0.000%

ap13* 2,[100 ℄ 0.236% 4,[100 ℄ 0.000% 4,[85.0℄ 0.017%

apa- 2,[75.0℄ 0.242% 3,[81.7℄ 0.077% 3,[70.0℄ 0.039%

Table 8: Solution quality of the heuristi and randomized algorithms
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Benh LOCAL TABU V&RR

Opt Best Avg Error Std Opt Avg Error Std Opt Best Avg Error Std

MO1 100% 1305.95 0.000% 0.000% 100% 1305.95 0.000% 0.000% 10% 1315.833 0.757 0.437%

MO2 15% 1450.81 1.288% 0.534% 100% 1432.36 0.000% 0.000% 15% 1449.311 1.184 0.564%

MO3 0% 1521.47 0.310% 0.000% 100% 1516.77 0.000% 0.000% 5% 1536.238 1.283 0.584%

MO4 100% 1442.24 0.000% 0.000% 100% 1442.24 0.000% 0.000% 20% 1465.982 1.646 1.016%

MO5 100% 1408.77 0.000% 0.000% 100% 1408.77 0.000% 0.000% 65% 1410.879 0.150 0.239%

MP1 100% 2686.48 0.000% 0.000% 100% 2686.48 0.000% 0.000% 15% 2709.68 0.864% 0.535%

MP2 100% 2904.86 0.000% 0.000% 100% 2904.86 0.000% 0.000% 5% 2944.39 1.361% 0.672%

MP3 100% 2623.71 0.000% 0.000% 100% 2623.71 0.000% 0.000% 10% 2666.66 1.637% 0.618%

MP4 0% 2942.63 2943.99 0.178% 0.051% 100% 2938.75 0.000% 0.000% 0% 2944.78 2983.59 1.526% 0.680%

MP5 40% 2939.74 0.252% 0.251% 100% 2932.33 0.000% 0.000% 0% 2939.95 2950.67 0.625% 0.195%

MQ1 100% 4091.01 0.000% 0.000% 100% 4091.01 0.000% 0.000% 15% 4151.64 1.482% 0.834%

MQ2 100% 4028.33 0.000% 0.000% 100% 4028.33 0.000% 0.000% 5% 4103.26 1.860% 0.658%

MQ3 100% 4275.43 0.000% 0.000% 100% 4275.43 0.000% 0.000% 10% 4326.12 1.186% 0.694%

MQ4 100% 4235.15 0.000% 0.000% 100% 4235.15 0.000% 0.000% 5% 4291.00 1.319% 0.651%

MQ5 85% 4084.73 0.098% 0.235% 100% 4080.74 0.000% 0.000% 0% 4127.22 4154.24 1.801% 0.340%

MQ1 100% 4091.01 0.000% 0.000% 100% 4091.01 0.000% 0.000% 0% 4114.94 4161.48 1.722% 0.564%

MQ2 100% 4028.33 0.000% 0.000% 100% 4028.33 0.000% 0.000% 5% 4096.23 1.686% 0.679%

MQ3 100% 4275.43 0.000% 0.000% 100% 4275.43 0.000% 0.000% 10% 4305.77 0.710% 0.434%

MQ4 100% 4235.15 0.000% 0.000% 100% 4235.15 0.000% 0.000% 0% 4239.24 4284.37 1.162% 0.599%

MQ5 65% 4089.08 0.204% 0.278% 100% 4080.74 0.000% 0.000% 5% 4144.23 1.556% 0.607%

MR1 [ 20%℄ 2612.76 [0.177%℄ 0.317% [100%℄ 2608.15 [0.000%℄ 0.000% [ 0%℄ 2614.70 2633.31 [0.965%℄ 0.434%

MR2 [ 45%℄ 2679.61 [0.936%℄ 0.864% [100%℄ 2654.74 [0.000%℄ 0.000% [ 0%℄ 2697.65 2729.38 [2.812%℄ 0.798%

MR3 [ 80%℄ 2789.17 [0.033%℄ 0.066% [100%℄ 2788.25 [0.000%℄ 0.000% [ 0%℄ 2793.32 2838.13 [1.789%℄ 0.707%

MR4 [100%℄ 2756.04 [0.000%℄ 0.000% [100%℄ 2756.04 [0.000%℄ 0.000% [ 0%℄ 2784.47 2821.06 [2.359%℄ 0.658%

MR5 [100%℄ 2505.05 [0.000%℄ 0.000% [100%℄ 2505.05 [0.000%℄ 0.000% [ 0%℄ 2532.28 2559.81 [2.186%℄ 0.614%

MS1 [100%℄ 5283.76 [0.000%℄ 0.000% [100%℄ 5283.76 [0.000%℄ 0.000% [ 0%℄ 5327.17 5380.411 [1.829%℄ 0.572%

MT1 [ 20%℄ 10085.84 [0.159%℄ 0.080% [ 90%℄ 10071.77 [0.020%℄ 0.059% [ 0%℄ 10121.95 10252.72 [1.817%℄ 0.462%

