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Abstrat

We present a alulus for �rst-order theorem proving in the presene of the

axioms of totally ordered divisible abelian groups. The alulus extends previ-

ous superposition or haining aluli for divisible torsion-free abelian groups

and dense total orderings without endpoints. As its predeessors, it is refu-

tationally omplete and requires neither expliit inferenes with the theory

axioms nor variable overlaps. It o�ers thus an eÆient way of treating equal-

ities and inequalities between additive terms over, e. g., the rational numbers

within a �rst-order theorem prover.
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1 Introdution

Most real life problems for an automated theorem prover ontain both un-

interpreted funtion and prediate symbols, that are spei� for a partiular

domain, and standard algebrai strutures, suh as numbers or orderings. Gen-

eral theorem proving tehniques like resolution or superposition are notoriously

bad at handling algebraial theories involving axioms like assoiativity, om-

mutativity, or transitivity, sine expliit inferenes with these axioms lead to

an explosion of the searh spae. To deal eÆiently with suh strutures, it is

therefore neessary that speialized tehniques are built tightly into the prover.

AC-superposition (Bahmair and Ganzinger [1℄, Wertz [11℄) is a well-known

example of suh a tehnique. It inorporates assoiativity and ommutativity

into the standard superposition alulus using AC-uni�ation and extended

lauses. In this way, inferenes with the theory axioms and ertain inferenes

involving variables are rendered unneessary. Still, reasoning with the assoia-

tivity and ommutativity axioms remains diÆult for an automated theorem

prover, even if expliit inferenes with the AC axioms an be avoided. This

is not only due to the NP-ompleteness of the AC-uni�ability problem, but it

stems also from the fat that AC-superposition requires an inferene between

literals u

1

+ � � � + u

k

� s and v

1

+ � � � + v

l

� t (via extended lauses) when-

ever some u

i

is uni�able with some v

j

. Consequently, a variable in a sum an

be uni�ed with any part of any other sum { in this situation uni�ation is

ompletely unable to limit the searh spae.

The ineÆieny inherent in the theory of assoiativity and ommutativity

an be mitigated by integrating further axioms into the alulus. In abelian

groups (or even in anellative abelian monoids) the ordering onditions of the

inferene rules an be re�ned in suh a way that summands u

i

and v

j

have to be

overlapped only if they are maximal with respet to some simpli�ation order-

ing � (Ganzinger and Waldmann [4, 8℄, Marh�e [5℄, Stuber [7℄). In this way,

the number of variable overlaps an be greatly redued; however, inferenes

with unshielded, i. e., potentially maximal, variables remain neessary.

In non-trivial divisible torsion-free abelian groups (e. g., the rational num-

bers and rational vetor spaes), the abelian group axioms are extended by

the torsion-freeness axiom 8k 2 N

>

0

8x; y: kx � ky ) x � y, the divisibility

axiom 8k 2 N

>

0

8x 9y: ky � x, and the non-triviality axiom 9y: y 6� 0.

In suh strutures every lause an be transformed into an equivalent lause

without unshielded variables. Integrating this variable elimination algorithm

into anellative superposition results in a alulus that requires neither ex-

tended lauses, nor variable overlaps, nor expliit inferenes with the theory

axioms. Furthermore, using full abstration even AC uni�ation an be avoided

(Waldmann [10℄).

When we want to work with a transitive relation > in a theorem prover,
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we enounter a situation that is surprisingly similar to the one depited above.

Just as assoiativity and ommutativity, the transitivity axiom is fairly proli�.

It allows to derive a new lause whenever the left hand side of a literal r > s

overlaps with the right hand side of another literal s

0

> t. As suh an overlap

is always possible if s or s

0

is a variable, uni�ation is not an e�etive �lter to

ontrol the generation of new lauses. The use of the haining inferene rule

makes expliit inferenes with the transitivity axiom superuous (Slagle [6℄).

Sine this inferene rule an be equipped with the restrition that the over-

lapped term s must be maximal with respet to a simpli�ation ordering �,

overlaps with shielded variables beome again unneessary. Only inferenes

with unshielded, i. e., potentially maximal, variables have to be omputed.

One more, the number of unshielded variables in a lause an be redued

if further axioms are available. In partiular, in dense total orderings without

endpoints, unshielded variables an be eliminated ompletely (Bahmair and

Ganzinger [3℄).

There are two fats that suggest to investigate the ombination of the the-

ory of divisible torsion-free abelian groups and the theory of dense total order-

ings without endpoints. On the one hand, the vast majority of appliations of

divisible torsion-free abelian groups (and in partiular of the rationals or reals)

requires also an ordering; so the ombined alulus is likely to be muh more

useful in pratie than the DTAG-superposition alulus on whih it is based.

On the other hand, these two theories are losely related: An abelian group

(G;+; 0) an be equipped with a total ordering that is ompatible with + if

and only if it is torsion-free; furthermore divisibility and ompatibility of the

ordering imply that the ordering is dense and has no endpoints. One an thus

assume that the two aluli �t together rather smoothly. We show in this paper

that this is in fat true. The resulting alulus splits again into two parts: The

�rst one is a base alulus, that works on lauses without unshielded variables,

but whose rules may produe lauses with unshielded variables. This alulus

has the property that saturated sets of lauses are unsatis�able if and only if

they ontain the empty lause, but it an not be used to e�etively saturate a

given set of lauses. The seond part of the alulus is a variable elimination

algorithm that makes it possible to get rid of unshielded variables, and thus

renders the base alulus e�etive. The integration of these two omponents

happens in essentially the same way as in the equational ase (Waldmann [10℄).

2 The Base Calulus

2.1 Preliminaries

We work in a many-sorted framework and assume that the funtion symbol

+ is delared on a sort G. If t is a term of sort G and n 2 N, then nt is an
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abbreviation for the n-fold sum t+ � � �+ t; in partiular, 0t = 0 and 1t = t.

Without loss of generality we assume that the equality relation � and the

semanti ordering > are the only prediates of our language. Hene a literal is

either an equation t � t

0

, or a negated equation t 6� t

0

, where t and t

0

have the

same sort, or an inequation t > t

0

, or a negated inequation t 6> t

0

, where t and

t

0

have sort G. Oasionally we write t

0

< t instead of t > t

0

. The symbol ?

denotes either > or <, the symbol & stands for > or �, the symbol � means

either ? or �, and

:

� denotes ? or � or 6�. The equality symbol is supposed to

be symmetri. Multiple ourrenes of one of the symbols ?, �, or

:

� within a

single inferene rule denote onsistently the same relation. A lause is a �nite

multiset of literals, usually written as a disjuntion.

A (Herbrand) interpretation E is a set of equations and inequations. A

positive ground literal e is true in E, if e 2 E; a negative ground literal : e is

true in E, if e =2 E. A ground lause C is true in E, if at least one of its literals

is true in E; a non-ground lause is true in E, if all its ground instanes are

true in E. If a lause C is true in E, we also say that E is a model of C, or

that E satis�es C.

The lauses

(x+ y) + z � x+ (y + z) (Assoiativity (A))

x+ y � y + x (Commutativity (C))

x+ 0 � x (Identity (U))

(�x) + x � 0 (Inverse (Inv))

n divided-by

n

(x) � x (Divisibility (Div))

a

0

6� 0 (Non-Triviality (Nt))

x 6> x (Irreexivity (Ir))

x 6> y _ y 6> z _ x > z (Transitivity (Tr))

x 6> y _ x+ z > y + z (Monotoniity (Mon))

x > y _ y > x _ x � y (Totality (Tot))

plus the equality axioms

1

are the axioms ODAG of totally ordered divisible

abelian groups.

The following lauses are onsequenes of these axioms (for every  2N

>

0

):

x+ z 6� y + z _ x � y (Canellation (K))

 x 6�  y _ x � y (Torsion-Freeness (T))

x+ z 6> y + z _ x > y (>-Canellation (K

>

))

 x 6>  y _ x > y (>-Torsion-Freeness (T

>

))

1

inluding the ongruene axiom x 6� y _ y 6? z _ x ? z for the prediate >.
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We write OTfCAM for the union of the lauses A, C, U, K, T, Ir, Tr, Mon,

K

>

, T

>

and the equality axioms.

We denote the entailment relation modulo ODAG by j=

ODAG

, and the en-

tailment relation modulo OTfCAM by j=

OTfCAM

. That is, fC

1

; : : : ; C

n

g j=

ODAG

C

0

if and only if fC

1

; : : : ; C

n

g [ODAG j= C

0

, and fC

1

; : : : ; C

n

g j=

OTfCAM

C

0

if and only if fC

1

; : : : ; C

n

g [OTfCAM j= C

0

.

A funtion symbol is alled free, if it is di�erent from 0 and +. A term is

alled atomi, if it is not a variable and its top symbol is di�erent from +. We

say that a term t ours at the top of s, if there is a position o 2 pos(s) suh

that sj

o

= t and for every proper pre�x o

0

of o, s(o

0

) equals +; the term t ours

in s below a free funtion symbol, if there is an o 2 pos(s) suh that sj

o

= t

and s(o

0

) is a free funtion symbol for some proper pre�x o

0

of o. A variable x

is alled shielded in a lause C, if it ours at least one below a free funtion

symbol in C, or if it does not have sort G. Otherwise, x is alled unshielded.

A lause C is alled fully abstrated, if no non-variable term of sort G

ours below a free funtion symbol in C. Every lause C an be transformed

into an equivalent fully abstrated lause abs(C) by iterated rewriting

C[f(: : : ; t; : : : )℄ ! x 6� t _ C[f(: : : ; x; : : : )℄ ;

where x is a new variable and t is a non-variable term of sort G ourring

immediately below the free funtion symbol f in C.

We say that an ACU-ompatible ordering � has the multiset property, if

whenever a ground atomi term u is greater than v

i

for every i in a �nite

non-empty index set I, then u �

P

i2I

v

i

. Every redution ordering over terms

not ontaining + that is total on ground terms and for whih 0 is minimal

an be extended to an ordering that is ACU-ompatible and has the multiset

property (Waldmann [9℄).

2

From now on we will work only with ACU-ongruene lasses, rather than

with terms. So all terms, equations, substitutions, inferene rules, et., are

to be taken modulo ACU, i. e., as representatives of their ongruene lasses.

The symbol � will always denote an ACU-ompatible ordering that has the

multiset property, is total on ground ACU-ongruene lasses, and satis�es

t 6� s[t℄

o

for every term s[t℄

o

.

Let A be a ground literal. Then the largest atomi term ourring on either

side of A is denoted by mt(A). If C is a ground lause, then mt(C) is the largest

atomi term ourring in C.

