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Abstra
t

We present a 
al
ulus for �rst-order theorem proving in the presen
e of the

axioms of totally ordered divisible abelian groups. The 
al
ulus extends previ-

ous superposition or 
haining 
al
uli for divisible torsion-free abelian groups

and dense total orderings without endpoints. As its prede
essors, it is refu-

tationally 
omplete and requires neither expli
it inferen
es with the theory

axioms nor variable overlaps. It o�ers thus an eÆ
ient way of treating equal-

ities and inequalities between additive terms over, e. g., the rational numbers

within a �rst-order theorem prover.
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1 Introdu
tion

Most real life problems for an automated theorem prover 
ontain both un-

interpreted fun
tion and predi
ate symbols, that are spe
i�
 for a parti
ular

domain, and standard algebrai
 stru
tures, su
h as numbers or orderings. Gen-

eral theorem proving te
hniques like resolution or superposition are notoriously

bad at handling algebrai
al theories involving axioms like asso
iativity, 
om-

mutativity, or transitivity, sin
e expli
it inferen
es with these axioms lead to

an explosion of the sear
h spa
e. To deal eÆ
iently with su
h stru
tures, it is

therefore ne
essary that spe
ialized te
hniques are built tightly into the prover.

AC-superposition (Ba
hmair and Ganzinger [1℄, Wertz [11℄) is a well-known

example of su
h a te
hnique. It in
orporates asso
iativity and 
ommutativity

into the standard superposition 
al
ulus using AC-uni�
ation and extended


lauses. In this way, inferen
es with the theory axioms and 
ertain inferen
es

involving variables are rendered unne
essary. Still, reasoning with the asso
ia-

tivity and 
ommutativity axioms remains diÆ
ult for an automated theorem

prover, even if expli
it inferen
es with the AC axioms 
an be avoided. This

is not only due to the NP-
ompleteness of the AC-uni�ability problem, but it

stems also from the fa
t that AC-superposition requires an inferen
e between

literals u

1

+ � � � + u

k

� s and v

1

+ � � � + v

l

� t (via extended 
lauses) when-

ever some u

i

is uni�able with some v

j

. Consequently, a variable in a sum 
an

be uni�ed with any part of any other sum { in this situation uni�
ation is


ompletely unable to limit the sear
h spa
e.

The ineÆ
ien
y inherent in the theory of asso
iativity and 
ommutativity


an be mitigated by integrating further axioms into the 
al
ulus. In abelian

groups (or even in 
an
ellative abelian monoids) the ordering 
onditions of the

inferen
e rules 
an be re�ned in su
h a way that summands u

i

and v

j

have to be

overlapped only if they are maximal with respe
t to some simpli�
ation order-

ing � (Ganzinger and Waldmann [4, 8℄, Mar
h�e [5℄, Stuber [7℄). In this way,

the number of variable overlaps 
an be greatly redu
ed; however, inferen
es

with unshielded, i. e., potentially maximal, variables remain ne
essary.

In non-trivial divisible torsion-free abelian groups (e. g., the rational num-

bers and rational ve
tor spa
es), the abelian group axioms are extended by

the torsion-freeness axiom 8k 2 N

>

0

8x; y: kx � ky ) x � y, the divisibility

axiom 8k 2 N

>

0

8x 9y: ky � x, and the non-triviality axiom 9y: y 6� 0.

In su
h stru
tures every 
lause 
an be transformed into an equivalent 
lause

without unshielded variables. Integrating this variable elimination algorithm

into 
an
ellative superposition results in a 
al
ulus that requires neither ex-

tended 
lauses, nor variable overlaps, nor expli
it inferen
es with the theory

axioms. Furthermore, using full abstra
tion even AC uni�
ation 
an be avoided

(Waldmann [10℄).

When we want to work with a transitive relation > in a theorem prover,
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we en
ounter a situation that is surprisingly similar to the one depi
ted above.

Just as asso
iativity and 
ommutativity, the transitivity axiom is fairly proli�
.

It allows to derive a new 
lause whenever the left hand side of a literal r > s

overlaps with the right hand side of another literal s

0

> t. As su
h an overlap

is always possible if s or s

0

is a variable, uni�
ation is not an e�e
tive �lter to


ontrol the generation of new 
lauses. The use of the 
haining inferen
e rule

makes expli
it inferen
es with the transitivity axiom super
uous (Slagle [6℄).

Sin
e this inferen
e rule 
an be equipped with the restri
tion that the over-

lapped term s must be maximal with respe
t to a simpli�
ation ordering �,

overlaps with shielded variables be
ome again unne
essary. Only inferen
es

with unshielded, i. e., potentially maximal, variables have to be 
omputed.

On
e more, the number of unshielded variables in a 
lause 
an be redu
ed

if further axioms are available. In parti
ular, in dense total orderings without

endpoints, unshielded variables 
an be eliminated 
ompletely (Ba
hmair and

Ganzinger [3℄).

There are two fa
ts that suggest to investigate the 
ombination of the the-

ory of divisible torsion-free abelian groups and the theory of dense total order-

ings without endpoints. On the one hand, the vast majority of appli
ations of

divisible torsion-free abelian groups (and in parti
ular of the rationals or reals)

requires also an ordering; so the 
ombined 
al
ulus is likely to be mu
h more

useful in pra
ti
e than the DTAG-superposition 
al
ulus on whi
h it is based.

On the other hand, these two theories are 
losely related: An abelian group

(G;+; 0) 
an be equipped with a total ordering that is 
ompatible with + if

and only if it is torsion-free; furthermore divisibility and 
ompatibility of the

ordering imply that the ordering is dense and has no endpoints. One 
an thus

assume that the two 
al
uli �t together rather smoothly. We show in this paper

that this is in fa
t true. The resulting 
al
ulus splits again into two parts: The

�rst one is a base 
al
ulus, that works on 
lauses without unshielded variables,

but whose rules may produ
e 
lauses with unshielded variables. This 
al
ulus

has the property that saturated sets of 
lauses are unsatis�able if and only if

they 
ontain the empty 
lause, but it 
an not be used to e�e
tively saturate a

given set of 
lauses. The se
ond part of the 
al
ulus is a variable elimination

algorithm that makes it possible to get rid of unshielded variables, and thus

renders the base 
al
ulus e�e
tive. The integration of these two 
omponents

happens in essentially the same way as in the equational 
ase (Waldmann [10℄).

2 The Base Cal
ulus

2.1 Preliminaries

We work in a many-sorted framework and assume that the fun
tion symbol

+ is de
lared on a sort G. If t is a term of sort G and n 2 N, then nt is an
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abbreviation for the n-fold sum t+ � � �+ t; in parti
ular, 0t = 0 and 1t = t.

Without loss of generality we assume that the equality relation � and the

semanti
 ordering > are the only predi
ates of our language. Hen
e a literal is

either an equation t � t

0

, or a negated equation t 6� t

0

, where t and t

0

have the

same sort, or an inequation t > t

0

, or a negated inequation t 6> t

0

, where t and

t

0

have sort G. O

asionally we write t

0

< t instead of t > t

0

. The symbol ?

denotes either > or <, the symbol & stands for > or �, the symbol � means

either ? or �, and

:

� denotes ? or � or 6�. The equality symbol is supposed to

be symmetri
. Multiple o

urren
es of one of the symbols ?, �, or

:

� within a

single inferen
e rule denote 
onsistently the same relation. A 
lause is a �nite

multiset of literals, usually written as a disjun
tion.

A (Herbrand) interpretation E is a set of equations and inequations. A

positive ground literal e is true in E, if e 2 E; a negative ground literal : e is

true in E, if e =2 E. A ground 
lause C is true in E, if at least one of its literals

is true in E; a non-ground 
lause is true in E, if all its ground instan
es are

true in E. If a 
lause C is true in E, we also say that E is a model of C, or

that E satis�es C.

The 
lauses

(x+ y) + z � x+ (y + z) (Asso
iativity (A))

x+ y � y + x (Commutativity (C))

x+ 0 � x (Identity (U))

(�x) + x � 0 (Inverse (Inv))

n divided-by

n

(x) � x (Divisibility (Div))

a

0

6� 0 (Non-Triviality (Nt))

x 6> x (Irre
exivity (Ir))

x 6> y _ y 6> z _ x > z (Transitivity (Tr))

x 6> y _ x+ z > y + z (Monotoni
ity (Mon))

x > y _ y > x _ x � y (Totality (Tot))

plus the equality axioms

1

are the axioms ODAG of totally ordered divisible

abelian groups.

The following 
lauses are 
onsequen
es of these axioms (for every  2N

>

0

):

x+ z 6� y + z _ x � y (Can
ellation (K))

 x 6�  y _ x � y (Torsion-Freeness (T))

x+ z 6> y + z _ x > y (>-Can
ellation (K

>

))

 x 6>  y _ x > y (>-Torsion-Freeness (T

>

))

1

in
luding the 
ongruen
e axiom x 6� y _ y 6? z _ x ? z for the predi
ate >.
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We write OTfCAM for the union of the 
lauses A, C, U, K, T, Ir, Tr, Mon,

K

>

, T

>

and the equality axioms.

We denote the entailment relation modulo ODAG by j=

ODAG

, and the en-

tailment relation modulo OTfCAM by j=

OTfCAM

. That is, fC

1

; : : : ; C

n

g j=

ODAG

C

0

if and only if fC

1

; : : : ; C

n

g [ODAG j= C

0

, and fC

1

; : : : ; C

n

g j=

OTfCAM

C

0

if and only if fC

1

; : : : ; C

n

g [OTfCAM j= C

0

.

A fun
tion symbol is 
alled free, if it is di�erent from 0 and +. A term is


alled atomi
, if it is not a variable and its top symbol is di�erent from +. We

say that a term t o

urs at the top of s, if there is a position o 2 pos(s) su
h

that sj

o

= t and for every proper pre�x o

0

of o, s(o

0

) equals +; the term t o

urs

in s below a free fun
tion symbol, if there is an o 2 pos(s) su
h that sj

o

= t

and s(o

0

) is a free fun
tion symbol for some proper pre�x o

0

of o. A variable x

is 
alled shielded in a 
lause C, if it o

urs at least on
e below a free fun
tion

symbol in C, or if it does not have sort G. Otherwise, x is 
alled unshielded.

A 
lause C is 
alled fully abstra
ted, if no non-variable term of sort G

o

urs below a free fun
tion symbol in C. Every 
lause C 
an be transformed

into an equivalent fully abstra
ted 
lause abs(C) by iterated rewriting

C[f(: : : ; t; : : : )℄ ! x 6� t _ C[f(: : : ; x; : : : )℄ ;

where x is a new variable and t is a non-variable term of sort G o

urring

immediately below the free fun
tion symbol f in C.

We say that an ACU-
ompatible ordering � has the multiset property, if

whenever a ground atomi
 term u is greater than v

i

for every i in a �nite

non-empty index set I, then u �

P

i2I

v

i

. Every redu
tion ordering over terms

not 
ontaining + that is total on ground terms and for whi
h 0 is minimal


an be extended to an ordering that is ACU-
ompatible and has the multiset

property (Waldmann [9℄).

2

From now on we will work only with ACU-
ongruen
e 
lasses, rather than

with terms. So all terms, equations, substitutions, inferen
e rules, et
., are

to be taken modulo ACU, i. e., as representatives of their 
ongruen
e 
lasses.

The symbol � will always denote an ACU-
ompatible ordering that has the

multiset property, is total on ground ACU-
ongruen
e 
lasses, and satis�es

t 6� s[t℄

o

for every term s[t℄

o

.

Let A be a ground literal. Then the largest atomi
 term o

urring on either

side of A is denoted by mt(A). If C is a ground 
lause, then mt(C) is the largest

atomi
 term o

urring in C.

