
Incrementally Maintaining
the Number of l-Cliques

Fabrizio Grandoni

MPI–I–2002–1-002 June 2002





Author’s Address

Fabrizio Grandoni

Max-Plank-Institut für Informatik

Im Stadtwald

66123 Saarbrüken, Germany

grandoni@mpi-sb.mpg.de



Abstract

The main contribution of this paper is an incremental algorithm to update the num-

ber of l-cliques, for l � 3, in which each node of a graph is contained, after the

deletion of an arbitrary node. The initialization cost is O(nωp+q
), where n is the

number of nodes, p = b

l
3
, q = l (mod 3), and ω = ω(1;1;1) is the exponent of the

multiplication of two n�n matrices. The amortized updating cost is O(nqT (n; p;ε))
for any ε2 [0;1℄, where T (n; p;ε) = minfnp�1

(np(1+ε)
+np(ω(1;ε;1)�ε)

);n
pω(1;

p�1
p

;1)
g

and ω(1;r;1) is the exponent of the multiplication of an n� nr matrix by an nr
� n

matrix. The current best bounds on ω(1;r;1) imply an O(n2:376p+q
) initialization

cost, an O(n2:575p+q�1
) updating cost for 3 � l � 8, and an O(n2:376p+q�0:532

) up-

dating cost for l � 9. An interesting application to constraint programming is also

considered.



1 Introduction

Detecting triangles in graphs is a very basic problem in algorithms. In (Itai & Rodeh

1978), Itai and Rodeh showed an O(nω
) algorithm to decide if a given undirected graph

G contains a triangle, where n is the number of nodes and ω=ω(1;1;1) is the exponent

of the multiplication of two n� n matrices (at the moment the best bound on ω is

2 � ω < 2:376 (Coppersmith & Winograd 1990)). Faster algorithms exist for sparse

graphs (Alon, Yuster & Zwick 1997, Chiba & Nishizeki 1985, Itai & Rodeh 1978).

In (Nesetril & Poljak 1985), Nesetril and Poljak generalized the algorithm of Itai and

Rodeh to detect cliques of arbitrary size. Their algorithm decides if G contains an

l-clique, for l � 3, in O(nωp+q
) time, where p = b

l
3
 and q = l (mod 3).

We here consider a slightly different problem, that we will call the l-cliques cov-

ering problem: “do the l-cliques cover all the nodes?”. A simple variant of the al-

gorithm described in (Nesetril & Poljak 1985) allows to answer to the l-cliques

covering problem within the same time bound. The main contribution of this paper

is an algorithm to incrementally answer to the l-cliques covering problem, after the

deletion of an arbitrary node. In particular, our algorithm incrementally maintains

the number kl(v) of l-cliques in which each node v is contained (node v is not cov-

ered by an l-clique if and only if kl(v) = 0). The initialization cost is O(nωp+q
) and

the amortized updating cost is O(nqT (n; p;ε) for any ε 2 [0;1℄, where T (n; p;ε) =
minfnp�1

(np(1+ε)
+ np(ω(1;ε;1)�ε)

);n
pω(1;

p�1
p

;1)
g) and ω(1;r;1) is the exponent of the

multiplication of a n� nr matrix by a nr
� n matrix. The current best bounds on

ω(1;r;1) imply an O(n2:575p+q�1
) updating cost for 3� l � 8 and an O(n2:376p+q�0:532

)

updating cost for l � 9 (Coppersmith & Winograd 1990, Huang & Pan 1998).

The significance of our result is highlighted via an application in constraint pro-

gramming. Constraint programming is a declarative programming paradigm which

allows to naturally formulate computational problems and which leads to interesting

algorithmic questions as stressed in (Mehlhorn 2000). One of the basic problems in

constraint programming is the binary constraint satisfaction problem, which consists

in deciding if an instantiation of a finite set of variables, defined on finite domains,

exists which satisfies a finite set of binary constraints. This (NP-complete) problem

is equivalent to the problem of deciding if an undirected k-partite graph G contains

a k-clique. Many filtering techniques have been developed to reduce in practice the

complexity of this problem. One of the most important filtering techniques consists in

computing the largest induced subgraph, icl(G), of G which satisfies a particular prop-

erty: the l inverse consistency, 2 � l � k (Freuder & Elfe 1996, Mackworth 1977).