The balane value of a ground literal A is 3, if mt(A) ours on both sides

of A, it is 2, if A is an inequation [:℄ s > t and mt(A) ours only in s,

and otherwise it is 1. The ordering �

L

on literals ompares lexiographially

2

In fat, we use the extended ordering only as a theoretial devie; as we work with fully

abstrated lauses, the original redution ordering is suÆient for atual omputations.
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�rst the maximal atomi terms of the literals, then the polarities (negative

� positive), then the kinds of the literals (inequation � equation), then the

balane values of the literals, then the multisets of all non-zero terms ourring

at the top of the literals, and �nally the multisets ffsg; ftgg (for equations

[:℄ s � t) or ffs; sg; ftgg (for inequations [:℄ s > t). The ordering �

C

on

lauses is the multiset extension of the literal ordering �

L

. Both �

L

and �

C

are noetherian and total on ground literals/lauses.

2.2 Superposition and Chaining

We present the ground versions of the inferene rules of the base alulus

OCInf . The non-ground versions an be obtained by lifting in a rather straight-

forward way (see below).

Let us start the presentation of the inferene rules with a few general

onventions: Every term ourring in a sum is assumed to have sort G. The

letters u and v, possibly with indies, denote atomi terms, unless expliitly

said otherwise. In an expression like mu+ s, m is a natural number, s may be

zero.

If an inferene involves a literal, then it must be maximal in the respetive

lause (exept for the last but one literal in fatoring inferenes). A positive

literal that is involved in a superposition or haining inferene must be stritly

maximal in the respetive lause. In all superposition or haining inferenes,

the left premise is smaller than the right premise.

Canellation

C

0

_ mu+ s

:

� m

0

u+ s

0

C

0

_ (m�m

0

)u+ s

:

� s

0

if m �m

0

� 1, u � s, u � s

0

.

Equality Resolution

C

0

_ u 6� u

C

0

if u either equals 0 or does not have sort G.

Inequality Resolution

C

0

_ 0 > 0

C

0

Can. Superposition

D

0

_ nu+ t � t

0

C

0

_ mu+ s

:

� s

0

D

0

_ C

0

_ ns+mt

0

:

� ns

0

+mt

if n � 1, m � 1, u � s, u � s

0

, u � t, u � t

0

.

3

3

If gd(m;n) > 1, then the onlusion of this inferene an be simpli�ed to D

0

_ C

0

_

 s + �t

0

:

�  s

0

+ �t, where  = n= gd(m;n) and � = m= gd(m;n) (and similarly for

the following inferene rules). To enhane readability, we leave out this optimization in the

sequel.
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Can. Chaining

D

0

_ t

0

? nu+ t C

0

_ mu+ s ? s

0

D

0

_ C

0

_ ns+mt

0

? ns

0

+mt

if n � 1, m � 1, u � s, u � s

0

, u � t, u � t

0

.

Std. Superposition

D

0

_ u � u

0

C

0

_ s[u℄

:

� s

0

D

0

_ C

0

_ s[u

0

℄

:

� s

0

if u ours in a maximal atomi subterm of s

and does not have sort G, u � u

0

, s[u℄ � s

0

.

Can. Eq. Fatoring

C

0

_ nu+ t � t

0

_ mu+ s � s

0

C

0

_ mt+ ns

0

6� mt

0

+ ns _ nu+ t � t

0

if n � 1, m � 1, u � s, u � s

0

, u � t, u � t

0

.

Can. Ineq. Fatoring (I)

C

0

_ nu+ t ? t

0

_ mu+ s ? s

0

C

0

_ mt+ ns

0

? mt

0

+ ns _ mu+ s ? s

0

if n � 1, m � 1, u � s, u � s

0

, u � t, u � t

0

.

Can. Ineq. Fatoring (II)

C

0

_ nu+ t ? t

0

_ mu+ s ? s

0

C

0

_ mt

0

+ ns ? mt+ ns

0

_ nu+ t ? t

0

if n � 1, m � 1, u � s, u � s

0

, u � t, u � t

0

.

Std. Eq. Fatoring

C

0

_ u � v

0

_ u � u

0

C

0

_ u

0

6� v

0

_ u � v

0

if u, u

0

and v

0

do not have sort G, u � u

0

,

u � v

0

.

The inferene rules of the alulus OCInf do not handle negative inequality

literals. We assume that in the beginning of the saturation proess every literal

s 6> t in an input lause is replaed by the two literals t > s _ t � s, whih are

equivalent to s 6> t by the totality, transitivity and irreexivity axioms. Note

that the inferene rules of OCInf do not produe any new negative inequality

literals.

In the standard superposition alulus, lifting means replaing equality in

the ground inferene by uni�ability. As long as all variables in our lauses

are shielded, the situation is similar here: For instane, in the seond premise

C

0

_ A

1

of a anellative superposition inferene the maximal literal A

1

need

no longer have the form mu + s

:

� s

0

with a unique maximal atomi term u.

Rather, it may ontain several (distint but ACU-uni�able) maximal atomi

terms u

k

with multipliities m

k

, where k ranges over some �nite non-empty

index set K. We obtain thus A

1

=

P

k2K

m

k

u

k

+ s

:

� s

0

. In the inferene rule,

6



the substitution � that uni�es all u

k

(and the orresponding terms v

l

from

the other premise) is applied to the onlusion. Consequently, the anellative

superposition rule has now the following form:

D

0

_

P

l2L

n

l

v

l

+ t � t

0

C

0

_

P

k2K

m

k

u

k

+ s

:

� s

0

(D

0

_ C

0

_ ns+mt

0

:

� ns

0

+mt)�

where

(i) m =

P

k2K

m

k

� 1, n =

P

l2L

n

l

� 1.

(ii) � is a most general ACU-uni�er of all u

k

and v

l

(k 2 K; l 2 L).

(iii) u is one of the u

k

(k 2 K).

(iv) u� 6� s�, u� 6� s

0

�, u� 6� t�, u� 6� t

0

�.

The other inferene rules an be lifted in a similar way, again under the

ondition that all variables in the lauses are shielded. As usual, the standard

superposition rule is equipped with the additional restrition that the subterm

of s that is replaed during the inferene is not a variable. For lauses with un-

shielded variables, lifting would be signi�antly more ompliated; however, as

we will ombine the base alulus with an algorithm that eliminates unshielded

variables, we need not onsider this ase.

Theorem 2.1 The inferene rules of the alulus OCInf are sound with re-

spet to j=

ODAG

.

Definition 2.2 Let N be a set of lauses, let N be the set of ground instanes

of lauses in N . An inferene is alled OCRed -redundant with respet to N if

for eah of its ground instanes with onlusion C

0

� and maximal premise C�

we have fD 2 N j D �

C

C� g j=

OTfCAM

C

0

�. A lause C is alled OCRed -

redundant with respet to N , if for every ground instane C�, fD 2 N j D �

C

C� g j=

OTfCAM

C�.

2.3 Rewriting on Equations

To prove that the inferene system desribed so far is refutationally omplete

we have to show that every saturated lause set that does not ontain the

empty lause has a model. The traditional approah to onstrut suh a model

is rewrite-based: First an ordering is imposed on the set of all ground instanes

of lauses in the set. Starting with an empty interpretation all suh instanes

are inspeted in asending order. If a redutive lause is false and irreduible

in the partial interpretation onstruted so far, its maximal positive literal

is turned into a rewrite rule and added to the interpretation. If the original
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lause set is saturated and does not ontain the empty lause, then the �nal

interpretation is a model of all ground instanes, and thus of the original lause

set (Bahmair and Ganzinger [2℄).

In order to be able to treat anellative superposition we have modi�ed

this sheme in [4℄ in suh a way that the rewrite relation operates on equations

rather than on terms. But if we also have to deal with inequations, a further

extension is neessary: We need to be able to rewrite inequations with inequa-

tions; and unlike rewriting with equations, this does of ourse not produe

logially equivalent formulae.

Definition 2.3 A ground equation or inequation e is alled a anellative

rewrite rule with respet to �, if mt(e) does not our on both sides of e.

We will usually drop the attributes \anellative" and \with respet to �",

speaking simply of \rewrite rules".

Every rewrite rule has either the form mu + s � s

0

, where u is an atomi

term, m 2 N

>

0

, u � s, and u � s

0

, or the form u � s

0

, where u � s

0

and u

(and thus s

0

) does not have sort G. This is an easy onsequene of the multiset

property of �.

Definition 2.4 Given a set R of rewrite rules, the four binary relations!

;R

,

!

Æ;R

,!

o;R

, and!

�

on ground equations and inequations are de�ned (modulo

ACU) as follows:

4

(i) mu+ t � t

0

!

;R

s

0

+ t � t

0

+ s,

if mu+ s � s

0

is a rule in R.

(ii) t[s℄ � t

0

!

Æ;R

t[s

0

℄ � t

0

,

if (i) s � s

0

is a rule in R and (ii) s does not have sort G or s ours in

t below some free funtion symbol.

(iii) mu+ t ? t

0

!

o;R

s

0

+ t ? t

0

+ s,

if mu+ s ? s

0

is a rule in R.

(iv) u+ t � u+ t

0

!

�

t � t

0

,

u � u !

�

0 � 0,

if u is atomi and di�erent from 0.

The union of !

;R

, !

Æ;R

, !

o;R

, and !

�

is denoted by !

R

.

5

4

While we have the restrition u � s, u � s

0

for the rewrite rules, there is no suh

restrition for the (in-)equations to whih rules are applied.

5

As we deal only with ground terms and as there are no non-trivial ontexts around

(in-)equations, this operation does indeed satisfy the de�nition of a rewrite relation, albeit

in an unorthodox way.
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If e !

R

e

0

using a -, Æ- or �-step, then e and e

0

are equivalent modulo

OTfCAM and the applied rewrite rule. If s ? s

0

!

o;R

t ? t

0

, then both t ? t

0

and t � t

0

imply s ? s

0

modulo OTfCAM and the applied rewrite rule.

We say that an (in-)equation e is -reduible, if e!

;R

e

0

(analogously for

Æ, o, and �). It is alled reduible, if it is -, Æ-, o-, or �-reduible.

Unlike �-reduibility, -, Æ-, and o-reduibility an be extended to terms:

A term t is alled -reduible, if t � t

0

!

;R

e

0

, where the rewrite step takes

plae at the left-hand side (analogously for Æ and o). It is alled reduible, if

it is -, Æ- or o-reduible.

Lemma 2.5 The relation !

R

is ontained in �

L

and thus noetherian.

Definition 2.6 Given a set R of rewrite rules, the relation !

Æ

R

is de�ned by

!

Æ

R

= (!

�

R

Æ!

o;R

Æ !

�

R

).

Given equations e

1

= s

1

� s

0

1

and e

2

= s

2

� s

0

2

and a positive integer

 , we write  e

1

for the equation  s

1

�  s

0

1

and e

1

+ e

2

for the equation

s

1

+ s

2

� s

0

1

+ s

0

2

. (Analogously, if e

1

and/or e

2

are inequations s

1

> s

0

1

and

s

2

> s

0

2

).

Definition 2.7 Given a set R of rewrite rules, the set tr(R) is the set of all

(in-)equations s � s

0

for whih there exists a derivation s � s

0

!

�

R

0 � 0. The

truth set tr

Æ

(R) of R is the set of all equations s � s

0

for whih there exists a

derivation s � s

0

!