The balan
e value of a ground literal A is 3, if mt(A) o

urs on both sides

of A, it is 2, if A is an inequation [:℄ s > t and mt(A) o

urs only in s,

and otherwise it is 1. The ordering �

L

on literals 
ompares lexi
ographi
ally

2

In fa
t, we use the extended ordering only as a theoreti
al devi
e; as we work with fully

abstra
ted 
lauses, the original redu
tion ordering is suÆ
ient for a
tual 
omputations.

4



�rst the maximal atomi
 terms of the literals, then the polarities (negative

� positive), then the kinds of the literals (inequation � equation), then the

balan
e values of the literals, then the multisets of all non-zero terms o

urring

at the top of the literals, and �nally the multisets ffsg; ftgg (for equations

[:℄ s � t) or ffs; sg; ftgg (for inequations [:℄ s > t). The ordering �

C

on


lauses is the multiset extension of the literal ordering �

L

. Both �

L

and �

C

are noetherian and total on ground literals/
lauses.

2.2 Superposition and Chaining

We present the ground versions of the inferen
e rules of the base 
al
ulus

OCInf . The non-ground versions 
an be obtained by lifting in a rather straight-

forward way (see below).

Let us start the presentation of the inferen
e rules with a few general


onventions: Every term o

urring in a sum is assumed to have sort G. The

letters u and v, possibly with indi
es, denote atomi
 terms, unless expli
itly

said otherwise. In an expression like mu+ s, m is a natural number, s may be

zero.

If an inferen
e involves a literal, then it must be maximal in the respe
tive


lause (ex
ept for the last but one literal in fa
toring inferen
es). A positive

literal that is involved in a superposition or 
haining inferen
e must be stri
tly

maximal in the respe
tive 
lause. In all superposition or 
haining inferen
es,

the left premise is smaller than the right premise.

Can
ellation

C

0

_ mu+ s

:

� m

0

u+ s

0

C

0

_ (m�m

0

)u+ s

:

� s

0

if m �m

0

� 1, u � s, u � s

0

.

Equality Resolution

C

0

_ u 6� u

C

0

if u either equals 0 or does not have sort G.

Inequality Resolution

C

0

_ 0 > 0

C

0

Can
. Superposition

D

0

_ nu+ t � t

0

C

0

_ mu+ s

:

� s

0

D

0

_ C

0

_ ns+mt

0

:

� ns

0

+mt

if n � 1, m � 1, u � s, u � s

0

, u � t, u � t

0

.

3

3

If g
d(m;n) > 1, then the 
on
lusion of this inferen
e 
an be simpli�ed to D

0

_ C

0

_

 s + �t

0

:

�  s

0

+ �t, where  = n= g
d(m;n) and � = m= g
d(m;n) (and similarly for

the following inferen
e rules). To enhan
e readability, we leave out this optimization in the

sequel.
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Can
. Chaining

D

0

_ t

0

? nu+ t C

0

_ mu+ s ? s

0

D

0

_ C

0

_ ns+mt

0

? ns

0

+mt

if n � 1, m � 1, u � s, u � s

0

, u � t, u � t

0

.

Std. Superposition

D

0

_ u � u

0

C

0

_ s[u℄

:

� s

0

D

0

_ C

0

_ s[u

0

℄

:

� s

0

if u o

urs in a maximal atomi
 subterm of s

and does not have sort G, u � u

0

, s[u℄ � s

0

.

Can
. Eq. Fa
toring

C

0

_ nu+ t � t

0

_ mu+ s � s

0

C

0

_ mt+ ns

0

6� mt

0

+ ns _ nu+ t � t

0

if n � 1, m � 1, u � s, u � s

0

, u � t, u � t

0

.

Can
. Ineq. Fa
toring (I)

C

0

_ nu+ t ? t

0

_ mu+ s ? s

0

C

0

_ mt+ ns

0

? mt

0

+ ns _ mu+ s ? s

0

if n � 1, m � 1, u � s, u � s

0

, u � t, u � t

0

.

Can
. Ineq. Fa
toring (II)

C

0

_ nu+ t ? t

0

_ mu+ s ? s

0

C

0

_ mt

0

+ ns ? mt+ ns

0

_ nu+ t ? t

0

if n � 1, m � 1, u � s, u � s

0

, u � t, u � t

0

.

Std. Eq. Fa
toring

C

0

_ u � v

0

_ u � u

0

C

0

_ u

0

6� v

0

_ u � v

0

if u, u

0

and v

0

do not have sort G, u � u

0

,

u � v

0

.

The inferen
e rules of the 
al
ulus OCInf do not handle negative inequality

literals. We assume that in the beginning of the saturation pro
ess every literal

s 6> t in an input 
lause is repla
ed by the two literals t > s _ t � s, whi
h are

equivalent to s 6> t by the totality, transitivity and irre
exivity axioms. Note

that the inferen
e rules of OCInf do not produ
e any new negative inequality

literals.

In the standard superposition 
al
ulus, lifting means repla
ing equality in

the ground inferen
e by uni�ability. As long as all variables in our 
lauses

are shielded, the situation is similar here: For instan
e, in the se
ond premise

C

0

_ A

1

of a 
an
ellative superposition inferen
e the maximal literal A

1

need

no longer have the form mu + s

:

� s

0

with a unique maximal atomi
 term u.

Rather, it may 
ontain several (distin
t but ACU-uni�able) maximal atomi


terms u

k

with multipli
ities m

k

, where k ranges over some �nite non-empty

index set K. We obtain thus A

1

=

P

k2K

m

k

u

k

+ s

:

� s

0

. In the inferen
e rule,

6



the substitution � that uni�es all u

k

(and the 
orresponding terms v

l

from

the other premise) is applied to the 
on
lusion. Consequently, the 
an
ellative

superposition rule has now the following form:

D

0

_

P

l2L

n

l

v

l

+ t � t

0

C

0

_

P

k2K

m

k

u

k

+ s

:

� s

0

(D

0

_ C

0

_ ns+mt

0

:

� ns

0

+mt)�

where

(i) m =

P

k2K

m

k

� 1, n =

P

l2L

n

l

� 1.

(ii) � is a most general ACU-uni�er of all u

k

and v

l

(k 2 K; l 2 L).

(iii) u is one of the u

k

(k 2 K).

(iv) u� 6� s�, u� 6� s

0

�, u� 6� t�, u� 6� t

0

�.

The other inferen
e rules 
an be lifted in a similar way, again under the


ondition that all variables in the 
lauses are shielded. As usual, the standard

superposition rule is equipped with the additional restri
tion that the subterm

of s that is repla
ed during the inferen
e is not a variable. For 
lauses with un-

shielded variables, lifting would be signi�
antly more 
ompli
ated; however, as

we will 
ombine the base 
al
ulus with an algorithm that eliminates unshielded

variables, we need not 
onsider this 
ase.

Theorem 2.1 The inferen
e rules of the 
al
ulus OCInf are sound with re-

spe
t to j=

ODAG

.

Definition 2.2 Let N be a set of 
lauses, let N be the set of ground instan
es

of 
lauses in N . An inferen
e is 
alled OCRed -redundant with respe
t to N if

for ea
h of its ground instan
es with 
on
lusion C

0

� and maximal premise C�

we have fD 2 N j D �

C

C� g j=

OTfCAM

C

0

�. A 
lause C is 
alled OCRed -

redundant with respe
t to N , if for every ground instan
e C�, fD 2 N j D �

C

C� g j=

OTfCAM

C�.

2.3 Rewriting on Equations

To prove that the inferen
e system des
ribed so far is refutationally 
omplete

we have to show that every saturated 
lause set that does not 
ontain the

empty 
lause has a model. The traditional approa
h to 
onstru
t su
h a model

is rewrite-based: First an ordering is imposed on the set of all ground instan
es

of 
lauses in the set. Starting with an empty interpretation all su
h instan
es

are inspe
ted in as
ending order. If a redu
tive 
lause is false and irredu
ible

in the partial interpretation 
onstru
ted so far, its maximal positive literal

is turned into a rewrite rule and added to the interpretation. If the original
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lause set is saturated and does not 
ontain the empty 
lause, then the �nal

interpretation is a model of all ground instan
es, and thus of the original 
lause

set (Ba
hmair and Ganzinger [2℄).

In order to be able to treat 
an
ellative superposition we have modi�ed

this s
heme in [4℄ in su
h a way that the rewrite relation operates on equations

rather than on terms. But if we also have to deal with inequations, a further

extension is ne
essary: We need to be able to rewrite inequations with inequa-

tions; and unlike rewriting with equations, this does of 
ourse not produ
e

logi
ally equivalent formulae.

Definition 2.3 A ground equation or inequation e is 
alled a 
an
ellative

rewrite rule with respe
t to �, if mt(e) does not o

ur on both sides of e.

We will usually drop the attributes \
an
ellative" and \with respe
t to �",

speaking simply of \rewrite rules".

Every rewrite rule has either the form mu + s � s

0

, where u is an atomi


term, m 2 N

>

0

, u � s, and u � s

0

, or the form u � s

0

, where u � s

0

and u

(and thus s

0

) does not have sort G. This is an easy 
onsequen
e of the multiset

property of �.

Definition 2.4 Given a set R of rewrite rules, the four binary relations!


;R

,

!

Æ;R

,!

o;R

, and!

�

on ground equations and inequations are de�ned (modulo

ACU) as follows:

4

(i) mu+ t � t

0

!


;R

s

0

+ t � t

0

+ s,

if mu+ s � s

0

is a rule in R.

(ii) t[s℄ � t

0

!

Æ;R

t[s

0

℄ � t

0

,

if (i) s � s

0

is a rule in R and (ii) s does not have sort G or s o

urs in

t below some free fun
tion symbol.

(iii) mu+ t ? t

0

!

o;R

s

0

+ t ? t

0

+ s,

if mu+ s ? s

0

is a rule in R.

(iv) u+ t � u+ t

0

!

�

t � t

0

,

u � u !

�

0 � 0,

if u is atomi
 and di�erent from 0.

The union of !


;R

, !

Æ;R

, !

o;R

, and !

�

is denoted by !

R

.

5

4

While we have the restri
tion u � s, u � s

0

for the rewrite rules, there is no su
h

restri
tion for the (in-)equations to whi
h rules are applied.

5

As we deal only with ground terms and as there are no non-trivial 
ontexts around

(in-)equations, this operation does indeed satisfy the de�nition of a rewrite relation, albeit

in an unorthodox way.

8



If e !

R

e

0

using a 
-, Æ- or �-step, then e and e

0

are equivalent modulo

OTfCAM and the applied rewrite rule. If s ? s

0

!

o;R

t ? t

0

, then both t ? t

0

and t � t

0

imply s ? s

0

modulo OTfCAM and the applied rewrite rule.

We say that an (in-)equation e is 
-redu
ible, if e!


;R

e

0

(analogously for

Æ, o, and �). It is 
alled redu
ible, if it is 
-, Æ-, o-, or �-redu
ible.

Unlike �-redu
ibility, 
-, Æ-, and o-redu
ibility 
an be extended to terms:

A term t is 
alled 
-redu
ible, if t � t

0

!


;R

e

0

, where the rewrite step takes

pla
e at the left-hand side (analogously for Æ and o). It is 
alled redu
ible, if

it is 
-, Æ- or o-redu
ible.

Lemma 2.5 The relation !

R

is 
ontained in �

L

and thus noetherian.

Definition 2.6 Given a set R of rewrite rules, the relation !

Æ

R

is de�ned by

!

Æ

R

= (!

�

R

Æ!

o;R

Æ !

�

R

).