MO* 4,[78.8℄ 0.320% 5,[100 ℄ 0.000% 5,[23.0℄ 1.004%

MP* 4,[85.0℄ 0.086% 5,[100 ℄ 0.000% 3,[10.0℄ 1.203%

MQ* 5,[93.0℄ 0.041% 5,[100 ℄ 0.000% 3,[ 6.7℄ 1.367%

MR* 5,[69.0℄ [0.229%℄ 5,[100 ℄ [0.000%℄ 0,[ 0.0℄ [2.022%℄

Table 9: Solution quality of the heuristi and randomized algorithms
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Again the deterministi algorithms perform very well on the benhmarks. The

maximum error for both methods was produed on the apa benhmark. Of the

deterministi algorithms MYZ did perform better than JMS. It was able to solve

additional 6 problems to optimality. JMS ould only ahieve a better performane

in 4 of the 37 benhmarks. In terms of running time MYZ beomes slightly less

ompetitive on larger problems beause the additional alulations of the greedy

augmentation proedure need more time.

With a maximum average error of 0.289% TABU is again the algorithm with the

best performane on these benhmarks. It is able to solve all problems to optimality

- in most ases with a high frequeny. Here our results are onsistent with the values

reported in [23℄. However, the running times of our ode are signi�antly faster than

the times needed by the implementation of Mihel and Van Hentenryk (a fator of

2 and more).

Compared to TABU the solution quality of LOCAL is not very ompetitive. It

fails to �nd optimal solutions on 9 problems, while 7 of them are ap-benhmarks.

The running times, however, are very ompetitive, as it performs in most ases

signi�antly better than TABU.

The performane of V&RR is not very good in omparison to the other methods. On

some of the ap instanes the algorithm ahieves good solution quality. On the M*-

instanes, however, it performs worse than all other algorithms in terms of solution

quality and exeution time. The exeution times for the small problems exeed the

times of CPLEX again. The pratial use of this algorithm for smaller problems

should therefore be avoided. For problems with m;n � 100, however, exeution

times of CPLEX beome signi�antly higher.

Interestingly there is hardly any variation of the running times of V&RR on the

M*-instanes.

3.4 k-median Instanes

In this setion we take a look at large sale instanes for the UFLP. The benhmarks

onsidered here were originally introdued for the k-median problem in [1℄. In [8℄ they

were used as test instanes for the UFLP. To onstrut an instane, we pik n points

independent uniformly at random in the unit square. Eah point is simultaneously

ity and faility. The onnetion osts are the Euklidian distanes in the plane. All

faility opening osts are idential. To prevent numerial problems and preserve the

metri properties, we rounded up all data to 4 signi�ant digits and then made all

the data entries integer.

