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Preface

This volume contains the papers that were presented at the Second Interna-
tional Workshop on the Implementation of Logics. The workshop was held
in Havana (La Habana), Cuba, on December 8th, 2001. The workshop was
held in conjunction with the 8th International Conference on Logic for Pro-
gramming, Artificial Intelligence, and Reasoning, (LPAR 2001).

Aim of the workshop was to bring together people working on imple-
mentation of logic in the broadest sense, in order to exchange ideas and
techniques. There were contributions from different branches of logic. The
majority of contributions is about first order theorem proving, but there are
papers about higher order logic and linear logic as well.

The level of concreteness of the papers differs. Some of the papers de-
scribe concrete systems. Others discuss design dilemmas that reccur in many
systems, or general techniques that can be reused in other systems.

Implementation of logic is not only an academic exercise, but also a some-
thing that matters to the outside world. Interactive verification systems are
gradually finding applications. They are being used for verification of hard-
ware, for verification of micro-code, and for verification of safety-critical parts
of software.

Automated deduction systems have significantly improved during the last
few years, and are now increasingly being used for various industrial and
scientific applications. This progress was caused not only by improvement
of hardware, but also by the appearance of more refined calculi, and better
implementation techniques.

Until recently, there has been no dedicated forum to discuss implemen-
tation techniques. As a conseqeunce, implementation papers were scattered
through larger conferences on AI, functional and declarative programming,
or automated deduction. At these conferences, implementation papers were
not always processed in the way they deserved. As a result, much knowledge
about efficient implementation techniques is hard to find, and is often not
written down at all.

In order to change this situation, Andrei Voronkov decided to organize
the Reunion Workshop on Implementations of Logic. This workshop took
place November 2000 on Reunion Island, in conjunction with LPAR 2000.

Because the first workshop was considered successful, we have organized
the second workshop, this time as an open workshop. We received submis-
sions from 5 countries spread over 3 continents. We express our gratitude to
the Programme Committee, who were able to produce high quality reviews
in short time. Eight papers were selected for presentation. We hope you



enjoy them.

November 2001 Hans de Nivelle and Stephan Schulz
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Experiments with Marmoset, a Deduction
System Based on Clausetrees

Graham Fyffe, Joseph D. Horton, and Yanping He
University of New Brunswick
email: jdh@unb.ca

1 Introduction

Marmoset (Marmoset Automated Reasoner Mostly Only Solves Easy Theo-
rems) is a automated theorem prover being developed at the University of New
Brunswick. It is a binary resolution [6] system which uses some of the ideas
developed using clause trees [1] and binary resolution trees [8]. The major ideas
are:

1. the rank/activity restriction, which is only developed using clause trees,
and clause trees do not need to be implemented to use this restriction;

2. minimality, an extension of the regularity restriction;

3. surgery, in which pieces of a clause tree can be removed to improve the
result of the clause tree.

The main purpose of Marmoset is to be a flexible theorem prover with which
to test these ideas, and compare them with other resolution methods such as
a-ordering. If one wants to compare two different procedures, it is better to use
the same underlying system than to have two independent systems. One of the
two systems will likely be much better at some tasks than the other, and the
comparisons would be unfair.

There is a secondary hope that eventually Marmoset will be a competitive
system, or at least part of a competitive system. It is still closer to a “proof
of concept” level than an effective theorem prover. This note reports results of
the first experiments run using Marmoset, specifically tests of the rank/activity
restriction[2] versus a-ordering.

The next section discusses the theoretical background: clause trees, surgery,
binary resolution trees, and the rank/activity restriction. The next section
discusses Marmoset, and the remainder of the paper discusses the experiments
and the results.

In a logical setting, lower case letters are used for predicate symbols, function
symbols and constants. Upper case letters are used for variables. A bar over
a predicate symbol represents negation. A clause is represented as a string of



literals conjoined together, and a set of clauses is represented by a sequence of
clauses separated by commas. In a mathematical setting, lower case letters are
used for nodes and edges of graphs, upper case letters are used for sets, trees,
and L is used for a labeling function.

2 Background

2.1 Clause trees

Binary resolution proofs can be represented by a clause tree, introduced in [1].
Conceptually, a clause tree represents a clause together with a proof from a set
of input clauses. An input clause is represented by a complete bipartite graph
Ki,, or claw, in which the leaves correspond to the atoms of the literals of
the clause, modified by the sign on the edge connecting the leaf to the central
vertex. Such a clause tree is said to be elementary. A new clause tree can be
built by resolving two complementary literals from different elementary clause
trees. Identify the two leaves, so the resolved literal becomes an internal node
of the tree, thereby building a clause tree with leaves still corresponding to the
other literals of the clauses. Thus leaves of the clause tree correspond to the
literals of the clause. If there are two leaves with unifiable or identical literals,
then two unifiable or identical literals occur in the clause. Merging two such
literals is represented in the clause tree by applying a substitution if necessary,
and choosing a merge path from the leaf corresponding to the removed literal to
the other leaf corresponding to the now identical literal.

The above discussion suggests a procedural definition, by giving the opera-
tions to construct clause clause trees, as in [1]. Here the definition is structural.

Definition 1 (Clause Tree) 7 = (N, E,L, M) is a clause tree on a set S of
mput clauses if:

1. (N, E) as a graph is an unrooted tree.

2. L is a labeling of the nodes and edges of the tree. L: N UE — SUAU
{+,—}, where A is the set of instances of atoms in S. Each node is labeled
either by a clause in S and called a clause node, or by an atom in A and
called an atom node. Each edge is labeled + or —.

3. No atom node is incident with two edges labeled the same.

4. Each edge e = {a,c} joins an atom node a and a clause node c; it is
associated with the literal L(e)L(a).

5. For each clause node ¢, {L(a,c)L(a)|{a,c} € E} is an instance of L(c).

A path (v, €1,V1,...,€n,0,) where 0 <i < mn, v; € N and e; € E where
1< j < n is a merge path if L(e1)L(vo) = L(en)L(vy). Path (vo,...,vn)
precedes (<) path (wo, ..., wn) if v, = w; for somei=1,...,m — 1.

6. M is the set of chosen merge paths such that:



(a) the tail of each is a leaf (called a closed leaf),
(b) the tails are all distinct and different from the heads, and

(c) the relation < on M can be extended to a partial order, that is, does
not contain a cycle.

An open leaf is an atom node leaf that is not the tail of any chosen merge
path. The set the literals at the open leaves of a clause tree 7T is called the
clause of T, cl(T).

When a merge path is chosen between two open leaves, there is no reason to
choose one direction over the other, unless one specifies some arbitrary heuristic.
The corresponding proofs remain exactly the same. One can define a path
reversal operation which changes the clause tree except that one merge path
runs in the opposite direction, which may cause some other merge paths to be
modified somewhat. Then two clause trees are said to be reversal equivalent
if there is a sequence of path reversals which transform one tree to the other.
Perhaps a better alternative, developed in [7] in a slightly different context
(tableaux) and put into general clause trees in [1], is the foothold restriction,
which can be used to make an arbitrary choice that is consistent regardless of
the order of the resolutions.

2.2 Clause tree surgery

Surgery is a process in which a clause tree has pieces removed, and the remaining
pieces can be reassembled to form a new clause tree. The resulting tree has as
its open leaves, a subset of the open leaves of the original. Hence the result of
surgery subsumes the initial clause tree. Moreover the removal of some of the
resolutions (and factors) means that possibly some of the substitutions caused by
unifications are no longer necessary, so that even if no open leaves are removed,
the resulting clause may strictly subsume the original.

The exact conditions under which surgery can be applied are rather tech-
nical, and are specified in detail in [1]. The main idea is that there can be
two distinct atom nodes which can be identified or merged, with the result that
parts of the original proof are no longer needed. Another way to look at surgery
is that there is a proof corresponding to the clause tree which does not satisfy
the regularity condition of [11], which implies that the proof can be shortened.

Figures 1 and 2 give examples of surgery. The first clause tree in 1 proves
¢(a) from the clauses ¢(X)p(X),p(X)r(X),7(X)p(X),p(a). After surgery, the
result is ¢(X). In this example, a new merge path is chosen, and as a result a
unification is removed. The merge path in the “before” clause tree in Figure 1
must be searched for, but in the “after” clause tree of Figure 1, the merge path
is a chosen merge path and is part of the clause tree data structure.

In the second example Figure 2, a tautology path is found, which allows a
piece from the middle of the clause tree to be removed. Note that the tautology
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Figure 1: Surgery on a clause tree on clauses ¢(X)p(X), p(X)r(X), 7(X)p(X),
p(a)

e
before
+
+—O—+—p— + —O—Ft—p —O—+—4d

tautology path

O

after a—+tO—F+ p—=0O—+ 4

Figure 2: Surgery on a clause tree on clauses ab, bc, bée, bd

path is not recorded as part of the clause tree structure, but must be searched
for. It disappears from the “after” clause tree.

2.3 Binary resolution trees

Clause trees are not easy to implement directly efficiently. Instead Marmoset
uses binary resolution trees (brt) [8]. A brt is a type of proof tree, which can
be defined recursively as follows. An input clause by itself is a brt. Otherwise
a brt is a clause, together with the brts of the two clauses which are resolved
to form the clause, and the literals which were resolved. A detailed structural
definition is given in [8].

To be able construct a brt that is used to prove a clause, it is only necessary
that each clause know its own parents, and what literals were resolved. This
is also what is needed to be recorded in order to write out a proof, so this
is not very difficult to store. What one must be able to do to use brts to
implement clause trees, is to determine when surgery can be applied, and how
to implement surgery. Efficient algorithms for these operations are given in [8].
A good implementation of clause trees using brts should be no less efficient
than an ordinary clause-based resolution system which maintains its proofs, if
the clause tree ideas are turned off.



o

(¢

[
oQ

~

Figure 3: A clause tree rank/activity example

2.4 The rank/activity restriction

The goal of the rank/activity restriction is to be able to construct each clause
tree exactly once. In the rank/activity restriction, every literal in a clause is
either active or inactive. Only pairs of active literals may be resolved. In the
child clause generated by a resolution, inactivity is inherited from the parent
literal. However if two literals are merged or factored, then the resulting literal
becomes active, regardless of whether the parent literals are active or inactive.

All active literals in a clause are also given a rank. When a binary resolution
is performed, in the child clause any literal which has a higher rank in the parent
clause than the resolved literal becomes inactive, while lower ranked literals
remain active. Thus flexibility is retained if highly ranked literals are resolved.

The rank/activity restriction is complete [2], and completeness is retained
in conjunction with many other restrictions of resolution [3]. Moreover, every
clause tree is built exactly once using the rank/activity restriction. A clause tree
with n resolutions on distinct atoms and with m merges is equivalent to at least
22n=0(mlog(n/m)) (Jifferent binary resolution trees [4]. Moreover the number of
equivalent binary resolution trees can be as large as n!/(m + 1).

As an example consider the clause tree in Figure 3 based on the clauses
ad, abe, bef,cg. Consider the following proofs of the clause defg.

ad input clause
abe input clause
bef input clause
cg input clause

bde 1%,2 | bde 1%,2 | acef 2x,3 | acef 2%,3 | bfg 3x.4
cdef 3#p5 | bfg 3x.4 | cdef 1x,5 | aefg 4.5 | aefg 2x5
defg 4x%.6 | defg 5,6 | defg 4%.6 | defg 1x,6 | defg 1x%,6

~N O U W=

In most purely binary resolution procedures, all five proofs would be gen-
erated, unless the procedure stops. Not all fifteen steps would be performed,
because three of them are duplicated: clauses bde,bfg, acef each occur in two
of the proofs. Two other intermediate clauses are repeated in two proofs:
cdef,aefg. One copy of each would presumably be subsumed away, and the



Figure 4: A clause tree rank/activity example with merges

final steps of these two proofs would be duplicates. This leaves 10 resolutions
and four subsumptions to be performed. A rank/activity restricted procedure
only does six resolutions and no subsumptions are needed, assuming that the
d,e, f, g literals are of lower rank than the other literals in the clauses. For ex-
ample, if the literals are ranked always in alphabetical order, a with the highest
rank, then only the following resolutions are done:

5 bde 1%,2
6 | a*cef 2x%3
7 b*fg 3x.4
8 cdef 3%, 5
9 |a*efg 4%.6
10 | efgh 4%.8

The starred literals are inactive. Different rank/activity procedures could do
them in different orders but only these resolutions could be performed with
these clauses alone, with this rank function.

It is very important that inactive literals which are merged be reactivated.
Consider the clause tree in Figure 4. It is based on the clauses ac, ag, ab, ab.
Suppose that the rank priority is alphabetical ordering. When the b and b are
resolved, the @’s are deactivated; similarly the a’s are de-activated when the ¢
and ¢ are resolved. If they were not re-activated when they were merged, this
clause tree could not be built. But every clause tree is supposed to be built by
the rank/activity procedure. The point is that a resolution of a literal which is
to be eventually merged must be delayed until after other resolutions are done.
Hence such a literal can be allowed to be de-activated before it is merged, and
re-activated when it is merged.

3 The overall procedure used by Marmoset

Marmoset maintains a set of retained clauses, and a queue of clauses to be
processed, which starts with the input clauses. At each step, the clauses in the
queue are processed. A clause is removed from the queue and is either retained,
or rejected if the appropriate option is set. A clause can be rejected if it:

1. is subsumed by a retained clause (forward subsumption);

2. can have clause tree surgery applied (non-minimality);



3. has no active literal (inactivity); or
4. exceeds some size criterion, like depth of term.

When a clause is retained, its most general factors are generated and added
to the queue, and its literals are inserted into a discrimination tree for indexing
[6]. The clause is then used for back subsumption. The active literals in the
retained clauses are inserted into a priority queue, the priority being assigned
by a user defined function.

This repeats until the queue of clauses is empty or the empty clause is found.
If the queue is empty, then a literal with highest priority is chosen and resolved
with all other retained complementary literals. The new resolvents are added
to the queue of clauses, and the process repeats.

All literals of retained clauses are stored in the discrimination tree, but each
node has two different lists. The active literals are stored in one list, and can be
found when looking for a literal to be resolved. The discrimination tree is also
used for subsumption; in this case inactive literals must also be considered.

Marmoset is a literal-based reasoning system, as opposed to clause-based.
The search control is based on the evaluation of literals rather than the evalu-
ation of clauses, so that some literals of a clause may have been resolved while
others have not. This structure allows several different types of procedures
to be implemented. A clause-based reasoning system is produced by making
the score of every literal in a clause the same. An a-ordered system can be
produced by inserting only literals of the highest priority in a clause into the
priority queue. The rank/activity restriction can perhaps be improved by giv-
ing literals of higher priority lower scores, and hence decreasing the number of
inactive literals produced, but this heuristic is not tested yet.

4 The experiments and results

As Marmoset does not yet have any special method of dealing with equality,
and has no advantage in dealing with Horn clauses, the problem set on which it
was tested consisted of the set of non-Horn, non-equality problems in CNF form
in the TPTP problem library, version 2.3.0 [10]. This includes 765 problems. In
each run, each problem was given 5 minutes on an Alphaserver DS10 6/600 *.
The weight of a literal was set equal to the number of predicate and function
symbols in the literal, excluding non-duplicate variables, plus the maximal term
depth. Thus p(X) would have weight 1, with one predicate symbol, no duplicate
literals, and 0 term depth, while ¢(X, f(X)) has score 4, with 1 each for ¢, f
and the duplicate X, and one for term depth. The score of a clause was the
sum of the weights of all literals in the clause, plus the number of resolutions
required to produce the clause. No restrictions on the size of a clause or depth

LA 616Mhz 21264 processor with 256 MB of memory, running Linux. The processors were
in a Beowulf cluster in the Laboratory for the Investigation of Discrete Structures at UNB,
which is supported by the Canadian Foundation for Innovation.



RUN Unsatisfiable Satisfiable | Total
CLAUSE 212 9 221
LITERAL 205 9 214
CLAUSE_AO 217 13 230
LITERAL_AO 207 14 221
CLAUSE_RA 220 9 229
LITERAL_RA 227 9 236
LITERAL_RAO 228 9 237
LITERAL_RAO_REV 225 9 234
CLAUSE_AO_REV 205 16i 221

Table 1: Number of solved problems by run

of terms were introduced. Only subsumption by unit clauses was included. The
set of support restriction was used. Minimality was not used.

The first question considered was whether the literal-based version would be
different from a clause-based algorithm. In the first run [CLAUSE], all literals
in a clause were given the same score, the score for each literal was just the score
of the clause as defined above. In the second run [LITERAL], the weight of the
literal resolved was subtracted from the score of the clause, to force heavier
literals in a clause to be resolved earlier.

The next question investigated was the rank/activity restriction [RA], and
how it compares to a-ordered resolution [AQ]. In a-ordered resolution, all atoms
are ordered by a liftable ordering, and only the literal(s) with the highest priority
in a clause is(are) allowed to resolve. Literals were ordered alphabetically up to
the first variable. Four more runs were done, with both AO and RA using both
CLAUSE and LITERAL. The ranking function for RA was the order of the
literals in the clause. The number of solved problems are included in Table 1.

We investigated the impact of changing the order used in the rank/activity
and a-ordering runs. The original r/a run did not use the same order as a-
ordering, but used the order in which the clauses were stored. To make a better
comparison we re-ran r/a with the same order as the a-ordering. Then we ran
both r/a and a-ordering with the reverse ordering.

Table 2 gives the geometric average of the ratio of the times between each
problem which is solved by both of the runs. The smaller the number, the better
the procedure on the line, and the worse is the procedure at the head of the
column. If either run failed to solve the problem, or if both solved it in less than
1 second, the problem is thrown out. The last number is the geometric mean of
the times taken to solve 139 problems. These problems were solved by at least
one of the procedures, yet took more than one second for one of them.

The number of problems solved within a given time is displayed all of the
runs in Figure 5. The second diagram. Figure 6, compares rank/activity with
a-ordering.

Marmoset averaged about 2000 inferences per second on solved problems,



Run C L CAO LAO CRA LRA LRO LROR CLAR | Mean
CLAUSE 1.00 0.95 2.03 1.14 1.90 1.72 1.37 1.33 1.80 15.9
LITERAL | 1.05 1.00 2.03 1.02 2.00 2.15 1.56 1.51 1.70 15.7
C_AO 049 049 1.00 044 084 0.89 0.73 0.69 0.84 8.8
L_AO 0.88 0.98 2.25 1.00 148 1.83 149 1.40 1.53 14.2
C_RA 0.53 050 1.19 0.68 1.00 0.92 0.80 0.75 0.95 10.4
L RA 0.58 047 1.13 0.55 1.08 1.00 0.77 0.71 1.00 10.3
L. RAO 0.73 064 137 067 126 131 1.00 0.93 1.22 12.1
L.RAOR | 0.75 0.66 145 0.71 1.34 1.41 1.07 1.00 1.24 12.7
C_.AOR 0.55 0.59 1.18 0.65 1.05 1.00 0.82 0.81 1.00 9.8
Table 2: Average Ratio of Times between Pairs of Runs
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but by five minutes the inference rate fell below 1000. The inference rates were
similar for each of the procedures.

5 Conclusions

We were surprised that the literal-based runs did not solve as many problems
as the clause-based runs, for both the basic and a-ordered runs. Our intuition
that larger, and hence more restrictive, literals should be resolved earlier is
apparently wrong in general. However for the rank/activity runs, the literal-
based run did better than the clause-based run, as expected. We believe that
with some heuristics, the literal-based procedures will do better than clause-
based procedures.

The rank/activity restriction did better than the a-ordering in terms of the
number of problems solved. But a-ordering did better in terms of the average
time to solve a problem, and did better than no ordering at all. As time in-
creases, we expect that rank/activity should improve relatively, which shows in
both Figure 5 and Figure 6. CLAUSE_AO solved more problems up to about a
minute, but by a minute and a half, LITERAL_RA was solving more problems.

The difference between rank/activity and a-ordering was minimal when
rank/activity used the same order as the a-ordering originally used. But when
the order was reversed, the order was worse for both, especially a-ordering. This
shows that both procedures are sensitive to the ordering, as one would expect.
It is known that a-ordering can be exponentially slower depending on the or-
der of the variables chosen [9]. Rank/activity should not not be as sensitive
as a-ordering to changes in the ordering of the literals, because it does allow
resolutions to be done in other orders.

Marmoset is not a very fast theorem prover, but it is a useful tool to inves-
tigate some ideas for new calculi developed using clause trees. In addition to
rank/activity, we will soon be testing clause tree surgery, and surgical minimal-
ity.
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1 Introduction

Very recently the question of how to organize the proof search within sa-
turation-based theorem provers has attracted renewed attention [VorO1]:
Two variants of the given-clause algorithm are under discussion, now being
termed OTTER loop resp. DISCOUNT loop. For each of them, competitive
systems have been built, demonstrating that both approaches meet the state
of the art. But it is unclear which path to follow in the future in order to
“increase performance of the modern provers by several orders of magnitude”
[loc. cit.].