The fastest algorithm known to compute icl(G) has a O(kldl
) time complexity, where

d is the size of the largest partitions (Bessiere 1994, Debruyne 2000). A straight-

forward consequence of the incremental algorithm to answer to the l-clique covering

problem, is a faster algorithm to compute icl(G) for l � 3 (the O(k2d2
) algorithm

described in (Bessiere 1994) to compute ic2(G) is optimal). Its time complexity is

O(kldq+1T (d; p;ε) for any ε 2 [0;1℄. The current best bounds on ω(1;r;1) imply an

O(kld2:575p+q
) time complexity for 3 � l � 8 and an O(kld2:376p+q+0:468

) time com-

plexity for l � 9. This improves on the O(kldl
) bound for any l � 3.

In Paragraph 2 we introduce some notation. In Paragraph 3 we consider the trian-

gles covering problem and in Paragraph 4 its generalization to l-cliques, l � 3. Para-

1



graph 5 is devoted to the new and faster l inverse consistency based filtering algorithm.

2 Preliminaries

We will use standard graph notation. Given a graph G, V (G) is its set of nodes and

E(G) its set of edges. For any v 2V (G), N(v) is the neighborhood of v. The adjacency

matrix A of G, is an integer matrix such that, for all v0 and v00 in V (G):

A[v0;v00℄ =

(

1 if (v0;v00) 2 E(G);

0 otherwise:

We will assume, for simplicity, A[v;v℄ = 0 for all v 2V (G). The graph G[V 0

℄ induced

on G by a set V 0, is the subgraph of G obtained removing all the nodes not contained

in V 0 and the corresponding edges. Graph G is complete if and only if, for all v0 and

v00 in V (G), v0 6= v00, (v0;v00) 2 E(G). An l-clique of G, l � 1, is a subset L of V (G), of

cardinality l, such that G[L℄ is complete. Let Kl be the set of l-cliques of G and Kl(v)

be the set of l-cliques containing node v:

Kl(v) = fh 2 Kl : v 2 hg:

Let moreover kl(v) be the cardinality of Kl(v):

kl(v) = jKl(v)j:

Whenever a confusion may occur, we indicate the graph considered with an apex (for

example, NF
(v) is the neighborhood of node v in graph F). We moreover do not

distinguish, for simplicity, a node from the corresponding index in any one of the

matrices considered. All matrix operations are executed in the ring of integers.

3 Incrementally Updating the Number of Triangles

The fastest algorithm known to decide if a given undirected graph G contains a triangle

has an O(nω
) time complexity (Itai & Rodeh 1978), where n = jV (G)j and ω is the

exponent of the multiplication of two n� n matrices (at the moment the best bound

on ω is 2 � ω < 2:376 (Coppersmith & Winograd 1990)). Actually, the procedure

described in (Itai & Rodeh 1978) can also be used to compute the number k3(v) of

triangles in which each node v is contained (within the same time bound). In fact, it is

not hard to show that, for all v 2V (G):

k3(v) =
1

2
A3

[v;v℄: (1)

Consider now the problem of incrementally recomputing the function k3 after the

deletion of an arbitrary node (and of all the edges incident to it). The trivial approach

is maintaining an integer matrix P such that P[v0;v00℄ contains the number of 2-length

paths, in the current graph, between nodes v0 and v00. The initial value of P is A2 and

we can update it in O(n2
) time after each deletion. The number of triangles removed

from K3(v), removing a node u, is equal to 0 if (v;u) =2 E(G) and to P[v;u℄ otherwise

2



(where P is considered before the deletion of u). With this approach, the initialization

cost is O(nω
) and the updating cost O(n2

).