Given equations e

1

= s

1

� s

0

1

and e

2

= s

2

� s

0

2

and a positive integer

 , we write  e

1

for the equation  s

1

�  s

0

1

and e

1

+ e

2

for the equation

s

1

+ s

2

� s

0

1

+ s

0

2

. (Analogously, if e

1

and/or e

2

are inequations s

1

> s

0

1

and

s

2

> s

0

2

).

Definition 2.7 Given a set R of rewrite rules, the set tr(R) is the set of all

(in-)equations s � s

0

for whi
h there exists a derivation s � s

0

!

�

R

0 � 0. The

truth set tr

Æ

(R) of R is the set of all equations s � s

0

for whi
h there exists a

derivation s � s

0

!

�

R

0 � 0, and the set of all inequations s ? s

0

for whi
h

there exists a derivation s ? s

0

!

Æ

R

0 ? 0. The 	-truth set tr

Æ

	

(R) of R is the

set of all equations or inequations e = s � s

0

, su
h that either e 2 tr

Æ

(R) and

s does not have sort G, or  s �  s

0

2 tr

Æ

(R) for some  2 N

>

0

.

All (in-)equations in tr

Æ

	

(R) are logi
al 
onsequen
es of the rewrite rules

in R and the theory axioms OTfCAM.

2.4 Model Constru
tion

Definition 2.8 A ground 
lause C

0

_ e is 
alled redu
tive for e, if e is a


an
ellative rewrite rule and stri
tly maximal in C

0

_ e.

Definition 2.9 Let N be a set of (possibly non-ground) 
lauses that does not


ontain the empty 
lause, and let N the set of all ground instan
es of 
lauses

in N . Using indu
tion on the 
lause ordering we de�ne sets of rules R

C

, R

	

C

,

E

C

, and E

	

C

, for all 
lauses C 2 N . Let C be su
h a 
lause and assume that

R

D

, R

	

D

, E

D

, and E

	

D

have already been de�ned for all D 2 N su
h that

C �

C

D. Then the set R

C

of primary rules and the set R

	

C

of se
ondary rules

9



are given by

R

C

=

[

D�

C

C

E

D

and R

	

C

=

[

D�

C

C

E

	

D

:

E

C

is the singleton set feg, if C is a 
lause C

0

_ e su
h that (i) C is redu
tive

for e, (ii) C is false in tr

Æ

(R

	

C

), (iii) C

0

is false in tr

Æ

	

(R

	

C

[ feg), and (iv)

�mt(e) is 
Æ-irredu
ible with respe
t to R

	

C

for every � 2 N

>

0

. Otherwise,

E

C

is empty.

If E

C

= feg, then E

	

C

is the set of all rewrite rules e

0

2 tr

Æ

	

(R

	

C

[E

C

) su
h

that mt(e

0

) = mt(e) and e

0

is Æ�-irredu
ible with respe
t to R

	

C

. Otherwise,

E

	

C

is empty.

Finally, the sets R

1

and R

	

1

are de�ned by

R

1

=

[

D2N

E

D

and R

	

1

=

[

D2N

E

	

D

:

Our goal is to show that, if N is saturated with respe
t to OCInf , then

tr

Æ

(R

	

1

) is a model of the axioms of totally ordered divisible abelian groups

and of the 
lauses in N . To this end, we will �rst put together some basi


properties of R

	

C

and R

	

1

.

Lemma 2.10 Let E

C

= fmu+ s ? s

0

g. Then the inequation that is obtained

by Æ�-normalizing mu+ s ? s

0

with respe
t to R

	

C

is 
ontained in E

	

C

.

Proof. As u is Æ-irredu
ible with respe
t to R

	

C

, the Æ�-normalization of

mu+ s ? s

0

has the form

mu+ s ? s

0

Æ[�

�

1




��

mu+ r ? r

0

Then u � s � r and u � s

0

� r

0

. Starting from mu+ r ? r

0

we 
an 
onstru
t

a derivation

mu+ r ? r

0

o

2




��

s

0

+ r ? r

0

+ s

Æ[�

�

3




��

r

0

+ r ? r

0

+ r

�

�

4




��

0 ? 0

10



where

2


 uses mu+ s? s

0

and

3


 simulates

1


. Hen
e mu+ r ? r

0

is 
ontained

in tr

Æ

	

(R

	

C

[E

C

) and thus in E

	

C

. 2

2.5 Refutational Completeness of OCInf

The relations !

R

	

C

and !

R

	

1

are in general not 
on
uent, not even in the

purely equational 
ase. One 
an merely show that that !

R

	

C

is 
on
uent on

equations in tr(R

	

C

), that is, that any two derivations starting from an equation

e 
an be joined, provided that there is a derivation e!

�

0 � 0. But even this

kind of restri
ted 
on
uen
e does not hold for inequations, and in parti
ular,

not for o-rewriting. We 
an only prove that two derivations starting from the

same inequation 
an be joined, if one of them leads to 0 > 0 and if the other

one does not use o-steps. This property will be suÆ
ient for our purposes,

however.

Definition 2.11 Let E be a set of equations and/or inequations. We say that

the relation!

R

is partially 
on
uent on E, if for all equations e

0

2E and e

1

; e

2

with e

1

 

�

R

e

0

!

�

R

e

2

there exists an equation e

3

su
h that e

1

!

�

R

e

3

 

�

R

e

2

,

and if for all inequations e

0

0

2 E and e

0

1

with e

0

1

 

�


Æ�;R

e

0

0

!

�

R

0 > 0 or

e

0

1

 

�


Æ�;R

e

0

0

!

Æ

R

0 > 0 there is a derivation e

0

1

!

�

R

0 > 0 or e

0

1

!

Æ

R

0 > 0,

respe
tively.

Lemma 2.12 Let C be a 
lause in N . If an inequation e 2 tr

Æ

	

(R

	

C

) is Æ�-

irredu
ible with respe
t to R

	

C

, and !

R

	

C

is partially 
on
uent on tr(R

	

C

) \

f e

0

j mt(e) � mt(e

0

) g, then e 2 R

	

C

. (Analogously for C repla
ed by 1.)

Proof. We will prove the �rst part of the lemma, the proof of the se
ond

one being similar. By the de�nition of tr

Æ

	

(R

	

C

), an inequation e 
annot be

in normal form with respe
t to !

R

	

C

, hen
e e is di�erent from 0 > 0. Let

v = mt(e). By assumption, e is Æ�-irredu
ible. We may thus suppose that e

has the form kv + t ? t

0

, where v � t and v � t

0

. By de�nition of tr

Æ

	

(R

	

C

),

there is a derivation  

0

e !

Æ

R

	

C

0? 0 for some  

0

2N

>

0

. During this derivation

all o

urren
es of v are deleted eventually. As e is Æ�-irredu
ible, this 
an be

done only by (possibly several) 
- or o-rewriting steps, using rules in R

	

C

. We

distinguish between two 
ases, depending on whether the primary rules by

whi
h these se
ondary rules have been generated are equations or inequations.

Case 1: fmv + s � s

0

g = E

D

� R

C

.

Then the o

urren
es of v are deleted using rules ê

i

= m̂

i

v + r̂

i

� r̂

0

i

and/or

~e

j

= ~m

j

v + ~r

j

? ~r

0

j

, and all all ê

i

and ~e

j

are 
ontained in E

	

D

. We may assume

without loss of generality that the derivation  

0

e !

Æ

R

	

C

0 ? 0 has the form

11



 

0

kv +  

0

t ?  

0

t

0


[o

+

1




��

e

1

=

P

j

~r

0

j

+

P

i

r̂

0

i

+  

0

t ?  

0

t

0

+

P

i

r̂

i

+

P

j

~r

j

�

2




��

0 ? 0

where the rewrite steps of

1


 use the sequen
e of rules ê

i

and ~e

j

, the rewrite

steps of

2


 use rules from R

	

D

, and

P

i

m̂

i

+

P

j

~m

j

=  

0

k. There exists a

 2 N

>

0

and for every i and j an (R

	

D

[E

D

)-derivation

 ê

i

=  m̂

i

v +  r̂

i

�  r̂

0

i




+

3




��

 ~e

j

=  ~m

j

v +  ~r

j

?  ~r

0

j




+

5




��

ê

0

i

= �̂

i

s

0

+  r̂

i

�  r̂

0

i

+ �̂

i

s

�

4




��

~e

0

j

= ~�

j

s

0

+  ~r

j

?  ~r

0

j

+ ~�

j

s

Æ

6




��

0 � 0 0 ? 0

starting with �̂

i

- or ~�

j

-fold appli
ation of mv + s � s

0

, where  m̂

i

= �̂

i

m and

 ~m

j

= ~�

j

m.

Let e

2

=  e

1

+

P

i

ê

0

i

+

P

j

~e

0

j

. Then e

2

has a derivation to 0 ? 0. Can
el-

lation of  

P

i

(r̂

i

+ r̂

0

i

) +  

P

j

(~r

j

+ ~r

0

j

) in e

2

yields

e

3

= (

P

i

�̂

i

+

P

j

~�

j

)s

0

+   

0

t ?   

0

t

0

+ (

P

i

�̂

i

+

P

j

~�

j

)s :

By partial 
on
uen
e of !

R

	

C

we obtain e

3

!

�

R

	

C

0 > 0. Sin
e mt(e

3

) � v,

rules in R

	

C

n R

	

D


annot be used in this derivation, hen
e e

3

!

�

R

	

D

0 > 0.

On the other hand,   

0

k =

P

i

 m̂

i

+

P

j

 ~m

j

= m(

P

i

�̂

i

+

P

j

~�

j

), thus

we 
an rewrite   

0

e to e

3

by (

P

i

�̂

i

+

P

j

~�

j

)-fold appli
ation of mv + s � s

0

.

As e is Æ�-irredu
ible with respe
t to R

	

D

� R

	

C

, e is 
ontained in E

	

D

� R

	

C

by Def. 2.9.

Case 2: Otherwise.

Otherwise, in the derivation  

0

e !

Æ

R

	

C

0? 0 the o

urren
es of v are eliminated

by o-appli
ations of se
ondary rules that have been generated by one or more

inequations. Let D be the maximal 
lause su
h that rules ê

i

= m̂

i

v+ r̂

i

? r̂

0

i

in

E

	

D

� R

	

C

are used in the derivation. Let ~e

j

= ~m

j

v + ~r

j

? ~r

0

j

be the remaining

rules in R

	

D

used to eliminate the  

0

k o

urren
es of v. We may thus assume

that  

0

k =

P

i

m̂

i

+

P

j

~m

j

and that the derivation  

0

e !

�

R

	

C

0 ? 0 has the

form

12



 

0

kv +  

0

t ?  

0

t

0

o

+

7




��

e

1

=

P

j

~r

0

j

+

P

i

r̂

0

i

+  

0

t ?  

0

t

0

+

P

i

r̂

i

+

P

j

~r

j

�

8




��

0 ? 0

where the rewrite steps of

7


 use the sequen
e of rules ê

i

from E

	

D

and ~e

j

from

R

	

D

, and the rewrite steps of

8


 use rules from R

	

D

with maximal term smaller

than v.

Let E

D

= fmv + s ? s

0

g. Then there exists a  2 N

>

0

and for every i an

(R

	

D

[E

D

)-derivation

 ê

i

=  m̂

i

v +  r̂

i

?  r̂

0

i

o

�

9




��

ê

0

i

=

P

l

�r

0

il

+ �̂

i

s

0

+  r̂

i

?  r̂

0

i

+ �̂

i

s+

P

l

�r

il

�

10




��

0 ? 0

where

9


 uses the rule mv + s ? s

0

2 E

D

�̂

i

times and then the sequen
e

of rules �e

il

= �m

il

v + �r

il

? �r

0

il

from R

	

D

, hen
e  m̂

i

= �̂

i

m+

P

l

�m

il

.