In [1℄ the authors showed that, when n is large, any enumerative method based on

the lower bound of the relaxed LP would need to explore an exponential number of

solutions. They also showed that the solution of the relaxed LP is, asymptotially

in the number of points, about 0.998% of the optimum.
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Benh CPX JMS MYZ LOCAL TABU V&RR

Time Time Time Std Time Std Time Std

ap71 0.109 0.001 0.001 0.002 1.176% 0.022 0.114% 0.060 3.275%

ap72 0.067 0.001 0.001 0.002 0.420% 0.022 1.103% 0.051 7.031%

ap73 0.078 0.001 0.001 0.002 0.516% 0.023 0.075% 0.043 0.094%

ap74 0.068 0.001 0.001 0.002 0.379% 0.024 0.277% 0.033 4.221%

ap101 0.106 0.001 0.001 0.003 0.456% 0.024 0.096% 0.086 4.019%

ap102 0.093 0.001 0.001 0.003 0.437% 0.023 0.060% 0.078 2.091%

ap103 0.094 0.001 0.001 0.005 0.294% 0.026 24.885% 0.064 6.961%

ap104 0.098 0.001 0.001 0.003 4.750% 0.024 0.071% 0.063 8.096%

ap131 0.206 0.002 0.002 0.006 0.372% 0.026 0.094% 0.200 5.441%

ap132 0.186 0.002 0.002 0.007 0.329% 0.025 0.086% 0.148 4.138%

ap133 0.192 0.002 0.002 0.005 0.387% 0.027 7.594% 0.146 11.840%

ap134 0.199 0.002 0.002 0.006 0.492% 0.030 2.150% 0.141 20.066%

apa 48.834 0.153 0.162 0.404 17.640% 1.343 4.517% 15.371 11.267%

apb 37.746 0.151 0.158 0.545 21.985% 0.948 11.628% 20.505 7.117%

ap 146.654 0.152 0.155 0.480 27.173% 0.924 16.881% 22.495 12.788%

MO1 165.811 0.008 0.008 0.025 7.546% 0.060 0.317% 1.940 3.616%

MO2 154.922 0.008 0.008 0.024 9.879% 0.063 3.647% 2.077 2.925%

MO3 201.240 0.008 0.008 0.028 5.489% 0.082 17.751% 1.663 2.281%

MO4 80.766 0.008 0.008 0.035 0.335% 0.060 1.178% 1.516 4.701%

MO5 115.189 0.008 0.008 0.024 0.262% 0.069 3.456% 2.012 3.111%

MP1 4442.243 0.049 0.050 0.180 10.829% 0.228 3.055% 9.812 0.458%

MP2 9307.855 0.050 0.051 0.169 31.750% 0.225 2.385% 9.826 0.350%

MP3 1183.319 0.049 0.051 0.196 23.053% 0.224 1.966% 11.573 1.618%

MP4 11219.924 0.049 0.050 0.154 19.691% 0.267 17.672% 12.210 2.110%

MP5 13288.276 0.049 0.051 0.129 7.645% 0.230 6.578% 12.725 1.194%

MQ1 25876.314 0.141 0.143 0.563 19.773% 0.668 1.613% 24.667 2.603%

MQ2 44236.625 0.141 0.142 0.507 20.969% 0.646 2.563% 26.538 1.597%

MQ3 21227.507 0.146 0.144 0.603 16.013% 0.683 1.499% 27.111 0.356%

MQ4 28484.952 0.143 0.145 0.471 11.159% 0.671 2.145% 20.732 0.495%

MQ5 126890.793 0.139 0.141 0.472 21.826% 0.675 4.890% 26.088 0.473%

MR1 0.468 0.481 2.388 33.574% 1.796 11.183% 78.575 0.902%

MR2 0.455 0.472 1.879 18.124% 1.958 7.453% 78.762 0.500%

MR3 0.464 0.480 2.112 8.349% 2.051 15.839% 85.650 0.476%

MR4 0.471 0.477 1.961 16.183% 1.656 1.825% 77.825 0.417%

MR5 0.461 0.471 2.339 21.605% 1.664 3.037% 76.141 0.478%

MS1 2.281 2.323 11.720 14.147% 6.366 1.705% 304.066 0.978%

MT1 11.079 11.241 89.592 22.647% 31.505 16.838% 1283.285 0.594%

ap7* 0.001 0.001 0.002 0.023 0.047

ap10* 0.001 0.001 0.003 0.024 0.073

ap13* 0.002 0.002 0.006 0.027 0.159

apa- 0.152 0.159 0.476 1.072 19.457

MO* 0.008 0.008 0.027 0.067 1.842

MP* 0.049 0.050 0.166 0.235 11.229

MQ* 0.142 0.143 0.523 0.669 25.027

MR* 0.464 0.476 2.136 1.825 79.391

Table 10: Running times of the algorithms
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Problem LB JMS MYZ