Is it possible to do better? The idea is not to update P after each deletion, but peri-

odically and using fast rectangular matrix multiplication (a similar approach is used in

other incremental graph algorithms (Demetrescu & Italiano 2000, Zwick 1998)). We

use a data structure DS which consists of:

i. A set L, which contains deleted nodes,

ii. An n� n integer matrix D, which is equal to the current adjacency matrix not

considering the deletions relative to the nodes in L,

iii. An n�n integer matrix P, which is equal to D2,

iv. An n-dimensional vector C, such that C[v℄ = k3(v) for each node v.

In the initialization step, we set L =

/0, D = A, P = A2, and C[v℄ = k3(v) for any v 2

V (G). This costs O(nω
). After the deletion of a node u, we set C[u℄ to 0 and, for each

node v still in V (G), we decrease C[v℄ of the number of triangles removed from K3(v)

deleting u:

C[v℄ =C[v℄� (P[v;u℄� ∑
w2L

D[v;w℄ �D[w;u℄) �D[v;u℄:

Then we add u to L and when jLj � nε, where ε is a real number in [0;1℄, we execute

the following operations:

i. We update P[v0;v00℄, for all v0 and v00 in V (G), v0 6= v00, according to the following

rule:

P[v0;v00℄ = P[v0;v00℄� ∑
w2L

D[v0;w℄ �D[w;v00℄:

This can be done in O(nω(1;ε;1)
) time, using fast rectangular matrix multiplica-

tion.

ii. We update D (in O(n1+ε
) time) setting to zero the rows and columns correspond-

ing to the nodes in L.

iii. We empty L.

As updating C costs O(n1+ε
) and as we update D and P every Ω(nε

) deletions, the

amortized updating cost is O(n1+ε
+nω(1;ε;1)�ε

).

Theorem 1. There is an incremental procedure to update the number of triangles in

which each node of a graph is contained, after the deletion of an arbitrary node, which

has an O(nω
) initialization cost and an O(n1+ε

+ nω(1;ε;1)�1
) updating cost for any

ε 2 [0;1℄, where n is the number of nodes in the original graph.

This time complexity is minimized when ε satisfies the following equation:

1+2ε = ω(1;ε;1): (2)

We can use the following bound on ω(1;r;1) to fix ε (Huang & Pan 1998):

3



Theorem 2 (Huang and Pan 1998). For all r 2 [0;1℄:

ω(1;r;1) �

(

2+o(1) if 0 � r � α;
r ω�2

1�α +

2�αω
1�α if α < r � 1;

where α = 0:294.

From Theorem 2, we obtain ε� α(ω�1)�1

ω+2α�4
< 0:575, and then an O(n1:575

) amortized

updating cost.

4 Incrementally Updating the Number of l-Cliques

We will now consider the generalization of the triangles covering problem to l-cliques,

l � 3. In (Nesetril & Poljak 1985), an O(npω+q
) procedure is described to decide if an

undirected graph G contains an l-clique, l � 3, where n = jV (G)j, p = b

l
3
 and q = l

(mod 3). The same basic idea can be used to compute the number kl(v) of l-cliques

in which each node v is contained. Given a graph F , let AF;k be an auxiliary graph

obtained:

i. Associating a node vF;k
(h) to each k-clique h of F ,

ii. Connecting a pair of nodes vF;k
(h1) and vF;k

(h2) if and only if the nodes of h1

and h2 form a (2k)-clique in F .

Notice that, if a pair of k-cliques in F share a node, the corresponding nodes in AF;k

are not connected. The interesting property of AF;k is that F contains a (3k)-clique if

and only if AF;k contains a triangle. In particular, to each (3k)-clique of F correspond

a set of triangles whose cardinality is equal to the number of ways in which we can

partition a set of (3k) elements in 3 subsets of k elements each, that is:

1

3!

�

3k

k

��

2k

k

��

k

k

�

=

(3k)!