With this paper, we want to further the discussion of this question within
the frame of the implementation workshop. We present our understanding
of the DISCOUNT loop as evolved during the development of the WALD-
MEISTER prover for unit equational deduction [HJL99]. In our view, the
benefits of this loop variant are threefold: (i) only active facts have to be
indexed, (ii) passive facts may be stored in a compressed, space-saving rep-
resentation, and therefore (iii) completeness can be sustained much longer.
This contrasts with the need for weight limits or eligibility estimations in
the case of the OTTER loop (cf. [RV99]).

In this contribution we focus on the second issue. We refine our previous
conceptions towards a clarified system design that allows even more com-
pression and thereby ends the need to sacrifice completeness after several
hours of running time. Moreover, any overhead for the proof construction
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is removed from the proof search. It should even become possible to de-
part from the given-clause algorithm, to simulate a given-pair algorithm
[McC97], and especially to develop hybrid versions, which to our knowledge
has not been studied so far. The implementation which is currently under
construction will give rise to further insights.

Algorithm 1 The proof procedure of WALDMEISTER
FUNCTION WALDMEISTER(E, H, >, ¢) : BOOLEAN

1: (A,P):=(2,€)

2: WHILE —trivial() AP # @ DO
3:  e:=argminp(P); P:=P\{e}
4:  IF —orphan(e) THEN

5 e := Normalize7; (e)

6: IF —redundant(e) THEN

7: (A, Py) := Interred” (A, e)
8: A := AU {Orient” (e)}

9: P = CP>(€,.A)
10: P := P U Normalize (P, U P,)
11: # := Normalize; (H)

12: END

13:  END

14: END

15: RETURN trivial(H)

2 An inspection of Waldmeister’s proof procedure

2.1 The proof procedure itself

The input to the procedure (cf. Alg. 1) consists of an axiom set &, a set
of hypotheses H, a reduction ordering >, and a weighting function ¢ for
heuristical evaluation. The saturation is performed in a cycle working on a
set A of active facts which participate in inferences and a set P of passive
facts waiting to become members of A. We denote, slightly extending the
imperative notation, by A; the value of A after the i-th iteration of the
loop core in lines 7-11; this iteration count gives a notion of abstract time.
The sets A; induce the rewrite relations —; := — 4, C >. The weighting
function ¢, e.g. p(s=t) = |s| + |t|, has to ensure that every passive fact
becomes minimal at some point in time. This guarantees the fairness of the
proof procedure.
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(L. 1) Initially, A is empty and P contains the input axiomatization.
(L. 2) The saturation proceeds as long as the hypotheses have not become
trivial and there are still passive facts to be selected. Inside the completion
loop, the following steps are performed: (L. 3) Select an equation e with
minimal weight from the set P. (L. 4,5) Unless a parent equation has been
reduced, simplify e to a normal form. (L. 6,7) Interreduce the set A with
e, i.e. take active facts that are reducible by e out of A. (L. 8) Orient e if
possible, and add it to A. (L. 9) Generate all new critical pairs. (L. 10)
Normalize them and the reduced active facts, and insert everything into P.
(L. 11) Normalize the hypotheses.

As can be seen in the proof procedure, the passive facts are subject
to normalization only right after their generation and in case they get se-
lected. In contrast, within an OTTER loop the whole set of passive facts
is normalized in every iteration of the cycle. Line 10 then would read
“P := Normalize;(P U P, U P,)”. Some implementations moreover use
the rewrite relation generated by the union of active and passive facts, i.e.
they always employ Normalize  instead of Normalize;. In that case the
orphan predicate (L. 4) must always be evaluated to FALSE, cf. Sect. 2.2.

2.2 Aspects of space consumption

Typically P contains far more equations than A, as a rule of thumb |P| =
O(|A|?) on the average. Therefore the space requirements of WALDMEISTER
are dominated by the representation of the passive facts. Hence, methods
to save space mainly have to tackle P. One approach is to minimize the
number of elements, another, independent one, is to minimize the space
needed for one element.

As to the first, redundancy criteria are under demand. But it is clear
that such redundancy checks must not be too expensive, since otherwise the
DISCOUNT loop would fall back into an OTTER loop again.

A cheaper and more efficient check is a special feature of the DISCOUNT
loop, named “orphan” criterion: A critical pair can be deleted if one of
its “parent” active facts has been interreduced, for the critical pair has not
participated in any inference. This would not be possible if passive facts
were used for simplification purposes.

The second approach, namely reducing the space of a single passive fact,
means to employ simple compression schemes. Within WALDMEISTER, this
can be done in three ways: (i) Not at all, i.e. flatterms are employed at the
cost of 12 bytes per symbol. (ii) On the level of terms: The passiveness
of facts in the DISCOUNT loop entails that they, after generation, are not
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touched again until they get selected, which in theorem proving is the case for
a small fraction only. It is therefore possible to store terms simply as strings
of symbols, at the cost of one byte per symbol. (iii) Overlap representation:
After heuristical evaluation, the terms themselves are thrown away, and just
minimal reconstruction information is kept, at constant cost.

The influence of these representations on the process size over abstract
time can be studied in Fig. 1. For each variant, the WALDMEISTER sys-
tem was run on two large proof tasks from the TPTP problem library
on a UltraSPARC-IIi workstation. Stringterms allow compression rates of
about 10, which is comparable to what can be achieved with a shared term
representation [LS01]. The overlap representation improves on this by an-
other factor of nearly 10. This is quite typical for long-lasting runs.

Nevertheless, the space consumption becomes prohibitive after the ac-
tivation of several thousand facts (cf. Fig. 1). After some hours we are
currently faced with the decision to give up or to throw away critical pairs
and to sacrifice completeness. In the sequel we will show how to escape this
dilemma.

2.3 A drawback and its remedy

The above-mentioned overlap representation is apparently the best one in
terms of space. We have employed it when memory was tight, but it has up
to now not become our method of choice. The reason for this is that the
proof search is influenced: When a critical pair e is generated at time i, it
is normalized to some e]; with respect to the then current rewrite relation
—;. Let e be selected at time 7 > ¢. The reconstruction process then yields
el j, whereas with the two other representations the critical pair would enter
the completion loop in the shape (el;)!;. Since the rewrite relation changes
during completion, these shapes may differ. According to our observations,
the effect on the proof search is frequently negative.

To overcome this obstacle, that is, to make the reconstruction perfect,
one has to remember history: All versions of the rewrite relation —; and the
time the critical pair at hand was constructed and normalized are recorded.
This is by far not as costly as it sounds: It is sufficient to annotate the
elements of A with their activation time, and their deactivation time if
necessary, i.e. when they get reduced by a new equation. Along with each
set Aj;, the order in which its elements are traversed when searching for
rewrite patterns must be reproducable as well so that still the same matching
rewrite rules are delivered. Then the normalization steps can be perfectly
reproduced; the overlap representation becomes neutral w.r.t. the search
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behavior.

As a consequence, this changes our view of the roéle of P in the proof
procedure: Abstractly said, P has to enumerate in a fair way all critical
pairs that are not known to be redundant. This sheds a new light on the
normalization of freshly generated critical pairs: Its purpose is, besides test-
ing redundancy, only to make a well-behaved heuristical evaluation possible;
it is decoupled from the “real” inferences which occur merely at the point
of selection; and only “good” critical pairs ever enter the completion loop.
Going further, the one-to-one relationship between the elements of P and
the equations they represent is no longer necessary: An item in P could
e.g. denote the set of all critical pairs between two equations e; and e;, or
between an equation e; and all members of A (cf. Sect. 3.1).

2.4 On generating proof objects

A further issue is the provision of a proof object. The first approach realized
in WALDMEISTER was to protocol each inference step in an external file. This
led to a considerable slowdown of the proof search because a proof task of
say 5 seconds could produce a proof log of nearly 100 MBytes.

To overcome this unacceptable situation, we next changed to recording
internally for every inference step the minimal information necessary to re-
produce it. When a proof is found, a dependency analysis reveals which steps
actually contribute to the proof. These inferences are then re-performed step
by step to generate the proof object. All in all, one gets proof objects with
a run-time penalty of about 5 %.

But this approach has another, still severe drawback: Even with the
minimized protocol information the space requirements of the internal proof
log can become a limiting factor, for all the reductions on newly gener-
ated critical pairs have to be protocolled. Remembering the history of the
rewrite relation, however, can drastically change the picture: During proof
search, we just keep for every active fact the overlap information it de-
scends from. Within the DISCOUNT loop, only members of A contribute
to a proof. Hence, after the proof is found, the subset AP of A actually
needed for the proof is determined in a backward-oriented dependency anal-
ysis. (Experience shows that |AP| < |A|.) In a second, forward-oriented
phase all inferences needed to construct the elements of AP are performed
while logging of the inference steps is enabled. As we can see, the complete
inference protocol of the proof search is no longer needed.
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3 Representational issues

3.1 The set of passive facts

A simple, but seldomly exploited fact is that a position within a term or a
clause can be encoded in a single integer, e.g. as number of the top sym-
bol of s|, when the symbols in s are counted from left to right. This is
straightforward especially when flatterms are employed.

Given two parent equations s[l'l,=t and [=r, the critical pair at the
overlap position p is uniquely determined as o(s[r],=t) where o = mgu(l,!’).
The parents e; and e; are represented by their numbers ¢ and j, and the
critical pair is encoded as (7, j, xp) where xp denotes an extended position
to clarify on which side to overlap. Instead of distinguishing “into” equation
and “from” equation by the argument position in this tuple, we encode this
information into the extended position as well and then may require such an
arrangement that ¢ > j, for the following reasons: Assuming a 32-bit address
space, the tuple can with some bit-twiddling be represented in one 64-bit
integer. If then such tuples are compared as integers, the result coincides
with that of a comparison of the critical pairs by age. Note that many
systems employ explicit age information in the facts for that purpose.

Introducing wildcards, tuples can represent sets of critical pairs, e.g.
(i,, ) for all the overlaps between the equations e; and ej, or (i, *, ) for
everything generated at the activation of e;. Equations stemming from in-
terreduction can be encoded in a similar way.

Since P is ordered according to ¢ these items are augmented by a weight
w. Whenever the number of elements in P reaches a certain limit, the
following compression scheme is applied: Some or all tuples (w1, 1,7, xp1)

. (wp, 1,j,xp,) are combined into (w', i,j,*) where w' = minj<p<, wg.
If this is not sufficient, the tuples (wy, i,7,%), 1 < k < n, can be packed
into (miny<g<p Wg, 7, *, *).

This should allow to represent most sets P that occur in practice within
a reasonable amount of memory: In the extreme, P just consists of an initial
segment of individual critical pairs and then is linearly bound by the size
of A, i.e., |P| = O(]A|) even in the worst case. Whenever such a wildcard
tuple is selected by the main loop, it gets expanded, i.e., the represented
critical pairs are recomputed. The whole approach therefore trades time for
space; but note that in general only the light-weighted tuples ever need to
be expanded again.

Finally, we also get some new flexibility: The wildcards in the tuples
allow to depart from the pure given-clause algorithm. Instead of generating
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and normalizing all new critical pairs, the corresponding tuples (7, j, *) can
directly be inserted into P. With some appropriate setting of the initial
weights for these tuples it is possible to simulate a given-pair algorithm
[McC97] or to develop hybrid versions.

3.2 The set of active facts and its accumulated history

To record all the rewrite relations —;, j < ¢, it is sufficient to store the
elements e; as they are. The problem is that for a given relation —; and a
redex t several equations may match. Which of them is chosen for reduction
is determined by the traversal through the indexing structure. It is of course
not feasible to save for every j < i the index for A;. We would like to use
only a single index for the accumulated history; how can this be achieved?

At this point the perfect discrimination trees employed in WALDMEISTER
reveal a beautiful property: The ordering relation of two rewrite patterns
being traversed is invariant under insertion and deletion of other elements.
Hence, traversing an index over {e; | j < ¢} with some filtering to determine
the desired —, leads to the same traversal order of matching equations as in
the index for Aj;. The reason for this property is that the trees are ordered
ones, i.e. the order of the successors of a node is fixed. It is unclear to us
how the same effect can be achieved with other indexing schemes.

For performance reasons we can keep two indexes: one of A; for the
current rewrite relation and another of {4; | j < i} for the accumulated
history.

4 Conclusion

This work answers a question which has been on our agenda for several years:
How to retain completeness in situations when even our best compression
techniques hit the limitations of memory or address space? Compared with
the methods mentioned in [Wei0l, p. 1980f] our new approach is — in our
opinion — superior: Neither do we lose completeness, nor do we have to
restart the whole search. If the size of P is set to modest values we can even
expect some improvements in the run time of the system: Since the process
size is then considerably smaller, the working set becomes smaller and the
cache utilization increases.

As an unexpected, but most welcome, effect we gain more conceptional
clarity in the architecture of our prover. First, the initial generation and
normalization of critical pairs can be interpreted to be for heuristical evalu-
ation only. These steps are no “real” inferences. Second, the provision of a
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proof object can be completely decoupled from the proof search. There is no
need to record each inference performed in case that inference will contribute
to the proof. Third, the given-clause algorithm is no longer hard-wired. We
can simulate the given-pair algorithm or explore new hybrid versions.

Finally, let us say that our approach, being fit for the unit equality
prover WALDMEISTER, can straightforwardly be adapted to any resolution-
based prover that implements the DISCOUNT loop variant. Since in the
full clausal case the space requirements are usually more pronounced, the
effects should be even more beneficial. Thus, the conclusion is the same for
both cases: Even for long-running proof tasks there is no need to sacrifice
completeness.
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Abstract

Equality handling has always been a traditional weakness of tableau
calculi. In this paper we present a tableau calculus suited for the inte-
gration of a large class of different methods for equality handling. This is
demonstrated with several of those methods, both saturation based and
goal-oriented ones.

1 Introduction

In the past decade automated theorem proving using tableau style calculi was
developed into a number of very successful systems. However, one of the great
weaknesses of tableau style theorem proving is that few methods were found
for enabling tableau provers to efficiently solve problems containing equality.
Approaches like theory unification [Bec98] turned out to be unfeasible in prac-
tice; and they additionally presented new completeness and even undecidabil-
ity problems. A number of variants of Brand’s modification method [BraT75]
were developed into usable systems [MIL197] and must be considered as the
most successful means of integrating equality reasoning into a tableau frame-
work hitherto. Methods based on ordered equality handling are not compatible
with the most successful refinements of tableaux like the connection conditions.
In contrast to such refinements the disconnection calculus offers a more ro-
bust framework for the integration of various approaches of equality handling.
We present some methods based on orderings and some unordered approaches.
These approaches extend the calculus which is the basis for the DCTP prover
described in [LS01], where equality was handled in the generic axiomatic way
only. This paper is organized as follows. In the following section, a brief in-
troduction into the disconnection calculus will be presented. In Section 3 we
show how the paramodulation rule can be adapted to our calculus. Then, in
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Section 4 we will consider a different, more goal-oriented approach to equality
handling based on disagreement sets. Section 5 contains some comments on our
implementations of the introduced approaches, followed by Section 6 containing
example tableau proofs for the methods introduced in this paper and, finally,
we present some conclusions in Section 7.

2 The Disconnection Tableau Calculus

The disconnection tableau calculus was first developed in [Bil96]. Essentially,
this proof system can be viewed as an integration of Plaisted’s clause linking
method [PL92] into a tableau control structure.

The original clause linking method works by iteratively producing instances
of the input clauses, which are occasionally tested for unsatisfiability by a sepa-
rate propositional decision procedure. The use of a tableau as a control structure
has two advantages. On the one hand, the tableau format restricts the number
of clause linking steps that may be performed. On the other hand, the tableau
method provides a propositional decision procedure for the produced clause in-
stances, thus making a separate propositional decision procedure superfluous.
For the description of the proof method, we use the standard terminology for
clausal tableaux. The disconnection tableau calculus consists of a single complex
inference rule, the so-called linking rule.

Linking rule. Given a tableau branch B containing two literals K and
L in tableau clauses ¢ and d, respectively, if there exists a unifier o for the
complement of K and a variable-renamed variant L, then successively ex-
pand the branch with renamings of the two clauses co and do as illustrated
in Figure 1.

In other terms, we perform a clause linking step and attach the coupled instan-
tiated clauses at the end of the current tableau branch. Afterwards, the respec-
tive connection cannot be used any more on the branches expanding B, which
explains the naming ”disconnection” tableau calculus for the proof method. Ad-
ditionally, in order to be able to start the tableau construction, one must choose
an arbitrary initial active path through all the input clauses, from which the
initial connections can be selected. This initial active path has to be used as a
common initial segment of all proper tableau branches considered later on.

As branch closure condition we use the same notion as employed in the
clause linking method. That is, a branch of a tableau is V-closed if it contains
two literals K and L such that Ko is the complement of Lo where o is a
substitution mapping all variables in the tableau to a new constant.

As usual in the development of theorem provers, implementing a simple
calculus in its pure form will not result in a competitive system [LS01]. In
order to improve the performance of the system, we have integrated a number
of refinements, which preserve completeness and increase the performance of
the disconnection tableau calculus tremendously. These refinements include
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Figure 1: Tllustration of a linking step.

different variations of subsumption, a strong unit theory element and several
deletion strategies for redundancy elimination.

3 Paramodulation

Apart from using the equality axioms added to the proof problem, paramodula-
tion is perhaps the most traditional and conservative means of handling equality.
It also is the basic inference rule underlying the successful superposition calculus
[BGI8]. We refer the reader to [Lov78, RW69] for a description of paramodula-
tion in the resolution environment.

The simplest form of paramodulation is unordered paramodulation, where
overlapping is allowed in an unrestricted manner with all sides of all equations
into all terms. Adaptation of this inference rule to the disconnection calculus
leads to the eg-linking rule as it was introduced in [Bil96].

Eqg-linking rule. Given a tableau branch B containing an equation s = ¢
and a literal L in tableau clauses ¢ and d, respectively, if there exists a
unifier o for s and a subterm position L, in L, then successively expand
the branch with renamings of the two clauses co and d'c where d' = {s %
t}U{Lp(t)} U (d\ {L}) as illustrated in Figure 2.

Unlike the paramodulation rule of the resolution calculus, eg-linking intro-
duces two independent clauses, the instantiated overlapping equation and the
overlapped clause. As these two clauses can be used independently of each
other for further inference steps, the equality condition s ~ ¢t has to be added
in negated form to the overlapped clause. This way the soundness of inferences
involving the overlapped clause can be guaranteed.

Additionally the following simplification rule can be applied to the tableau
clauses.
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Figure 2: Tableau paramodulation by the eg-linking rule.

Forced instantiation. A clause of the form z % ¢ V R can be seen as
z ~ t = R and destructively rewritten to R{z/t}.

The reflexivity property of equality must be accounted for by either intro-
ducing a special closure rule for branches on which a disequation of the form
t %t is placed or by adding the axiom x ~ z to the set of input clauses. The
symmetry property of equality as far as linking steps are concerned is taken
care of by the eqg-linking-rule. The V-closure of branches as well as all tests for
subsumption and variant deletion must explicitly take the symmetry issue into
account.

Ordered Paramodulation. The unrestricted unordered form of paramod-
ulation can lead to the generation of a multitude of redundant clauses. The
introduction of a term ordering therefore is vital for the success of the method
by controlling the symmetry property of equality. As usual, we do this by impos-
ing a reduction ordering on the Herbrand universe of each problem. Overlapping
is allowed with the maximal sides of equations only and, in case the overlapped
literal is an equality literal, into maximal sides only.!

Refinements of Unordered Paramodulation. As an alternative to im-
posing term ordering restrictions, we also investigate the following restrictions
of paramodulation. First, overlapping into general literals can be restricted to
literals with an arbitrary but fixed (for each predicate symbol) sign. Also, over-
lapping into equality literals can be restricted to disequations, and there to an
arbitrary but fixed (for each instance) side of the disequation. This feature we
call side selection.

Rewriting. It is obvious that the huge advances in automated equational
reasoning are not due to either paramodulation or orderings by themselves, the
most powerful tool developed in this field is the destructive rewriting of terms.
However, the application of rewriting to clauses interconnected in a tableau

'In case an equality literal cannot be ordered, both sides are considered maximal.
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control structure is not trivial. Of course, some rewriting of terms can be easily
performed in a separate preprocessing phase, before the tableau construction is
started. The rewriting of tableau literals, however, poses problems in theory as
well as in implementation. Currently we use a restricted form of rewriting, where
each subgoal marking a tableau leaf is rewritten using all unit equations available
before it is solved. This, of course, is far from optimal, as new equational lemmas
that are generated over the course of the proof attempt cannot be used to
rewrite literals already placed on the path. Only when those literals are chosen
for a linking step, their instances can be rewritten. The enormous number of
links connected to a literal and thus the corresponding search space cannot
be directly reduced. This in particular concerns path equations. Therefore, a
more powerful future version of tableau rewriting should perform destructive
rewriting of arbitrary path literals.
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Figure 3: The disagreement linking rule.

4 Disagreement linking

One of the fundamental drawbacks of paramodulation is its inherent lack of goal-
orientedness. While at least for the ordered variant the overlapping terms ideally
converge to some sort of normal form, the entire procedure is based on saturation
and the completion of the given equational system. In the 1980’s, Digricoli
developed a more goal-oriented method of dealing with equality that he called
RUE (Resolution by Unification and Equality) [DH86]. The RUE approach
shows some resemblance to Brand’s modification method, only that Digricoli’s
method does not pre-saturate the clause set but performs the flattening of terms
on the fly and on demand only. The method is centered around the concept of
the disagreement set?.