Let e

2

=  e

1

+

P

i

ê

0

i

. Then e

2

has a derivation to 0 ? 0. Can
ellation of

 

P

i

(r̂

i

+ r̂

0

i

) in e

2

yields

e

3

=  

P

j

~r

0

j

+

P

i

P

l

�r

0

il

+

P

i

�̂

i

s

0

+   

0

t

?   

0

t

0

+

P

i

�̂

i

s+

P

i

P

l

�r

il

+  

P

j

~r

j

:

By partial 
on
uen
e of !

R

	

C

we obtain e

3

!

�

R

	

C

0 > 0. Sin
e mt(e

3

) � v,

rules in R

	

C

n R

	

D


annot be used in this derivation, hen
e e

3

!

�

R

	

D

0 > 0.

On the other hand,   

0

k =

P

i

 m̂

i

+

P

j

 ~m

j

=

P

i

�̂

i

m +

P

i

P

l

�m

il

+

P

j

 ~m

j

. Hen
e we 
an rewrite   

0

e to e

3

by (

P

i

�̂

i

)-fold appli
ation of mv+

s ? s

0

,  -fold appli
ation of every ~e

j

, and appli
ation of every �e

il

. As e is Æ�-

irredu
ible with respe
t to R

	

D

� R

	

C

, e is 
ontained in E

	

D

� R

	

C

by Def. 2.9.

2

Lemma 2.13 Let C be a 
lause in N . If an inequation e 2 tr

Æ

	

(R

	

C

[ E

C

) is

Æ�-irredu
ible with respe
t to R

	

C

[ E

C

, and !

R

	

C

is partially 
on
uent on

tr(R

	

C

) \ f e

0

j mt(e) � mt(e

0

) g, then e 2 R

	

C

[E

	

C

.
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Proof. If e is 
ontained in tr

Æ

	

(R

	

C

), then e 2R

	

C

by Lemma 2.12. Otherwise,

let E

C

= fnv+ s � s

0

g and e = ku+ t ? t

0

, su
h that u = mt(e). By de�nition

of tr

Æ

	

(R

	

C

[E

C

), there is a derivation

 ku+  t ?  t

0

!

Æ

R

	

C

[E

C

0 ? 0

for some  2 N

>

0

. During this derivation all o

urren
es of u are deleted

eventually. If u were larger than v, this would be impossible, as u is Æ-irredu
ible

with respe
t to R

	

C

[E

C

. If u were smaller than v, then nv + s � s

0


ould not

be used during this derivation, hen
e e would be 
ontained in tr

Æ

	

(R

	

C

). Thus

u = v, and by Def. 2.9, e 2 E

	

C

. 2

When we have two primary rules nu + t < t

0

and mu + s > s

0

derived

from two 
lauses in N , then the 
on
lusion of 
an
ellative 
haining of these

two 
lauses 
ontains the literal ns+mt

0

> ns

0

+mt. In this literal the maximal

term u is eliminated 
ompletely. In the proof that tr

Æ

(R

	

1

) is a model, however,

we have to deal with se
ondary rules, and moreover we have to deal with partial

overlaps, that is, overlaps where some o

urren
es of u remain. The following

lemma shows how a se
ondary rule with maximal term u 
an be represented

by means of primary rules with maximal term u.

Lemma 2.14 Let C be a 
lause in N , let !

R

	

C

be partially 
on
uent on

tr(R

	

C

) \ f e

0

j mt(C) � mt(e

0

) g. Let C �

C

D, su
h that E

D

= fmu+ s ? s

0

g

and ku + r ? r

0

2 E

	

D

. Then there exist rules m

i

u + s

i

? s

0

i

2 R

D

[ E

D

and

positive integers  ; �

i

(1 � i � n) su
h that  k =

P

i

�

i

m

i

, and

e

0

=  r +

P

i

�

i

s

0

i

?  r

0

+

P

i

�

i

s

i

!

�

R

	

C

0 ? 0 :

Proof. By de�nition of E

	

D

there exists a

^

 su
h that

^

 ku +

^

 r ?

^

 r

0

2

tr

Æ

(R

	

D

[E

D

). Without loss of generality, we may assume that the derivation

has the form

^

 
ku+

^

 
r ?

^

 
r

0

o

�

1




��

ê = �̂s

0

+

P

j

�̂

j

r

0

j

+

^

 r ?

^

 r

0

+

P

j

�̂

j

r

j

+ �̂s

�

2




��

0 ? 0

where

1


 uses �-fold appli
ation of mu+ s? s

0

(�� 0) and �̂

j

-fold appli
ation

of rules k

j

u+ r

j

? r

0

j

2 R

	

D

(1 � j � j

0

), and

^

 k = �̂m+

P

j

�̂

j

k

j

.

14



By indu
tion, for every k

j

u + r

j

? r

0

j

2 R

	

D

there exist positive integers

~

 

j

; ~�

jl

(1 � j � l

j

) su
h that ~m

jl

u+ ~s

jl

? ~s

0

jl

2 R

D

,

~

 

j

k

j

=

P

l

~�

jl

~m

jl

, and

~e

j

=

~

 

j

r

j

+

P

l

~�

jl

~s

0

jl

?

~

 

j

r

0

j

+

P

l

~�

jl

~s

jl

!

�

R

	

C

0 ? 0 :

Let

�

 =

Q

j

~

 

j

. Then e

0

0

=

�

 ê +

P

j

�

 �̂

j

~

 

�1

j

~e

j

has a derivation to 0 ? 0,


an
ellation of

P

j

�̂

j

�

 (r

j

+ r

0

j

) in e

0

0

yields e

0

, and the result follows from

partial 
on
uen
e of !

R

	

C

. 2

This lemma allows us to prove the following 
ru
ial fa
t: If the results of

the 
omplete 
hainings of primary rules with maximal term u are in tr

Æ

(R

	

C

),

and if moreover suÆ
iently many (small) peaks 
an be joined, then the result

of the partial overlap of se
ondary rules �mu+ �s > �s

0

and �nu+

�

t <

�

t

0

is itself a

se
ondary rule:

Lemma 2.15 Let E

C

= fm

1

u+ s

1

? s

0

1

g. Suppose that for every pair of rules

mu+ s > s

0

and nu+ t < t

0

from R

C

[E

C

the inequation ns+mt

0

> ns

0

+mt

is 
ontained in tr

Æ

(R

	

C

). Let !

R

	

C

be partially 
on
uent on tr(R

	

C

)\ f e

0

j u �

mt(e

0

) g. For I [J �nite, i2 I, j 2 J , let e

i

= �m

i

u+�s

i

> �s

0

i

and ê

j

=

�

t

0

j

>

�

t

j

+�n

j

u

be inequations in R

	

C

[E

	

C

. Let e be the result of �-normalizing

P

i

e

i

+

P

i

ê

i

.

Then e is 
ontained in E

	

C

[R

	

C

.

Proof. Let m

�

=

P

i

�m

i

and n

�

=

P

j

�n

j

. Without loss of generality we

assume that � =m

�

� n

�

� 0. Then the �-normalization of

P

i

e

i

+

P

j

ê

j

has

the form

P

i

e

i

+

P

j

ê

j

�

�

1




��

�u+

P

i

�s

i

+

P

j

�

t

0

j

>

P

i

�s

0

i

+

P

j

�

t

j

�

�

2




��

e = �u+ q > q

0

By Lemma 2.14, for every i and j there exist rules m

ik

u + s

ik

> s

0

ik

and

n

jl

u + t

jl

< t

0

jl

2 R

C

[ E

C

, with  �m

i

=

P

k

�

ik

m

ik

,  �n

j

=

P

l

�

jl

n

jl

,

6

su
h

that there are R

	

C

-derivations

e

1

i

=  �s

i

+

P

k

�

ik

s

0

ik

>  �s

0

i

+

P

k

�

ik

s

ik

�

3




��

0 > 0

6

We assume that  is independent of i and j; this is possible sin
e we may take the least


ommon multiple of all values of  obtained from Lemma 2.14 for the individual rules.
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ê

1

j

=  

�

t

0

j

+

P

l

�

jl

t

jl

>  

�

t

j

+

P

l

�

jl

t

0

jl

�

4




��

0 > 0

Furthermore, by assumption, for all i, j, k, and l, there is an R

	

C

-derivation

e

2

ijkl

= n

jl

s

ik

+m

ik

t

0

jl

> n

jl

s

0

ik

+m

ik

t

jl

Æ

5




��

0 > 0

De�ne the inequation e

3

by

e

3

=

P

ijkl

�

ik

�

jl

e

2

ijkl

+

P

i

 m

�

e

1

i

+

P

j

 m

�

ê

1

j

=

P

ijkl

�

ik

�

jl

n

jl

s

ik

+

P

ijkl

�

ik

�

jl

m

ik

t

0

jl

+

P

i

 

2

m

�

�s

i

+

P

ik

 m

�

�

ik

s

0

ik

+

P

j

 

2

m

�

�

t

0

j

+

P

jl

 m

�

�

jl

t

jl

>

P

ijkl

�

ik

�

jl

n

jl

s

0

ik

+

P

ijkl

�

ik

�

jl

m

ik

t

jl

+

P

i

 

2

m

�

�s

0

i

+

P

ik

 m

�

�

ik

s

ik

+

P

j

 

2

m

�

�

t

j

+

P

jl

 m

�

�

jl

t

0

jl

=

P

ik

 n

�

�

ik

s

ik

+

P

jl

 m

�

�

jl

t

0

jl

+

P

i

 

2

m

�

�s

i

+

P

ik

 m

�

�

ik

s

0

ik

+

P

j

 

2

m

�

�

t

0

j

+

P

jl

 m

�

�

jl

t

jl

>

P

ik

 n

�

�

ik

s

0

ik

+

P

jl

 m

�

�

jl

t

jl

+

P

i

 

2

m

�

�s

0

i

+

P

ik

 m

�

�

ik

s

ik

+

P

j

 

2

m

�

�

t

j

+

P

jl

 m

�

�

jl

t

0

jl

By 
onstru
tion, e

3

has an R

	

C

-derivation to 0 > 0 using a 
ombination of all

derivations

3


,

4


, and

5


. On the other hand, we 
an 
an
el

P

ik

 n

�

�

ik

(s

ik

+

s

0

ik

) +

P

jl

 m

�

�

jl

(t

jl

+ t

0

jl

) in e

3

and then 
ontinue as in

2


 and obtain

e

4

=  

2

m

�

q +

P

ik

 ��

ik

s

0

ik

>  

2

m

�

q

0

+

P

ik

 ��

ik

s

ik

By partial 
on
uen
e of !

R

	

C

, e

4

!

�

R

	

C

0 > 0.

Let m

ik

u + ~s

ik

> ~s

0

ik

be either m

ik

u + s

ik

> s

0

ik

(if the latter equation

is 
ontained in E

C

), or the equation in R

	

C

obtained from m

ik

u + s

ik

> s

0

ik

by Æ�-normalization as in Lemma 2.10 (if the latter equation is 
ontained in

E

D

� R

C

). Then e

4

rewrites using Æ�-steps to

e

5

=  

2

m

�

q +

P

ik

 ��

ik

~s

0

ik

>  

2

m

�

q

0

+

P

ik

 ��

ik

~s

ik

16



and e

5

!

�

R

	

C

0 > 0 by partial 
on
uen
e of !

R

	

C

.