3!(k!)3
:

Let SF;k
(v) be the set of nodes in AF;k corresponding to the k-cliques of F which contain

node v 2V (F):

SF;k
(v) = fvF;k

(h) 2V (AF;k
) : v 2 hg:

It is not hard to show that:

kF
3k(v) =

2(k!)3

(3k)!
� ∑

w2SF;k
(v)

kAF;k

3 (w): (3)

This allows to reduce the problem of computing kG
l to the problem of computing kA

G;

l
3

3

when q = 0. When q 6= 0, we can use the following simple recursive relation:

kF
m(v) =

1

m�1
∑

w2NF
(v)

k
F [NF

(v)℄

m�1 (w): (4)

4



Equations 3 and 4 allow to reduce the problem of counting the number of l-cliques in

the original graph to the problem of counting the number of triangles, using Equation

1, in O(nq
) auxiliary graphs, each containing O(np

) nodes. The function kl can then

be computed in O(nωp+q
) time.

Now consider the problem of incrementally recomputing kl after the deletion of

an arbitrary node v. An idea is using again Equations 3 and 4, and the incremental

algorithm developed in Paragraph 3, observing that:

i. For any induced subgraph F of G involved by Equation 4, kF
m(v) = 0,

ii. For any auxiliary graph AF;p involved by Equation 3, we need to recompute kAF;p

3

after the deletion of the nodes in SF;p
(v).

Consider an auxiliary graph AF;p from which we want to delete the nodes in SF;p
(v).

Let us associate a data structure DSF;p of the kind described in Paragraph 3 to AF;p

and let ZF;p be its component Z. The initialization of DSF;p costs O(nωp
). Using the

incremental algorithm of Paragraph 3, deleting the O(np�1
) nodes of SF;p

(v) from AF;p,

which contains O(np
) nodes, costs O(np�1

(np(1+ε)
+np(ω(1;ε;1)�ε)

)) for any ε 2 [0;1℄.

Notice that the optimal value of ε again satisfies Equation 2 (it does not depend on p).

We can do better for high values of p, considering the particular structure of the

problem. As the nodes in SF;p
(v) are not connected, the triangles removed from AF;p

deleting distinct elements of SF;p
(v) are distinct too. Moreover we need the value of

CF;p only after the deletion of all the nodes in SF;p
(v). We can then update CF;p

[s℄, for

each s 2V (AF;p
), in a single step:

CF;p
[s℄ =

(

0 if s 2 SF;p
(v);

CF;p
[s℄�∑u2SF;p

(v) PF;p
[s;u℄ �DF;p

[s;u℄ otherwise;

where DF;p and PF;p are updated after CF;p (LF;p is not used). With this approach, the

updating cost is O(n
pω(1;

p�1
p

;1)
), that is O(nωp�ω�2

1�α
) according to Theorem 2. Under the

reasonable assumption that the function (ω(1;r;1)� r), for r 2 [0;1℄, is not increasing

in r, this complexity is smaller than the previous one for ε < p�1
p

:

pω(1;
p�1

p
;1) = p(ω(1;

p�1

p
;1)�

p�1

p
)+ p�1 � p�1+ p(ω(1;ε;1)� ε):

Thus we can update the number of triangles in which each node of the O(nq
) auxil-

iary graphs is contained in O(nqT (n; p;ε)) time for any ε 2 [0;1℄, where T (n; p;ε) =
minfnp�1

(np(1+ε)
+ np(ω(1;ε;1)�ε)

);n
pω(1;

p�1
p

;1)
g), and then recompute the function kl

within the same time bound, using Equations 3 and 4.

Theorem 3. There is an incremental procedure to update the number of l-cliques,

l � 3, in which each node of a graph is contained, after the deletion of an arbitrary

node, which has an O(npω+q
) initialization cost and an O(nqT (n; p;ε)) updating cost

for any ε 2 [0;1℄, where n is the number of nodes in the original graph, p = b

l
3
, q = l

(mod 3), and T (n; p;ε) = minfnp�1
(np(1+ε)

+np(ω(1;ε;1)�ε)
);n

pω(1;

p�1
p

;1)
g).

The current best bounds on ω(1;r;1) imply an O(n2:575p+q�1
) updating cost for

3 � l � 8 and an O(n2:376p+q�0:532
) updating cost for l � 9.