2Note that our use of this term differs from the one used in [DHS86], since we uniquely
associate exactly one disagreement set with each pair of terms or literals

26



Definition 1 (Disagreement set) If L(s1,...,8,) and L(t1,...,t,), n >
0, are two terms or literals, then their disagreement set is the clause {s; %
t1,... ,Sn % tn}. For pairs of terms or literals with different top functors or
predicate symbols or identical signs the disagreement set is not defined.

Using the disagreement set concept, we have additional links between literals
of identical signs and complementary predicate symbols, both with unifiable and
non-unifiable terms. This leads us to the disagreement linking rule, which differs
for equational and non-equational literals.

Disagreement linking for equality literals. Given a tableau branch
B containing a disequation K with top terms s and s’ and an equation L
with top terms ¢ and ¢’ in tableau clauses ¢ and d, respectively, such that
s and t have a disagreement set D, let Do be the result of applying forced
instantiation to D. Then successively expand the branch with renamings
of the two clauses co and d'o, where d' = DU (d\ {L})U{s' %', s~ s'}.

Disagreement linking for other literals. Given a tableau branch B
containing two literals K and L in tableau clauses ¢ and d, respectively,
such that the atoms of K and L have a disagreement set D, let Do be
the result of applying forced instantiation to D. Then successively expand
the branch with renamings of the two clauses co and d'c, where d' =
DU (d\{L})U{=K} as illustrated in Figure 3.

The difference for the disagreement linking rule for equality literals is that
the outermost function symbol can be stripped away when forming the dis-
agreement sets. To account for the symmetry requirements, equations must
be disagreement-linked in both directions and the same necessities apply for
V-closure as for eqg-linking. Also the reflexive axiom z &~ z must be added to
the input formula.

f(51,...,Sn)ﬁéf(tl,...,tn)
Slﬁtl\/...\/snﬁtn

Table 1: The decomposition rule.

Finally, in order to guarantee completeness, we need the decomposition rule
shown in Table 1, which is defined for disequations only, for other predicate
symbols the decomposition is done in the course of the disagreement linking by
discarding the predicate symbol itself.

Further refinements like the viability restriction [DH86] can be applied. Fi-
nally, and most importantly, the side selection restriction mentioned above can
also be employed without affecting completeness. This refinement may lead to
an exponential reduction of the search space wrt. the original RUE.

One fundamental disadvantage of disagreement linking is its incompatibility
with any sort of orderings. On the other hand it is very restrictive in apply-
ing equalities. A practical evaluation will have to show how both approaches
compare.
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5 Implementation

All of the approaches presented here have been implemented as part of the
DCTP prover system [LS01]. It has turned out that ordered paramodulation, in
particular in combination with rewriting, is far more successful than unordered
paramodulation. As this became clear already in an early stage of development,
all further evaluations were restricted to ordered paramodulation. The imple-
mentation of disagreement linking turned out more complicated than expected,
and no evaluation of the performance of disagreement linking could be done yet.
The results of the evaluation of ordered paramodulation, however, clearly indi-
cate the dramatic increase in performance of the prover system, both compared
to the version of DCTP without special equality handling and to other state
of the art systems. In the following tables, we will present the performance of
DCTP and selected other theorem provers for the problems of the CASC-JC
system competition held in summer 2001.

Prover DCTP/Param. | DCTP | E-SETHEO | Otter | Bliksem
Attempted 120 120 120 120 120
Solved 35 14 93 31 29

The above table shows the results for the MIX class of the competition, which
was won by E-SETHEO and VampireJC. Allotted time for each problem was
300 seconds. While still being far behind the really successful systems in this
category, DCTP with paramodulation performs far better than the competition
version and also better than some other well known systems. It also should be
noted that DCTP was run on a single strategy only, as opposed to most other
systems.

Prover DCTP/Param. | DCTP | GandalfSat | SCOTT | MACE
Attempted 90 90 90 90 90
Solved 50 20 48 41 25

This table gives the results for the problems of the SAT category of CASC-
JC. The competition version of DCTP could not yet verify the claim made in
[Bil96] that disconnection as a proof method is particularly suitable for solving
satisfiable problems. The new version of DCTP with ordered paramodulation
in its current state outperforms the winner of this class.

It must be noted, however, that DCTP still can only solve 2 out of the 90
problems of the unit equality class of CASC-JC, as opposed to the 69 problems
solved by the winning Waldmeister 601 system. The main reason for this may
be that in our current system rewriting is done in a restricted way.

6 Examples

To demonstrate how the two approaches to equality reasoning introduced here
work, let us give an example proof for the clause set {{h(a) % c},{h(e) =
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d}, {h(f) =~ h(b)},{a ~ b},{c ~ d},{e ~ f}} for each method. In each proof,
the connecting lines with the encircled numbers indicate the respective links for
each method, the encircled numbers in the tableau trees indicate where each
link has been used for an inference step. For the sake of clarity all redundant
clauses in the tableaux have been left out.

6.1 Ordered Eg-linking

In this section we present an eq-linking proof for the given clause set. The infer-
ences are all ordered eq-linking steps. Since the negated overlapping equations
would unnecessarily inflate the proof, all unit-simplifiable subgoals have been
omitted for clarity.

h(a) ¢
h(e) ~ d
()~ (b
@ a I% b

~d

)
&

®

@
Q-
-

(1)
N

=

=
Q
S8

©

=
X
.

=

&
Q
Y

®

(@}
* R
Q.

6.2 Unordered Eq-linking

Below we depict an eg-linking proof for the given clause set, this time using
unordered eq-linkings only, but with the other restrictions mentioned above.
The selected sides of disequations are underlined. As for the ordered case, unit-
simplifiable subgoals have been omitted for clarity.

29



6.3 Disagreement linking

Here we show a proof for our input clause set using disagreement linking. Again,
the selected sides of the disequations are underlined.

h(a) # ¢

©) h(e) ~ d
Input h(f) ~ h(b)
clauses a ~ b
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7 Conclusion

In this paper we have described different methods of integrating theory-based
equality handling into a tableau framework. Due to its proof confluence, the
framework of disconnection tableaux turned out to be well-suited to this task.

We conclude with some remarks concerning the soundness and completeness
of the presented methods, which were not directly addressed in this paper. For
all of the approaches described above, the soundness of each of the presented
rules is obvious from the fact that, in every case, the new clauses are E-implied
by the involved input clauses. Proving the completeness of the presented meth-
ods is more difficult and a detailed presentation of the proofs would be beyond
the scope of this paper. As an example for these difficulties we could identify
certain incompatibilities of the equality handling with standard pruning mech-
anisms such as regularity. These topics will be elaborated in detail in a future

paper.
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Abstract

We present an experimental study on the use of shared rewriting in
equational theorem proving. We identify the main effects that lead to
term sharing in the proof state and experimentally show their influence.
Besides the analysis of sharing and the sharing factor we gain insights
on the benefits for rewriting and matching operations by a comparison of
the theorem provers E and Waldmeister. This also allows us to conclude
that the influence of the side effects of E’s use of shared rewriting on the
search process is quite minor.

1 Introduction

The thorough understanding of techniques found in current theorem provers is
a prerequisite for the creation of more powerful new systems. Especially the
potential of unusual approaches is often not well understood and, due to the
complexity of the issue, eludes theoretical analysis.

Shared term data structures represent repeated instances of the same sub-
term in the proof state only once. Such representations have been in use for a
number of years. However, we are not aware of any more than cursory analysis
of the behavior of shared representations. In addition to the obvious benefit of
reducing the memory consumption (the original motivation for shared represen-
tations), they also allow completely new techniques. Shared, non-local rewriting
on shared terms, as realized in the theorem prover E [Sch01], is such a technique.

Most high-performance theorem provers use indexing techniques to replace
many operations working with an element at at time with one operation working
with a whole set at at time. This is typically used for matching and (less often)
unification. Instead of sequentially trying one clause after the other, an index
on the clause set is used to quickly determine a set of candidate clauses for the
desired operation. Shared rewriting applies the set-at-a-time concept to a new
class of operations, namely to term rewriting and normal form computation, by
rewriting all instances of a given term at the same time.
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In this paper we analyze the behavior of E’s implementation of shared rewrit-
ing and compare it with the more conventional techniques found in Waldmeis-
ter [HJL99]. This system was chosen because both provers have been developed
using experiences gained with the DISCOUNT system [DKS97] and are therefore
similar in structure: Both use the DISCOUNT loop variant of the given clause
algorithm, both use variants of perfect discrimination trees as an indexing struc-
ture to speed up most unit operations, and both use similar heuristics to control
the proof search.

Despite this similarity the two provers are built on very different core data
structures. Waldmeister has been designed around a variant of perfect discrim-
ination trees [McC92] with the aim of maximal efficiency in terms of memory
and time. Consequently, its term representation is a flat term structure [Chr93]
optimized for fast traversal and memory efficiency. E, on the other hand, is
built around perfectly shared terms. Whole term sets are represented by a sin-
gle directed acyclic graph, and all shared instances of a term are rewritten at
once. To our knowledge, E is the only prover that performs rewriting directly
on a shared term representation.

Both systems are among the most powerful provers for problems formulated
in unit-equational logic as demonstrated at the recent CASC-JC [Sut01, SSPar].
Among general purpose provers, E enjoys a significant lead over the competing
systems, and Waldmeister, which is specialized for unit-equality problems, has
an approximately similar lead over E.

This paper is structured as follows: In section 2 we introduce the necessary
background. The core of the paper is formed by sections 3 and 4, which analyze
the static and dynamic aspects of the shared term representation, respectively.
We conclude in section 5.

2 Unfailing Completion and Equational Theo-
rem Proving

E and Waldmeister are based on different, but related calculi. E is a super-
position [BG94] prover for full clausal logic with optional selection of negative
literals. Waldmeister is based on unfailing completion [BDP89], extended with
narrowing to be able to deal with existentially quantified variables in the goal.
Since non-ground goals are handled differently by both provers, we restrict our
discussion to the case of unit-equational theories with a single unit ground goal.
For this case the superposition calculus degenerates into unfailing completion.

2.1 Proof search organization and heuristics

Unfailing completion is a saturating calculus, i.e. it systematically enumerates
consequences of the input clauses. Most current high-performance theorem
provers are based on such calculi, and most of those use a variant of the given-
clause algorithm to achieve this enumeration. In this algorithm the set of all
clauses is partitioned into a set A of active (or processed) clauses and a set P of

34



passive (or unprocessed) clauses. Initially, A is empty and P contains the input.
During each traversal of its main loop the algorithm picks a clause c (the given
clause) from P. This selection is controlled by an evaluation heuristic p, which
typically prefers small or old clauses. If ¢ cannot be shown to be redundant, the
algorithm inserts ¢ into 4, generates all direct consequences between 4 and c,
and finally adds them to P. In this case we say that ¢ has been activated. An-
other important parameter of the algorithm is the reduction ordering > which
can have a strong influence on the proof search.

The given-clause algorithm is used in two major variants, the DISCOUNT
loop and the Otter loop, both named after the system that made the correspond-
ing version popular. The difference lies in the treatment of simplification. In
the DISCOUNT variant only the given clause and the active clauses are used
for simplification. Newly generated clauses are simplified once after generation,
and again if they are picked for processing. Active clauses are back-simplified
with the given clause. Passive clauses, as their name implies, are not used
for simplification. This leads to a very high inference rate and allows a vari-
ety of optimizations. In particular, since passive clauses do not participate in
any inferences, they can be stored very efficiently!. Furthermore, the so-called
orphan-criterion applies: A clause can be deleted if one of its “parents” has
been interreduced.

Algorithm 1 The proof procedure of WALDMEISTER
FUNCTION WALDMEISTER(Znp, >, ¢, strength) : BOOLEAN

1: (A,P,H) := (&, axioms(Znp), hypotheses(Znp))
2. WHILE —trivial(H) A P # @ DO

3:  e:=argminp(P); P:=P\{e}

4:  IF —orphan(e) THEN

5: e := Normalize; (full, €)

6: IF —redundant(e) THEN

7: (A, P) := Interred” (A, e)

8: A:=AU{e}

9: P, := Superpos~ (e, A)
10: P := P U Normalize (strength, P, U Pz)
11: H := Normalize; (H)
12: END
13:  END
14: END
15: RETURN trivial(#)

Both E and Waldmeister use this organization as can be seen in Alg. 1 and
Alg. 2 respectively. The main (conceptional) difference between the provers lies
in the handling of hypotheses. Waldmeister keeps the hypotheses in a separate
set H whereas in E there is no special treatment. So the test predicate for

In Waldmeister passive clauses are either stored in a compressed form or are entirely
deleted and reconstructed by need.
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Algorithm 2 The proof procedure of E (simplified)
FUNCTION EPROVER(Inp, >, ¢, strength) : BOOLEAN

1: (A,P,Po) = (@,Inp,@)

2: WHILE 0 ¢ AUP, NP # @ DO
3:  c:=argminp(P); P :=P\{c}
4:  IF —orphan(c) THEN

5: ¢ := Normalize; (full, c)

6: IF —redundant(c) THEN

T: (A, P;) := Interred” (A, c)
8: A:=AU {C}

9: P, := Superpos~ (c, A)
10: Py := Normalize (strength, P; U P»)
11: P:=PUP
12: END
13: END
14: END
15: RETURN O € AUP,

a successful proof are slightly different as well: E detects the generation of
the empty clause O, Waldmeister tests whether the simplification of # joins
a hypothesis to the trivial equation ¢ = ¢. Besides that, the systems are very
similar. As an example, both systems offer a parameter strength. This allows to
specify how much effort shall be spent in the normalization of newly generated
clauses (line 11 in Alg. 1 and Alg. 2), since most of the time in the proof process
is consumed by this routine. Of course, the simplification at activation time
(line 5) is always done with full strength.

In the Otter loop the simplification relation is induced by all clauses. Imple-
mentations vary in detail, but typically all unit clauses are used for both forward
and backward rewriting. Thus, redundant clauses can be removed or simplified
earlier. However, this implies that all clauses need to be stored in a way that
makes them available for inferences. In particular, if indexing techniques are
used, all clauses have to be indexed, and all clauses have to be stored explicitly.
Furthermore, the orphan-criterion is not applicable.

2.2 The implementation of shared rewriting

All terms in E are stored in a term bank. They are inserted in a bottom-up
fashion, i. e. a term’s key in the term bank is computed from the function symbol
and the list of pointers to its already shared arguments. The term bank itself
is organized as a large hash table to allow the fast access of a term node via its
key. Each term node carries, besides its key, information about its superterms
and about external references. Term rewriting replaces a term cell wherever it
is referenced and recursively traverses all superterms to ensure that the term
bank has again only one unique node for each represented term. Hence, any
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single rewrite step potentially affects a large number of clauses. In addition to
the reference pointers the term nodes also carry various information, e. g. about
the time they were last rewritten to normal form.

Clauses are represented as lists of equational literals and contain various
precomputed values. Passive clauses are associated with an arbitrary number
of heuristic evaluations and are entered in an equivalent number of priority
queues. Due to this very general design unit clauses carry a significant size
overhead compared with Waldmeister’s more specialized data structures.

The indexing data structure used in E is a perfect discrimination tree with
age constraints. Fach branch in the index is annotated with the age of the
youngest clause it contains. These annotations and the normal form dates stored
in each term cell enable the matching routine to cut off entire branches of the
discrimination tree early if no useful match is possible. We found that for
reasonably hard examples, this saves about 10% of overall time and about 30%
of the time for matching and ordering tests for rewriting.

3 Experiments concerning the sharing factor

The benefits of the shared term approach obviously depend on the amount
of sharing achieved, i.e. on the average number of standard term nodes each
shared term cell represents. We call the ratio between the number of subterms
in a collection of terms (in our case usually all terms in the proof state) and
the shared terms nodes necessary to represent them the sharing factor. In this
section, we analyze the behavior of E with respect to this central parameter.

There are several possible sources for the duplication of terms in the search
state of a superposition based theorem prover. Typically, even in the initial
clause set, small terms like variables or constant terms occur more than once.
An analysis of the calculus reveals a number of potential reasons for an increase
in the number of duplicated terms during the inference process. Ignoring the or-
dering restrictions, the superposition inference rule? can be expressed as follows
(we write u ~ v to cover both u ~ v and u % v):

s~tvC uxovVvD
o(u = v[t], vV CV D)

where o = mgu(s, vlp)

As we can see, nearly all (sub)terms of the new clause are instantiated copies
of terms from the parent clauses. This introduces duplication via three mecha-
nisms.

1. The parts of the parent clauses containing no or only unbound variables
are not affected by o and are copied verbatim, leading to sharing between
the new clause and the old ones.

2. The application of o leads to sharing within the new clause whenever a
bound variable occurs more than once in the uninstantiated new clause.

2The additional generating inference rules necessary for the non-unit case are applied very
rarely in practice and are therefore insignificant for this analysis.
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3. Often o contains copying bindings, i.e. o(z) is an uninstantiated subterm
from one of the parent clauses. This again leads to sharing between this
parent and the new clause.

These considerations lead to the following hypothesis:

Hypothesis 1 The average sharing factor increases during the saturation pro-
cess and is correlated to the size of the term set. Extremely high degrees of
sharing are characterized by the presence of highly non-linear or permutative
clauses like e. g. the AC axioms.

Experiment 1 The theorem prover E is retrofitted to determine the number
of shared term cells and the number of standard cells they represent.

To establish enough diversity and therefore allow general conclusions, we
use a large number of specifications with different basic parameters such as
difficulty, size and structure of the signature, or number of axioms. The shar-
ing factor is determined at the end of each run, when E has either solved the
problem or has encountered a given resource limit. We use the set of all unit-
equational problems with ground goals from TPTP 2.4.1 [SS98] as test problems,
i.e. 380 proof tasks®. We use two different clause selection heuristics (symbol
counting and symbol counting interleaved with age-based selection with a pick-
given ratio of 5:1) and two term orderings, a lexicographic path ordering (LPO)
and a Knuth-Bendix Ordering (KBO). We also use two different strengths for
rewriting newly created clauses. Full rewriting uses all processed unit clauses to
rewrite the new clauses. Alternatively, we perform rewriting with oriented units
only, thus saving the potentially costly ordering tests of the instantiated equa-
tions. The combination of the three parameters results in 8 different parameter
settings.

Additionally, we analyze selected examples in detail. At each iteration of
the main saturation loop the given clause is recorded and the sharing factor is
measured. This allows us to correlate the development with the structure of the
given clauses selected and thus to partially explain the observations.

All tests were performed on SunBlade 1000 computers with 750 MHz pro-
cessors, a time limit of 500 seconds and a memory limit of 192 MB.

Result 1 Figure 1 shows the sharing factor at the termination of the prover
over the number of clauses generated during the run. The number of generated
clauses is a good indicator for the amount of work done by the prover, and in
most cases is strongly correlated to the total number of terms in the proof state.
The average sharing factor increases from about 1 for trivial examples to over
15 for larger ones. About 5% of the runs show a sharing factor higher than 20.
The diagram does not include a small number of outliers with values between 60
and 3200. There is no indication that search parameters or reduction ordering
have a significant influence on the sharing factor.

3Waldmeister and E handle non-ground goals very differently, and no useful comparison is
possible for this case.
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Figure 1: The sharing factor as a function of the length of the runs (measured
as number of generated clauses).

The outliers are problems from group theory and from the ROB domain in
TPTP. A detailed analysis of individual examples shows that the most extreme
cases of sharing occur for problems with highly non-linear axiomatizations. For
the problem GRP207-1 we observe variables with more than 30 occurrences in
the right hand side of an equation after a very moderate number of activations.

A more interesting pattern can be observed if permutative equations, in
particular AC axioms, are present. Figure 2 shows the development of the
sharing factor for ROB005-1, a typical AC specification of medium difficulty.
We can identify three periods with a strong monotonic increase of the sharing
factor. During each of these periods all activated clauses belong to a new class
of permutative equations. In these periods the sharing factor is increased due
to the third mentioned mechanism: Overlaps with permutative equations result
in substitutions with copying bindings only. If E’s AC redundancy elimination
mechanism (based on [AHLO0]) is activated, the graph shows a much more stable
behavior, with a sharing factor in the more moderate range of about 10 for most
of the time. Thus, the high sharing factor is an indicator for the presence of a
large number of very similar redundant clauses.

3.1 Sharing in the non-unit case.

To find out how these results generalize to the non-unit case we also performed
experiments with Horn and non-Horn specifications. Due to the much larger
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Figure 2: Development of the sharing factor over activated clauses for ROB005-1

amount of such problems contained in the TPTP, we were not able to perform
the experiments as thoroughly as for the unit case. However, we performed two
sets of runs, one without literal selection and one with literal selection. Both
were run on SUN Ultra-10/300MHz machines, with a time limit of 300 seconds.
This is roughly equivalent to 125 seconds on the faster machines used for the
unit experiments.