On the other hand,  

2

m

�

�u =  �

P

ik

�

ik

m

ik

u, hen
e  

2

m

�

e rewrites to

e

5

by  ��

ik

-fold o-appli
ation of every m

ik

u + ~s

ik

> ~s

0

ik

. Now there are two

possibilities: Either � > 0, then there is at least one o-step in the derivation

from  

2

m

�

e to e

5

. Or � = 0, then both I and J must be non-empty and

e

3

!

Æ

R

	

C

0> 0 be
ause of

5


. Consequently e

4

!

Æ

R

	

C

0> 0 and e

5

!

Æ

R

	

C

0> 0.

In both 
ases,  

2

m

�

e !

Æ

R

	

C

[E

C

0> 0. Therefore, e 2R

	

C

[E

	

C

by Lemma 2.13.

2

In the model 
onstru
tion, equations mu + s � s

0

as primary rules 
an

produ
e (in-)equations n

0

u + t

0

& t

0

0

and n

1

u + t

1

. t

0

1

as se
ondary rules.

If suÆ
iently many (small) peaks 
an be joined, then the result of the partial

overlap of su
h se
ondary rules is likewise 0 & 0 or a se
ondary rule:

Lemma 2.16 Let E

C

= fmu + s � s

0

g, let !

R

	

C

be partially 
on
uent on

tr(R

	

C

) \ f e

0

j u � mt(e

0

) g. For I [ J �nite, i 2 I, j 2 J , let e

i

= n

i

u+ t

i

& t

0

i

and ê

j

=

^

t

0

j

&

^

t

j

+ n̂

j

u be (in-)equations in E

	

C

. Let e be the result of �-

normalizing

P

i

e

i

+

P

j

ê

j

. Then e is 
ontained in E

	

C

[R

	

C

[ f0 � 0g.

Proof. Without loss of generality we assume that

P

i

n

i

�

P

j

n̂

j

. Then the

�-normalization of

P

i

e

i

+

P

j

ê

j

has the form

P

i

e

i

+

P

j

ê

j

�

�

1




��

(

P

i

n

i

�

P

j

n̂

j

)u+

P

i

t

i

+

P

j

^

t

0

j

&

P

i

t

0

i

+

P

j

^

t

j

�

�

2




��

e = (

P

i

n

i

�

P

j

n̂

j

)u+ q & q

0

Furthermore there exists a  2N

>

0

and for every i 2 I and j 2 J derivations

 n

i

u+  t

i

&  t

0

i




+

3




��

 

^

t

0

j

&  

^

t

j

+  n̂

j

u




+

5




��

e

0

i

= �

i

s

0

+  t

i

&  t

0

i

+ �

i

s

�

4




��

ê

0

j

= �̂

j

s+  

^

t

0

j

&  

^

t

j

+ �̂

j

s

0

�

6




��

0 & 0 0 & 0
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where  n

i

= �

i

m and  n̂

j

= �̂

j

m. Let

e

00

=

P

i

e

0

i

+

P

j

ê

0

j

=

P

i

�

i

s

0

+

P

i

 t

i

+

P

j

�̂

j

s+

P

j

 

^

t

0

j

&

P

i

 t

0

i

+

P

i

�

i

s+

P

j

 

^

t

j

+

P

j

�̂

j

s

0

Obviously, e

00

!

�

R

	

C

0 & 0 using a 
ombination of all derivations

4


 and

6


. On

the other hand, �-steps as in

2


 lead from e

00

to

e

000

= (

P

i

�

i

�

P

j

�̂

j

)s

0

+  q & (

P

i

�

i

�

P

j

�̂

j

)s+  q

0

By partial 
on
uen
e of !

R

	

C

, we obtain e

000

!

�

R

	

C

0 & 0. On the other

hand, (

P

i

�

i

�

P

j

�̂

j

)m =  (

P

i

n

i

�

P

j

n̂

j

), thus  e rewrites to e

000

by

(

P

i

�

i

�

P

j

�̂

j

)-fold 
-appli
ation of mu+ s� s

0

. Furthermore, if at least one

of the e

i

or ê

j

is an inequation, then one of the derivations

4


 or

6


must 
ontain

an o-step, hen
e e !

Æ

R

	

C

[E

C

0> 0. Hen
e e2E

	

C

[R

	

C

[f0� 0g by Lemma 2.13

or by the 
orresponding Lemma for the equational 
ase (Waldmann [8℄). 2

There is one important te
hni
al di�eren
e between the equational 
ase

developed in (Waldmann [8℄) and the inequational 
ase that we 
onsider here:

In the equational 
ase, one 
an show that !

R

	

1

is 
on
uent on tr(R

	

1

), and

hen
e that tr(R

	

1

) is a model of the theory axioms, without requiring that the

set N of 
lauses is saturated. Saturation is only ne
essary to prove that tr(R

	

1

)

is also a model of N . In the inequational 
ase, su
h a separation does not work:

Proving partial 
on
uen
e of !

R

	

1

requires Lemma 2.15, and Lemma 2.15

requires that 
an
ellative 
haining inferen
es are redundant. For this reason,

the proof that !

R

	

1

is partially 
on
uent and the proof that tr

Æ

(R

	

1

) is a

model of N must be 
ombined within a single indu
tion.

Lemma 2.17 and Corollary 2.18 are 
opied almost verbatim from (Wald-

mann [8℄).

Lemma 2.17 The relation !

R

	

C

is partially 
on
uent on the equations in

tr

Æ

(R

	

C

) for every C 2 N . The relation !

R

	

1

is partially 
on
uent on the

equations in tr

Æ

(R

	

1

).

7

Corollary 2.18 For every C 2 N , tr

Æ

(R

	

C

) and tr

Æ

(R

	

1

) satisfy ACUKT

and the equality axioms (ex
ept the 
ongruen
e axiom for the predi
ate >).

In a similar way as Lemma 2.17, we obtain by a rather tedious 
ase analysis

over various kinds of 
riti
al pairs:

7

Note that 
on
uen
e and partial 
on
uen
e di�er only for inequations.
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Lemma 2.19 If for every pair of rules mu + s > s

0

and nu + t < t

0

from

E

C

[ R

C

the inequation ns + mt

0

> ns

0

+ mt is 
ontained in tr

Æ

(R

	

C

), then

!

R

	

C

[E

	

C

is partially 
on
uent on tr(R

	

C

[E

	

C

).

Proof. Traditionally the 
on
uen
e of a noetherian relation is established in

two steps. First, one proves by indu
tion that the 
on
uen
e of a noetherian

relation follows from lo
al 
on
uen
e. Se
ond, one shows that lo
al 
on
uen
e

is implied by the 
onvergen
e of 
ertain 
riti
al pairs. In our 
ase, the indu
tion

hypothesis is not only needed to show that lo
al 
on
uen
e implies 
on
uen
e,

but even to prove lo
al 
on
uen
e. Consequently, we have to embed the analysis

of the 
riti
al pairs within the indu
tive 
on
uen
e proof.

To show that !

R

	

C

[E

	

C

is partially 
on
uent on tr(R

	

C

[ E

	

C

), it suÆ
es

to show that it is partially 
on
uent on tr(R

	

C

[E

	

C

)\ f e j e

0

�

L

e g for every

e

0

2 tr(R

	

C

[E

	

C

). We will do this by indu
tion on the size of e

0

with respe
t

to �

L

. We have to show that for any peak

e

R

	

C

[E

	

C

xxrrrrrrrrrrr
R

	

C

[E

	

C


Æ�

$$II
II

II
II

II

e

1

R

	

C

[E

	

C

���

e

2

0 > 0

su
h that e

0

�

L

e there exists a derivation e

2

!

�

R

	

C

[E

	

C

0 > 0, whi
h uses at

least one o-step if the derivation from e to 0 > 0 via e

1

uses any o-steps.

For e

0

�

L

e, this follows dire
tly from the indu
tion hypothesis, so we assume

e

0

= e.

Case 1: Trivial peaks.

If e

1

 e !


Æ�

e

2

and both rewrite steps take pla
e at disjoint redexes,

then there is obviously an inequation e

3

su
h that e

1

!


Æ�

e

3

 e

2

, the

indu
tion hypothesis 
an be applied to e

1

, and hen
e there is a derivation

e

2

! e

3

!

�

0 > 0. Note in parti
ular that Æ-steps 
annot take pla
e at the

same redex as a 
- or o-step, hen
e 
=Æ-peaks, Æ=
-peaks, and o=Æ-peaks are

ne
essarily trivial.

If e

1

 

Æ

e!

�

e

2

and the redexes are not disjoint, then e

1


an be rewritten

to e

2

by dupli
ating the original Æ-step on the other side of the inequation,

followed by a �-step, hen
e e

1

!

Æ

e

3

!

�

e

2

and the derivation from e

2

to 0 > 0

is obtained by applying the indu
tion hypothesis �rst to e

1

and then to e

3

. In

a similar way, �=�- and �=Æ-peaks 
an be handled.

It is easy to 
he
k that in all 
ases the derivation from e

2

to 0 > 0 uses an

o-step whenever the derivation from e via e

1

to 0 > 0 uses an o-step.
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Case 2: 
=�-peaks, o=�-peaks.

Suppose that e

1

 


o

e !

�

e

2

. We assume without loss of generality that the


- or o-step takes pla
e at the greater side of e (with respe
t to >), the other


ase is proved analogously. Then the peak has the form

kv + s > v + s

0


o

1




vvmmmmmmmmmmmm

�

2




&&NNNNNNNNNNN

r

0

+ s > v + s

0

+ r

�

3




��

(k � 1)v + s > s

0

0 > 0

where

1


 uses a rewrite rule kv + r & r

0

2 E

	

D

� R

	

C

[ E

	

C

. At some step of

the derivation

3


 the term v must be eventually deleted. As v is 
o-redu
ible,

it must be Æ-irredu
ible, so this deletion 
an happen only by a �-step or by a


- or o-step.

Case 2.1: v is deleted by a �-step.

The deletion of v by a �-step requires the existen
e of another o

urren
e of

v on the left-hand side. This o

urren
e 
an only be derived from s or s

0

. We

may thus assume that the derivation has the form

4


-

5


-

6


.

kv + s > v + s

0


o

1




uukkkkkkkkkkkkkk

�

2




((QQQQQQQQQQQQQQ

r

0

+ s > v + s

0

+ r

�

4




��

(k � 1)v + s > s

0

�

7




��

r

0

+ t+ v > v + t

0

+ r

�

5




��

(k � 1)v + t+ v > t

0


o

8




rreeeeeeeeeeeeeeeeeeeeeeeeeeeeee

r

0

+ t > t

0

+ r

�

6




��

0 > 0

As the steps

4


 take pla
e only at s and s

0

, we 
an simulate them by

7


.

Finally, we 
an 
lose the diagram using 
- or o-rewriting

8


 by kv+ r& r. Note

that the derivation

7


-

8


-

6


 uses an o-step whenever the derivation

1


-

4


-

5


-

6




uses an o-step.
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Case 2.2: v is deleted by a 
- or o-step.

Otherwise, the deletion of v during

3


 happens by appli
ation of a rule k

1

v +

r

1

. r

0

1

2 R

	

C

[ E

	

C

. Su
h a step requires the presen
e of k

1

� 1 further

o

urren
es of v on the right hand side. As r and r

0

are smaller than v, these

o

urren
es 
an only be derived from s or s

0

. We may thus assume without

loss of generality that the derivation has the form

9


-

10


-

11


:

kv + s > v + s

0


o

1
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r

0

+ s > v + s

0

+ r

�

9




��

(k � 1)v + s > s

0

�

12




��

r

0

+ t > v + (k

1

� 1)v + t

0

+ r


o

10




��

(k � 1)v + t > (k

1

� 1)v + t

0

r

1

+ r

0

+ t > t

0

+ r

0

1

+ r

�

11




��

0 > 0

The steps

9


 take pla
e only at s and s

0

, thus we 
an simulate them by

12


.