5



5 Fast l Inverse Consistency

In this section we present an application of our results to an important family of con-

straint programming filtering techniques. A binary constraint network consists of a

finite set X of variables, defined on finite domains, and a finite set C of binary con-

straints. Let k be the number of variables and d the size of the largest domains. A

value assignment is a pair (x;w), where x is a variable and w is a value in the domain

of x. A binary constraints C
fx;yg describes the compatible pairs of value assignments

for variables x and y, x 6= y (we assume that two distinct value assignments relative to

the same variable are not compatible). An instantiation of X is a set I of value assign-

ments such that for each variable x2X there is exactly one value assignment (x;w)2 I.

An instantiation I of X satisfies a constraint C
fx;yg if and only if the 2 value assignments

in I corresponding to x and y are compatible according to C
fx;yg. The binary constraint

satisfaction problem consists in deciding if an instantiation of X exists which satisfies

all the constraints in C. Each instantiation of this kind is called a solution for the binary

constraint network. A binary constraint network can be represented between a k-partite

graph G, which has a node for each value assignment and an edge between a pair of

nodes if and only if the corresponding value assignments are compatible (to each parti-

tion correspond the value assignments relative to the same variable). To each solution

corresponds a k-clique in G. The complexity of finding a k-clique in G can be greatly

reduced in practice removing from G the nodes not satisfying a given property which

all the nodes in a k-clique need to satisfy. One of the most interesting properties of

this kind is l inverse consistency, 2 � l � k (Freuder & Elfe 1996, Mackworth 1977).

Let gl be the set of subgraphs of G induced by the set of nodes contained in l distinct

partitions. Let moreover gl(v) be the subset of gl formed by the subgraphs containing

node v:

gl(v) = fG0

2 gl : v 2V (G0

)g:

A node v is l Inverse Consistent (l-IC) if and only if it is contained in at least one

l-clique in all the subgraphs G0

2 gl(v), that is if and only if:

8G0

2 gl(v) : kG0

l (v)> 0: (5)

A graph is l-IC if and only if all its nodes are l-IC. Consider the problem of computing

the largest l-IC induced subgraph of G, icl(G). This problem is well defined as icl(G)

is unique:

Theorem 4. The graph icl(G) is unique.

Proof: Suppose that there exist two distinct largest l-IC induced subgraphs of G,

G0 and G00. Then G000

= G[V (G0

)

S

V (G00

)℄ is an l-IC induced subgraph of G larger than

G0 and G00, that is a contradiction. �

Clearly icl(G) contains all the k-cliques of G, but it can be much smaller (and thus

finding a k-clique in it can be much easier). The fastest algorithms known to com-

pute ic2(G) and ic3(G) have an O(k2d2
) and an O(k3d3

) time complexity respectively

(Bessiere 1994, Debruyne 2000). The approach of (Debruyne 2000) can be easily gen-

eralized to compute icl(G) in O(kldl
) time for l > 3 and, to the best of our knowledge,

no asymptotically faster algorithms are known for l > 3.

6



A straightforward consequence of the incremental algorithms introduced in Para-

graph 4, is a faster algorithms to compute icl(G) for l � 3. We initialize all the data

structures needed to incrementally recomputing the function kG0

l , for each G0

2 gl , ac-

cording to the procedure described in Paragraph 4, and we store the initial value of

V (G) in a set V 0. Then, for each node v 2V 0, we check if v satisfies Property 5. If not,

we execute the following deletion procedure on v:

i. We remove v from V 0,

ii. We insert v in a set DSet, initially empty,

iii. We compute the new value of kG0

l , for all G0

2 gl(v), after the deletion of v.

A deletion can transform an l-IC node in a not l-IC one. We then need to propagate

the effects of deletions: until DSet is not empty, we extract a node u from DSet and

we check, for all the subgraphs G0

2 gl(u) and for each node v 2 V (G0

)

T

V 0, if v is

contained in at least one l-clique of G0

[V 0

℄ (if and only if kG0

l (v) > 0). If not, v is no

more l-IC and we execute on v the deletion procedure above described. At the end of

the process, G[V 0

℄ is equal to icl(G). The process can be stopped earlier if a partition

becomes empty: in that case, in fact, icl(G) is the empty graph and we need not to

remove the remaining nodes explicitly.