For many problems with non-Horn specifications the sharing factor is very
high — more than 100 for about 30% and about 10000 for roughly 10% of the
problems. Generally, using literal selection leads to a somewhat lower sharing
factors.

In the Horn case we observe a very interesting effect. If we run the prover
with literal selection, which results in a positive unit strategy, the bulk of ex-
amples has sharing factors from 5 to 15. This is very similar to the unit case.
Without literal selection the behavior is similar to the non-Horn case: Many
examples exhibit a sharing factor of about 50, and a still significant number a
factor of more than 200.

We interpret this results as follows: As we stated in the analysis at the
beginning of section 3, there are three causes for the creation of shared terms:
Copying of the unmodified context of an inference, instantiation of non-linear
variables, and copying variable bindings. We believe that the first two effects
are primarily responsible for the behavior in the non-unit case.

If we perform a generating inference between two non-unit clauses, we suffer
from the so-called duplication problem [LP92]. All literals of the precondition
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clauses except for the inference literals are copied (in instantiated form) into
the conclusion. If the clauses have more than two literals, this leads to an expo-
nential growth in the number of literals in a clause. Thus, non-unit inferences
lead to very large clauses — and inferences with large clauses lead to a lot of
duplicated terms, both because there is more context copied in each inference,
and because, on average, the degree of non-linearity increases.

In the Horn case, literal selection leads to a unit-strategy, i.e. no inferences
involving more than one non-unit clause are performed, and hence the length
of the clauses never increases. This explains why in this case the sharing factor
behaves very similar to the unit case. Without literal selection, arbitrary infer-
ences are possible, and thus we see both longer clauses and more sharing. As
an example, consider the problem B00006-1 from TPTP, a problem of medium
difficulty. If we use the simple clause weight heuristic without literal selection,
the average number of literals per clause, measured at the time the total num-
ber of clauses in the proof state reaches 20000, is approximately 3.4, and the
sharing factor is 475. With strict literal selection (always select the smallest
negative literal), that numbers drop to 1.26 for the literals per clause and 78 for
the sharing factor.

In the non-Horn case, literal selection no longer results in a unit strategy.
However, it still results in positive strategy, and thus blocks all inferences be-
tween clauses with both positive and negative literals. Most long clauses have
both positive and negative literals, and hence literal selection is able to limit
the growth of clauses to some extend. Again, we look at an example of medium
difficulty, SWC398-1. Without literal selection, the average literal number per
clause is 5.4, and the sharing factor 244. With literal selection, we have 1.21
literals per clause, and a sharing factor of 6.2. As can be seen in both cases, a
higher literal count (implying, on average, more inference context), also leads
to a higher sharing factor.

4 Experiments concerning the shared rewriting

After analyzing the influence of the shared term implementation on the static
representation of each consecutive search state, we will now discuss the effects
of term sharing on more dynamic aspects, i.e. on the rewriting and matching
operations and on the influence on the search behavior.

4.1 Influence on the search behavior

Comparing the number of rewrite steps performed by a system with shared
rewriting with the number performed by a standard implementation is surpris-
ingly hard. A first, conceptually simple, approach would be to implement both
forms of rewriting in a single system, and to compare the two results. However,
the shared rewriting has a profound influence on the design of many different
parts of a proof system. Adapting all these parts for the conventional case
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amounts to reimplementing large parts of the prover. This is not feasible within
reasonable resources.

Alternatively, one could analyze the behavior of E, and attempt to figure
out how many conventional rewrite steps correspond to each shared inference
performed by E. However, this is very hard: Due to sharing, simplification steps
performed with new clauses affect as a side effect clauses in P a conventional
prover would never touch. Furthermore, we gain no insights into the influence
of shared rewriting on search behavior and running time.

We finally settled on the the following approach: Since E and Waldmeister
are similar in their structure (except for shared rewriting!) we adjust them
to behave as similar as possible. If this is achievable for a significant number
of diverse problems, we can compare the number of conventional rewrite steps
performed by Waldmeister with the number of shared steps performed by E.

Hypothesis 2 It is possible to make E and Waldmeister behave similar for
a wide variety of proof tasks by adjusting search parameters of both systems,
i.e. the introduction of shared rewriting does not significantly alter the search
behavior.

Experiment 2 For both provers we fix the clause evaluation heuristic, the
rewrite relation for forward simplification of newly generated clauses, the rewrite
strategy (leftmost-innermost), and the term ordering to identical settings. We
also disable techniques like AC-redundancy elimination or special goal handling
that are only implemented in one prover or are likely to lead to significant
differences.

We then compare the behavior of the provers for corresponding strategies.
A good indicator for the similarity of two runs is the comparison of the number
of clauses generated until a proof is found. Due to the known instability of most
saturating proof techniques this number normally varies greatly for even minor
differences in the search process.

We use the same problem set and machine configuration as in Experiment 1.
Since both systems vary in inference speed it is not sensible to compare runs
when one or both encounter a timeout. We therefore restrict our attention to
the 983 runs where both systems find a proof within the given resource limits
of 500 seconds and 192 MBytes.

Result 2 Figure 3 shows the number of steps performed by Waldmeister over
the number of steps performed by E for each proof problem successfully proved
by both systems. As we can see, a large majority of examples shows very similar
behavior for both systems. If we allow a difference of 20% only, 630 out of 983
runs, i.e. 64% of all runs, are similar. Qutliers are distributed quite evenly on
both sides. Considering the above mentioned instability both provers show a
remarkably similar behavior.

Thus, contrary to our initial expectation, we find no strong evidence that the
choice of the term representation introduces a qualitatively different behavior
in the unit-equational case.
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Figure 3: Clauses generated by Waldmeister over clauses generated by E for 983
runs

4.1.1 Stability of the clause count.

Our hypothesis, that even small disturbances in the inference process lead to
vastly different numbers of generated clauses, is demonstrated by a different
set of experiments. We also ran E and Waldmeister with an interleaved symbol
counting/first-in-first-out heuristic. In this case, E counts activations of the goal
as part of the clause selection process, while Waldmeister not, since it treats the
goal as a distinct object. This small difference leads to a much wider spread of
results. In this case, only 21% of the runs lie in the 20% difference interval.

4.2 The number of performed rewrite steps

For the influence of shared rewriting on normal form computations two main
effects have to be considered. First, each rewrite step in E corresponds to
multiple conventional rewrite steps, since all instances of the rewritten term
are replaced at once. Second, the normal form procedure stores knowledge
about previous match attempts in the term node and thus avoids redundant
match attempts. This generalizes a typical optimization in innermost rewriting,
namely the marking of irreducible subterms.

Hypothesis 3 The ratio between non-shared and shared rewrite steps and
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Figure 4: Quotient of conventional vs. shared rewriting steps resp. matching
operations

matching operations increases for longer runs. This behavior is more pronounced
for matching operations.

Experiment 3 We compare the number of rewrite steps and match operations
performed by Waldmeister and E for the similar runs, i. e. where the number of
generated clauses differs by at most 20% between both provers, determined in
Experiment 2.

Result 3 Figure 4 shows both the relative proportion of unshared rewrite steps
performed by Waldmeister versus shared rewrite steps performed by E and the
relative proportion of matches attempted by both provers. Both values have
been corrected for the small differences in the number of generated clauses.

For the rewrite steps we see a quite homogenous result, with the ratio of
unshared to shared inferences rising from about 1 for easy problems to about
2.5 for harder problems. For the number of matches the spread of results is
much bigger. The ratio of match attempts rises from 1 to about 9, with the
spread for harder problems going from about 5 to about 14. A small number of
outliers display a ratio of 4 or 5 in rewrite steps and a ratio from 15 to 25 for
match attempts.

As expected, the ratio of conventional vs. shared operations rises with time.
The small effect for rewrite steps is explained by the fact that the vast majority
originates from normalizing the newly generated clauses. The number of such
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clauses typically only grows moderately over time. Most sharing, on the other
hand, occurs in the much larger set P. Since most clauses in P are never
activated, the implicit rewriting of terms in these clauses has no counterpart in
Waldmeister. For match attempts the normal form information at each shared
note is crucial. If E encounters a term that has been normalized with the current
rewrite relation, it can avoid matches on this term and on all of its subterms.

4.3 Comparison of the run times

Up to now, we have only measured and compared quantities that are imple-
mentation independent. This allows to asses the properties of a method or
technology regardless of peculiarities of actual implementations. When com-
paring the run times of E and Waldmeister we have to take into account the
disturbances due to different levels of optimizations in the actual code. Never-
theless, analyzing the ratio of run times over the problem complexity, that is,
the time needed to solve it, gives insights into the suitability of shared rewriting
for challenging proof tasks.

Hypothesis 4 There are no fundamental differences between shared and non-
shared rewriting over the run time. Shared rewriting can cope better than
non-shared rewriting with the additional costs for full simplification of newly
generated clauses compared to simplification with oriented units only.

Experiment 4 We compare the run times of Waldmeister and E for the similar
runs, i.e. where the number of generated clauses differs by at most 20% between
both provers, determined in Experiment 2.

Result 4 As expected, Waldmeister is faster in most cases. But we find no
significant correlation between the ratio of run times and the ratio of matching
operations or rewrite steps.

An interesting pattern concerning the strength of initial simplification can
be observed: If only orientable units are used, Waldmeister is about four to
five times faster than E, independent of the magnitude of the run time. If full
simplification is used, Waldmeister is only 2.5 times faster on the average, the
variance is much higher, and there are even some examples, where E is faster
than Waldmeister. Here too, no significant change over the run time is observed.

There are six runs where E is faster than Waldmeister and Waldmeister
needs more than ten seconds. With one exception, they all belong to problems
with one or two AC-symbols in the axiomatization. For Waldmeister, restricting
the strength of the simplification relation is especially beneficial for this class of
problems. For E, the effect is not so pronounced — in fact, in our experience E
performs better with the full strenght rewrite relation on nearly all problems.
This is consistent with the above findings.

Rewriting with orientable instances of unorientable equations, as done in the
case of the full strength rewrite relation, requires an ordering comparison after
each successful matching operation. This test leads to an increased costs for
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Figure 5: Comparison of actual running times of E and Waldmeister. The two
boundary lines correspond to the case of equal speed for both provers and to the
case where Waldmeister is 10 times faster. Note that the scales are logarithmic.

rewrite attempts with such equations. In the case of AC-symbols the following
effect can be observed: The commutativity axiom matches at all positions where
its function symbol occurs. Then the ordering constraints have to be checked.
Most of the time they are not fulfilled. The situation is similar with other small
permutative equations. As a result the normalization relation becomes notably
more expensive. It seems that in this situation the normal form dates stored in
the term nodes are especially profitable for E. We conclude that shared rewriting
has advantages when the rewrite relation is costly.

5 Conclusion

Our analysis shows to our surprise that for unit equality problems there is no
evidence for a significant difference caused by the choice of the term structure.
The memory saving possible with sharing can also be achieved by much simpler
compression techniques. Concerning rewriting, the positive effects of slightly
fewer rewrite steps and noticeably fewer matches seem to be neutralized by the
much higher cost for rewriting and term bank administration. When the rewrite
relation is more expensive, the situation changes a little bit, as the analysis of
the overall run times shows. There is some evidence that E can deal better with
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search situations with a high degree of redundant information. We also find
that the shared term representation in E masks a number of weaknesses in the
inference engine. In particular, term comparisons with KBO and LPO are much
slower in E, and E does not use certain optimizations in indexing symmetric unit
clauses. This seems to be compensated by the normal form dates in the term
nodes.

Nevertheless, the shared rewriting paradigm requires a significantly higher
implementation effort to get a working prover, and for the unit-equational case
development resources should probably be invested into other areas.

We conjecture that shared rewriting promises more benefits for other set-
tings. First, for provers using the Otter loop which have to represent all clauses
explicitly, the space savings caused by the shared term representation can be-
come important. Secondly, since the shared term implementation can save a
significant amount of match operations, it should pay off in the case where
matching is more expensive, e. g. in the case of AC rewriting. Finally, the much
higher sharing factors observed in the non-unit case indicate that the real po-
tential of the approach lies in this area. Unfortunately, we currently see no
possibility of a detailed comparison for this case, since no prover with a struc-
ture sufficiently similar to E is known to us.

This study has had one positive side effect: Both authors have gained a far
better understanding of both systems and of the implemented techniques. We
found some minor bugs in one of E’s heuristics and in some reporting code.

The outcome of these experiments has given us new insights about where to
invest development effort. For example, the sharing factor seems to be a good
indicator for the behavior of the search heuristic: A high sharing factor indicates
that the prover generates a lot of redundant clauses and should probably change
its search behavior.
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Abstract. This paper describes some methods of the MUSCADET theo-
rem prover which is a knowledge-based system using natural deduction
strategies. Detailed MUSCADET proofs are given, as well as many exam-
ples of rules.

1 Introduction

Most theorem provers nowadays are based on the resolution principle [12]. The
properties of such provers have been studied from a theoretical point of view
and much progress has also been made from a practical point of view. However,
it is also useful to continue to improve theorem provers based on natural deduc-
tion, following the terminology of [1,2]. The MUSCADET system [9-11] is such
a prover . Moreover, it is built as a knowledge-based system; all methods are
expressed as rules which are either given to the system or automatically built by
metarules. MUSCADET participated in the last three CADE Automated theorem
proving System Competition (CASC-16/17/JC). It was the only prover based
on natural deduction and the results show its complementarity with regard to
resolution-based provers.

Section 2 presents MUSCADET’s main methods and gives a detailed example
of a proof. It also gives the principle of the rules’ construction which is illustrated
with an example. Section 3 presents the processing of existential properties which
is a crucial strategy. A detailed proof of a theorem and an outline of another
proof are given for theorems which could not be proved by resolution-based
theorem provers in CASC-JC. The processing of negation is briefly mentionned in
section 4. Section 6 concludes on the usefulness of cooperation between provers.

2 MUSCADET main methods

MUSCADET works with objects, hypotheses, a conclusion and rules. It has to
prove the conclusion by applying rules which may, for example, add new hy-
potheses, modify the conclusion, create new objects, split the theorem into two

! MUSCADET is available at the address
http://www.math-info.univ-paris5.fr/"pastre/muscadet/muscadet.html
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or more sub-theorems. Rules are either logical rules or rules which have been
built from definitions, lemmas or universal hypotheses.

2.1 An example of a proof

The MUSCADET proof of the following problem will illustrate this mechanism.

Theorem. The union of the power set of two sets A and B is included in the
power set of the union of A and B.

Its first order statement is
VAVB(P(A)UP(B) C P(AUB))

Its MUSCADET expression is
for_all(A, for_all(B, subset(union(power_set(A), power_set(B)),
power_set (union(A,B)))))

Its TPTP expression is
! [A,B] : subset(union(power_set(A),power_set(B)),
power_set (union(A,B))))

The following definitions, which are used in this problem,

VAYB(AC B& VX(X € A= X € B))
VAVBYX(X € AUB& X € AV X € B)
VAVX(X € P(A) & X C A)

are given to the system.

Their MUSCADET expression is

definition(subset (A,B)<=>for_all(X, member (X,A)=>member(X,B)))
definition(member (X,power_set (A))<=>subset(X,A))
definition(member (A, union(B, C))<=>member(A, B) or member(A, C))

In TPTP, it is not possible to use the keyword definition, and these defi-
nitions are given as axioms.

input_formula(subset,axiom, ( ! [A,B]
( subset(A,B) <=> ! [X] : ( member(X,A) => member(X,B) ) ) ))
input_formula(power_set,axiom, (
! [X,A] : ( member(X,power_set(A)) <=> subset(X,A) ) ))
input_formula(union,axiom,( ! [X,A,B]
( member (X,union(A,B)) <=> ( member(X,A) | member(X,B) ) ) ))

MUSCADET has to recognize definitions among the axioms. Roughly, defini-
tions are formulas containing an equivalence in which one argument is of the
form P(X1,...,Xn) or Q(X1,...,F(X1,...,Xn),...,Xn) where P or F has no
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other occurrence in the formula.

From these definitions MUSCADET first builds the following rules, where the
argument N is the number of the (sub-)theorem to which the rule will be applied.

rule(N, subset) :- hyp(N,subset(A,B)),hyp(N,member(X,A)),
not hyp(N,member (X,B)),
addhyp (N ,member (X,B))
if AC B and X € A are hypotheses,
then add the hypothesis X € B if it is not yet a hypothesis

rule(N, union) :- hyp(N,union(A,B):C),hyp(N,member(X,C)),
not hyp(N,member(X,A) or member(X,B)),
addhyp (N,member (X,A) or member (X,B)).
if AUB:C 2% and X € C are hypotheses,
then add the hypothesis X € AV X € B if it is not yet a hypothesis

rule(N, unionl) :- hyp(N,union(A,B):C),hyp(N,member(X,A)),
not hyp(N,member (X,C)),
addhyp (N ,member (X,C)) .
if AUB :C and X € A are hypotheses,
then add the hypothesis X € C' if it is not yet a hypothesis

rule(N, union2) :- hyp(N,union(A,B):C),hyp(N,member(X,B)),
not hyp(N,member (X,C)),
addhyp (N ,member (X,C)) .
if AUB : C and X € B are hypotheses,
then add the hypothesis X € C' if it is not yet a hypothesis

rule(N, power_set) :- hyp(N,power_set(A):B),hyp(N,member(X,B)),
not hyp(N,subset(X,A)),
addhyp (N, subset (X,4)).
if P(A) : B and X € B are hypotheses,
then add the hypothesis X C A if it is not yet a hypothesis

rule(N, power_setl) :- hyp(N,power_set(A):B),hyp(N,subset(X,A4)),
not hyp(N,member(X,B)),
addhyp (N ,member (X,B)) .
if P(A) : B and X C A are hypotheses,
then add the hypothesis X € B if it is not yet a hypothesis

The construction of these rules will be explained in the next sub-section.

2 this means that C is the name of AU B
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There are also universal logical rules, which are given to the system, and
which are classic rules in natural deduction.

rule(N, for_alll) :- concl(N, for_all(X,C)), var(X),
create_object(N,x,X1), addobject(N,X1),
replace(C,X,X1,C1), newconcl(N, C1).
if the conclusion is VX P(X)
then create a new object X1 and the new conclusion is P(X1)

rule(N, =>) :- concl(N, A=>B), addhyp(N,A4),
newconcl(N,B).

if the conclusion is H = C

then add the hypothesis H and the new conclusion is C
Adding hypotheses (super-action addhyp) is defined by a pack a rules. Only el-
ementary properties and existential properties are directly added. Conjunctive
expressions are decomposed into elementary formulas. Instead of adding univer-
sal hypotheses and implications, rules are built.

rule(N, or) :- hyp(N, A or B), not hyp_treated(N, A or B),
concl(N, C),
nouvconcl (N, (A=>C) and (B=>C)),
addhyp_treated(N, A or B).
if AV B is a hypothesis and has not yet been treated, and the conclusion is C
then the new conclusion is (A = C) A (B = C)
and the fact that this hypothesis has been treated is memorized.

rule(N,stopl):- concl(N,C), clos(C), hyp(N,C),
newconcl (N, true).
if the conclusion C is totally instantiated and is already a hypothesis,
then the (sub-)theorem is proved,
this is memorized by setting the conclusion to true

rule(N, elifun) :- concl(N, C),

elifun(N, C, C1), newconcl(N, C1).
The super-action eli fun “eliminates” functional symbols from the conclusion C'
and the new cocnlsuion is C1.
elifun is a Prolog predicate which expresses procedural techniques to flatten
deep terms. For example, if p is a predicate symbol, f and g are functional sym-
bols and a, b, c are constants, p(f(a), g(b, f(c))) will be replaced by p(f_a, g-b_f c)
and the hypotheses f(a) : f_a, f(c): f_c and g(b, fc) : g.b_f c added. f_a, f_c,
g_b_f c are constants automatically built by elifun and the symbol “:” means
that f_a, f-c and g-b_f_c are the names of f(a), f(c) and g(b, f(a)).
If X is a variable, p(f(X)) will be replaced by only(f(X):Y, p(Y) which means
that for the only Y equal to f(X), p(Y) is true. This “new quantifier” only is
later treated either as an existential quantifier or as a universal quantifier, de-
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pending on the context (see [9]).

rule(N, defconcll) :- concl(N, C), definition(C <=> D),
newconcl(N, D).
if the conclusion is P(...) and there is a definition P(...) & ...
then replace the conclusion by its definition.

rule(N, defconcl2) :- concl(N, C), C =.. [R, A, B], hyp(N, D:B),
definition(XRD <=> P),
XRD =.. [R,X,D1],not var(D1), D=D1,

replace(P, X, A, P1), newconcl(N, P1).
if the conclusion is R(A,B)
and there is a hypothesis F(...):B and a definition F(...) &
then replace the conclusion by its definition

Now, here is the MUSCADET proof of the theorem.

MUSCADET first writes the address and the name of this problem in the TPTP
library

tptp/Problems/SET/SET694+4.p
thI22

The problem statement is translated into the MUSCADET syntax

theorem to be proved
for_all(A, for_all(B, subset(union(power_set(A), power_set(B)),
power_set (union(4, B)))))

and becomes the conclusion of the initial theorem numbered 0. At the begining
there is no hypothesis and no object, but only this conclusion to be proved.