Consider the two rules kv + r & r

0

and k

1

v + r

1

. r

0

1

2 R

	

C

[E

	

C

. We 
an

add these two rules, obtaining kv + r + r

0

1

& k

1

v + r

1

+ r

0

. By Lemma 2.15

and 2.16, the result of �-normalizing this (in-)equation is either 0 � 0 or a rule

from R

	

C

[E

	

C

.

Case 2.2.1: k > k

1

.

If k > k

1

, then �-normalization yields an (in-)equation (k � k

1

)v + q & q

0

in

R

	

C

[E

	

C

:

kv + r + r

0

1

& k

1

v + r

1

+ r

0

�

���

(k � k

1

)v + r + r

0

1

& r

1

+ r

0

�

�

13




��

(k � k

1

)v + q & q

0

From

13


 it is easy to 
onstru
t a derivation from q

0

+ r+ r

0

1

& q+ r

1

+ r

0

using

only 
an
ellation steps:

21



q

0

+ r + r

0

1

& q + r

1

+ r

0

�

�

14




��

0 & 0

Let us add the starting (in-)equations of

11


 and

14


. Obviously there is a deriva-

tion from this inequation to 0 > 0.

r

1

+ r

0

+ t+ q

0

+ r + r

0

1

> t

0

+ r

0

1

+ r + q + r

1

+ r

0

���

�

�
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q

0

+ t > t

0

+ q

�

15
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0 > 0

On the other hand, we 
an 
an
el r+ r

0

+ r

1

+ r

0

1

. By the indu
tion hypothesis,

there is a derivation

15


 from q

0

+ t > t

0

+ q to 0 > 0.

We 
an now 
lose the diagram above: We use �-steps

16


 to 
an
el k

1

� 1

o

urren
es of v. Then we 
ontinue by 
- or o-appli
ation of (k � k

1

)v + q &

q

0

17


 and then append derivation

15


.

kv + s > v + s

0


o

1
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�
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r

0

+ s > v + s

0

+ r

�

9




��

(k � 1)v + s > s

0

�

12




��

r

0

+ t > v + (k

1

� 1)v + t

0

+ r


o

10




��

(k � 1)v + t > (k

1

� 1)v + t

0

�

�

16




��

r

1

+ r

0

+ t > t

0

+ r

0

1

+ r

�

11




��

(k � k

1

)v + t > t

0


o

�

17




��

q

0

+ t > t

0

+ q

�

15
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0 > 0

Routine 
he
king shows that the derivation

12


-

16


-

17


-

15


 uses an o-step when-

ever the derivation

1


-

9


-

10


-

11


 uses an o-step.

22



Case 2.2.2: k < k

1

.

This is essentially the mirror image of Case 2.2.1.

Case 2.2.3: k = k

1

.

If k = k

1

, then �-normalization yields an (in-)equation q & q

0

that is either

0 � 0 or a rule from R

	

C

. In any 
ase, q & q

0

has itself a derivation to 0 & 0

(
ontaining at least one o-step if q & q

0

is an inequation).

kv + r + r

0

1

& k

1

v + r

1

+ r

0

�

���

r + r

0

1

& r

1

+ r

0

�

�

18




��

q & q

0

�

19




��

0 & 0

Let us add the starting (in-)equations of

11


 and

18


. Obviously there is a deriva-

tion from this inequation to 0 > 0.

r

1

+ r

0

+ t+ r + r

0

1

> t

0

+ r

0

1

+ r + r

1

+ r

0

���

�

�
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t > t

0

�

20
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0 > 0

On the other hand, we 
an 
an
el r + r

0

+ r

1

+ r

0

1

. By the indu
tion hy-

pothesis, there is a derivation

20


 from t > t

0

to 0 > 0.

The diagram above 
an now be 
losed by using �-steps

21


 to 
an
el k � 1

o

urren
es of v, followed by derivation

20


.

23



kv + s > v + s

0


o

1
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�
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r

0

+ s > v + s

0

+ r

�

9




��

(k � 1)v + s > s

0

�

12




��

r

0

+ t > v + (k

1

� 1)v + t

0

+ r


o

10




��

(k � 1)v + t > (k

1

� 1)v + t

0

�

�

21




��

r

1

+ r

0

+ t > t

0

+ r

0

1

+ r

�

11




��

t > t

0

�

20
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0 > 0

Routine 
he
king shows that the derivation

12


-

21


-

20


 uses an o-step whenever

the derivation

1


-

9


-

10


-

11


 uses an o-step.

Case 3: o=
-peaks.

Suppose that e

1

 

o

e!




e

2

at overlapping redexes. Without loss of generality

both the o- and the 
-step take pla
e at the greater side of e (with respe
t to

>), the other 
ase is proved analogously. Then we may assume that the 
-step

uses a rule k

0

v + r

0

� r

0

0

and the o-step uses a rule k

1

v + r

1

> r

0

1

.

Case 3.1: k

1

> k

0

.

If k

1

> k

0

, then the peak has the form

k

1

v + s > s

0

o

1
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((QQQQQQQQQQQQ

r

0

1

+ s > s

0

+ r

1

�

3




��

(k

1

� k

0

)v + r

0

0

+ s > s

0

+ r

0

0 > 0

We 
an add the two rules k

1

v+ r

1

> r

0

1

and r

0

0

� k

0

v+ r

0

, obtaining k

1

v+ r

1

+

r

0

0

> k

0

v+ r

0

+ r

0

1

. By Lemma 2.16, the result of �-normalizing this inequation

must be a rule (k

1

� k

0

)v + q > q

0

from R

	

C

[E

	

C

.
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k

1

v + r

1

+ r

0

0

> k

0

v + r

0

+ r

0

1

�

���

(k

1

� k

0

)v + r

1

+ r

0

0

> r

0

+ r

0

1

�

�

4




��

(k

1

� k

0

)v + q > q

0

From

4


 it is easy to 
onstru
t a derivation from q

0

+ r

1

+ r

0

0

> q + r

0

+ r

0

1

using only 
an
ellation steps:

q

0

+ r

1

+ r

0

0

> q + r

0

+ r

0

1

�

�

5




��

0 > 0

Let us add the starting inequations of

3


 and

5


. Obviously there is a derivation

from this inequation to 0 > 0.

r

0

1

+ s+ q

0

+ r

1

+ r

0

0

> s

0

+ r

1

+ q + r

0

+ r

0

1

���

�

�
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s+ q

0

+ r

0

0

> s

0

+ q + r

0

�

6
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0 > 0

On the other hand, we 
an 
an
el r

1

+ r

0

1

. By the indu
tion hypothesis, there

is a derivation

6


 from s+ q

0

+ r

0

0

> s

0

+ q + r

0

to 0 > 0.

The diagram above 
an now be 
losed by an o-step using (k

1

� k

0

)v + q >

q

0

7


 followed by derivation

6


.

k

1

v + s > s

0

o

1
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r

0

1

+ s > s

0

+ r

1

�

3




��

(k

1

� k

0

)v + r

0

0

+ s > s

0

+ r

0

o

7




��

s+ q

0

+ r

0

0

> s

0

+ q + r

0

�

6
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0 > 0
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Note that the derivation

7


-

6


 
ontains at least one o-step.

Case 3.2: k

1

� k

0

.

If k

1

� k

0

, then the peak has the form

k

0

v + s > s

0

o

1
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((QQQQQQQQQQQQ

(k

0

� k

1

)v + r

0

1

+ s > s

0

+ r

1

�

3




��

r

0

0

+ s > s

0

+ r

0

0 > 0

During the derivation

3


, the k

0

� k

1

o

urren
es of v are deleted 
ompletely.

As v is Æ-irredu
ible, this 
an happen only by �-, 
-, or o-steps. We may assume

that k

2

� 0 and k

3

� 0 further o

urren
es of v are generated on the left-hand

and right-hand side, respe
tively, su
h that k

3

o

urren
es of v are eliminated

by �-steps and the remaining k

0

� k

1

+ k

2

� k

3

ones are eliminated by 
- or

o-steps. Without loss of generality the derivation has the form

k

0

v + s > s

0

o

1




wwooooooooooo




2




''OOOOOOOOOOO

(k

0

� k

1

)v + r

0

1

+ s > s

0

+ r

1

�

4




��

r

0

0

+ s > s

0

+ r

0

�

8




��

(k

0

� k

1

+ k

2

)v + r

0

1

+ t > t

0

+ r

1

+ k

3

v


o

�

5




��

k

2

v + r

0

0

+ t > t

0

+ r

0

+ k

3

v

r

0

2

+ k

3

v + r

0

1

+ t > t

0

+ r

1

+ k

3

v + r

2

�

�

6




��

r

0

2

+ r

0

1

+ t > t

0

+ r

1

+ r

2

�

7




��

0 > 0

where the steps

4


 take pla
e only at s and s

0

and

5


 uses rules e

0

i

2 R

	

C

[E

	

C

su
h that

P

i

e

0

i

= (k

0

� k

1

+ k

2

� k

3

)v + r

2

& r

0

2

. As the steps

4


 take pla
e

only at s and s

0

we 
an simulate them by

8


.
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Case 3.2.1: k

2

> k

3

.

We 
an add the rules k

1

v+ r

1

> r

0

1

and r

0

0

� k

0

v+ r

0

and all rules e

0

i

obtaining

(k

0

+ k

2

� k

3

)v + r

1

+ r

2

+ r

0

0

> k

0

v + r

0

1

+ r

0

2

+ r

0

. By Lemma 2.16, the

result of �-normalizing this inequation must be a rule (k

2

� k

3

)v + q > q

0

from

R

	

C

[E

	

C

.

(k

0

+ k

2

� k

3

)v + r

1

+ r

2

+ r

0

0

> k

0

v + r

0

1

+ r

0

2

+ r

0

�

���

(k

2

� k

3

)v + r

1

+ r

2

+ r

0

0

> r

0

1

+ r

0

2

+ r

0

�

�

9




��

(k

2

� k

3

)v + q > q

0

From

9


 it is easy to 
onstru
t a derivation from q

0

+ r

1

+ r

2

+ r

0

0

> q + r

0

1

+

r

0

2

+ r

0

using only 
an
ellation steps:

q

0

+ r

1

+ r

2

+ r

0

0

> q + r

0

1

+ r

0

2

+ r

0

�

�

10




��

0 > 0

Let us add the starting inequations of

7


 and

10


. Obviously there is a derivation

from this inequation to 0 > 0.

r

0

2

+ r

0

1

+ t+ q

0

+ r

1

+ r

2

+ r

0

0

> t

0

+ r

1

+ r

2

+ q + r

0

1

+ r

0

2

+ r

0

���

�

�
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q

0

+ r

0

0

+ t > t

0

+ r

0

+ q

�

11
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0 > 0

On the other hand, we 
an 
an
el r

1

+ r

2

+ r

0

1

+ r

0

2

. By the indu
tion hypothesis,

there is a derivation

11


 from t+ q

0

+ r

0

0

> t

0

+ q + r

0

to 0 > 0.

The diagram above 
an now be 
losed by 
an
ellation of k

3

v

12


, followed

by an o-step using (k

2

� k

3

)v + q > q

0

13


 followed by derivation

11


.
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k

0

v + s > s

0

o

1
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(k

0

�k

1

)v + r

0

1

+ s > s

0

+ r

1

�

4




��

r

0

0

+ s > s

0

+ r

0

�

8




��

(k

0

�k

1

+k

2

)v + r

0

1

+ t > t

0

+ r

1

+ k

3

v


o

�

5




��

k

2

v + r

0

0

+ t > t

0

+ r

0

+ k

3

v

�

�

12




��

r

0

2

+ k

3

v + r

0

1

+ t > t

0

+ r

1

+ k

3

v + r

2

�

�

6




��

(k

2

�k

3

)v + r

0

0

+ t > t

0

+ r

0

o

13




��

r

0

2

+ r

0

1

+ t > t

0

+ r

1

+ r

2

�

7




��

q

0

+ r

0

0

+ t > t

0

+ r

0

+ q

�

11
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0 > 0

Case 3.2.2: k

2

< k

3

.