Cost Error Time Cost Error Time

500,10 798399 808090 1.214% 0.364 813800 1.929% 0.375

500,100 326754 330758 1.225% 0.359 331183 1.355% 0.364

500,1000 99099 99245 0.147% 0.353 99208 0.110% 0.362

1000,10 1432737 1448286 1.085% 1.758 1454031 1.486% 1.810

1000,100 607591 613182 0.920% 1.758 613070 0.902% 1.799

1000,1000 220479 221942 0.664% 1.767 221437 0.435% 1.802

1500,10 1997302 2029316 1.603% 4.428 2032631 1.769% 4.543

1500,100 866231 875247 1.041% 4.409 875828 1.108% 4.467

1500,1000 334859 337307 0.731% 4.472 337015 0.644% 4.541

2000,10 2556794 2587422 1.198% 8.651 2587945 1.218% 8.921

2000,100 1122455 1133639 0.996% 8.516 1140205 1.581% 8.684

2000,1000 437553 441283 0.852% 8.599 441269 0.849% 8.730

2500,10 3095135 3142386 1.527% 14.514 3150382 1.785% 14.544

2500,100 1346924 1365831 1.404% 14.383 1369077 1.645% 14.548

2500,1000 534147 538463 0.808% 14.605 537891 0.701% 14.852

3000,10 3567125 3620604 1.499% 21.924 3637504 1.973% 22.310

3000,100 1600551 1618821 1.141% 21.660 1624535 1.498% 22.008

3000,1000 643265 648977 0.888% 21.630 649422 0.957% 21.914

Table 11: Results for the deterministi algorithms

For eah set of points, we generated 3 instanes. We set all opening osts to

p

n=10,

p

n=100 and

p

n=1000. Eah opening ost de�nes a di�erent instane with di�erent

properties.

In the following Tables we report the results of our experiments. In olumn 'LB'

of Table 11 we provide the lower bound on eah problem alulated by V&RR. In

Tables 11 and 12 we report for eah algorithm the average ost of the �nal solution,

the average error and the average exeution time of the algorithm. All errors were

alulated using the lower bound in 'LB'.
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Problem LOCAL TABU V&RR

Cost Error Time Cost Error Time Cost Error Time

500,10 802178.35 0.473% 2.240 800478.70 0.260% 0.991 830634.10 4.037% 66.727

500,100 329126.95 0.726% 4.790 328539.60 0.546% 1.214 333459.55 2.052% 55.659

500,1000 99374.25 0.277% 2.167 99324.70 0.227% 1.755 104756.45 5.709% 43.099

1000,10 1439284.80 0.457% 17.282 1439905.55 0.500% 4.713 1532623.90 6.972% 356.955

1000,100 609825.80 0.358% 48.320 609577.65 0.327% 5.166 636226.65 4.713% 245.225

1000,1000 221736.45 0.570% 62.622 224990.50 2.046% 2.856 230848.05 4.703% 187.718

1500,10 2008847.75 0.578% 38.097 2005876.60 0.429% 10.288 2182858.00 9.290% 719.641

1500,100 870231.25 0.462% 150.230 870181.70 0.456% 11.285 903989.40 4.359% 556.186

1500,1000 336950.35 0.625% 257.636 336263.10 0.419% 18.786 347227.65 3.694% 479.491

2000,10 2570347.80 0.530% 85.863 2570231.45 0.526% 16.797 2804650.45 9.694% 1172.350

2000,100 1128591.55 0.547% 289.785 1128392.40 0.529% 18.803 1197988.15 6.729% 1000.169

2000,1000 439874.60 0.531% 682.241 439597.15 0.467% 88.423 452279.35 3.366% 912.588

2500,10 3114457.80 0.624% 196.352 3118274.75 0.748% 28.344 3414448.30 10.317% 2224.532

2500,100 1353003.85 0.451% 429.241 1352321.90 0.401% 29.282 1452854.95 7.865% 1728.433

2500,1000 536890.20 0.514% 1297.672 536545.95 0.449% 50.488 555853.25 4.064% 1401.563

3000,10 3586598.90 0.546% 228.680 3586916.35 0.555% 39.209 4018137.40 12.644% 2951.249

3000,100 1611474.10 0.682% 892.870 1611186.25 0.664% 44.901 1773741.80 10.821% 2677.263

3000,1000 646277.00 0.468% 2188.568 645680.15 0.375% 67.246 670984.45 4.309% 2008.729

Table 12: Results for the heuristi and randomized algorithms
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On these metri benhmarks JMS again delivers slightly better results than MYZ.