0 new conclusion
for_all(A, for_all(B, subset(union(power_set(A), power_set(B)),
power_set (union(4, B)))))

Links are added for this theorem numbered 0 to the concepts which occur in the
conjecture (and recursively to the concepts which occur in the definitions of the
preceding concepts, if any).

0 add link subset
0 add link power_set
0 add link union

Then MUSCADET activates the rules that are pertinent for the conjecture, i.e.

universal rules and rules which have been built from the definitions of the con-
cepts linked to the conjecture. The order in which they are activated is heuristic.
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active rules: for_alll for_all2 elifun stopl stop2 stop3 stopd ...
not hypnot hypnotnot => <=> only ...

concl-existsl concl-exists2 concl-exists3 ...

subset power_set power_setl union unionl union2 ...

and defconcll exists or defconcl2 defconcl3 ...

Now rules are applied.
New objects  and z1 are created and the conclusion is instantiated with  and
zl

0 add object x
0 new conclusion
for_all(A, subset(union(power_set(x), power_set(4)),
power_set (union(x, 4))))
———————————————————————————————————————————————————— rule for_alll
0 add object x1
0 new conclusion subset(union(power_set(x), power_set(x1)),
power_set (union(x, x1)))
———————————————————————————————————————————————————— rule for_alll

MUSCADET accepts statements with functional symbols but works as if there
were predicate symbols. It creates objects, adds the definitions of theses objects
as hypotheses and these names replaces the corresponding terms in the conclu-
sion. The names are Prolog constants automatically built from the functional
symbols. The symbol “:” means that union_z_x1, for example, is the name of the
union of z and 1 The formula union(z,z1) : union_z_z1 will be manipulated
as if it were a predicate p(z, z1, union_z_x1).

0 add object union_power_set_x_power_set_x1
0 add object power_set_x
0 add hypothesis power_set(x) :power_set_x
0 add object power_set_x1
0 add hypothesis power_set(x1):power_set_x1
0 add hypothesis union(power_set_x,
power_set_x1) :union_power_set_x_power_set_x1
0 add object power_set_union_x_x1
0 add object union_x_x1
0 add hypothesis union(x,x1) :union_x_x1
0 add hypothesis power_set(union_x_x1) :power_set_union_x_x1
0 new conclusion subset(union_power_set_x_power_set_xl,

power_set_union_x_x1)
—————————————————————————————————————————————————————— rule elifun

Then the conclusion is replaced by its definition

0 definition of the conclusion
0 new conclusion
for_all(X, member (X, union_power_set_x_power_set_xl) =>
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member (X, power_set_union_x_x1))
——————————————————————————————————————————————————— rule defconcll

Creation of object x2

0 add object x2

0 new conclusion member(x2, union_power_set_x_power_set_x1) =>
member (x2, power_set_union_x_x1)

———————————————————————————————————————————————————— rule for_alll

Rule => decomposes the statement into a hypothesis and a conclusion

0 add hypothesis member(x2, union_power_set_x_power_set_x1)
0 new conclusion member (x2, power_set_union_x_xl)

Rule union was built from the definition of union

0 add hypothesis member(x2, power_set_x)or member(x2, power_set_x1)
——————————————————————————————————————————————————————— rule union

Rule or has a low priority. It is applied here because no other rule can be applied.
Otherwise, rules with higher priority would be applied first in order to avoid
useless splittings.

0 new conclusion (
(member (x2,power_set_x) => member (x2,power_set_union_x_x1)) and
(member (x2,power_set_x1) => member (x2,power_set_union_x_x1))
0 add hypothesis-treated member (x2, power_set_x) or
member (x2, power_set_x1)
—————————————————————————————————————————————————————————— rule or

Then rule and splits the theorem into two sub-theorems numbered 1 and 2.

sk sk ok ok ok o ok ok ok ok ok ok sk ok ok ok ok sk ok ok ok ok sk ok ok ok k skok ko kok ok kokokkkkokkk k- Sub-theorem 1 kkxkk
1 new conclusion member(x2, power_set_x) =>

member (x2, power_set_union_x_x1)
———————————————————————————————————————— creation of sub-theorem 1
1 add hypothesis member(x2, power_set_x)
1 new conclusion member(x2, power_set_union_x_x1)

definition of the conclusion
1 new conclusion subset(x2, union_x_x1)

1 definition of the conclusion

1 new conclusion
for_all(X, member (X, x2)=>member (X, union_x_x1))
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——————————————————————————————————————————————————— rule defconcli
1 add object x3

1 new conclusion member(x3, x2)=>member(x3, union_x_x1)
———————————————————————————————————————————————————— rule for_alll
1 add hypothesis member (x3, x2)

1 new conclusion member (x3, union_x_x1)

theorem 1 proved

As the first sub-formula of the conjunctive conclusion of the initial theorem has
been proved, it is removed from this conclusion

0 new conclusion
member (x2, power_set_x1) => member (x2, power_set_union_x_x1)

ke ok ok sk ok ok ok ok ok sk ok ok o sk ok o ok ok ook ok ok ok sk ok ok sk Kok ok ok kkk kokk ok ok kkkk  sub-theorem 2 kkxkx
2 new conclusion

member (x2, power_set_x1) => member (x2, power_set_union_x_x1)
———————————————————————————————————————— creation of sub-theorem 2
2 add hypothesis member(x2, power_set_x1)
2 new conclusion member (x2, power_set_union_x_xl)

definition of the conclusion
2 new conclusion subset(x2, union_x_x1)

2 definition of the conclusion

2 new conclusion

-for_all(X, member(X, x2)=>member (X, union_x_x1)).
——————————————————————————————————————————————————— rule defconcll
2 add object x4

2 new conclusion member (x4, x2)=>member (x4, union_x_x1)
———————————————————————————————————————————————————— rule for_alll
2 add hypothesis member (x4, x2)

2 new conclusion member (x4, union_x_x1)

2 add hypothesis member (x4, union_x_x1)
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______________________________________________________ rule union2

——————————————————————————————————————————————————————— rule stopl
theorem 2 proved

As both sub-formulas of the conjunctive conclusion have been proved, the initial
theorem is proved

0 new conclusion true

theorem O proved ( thI22 ) in 0.79 seconds

2.2 Building rules

The construction of rules is performed by the super-action buildrules which
is a recursive Prolog predicate and which builds one or more rules step by step
from definitions and lemmas.

In the call buildrules(E,N,Concept,Name,Corps),
- Eis a (sub-)formula to be treated,
- N is the number of a (sub-)theorem if the rules being built are only local for
this (sub-)theorem and any variable otherwise,
- Concept is the defined concept or the name of a lemma,
- Corps is the part of the rule which has already been built.
This predicate returns true if it has succeeded in building at least one rule. As
a side effect the built rules are asserted as new clauses.

For a concept P defined by a formula A<=>B, where A is P(X;, X, ...), the
first call is buildrules(A=>B,_,P,Name, [])

For a functional concept F defined by a formula P(F (X1, Xo,...) & E the
first call is buildrules(FX:C => (PC <=> E))
where FX is F'(X;, X»,...) and PC is P(C).

Here are some parts of the buildrules predicate

buildrules(E,N,Concept,Name,Corps) :-
(E= (A or B=>0C)
-> buildrules((A=>C)and(B=>C),N,Concept,Name,Corps)

; E = (A=>B)
-> (A = Al and A2 -> addcond(N,Corps,Al,Corpsl),
buildrules(A2 => B,N,Concept,Name,Corpsl)
.
; /* else */ addcond(N,CorpsO,A,Corpsl),
buildrules(B,N,Concept,Name,Corpsl)
)
; E = (A<=>B) -> buildrules((A=>B)and(B=>A),N,Concept,Name,Corps)

57



; E= A and B -> create_name_rule(Name, Namel),
buildrules(A,N,Concept,Namel,Corps),
create_name_rule(Namel, Name2),
buildrules(B,N,Concept,Name2,Corps)

; E = for_all(X,B), var(X),

-> buildrules(B,N,Concept,Nom,Corpsl)

; addendseq(CorpsO, not hyp(N,E), Corpsil) ,
addendseq(Corpsl, addhyp(N,E), Corps2),
addrule(N, Concept, Name, Corps2),

).

The super-action addcond adds the new condition(s) A to the sequence C of
the present conditions and returns the new sequence CA.

addcond(N,C,A,CA) :-

( A = A1 and A2 -> addcond(N,C,A1,C1), addcond(N,C1,A2,CA)
; addendseq(C,hyp(N,A),CA)
)

addendseq(C,C1,CA) adds C1 to the end of the sequence C and returns CA.

The super-action addrule asserts the rule as a new clause, except if Arg
is a number. In this case, the rule is only added to the list of active rules
(addlocalrule(Arg,R,Name)).

addrule(N, Arg, Name, Corps) :-
( number(Arg) ->
addlocalrule(Arg, (rule(N,Name) : -Corps) , Name)
; assert((rule(N,Name) :- Corps))
).

For the definition of union, the first call to buildrules is

buildrules (union(A,B):C => for_all(X, member(X,C) <=>
member (X,A) or member(X,B))),
_, union, union, [])

Then the successive calls are the following

buildrules(for_all(X, member(X,C) <=> member(X,A) or member(X,B)),
_,union, union,
hyp(N, union(A,B):C)).

buildrules (member (X,C) <=> member(X,A) or member(X,B),

_, union, union,
hyp(N, union(A,B):C)).
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buildrules (member(X,C) => member (X,A) or member(X,B))
and (member (X,A) or member (X, B) => member(X,C)),
_, union, union,
hyp(N, union(A,B):C)).

buildrules (member(X,C) => member(X,A) or member(X,B),
_, union,union,
hyp(N, union(A,B):C)).

buildrules(member (X,A)or member(X,B),
_, union, union,
hyp(N, union(A,B):C), hyp(N,member(X,C))).
and the clause
rule(N, union) :- hyp(N,union(A,B):C), hyp(N,member(X,C)),
not hyp(N,member(X,A) or member(X,B)),

addhyp (N ,member (X,A) or member (X,B)).
is added

buildrules(member (X,A) or member(X,B) => member(X, C),
_, union, unionl,

hyp(N, union(A,B):C)).

buildrules(member (X,A) => member (X,C))
and (member (X,B) => member(X,C)),
_, union, unioni,

hyp(N, union(A,B):C)).

buildrules (member (X,A) => member(X,C), _, union, unionl,
hyp(N, union(A,B):C)).

buildrules (member (X,C), _, union, unioni,
hyp(N, union(A,B):C), hyp(N, member(X,A))).
and the clause
rule(N, unionl) :- hyp(N,union(A,B):C), hyp(N,member(X,A)),
not hyp(N,member (X,C)),
addhyp (N ,member (X,C)) .

is added
buildrules (member (X,B) => member(X,C), _, union, union2,
hyp(N, union(A,B):C)).
buildrules (member (X,C), _, union, union2,

hyp(N, union(A,B):C), hyp(N, member (X,B))
and the clause
rule(N, union2) :- hyp(N,union(A,B):C),hyp(N,member(X,B)),
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not hyp(N,member (X,C)),
addhyp (N ,member (X,C)) .
is added

3 Processing of existential properties

A crucial MUSCADET strategy is the processing of existential properties which
I will illustrate with two theorems. These theorems were proposed at the last
CADE competition (CASC-JC) and were proved only by MUSCADET. These
results show the complementarity of MUSCADET with regard to resolution-based
provers.

3.1 A detailed proof of a first theorem

This is problem SET722+4 in the TPTP library.
Theorem. Consider two mappings f from A into B and g from B into C. If
gof is surjective then g is surjective.

a) Here are the definitions used in this theorem

maps(F, A, B) <=> for_all(X, member(X,A) =>
exists(Y, member(Y,B) and apply(F,X,Y)))
and for_all(X, for_all(Y1, for_all(Y2,
member (X,A) and member(Y1,B) and member (Y2,B)
=> (apply(F,X,Y1)and apply(F,X,¥Y2) => (Y1=Y2))))))

surjective(F, A, B) <=> for_all(Y,
member (Y,B)=>exists (X, member (X,A)and apply(F,X,Y))))

for_all(G, for_all(F, for_all(A, for_all(B, for_all(C,
for_all(X, for_all(Z, member(X,A) and member(Z,C) =>
(apply(compose_function(G,F,A,B,C),X,Z) <=>
exists (Y, member(Y,B) and
apply(F,X,Y) and apply(G,Y,Z2))))))))))

b) some of the automatically built rules

rule(N, maps) :- hyp(N, maps(F,A,B)), hyp(N, member(X,A)),
not hyp(N, exists(Y, member(Y,B)and apply(F,X,Y))),
addhyp (N, exists(Y, member(Y,B)and apply(F,X,Y))).
rule(N, mapsl) :- hyp(N, maps(F,A,B)), hyp(N, member(X,A)),
hyp (N, member(Y1,B)), hyp(N, member(Y2,B)),
hyp (N, apply(F,X,Y1)), hyp(N, apply(F,X,Y2)), not Y1=Y2,
addhyp (N,Y1=Y2) .
rule(N, surjective) :- hyp(N, surjective(F,A,B)),
hyp (N, member(Y,B)),
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not hyp(N, exists(X, member(X,A)and apply(F,X,Y))),
addhyp (N, exists(X, member (X,A)and apply(F,X,Y))).
rule(N, compose_function_) :- hyp(N, member(X,A)),
hyp (N, member(Y,C)),
hyp (N, compose_function(G,F,A,B,C):H),
hyp(N, apply(H,X,Y)),
not hyp(N, exists(J, exists(Z, member(Z,B) and
apply(F,X,Z)and apply(G,Z,Y))),
addhyp (N, exists(Z, member(Z,B) and
apply (F,X,Z)and apply(G,Z,Y))).
rule(N, compose_function_1) :- hyp(N, member(X,A)),
hyp (N, member(Y,B)), hyp(N, member(Z,C)),
hyp (N, apply(F,X,Y)), hyp(N, apply(G,Y,Z)),
hyp (N, compose_function(G,F,A,B,C):H),
not hyp(N, apply(H,X,Z2)),
addhyp (N, apply(H,X,Z)).

c) rules given to the system to treat existential hypotheses and conclusions,

rule(N, exists) :- hyp(N, exists(X,P)), not hyp_traite(N, exists(X,P)),
treat (N, exists(X,P)),
addhyp_treated(N, exists(X,P)).
if P is an existential hypothesis which has not yet been treated,
then treat it.
As for rule or, this rule has a low priority. Existential hypotheses are first added
such as they are. This rule is applied when no other rule with higher priority
can be applied. Otherwise, it could create infinitely many useless elements.

rule(N, concl_exists2) :- concl(N, exists(X, B and C)),var(X),
hyp(N,B), hyp(N,C), newconcl(N,true).
This is one of the rules for existential conclusions in the trivial case.

d) here is the MUSCADET proof, where the constants x, x1, x2, x3, x4,
compose_function_x1_x_x2_x3_x4,the names of which are automatically built,
have been manually replaced by £, g, a, b, c, h in order to make this trace easier
to read.

tptp/Problems/SET/SET722+4.p
thII13

theorem to be proved
for_all(F, for_all(G, for_all(A, for_all(B, for_all(C,
maps (F,A,B) and maps(G,B,C) and

surjective (compose_function(G,F,A,B,C),A,C)
=> surjective(G,B,C)))))).
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0 new conclusion
for_all(F, for_all(G, for_all(A, for_all(B, for_all(C,
maps (F,A,B) and maps(G,B,C) and
surjective (compose_function(G,F,A,B,C),A,C)
=> surjective(G,B,C)))))).

0 add link maps
0 add link surjective

0 add object f
0 new conclusion
for_all(G, for_all(A, for_all(B, for_all(C,
maps (f,A,B) and maps(G,B,C) and
surjective(compose_function(G,f,A,B,C),A,C)
=> surjective(G,B,C))))).
———————————————————————————————————————————————————— rule for_alll
0 add object g
0 new conclusion
for_all(A, for_all(B, for_all(C,
maps (f,A,B) and maps(g,B,C) and
surjective(compose_function(g,f,A,B,C),A,C)
=> surjective(g,B,C)))).
———————————————————————————————————————————————————— rule for_allil
0 add object a
0 new conclusion
for_all(B, for_all(C, maps(f,a,B) and maps(g,B,C) and
surjective(compose_function(g,f,a,B,C),a,C)
=> surjective(g,B,C))).
———————————————————————————————————————————————————— rule for_alll
0 add object b
0 new conclusion
for_all(C, maps(f,a,b) and maps(g,b,C) and
surjective(compose_function(g,f,a,b,C),a,C)
=> surjective(g,b,C)).
———————————————————————————————————————————————————— rule for_allil
0 add object ¢
0 new conclusion maps(f,a,b) and maps(g,b,c) and
surjective(compose_function(g,f,a,b,c),a,c)
=> surjective(g,b,c)
———————————————————————————————————————————————————— rule for_allil
0 add object h
0 add hypothesis
compose_function(g,f,a,b,c):h
0 new conclusion maps(f,a,b) and maps(g,b,c) and
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surjective(h,a,c)

=> surjective(g,b,c)
—————————————————————————————————————————————————————— rule elifun
0 add hypothesis maps(f,a,b)
0 add hypothesis maps(g,b,c)
0 add hypothesis surjective(h,a,c)
0 new conclusion surjective(g,b,c)

0 definition of the conclusion
0 new conclusion
for_all(Y, member(Y,c) => exists(X,member(X,b) and apply(g,X,Y)))
———————————————————————————————————————————————————— rule defconcll
0 add object x5
0 new conclusion

(member (x5,c) => exists(X, member(X,b) and apply(g,X,x5)))
———————————————————————————————————————————————————— rule for_alll
0 add hypothesis member (x5,c)
0 new conclusion exists(X, member(X,b)and apply(g,X,x5))

0 add hypothesis
exists(X, member(X,a) and apply(h,X,x5))

0 add object x6

0 add hypothesis member (x6,a)

0 add hypothesis apply(h,x6,x5)

0 add hypothesis-treated

exists(X, member(X,a) and apply(h,A,x5)).
—————————————————————————————————————————————————————— rule exists
0 add hypothesis

exists(Y, member(Y,b) and apply(f,x6,Y)).
———————————————————————————————————————————————————————— rule maps
0 add hypothesis

exists(Z, member(Z,b) and apply(f,x6,Z) and apply(g,Z,x5)).
——————————————————————————————————————————— rule compose_function_
add object x7

add hypothesis member (x7,b)

add hypothesis apply(f,x6,x7)

add hypothesis-treated exists(Y, member(Y,b) and apply(f,x6,Y))
—————————————————————————————————————————————————————— rule exists
0 add hypothesis

exists(Y, member(Y,c)and apply(g,x7,Y))
———————————————————————————————————————————————————————— rule maps
0 add object x8

0 add hypothesis member (x8,b)

0 add hypothesis apply(f,x6,x8)
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0 add hypothesis apply(g,x8,x5)

0 add hypothesis-treated

exists(Z, member(Z,b) and apply(f,x6,Z) and apply(g,Z,x5))
—————————————————————————————————————————————————————— rule exists

——————————————————————————————————————————————— rule concl_exists2
theorem O proved ( thII13 ) in 1.3 seconds

3.2 Another example

This is problem SET737+4 in the TPTP library.

Theorem. Consider three mappings f from A into B, g from B into C and h
from C into A. If hogof and fohog are injective and g, foh is surjective then h
s one-to-one.

There are several mappings and many elements to be created: images, pre-
images and intermediary elements. As this process may be expansive, it is im-
portant not to develop one direction to the detriment of the others. The creation
of elements is delayed to ensure that the elements necessary for the proof will
be created.

Here is an outline of the proof.

MUSCADET applies the same types of rules as in the previous examples, and
it has to prove that h is injective (first sub-theorem) and surjective (second sub-
theorem).

For the first sub-theorem, it creates two elements b1 and b2 in B with the
same image cl by g and it has to prove that b1 = b2.

Then for each new element which is created, MUSCADET adds the existential
hypothesis stating that it has an image, a pre-image in the case of surjective
mapping, and an intermediary element in the case of composed mapping. They
are treated one after the other and every time an existential property is treated
and a new element introduced all the other rules are tried again. So, MUSCADET
creates successively
- the image al of ¢l by h (and it deduces that h,g(bl) : al and h,g(b2) : al)

- the preimage c2 of cl by g,f.h (because g, f,h is surjective)

- the image b3 of al by f (and it deduces that f,h,g(b1) : b3 and fohog(b2) : b3)
Now, because f,hog is injective, it deduces that b1 = b2 and sub-theorem 1 is
proved.

For the second sub-theorem, it creates ¢l in C and it has to prove that

3X (X € B A apply(g, X, cl)). It creates successively
- the image al of ¢l by h
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- the pre-image c2 of cl by g,f,h (because g,f,h is surjective)

- the image b1 of al by f (and it deduces that f,h(cl) : b1)

- the image a2 of ¢2 by h

- the pre-image ¢3 of ¢2 by g,f,h (useless)

- the intermediary element b2 such that f,h(c2) : b2 and g(b2) : cl

The conclusion 3X (X € BAapply(g, X, c1)) is now satisfied, so sub-theorem 2
is proved. As both sub-theorems are proved, the initial theorem is proved.