This is essentially the mirror image of Case 3.2.1.

Case 3.2.3: k

2

= k

3

.

Again, we add the rules k

1

v + r

1

> r

0

1

and r

0

0

� k

0

v + r

0

and all rules e

0

i

obtaining k

0

v + r

1

+ r

2

+ r

0

0

> k

0

v + r

0

1

+ r

0

2

+ r

0

. By Lemma 2.16, the result

q > q

0

of �-normalizing this inequation must be a rule from R

	

C

[ E

	

C

, hen
e

q > q

0

has itself a derivation to 0 > 0.

k

0

v + r

1

+ r

2

+ r

0

0

> k

0

v + r

0

1

+ r

0

2

+ r

0

�

���

r

1

+ r

2

+ r

0

0

> r

0

1

+ r

0

2

+ r

0

�

�

18




��

q > q

0

Æ

19




��

0 > 0
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Let us add the starting (in-)equations of

7


 and

18


. Obviously there is a deriva-

tion from this inequation to 0 > 0.

r

0

2

+ r

0

1

+ t+ r

1

+ r

2

+ r

0

0

> t

0

+ r

1

+ r

2

+ r

0

1

+ r

0

2

+ r

0

Æ��

�

�
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r

0

0

+ t > t

0

+ r

0

Æ

20
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0 > 0

On the other hand, we 
an 
an
el r

1

+ r

2

+ r

0

1

+ r

0

2

. By the indu
tion

hypothesis, there is a derivation

20


 from t+ r

0

0

> t

0

+ r

0

to 0 > 0.

The diagram above 
an now be 
losed by using �-steps

21


 to 
an
el k

2

v

followed by derivation

20


.

k

0

v + s > s

0

o

1
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(k

0

�k

1

)v + r

0

1

+ s > s

0

+ r

1

�

4




��

r

0

0

+ s > s

0

+ r

0

�

8




��

(k

0

�k

1

+k

2

)v + r

0

1

+ t > t

0

+ r

1

+ k

3

v


o

�

5




��

k

2

v + r

0

0

+ t > t

0

+ r

0

+ k

3

v

�

�

21
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r

0

2

+ k

3

v + r

0

1

+ t > t

0

+ r

1

+ k

3

v + r

2

�

�

6




��

r

0

0

+ t > t

0

+ r

0

Æ

20
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r

0

2

+ r

0

1

+ t > t

0

+ r

1

+ r

2

�

7




��

0 > 0

Case 4: 
=
-peaks, Æ=Æ-peaks, �=
-peaks.

It remains to 
onsider peaks of the form e

1

 




e !




e

2

or e

1

 

Æ

e !

Æ

e

2

or e

1

 

�

e !




e

2

. These 
an be joined in virtually the same way as the


orresponding peaks in the equational 
ase. 2
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Using the same te
hniques as in (Waldmann [8℄) and (Ba
hmair and Gan-

zinger [3℄) we 
an now prove the following theorem. Note in parti
ular that

in the presen
e of the totality axiom 
an
ellative inequality fa
toring (I)/(II)

inferen
es are simpli�
ations, hen
e 
lauses where the maximal atomi
 term

o

urs in two ordering literals do not produ
e primary rules.

Theorem 2.20 Let N be a set of 
lauses without negative inequality literals

and without unshielded variables; suppose that N is saturated up to redun-

dan
y and 
ontains the theory axiom Div, Inv, Nt, and all ground instan
es

of Tot. If all 
lauses of N , ex
ept the ground instan
es of Tot, are fully ab-

stra
ted, and if N does not 
ontain the empty 
lause, then we have for every

ground 
lause C� 2 N :

(i) The relation !

R

	

C�

is partially 
on
uent on tr(R

	

C�

).

(ii) tr

Æ

(R

	

C�

) satis�es the axioms Ir, Tr, Mon, K

>

, T

>

, and the 
ongruen
e

axiom for the predi
ate >.

(iii) E

C�

= ; if and only if C� is true in tr

Æ

(R

	

C�

).

(iv) C� is true in tr

Æ

(R

	

1

) and in tr

Æ

(R

	

D�

) for every D� �

C

C�.

(v) If C� = C

0

� _ e� and E

C�

= fe�g, then C

0

� is false in tr

Æ

(R

	

1

) and

tr

Æ

(R

	

D�

) for any D� �

C

C�.

(vi) The relation !

R

	

C�

[E

	

C�

is partially 
on
uent on tr(R

	

C�

[E

	

C�

).

(vii) tr

Æ

(R

	

C�

[ E

	

C�

) satis�es the axioms Ir, Tr, Mon, K

>

, T

>

, and the


ongruen
e axiom for the predi
ate >.

(viii) The relation !

R

	

1

is partially 
on
uent on tr(R

	

1

) and tr

Æ

(R

	

1

) sat-

is�es the axioms Ir, Tr, Mon, K

>

, T

>

, and the 
ongruen
e axiom for the

predi
ate >.

Proof. We use indu
tion on the 
lause ordering �

C

and assume that (i){(vii)

are already satis�ed for all 
lauses in N that are smaller than C�.

Property (i) is a dire
t 
onsequen
e of the fa
t that R

	

C�

is the union of

all R

	

D�

with D� �

C

C�: Note that every �nite R

	

C�

-derivation is also an R

	

D�

-

derivation for some D� 2 N with D� �

C

C� and that (vi) is satis�ed for

D�.

Property (ii) follows from partial 
on
uen
e. For the transitivity axiom,


onsider two inequations r > s and s > t in tr

Æ

(R

	

C�

).

r > s

Æ

1




��

s > t

Æ

2




��

0 > 0 0 > 0
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We 
an 
ombine the derivations

1


 and

2


 and obtain a derivation

3


:

r + s > s+ t

Æ

3




��

�

�

4




%%LLLLLLLLLL

r > t

Æ
5




yyrrrrrrrrrr

0 > 0

On the other hand, we 
an use �-steps

4


 to 
an
el s on both sides of the

inequation. By partial 
on
uen
e, there is a derivation

5


, hen
e r > t 2

tr

Æ

(R

	

C

).

For the axiom T

>

we have to show that  s >  t 2 tr

Æ

(R

	

C�

) entails

s > t 2 tr

Æ

(R

	

C�

). Consider derivation

1


:

 s >  t

Æ

1




��

Æ

�

2




((QQQQQQQQQQQQ

 (s

0

+ r) >  (t

0

+ r)

�

�

3




��

 s

0

>  t

0

Æ

4




vvmmmmmmmmmmmmmm

0 > 0

We 
an Æ�-normalize  s >  t, �rst by Æ-rewriting s to s

0

+ r and t to t

0

+ r

2


, then by 
an
elling

3


 the 
ommon part  r. By 
on
uen
e, there exists a

derivation

4


. The inequation  s

0

>  t

0

is Æ�-irredu
ible with respe
t to R

	

C�

,

hen
e it is 
ontained in some E

	

D�

� R

	

C�

by Lemma 2.12. By the 
onstru
tion

of E

	

D�

and by the de�nition of tr

Æ

, we get s

0

> t

0

2 E

	

D�

� R

	

C�

. It is now easy

to 
onstru
t a derivation from s > t to 0 > 0, using �rst Æ�-normalization and

then s

0

> t

0

.

The other axioms are proved in a similar way.

The \if" part of (iii) is obvious from the model 
onstru
tion. To prove

the \only if" part let us assume that C� is false in tr

Æ

(R

	

C�

). We distinguish

between three 
ases:

If C 
ontains a variable x su
h that x�� r 2 tr

Æ

(R

	

C�

) for some term r� x�,

then there is a smaller instan
e of C that is true in tr

Æ

(R

	

C�

) by the indu
tion

hypothesis. As tr

Æ

(R

	

C�

) satis�es the equality axioms, C� must also be true in
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tr

Æ

(R

	

C�

), 
ontradi
ting our assumption. Similarly, if C� is an instan
e of the

totality axiom and some term o

urring in C� equals some smaller term, then

there is a smaller instan
e of the totality axiom, and again C� must be true

in tr

Æ

(R

	

C�

).

Suppose that C� 
ontains a maximal negative literal : e

1

�. Then there

must be an R

	

C�

-derivation from e

1

� to 0 � 0. If the maximal atomi
 term of

e

1

� o

urs on both sides of e

1

�, then there is either a 
an
ellation or an equality

resolution inferen
e from C�. This inferen
e is an instan
e of a 
an
ellation

or equality resolution inferen
e from C. By saturation up to redundan
y, the


on
lusion of the inferen
e must be true in tr

Æ

(R

	

C�

), hen
e C� must also be

true, 
ontradi
ting our assumption.

If the maximal term o

urs on only one side, then it must be either 
-

or Æ-redu
ible, using a rule e

00

2 E

	

D�

� R

	

C�

. Consequently, there is either

a 
an
ellative superposition or a standard superposition inferen
e between D�

and C�, and by saturation up to redundan
y, the 
on
lusion of the inferen
e

must be true in tr

Æ

(R

	

C�

). From this we 
an again infer that C� is true in

tr

Æ

(R

	

C�

).

It remains to 
onsider the 
ase that C� does not 
ontain a maximal negative

literal. Then it must 
ontain a maximal positive literal e

1

. If the maximal

atomi
 term of e

1

� o

urs on both sides of e

1

�, then there is either a 
an
ellation

or an inequality resolution inferen
e from C� and C� must be true in tr

Æ

(R

	

C�

)

by saturation.

If the maximal atomi
 term o

urs on only one side of e

1

�, then there

are again three possibilities: If e

1

� is maximal, but not stri
tly maximal in

C�, then there is either a 
an
ellative equality fa
toring, or a standard equality

fa
toring, or a 
an
ellative inequality fa
toring inferen
e from C�, from whi
h

we 
an 
on
lude that C� is true in tr

Æ

(R

	

C�

).

If �mt(e

1

�) is 
Æ-redu
ible for some � 2N

>

0

using a rule e

00

2 E

	

D�

� R

	

C�

,

then there is either a 
an
ellative superposition or a standard superposition

inferen
e between D� and C�. On
e more, C� must be true in tr

Æ

(R

	

C�

).

Otherwise, either E

C�

= fe

1

�g (then there is nothing to show), or C

0

� is

true in tr

Æ

	

(R

	

C�

[ fe

1

�g). In this 
ase, C

0

� = C

00

� _ e

2

�, where the literal e

2

�

is smaller than e

1

� and is 
ontained in tr

Æ

	

(R

	

C�

[ fe

1

�g) n tr

Æ

(R

	

C�

). This 
an

happen only if mt(e

2

�) = mt(e

1

�). Then there is either a 
an
ellative equality

fa
toring, or a standard equality fa
toring, or a 
an
ellative inequality fa
toring

inferen
e from C�, from whi
h we 
an 
on
lude that C� is true in tr

Æ

(R

	

C�

).

Property (iv) follows from (iii) and from the fa
t that rules in R

	

1

n R

	

C�


annot be used to disprove a negative equality in C�.
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If C� = C

0

� _ e� and E

C�

= fe�g, then C

0

� is obviously false in tr

Æ

(R

	

C�

).

Let e

0

be any positive literal in C

0

. The literal ordering is de�ned in su
h a way

that there is only one situation in whi
h rules in R

	

1

nR

	

C�


ould be used in a

derivation e

0

�!