�

R

0 � 0, and the set of all inequations s ? s

0

for whih

there exists a derivation s ? s

0

!

Æ

R

0 ? 0. The 	-truth set tr

Æ

	

(R) of R is the

set of all equations or inequations e = s � s

0

, suh that either e 2 tr

Æ

(R) and

s does not have sort G, or  s �  s

0

2 tr

Æ

(R) for some  2 N

>

0

.

All (in-)equations in tr

Æ

	

(R) are logial onsequenes of the rewrite rules

in R and the theory axioms OTfCAM.

2.4 Model Constrution

Definition 2.8 A ground lause C

0

_ e is alled redutive for e, if e is a

anellative rewrite rule and stritly maximal in C

0

_ e.

Definition 2.9 Let N be a set of (possibly non-ground) lauses that does not

ontain the empty lause, and let N the set of all ground instanes of lauses

in N . Using indution on the lause ordering we de�ne sets of rules R

C

, R

	

C

,

E

C

, and E

	

C

, for all lauses C 2 N . Let C be suh a lause and assume that

R

D

, R

	

D

, E

D

, and E

	

D

have already been de�ned for all D 2 N suh that

C �

C

D. Then the set R

C

of primary rules and the set R

	

C

of seondary rules

9



are given by

R

C

=

[

D�

C

C

E

D

and R

	

C

=

[

D�

C

C

E

	

D

:

E

C

is the singleton set feg, if C is a lause C

0

_ e suh that (i) C is redutive

for e, (ii) C is false in tr

Æ

(R

	

C

), (iii) C

0

is false in tr

Æ

	

(R

	

C

[ feg), and (iv)

�mt(e) is Æ-irreduible with respet to R

	

C

for every � 2 N

>

0

. Otherwise,

E

C

is empty.

If E

C

= feg, then E

	

C

is the set of all rewrite rules e

0

2 tr

Æ

	

(R

	

C

[E

C

) suh

that mt(e

0

) = mt(e) and e

0

is Æ�-irreduible with respet to R

	

C

. Otherwise,

E

	

C

is empty.

Finally, the sets R

1

and R

	

1

are de�ned by

R

1

=

[

D2N

E

D

and R

	

1

=

[

D2N

E

	

D

:

Our goal is to show that, if N is saturated with respet to OCInf , then

tr

Æ

(R

	

1

) is a model of the axioms of totally ordered divisible abelian groups

and of the lauses in N . To this end, we will �rst put together some basi

properties of R

	

C

and R

	

1

.

Lemma 2.10 Let E

C

= fmu+ s ? s

0

g. Then the inequation that is obtained

by Æ�-normalizing mu+ s ? s

0

with respet to R

	

C

is ontained in E

	

C

.

Proof. As u is Æ-irreduible with respet to R

	

C

, the Æ�-normalization of

mu+ s ? s

0

has the form

mu+ s ? s

0

Æ[�

�

1



��

mu+ r ? r

0

Then u � s � r and u � s

0

� r

0

. Starting from mu+ r ? r

0

we an onstrut

a derivation

mu+ r ? r

0

o

2



��

s

0

+ r ? r

0

+ s

Æ[�

�

3



��

r

0

+ r ? r

0

+ r

�

�

4



��

0 ? 0

10



where

2

 uses mu+ s? s

0

and

3

 simulates

1

. Hene mu+ r ? r

0

is ontained

in tr

Æ

	

(R

	

C

[E

C

) and thus in E

	

C

. 2

2.5 Refutational Completeness of OCInf

The relations !

R

	

C

and !

R

	

1

are in general not onuent, not even in the

purely equational ase. One an merely show that that !

R

	

C

is onuent on

equations in tr(R

	

C

), that is, that any two derivations starting from an equation

e an be joined, provided that there is a derivation e!

�

0 � 0. But even this

kind of restrited onuene does not hold for inequations, and in partiular,

not for o-rewriting. We an only prove that two derivations starting from the

same inequation an be joined, if one of them leads to 0 > 0 and if the other

one does not use o-steps. This property will be suÆient for our purposes,

however.

Definition 2.11 Let E be a set of equations and/or inequations. We say that

the relation!

R

is partially onuent on E, if for all equations e

0

2E and e

1

; e

2

with e

1

 

�

R

e

0

!

�

R

e

2

there exists an equation e

3

suh that e

1

!

�

R

e

3

 

�

R

e

2

,

and if for all inequations e

0

0

2 E and e

0

1

with e

0

1

 

�

Æ�;R

e

0

0

!

�

R

0 > 0 or

e

0

1

 

�

Æ�;R

e

0

0

!

Æ

R

0 > 0 there is a derivation e

0

1

!

�

R

0 > 0 or e

0

1

!

Æ

R

0 > 0,

respetively.

Lemma 2.12 Let C be a lause in N . If an inequation e 2 tr

Æ

	

(R

	

C

) is Æ�-

irreduible with respet to R

	

C

, and !

R

	

C

is partially onuent on tr(R

	

C

) \

f e

0

j mt(e) � mt(e

0

) g, then e 2 R

	

C

. (Analogously for C replaed by 1.)

Proof. We will prove the �rst part of the lemma, the proof of the seond

one being similar. By the de�nition of tr

Æ

	

(R

	

C

), an inequation e annot be

in normal form with respet to !

R

	

C

, hene e is di�erent from 0 > 0. Let

v = mt(e). By assumption, e is Æ�-irreduible. We may thus suppose that e

has the form kv + t ? t

0

, where v � t and v � t

0

. By de�nition of tr

Æ

	

(R

	

C

),

there is a derivation  

0

e !

Æ

R

	

C

0? 0 for some  

0

2N

>

0

. During this derivation

all ourrenes of v are deleted eventually. As e is Æ�-irreduible, this an be

done only by (possibly several) - or o-rewriting steps, using rules in R

	

C

. We

distinguish between two ases, depending on whether the primary rules by

whih these seondary rules have been generated are equations or inequations.

Case 1: fmv + s � s

0

g = E

D

� R

C

.

Then the ourrenes of v are deleted using rules ê

i

= m̂

i

v + r̂

i

� r̂

0

i

and/or

~e

j

= ~m

j

v + ~r

j

? ~r

0

j

, and all all ê

i

and ~e

j

are ontained in E

	

D

. We may assume

without loss of generality that the derivation  

0

e !

Æ

R

	

C

0 ? 0 has the form

11



 

0

kv +  

0

t ?  

0

t

0

[o

+

1



��

e

1

=

P

j

~r

0

j

+

P

i

r̂

0

i

+  

0

t ?  

0

t

0

+

P

i

r̂

i

+

P

j

~r

j

�

2



��

0 ? 0

where the rewrite steps of

1

 use the sequene of rules ê

i

and ~e

j

, the rewrite

steps of

2

 use rules from R

	

D

, and

P

i

m̂

i

+

P

j

~m

j

=  

0

k. There exists a

 2 N

>

0

and for every i and j an (R

	

D

[E

D

)-derivation

 ê

i

=  m̂

i

v +  r̂

i

�  r̂

0

i



+

3



��

 ~e

j

=  ~m

j

v +  ~r

j

?  ~r

0

j



+

5



��

ê

0

i

= �̂

i

s

0

+  r̂

i

�  r̂

0

i

+ �̂

i

s

�

4



��

~e

0

j

= ~�

j

s

0

+  ~r

j

?  ~r

0

j

+ ~�

j

s

Æ

6



��

0 � 0 0 ? 0

starting with �̂

i

- or ~�

j

-fold appliation of mv + s � s

0

, where  m̂

i

= �̂

i

m and

 ~m

j

= ~�

j

m.

Let e

2

=  e

1

+

P

i

ê

0

i

+

P

j

~e

0

j

. Then e

2

has a derivation to 0 ? 0. Canel-

lation of  

P

i

(r̂

i

+ r̂

0

i

) +  

P

j

(~r

j

+ ~r

0

j

) in e

2

yields

e

3

= (

P

i

�̂

i

+

P

j

~�

j

)s

0

+   

0

t ?   

0

t

0

+ (

P

i

�̂

i

+

P

j

~�

j

)s :

By partial onuene of !

R

	

C

we obtain e

3

!

�

R

	

C

0 > 0. Sine mt(e

3

) � v,

rules in R

	

C

n R

	

D

annot be used in this derivation, hene e

3

!

�

R

	

D

0 > 0.

On the other hand,   

0

k =

P

i

 m̂

i

+

P

j

 ~m

j

= m(

P

i

�̂

i

+

P

j

~�

j

), thus

we an rewrite   

0

e to e

3

by (

P

i

�̂

i

+

P

j

~�

j

)-fold appliation of mv + s � s

0

.

As e is Æ�-irreduible with respet to R

	

D

� R

	

C

, e is ontained in E

	

D

� R

	

C

by Def. 2.9.

Case 2: Otherwise.

Otherwise, in the derivation  

0

e !

Æ

R

	

C

0? 0 the ourrenes of v are eliminated

by o-appliations of seondary rules that have been generated by one or more

inequations. Let D be the maximal lause suh that rules ê

i

= m̂

i

v+ r̂

i

? r̂

0

i

in

E

	

D

� R

	

C

are used in the derivation. Let ~e

j

= ~m

j

v + ~r

j

? ~r

0

j

be the remaining

rules in R

	

D

used to eliminate the  

0

k ourrenes of v. We may thus assume

that  

0

k =

P

i

m̂

i

+

P

j

~m

j

and that the derivation  

0

e !

�

R

	

C

0 ? 0 has the

form

12



 

0

kv +  

0

t ?  

0

t

0

o

+

7



��

e

1

=

P

j

~r

0

j

+

P

i

r̂

0

i

+  

0

t ?  

0

t

0

+

P

i

r̂

i

+

P

j

~r

j

�

8



��

0 ? 0

where the rewrite steps of

7

 use the sequene of rules ê

i

from E

	

D

and ~e

j

from

R

	

D

, and the rewrite steps of

8

 use rules from R

	

D

with maximal term smaller

than v.

Let E

D

= fmv + s ? s

0

g. Then there exists a  2 N

>

0

and for every i an

(R

	

D

[E

D

)-derivation

 ê

i

=  m̂

i

v +  r̂

i

?  r̂

0

i

o

�

9



��

ê

0

i

=

P

l

�r

0

il

+ �̂

i

s

0

+  r̂

i

?  r̂

0

i

+ �̂

i

s+

P

l

�r

il

�

10



��

0 ? 0

where

9

 uses the rule mv + s ? s

0

2 E

D

�̂

i

times and then the sequene

of rules �e

il

= �m

il

v + �r

il

? �r

0

il

from R

	

D

, hene  m̂

i

= �̂

i

m+

P

l

�m

il

.

Let e

2

=  e

1

+

P

i

ê

0

i

. Then e

2

has a derivation to 0 ? 0. Canellation of

 

P

i

(r̂

i

+ r̂

0

i

) in e

2

yields

e

3

=  

P

j

~r

0

j

+

P

i

P

l

�r

0

il

+

P

i

�̂

i

s

0

+   

0

t

?   