4 Processing of negation. Positive and negative properties

4.1 Processing of negation

MUSCADET works as far as possible without negations. Not only does it work
with hypotheses and a conclusion instead of negative literals but it also eliminates
the negations every time it is possible.

If the conclusion to be proved is a negation —C, it adds C as a new hy-
pothesis and the new conclusion is false. This means that it will have to find a
contradiction i.e. it will have to deduce the hypothesis false. If the conclusion
is =C'1V C2, it adds C'1 and the new conclusion is C2.

{From definitions in which a negation =P occurs, it builds several rules which
are logically equivalent. Some rules contain the negative literal =P in the same
place as it appeared in the definition, and other rules contain the positive literal
P as a condition or a conclusion, depending on whether =P was on the left or
on the right of an implication.

Here are some elementary rules and the proof of easy theorems in which we
will see how negations are handled and also how and why local rules are built
from implication hypotheses.

rule(N, not) :- concl(N,not A),
addhyp(N,A), newconcl(N,false).
rule(N, hypnot) :- hyp(N,not A), concl(N,false),
retract (hyp(N,not A)), newconcl(N,A).
rule(N, hypnotnot) :- hyp(N,not not A),
addhyp(N, A).
rule(N,stop4):- hyp(N,A) , hyp(N,not A) ,
newconcl (N, true).

theorem to be proved
for_all(A, not not A => A).

0 new conclusion
for_all(A, not not A => A).
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0 add objet x
0 new conclusion not not x => x

0 add hypothesis not not x
0 new conclusion x
——————————————————————————————————————————————————— rule hypnotnot

——————————————————————————————————————————————————————— rule stopl
theorem O proved

theorem to be proved
for_all(A, for_all(B, A and not A => B)).

0 new conclusion
for_all(A, for_all(B, A and not A => B)).

0 add objet x

0 new conclusion

for_all(A, x and not x => A).
———————————————————————————————————————————————————— rule for_alll
0 add objet x1

0 new conclusion x and not x => x1
———————————————————————————————————————————————————— rule for_alll
0 add hypothesis x

0 add hypothesis not x

0 new conclusion x1

theorem O proved

theorem to be proved
for_all(A, for_all(B, (A => B) => (not B => not A))).

0 new conclusion
for_all(A, for_all(B, (A => B) => (not B => not A))).

0 add objet x

0 new conclusion

for_all(A, (x => A) => (not A => not x)).
———————————————————————————————————————————————————— rule for_alll
0 add objet x1

0 new conclusion (x => x1) => (not x1 => not x)
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———————————————————————————————————————————————————— rule for_alll
0 add the local rule
(rule(N, rulhyp):- hyp(N,x), not hyp(N,x1),

addhyp(N,x1)).

0 new conclusion not x1 => not x

—————————————————————————————————————————————————————————— rule =>
0 add hypothesis not x1

0 new conclusion not x
—————————————————————————————————————————————————————————— rule =>
0 add hypothesis x

0 new conclusion false
————————————————————————————————————————————————————————— rule not

remove hypothesis not x1
0 new conclusion x1
—————————————————————————————————————————————————————— rule hypnot

—————————————————————————————————————————————————————— rule rulhyp

——————————————————————————————————————————————————————— rule stopl
theorem O proved

4.2 Positive and negative properties

Negations occur every time a problem contains empty set ¢ or complements or
set differences. Proofs are then often proofs by contradiction

For disjoint sets, as the definition is negative,
VAVB(disjoint(A,B) & —-3X(X € ANX € B)
it creates and uses a property nondisjoint which is a positive property.
VAVB(disjoint(A, B) < —mondisjoint(A, B))
VAV B(nondisjoint(A,B) < 3X(X € ANX € B)

5 Conclusion

MUSCADET works in a manner which is quite different from resolution-based
provers. It uses methods based on natural deduction and knowledge-based sys-
tems. Some of these methods are crucial and explain why MUSCADET is able to
prove some theorems that resolution-based provers are not able to prove. MUSs-
CADET is efficient for mathematical everyday problems which are expressed in
a natural manner, for example in naive set theory (where mappings are primi-
tive concepts, defined by their properties) and for problems which contain many
axioms, definitions or lemmas. It is less efficient for problems which are defined
axiomatically, from a logician’s point of view, for example in axiomatic geometry
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or in axiomatic set theory (where mappings are particular relations which are
subsets of cross-products of sets) and for problems which contain only one large
conjecture and no intermediary definitions. In particular, it is not able to prove
some theorems that all resolution-based provers are able to prove. Why can’t
we make them cooperate 7 We, human beings, do not use the same methods for
all problems that we have to solve. We can choose one method or another to
solve a problem. In some cases, we begin with a method, then try another, and
perhaps even another and sometimes we come back to the first one and succeed
with it. To veritably improve theorem provers, it would be interesting to have
several provers working together, in sequence, as we do when we successively
try several methods or, in parallel, as computers are able to do, or better still
to have a top-level mechanism which analyses the problem and chooses one of
the provers. This cooperation is already present in some systems, for example in
the OMEGA system [3-6, 8] or in OTTER [7] which incorporate human methods,
specific knowledge, or higher order logic for specific fields of mathematics. I be-
lieve that cooperation could also benefit the basic methods in first order logic
and self-contained problems such as those of the TPTP library. It seems to me
that MUSCADET should be able by itself to select the most adapted prover if we
give it some appropriate general knowledge.
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1 Introduction

When implementing theorem provers, programming languages, and meta-logical
frameworks where variable binding is a central and essential concept, many
important design decisions with far reaching consequences arise early in the
process. Among the most pressing are how to implement variables, binding
constructs, and related operations such as substitutions, variable renaming,
and lookup. And naturally, there is a variety of possible answers, ranging
from named to de Bruijn representations with and without explicit substitu-
tions. Fach and every answer comes with different advantages and disadvan-
tages. Some calculi have efficient implementations but are a nightmare from a
programmers point of view. Many require lots of book-keeping. Some calculi
support memoization, others do not. On the other hand, there are some calculi
that offer some luxury of elegance but score relatively low on the performance
scale.

The dilemma therefore is obvious: Implementors have to find a compromise
between efficiency and maintainability. The choice is not easy since internal
representation languages come in so many different flavors.

One popular option is the calculus of explicit substitutions Ao [ACCL90] and
its variations used for example for Twelf [PS99], AProlog [Nad98], Flint [SLM98]
or Omega [BCF197]. Ao has turned out to be an elegant and appropriate
albeit hard to debug core structure for an implementation, and many algorithms
such as weak head normalization, higher-order pattern unification [DHKP96]
useful for higher-order logic programming, and automated theorem proving take
advantage of the concise, efficient, non-redundant way explicit substitutions can
be implemented. In this paper we sketch a refined but equivalent formulation of
the Ao-calculus, which is called .one-calculus. It allows compact representations
of normal substitutions — especially pattern and pruning substitutions [Mil91].
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Concretely, we have noticed that normal forms of explicit substitutions in Ao
are asymmetric in the following sense. On the one hand, there are Ao substitu-
tions such as 16 that map empty contexts into objects valid in any arbitrary —
here for illustration reasons of length 6 — context I' = A, As, A3, A4, A5, Asg.
On the other, there is an identity substitution in its most explicit and frequently
used form 1.2,3.4.5.6. 1.

T+ 16: .
TH1.2.3.4.56 15T

When implemented, the first substitution requires one cell and is parametrized
by the length of the context I', whereas the second requires as many cells as the
context contains declarations. If we choose, however, to introduce some syntax
for the frequently used operation 1.00 1 and denote it with || o (the so called
.one operation), the encoding of the identity substitution above can be written
equally concise as ||® id. Any sensible implementation of this substitution also
requires only one cell. Let us write {} o for oo 1:

THa%id: -
TH{%id: T

This example already illustrates the main idea behind the .one-calculus. Its
main benefits include a way to represent explicit substitutions compactly, and
methods to lookup, compose, and normalize them efficiently. In our experi-
ence, the .one-calculus leads to elegant implementations, whose functions and
procedures may be verified against their invariants (at least informally).

Another aspect of the .one-calculus is its performance benefits due to the
compact representations of substitutions. We have conducted experiments and
compared the results to the one used in the current implementation of the meta-
logical framework Twelf [PS99]. First preliminary empirical results indicate that
.one-substitutions increase the overall system performance.

The test bed for our performance measurements consists of a core reimple-
mentation of Twelf based on the .one-calculus and a randomized substitution
generation tool. It is, however, not yet as general as one would hope for; for
example, the test bed lacks essential functionality such as unification indispens-
able for logical programming and automated theorem proving. Therefore, in
its current state, our test bed is insufficient to experiment with real world data
samples such as deductions in logic, typing derivations, compilation runs, and
traces of operational semantics on abstract machines.

In this paper we present the .one-calculus of explicit substitutions. To this
end, we briefly review explicit substitutions in Section 2, revisit the Ao-calculus
in Section 3, before we present the .one-calculus in Section 4. In Section 5 we
discuss the implementation and some performance aspects. Finally, we assess
results and mention future work in Section 6.
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2 Explicit Substitutions

Substitutions are prevalent in many implementations ranging from proof as-
sistants and theorem provers to programming languages and compilers. By
definition, we understand a substitution as a set of bindings of variables names
to terms. Traditionally, the application of a substitution to a term refers to a
process that replaces every free variable in a term by its instantiation — and
this in an eagerly fashion. But this design has drawbacks. The most serious
is exhibited by the following unification problem. The unification of equation
(cU)[o] = (¢ U")[o"], for example, requires that both sides are reduced to nor-
mal forms by a relatively expensive operation. The two terms are not unifiable
unless ¢ = ¢’. How can this be made more efficient? If only the application
of substitutions o and ¢’ could be delayed, the constant clash could have been
detected almost immediately, and valuable time spent on computing U[o] and
U'[0"] could have been saved.

One way of delaying substitution application is to make substitutions ex-
plicit and admit closures of terms under substitutions as first-class objects.
This idea underlies a large family of explicit substitution calculi, including the
Ao-calculus [ACCL90]. This calculus is based on a de Bruijn notation of vari-
able names, and it is used in many implementations, such as Twelf [PS99],
AProlog [Nad98], and Omega [BCF97]. Two important classes of substitutions
that occur over and over are pattern substitutions and pruning substitutions:

Pattern substitutions arise in the context of higher-order unification. In
general, this problem is undecidable, but when restricted to the fragment of
higher-order patterns [Mil91] it becomes decidable. In this fragment, all logical
variables (or meta variables) can only occur in form of patterns: X z1 ... x,.
Here, X is a logic variable and the x; are pairwise disjoint parameters. Following
Dowek et al. [DHKP96] higher-order pattern unification problems are turned
into first-order unification problems by lowering logic variables to base type,
and capturing the list of arguments in form of an explicit substitution.

Pruning substitutions occur frequently in the setting of higher-order pat-
terns, logic programming, and automated theorem proving. They often arise
during higher-order pattern unification and their job is it to map contexts into
larger contexts. Every pruning substitution is also a pattern substitution and
can be built in the .one-calculus solely from 1}, |}, and id. But first we turn to
the Ao-calculus.

3 The \o-Calculus

The version of the Ao-calculus which we will use in this paper is defined for
general PTS [Bar92]. To take full advantage of explicit substitutions for the
purpose of unification and weak head reduction, we make use of the spine nota-
tion of terms [CP97]. Instead of writing U; Uz Us for the application of U; to
U, and Us, we write Uy - (Uz; Us;nil). U; is called head, and (Usz; Us;nil) form a
spine. Heads and spines together form a redex, that may S-reduce if the head
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is of functional type.

Expressions: U == Xpp|1|c|U-S|AUL.Uz |IU,.Us | Ulo] | s
Spines: S u= nil|U;S | S[o]

Substitutions: o == id|U.c| 1|01 009

Contexts: r == . |LLU

Signatures: Y u= | %c:U

Xr,u is a logic variable of type U in context I'. The same logic variable
may occur several times in the same term, but it will always be defined in the
same context and have the same type. c is a constant defined in ¥. We write
AU;. Us for M-expressions, IIU;. Uz for function types, and Ulo] for the closure
of an expression under a substitution o. s denotes a sort.

1 is the de Bruijn index that refers to the innermost variable binder. Note,
that 1 is the only construct that acts as variable in the Ao-calculus. Variables
that refer to other variable binders are closures of 1 with an appropriate substi-
tution. 1[14], for example, refers to the fifth top variable binder, and represents
therefore de Bruijn index 5.

Spines are lists of expressions, with the addition of the spine closure opera-
tion S[o] which closes a spine under a substitution. The definitions of contexts
and signatures are standard. The three typing judgments [CP97] are defined
below and appropriate sets of inference rules are given in Figure 1.

Valid expressions: '-uv,:0,
Valid spines: 'ES:U; >U,
Valid substitutions: I'Fo:T

The first judgment is standard, and so are most of its rules. We only com-
ment on the one-rule where U must be closed under the 1 substitution since
otherwise, it would violate the representation invariant that says that types
must be valid in I' as well. For the validity judgment of spines, suppose that
S is the argument list to a function of type U;. Under these conditions the
second judgment holds only if the resulting term has type Us. nil represents the
empty argument list and has therefore type U > U (by nil). In the non-empty
case, if S has already type Us > Us, U; S may serve as an argument list to a
function of type I1U;. Us given that U has type U;. A substitution is valid if all
its bindings relate variables from T' to terms that are valid in I'. The validity
rules of the two basic substitutions are id and shift. The comp rule is standard.
The closure V[o] in the left premiss of the dot-rule is necessary to preserve the
invariant from above.

To the author’s knowledge, up to this point of time, it is still unclear how
much performance benefit can one expect from using explicit substitutions in
an implementation over traditional techniques. But independent of performance
considerations, explicit substitutions form a valuable organizing force, which has
lead to an elegant implementation of the core of the Twelf system. Examples
include modules for weak-head normalization, higher-order pattern unification,
logic variable abstraction, logic programming, and proof search. We turn now
to the definition of the .one-calculus.
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c:Uex

- evar one const
'kXry:U LLUF1:U[1 'ke:U
Fl—Ul:s F,Uli_U:Uz FI—U1:31 F,U1|_U2:82 i
lam p!
Fl‘)\UlUHUle Fl_HUl.U2:52
TFU:U; TFS:U >Us Tkto:T! T/'FU:Us
redex eclo
Fr+U-S:0, Tk Uilo] : Uslo]
T'rU:U; TES:U; >Us;
——— il app
I'bnil: U >U T'FU;S: 1IU,.U; > Us

I'ko: T FI}_SZU1>U2
Fl‘S[O’]:Ul[O'] >U2[U]
I'FU:Vig] TD'ko:D

sclo

—id dot
Fkid: T I'FUo:T,V
I'"Foy: T I'toy:T
— shift comp
LUFT:T I"kFoioop:T

Figure 1: Typing rules for Ao.

4 The .one-Calculus

One basic design decision that implementors are facing when designing core data
structures based on explicit substitutions calculi is the following: which of the
substitution operations shall one assume to be primitive (that is uninterpreted,
simply a constructor) and which should one interpret as a function? In Ao, for
example, composition of substitution could become a constructor or is it better
to compose substitutions right away?

The .one-calculus carries this idea one step further. Its design is based on
the observation that there are two basic operations that occur over and over in
an implementation, especially in the context of higher-order pattern unification.

.one-operation: o = 1l.oo7
shift-operation: ffo = oo

The first operation pushes substitutions under A-binders:
()\Ul UQ)[O'] = AUl[O'] Uz[]. oo T] = )\Ul[O'] UZ[U/ 0']

The second arises frequently during unification.
Although both operations are defined in terms of the standard “.” and
composition operations we have collected enough evidence to justify turning
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.one and shift into primitive substitutions which is the main motivation of the
.one-calculus presented here in this paper. Repeated applications of these new
primitive operations are subsequently compounded into blocks.

Expressions: U = Xpry|1l|c|U-S|AU;.Us | IIU;.Uz | Ulr]
Spines: S u= nil|U;S | S[7]

Substitutions: 7 = id|Us " 7|t 7| T o™

Contexts: r == |ILU

Signatures: ¥ u= |%c:U

The standard shift substitution is definable in the .one calculus as 1} id.
Every expression in the .one-calculus can be mapped back into the Ao-calculus
using the embedding function "-7 that is defined as follows. It generalizes (poly-
morphically) to all syntactic categories above in a straightforward way.

Mfid7 = id
,_U.Uj — I_U—|‘|_0-1
o™ ifn=20
r|mn A —
Yrot = {runla—'OT ifn>0
Fo™ ifn=20
AN A —
fi*ot = { Lm0 1) ifn>0

The judgments are the same as in the Ao case except that the formulation of
some rules has slightly changed and that we write 7 instead of 0. The inference
rules for expressions and spines are almost identical to the ones in Figure 1
except that the shift substitution in the one-rule must be replaced by “f} id”.
The validity rules for substitutions are given in Figure 2. down_, down,, up_,
up, establish the meaning of repeated successive application of the .one and the
shift operation, respectively. In fact every derivation in the .one-calculus can
be embedded into the Ao-calculus.

Theorem 4.1 1. IfTHUy :Us then " TETU T :TUR™.
2. IfT-S:UL >Us then TFTST:TU ' >TU,™.
3. IfUV'F7:T then TV "77: 7T,

;From an implementors perspective, it is an important design decision to
make which of the operations to keep as constructors, and which to implement
as functions. For example, computing the closure U[7] eagerly instead of form-
ing it explicitly leads to the traditional implementation of substitution. Similar
design questions arise when implementing .one, shift, and composition opera-
tions. They can be either be kept primitive or interpreted functionally. For the
implementation discussed in Section 5, we have chosen to keep shift and .one
primitive, interpret substitution composition functionally, and join two consec-
utive blocks of .one or shift operations into one whenever possible. Furthermore
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M+U:Vir] I'kF7:T
—id dot
I'tid: T r'-Ur:T,V
I'Fr:T I'kFr:T
———— down, ———up,
'-y°r:T 4% 7:T
F’l—l}"flT:F F'l—ﬁ"ilT:F
down - upg
F',U[T]I—U"T:F,U r'vr-q"r:T
I'"bEm: T I'tm:T
comp
I"From:T

Figure 2: Typing rules for substitutions.

we push the U.T operation as far into the substitution as possible. The resulting
substitutions are called compact.

" 74 | Uty | 1d
Y7, | Urg | id

Tu
Td

Compact substitutions are unique for the fragment where the U’s are de Bruijn
numbers of the form 1[{}" id]. We call these substitutions pure. For arbitrary
terms U however, the situation is slightly different, because it takes some com-
putational effort to decide on how far to move U into the substitution. For
example U.(}" o) =" (U'.0) only if U = U'[{}" id]. Therefore, compact sub-
stitutions that are not pure are in general not unique.

The following table defines the composition of two .one-substitutions. The
compactification of the intermediate results is implicitly assumed.

| T10T2 || id | U'.m | 1™ | 1™ 1 |

id T2
Ui Ulra].(11 o 72)

n 1 n |/ 1 pn—=1 _t ! i (T{O e Té) ifn<m m (! ’
1 yrr | UL Ti 0 T3) g T{oré) ifn>m ™ (11 072)

! n m—-n ! .

no_1 n o/ n—1 _1 ’ 101 (‘U 7'2) ifn<m m ol ’

ﬂ T1 ﬂ T1 TT T1 0 Ta (ﬂnfm T{) ° (ﬂm Té) lf n>m ﬂ (Tl o T2)

With the internal data structures and basic functionality in place, it is now
possible to define a reduction semantics on .one-expressions and spines. The
following set of equations defines how explicit substitutions can be pushed struc-
turally inside a term.
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1ﬂ = U (where 7(1) = U)
(U-9)r] = Ulr]- Sl
()\Ule)[T] = )\Ul[T]Uz[TT T]
(HUle)[T] = HUl[T]Ug[ﬂ 7']
Un]lr] = Ulnon]

nil[7] = nil
(U;8)[r] = (U[r]; S[])
(S[n))[r] = Slnomn]

Most of these equations are standard. We only comment on a few. 7(1) = U
stands for the operation of looking up de Bruijn index 1 in 7. It is formally
defined in the Section 5. The fourth and fifth equation demonstrate the elegance
of the .one operation. The recommended subsequent compactification step on
1+ 7 has been omitted.

5 Implementation

How good is the performance of the .dot-calculus really? Is it faster than an
implementation of Ao-calculus? In order to shed some light on this question, we
have began with the implementation of the .dot-calculus as a core data structure
for the Twelf system. Although the implementation project is still underway, it
has matured to a state that allowed us to use it as a testbed for the performance
comparision of substitution composition.