The initialization of all the data structures costs O(kldωp+q
). As each G0

2 gl is

interested by at most O(d) deletions (jV (G0

)j � ld), the global cost to recompute the

kG0

l s is O(kldq+1T (d; p;ε)) for any ε 2 [0;1℄, where T (d; p;ε) = minfdp�1
(dp(1+ε)

+

dp(ω(1;ε;1)�ε)
);d

pω(1;

p�1
p

;1)
g). This is also an upper bound on the global cost of the

algorithm.

Theorem 5. There is an algorithm to compute icl(G), l � 3, with an O(kldq+1T (d; p;ε))
time complexity for any ε 2 [0;1℄, where p = b

l
3
, q = l (mod 3), and T (d; p;ε) =

minfdp�1
(dp(1+ε)

+dp(ω(1;ε;1)�ε)
);d

pω(1;

p�1
p

;1)
g.

The current best bounds on ω(1;r;1) imply an O(kld2:575p+q
) cost for 3 � l � 8

and an O(kld2:376p+q+0:468
) cost for l � 9. This improves on the O(kldl

) bound for

every l � 3.

Acknowledgements

Thanks to Friedrich Eisenbrand and Paolo Ventura for their valuable suggestions.

References

Alon, N., Yuster, R. & Zwick, U. (1997), ‘Finding and counting given length cycles’, Algorith-

mica 17(3), 209–223.

Bessiere, C. (1994), ‘Arc-consistency and arc-consistency again’, Artificial Intelligence

65, 179–190.

Chiba, N. & Nishizeki, T. (1985), ‘Arboricity and subgraph listing algorithms’, SIAM J. Com-

put. 14, 210–233.

7



Coppersmith, D. & Winograd, S. (1990), ‘Matrix multiplication via arithmetic progressions’,

J. Symbolic Comput. 9, 251–280.

Debruyne, R. (2000), A property of path inverse consistency leading to an optimal pic algo-

rithm, in ‘Proc. of ECAI-00’, Berlin, Germany, pp. 89–92.

Demetrescu, C. & Italiano, G. (2000), Fully dynamic transitive closure: breaking through

the o(n2
) barrier, in ‘Proc. of the 41th Annual Symposium on Foundations of Computer

Science (FOCS’00)’, pp. 381–389.

Freuder, E. & Elfe, D. (1996), Neighborhood inverse consistency preprocessing, in ‘Proc. of

AAAI-96’, Portland, OR, pp. 202–208.

Huang, X. & Pan, V. (1998), ‘Fast rectangular matrix multiplication and applications’, Journal

of Complexity 14, 257–299.

Itai, A. & Rodeh, M. (1978), ‘Finding a minimum circuit in a graph’, SIAM J. Comput. 7, 284–

304.

Mackworth, A. (1977), ‘Consistency in networks of relations’, Artificial Intelligence 8, 99–

118.

Mehlhorn, K. (2000), Constraint programming and graph algorithms, in ‘Proc. of ICALP 2000,

Lecture Notes in Computer Science’.

Nesetril, J. & Poljak, S. (1985), ‘On the complexity of the subgraph problem’, Commentationes

Mathematicae Universitatis Carolinae 14, 415–419.

Zwick, U. (1998), All pairs shortest paths in weighted directed graphs - exact and almost exact

algorithms, in ‘Proc. of the 39th IEEE Annual Symposium on Foundations of Computer

Science (FOCS’98)’, pp. 310–319.

8



���

�

��

k

I N F O R M A T I K

Below you find a list of the most recent technical reports of the Max-Planck-Institut für Informatik. They are

available by anonymous ftp from ftp.mpi-sb.mpg.de under the directory pub/papers/reports. Most

of the reports are also accessible via WWW using the URL http://www.mpi-sb.mpg.de. If you have any

questions concerning ftp or WWW access, please contact reports@mpi-sb.mpg.de. Paper copies (which are

not necessarily free of charge) can be ordered either by regular mail or by e-mail at the address below.