0

t

0

+

P

i

�̂

i

s+

P

i

P

l

�r

il

+  

P

j

~r

j

:

By partial onuene of !

R

	

C

we obtain e

3

!

�

R

	

C

0 > 0. Sine mt(e

3

) � v,

rules in R

	

C

n R

	

D

annot be used in this derivation, hene e

3

!

�

R

	

D

0 > 0.

On the other hand,   

0

k =

P

i

 m̂

i

+

P

j

 ~m

j

=

P

i

�̂

i

m +

P

i

P

l

�m

il

+

P

j

 ~m

j

. Hene we an rewrite   

0

e to e

3

by (

P

i

�̂

i

)-fold appliation of mv+

s ? s

0

,  -fold appliation of every ~e

j

, and appliation of every �e

il

. As e is Æ�-

irreduible with respet to R

	

D

� R

	

C

, e is ontained in E

	

D

� R

	

C

by Def. 2.9.

2

Lemma 2.13 Let C be a lause in N . If an inequation e 2 tr

Æ

	

(R

	

C

[ E

C

) is

Æ�-irreduible with respet to R

	

C

[ E

C

, and !

R

	

C

is partially onuent on

tr(R

	

C

) \ f e

0

j mt(e) � mt(e

0

) g, then e 2 R

	

C

[E

	

C

.
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Proof. If e is ontained in tr

Æ

	

(R

	

C

), then e 2R

	

C

by Lemma 2.12. Otherwise,

let E

C

= fnv+ s � s

0

g and e = ku+ t ? t

0

, suh that u = mt(e). By de�nition

of tr

Æ

	

(R

	

C

[E

C

), there is a derivation

 ku+  t ?  t

0

!

Æ

R

	

C

[E

C

0 ? 0

for some  2 N

>

0

. During this derivation all ourrenes of u are deleted

eventually. If u were larger than v, this would be impossible, as u is Æ-irreduible

with respet to R

	

C

[E

C

. If u were smaller than v, then nv + s � s

0

ould not

be used during this derivation, hene e would be ontained in tr

Æ

	

(R

	

C

). Thus

u = v, and by Def. 2.9, e 2 E

	

C

. 2

When we have two primary rules nu + t < t

0

and mu + s > s

0

derived

from two lauses in N , then the onlusion of anellative haining of these

two lauses ontains the literal ns+mt

0

> ns

0

+mt. In this literal the maximal

term u is eliminated ompletely. In the proof that tr

Æ

(R

	

1

) is a model, however,

we have to deal with seondary rules, and moreover we have to deal with partial

overlaps, that is, overlaps where some ourrenes of u remain. The following

lemma shows how a seondary rule with maximal term u an be represented

by means of primary rules with maximal term u.

Lemma 2.14 Let C be a lause in N , let !

R

	

C

be partially onuent on

tr(R

	

C

) \ f e

0

j mt(C) � mt(e

0

) g. Let C �

C

D, suh that E

D

= fmu+ s ? s

0

g

and ku + r ? r

0

2 E

	

D

. Then there exist rules m

i

u + s

i

? s

0

i

2 R

D

[ E

D

and

positive integers  ; �

i

(1 � i � n) suh that  k =

P

i

�

i

m

i

, and

e

0

=  r +

P

i

�

i

s

0

i

?  r

0

+

P

i

�

i

s

i

!

�

R

	

C

0 ? 0 :

Proof. By de�nition of E

	

D

there exists a

^

 suh that

^

 ku +

^

 r ?

^

 r

0

2

tr

Æ

(R

	

D

[E

D

). Without loss of generality, we may assume that the derivation

has the form

^

 
ku+

^

 
r ?

^

 
r

0

o

�

1



��

ê = �̂s

0

+

P

j

�̂

j

r

0

j

+

^

 r ?

^

 r

0

+

P

j

�̂

j

r

j

+ �̂s

�

2



��

0 ? 0

where

1

 uses �-fold appliation of mu+ s? s

0

(�� 0) and �̂

j

-fold appliation

of rules k

j

u+ r

j

? r

0

j

2 R

	

D

(1 � j � j

0

), and

^

 k = �̂m+

P

j

�̂

j

k

j

.

14



By indution, for every k

j

u + r

j

? r

0

j

2 R

	

D

there exist positive integers

~

 

j

; ~�

jl

(1 � j � l

j

) suh that ~m

jl

u+ ~s

jl

? ~s

0

jl

2 R

D

,

~

 

j

k

j

=

P

l

~�

jl

~m

jl

, and

~e

j

=

~

 

j

r

j

+

P

l

~�

jl

~s

0

jl

?

~

 

j

r

0

j

+

P

l

~�

jl

~s

jl

!

�

R

	

C

0 ? 0 :

Let

�

 =

Q

j

~

 

j

. Then e

0

0

=

�

 ê +

P

j

�

 �̂

j

~

 

�1

j

~e

j

has a derivation to 0 ? 0,

anellation of

P

j

�̂

j

�

 (r

j

+ r

0

j

) in e

0

0

yields e

0

, and the result follows from

partial onuene of !

R

	

C

. 2

This lemma allows us to prove the following ruial fat: If the results of

the omplete hainings of primary rules with maximal term u are in tr

Æ

(R

	

C

),

and if moreover suÆiently many (small) peaks an be joined, then the result

of the partial overlap of seondary rules �mu+ �s > �s

0

and �nu+

�

t <

�

t

0

is itself a

seondary rule:

Lemma 2.15 Let E

C

= fm

1

u+ s

1

? s

0

1

g. Suppose that for every pair of rules

mu+ s > s

0

and nu+ t < t

0

from R

C

[E

C

the inequation ns+mt

0

> ns

0

+mt

is ontained in tr

Æ

(R

	

C

). Let !

R

	

C

be partially onuent on tr(R

	

C

)\ f e

0

j u �

mt(e

0

) g. For I [J �nite, i2 I, j 2 J , let e

i

= �m

i

u+�s

i

> �s

0

i

and ê

j

=

�

t

0

j

>

�

t

j

+�n

j

u

be inequations in R

	

C

[E

	

C

. Let e be the result of �-normalizing

P

i

e

i

+

P

i

ê

i

.

Then e is ontained in E

	

C

[R

	

C

.

Proof. Let m

�

=

P

i

�m

i

and n

�

=

P

j

�n

j

. Without loss of generality we

assume that � =m

�

� n

�

� 0. Then the �-normalization of

P

i

e

i

+

P

j

ê

j

has

the form

P

i

e

i

+

P

j

ê

j

�

�

1



��

�u+

P

i

�s

i

+

P

j

�

t

0

j

>

P

i

�s

0

i

+

P

j

�

t

j

�

�

2



��

e = �u+ q > q

0

By Lemma 2.14, for every i and j there exist rules m

ik

u + s

ik

> s

0

ik

and

n

jl

u + t

jl

< t

0

jl

2 R

C

[ E

C

, with  �m

i

=

P

k

�

ik

m

ik

,  �n

j

=

P

l

�

jl

n

jl

,

6

suh

that there are R

	

C

-derivations

e

1

i

=  �s

i

+

P

k

�

ik

s

0

ik

>  �s

0

i

+

P

k

�

ik

s

ik

�

3



��

0 > 0

6

We assume that  is independent of i and j; this is possible sine we may take the least

ommon multiple of all values of  obtained from Lemma 2.14 for the individual rules.
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ê

1

j

=  

�

t

0

j

+

P

l

�

jl

t

jl

>  

�

t

j

+

P

l

�

jl

t

0

jl

�

4



��

0 > 0

Furthermore, by assumption, for all i, j, k, and l, there is an R

	

C

-derivation

e

2

ijkl

= n

jl

s

ik

+m

ik

t

0

jl

> n

jl

s

0

ik

+m

ik

t

jl

Æ

5



��

0 > 0

De�ne the inequation e

3

by

e

3

=

P

ijkl

�

ik

�

jl

e

2

ijkl

+

P

i

 m

�

e

1

i

+

P

j

 m

�

ê

1

j

=

P

ijkl

�

ik

�

jl

n

jl

s

ik

+

P

ijkl

�

ik

�

jl

m

ik

t

0

jl

+

P

i

 

2

m

�

�s

i

+

P

ik

 m

�

�

ik

s

0

ik

+

P

j

 

2

m

�

�

t

0

j

+

P

jl

 m

�

�

jl

t

jl

>

P

ijkl

�

ik

�

jl

n

jl

s

0

ik

+

P

ijkl

�

ik

�

jl

m

ik

t

jl

+

P

i

 

2

m

�

�s

0

i

+

P

ik

 m

�

�

ik

s

ik

+

P

j

 

2

m

�

�

t

j

+

P

jl

 m

�

�

jl

t

0

jl

=

P

ik

 n

�

�

ik

s

ik

+

P

jl

 m

�

�

jl

t

0

jl

+

P

i

 

2

m

�

�s

i

+

P

ik

 m

�

�

ik

s

0

ik

+

P

j

 

2

m

�

�

t

0

j

+

P

jl

 m

�

�

jl

t

jl

>

P

ik

 n

�

�

ik

s

0

ik

+

P

jl

 m

�

�

jl

t

jl

+

P

i

 

2

m

�

�s

0

i

+

P

ik

 m

�

�

ik

s

ik

+

P

j

 

2

m

�

�

t

j

+

P

jl

 m

�

�

jl

t

0

jl

By onstrution, e

3

has an R

	

C

-derivation to 0 > 0 using a ombination of all

derivations

3

,

4

, and

5

. On the other hand, we an anel

P

ik

 n

�

�

ik

(s

ik

+

s

0

ik

) +

P

jl

 m

�

�

jl

(t

jl

+ t

0

jl

) in e

3

and then ontinue as in

2

 and obtain

e

4

=  

2

m

�

q +

P

ik

 ��

ik

s

0

ik

>  

2

m

�

q

0

+

P

ik

 ��

ik

s

ik

By partial onuene of !

R

	

C

, e

4

!

�

R

	

C

0 > 0.

Let m

ik

u + ~s

ik

> ~s

0

ik

be either m

ik

u + s

ik

> s

0

ik

(if the latter equation

is ontained in E

C

), or the equation in R

	

C

obtained from m

ik

u + s

ik

> s

0

ik

by Æ�-normalization as in Lemma 2.10 (if the latter equation is ontained in

E

D

� R

C

). Then e

4

rewrites using Æ�-steps to

e

5

=  

2

m

�

q +

P

ik

 ��

ik

~s

0

ik

>  

2

m

�

q

0

+

P

ik

 ��

ik

~s

ik

16



and e

5

!

�

R

	

C

0 > 0 by partial onuene of !

R

	

C

.

On the other hand,  

2

m

�

�u =  �

P

ik

�

ik

m

ik

u, hene  

2

m

�

e rewrites to

e

5

by  ��

ik

-fold o-appliation of every m

ik

u + ~s

ik

> ~s

0

ik

. Now there are two

possibilities: Either � > 0, then there is at least one o-step in the derivation

from  

2

m

�

e to e

5

. Or � = 0, then both I and J must be non-empty and

e

3

!