The testbed consists of a direct implementation of the .one-calculus, which
is as direct as the the current implementation of the Ao-calculus in Twelf. The
only optimization that is common to both platforms is that they use integer
numbers for de Bruijn indices. The current version of Twelf uses integer £ + 1
to refer to 1[1*], and similarly, in the new version k + 1 refers to 1[{}* id]. In
this setting the lookup function 7(k) returns a closure U[7] and is defined as
follows.

id(k) = k
B U[ld if k=1
Ur)k) = { 7( otherwise
k+ K if 7(k) = k'
Mk = U™ id] if 7(k) = UJid]
ﬂ"*m id] if 7(k) = U[H™ id]
n _ f1<k<n
W k) = (ﬂ” Dk —n) ifn<k

The experiments conducted, however, are not yet as general as one would
hope for; for example, this test bed lacks essential functionality such as unifi-
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Figure 3: Pure substitutions.

cation indispensable for logical programming and automated theorem proving.
Therefore, in its current state, the test bed is insufficient to experiment with
concrete data samples such as deductions in logic, typing derivations, compila-
tion runs, and traces of operational semantics on abstract machines.

Using this new implementation, we have randomly (using largely uniform
distributions) generated substitutions samples, and compared the performance
of the new test bed implementation (marked as “new” in the graphs) with the
Twelf implementation (marked as “old” in the graphs). Although substitutions
had to be compactified over and over again, the new implementation compares
well to the old Twelf implementation for pure and pattern substitutions. On
pruning substitutions, the new implementation outperforms the old by far. Each
datapoint represents an average of 100 runs. The maximal size of a substitution
is 10000 elements.

Pure substitutions. The performance graph is depicted in Figure 3. The z-
axis shows the maximal size of elements in a substitution, the y-axis the time it
took to compose to random substitutions. In this experiment the .one-calculus
performs at least as good as the current Twelf implementation.

Pattern substitutions. The performance graph is depicted in Figure 4. Twelf
outperforms the .one-calculus by a slight margin, which may be justified by the
overhead cost of compactification.

Pruning substitutions. The performance graph is depicted in Figure 5. This
graph clearly shows how the new implementation outperforms the old.

In summary, judging from these experiments, the .one-calculus is perfor-
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mancewise and elegancewise a valuable alternative to the Ao-calculus. We ex-
pect the performance results to be even more convincing once we experiment
with real data and take measures of the different components of Twelf separately,
including unification, weak head reduction, abstraction, logic programming, and
theorem proving.

6 Conclusion

Good implementations of logic programming languages, meta-logical frame-
works and automated theorem provers are typically correlated with efficient,
elegant, and concise representation languages for core datastructures. For ex-
ample, explicit substitutions and spines complement each other nicely in the
implementation of Twelf [PS99]. In this paper we have defined the .one-calculus
that leads to space efficient implementations of explicit substitutions and pro-
vides time efficient implementations of substitution composition and lookup.
An experimental study following in the near future will elaborate on which op-
erations among 1" o, || o, or o1 0 03 are best implemented as functions or kept
as primitives.
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Phase Model Checking for some Linear Logic
Calculi

Sylvain Soliman
Sylvain.Soliman@inria.fr

Abstract

Building upon previous work in the logical semantics of linear concur-
rent constraint programming languages (LCC), an example of linear logic
based calculus, we design an original phase model checking method for
proving safety properties of programs. We describe our implementation
of the phase model checker using constraint programming techniques and
provide first experimental results.

1 Introduction

The class of Concurrent Constraint programming languages (CC) was intro-
duced a decade ago by Vijay Saraswat as a unifying framework for constraint
logic programming and concurrent logic programming [11]. The CC paradigm
constitutes a representative abstraction of constraint programming languages
that are used nowadays in a wide variety of application domains, most notably
for solving combinatorial search problems.

One can give a simple translation of CC programs in Jean-Yves Girard’s
Linear Logic [6] that is sound and complete for observing the entailment-closed
sets of successes and accessible stores [5, 4, 12]. This, among other reasons,
led to a generalization of CC languages, called Linear Concurrent Constraint
languages (LCC), that is used throughout the paper for the presentation of
our results. The class LCC is obtained from CC simply by allowing constraint
systems based on linear logic instead of classical logic. This is a generalization
which greatly extends the expressive power of CC, as non monotonic evolutions
of the store are possible through the consumption of constraints by ask agents
[3, 12] but it still enjoys a simple linear logic semantics with the same soundness
and completeness properties. These results have been used in [4, 5] to prove
safety properties of LCC programs simply by exhibiting special phase models
of programs.

This paper presents, after some preliminary definitions, an application of
these results to the proof of safety properties of LCC programs, through the
implementation of a model checker based on the phase semantics of linear logic,
as first proposed in [4]. We provide first experimental results on the efficiency
of the phase model checker for proving the safety of some simple LCC programs
for specifying protocols. Finally we conclude on the perspectives of this work
and the generalizations of this procedure to other calculi.
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2 Preliminaries

Let us briefly recall the definitions of the LCC language, of the phase semantics
of linear logic, and the way they can be used for proving safety properties.

2.1 LCC
2.1.1 Syntax and operational semantics

In this paper, a set of variables is denoted by X, Y,..., the set of free variables
occurring in a formula A is denoted by fv(A), a sequence of variables is denoted
by #, A[t/&] denotes the formula A in which the free occurrences of variables
have been replaced by terms ¢ (with the usual renaming of bound variables for
avoiding variable clashes).

For a set S, S* denotes the set of finite sequences of elements in S. For a
transition relation —, —* denotes the transitive and reflexive closure of —.

The essential difference between LCC and CC is that constraints are formulae
of linear logic and that communication (the ask rule) consumes information.

Definition 2.1 (Linear constraint system) A linear constraint system is a
pair (C,¢), where:

e C is a set of formulae (the linear constraints) built from a set V' of vari-
ables, a set X of function and relation symbols, with logical operators:
the multiplicative conjunction ®, its neutral element 1, and the existential
quantifier 3;

o |k is a subset of C xC which defines the non-logical axioms of the constraint
system.

o ¢ is the least subset of C* x C containing IF¢ and closed by the following
rules of intuitionistic linear logic:

I',eckd Atbec I'ke
che T.AFd R o e
T'kFep Abcey T,ei1,e0 k¢ T'ke T'eHd

z & fo(T,d)

IAFc ®co INer®ce ke I'F3zec Idzckd

The syntax of LCC agents is given in table 1, where || stands for parallel
composition, + for non-deterministic choice, 3 for variable hiding and — for
blocking ask. The atomic agents p(Z) ... are called process calls or procedure
calls, we assume that the arguments in the sequence & are all distinct variables.
The ask agent in LCC is written with a universal quantifier in order to make
explicit the variables which are bound in the guard.

Recursion is obtained by declarations. We make the usual hypothesis that
in a declaration p(Z) = A, all the free variables occurring in A occur in Z.
The set of declarations of an LCC program, denoted by D, is the closure by
variable renaming of a set of declarations given for distinct procedure names p.
A program D.A is a declaration D together with an initial agent A.

The operational semantics is defined on configurations where the store is
distinguished from agents. A configuration is a triple (X; ¢; A), where c is a con-
straint called the store, A is an agent or () if empty, and X is a set of variables,

82



Agents A u=p(Z) | tell(c) | (A || A) | A+ A | TzA | VE(c — A)
Declarations D:=¢|p@)=A|D,D
Program P:=D.A

z & fu(4)

a-Conversion

JyA = 3zA[z/y]

Parallel comp. A|B=B| A
All(BlIC)= (Al B) | C

(X;gT1) = (X 45T) — (Yd5A") = (YV;4,A)

Equival
drvatence (X56T) — (Y;d;4)
Tell (X;¢tell(d),T) — (X;c®4d;T)
Ask chedi/fl®e
(X;¢Vj(d = A),T) — (X;e; Alt/3],T)
Hiding y & XU foe,I)

(X;63yA,T) — (X U{y};6A,T)
(p(y) =A)eD
(X56p(9),I) — (X;¢4,T1)

Procedure calls

Blind choice (X;¢;A+ B, T) — (X;¢ A1)
(X;¢A+ B,T) — (X;¢B,I)

Table 1: LCC syntax and operational semantics.

called the hidden variables of ¢ and A. The operational semantics is defined
in the style of the CHAM [2] by a transition system which does not take into
account specific evaluation strategies. The structural congruence = is the least
congruence satisfying the rules of table 1. For convenience here, and unlike
in [5], the logical equivalence of constraints is not built-in in the congruence.
We write I', A, ... for multisets of agents in configurations. Congruence is ex-
tended to multisets of agents in the obvious way: I' =TV iff I' = {A;4,..., 4.},
I'" = {A4},..., A} and Vi = 1,...,n, A; = A]. Two configurations are said
congruent, (X;¢;T) = (X';¢;T7), when the sets X and X' are equal, the con-
straints ¢ and ¢’ are C-equivalent, and the multisets of agents I' and T" are
congruent. The transition relation — is the least transitive relation on config-
urations satisfying the rules of table 1.

2.1.2 LCC logical semantics

LCC programs have a simple semantics in linear logic. In this section we give
translations of LCC agents by logical formulae which are sound and complete
for the observations of success stores, accessible stores and terminal stores.
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Let us fix a constraint system (C, IF¢) and a set of declarations D.

Definition 2.2 LCC agents are translated into intuitionistic linear logic for-
mulas in the following way:

tell(c)f = ¢ (A+ B)f = At & Bt
p(@)" = p(2) (3zA)T = 3z Al
Vz(c - A)f =Vz(c — A') (A B)t = At @ Bf

If T is the multiset of agents (A; ... Ay), one defines Tt = Al @ ... @ AL, If
I'=0 then Tt =1.

The translation (X;c;T)t of a configuration (X;c;T) is the formula
IxXTt.

ILL(C, D) denotes the deduction system obtained by adding to ILL:

e the non-logical axiom ¢ I~ d for every c ¢ d in F¢,

e the non-logical axiom p(&) - A" for every declaration p(¥) = A in D.

Theorem 2.3 (Soundness) Let (X;c;T') and (Y;d; A) be LCC configurations.
If (X;6T) = (Y;d;A) then (X;¢T) Hkrppc,p)(YVsd; A)F.
If (X;6T) —* (Y;d; A) then (X;6,T)' Frppe,p) (Vid; A)F.

The reader can refer to [5, 13] for the results concerning completeness with
respect to different observables (stores, successes, suspensions, etc...) and for
the proofs of all the theorems.

2.2 Phase semantics based proofs
2.2.1 Phase semantics of intuitionistic linear logic

Phase semantics is the natural provability semantics of linear logic [6]. We
only need here a fragment of intuitionistic linear logic (®, & and —o, which
correspond respectively to the parallel, choice and blocking ask operators, as
shown in section 2.1). Nevertheless it is simpler to recall Okada’s definition of
the phase semantics for full intuitionistic LL [9] and to extend it to constants
(1,0, T).

Definition 2.4 A phase space P = (P,-,1,F) is a commutative monoid (P,-,1)
together with a set F of subsets of P, whose elements are called facts, satisfying
the following closure properties:

— F is closed under arbitrary intersection,

—for all A C P, for all F € F, the set {x € P:Va € A,a-z € F} is a fact of
F, noted A — F.

As we shall see, facts correspond to ILL formulas and thus to LCC agents
(cf. section 2.1).

Note that facts are closed under linear implication —o. Here are a few no-
ticeable facts: the greatest fact T = P, the smallest fact 0, and 1= \{F € F:
1e F}.
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A parametric fact A is a total function from V to F assigning to each variable
x a fact A(z). Any fact can be seen as a constant parametric fact, and any
operation defined on facts can be extended to parametric facts: (A x B)(z) =
A(z) = B(z).

Let A, B be (parametric) facts, define the following facts:

A& B = ANB,

A®B = (({FeF:A-BCF},

AeB = ([{FeF:AUBCF},

JzA = ([{FerF: (| Aw@)cF},
zeV

VeA = ([{FeF:([)]Aw)cCF}
zeV

Definition 2.5 An enriched phase space is a phase space (P,-,1,F) together
with a subset O of F, whose elements are called open facts, such that:

- O is closed under arbitrary @ (in particular there is a greatest open fact),
— 1 is the greatest open fact,

— O is closed under finite ®,

- ® is idempotent on O (if A€ O then A® A= A).

1A is defined as the greatest open fact contained in A.

The set of facts has been provided with operators corresponding to ILL
connectives (and therefore to LCC operators), we now translate formulas into
facts.

Definition 2.6 Given an enriched phase space, a valuation is a mapping n
from atomic formulas to facts such that n(T) =T, n(1) = 1 and n(0) = 0.

The interpretation n(A4) (resp. n(I')) of a formula A (resp. of a context I')
is defined inductively in the obvious way:

n(A®B) = n(4)®n(B),
n(A —B) = n(4) —n(B),
n(t4) = In(4),
n(A& B) = n(4)&n(B),
n(Ae B) = n(A)®n(B),
n((T,4)) = () @n(d),
n(vzA) = Van(A),
n(3zA) = 3Fzn(A),
n(I) = 1if[ is empty.

Sequents are interpreted as follows: n(I' - A) = n(I") — n(A). This brings one
to defining a notion of validity:

Definition 2.7 (Validity) Define:
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nECFA)ifflenlF A),ie n) Cn(l),
E (' A) iff for every valuation n: P, n = (T + A),
(T'+ A) iff for every phase space P: P |= (I' + A).

2

P
P
=
This semantics of ILL formulas enjoys the following main properties:

Theorem 2.8 (Soundness [6, 9]) If there is a sequent calculus proof of '+ A
then = (' F A).

Theorem 2.9 (Completeness [6, 9]) If = (I' b A) then there is a sequent
calculus proof of T F A.

2.2.2 Proving safety properties of LCC programs with the phase
semantics

Using the phase semantics presented above we can prove safety properties of
LCC programs. The theorem 2.8 of soundness of the phase semantics w.r.t.
ILL can easily be extended to ILL¢ p by imposing to any valuation 7 to satisfy
the inclusions coming from the non-logical axioms (the axiom ¢ F d imposes
n(c) € n(d))-

By contrapositive we get:

iP,n, s.t. P,n & (I'- A) implies ' /rrr. , 4,
which is equivalent to:

aP,n, s.t. n(I') ¢ n(A) implies T' /7110, A.

As the contrapositive of the theorem 2.3 of soundness from LCC to ILL¢ p
is:
(X;¢)f Vicre » (Y;d; A" implies (X;¢;T) +— (Y;d; A)

We have:

Proposition 2.10 To prove a safety property of the kind: (X;¢;T) + (Y;d; A),
it is enough to show that:
3 a phase space P, a valuation 1, and an element a € n((X;c;T)1) such that

a gn((Y;d;A)).

This proposition allows to reduce the problem of proving safety properties
of LCC programs, i.e. proving the non-existence of some derivation, to an
existence problem: finding a phase structure, an interpretation and a counter-
example for the above inclusion, or even, only proving their existence. Note
that only soundness theorems are used, the second part of the correspondence
(completeness) gives a certain certitude that when looking for a semantical proof
of a true safety property, it exists!
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3 Singleton Based Phase Model Checking

In [4] we used the phase semantics of Linear Logic to devise the new method
that we just summarized and it revealed useful, especially for proving safety
properties of LCC programs. We now describe how it can be implemented with
some restrictions using efficient constraint programming techniques.

Recall that, to prove a property such as A never reaches a store containing c,
the soundness of the linear logic semantics allowed us to look for a countermodel
of AF ¢® T. Any calculus where properties can be expressed in that way can
then rely on the soundness of the phase semantics to ensure that it is enough to
exhibit a phase space and an interpretation of formulae (agents and constraints)
into facts, compatible with the non-logical axioms, and such that [A] ¢ [c] (see
section 2.2).

Our approach to finding the phase space and the valuation is now based on
a few remarks:

o We want to find everything statically, so we will not use any of the methods
like those of Okada and Terui [10], which generate the phase space from
a proof search, thus an execution.

e We want to enumerate some spaces, but we cannot (and do not want to)
try them all (recall that one of the spaces is that of the proofs, so using it
is equivalent to looking at the proof directly). We thus restrict our search
to some special kinds of phase spaces, where we will be able to reason
easily (to prove the non-inclusion). This process can be seen as some kind
of abstract interpretation of our proof search.

e In [14] Yilma tried this kind of approach, restricting himself to small and
cyclic structures. But then he had to enumerate all the possible valuations
to find the counter-example for the inclusion.

e Almost all the examples that we treated (in [4] and later) have solutions
in very simple phase structures, where all sets are facts and the valuation
associates only singletons to formulae.

These remarks, and especially the last one, which transforms inclusion con-
ditions to equalities, led us to use the constraint logic programming tools as a
basis for our phase model checker.

3.1 Implementation

Our implementation of the phase model checker uses N as the basic monoid for
all our phase structures, not only because it is what was used in the examples
of [4], but also because it builds, in some sense, the free monoid based on the
conditions of the non-logical axioms. The prime numbers will thus be a good
basis for our interpretation.

The system then searches for a valuation, i.e. it associates an integer to each
atomic formula, such that the equalities coming from the non-logical axioms
are respected. In other words, these conditions are equality constraints on the
variables associated with each atomic formula. The non-inclusion being the only
dis-equality constraint.

An implementation of these ideas was realized, using the constraint logic
programming language GNU-Prolog with constraint solvers over finite domains.

87



3.2 Examples

Here is a non-recursive version of the dining philosophers program in LCC.

goal :- phill,phil2,phil3,phil4,phil5,forkl,fork2,fork3,fork4,fork5.
phill :- forkl,fork2 -> eatl,(eatl -> forkl,fork2,phill).
phil2 :- fork2,fork3 -> eat2,(eat2 -> fork2,fork3,phil2).

phils :- fork5,forkl -> eath, (eatbs -> fork5,forkl,phil5).

We note ’,’ for ® and ||, depending on position, and *->’ for —. This
ASCII version of LCC syntax is parsed directly by the model checker.

Here is the result of a simple execution, checking that philosophers 1 and 2
can never eat at the same time:

| ?- find_phase(’philo_5’,[goall, [([eatl,eat2],top)]).
eatb=1 eat3=1 eatl1=2 fork4=1 fork2=2 philb=1 phil3=1 phili=1
eatd4=1 eat2=2 fork5=1 fork3=1 forkl=1 phil4=1 phil2=1 goal=2

Actually here is a more detailed explanation of what happens: 16 variables
corresponding to atomic constraints (5 for each phil, fork and eat plus one
for goal) are declared; 10 other variables corresponding to asks are declared;
16 equality constraints are given to the solver: one for each ask and one for
each declaration; finally the dis-equality constraint corresponding to the safety
property is added.

If we had n philosophers, we would thus have 5n + 1 variables, with 3n + 1
equality constraints and one dis-equality. You can see at the end of this paper
results for bigger instances of this problem.

Note that a simple constraint such as A #\= B would only allow to check
properties as A I/ B, however we often want to check if A/ B ® T. Therefore
we have to rely on integer arithmetic to notice that if m,n and p are integers
Vp,m # n - p is equivalent to m modulo n # 0, and GNU-Prolog’s FD solver
nows how to handle these as A rem B #\= 0.

4 Going farther

4.1 Coping with incompleteness

The method described here is however not complete for different reasons:

One is that if we are based on finite domains, we will never be able to handle
properly programs that have an unbounded parameter. In some cases we will
be able to collapse all the values after some bound, but for instance if you take
the dining philosophers with N not given, it is very hard to find a phase space
as that given in [4], as it relies on an infinite number of primes.

Another reason is linked with the choice to consider only singletons. This has
the important drawback of creating confusions. For instance with the following
program: P = tell(d), Q = ¢ — P, a singleton-based phase structure does
not allow one to prove that c is not accessible from P, i.e. P/ c® T, as we can
deduce [P] = [c] - [Q] from the second declaration.
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Finally, all integers are invertible, that is m-p = n-p implies m = n. Thus we
cannot capture the idea that in the first case the presence of p is necessary to go
from m to n. Therefore we cannot prove much for programs such as Peterson’s
mutual exclusion algorithm given below, as there is a check on the value of a
variable that may not change its value but allows a process to go from off to
on (see below).

pl :- offl,turnl -> onl,turn2,waitl.

pl :- offl,turn2 -> onl,turn2,waitl.

waitl :- off2 -> off2,csl,(csl,onl -> offl,pl).
waitl :- turnl -> turnl,csl,(csl,onl -> offil,pl).
(same for p2 and wait2)

init :- offl,off2,turnl,pl,p2.

It is important to note however that one can cope with all these problems
to show some important properties, by simply using a more precise way of
expressing what is to be shown. Let us consider again the previous example of
Peterson’s mutual exclusion algorithm. It is shown in [14] that even if it is not
provable directly that init #—* cs1®cs2® T, one can use the phase semantics
to prove it by remarking that the only four ways to reach such a state are states
of the following forms:on1 ® on2 ® turnl ® turn2 @ T,onl ® on2 ® turnl @
off1® T,onl ® on2 ® off2 @ turn2® T and onl ® on2 ® off1 @ off2 ® T.