TABU is the best algorithm in terms of solution quality. LOCAL manages to �nd

better solutions than the deterministi algorithms, but it is muh slower than TABU,

JMS and MYZ. The performane of V&RR is not ompetitive in omparison to the

other algorithms. It is outperformed in terms of solution quality and exeution time

by all algorithms on nearly all benhmarks. Only on the larger benhmarks with

small opening osts the running time of LOCAL is equally slow. Part of the reason

for this is the use of priority queues. For the problems with smaller opening ost

optimal solutions have a high number of opened failities. Here the operations on the

queues are getting expensive. A better implementation of LOCAL for these kinds of

problems would omit the use of queues. Then the adjustment of the datastrutures

when opening a faility (whih is the operation used more often here) ould be

exeuted in O(m). The losing operation would need O(nm), whih leads to inferior

exeution times on average. However, here most of the time the losing operation

is used in the exhange step, whih is invoked after nearly all failities have been

opened. When nearly all failities are opened, most of the ities are onneted to

the faility loated at the same site. Then losing a faility a�ets basially only one

ity. In this ase �nding the new losest and seond losest failities an be done in

O(m). Thus, it is not surprising that an implementation without queues was able to

improve the exeution times on the large problems with n = m > 1500 by fators

of up to 3. Nevertheless we hose to implement priority queues in our version of

LOCAL as their theoretial advantage leads to shorter exeution times on average.

3.5 Saling and Loal Searh

In [11℄ a saling tehnique was proposed to improve the approximation bound of

loal searh for the metri UFLP. In the beginning all osts are saled up by a fator

of

p

2. Then the searh is run on the saled instane. Of all andidates found the

algorithm exits with the one having the smallest ost for the unsaled instane.

With this tehnique the searh is advised to open the most eonomial failities.

In pratie, however, we annot guarantee that the saled loal searh piks better

solutions. It is quite likely that the saled version exits with inferior solutions as the

solution spae of the saled instane might not reveal the same properties as the

unsaled instane. Espeially beause the errors for the benhmarks are far lower

than the approximation guarantee, it beomes obvious that this adjustment is only

a way of lowering theoretial bounds and has limited pratial use.

In Table 13 we report experimental results on a seletion of benhmarks for the

two versions of Loal Searh. The saling tehnique method was proposed for Loal

Searh on the metri UFLP. However, it deteriorates the performane of Loal Searh

on metri as well as non-metri instanes.
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Benh LOCAL Saled Loal