Æ

R

	

C

0> 0 beause of

5

. Consequently e

4

!

Æ

R

	

C

0> 0 and e

5

!

Æ

R

	

C

0> 0.

In both ases,  

2

m

�

e !

Æ

R

	

C

[E

C

0> 0. Therefore, e 2R

	

C

[E

	

C

by Lemma 2.13.

2

In the model onstrution, equations mu + s � s

0

as primary rules an

produe (in-)equations n

0

u + t

0

& t

0

0

and n

1

u + t

1

. t

0

1

as seondary rules.

If suÆiently many (small) peaks an be joined, then the result of the partial

overlap of suh seondary rules is likewise 0 & 0 or a seondary rule:

Lemma 2.16 Let E

C

= fmu + s � s

0

g, let !

R

	

C

be partially onuent on

tr(R

	

C

) \ f e

0

j u � mt(e

0

) g. For I [ J �nite, i 2 I, j 2 J , let e

i

= n

i

u+ t

i

& t

0

i

and ê

j

=

^

t

0

j

&

^

t

j

+ n̂

j

u be (in-)equations in E

	

C

. Let e be the result of �-

normalizing

P

i

e

i

+

P

j

ê

j

. Then e is ontained in E

	

C

[R

	

C

[ f0 � 0g.

Proof. Without loss of generality we assume that

P

i

n

i

�

P

j

n̂

j

. Then the

�-normalization of

P

i

e

i

+

P

j

ê

j

has the form

P

i

e

i

+

P

j

ê

j

�

�

1



��

(

P

i

n

i

�

P

j

n̂

j

)u+

P

i

t

i

+

P

j

^

t

0

j

&

P

i

t

0

i

+

P

j

^

t

j

�

�

2



��

e = (

P

i

n

i

�

P

j

n̂

j

)u+ q & q

0

Furthermore there exists a  2N

>

0

and for every i 2 I and j 2 J derivations

 n

i

u+  t

i

&  t

0

i



+

3



��

 

^

t

0

j

&  

^

t

j

+  n̂

j

u



+

5



��

e

0

i

= �

i

s

0

+  t

i

&  t

0

i

+ �

i

s

�

4



��

ê

0

j

= �̂

j

s+  

^

t

0

j

&  

^

t

j

+ �̂

j

s

0

�

6



��

0 & 0 0 & 0
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where  n

i

= �

i

m and  n̂

j

= �̂

j

m. Let

e

00

=

P

i

e

0

i

+

P

j

ê

0

j

=

P

i

�

i

s

0

+

P

i

 t

i

+

P

j

�̂

j

s+

P

j

 

^

t

0

j

&

P

i

 t

0

i

+

P

i

�

i

s+

P

j

 

^

t

j

+

P

j

�̂

j

s

0

Obviously, e

00

!

�

R

	

C

0 & 0 using a ombination of all derivations

4

 and

6

. On

the other hand, �-steps as in

2

 lead from e

00

to

e

000

= (

P

i

�

i

�

P

j

�̂

j

)s

0

+  q & (

P

i

�

i

�

P

j

�̂

j

)s+  q

0

By partial onuene of !

R

	

C

, we obtain e

000

!

�

R

	

C

0 & 0. On the other

hand, (

P

i

�

i

�

P

j

�̂

j

)m =  (

P

i

n

i

�

P

j

n̂

j

), thus  e rewrites to e

000

by

(

P

i

�

i

�

P

j

�̂

j

)-fold -appliation of mu+ s� s

0

. Furthermore, if at least one

of the e

i

or ê

j

is an inequation, then one of the derivations

4

 or

6

must ontain

an o-step, hene e !

Æ

R

	

C

[E

C

0> 0. Hene e2E

	

C

[R

	

C

[f0� 0g by Lemma 2.13

or by the orresponding Lemma for the equational ase (Waldmann [8℄). 2

There is one important tehnial di�erene between the equational ase

developed in (Waldmann [8℄) and the inequational ase that we onsider here:

In the equational ase, one an show that !

R

	

1

is onuent on tr(R

	

1

), and

hene that tr(R

	

1

) is a model of the theory axioms, without requiring that the

set N of lauses is saturated. Saturation is only neessary to prove that tr(R

	

1

)

is also a model of N . In the inequational ase, suh a separation does not work:

Proving partial onuene of !

R

	

1

requires Lemma 2.15, and Lemma 2.15

requires that anellative haining inferenes are redundant. For this reason,

the proof that !

R

	

1

is partially onuent and the proof that tr

Æ

(R

	

1

) is a

model of N must be ombined within a single indution.

Lemma 2.17 and Corollary 2.18 are opied almost verbatim from (Wald-

mann [8℄).

Lemma 2.17 The relation !

R

	

C

is partially onuent on the equations in

tr

Æ

(R

	

C

) for every C 2 N . The relation !

R

	

1

is partially onuent on the

equations in tr

Æ

(R

	

1

).

7

Corollary 2.18 For every C 2 N , tr

Æ

(R

	

C

) and tr

Æ

(R

	

1

) satisfy ACUKT

and the equality axioms (exept the ongruene axiom for the prediate >).

In a similar way as Lemma 2.17, we obtain by a rather tedious ase analysis

over various kinds of ritial pairs:

7

Note that onuene and partial onuene di�er only for inequations.
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Lemma 2.19 If for every pair of rules mu + s > s

0

and nu + t < t

0

from

E

C

[ R

C

the inequation ns + mt

0

> ns

0

+ mt is ontained in tr

Æ

(R

	

C

), then

!

R

	

C

[E

	

C

is partially onuent on tr(R

	

C

[E

	

C

).

Proof. Traditionally the onuene of a noetherian relation is established in

two steps. First, one proves by indution that the onuene of a noetherian

relation follows from loal onuene. Seond, one shows that loal onuene

is implied by the onvergene of ertain ritial pairs. In our ase, the indution

hypothesis is not only needed to show that loal onuene implies onuene,

but even to prove loal onuene. Consequently, we have to embed the analysis

of the ritial pairs within the indutive onuene proof.

To show that !

R

	

C

[E

	

C

is partially onuent on tr(R

	

C

[ E

	

C

), it suÆes

to show that it is partially onuent on tr(R

	

C

[E

	

C

)\ f e j e

0

�

L

e g for every

e

0

2 tr(R

	

C

[E

	

C

). We will do this by indution on the size of e

0

with respet

to �

L

. We have to show that for any peak

e

R

	

C

[E

	

C

xxrrrrrrrrrrr
R

	

C

[E

	

C

Æ�

$$II
II

II
II

II

e

1

R

	

C

[E

	

C

���

e

2

0 > 0

suh that e

0

�

L

e there exists a derivation e

2

!

�

R

	

C

[E

	

C

0 > 0, whih uses at

least one o-step if the derivation from e to 0 > 0 via e

1

uses any o-steps.

For e

0

�

L

e, this follows diretly from the indution hypothesis, so we assume

e

0

= e.

Case 1: Trivial peaks.

If e

1

 e !

Æ�

e

2

and both rewrite steps take plae at disjoint redexes,

then there is obviously an inequation e

3

suh that e

1

!

Æ�

e

3

 e

2

, the

indution hypothesis an be applied to e

1

, and hene there is a derivation

e

2

! e

3

!

�

0 > 0. Note in partiular that Æ-steps annot take plae at the

same redex as a - or o-step, hene =Æ-peaks, Æ=-peaks, and o=Æ-peaks are

neessarily trivial.

If e

1

 

Æ

e!

�

e

2

and the redexes are not disjoint, then e

1

an be rewritten

to e

2

by dupliating the original Æ-step on the other side of the inequation,

followed by a �-step, hene e

1

!

Æ

e

3

!

�

e

2

and the derivation from e

2

to 0 > 0

is obtained by applying the indution hypothesis �rst to e

1

and then to e

3

. In

a similar way, �=�- and �=Æ-peaks an be handled.

It is easy to hek that in all ases the derivation from e

2

to 0 > 0 uses an

o-step whenever the derivation from e via e

1

to 0 > 0 uses an o-step.
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Case 2: =�-peaks, o=�-peaks.

Suppose that e

1

 

o

e !

�

e

2

. We assume without loss of generality that the

- or o-step takes plae at the greater side of e (with respet to >), the other

ase is proved analogously. Then the peak has the form

kv + s > v + s

0

o

1



vvmmmmmmmmmmmm

�

2



&&NNNNNNNNNNN

r

0

+ s > v + s

0

+ r

�

3



��

(k � 1)v + s > s

0

0 > 0

where

1

 uses a rewrite rule kv + r & r

0

2 E

	

D

� R

	

C

[ E

	

C

. At some step of

the derivation

3

 the term v must be eventually deleted. As v is o-reduible,

it must be Æ-irreduible, so this deletion an happen only by a �-step or by a

- or o-step.

Case 2.1: v is deleted by a �-step.

The deletion of v by a �-step requires the existene of another ourrene of

v on the left-hand side. This ourrene an only be derived from s or s

0

. We

may thus assume that the derivation has the form

4

-

5

-

6

.

kv + s > v + s

0

o

1



uukkkkkkkkkkkkkk

�

2



((QQQQQQQQQQQQQQ

r

0

+ s > v + s

0

+ r

�

4



��

(k � 1)v + s > s

0

�

7



��

r

0

+ t+ v > v + t

0

+ r

�

5



��

(k � 1)v + t+ v > t

0

o

8



rreeeeeeeeeeeeeeeeeeeeeeeeeeeeee

r

0

+ t > t

0

+ r

�

6



��

0 > 0

As the steps

4

 take plae only at s and s

0

, we an simulate them by

7

.

Finally, we an lose the diagram using - or o-rewriting

8

 by kv+ r& r. Note

that the derivation

7

-

8

-

6

 uses an o-step whenever the derivation

1

-

4

-

5

-

6



uses an o-step.
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Case 2.2: v is deleted by a - or o-step.

Otherwise, the deletion of v during

3

 happens by appliation of a rule k

1

v +

r

1

. r

0

1

2 R

	

C

[ E

	

C

. Suh a step requires the presene of k

1

� 1 further

ourrenes of v on the right hand side. As r and r

0

are smaller than v, these

ourrenes an only be derived from s or s

0

. We may thus assume without

loss of generality that the derivation has the form

9

-

10

-

11

:

kv + s > v + s

0

o

1



uujjjjjjjjjjjjjjj

�

2



''OOOOOOOOOOO

r

0

+ s > v + s

0

+ r

�

9



��

(k � 1)v + s > s

0

�

12



��

r

0

+ t > v + (k

1

� 1)v + t

0

+ r

o

10



��

(k � 1)v + t > (k

1

� 1)v + t

0

r

1

+ r

0

+ t > t

0

+ r

0

1

+ r

�

11



��

0 > 0

The steps

9

 take plae only at s and s

0

, thus we an simulate them by

12

.