The phase model checker can then compute:

| ?- find_phase(’peterson’, [init], [([onl,0n2,turnl,turn2],top),
| ?- ([onl,on2,turnl,off1],top), ([onl,on2,0ff2,turn2],top),

| 7= ([onl,on2,0ffl,0ff2],top)]).

init=8 wait2=1 p2=1 off2=2 +turn2=2 off1=2 pl=1

cs2=1 on2=2 csl=1 waitl=1 onl=2 turni=2

4.2 Doubletons and finite sets

We have seen above that almost all the limits of our method can be coped
with, however the singleton restriction might sometimes be too restrictive, for
instance in the very simple producer/consumer protocol given below:

p :—- dem -> pro,p. c :- pro -> dem,c.
init :- dem,dem,dem,p,p,p,pP,P,C,C.

One can check that it is impossible to prove with singletons that a producer
cannot consume, i.e. p || pro /— dem || I, as the definition of p gives p- pro =
p-dem.

Solvers on sets would allow us to solve this problem, it is however noticeable
that a simple modification of our solver allows it to handle doubletons by simply
using GNU-Prolog’s list constructor, and that we thus already have a more
general solver.

| ?- find_dbl(’prod_cons’, [p,prol, [([dem],top)]).
p=[1,1] pro=[2,1] dem=[2,2] c=[0,0]

Such a modification should allow us to use bounded lists of a size much bigger
than two, however our solver gets really slow and the lack of a specialized solver
is severely felt.
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5 Experimental results

The following table sums up our experimental results. The size of the example
indicates the number of initial agents. The numbers of variables and constraints
indicate the size of the constraint satisfaction problem issued from the phase
model checker.

protocol size | number of | number of time for

variables | constraints | proving safety
prod./cons. (doubletons) | 2 12 5 3850 ms
dining philosophers 5 26 16 480 ms
dining philosophers 10 51 31 3470 ms
dining philosophers 20 101 61 44730 ms
Peterson’s algorithm 2 25 25 1420 ms

6 Conclusion

To be efficient, program verification needs abstractions in order to get rid of
useless execution details. The semantics of concurrent constraint programs in
linear logic and in its model theory of provability, namely phase semantics,
provides an abstract interpretation of LCC programs which is given by the
logic of LCC agents that is built-in inside a phase model checker that we have
implemented with some restrictions.

We have shown that these restrictions, while making it possible to use the
constraint programming technology to search for phase models with arithmetic
constraints, still allow us to find automatically some non-trivial proofs of safety
properties of LCC programs. The efficiency issue will of course need more
work than our first prototype implementation, which did not even try to guide
the interpreter during the constraint solving phase, but the technology already
available in constraint solvers gives us great hope for improvement.

Finally, as the only part really relevant to LCC in this study was the ex-
pressibility, through its semantics, of safety properties in linear logic, we believe
that our method can thus be used for other calculi based on linear logic and
hope to extend concretely the prover in that direction in the future. The first
extension is that of handling the family of logic programming languages based
on linear logic, like LO [1], Lolli [8], or Lygon [7], where only a new parser is
needed (the properties are already expressed as linear logic formulae). Other
coordination languages or rule based languages may also have a sound linear
logic semantics, so there is still a lot of experimentation to do.
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Abstract

Key concerns in the development of more powerful ATP systems are
to provide breadth of coverage — an ability to solve a large range of prob-
lems, and to provide greater depth of coverage — an ability to solve more
difficult problems, within the same resource limits. This work describes
the design and implementation of CSSCPA | a compositional competition-
cooperation parallel ATP System. CSSCPA combines existing high per-
formance ATP systems in a framework that allows them to work inde-
pendently, but also allows communication of intermediate results. The
performance data shows that CSSPCA has high breadth and depth of
coverage.

1 Introduction

Automated Theorem Proving (ATP) is concerned with the development and
use of systems that automate sound reasoning: the derivation of conclusions
that follow inevitably from facts. Current ATP systems are capable of solving
non-trivial problems, e.g., EQP [McC00a] solved the Robbins problem [McC97].
However, the search complexity of most interesting problems is enormous, which
has two consequences for ATP. First, in order to solve certain types of hard
problems, it is typically necessary to tune an ATP system for the problems.
Such tuning almost inevitably has the consequence that the system can no longer
solve some other problems, i.e., gain in one direction is at the cost of loss in
another.? Second, there are many problems that still cannot currently be solved
within realistic resource limits. Therefore, key concerns in the development of
more powerful ATP systems are to provide breadth of coverage — an ability to

11t would be marvelous if the characteristics of ATP problems were sufficient to correctly
identify every type of problem for which tuning has resulted in successful solution, for then
the appropriately tuned features of an ATP system could be automatically invoked when the
type of problem is recognized. However, thus far such recognition seems impossible.
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solve a large range of problems, and to provide greater depth of coverage — an
ability to solve more difficult problems, within the same resource limits.

One approach to providing breadth of coverage is the development of com-
positional ATP systems. Compositional systems are built from multiple compo-
nent systems, and use one or more of the components when attempting to solve
a problem. Compositional systems may be characterized by the way in which
the components are run: Time slicing systems select one or more components,
allocate some fraction of the available CPU time to each of the selected com-
ponents, and then run the components one after the other until a solution is
found. Examples of time slicing systems are Gandalf [Tam97] and more recent
versions of Vampire [RV99]. Competition systems similarly select components
and allocate CPU time, but then run the components in parallel (or at least con-
currently, according to the number of CPUs available) until a solution is found.
Examples of competition systems are RCTHEO [Ert92] and SSCPA [SS99].

Both time slicing and competition systems rely on the phenomenon that
components can be selected so that there is a significant difference in the set
of problems that each can solve quickly — the properties of sub-linearity and
complementarity [SW99]. Time slicing systems have the advantage that they
are inherently well suited to single CPU machines, and the components can
be given ‘dedicated’ access to the CPU in the order of likelihood of solving the
problem. Competition systems have the advantage that they can take advantage
of multiple CPU architectures (especially SMP machines), and there is no need
to decide which components are more likely to solve the problem. For both
time slicing and competition systems, greater diversity across the components
provides greater breadth of coverage.

The components of a simple compositional system do not cooperate, with
no communication of control information or intermediate results. Such compo-
sitional systems can solve at most the union of the problems that the individual
components can solve within the same total CPU time limit, i.e., there is no
gain in depth of coverage (and some problems that can be solved by individual
components within the full CPU time limit may not be solved within the frac-
tion of the CPU time limit allocated to the components in the compositional
setting). The capabilities of a compositional system can be significantly affected
by the addition of cooperation. The communication of control information is
problematic if the components are diverse (as recommended above), because
they have different search spaces and the control information from one compo-
nent is typically inappropriate for another. One coarse grained way of effecting
the communication of control information is to have components with different
control strategies, and to start and stop the components according to evidence
of their success in the context of the overall system. This approach is taken in
the DISCOUNT system [ADF95].

The communication of intermediate results is significantly easier. For time
slicing systems, the intermediate results generated by an unsuccessful compo-
nent in the sequence are passed on to subsequent components. Examples of
time-slicing-cooperation systems are Gandalf [Tam97] and the e-iterator strat-
egy within E-SETHEO [SW99]. For competition systems, a protocol has to be
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established to allow communication of intermediate results during runtime. For
competition systems in particular, communication between diverse component
systems often has synergistic effects, leading to “super linear” speed ups. This
is due to cross fertilization between the components, as a component may re-
ceive useful intermediate results that it would not generate itself. Examples of
competition-cooperation systems are HPDS [Sut92] and TECHS [DF99]. The
addition of cooperation to a compositional system is an effective way of in-
creasing the depth of coverage of the system. The synergistic effects allow the
system to solve problems that none of the component systems are able to solve
independently. As before, diversity is important, as this provides more extreme
cross fertilization.

The above survey suggests that a Competition- Cooperation Compositional
system, running genuinely in Parallel on a multi-CPU machine (a CCCP sys-
tem), has high prospects for attaining both breadth and depth of coverage.?
The following sections of this paper examine a particular instance of the de-
sign and implementation of a CCCP system. Section 2 looks at the issues and
choices in the design of such a system. Sections 3 and 4 describe the design and
implementation of the CSSCPA?® system, highlighting the benefits of the design
decisions made, and difficulties encountered. Section 5 provides performance
data, and Section 6 concludes the paper.

2 Design Issues for a CCCP ATP System

There are three main issues that need to be addressed in the design of a CCCP
system:

e How the components will be controlled and monitored. Aspects of this
include how the components will be started, how the resource usage of the
components will be allocated and limited, and how the components will
be stopped when a solution is found or the resource limits are exceeded.

e What data formats will be used. The data formats for the input problem,
the intermediate results that are communicated, and the output, all need
to be considered.

e The granularity and mode of communication between the components.
Options here range from fine grained point-to-point communication, where
small intermediate results are transferred immediately and directly to
other components, through to coarse grained bulk transfer of many in-
termediate results at widely spaced intervals.

The choices for each of these issues are constrained to a large degree by the
nature of the component systems. There are three common types of compo-
nent systems, each with quite different characteristics, which affect the range of
options available in the design.

20ther approaches to using parallelism in ATP are surveyed in [SS94] and [Bon00].
3Pronounced “sea skipper”.

94



The highest degree of design flexibility is available when the components are
designed and developed in-house. In this case there is access to and understand-
ing of the design and implementation of the components, and it is easily possi-
ble to make adaptations in the components specifically for the CCCP system.
From the control perspective, it is possible to directly manage the component
processes, and to have the components internally limit their resource usage. A
single data format can be designed and used consistently for input, communica-
tion, and output. Both fine and coarse grained communication of intermediate
results are possible. In particular, if a common data format is used, there is no
overhead of format conversion, which is particularly attractive if the commu-
nication between components is fine grained. The drawback of using in-house
components is that significant effort has to be expended in order to design and
implement components that have sufficiently high performance. In many cases
there is simply not enough expertise and programmer-power to achieve this.
HPDS is an example of a CCCP system that benefited from the advantages and
also suffered from the disadvantages of this approach.

An intermediate degree of design flexibility is available when using high per-
formance components developed elsewhere, but for which the source code is
available and understandable. Such components can be modified as required
to run in the CCCP system. Modifications can be made to make component
control easily possible, internal translation of data formats can be implemented,
and communication hooks can be inserted. The main advantage of this option
is the adoption of existing high performance systems, which may have required
significant effort and expertise to develop. However, the effort required to make
the necessary modifications to someone else’s code is often prohibitive. Further,
as new versions of the components are released by their developers, it is neces-
sary to port the modifications to the new versions. As a result, it is difficult to
keep such a CCCP system upgraded to the most recent component technology.
TECHS is an example of such a CCCP system.

The least design flexibility is available when using high performance com-
ponents developed elsewhere, without any intention of making modifications.
There are significant advantages and disadvantages of this approach. Control-
ling the execution and monitoring the CPU usage of a component may be dif-
ficult, especially if the component runs multiple processes. Although starting
a component may be easy, it may then be difficult to monitor and limit its
resource usage, or to stop all processes of the component. The data formats
of the components are likely to be incompatible, and it is necessary to imple-
ment external format translation for at least the input and communication data.
Almost certainly the components will not accept intermediate results during
runtime, thus making a coarse grained communication model necessary. These
drawbacks require solutions at both the logical and practical levels. If solutions

4For example, under UNIX, if a process in the middle of a three level process hierarchy
terminates, leaving the bottom level process to communicate with the top level process using
files, the bottom process is no longer in the process hierarchy of the top process. It is then
difficult to stop the bottom level process, and the CPU time of the bottom process is not
accumulated as child CPU usage in the top level process.
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can be found, however, there are some attractive aspects to this approach, all
stemming from the fact that the components are used without modification.
First, the highest performance components can be used, and their performance
will not be degraded through modifications required to fit them into the CCCP
system. Second, it is not necessary to have access to the components’ sources.
This makes it possible to use components that for some reason, e.g., proprietary
constraints, can be distributed only in binary form. Third, as the CCCP system
can be concerned with only the external presentation of the components, it is
likely to be easy to replace a component by a newer version. This is because
the external presentation of a (component) system often remains the same while
internal structures are (possibly significantly) changed.

3 The Design of CSSCPA

CSSCPA is a CCCP system for problems in the CNF of first order classical logic,
expressed in the TPTP CNF syntax [SS98]. CSSCPA uses existing high per-
formance components, without any modification. The components must have
an option to produce, on their standard output, intermediate clauses that are
logical consequences of the input problem. In addition to the component ATP
systems, CSSCPA employs a formula librarian (the FLi) that can do subsump-
tion and also detect unit contradictions in the clauses it holds.

When given an ATP problem, CSSCPA first sends a copy of the problem to
the FLi, where it is stored. CSSCPA then selects components to use, based on
a database of information about the eligible components’ strengths for various
problem types. CSSCPA starts the components, and parses their standard
outputs for logical consequences. Each logical consequence is forwarded to the
FLi. If at any time a component finds a solution, then CSSCPA is stopped and
success is reported.

The FLi keeps an incoming clause only if keeping it improves the overall
quality of its clause set, in the sense that a better clause set is one that is easier
to refute. For example, the FLi’s clause set is improved if an incoming logical
consequence subsumes a clause in the set (see Section 4 for further details of the
clause set evaluation). Whenever the quality of clause set in the FLi improves,
the FLi reports the improvement to CSSCPA. When the clause set in the FLi
has improved significantly relative to the original input problem, CSSCPA stops
the components. CSSCPA then collects the improved clause set from the FLi,
and restarts with the improved clause set as the input problem.

When a proof is found, CSSCPA outputs the original problem file, the se-
quence of improved problem files, and the component system’s proof. The
clauses in the improved problem files are annotated to indicate their source,
either from the original input problem, or from one of the component ATP
systems. This provides sufficient information to construct a monolithic proof,
which can be checked using standard techniques.

CSCCPA creates a sequence of successively easier problems to solve. This
technique is called iterative easing. The arrangement is clearly sound, provided
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that the component systems output only logical consequences. On a macro level
CSSCPA may be viewed as a time-slicing compositional system, in which each
CSSCPA iteration is one component system.

4 The Implementation of CSSCPA

The overall process architecture of the CSSCPA implementation is shown in
Figure 1.

Figure 1: The CSSCPA Architecture
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When given an ATP problem, CSSCPA uses the tptp2X utility to expand
any include statements in the problem, and forwards the input problem clauses
to the FLi. The FLi is an external module of the E ATP system [Sch01], and thus
employs the efficient data structures and formula manipulation routines in the E
implementation. When the FLi has received and stored all the input clauses, it
reports the number of clauses, number of literals, and sum weight of the clause
set, on its standard output. This information is captured by CSSCPA as the
quality of the input problem clauses. The FLi then sits in a loop, reading clauses
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(the logical consequences from the component ATP systems) on its standard
input, processing them, and reporting any improvements of the clause set quality
on its standard output. CSSCPA monitors the standard output of the FLi. If
the reported quality of the FLI’s clause set passes a threshold, CSSCPA stops
the execution of the component systems and collects the improved clause set
from the standard output of the FLi. If the clause set does not contain a
unit contradiction, CSSCPA restarts using the improved clause set as the input
problem.

The selection and execution of components for CSSCPA is done by the SS-
CPA system [SS99]. To select components, SSCPA runs a SystemRecommender
program. The SystemRecommender accesses a database of information about
the eligible components’ strengths. The database is built from an evaluation of
performance data for the ATP systems on TPTP problems [SS01]. The database
assigns problems to one of 16 Specialist Problem Classes (SPCs) based on syn-
tactic problem characteristics, and ranks the systems within each SPC. When a
new problem is presented, its SPC is identified and the best performing systems
for the SPC are then known. SSCPA divides the CPU time remaining equally
between the selected systems. SSCPA then invokes SystemOnTPTP [Sut00] to
run each of the selected components on the problem. Note that the set of se-
lected components may change between iterations in CSSCPA, due to changes
in the characteristics of the clause set.

Each instance of SystemOnTPTP accesses a database of information about
the ATP systems to determine the format in which its ATP system requires the
problem. The SystemOnTPTP then uses the tptp2X utility to do the necessary
transformations and formatting.

SystemOnTPTP uses a control process (called TreeLimitedRun) to control
and monitor its ATP system. The control process starts the ATP system, mon-
itors the resource usage of the system, imposes resource usage limits, and has
sufficient information to be able to stop all the processes that the system has
running when a resource limit is exceeded (the CPU time allocated, a wall clock
time limit, and a memory limit). The control program monitors the CPU usage
of the ATP system’s processes by scanning the /proc file system. The wall clock
limit is implemented by an alarm system call within the control process. The
memory limit is imposed through use of the setrlimit system call. When the
CPU or wall clock time limit is reached, the control process scans the /proc file
system for the system’s processes, and uses a kill system call to stop them all.

The control process runs the specified ATP system inside a component wrap-
per. The wrapper scans the standard output of the ATP system and extracts
clauses that are logical consequences of the input problem. The wrapper then
translates the clauses to TPTP format before writing them to its standard out-
put. The standard output of the wrapper is captured by the corresponding
instance of SystemOnTPTP, which echoes the information to its standard out-
put. SSCPA collates the standard outputs from the SystemOnTPTP instances,
and writes them to its standard output. This is captured by CSSCPA, and the
logical consequences are then forwarded to the standard input of the FLi.

In the current implementation of CSSCPA, the quality of the FLi’s clause set
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is measured in two ways: the total weight (symbol count) of the clause set, and
the average clause weight. The quality of the clause set improves when either of
these decreases. The total weight decreases when an incoming clause subsumes
clauses whose sum weight is greater than that of the incoming clause. The
average clause weight decreases when an incoming clause’s weight is less than
the current average clause weight. The clause set in the FLi is considered to
have “improved significantly” when either of the quality measures goes down by
some fraction of the input clause set’s measures. The fractions are parameters
to CSSCPA.

CSSCPA, SSCPA, SystemOnTPTP, and the component wrappers are all
implemented in perl. The FLi and TreeLimitedRun are implemented in C.
tptp2X is implemented in Prolog. The perl implementation of key compo-
nents may be a bottleneck in the communication, but at this stage it seems to
be acceptable. It is noteworthy that all inter-process communication uses the
standard input and output streams. At the bottom level, this is necessary for
capturing the logical consequences from the component ATP systems, given the
commitment to using unmodified components. The decision to use standard IO
streams for the other levels followed as a consequence.

5 Performance

Initial testing of CSSCPA has been done using the 1745 TPTP problems that
are non-Horn, have some (but not only) equality literals, and have an infinite
Herbrand universe (i.e., a very general class of problems). The same three com-
ponents were selected all the time, they being SPASS 1.03 [WAB199], E 0.62
[Sch01], and Otter 3.0.6 [McCO0Ob], all running in their default “auto” modes
(splitting was turned off in SPASS, so that only logical consequences were gen-
erated). A 300 second time limit was imposed, individually when testing the
individual component systems, and as a total in the CSSCPA setting. Table 1
summarizes the results. The SSCPA column shows the results for the naive
mode of SSCPA, in which the three components are run in competition parallel
with a CPU time limit of 100 seconds for each component. The SSCPA* col-
umn shows the SSCPA results with a CPU time limit of 300 seconds for each
component.

Table 1: CSSCPA Results

CSSCPA E Otter SPASS SSCPA SSCPA*

Solved by 686 616 364 630 673 723
CSSCPA, not by other 131 329 91 75 52
other, not by CSSCPA 65 11 39 62 89

CSSCPA solved 52 problems that none of the components solved within 300
seconds, and 25 SWC problems with a TPTP difficulty rating of 1.00, i.e., 25
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problems that no existing ATP system is known to be able to solve. These
results show that CSSCPA has high depth of coverage. CSSCPA solves more
problems than any component, and 13 more problems than their composition in
SSCPA. These results show that CSSCPA has high breath of coverage (although
it would be even better if CSSCPA subumed (solved a superset of the problems
solved by) the components and SSCPA).

It is interesting that there are 62 problems solved by SSCPA but not by
CSSCPA. The essential differences between SSCPA and CSSCPA are the com-
munication of intermediate results and a reduction of the CPU time limit on
each component in successive CSSCPA iterations. Clearly the “improvements”
in the problem and the reduced time limits affect the components’ abilities to
solve those problems.

It should be noted that CSSCPA’s performance on a given problem can
change from run to run, due to changes in the operating system’s scheduling
of the component ATP systems, which affects the order in which logical conse-
quences are forwarded to the FLi.

6 Conclusion

The need for powerful ATP systems that have both breadth and depth of
coverage has motivated the design and implementation of the compositional
competition-cooperation parallel ATP system CSSCPA. CSSCPA combines ex-
isting high performance ATP systems in a framework that allows them to work
independently, but also allows communication of intermediate results. The per-
formance data shows that CSSPCA has high breadth and depth of coverage.

It is planned to extend the range of component systems available to CSS-
CPA. In particular, the use of analytic provers, e.g., model elimination or tableau
based provers, with lemma generation capabilities, seems attractive. It is ex-
pected that there will be strong cross fertilization between saturation systems
and analytic systems, due to their different deduction and search strategies.

The soundness of CSSCPA is dependent on the soundness of the components,
and also (from a practical viewpoint) the correct capturing and forwarding of
logical consequences. It is planned to independently verify CSSCPA proofs
by converting the sequence of improved problems into a monolithic proof, and
applying standard proof checking techniques.

Acknowledgement: Thanks to Stephan Schulz for implementing the FLi.
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