Max-Planck-Institut für Informatik

Library

attn. Anja Becker

Stuhlsatzenhausweg 85

66123 Saarbrücken

GERMANY

e-mail: library@mpi-sb.mpg.de

MPI-I-2002-4-001 M. Goesele Tutorial Notes ACM SM 02 A Framework for the Acquisition,

Processing and Interactive Display of High Quality 3D Models

MPI-I-2002-2-008 W. Charatonik, J. Talbot Atomic Set Constraints with Projection

MPI-I-2002-2-007 W. Charatonik, H. Ganzinger Symposium on the Effectiveness of Logic in Computer Science

in Honour of Moshe Vardi

MPI-I-2002-1-008 P. Sanders, J.L. Träff The Factor Algorithm for All-to-all Communication on Clusters

of SMP Nodes

MPI-I-2002-1-002 F. Grandoni Incrementally maintaining the number of l-cliques

MPI-I-2002-1-001 T. Polzin Using (sub)graphs of small width for solving the Steiner problem

MPI-I-2001-4-005 H.P.A. Lensch, M. Goesele, H. Seidel A Framework for the Acquisition, Processing and Interactive

Display of High Quality 3D Models

MPI-I-2001-4-004 S.W. Choi, H. Seidel Linear One-sided Stability of MAT for Weakly Injective Domain

MPI-I-2001-4-003 K. Daubert, W. Heidrich, J. Kautz, J. Dischler,

H. Seidel

Efficient Light Transport Using Precomputed Visibility

MPI-I-2001-4-002 H.P.A. Lensch, J. Kautz, M. Goesele, H. Seidel A Framework for the Acquisition, Processing, Transmission, and

Interactive Display of High Quality 3D Models on the Web

MPI-I-2001-4-001 H.P.A. Lensch, J. Kautz, M. Goesele,

W. Heidrich, H. Seidel

Image-Based Reconstruction of Spatially Varying Materials

MPI-I-2001-2-006 H. Nivelle, S. Schulz Proceeding of the Second International Workshop of the

Implementation of Logics

MPI-I-2001-2-005 V. Sofronie-Stokkermans Resolution-based decision procedures for the universal theory of

some classes of distributive lattices with operators

MPI-I-2001-2-004 H. de Nivelle Translation of Resolution Proofs into Higher Order Natural

Deduction using Type Theory

MPI-I-2001-2-003 S. Vorobyov Experiments with Iterative Improvement Algorithms on

Completely Unimodel Hypercubes

MPI-I-2001-2-002 P. Maier A Set-Theoretic Framework for Assume-Guarantee Reasoning

MPI-I-2001-2-001 U. Waldmann Superposition and Chaining for Totally Ordered Divisible

Abelian Groups

MPI-I-2001-1-007 T. Polzin, S. Vahdati Extending Reduction Techniques for the Steiner Tree Problem:

A Combination of Alternative-and Bound-Based Approaches

MPI-I-2001-1-006 T. Polzin, S. Vahdati Partitioning Techniques for the Steiner Problem

MPI-I-2001-1-005 T. Polzin, S. Vahdati On Steiner Trees and Minimum Spanning Trees in Hypergraphs

MPI-I-2001-1-004 S. Hert, M. Hoffmann, L. Kettner, S. Pion,

M. Seel

An Adaptable and Extensible Geometry Kernel

MPI-I-2001-1-003 M. Seel Implementation of Planar Nef Polyhedra



MPI-I-2001-1-002 U. Meyer Directed Single-Source Shortest-Paths in Linear Average-Case

Time

MPI-I-2001-1-001 P. Krysta Approximating Minimum Size 1,2-Connected Networks

MPI-I-2000-4-003 S.W. Choi, H. Seidel Hyperbolic Hausdorff Distance for Medial Axis Transform