Consider the two rules kv + r & r

0

and k

1

v + r

1

. r

0

1

2 R

	

C

[E

	

C

. We an

add these two rules, obtaining kv + r + r

0

1

& k

1

v + r

1

+ r

0

. By Lemma 2.15

and 2.16, the result of �-normalizing this (in-)equation is either 0 � 0 or a rule

from R

	

C

[E

	

C

.

Case 2.2.1: k > k

1

.

If k > k

1

, then �-normalization yields an (in-)equation (k � k

1

)v + q & q

0

in

R

	

C

[E

	

C

:

kv + r + r

0

1

& k

1

v + r

1

+ r

0

�

���

(k � k

1

)v + r + r

0

1

& r

1

+ r

0

�

�

13



��

(k � k

1

)v + q & q

0

From

13

 it is easy to onstrut a derivation from q

0

+ r+ r

0

1

& q+ r

1

+ r

0

using

only anellation steps:

21



q

0

+ r + r

0

1

& q + r

1

+ r

0

�

�

14



��

0 & 0

Let us add the starting (in-)equations of

11

 and

14

. Obviously there is a deriva-

tion from this inequation to 0 > 0.

r

1

+ r

0

+ t+ q

0

+ r + r

0

1

> t

0

+ r

0

1

+ r + q + r

1

+ r

0

���

�

�

++WWWWWWWWWWWWWWWWWWWWWW

q

0

+ t > t

0

+ q

�

15



ssggggggggggggggggggggggggggg

0 > 0

On the other hand, we an anel r+ r

0

+ r

1

+ r

0

1

. By the indution hypothesis,

there is a derivation

15

 from q

0

+ t > t

0

+ q to 0 > 0.

We an now lose the diagram above: We use �-steps

16

 to anel k

1

� 1

ourrenes of v. Then we ontinue by - or o-appliation of (k � k

1

)v + q &

q

0

17

 and then append derivation

15

.

kv + s > v + s

0

o

1



uujjjjjjjjjjjjjjj

�

2



((QQQQQQQQQQQQQ

r

0

+ s > v + s

0

+ r

�

9



��

(k � 1)v + s > s

0

�

12



��

r

0

+ t > v + (k

1

� 1)v + t

0

+ r

o

10



��

(k � 1)v + t > (k

1

� 1)v + t

0

�

�

16



��

r

1

+ r

0

+ t > t

0

+ r

0

1

+ r

�

11



��

(k � k

1

)v + t > t

0

o

�

17



��

q

0

+ t > t

0

+ q

�

15



rreeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeee

0 > 0

Routine heking shows that the derivation

12

-

16

-

17

-

15

 uses an o-step when-

ever the derivation

1

-

9

-

10

-

11

 uses an o-step.
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Case 2.2.2: k < k

1

.

This is essentially the mirror image of Case 2.2.1.

Case 2.2.3: k = k

1

.

If k = k

1

, then �-normalization yields an (in-)equation q & q

0

that is either

0 � 0 or a rule from R

	

C

. In any ase, q & q

0

has itself a derivation to 0 & 0

(ontaining at least one o-step if q & q

0

is an inequation).

kv + r + r

0

1

& k

1

v + r

1

+ r

0

�

���

r + r

0

1

& r

1

+ r

0

�

�

18



��

q & q

0

�

19



��

0 & 0

Let us add the starting (in-)equations of

11

 and

18

. Obviously there is a deriva-

tion from this inequation to 0 > 0.

r

1

+ r

0

+ t+ r + r

0

1

> t

0

+ r

0

1

+ r + r

1

+ r

0

���

�

�
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t > t

0

�

20



ttiiiiiiiiiiiiiiiiiiiiiii

0 > 0

On the other hand, we an anel r + r

0

+ r

1

+ r

0

1

. By the indution hy-

pothesis, there is a derivation

20

 from t > t

0

to 0 > 0.

The diagram above an now be losed by using �-steps

21

 to anel k � 1

ourrenes of v, followed by derivation

20

.

23



kv + s > v + s

0

o

1



uujjjjjjjjjjjjjjj

�
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r

0

+ s > v + s

0

+ r

�

9



��

(k � 1)v + s > s

0

�

12



��

r

0

+ t > v + (k

1

� 1)v + t

0

+ r

o

10



��

(k � 1)v + t > (k

1

� 1)v + t

0

�

�

21



��

r

1

+ r

0

+ t > t

0

+ r

0

1

+ r

�

11



��

t > t

0

�

20
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0 > 0

Routine heking shows that the derivation

12

-

21

-

20

 uses an o-step whenever

the derivation

1

-

9

-

10

-

11

 uses an o-step.

Case 3: o=-peaks.

Suppose that e

1

 

o

e!



e

2

at overlapping redexes. Without loss of generality

both the o- and the -step take plae at the greater side of e (with respet to

>), the other ase is proved analogously. Then we may assume that the -step

uses a rule k

0

v + r

0

� r

0

0

and the o-step uses a rule k

1

v + r

1

> r

0

1

.

Case 3.1: k

1

> k

0

.

If k

1

> k

0

, then the peak has the form

k

1

v + s > s

0

o

1



vvnnnnnnnnnnnn



2



((QQQQQQQQQQQQ

r

0

1

+ s > s

0

+ r

1

�

3



��

(k

1

� k

0

)v + r

0

0

+ s > s

0

+ r

0

0 > 0

We an add the two rules k

1

v+ r

1

> r

0

1

and r

0

0

� k

0

v+ r

0

, obtaining k

1

v+ r

1

+

r

0

0

> k

0

v+ r

0

+ r

0

1

. By Lemma 2.16, the result of �-normalizing this inequation

must be a rule (k

1

� k

0

)v + q > q

0

from R

	

C

[E

	

C

.
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k

1

v + r

1

+ r

0

0

> k

0

v + r

0

+ r

0

1

�

���

(k

1

� k

0

)v + r

1

+ r

0

0

> r

0

+ r

0

1

�

�

4



��

(k

1

� k

0

)v + q > q

0

From

4

 it is easy to onstrut a derivation from q

0

+ r

1

+ r

0

0

> q + r

0

+ r

0

1

using only anellation steps:

q

0

+ r

1

+ r

0

0

> q + r

0

+ r

0

1

�

�

5



��

0 > 0

Let us add the starting inequations of

3

 and

5

. Obviously there is a derivation

from this inequation to 0 > 0.

r

0

1

+ s+ q

0

+ r

1

+ r

0

0

> s

0

+ r

1

+ q + r

0

+ r

0

1

���

�

�

++XXXXXXXXXXXXXXXXXXXXXX

s+ q

0

+ r

0

0

> s

0

+ q + r

0

�

6



ssfffffffffffffffffffffffffff

0 > 0

On the other hand, we an anel r

1

+ r

0

1

. By the indution hypothesis, there

is a derivation

6

 from s+ q

0

+ r

0

0

> s

0

+ q + r

0

to 0 > 0.

The diagram above an now be losed by an o-step using (k

1

� k

0

)v + q >

q

0

7

 followed by derivation

6

.

k

1

v + s > s

0

o

1
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r

0

1

+ s > s

0

+ r

1

�

3



��

(k

1

� k

0

)v + r

0

0

+ s > s

0

+ r

0

o

7



��

s+ q

0

+ r

0

0

> s

0

+ q + r

0

�

6
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0 > 0
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Note that the derivation

7

-

6

 ontains at least one o-step.

Case 3.2: k

1

� k

0

.

If k

1

� k

0

, then the peak has the form

k

0

v + s > s

0

o

1
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(k

0

� k

1

)v + r

0

1

+ s > s

0

+ r

1

�

3



��

r

0

0

+ s > s

0

+ r

0

0 > 0

During the derivation

3

, the k

0

� k

1

ourrenes of v are deleted ompletely.

As v is Æ-irreduible, this an happen only by �-, -, or o-steps. We may assume

that k

2

� 0 and k

3

� 0 further ourrenes of v are generated on the left-hand

and right-hand side, respetively, suh that k

3

ourrenes of v are eliminated

by �-steps and the remaining k

0

� k

1

+ k

2

� k

3

ones are eliminated by - or

o-steps. Without loss of generality the derivation has the form

k

0

v + s > s

0

o

1



wwooooooooooo



2



''OOOOOOOOOOO

(k

0

� k

1

)v + r

0

1

+ s > s

0

+ r

1

�

4



��

r

0

0

+ s > s

0

+ r

0

�

8



��

(k

0

� k

1

+ k

2

)v + r

0

1

+ t > t

0

+ r

1

+ k

3

v

o

�

5



��

k

2

v + r

0

0

+ t > t

0

+ r

0

+ k

3

v

r

0

2

+ k

3

v + r

0

1

+ t > t

0

+ r

1

+ k

3

v + r

2

�

�

6



��

r

0

2

+ r

0

1

+ t > t

0

+ r

1

+ r

2

�

7



��

0 > 0

where the steps

4

 take plae only at s and s

0

and

5

 uses rules e

0

i

2 R

	

C

[E

	

C

suh that

P

i

e

0

i

= (k

0

� k

1

+ k

2

� k

3

)v + r

2

& r

0

2

. As the steps

4

 take plae

only at s and s

0

we an simulate them by

8

.
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Case 3.2.1: k

2

> k

3

.

We an add the rules k

1

v+ r

1

> r

0

1

and r

0

0

� k

0

v+ r

0

and all rules e

0

i

obtaining

(k

0

+ k

2

� k

3

)v + r

1

+ r

2

+ r

0

0

> k

0

v + r

0

1

+ r

0

2

+ r

0

. By Lemma 2.16, the

result of �-normalizing this inequation must be a rule (k

2

� k

3

)v + q > q

0

from

R

	

C

[E

	

C

.

(k

0

+ k

2

� k

3

)v + r

1

+ r

2

+ r

0

0

> k

0

v + r

0

1

+ r

0

2

+ r

0

�

���

(k

2

� k

3

)v + r

1

+ r

2

+ r

0

0

> r

0

1

+ r

0

2

+ r

0

�

�

9



��

(k

2

� k

3

)v + q > q

0

From

9

 it is easy to onstrut a derivation from q

0

+ r

1

+ r

2

+ r

0

0

> q + r

0

1

+

r

0

2

+ r

0

using only anellation steps:

q

0

+ r

1

+ r

2

+ r

0

0

> q + r

0

1

+ r

0

2

+ r

0

�

�

10



��

0 > 0

Let us add the starting inequations of

7

 and

10

. Obviously there is a derivation

from this inequation to 0 > 0.

r

0

2

+ r

0

1

+ t+ q

0

+ r

1

+ r

2

+ r

0

0

> t

0

+ r

1

+ r

2

+ q + r

0

1

+ r

0

2

+ r

0

���

�

�
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q

0

+ r

0

0

+ t > t

0

+ r

0

+ q

�

11



tthhhhhhhhhhhhhhhhhhhhh

0 > 0

On the other hand, we an anel r

1

+ r

2

+ r

0

1

+ r

0

2

. By the indution hypothesis,

there is a derivation

11

 from t+ q

0

+ r

0

0

> t

0

+ q + r

0

to 0 > 0.