Æ

0 � 0, namely if both e and e

0

are inequations and mt(e

0

�) =

mt(e�) o

urs in both e

0

� and e� either only on the greater side or only on the

smaller side (with respe
t to >). However, in this 
ase (and in the presen
e

of the totality axiom) 
an
ellative inequality fa
toring (I)/(II) inferen
es are

simpli�
ations, that is the 
on
lusions of both 
an
ellative inequality fa
toring

inferen
es and some suÆ
iently small instan
e of the totality axiom imply C�.

As N is saturated up to redundan
y, C� must be true in tr

Æ

(R

	

C�

), hen
e

E

C�

= ;. This proves property (v).

Let mu + s > s

0

and nu + t < t

0

be rules from E

C�

[ R

C�

. Then there

is a 
an
ellative 
haining inferen
e from the two 
lauses produ
ing these two

rules. As this inferen
e must be redundant, the inequation ns+mt

0

> ns

0

+mt

is 
ontained in tr

Æ

(R

	

C�

). By Lemma 2.19, !

R

	

C�

[E

	

C�

is partially 
on
uent on

tr(R

	

C�

[E

	

C�

), hen
e property (vi) holds.

Property (vii) follows from (vi) in the same way as property (ii) follows

from (i). This 
ompletes the indu
tive proof of properties (i){(vii).

It remains to prove property (viii): Partial 
on
uen
e of!

R

	

1

follows from

the fa
t that R

	

1

is the union of all R

	

C�

(
f. property (i)), the rest is proved

again in the same way as property (ii). 2

Theorem 2.21 Let N be a set of 
lauses without negative inequality literals

and without unshielded variables; suppose that N is saturated up to redun-

dan
y and 
ontains the theory axiom Div, Inv, Nt, and all ground instan
es

of Tot. Suppose that all 
lauses of N , ex
ept the ground instan
es of Tot, are

fully abstra
ted. Then N [ ODAG is unsatis�able if and only if N 
ontains

the empty 
lause.

Proof. If N 
ontains the empty 
lause, then it is unsatis�able. Otherwise,

tr

Æ

(R

	

1

) is a model of the equality axioms, of ODAG, and of N . 2

We may assume without loss of generality that the 
onstant a

0

does not o
-


ur in non-theory input 
lauses and that the fun
tion symbols� and divided-by

n

are eliminated eagerly from all non-theory input 
lauses. In this 
ase, no infer-

en
es are possible with the axioms Div, Inv, and Nt. Furthermore, one 
an show

that inferen
es with instan
es of the totality axiom Tot are always redundant

(analogously to Ba
hmair and Ganzinger [3℄).
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3 The Extended Cal
ulus

3.1 Variable Elimination

As we have mentioned in the introdu
tion, the 
al
ulusOCInf works on 
lauses

without unshielded variables, but its inferen
e rules may produ
e 
lauses with

unshielded variables. To make it e�e
tively saturate a given set of 
lauses, it

has to be supplemented by a variable elimination algorithm.

In the equational 
ase, every 
lause with unshielded variables 
an be trans-

formed into an equivalent 
lause without unshielded variables. However, in the

presen
e of ordering literals, this does no longer hold.

Example 3.1 Consider the 
lause C = x > a _ x � b _ x < 
. This 
lause

is true for every value of x, if either 
 > a or both a � b and 
 � b. So C 
an

be repla
ed by the 
lause normal form of 
 > a _ (a � b ^ 
 � b), that is, by

the two 
lauses 
 > a _ a � b and 
 > a _ 
 � b, but C is not equivalent to a

single 
lause without unshielded variables.

For any disjun
tion of 
onjun
tions of literals F let CNF(F ) be the 
lause

normal form of F (represented as a multiset of 
lauses).

Let x be a variable of sort G. We de�ne a binary relation!

x

over multisets

of 
lauses by

Can
elVar M [ fC

0

_ mx+ s

:

� m

0

x+ s

0

g !

x

M [ fC

0

_ (m�m

0

)x+ s

:

� s

0

g

if m � m

0

� 1.

ElimNeg M [ fC

0

_ mx+ s 6� s

0

g !

x

M [ fC

0

g

if m � 1 and x does not o

ur in C

0

; s; s

0

.

ElimPos M [

�

C

0

_

W

i2I

l

i

x+ r

i

� r

0

i

_

W

j2J

m

j

x+ s

j

> s

0

j

_

W

k2K

n

k

x+ t

k

< t

0

k

	

!

x

M [ CNF

�

C

0

_

W

j2J

W

k2K

(n

k

s

j

+m

j

t

0

k

> n

k

s

0

j

+m

j

t

k

_

W

i2I

(l

i

s

j

+m

j

r

0

i

� l

i

s

0

j

+m

j

r

i

^ l

i

t

k

+ n

k

r

0

i

� l

i

t

0

k

+ n

k

r

i

))

�

if I [ J [K 6= ;, l

i

� 1, m

j

� 1, n

k

� 1 and x does not o

ur in

C

0

; r

i

; r

0

i

; s

j

; s

0

j

; t

k

; t

0

k

, for i 2 I, j 2 J , k 2 K.

Coales
e M [ fC

0

_ mx+ s 6� s

0

_ nx+ t

:

� t

0

g !

x

M [ fC

0

_ mx+ s 6� s

0

_ mt+ ns

0

:

� mt

0

+ nsg

if m � 1, n � 1, and x does not o

ur in s; s

0

; t; t

0

.
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It is easy to show that !

x

is noetherian. We de�ne the relation!

elim

over

multisets of 
lauses in su
h a way that M [ fCg !

elim

M [M

0

if and only

if C 
ontains an unshielded variable x and M

0

is a normal form of fCg with

respe
t to !

x

.

The relation !

elim

is again noetherian. For a 
lause C, elim(C) denotes

some (arbitrary but �xed) normal form of fCg with respe
t to the rela-

tion !

elim

.

Corollary 3.2 For any C, the 
lauses in elim(C) 
ontain no unshielded vari-

ables.

Lemma 3.3 For every C, fCg j=

ODAG

elim(C) and elim(C)[Tot j=

OTfCAM

C.

For every ground instan
e C�, elim(C)� [ Tot j=

OTfCAM

C�.

3.2 Integration of the Elimination Algorithm

Using the te
hnique sket
hed so far, every 
lause C

0


an be transformed into

a set of 
lauses elim(C

0

) that do not 
ontain unshielded variables, follow from

C

0

and the axioms of totally ordered divisible abelian groups, and imply C

0

modulo OTfCAM[Tot. Obviously, we 
an perform this transformation for all

initially given 
lauses before we start the saturation pro
ess. However, when


lauses with unshielded variables are produ
ed during the saturation pro
ess,

then logi
al equivalen
e is not suÆ
ient to eliminate them. We have to require

that the transformed set of 
lauses elim(C

0

) makes the inferen
e � produ
ing

C

0

redundant. Unfortunately, it may happen that the 
lauses in elim(C

0

) or

the instan
es of the totality axiom needed in Lemma 3.3 are too large, at least

for some instan
es of �. To integrate the variable elimination algorithm into

the base 
al
ulus, it has to be supplemented by a 
ase analysis te
hnique.

Let k 2 f1; 2g, let C

1

; : : : ; C

k

be 
lauses without unshielded variables and

let � be an OCInf -inferen
e

C

k

: : : C

1

C

0

�

We 
all the unifying substitution � that is 
omputed during � and applied to

the 
on
lusion the pivotal substitution of �. (For ground inferen
es, the pivotal

substitution is the identity mapping.) If the last premise C

1

has the form

C

0

1

_ A where A is maximal (and the repla
ement or 
an
ellation takes pla
e

at A) then we 
all A� the pivotal literal of �.

8

Finally, if u

0

is the atomi
 term

that is 
an
elled out in �, or in whi
h some subterm is repla
ed,

9

then we 
all

u

0

� the pivotal term of �.

8

In 
an
ellative inequality fa
toring inferen
es, the pivotal literal is not deleted; however,

fa
toring does not produ
e unshielded variables anyway.

9

More pre
isely, u

0

is the maximal atomi
 subterm of s 
ontaining u in standard super-

position inferen
es, and the term u in all other inferen
es.
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Two properties of pivotal terms are important for us: First, whenever an

inferen
e � from 
lauses without unshielded variables produ
es a 
on
lusion

with unshielded variables, then all these unshielded variables o

ur in the piv-

otal term of �. Se
ond, no atomi
 term in the 
on
lusion of � 
an be larger than

the pivotal term of �.

One 
an now show that, if the 
lauses in elim(C

0

) or the instan
es of the

totality axiom needed in Lemma 3.3 are too large to make the OCInf -inferen
e

� redundant, then there must be an atomi
 term in some 
lause in elim(C

0

) that

is uni�able with the pivotal term. If we apply the uni�er to the 
on
lusion of the

OCInf -inferen
e, then the result does no longer 
ontain unshielded variables,

and moreover it subsumes the 
riti
al instan
es of �. Using this result, we


an now transform the inferen
e system OCInf into a new inferen
e system

that operates on 
lauses without unshielded variables and produ
es again su
h


lauses. The new system ODInf is given by two meta-inferen
e rules:

Eliminating Inferen
e

C

n

: : : C

1

C

0

if the following 
onditions are satis�ed:

(i)

C

n

: : : C

1

C

0

is a OCInf -inferen
e.

(ii) C

0

2 elim(C

0

).

Instantiating Inferen
e

C

n

: : : C

1

C

0

�

if the following 
onditions are satis�ed:

(i)

C

n

: : : C

1

C

0

is a OCInf -inferen
e with pivotal literal A and pivotal

term u.

(ii) elim(C

0

) 6= fC

0

g.

(iii) A literal A

1

with the same polarity as A o

urs in some 
lause in

elim(C

0

).

(iv) An atomi
 term u

1

o

urs at the top of A

1

.

(v) � is 
ontained in a minimal 
omplete set of ACU-uni�ers of u and u

1

.
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We de�ne the redundan
y 
riterion for the new inferen
e system in su
h

a way, that an ODInf -inferen
e is redundant, if the appropriate instan
es of

its parent OCInf -inferen
e are redundant. Then a set of 
lauses without un-

shielded variables that is saturated with respe
t to ODInf up to redundan
y

is also saturated with respe
t to OCInf up to redundan
y. ODInf 
an thus be

used for e�e
tive saturation of a given set of input 
lauses:

Theorem 3.4 Let N

0

be a set of 
lauses without negative inequality literals

and without unshielded variables; let N

0


ontain the theory axiom Div, Inv,

Nt, and all ground instan
es of Tot. Suppose that all 
lauses of N

0

, ex
ept the

ground instan
es of Tot, are fully abstra
ted. Let N

0

` N

1

` N

2

` : : : be a fair

ODInf -derivation. Let N

1

be the limit of the derivation. Then N

0

[ODAG is

unsatis�able if and only if N

1


ontains the empty 
lause.

4 Con
lusions

We have presented a superposition-based 
al
ulus for �rst-order theorem prov-

ing in the presen
e of the axioms of totally ordered divisible abelian groups. It

is based on the DTAG-superposition 
al
ulus from (Waldmann [10℄) and the

ordered 
haining 
al
ulus for dense total orderings without endpoints (Ba
h-

mair and Ganzinger [3℄), and it shares the essential features of these two 
al
uli:

It is refutationally 
omplete, it does not require expli
it inferen
es with the

theory 
lauses, and due to the integrated variable elimination algorithm it does

not require variable overlaps. It o�ers thus an eÆ
ient way of treating equal-

ities and inequalities between additive terms over, e. g., the rational numbers

within a �rst-order theorem prover.
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