MPI-I-2000-4-002 L.P. Kobbelt, S. Bischoff, K. Kähler,

R. Schneider, M. Botsch, C. Rössl, J. Vorsatz

Geometric Modeling Based on Polygonal Meshes

MPI-I-2000-4-001 J. Kautz, W. Heidrich, K. Daubert Bump Map Shadows for OpenGL Rendering

MPI-I-2000-2-001 F. Eisenbrand Short Vectors of Planar Lattices Via Continued Fractions

MPI-I-2000-1-005 M. Seel, K. Mehlhorn Infimaximal Frames: A Technique for Making Lines Look Like

Segments

MPI-I-2000-1-004 K. Mehlhorn, S. Schirra Generalized and improved constructive separation bound for real

algebraic expressions

MPI-I-2000-1-003 P. Fatourou Low-Contention Depth-First Scheduling of Parallel

Computations with Synchronization Variables

MPI-I-2000-1-002 R. Beier, J. Sibeyn A Powerful Heuristic for Telephone Gossiping

MPI-I-2000-1-001 E. Althaus, O. Kohlbacher, H. Lenhof, P. Müller A branch and cut algorithm for the optimal solution of the

side-chain placement problem

MPI-I-1999-4-001 J. Haber, H. Seidel A Framework for Evaluating the Quality of Lossy Image

Compression

MPI-I-1999-3-005 T.A. Henzinger, J. Raskin, P. Schobbens Axioms for Real-Time Logics

MPI-I-1999-3-004 J. Raskin, P. Schobbens Proving a conjecture of Andreka on temporal logic

MPI-I-1999-3-003 T.A. Henzinger, J. Raskin, P. Schobbens Fully Decidable Logics, Automata and Classical Theories for

Defining Regular Real-Time Languages

MPI-I-1999-3-002 J. Raskin, P. Schobbens The Logic of Event Clocks

MPI-I-1999-3-001 S. Vorobyov New Lower Bounds for the Expressiveness and the Higher-Order

Matching Problem in the Simply Typed Lambda Calculus

MPI-I-1999-2-008 A. Bockmayr, F. Eisenbrand Cutting Planes and the Elementary Closure in Fixed Dimension

MPI-I-1999-2-007 G. Delzanno, J. Raskin Symbolic Representation of Upward-closed Sets

MPI-I-1999-2-006 A. Nonnengart A Deductive Model Checking Approach for Hybrid Systems

MPI-I-1999-2-005 J. Wu Symmetries in Logic Programs

MPI-I-1999-2-004 V. Cortier, H. Ganzinger, F. Jacquemard,

M. Veanes

Decidable fragments of simultaneous rigid reachability

MPI-I-1999-2-003 U. Waldmann Cancellative Superposition Decides the Theory of Divisible

Torsion-Free Abelian Groups

MPI-I-1999-2-001 W. Charatonik Automata on DAG Representations of Finite Trees

MPI-I-1999-1-007 C. Burnikel, K. Mehlhorn, M. Seel A simple way to recognize a correct Voronoi diagram of line

segments

MPI-I-1999-1-006 M. Nissen Integration of Graph Iterators into LEDA

MPI-I-1999-1-005 J.F. Sibeyn Ultimate Parallel List Ranking ?

MPI-I-1999-1-004 M. Nissen, K. Weihe How generic language extensions enable “open-world” desing in

Java

MPI-I-1999-1-003 P. Sanders, S. Egner, J. Korst Fast Concurrent Access to Parallel Disks

MPI-I-1999-1-002 N.P. Boghossian, O. Kohlbacher, H.-. Lenhof BALL: Biochemical Algorithms Library

MPI-I-1999-1-001 A. Crauser, P. Ferragina A Theoretical and Experimental Study on the Construction of

Suffix Arrays in External Memory

MPI-I-98-2-018 F. Eisenbrand A Note on the Membership Problem for the First Elementary

Closure of a Polyhedron

MPI-I-98-2-017 M. Tzakova, P. Blackburn Hybridizing Concept Languages