The diagram above an now be losed by anellation of k

3

v

12

, followed

by an o-step using (k

2

� k

3

)v + q > q

0

13

 followed by derivation

11

.
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k

0

v + s > s

0

o

1
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(k

0

�k

1

)v + r

0

1

+ s > s

0

+ r

1

�

4



��

r

0

0

+ s > s

0

+ r

0

�

8



��

(k

0

�k

1

+k

2

)v + r

0

1

+ t > t

0

+ r

1

+ k

3

v

o

�

5



��

k

2

v + r

0

0

+ t > t

0

+ r

0

+ k

3

v

�

�

12



��

r

0

2

+ k

3

v + r

0

1

+ t > t

0

+ r

1

+ k

3

v + r

2

�

�

6



��

(k

2

�k

3

)v + r

0

0

+ t > t

0

+ r

0

o

13



��

r

0

2

+ r

0

1

+ t > t

0

+ r

1

+ r

2

�

7



��

q

0

+ r

0

0

+ t > t

0

+ r

0

+ q

�

11
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0 > 0

Case 3.2.2: k

2

< k

3

.

This is essentially the mirror image of Case 3.2.1.

Case 3.2.3: k

2

= k

3

.

Again, we add the rules k

1

v + r

1

> r

0

1

and r

0

0

� k

0

v + r

0

and all rules e

0

i

obtaining k

0

v + r

1

+ r

2

+ r

0

0

> k

0

v + r

0

1

+ r

0

2

+ r

0

. By Lemma 2.16, the result

q > q

0

of �-normalizing this inequation must be a rule from R

	

C

[ E

	

C

, hene

q > q

0

has itself a derivation to 0 > 0.

k

0

v + r

1

+ r

2

+ r

0

0

> k

0

v + r

0

1

+ r

0

2

+ r

0

�

���

r

1

+ r

2

+ r

0

0

> r

0

1

+ r

0

2

+ r

0

�

�

18



��

q > q

0

Æ

19



��

0 > 0
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Let us add the starting (in-)equations of

7

 and

18

. Obviously there is a deriva-

tion from this inequation to 0 > 0.

r

0

2

+ r

0

1

+ t+ r

1

+ r

2

+ r

0

0

> t

0

+ r

1

+ r

2

+ r

0

1

+ r

0

2

+ r

0

Æ��

�

�
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r

0

0

+ t > t

0

+ r

0

Æ

20
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0 > 0

On the other hand, we an anel r

1

+ r

2

+ r

0

1

+ r

0

2

. By the indution

hypothesis, there is a derivation

20

 from t+ r

0

0

> t

0

+ r

0

to 0 > 0.

The diagram above an now be losed by using �-steps

21

 to anel k

2

v

followed by derivation

20

.

k

0

v + s > s

0

o

1
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(k

0

�k

1

)v + r

0

1

+ s > s

0

+ r

1

�

4



��

r

0

0

+ s > s

0

+ r

0

�

8



��

(k

0

�k

1

+k

2

)v + r

0

1

+ t > t

0

+ r

1

+ k

3

v

o

�

5



��

k

2

v + r

0

0

+ t > t

0

+ r

0

+ k

3

v

�

�

21



��

r

0

2

+ k

3

v + r

0

1

+ t > t

0

+ r

1

+ k

3

v + r

2

�

�

6



��

r

0

0

+ t > t

0

+ r

0

Æ

20
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r

0

2

+ r

0

1

+ t > t

0

+ r

1

+ r

2

�

7



��

0 > 0

Case 4: =-peaks, Æ=Æ-peaks, �=-peaks.

It remains to onsider peaks of the form e

1

 



e !



e

2

or e

1

 

Æ

e !

Æ

e

2

or e

1

 

�

e !



e

2

. These an be joined in virtually the same way as the

orresponding peaks in the equational ase. 2
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Using the same tehniques as in (Waldmann [8℄) and (Bahmair and Gan-

zinger [3℄) we an now prove the following theorem. Note in partiular that

in the presene of the totality axiom anellative inequality fatoring (I)/(II)

inferenes are simpli�ations, hene lauses where the maximal atomi term

ours in two ordering literals do not produe primary rules.

Theorem 2.20 Let N be a set of lauses without negative inequality literals

and without unshielded variables; suppose that N is saturated up to redun-

dany and ontains the theory axiom Div, Inv, Nt, and all ground instanes

of Tot. If all lauses of N , exept the ground instanes of Tot, are fully ab-

strated, and if N does not ontain the empty lause, then we have for every

ground lause C� 2 N :

(i) The relation !

R

	

C�

is partially onuent on tr(R

	

C�

).

(ii) tr

Æ

(R

	

C�

) satis�es the axioms Ir, Tr, Mon, K

>

, T

>

, and the ongruene

axiom for the prediate >.

(iii) E

C�

= ; if and only if C� is true in tr

Æ

(R

	

C�

).

(iv) C� is true in tr

Æ

(R

	

1

) and in tr

Æ

(R

	

D�

) for every D� �

C

C�.

(v) If C� = C

0

� _ e� and E

C�

= fe�g, then C

0

� is false in tr

Æ

(R

	

1

) and

tr

Æ

(R

	

D�

) for any D� �

C

C�.

(vi) The relation !

R

	

C�

[E

	

C�

is partially onuent on tr(R

	

C�

[E

	

C�

).

(vii) tr

Æ

(R

	

C�

[ E

	

C�

) satis�es the axioms Ir, Tr, Mon, K

>

, T

>

, and the

ongruene axiom for the prediate >.

(viii) The relation !

R

	

1

is partially onuent on tr(R

	

1

) and tr

Æ

(R

	

1

) sat-

is�es the axioms Ir, Tr, Mon, K

>

, T

>

, and the ongruene axiom for the

prediate >.

Proof. We use indution on the lause ordering �

C

and assume that (i){(vii)

are already satis�ed for all lauses in N that are smaller than C�.

Property (i) is a diret onsequene of the fat that R

	

C�

is the union of

all R

	

D�

with D� �

C

C�: Note that every �nite R

	

C�

-derivation is also an R

	

D�

-

derivation for some D� 2 N with D� �

C

C� and that (vi) is satis�ed for

D�.

Property (ii) follows from partial onuene. For the transitivity axiom,

onsider two inequations r > s and s > t in tr

Æ

(R

	

C�

).

r > s

Æ

1



��

s > t

Æ

2



��

0 > 0 0 > 0
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We an ombine the derivations

1

 and

2

 and obtain a derivation

3

:

r + s > s+ t

Æ

3



��

�

�

4
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r > t

Æ
5



yyrrrrrrrrrr

0 > 0

On the other hand, we an use �-steps

4

 to anel s on both sides of the

inequation. By partial onuene, there is a derivation

5

, hene r > t 2

tr

Æ

(R

	

C

).

For the axiom T

>

we have to show that  s >  t 2 tr

Æ

(R

	

C�

) entails

s > t 2 tr

Æ

(R

	

C�

). Consider derivation

1

:

 s >  t

Æ

1



��

Æ

�

2
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 (s

0

+ r) >  (t

0

+ r)

�

�

3



��

 s

0

>  t

0

Æ

4
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0 > 0

We an Æ�-normalize  s >  t, �rst by Æ-rewriting s to s

0

+ r and t to t

0

+ r

2

, then by anelling

3

 the ommon part  r. By onuene, there exists a

derivation

4

. The inequation  s

0

>  t

0

is Æ�-irreduible with respet to R

	

C�

,

hene it is ontained in some E

	

D�

� R

	

C�

by Lemma 2.12. By the onstrution

of E

	

D�

and by the de�nition of tr

Æ

, we get s

0

> t

0

2 E

	

D�

� R

	

C�

. It is now easy

to onstrut a derivation from s > t to 0 > 0, using �rst Æ�-normalization and

then s

0

> t

0

.

The other axioms are proved in a similar way.

The \if" part of (iii) is obvious from the model onstrution. To prove

the \only if" part let us assume that C� is false in tr

Æ

(R

	

C�

). We distinguish

between three ases:

If C ontains a variable x suh that x�� r 2 tr

Æ

(R

	

C�

) for some term r� x�,

then there is a smaller instane of C that is true in tr

Æ

(R

	

C�

) by the indution

hypothesis. As tr

Æ

(R

	

C�

) satis�es the equality axioms, C� must also be true in
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tr

Æ

(R

	

C�

), ontraditing our assumption. Similarly, if C� is an instane of the

totality axiom and some term ourring in C� equals some smaller term, then

there is a smaller instane of the totality axiom, and again C� must be true

in tr

Æ

(R

	

C�

).

Suppose that C� ontains a maximal negative literal : e

1

�. Then there

must be an R

	

C�

-derivation from e

1

� to 0 � 0. If the maximal atomi term of

e

1

� ours on both sides of e

1

�, then there is either a anellation or an equality

resolution inferene from C�. This inferene is an instane of a anellation

or equality resolution inferene from C. By saturation up to redundany, the

onlusion of the inferene must be true in tr

Æ

(R

	

C�

), hene C� must also be

true, ontraditing our assumption.

If the maximal term ours on only one side, then it must be either -

or Æ-reduible, using a rule e

00

2 E

	

D�

� R

	

C�

. Consequently, there is either

a anellative superposition or a standard superposition inferene between D�

and C�, and by saturation up to redundany, the onlusion of the inferene

must be true in tr

Æ

(R

	

C�

). From this we an again infer that C� is true in

tr

Æ

(R

	

C�

).

It remains to onsider the ase that C� does not ontain a maximal negative

literal. Then it must ontain a maximal positive literal e

1

. If the maximal

atomi term of e

1

� ours on both sides of e

1

�, then there is either a anellation

or an inequality resolution inferene from C� and C� must be true in tr

Æ

(R

	

C�

)

by saturation.

If the maximal atomi term ours on only one side of e

1

�, then there

are again three possibilities: If e

1

� is maximal, but not stritly maximal in

C�, then there is either a anellative equality fatoring, or a standard equality

fatoring, or a anellative inequality fatoring inferene from C�, from whih

we an onlude that C� is true in tr

Æ

(R

	

C�

).

If �mt(e

1

�) is Æ-reduible for some � 2N

>

0

using a rule e

00

2 E

	

D�

� R

	

C�

,

then there is either a anellative superposition or a standard superposition

inferene between D� and C�. One more, C� must be true in tr

Æ

(R

	

C�

).

Otherwise, either E

C�

= fe

1

�g (then there is nothing to show), or C

0

� is

true in tr

Æ

	

(R

	

C�

[ fe

1

�g). In this ase, C

0

� = C

00

� _ e

2

�, where the literal e

2

�

is smaller than e

1

� and is ontained in tr

Æ

	

(R

	

C�

[ fe

1

�g) n tr

Æ

(R

	

C�

). This an

happen only if mt(e

2

�) = mt(e

1

�). Then there is either a anellative equality

fatoring, or a standard equality fatoring, or a anellative inequality fatoring

inferene from C�, from whih we an onlude that C� is true in tr

Æ

(R

	

C�

).