Opt Error Time Opt Error Time

Galv~ao and Raggi

50 9,[99.5℄ 0.236% 0.006 2,[90.0℄ 0.484% 0.006

70 7,[80.0℄ 0.063% 0.013 0,[ 0.0℄ 0.704% 0.011

100 4,[86.3℄ 0.022% 0.026 0,[ 0.0℄ 0.650% 0.025

150 5,[92.0℄ 0.020% 0.062 0,[ 0.0℄ 0.682% 0.059

200 6,[65.8℄ 0.022% 0.127 1,[ 7.0℄ 0.819% 0.115

ORLIB

ap71-74 2,[100 ℄ 0.044% 0.002 0,[ 0.0℄ 0.659% 0.002

ap101-104 2,[100 ℄ 0.059% 0.003 1,[100 ℄ 0.373% 0.004

ap131-134 2,[100 ℄ 0.236% 0.006 0,[ 0.0℄ 0.746% 0.006

apa- 2,[75.0℄ 0.242% 0.476 1,[85.0℄ 1.243% 0.445

M*

MO* 4,[78.8℄ 0.320% 0.027 2,[100 ℄ 0.720% 0.027

MP* 4,[85.0℄ 0.086% 0.166 2,[50.0℄ 0.822% 0.161

MQ* 5,[93.0℄ 0.041% 0.523 4,[36.3℄ 0.533% 0.590

MR*

+

5,[69.0℄ 0.229% 2.136 2,[32.5℄ 0.877% 2.513

MS

+

1,[100 ℄ 0.000% 11.720 0,[ 0.0℄ 0.666% 12.170

MT

+

1,[20.0℄ 0.159% 89.592 0,[ 0.0℄ 0.784% 118.443

k-median

1000,10

y

0.457% 17.282 1.416% 15.166

1000,100

y

0.358% 48.320 1.663% 40.412

1000,1000

y

0.570% 62.622 2.438% 75.220

2000,10

y

0.530% 85.863 1.519% 99.594

2000,100

y

0.547% 289.785 1.506% 246.756

2000,1000

y

0.531% 682.241 2.074% 648.900

3000,10

y

0.546% 228.680 1.459% 205.410

3000,100

y

0.682% 892.870 1.489% 684.214

3000,1000

y

0.468% 2188.568 2.011% 1816.916

+

Error and Opt regarding best found solutions

y

Error and Opt regarding lower bound by V&RR

Table 13: Results for the versions of Loal Searh
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4 Conlusions

The unapaitated faility loation problem was solved by 5 di�erent algorithms

from di�erent areas of optimization researh. The deterministi algorithms manage

to �nd good solutions on the benhmarks in short running times. Generally MYZ

an improve the performane of JMS to the expense of little extra running time.

On the tested metri instanes the performane of the algorithms is ompetitive

to the heuristi and randomized algorithms tested while the running times remain

signi�antly shorter. Here JMS o�ers slightly better solution than MYZ. The approx-

imation algorithms reveal higher errors only on a few tested non-metri instanes,

but always deliver solutions that are within 5% of optimum.

The presented Loal Searh pro�ts mainly from the intelligent use of datastrutures.

On a number of instanes the running times are able to ompete with those of MYZ

and JMS. However, due to the hanging starting points the algorithm is not very

robust. Saling tehniques that lead to improved approximation fators deteriorate

the performane of the algorithm in pratie. The tested version of the Volume al-

gorithm V&RR is not ompetitive regarding solution quality and exeution times.

TABU o�ers the best overall performane. In most ases TABU is able to �nd the

optimal solution. It is muh faster than V&RR (and Loal Searh on large-sale

instanes), but generally the running times annot ompete with those of MYZ and

JMS.

All algorithms show a very good performane on the UFLP. TABU ahieves best

solution quality in a reasonable amount of time. It therefore should be the method

of hoie for pratitioners.

Finally, we present a graphial hart with the results of the algorithms ompared to

the results of TABU. In Figure 1 we harted the results for the di�erent benhmarks.

The y-oordinates are alulated by the solution ost found by the algorithm divided

by the solution ost found by TABU. x-oordinates are alulated aordingly with

exeution times. The times and osts were taken from the tables presented above.

For the Bilde-Krarup Dq- and Eq-instanes we averaged the results over all instanes

as well as for the ap- and M* instanes. For the k-median problems we averaged

the results over instanes of the same size.

There are hardly any algorithms that have dots in the lower half of the plot. This

indiates that there has been no algorithm to onstantly outperform TABU in terms

of solution ost. Moreover, there is hardly any dot in the lower left quadrangle. Dots

in this region would indiate that TABU was outperformed in terms of solution ost

and running times. The deterministi algorithms were faster than TABU, there-

fore there are some dots of JMS and MYZ in the upper left quadrangle with an

x-oordinate less than 1. Bad performanes are plotted in the upper right quadran-

gle. The dots in this region indiate that algorithms ended with solutions of bad

quality and needed a high exeution time. A lot of the dots of V&RR are loated
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Figure 1: Plot of solution ost and exeution times in omparison to TABU

here indiating the poor performane of this algorithm in omparison to TABU.

LOCAL performed faster than TABU on small instanes, but it was slower on the

large instanes. The solution ost was in most ases slightly worse in omparison to

TABU. Therefore the dots are spread above the line in the upper half of the plot.
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