Property (iv) follows from (iii) and from the fat that rules in R

	

1

n R

	

C�

annot be used to disprove a negative equality in C�.
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If C� = C

0

� _ e� and E

C�

= fe�g, then C

0

� is obviously false in tr

Æ

(R

	

C�

).

Let e

0

be any positive literal in C

0

. The literal ordering is de�ned in suh a way

that there is only one situation in whih rules in R

	

1

nR

	

C�

ould be used in a

derivation e

0

�!

Æ

0 � 0, namely if both e and e

0

are inequations and mt(e

0

�) =

mt(e�) ours in both e

0

� and e� either only on the greater side or only on the

smaller side (with respet to >). However, in this ase (and in the presene

of the totality axiom) anellative inequality fatoring (I)/(II) inferenes are

simpli�ations, that is the onlusions of both anellative inequality fatoring

inferenes and some suÆiently small instane of the totality axiom imply C�.

As N is saturated up to redundany, C� must be true in tr

Æ

(R

	

C�

), hene

E

C�

= ;. This proves property (v).

Let mu + s > s

0

and nu + t < t

0

be rules from E

C�

[ R

C�

. Then there

is a anellative haining inferene from the two lauses produing these two

rules. As this inferene must be redundant, the inequation ns+mt

0

> ns

0

+mt

is ontained in tr

Æ

(R

	

C�

). By Lemma 2.19, !

R

	

C�

[E

	

C�

is partially onuent on

tr(R

	

C�

[E

	

C�

), hene property (vi) holds.

Property (vii) follows from (vi) in the same way as property (ii) follows

from (i). This ompletes the indutive proof of properties (i){(vii).

It remains to prove property (viii): Partial onuene of!

R

	

1

follows from

the fat that R

	

1

is the union of all R

	

C�

(f. property (i)), the rest is proved

again in the same way as property (ii). 2

Theorem 2.21 Let N be a set of lauses without negative inequality literals

and without unshielded variables; suppose that N is saturated up to redun-

dany and ontains the theory axiom Div, Inv, Nt, and all ground instanes

of Tot. Suppose that all lauses of N , exept the ground instanes of Tot, are

fully abstrated. Then N [ ODAG is unsatis�able if and only if N ontains

the empty lause.

Proof. If N ontains the empty lause, then it is unsatis�able. Otherwise,

tr

Æ

(R

	

1

) is a model of the equality axioms, of ODAG, and of N . 2

We may assume without loss of generality that the onstant a

0

does not o-

ur in non-theory input lauses and that the funtion symbols� and divided-by

n

are eliminated eagerly from all non-theory input lauses. In this ase, no infer-

enes are possible with the axioms Div, Inv, and Nt. Furthermore, one an show

that inferenes with instanes of the totality axiom Tot are always redundant

(analogously to Bahmair and Ganzinger [3℄).
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3 The Extended Calulus

3.1 Variable Elimination

As we have mentioned in the introdution, the alulusOCInf works on lauses

without unshielded variables, but its inferene rules may produe lauses with

unshielded variables. To make it e�etively saturate a given set of lauses, it

has to be supplemented by a variable elimination algorithm.

In the equational ase, every lause with unshielded variables an be trans-

formed into an equivalent lause without unshielded variables. However, in the

presene of ordering literals, this does no longer hold.

Example 3.1 Consider the lause C = x > a _ x � b _ x < . This lause

is true for every value of x, if either  > a or both a � b and  � b. So C an

be replaed by the lause normal form of  > a _ (a � b ^  � b), that is, by

the two lauses  > a _ a � b and  > a _  � b, but C is not equivalent to a

single lause without unshielded variables.

For any disjuntion of onjuntions of literals F let CNF(F ) be the lause

normal form of F (represented as a multiset of lauses).

Let x be a variable of sort G. We de�ne a binary relation!

x

over multisets

of lauses by

CanelVar M [ fC

0

_ mx+ s

:

� m

0

x+ s

0

g !

x

M [ fC

0

_ (m�m

0

)x+ s

:

� s

0

g

if m � m

0

� 1.

ElimNeg M [ fC

0

_ mx+ s 6� s

0

g !

x

M [ fC

0

g

if m � 1 and x does not our in C

0

; s; s

0

.

ElimPos M [

�

C

0

_

W

i2I

l

i

x+ r

i

� r

0

i

_

W

j2J

m

j

x+ s

j

> s

0

j

_

W

k2K

n

k

x+ t

k

< t

0

k

	

!

x

M [ CNF

�

C

0

_

W

j2J

W

k2K

(n

k

s

j

+m

j

t

0

k

> n

k

s

0

j

+m

j

t

k

_

W

i2I

(l

i

s

j

+m

j

r

0

i

� l

i

s

0

j

+m

j

r

i

^ l

i

t

k

+ n

k

r

0

i

� l

i

t

0

k

+ n

k

r

i

))

�

if I [ J [K 6= ;, l

i

� 1, m

j

� 1, n

k

� 1 and x does not our in

C

0

; r

i

; r

0

i

; s

j

; s

0

j

; t

k

; t

0

k

, for i 2 I, j 2 J , k 2 K.

Coalese M [ fC

0

_ mx+ s 6� s

0

_ nx+ t

:

� t

0

g !

x

M [ fC

0

_ mx+ s 6� s

0

_ mt+ ns

0

:

� mt

0

+ nsg

if m � 1, n � 1, and x does not our in s; s

0

; t; t

0

.
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It is easy to show that !

x

is noetherian. We de�ne the relation!

elim

over

multisets of lauses in suh a way that M [ fCg !

elim

M [M

0

if and only

if C ontains an unshielded variable x and M

0

is a normal form of fCg with

respet to !

x

.

The relation !

elim

is again noetherian. For a lause C, elim(C) denotes

some (arbitrary but �xed) normal form of fCg with respet to the rela-

tion !

elim

.

Corollary 3.2 For any C, the lauses in elim(C) ontain no unshielded vari-

ables.

Lemma 3.3 For every C, fCg j=

ODAG

elim(C) and elim(C)[Tot j=

OTfCAM

C.

For every ground instane C�, elim(C)� [ Tot j=

OTfCAM

C�.

3.2 Integration of the Elimination Algorithm

Using the tehnique skethed so far, every lause C

0

an be transformed into

a set of lauses elim(C

0

) that do not ontain unshielded variables, follow from

C

0

and the axioms of totally ordered divisible abelian groups, and imply C

0

modulo OTfCAM[Tot. Obviously, we an perform this transformation for all

initially given lauses before we start the saturation proess. However, when

lauses with unshielded variables are produed during the saturation proess,

then logial equivalene is not suÆient to eliminate them. We have to require

that the transformed set of lauses elim(C

0

) makes the inferene � produing

C

0

redundant. Unfortunately, it may happen that the lauses in elim(C

0

) or

the instanes of the totality axiom needed in Lemma 3.3 are too large, at least

for some instanes of �. To integrate the variable elimination algorithm into

the base alulus, it has to be supplemented by a ase analysis tehnique.

Let k 2 f1; 2g, let C

1

; : : : ; C

k

be lauses without unshielded variables and

let � be an OCInf -inferene

C

k

: : : C

1

C

0

�

We all the unifying substitution � that is omputed during � and applied to

the onlusion the pivotal substitution of �. (For ground inferenes, the pivotal

substitution is the identity mapping.) If the last premise C

1

has the form

C

0

1

_ A where A is maximal (and the replaement or anellation takes plae

at A) then we all A� the pivotal literal of �.

8

Finally, if u

0

is the atomi term

that is anelled out in �, or in whih some subterm is replaed,

9

then we all

u

0

� the pivotal term of �.

8

In anellative inequality fatoring inferenes, the pivotal literal is not deleted; however,

fatoring does not produe unshielded variables anyway.

9

More preisely, u

0

is the maximal atomi subterm of s ontaining u in standard super-

position inferenes, and the term u in all other inferenes.
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Two properties of pivotal terms are important for us: First, whenever an

inferene � from lauses without unshielded variables produes a onlusion

with unshielded variables, then all these unshielded variables our in the piv-

otal term of �. Seond, no atomi term in the onlusion of � an be larger than

the pivotal term of �.

One an now show that, if the lauses in elim(C

0

) or the instanes of the

totality axiom needed in Lemma 3.3 are too large to make the OCInf -inferene

� redundant, then there must be an atomi term in some lause in elim(C

0

) that

is uni�able with the pivotal term. If we apply the uni�er to the onlusion of the

OCInf -inferene, then the result does no longer ontain unshielded variables,

and moreover it subsumes the ritial instanes of �. Using this result, we

an now transform the inferene system OCInf into a new inferene system

that operates on lauses without unshielded variables and produes again suh

lauses. The new system ODInf is given by two meta-inferene rules:

Eliminating Inferene

C

n

: : : C

1

C

0

if the following onditions are satis�ed:

(i)

C

n

: : : C

1

C

0

is a OCInf -inferene.

(ii) C

0

2 elim(C

0

).

Instantiating Inferene

C

n

: : : C

1

C

0

�

if the following onditions are satis�ed:

(i)

C

n

: : : C

1

C

0

is a OCInf -inferene with pivotal literal A and pivotal

term u.

(ii) elim(C

0

) 6= fC

0

g.

(iii) A literal A

1

with the same polarity as A ours in some lause in

elim(C

0

).

(iv) An atomi term u

1

ours at the top of A

1

.

(v) � is ontained in a minimal omplete set of ACU-uni�ers of u and u

1

.
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We de�ne the redundany riterion for the new inferene system in suh

a way, that an ODInf -inferene is redundant, if the appropriate instanes of

its parent OCInf -inferene are redundant. Then a set of lauses without un-

shielded variables that is saturated with respet to ODInf up to redundany

is also saturated with respet to OCInf up to redundany. ODInf an thus be

used for e�etive saturation of a given set of input lauses:

Theorem 3.4 Let N

0

be a set of lauses without negative inequality literals

and without unshielded variables; let N

0

ontain the theory axiom Div, Inv,

Nt, and all ground instanes of Tot. Suppose that all lauses of N

0

, exept the

ground instanes of Tot, are fully abstrated. Let N

0

` N

1

` N

2

` : : : be a fair

ODInf -derivation. Let N

1

be the limit of the derivation. Then N

0

[ODAG is

unsatis�able if and only if N

1

ontains the empty lause.

4 Conlusions

We have presented a superposition-based alulus for �rst-order theorem prov-

ing in the presene of the axioms of totally ordered divisible abelian groups. It

is based on the DTAG-superposition alulus from (Waldmann [10℄) and the

ordered haining alulus for dense total orderings without endpoints (Bah-

mair and Ganzinger [3℄), and it shares the essential features of these two aluli:

It is refutationally omplete, it does not require expliit inferenes with the

theory lauses, and due to the integrated variable elimination algorithm it does

not require variable overlaps. It o�ers thus an eÆient way of treating equal-

ities and inequalities between additive terms over, e. g., the rational numbers

within a �rst-order theorem prover.
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