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Abstract

We present a calculus for first-order theorem proving in the presence of the
axioms of totally ordered divisible abelian groups. The calculus extends previ-
ous superposition or chaining calculi for divisible torsion-free abelian groups
and dense total orderings without endpoints. As its predecessors, it is refu-
tationally complete and requires neither explicit inferences with the theory
axioms nor variable overlaps. It offers thus an efficient way of treating equal-
ities and inequalities between additive terms over, e. g., the rational numbers
within a first-order theorem prover.
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1 Introduction

Most real life problems for an automated theorem prover contain both un-
interpreted function and predicate symbols, that are specific for a particular
domain, and standard algebraic structures, such as numbers or orderings. Gen-
eral theorem proving techniques like resolution or superposition are notoriously
bad at handling algebraical theories involving axioms like associativity, com-
mutativity, or transitivity, since explicit inferences with these axioms lead to
an explosion of the search space. To deal efficiently with such structures, it is
therefore necessary that specialized techniques are built tightly into the prover.

AC-superposition (Bachmair and Ganzinger [1], Wertz [11]) is a well-known
example of such a technique. It incorporates associativity and commutativity
into the standard superposition calculus using AC-unification and extended
clauses. In this way, inferences with the theory axioms and certain inferences
involving variables are rendered unnecessary. Still, reasoning with the associa-
tivity and commutativity axioms remains difficult for an automated theorem
prover, even if explicit inferences with the AC axioms can be avoided. This
is not only due to the NP-completeness of the AC-unifiability problem, but it
stems also from the fact that AC-superposition requires an inference between
literals uy + -+ + ux = s and v1 + - -+ + v; = t (via extended clauses) when-
ever some u; is unifiable with some v;. Consequently, a variable in a sum can
be unified with any part of any other sum — in this situation unification is
completely unable to limit the search space.

The inefficiency inherent in the theory of associativity and commutativity
can be mitigated by integrating further axioms into the calculus. In abelian
groups (or even in cancellative abelian monoids) the ordering conditions of the
inference rules can be refined in such a way that summands u; and v; have to be
overlapped only if they are maximal with respect to some simplification order-
ing > (Ganzinger and Waldmann [4, 8], Marché [5], Stuber [7]). In this way,
the number of variable overlaps can be greatly reduced; however, inferences
with unshielded, i. e., potentially maximal, variables remain necessary.

In non-trivial divisible torsion-free abelian groups (e. g., the rational num-
bers and rational vector spaces), the abelian group axioms are extended by
the torsion-freeness axiom Yk € N”° Va,y: kz = ky = « ~ y, the divisibility
axiom Vk € N”° Ve Jy: ky ~ z, and the non-triviality axiom Jy: y % 0.
In such structures every clause can be transformed into an equivalent clause
without unshielded variables. Integrating this variable elimination algorithm
into cancellative superposition results in a calculus that requires neither ex-
tended clauses, nor variable overlaps, nor explicit inferences with the theory
axioms. Furthermore, using full abstraction even AC unification can be avoided
(Waldmann [10]).

When we want to work with a transitive relation > in a theorem prover,



we encounter a situation that is surprisingly similar to the one depicted above.
Just as associativity and commutativity, the transitivity axiom is fairly prolific.
It allows to derive a new clause whenever the left hand side of a literal r > s
overlaps with the right hand side of another literal s’ > t. As such an overlap
is always possible if s or s’ is a variable, unification is not an effective filter to
control the generation of new clauses. The use of the chaining inference rule
makes explicit inferences with the transitivity axiom superfluous (Slagle [6]).
Since this inference rule can be equipped with the restriction that the over-
lapped term s must be maximal with respect to a simplification ordering >,
overlaps with shielded variables become again unnecessary. Only inferences
with unshielded, i. e., potentially maximal, variables have to be computed.

Once more, the number of unshielded variables in a clause can be reduced
if further axioms are available. In particular, in dense total orderings without
endpoints, unshielded variables can be eliminated completely (Bachmair and
Ganzinger [3]).

There are two facts that suggest to investigate the combination of the the-
ory of divisible torsion-free abelian groups and the theory of dense total order-
ings without endpoints. On the one hand, the vast majority of applications of
divisible torsion-free abelian groups (and in particular of the rationals or reals)
requires also an ordering; so the combined calculus is likely to be much more
useful in practice than the DTAG-superposition calculus on which it is based.
On the other hand, these two theories are closely related: An abelian group
(G,+,0) can be equipped with a total ordering that is compatible with + if
and only if it is torsion-free; furthermore divisibility and compatibility of the
ordering imply that the ordering is dense and has no endpoints. One can thus
assume that the two calculi fit together rather smoothly. We show in this paper
that this is in fact true. The resulting calculus splits again into two parts: The
first one is a base calculus, that works on clauses without unshielded variables,
but whose rules may produce clauses with unshielded variables. This calculus
has the property that saturated sets of clauses are unsatisfiable if and only if
they contain the empty clause, but it can not be used to effectively saturate a
given set of clauses. The second part of the calculus is a variable elimination
algorithm that makes it possible to get rid of unshielded variables, and thus
renders the base calculus effective. The integration of these two components
happens in essentially the same way as in the equational case (Waldmann [10]).

2 The Base Calculus

2.1 Preliminaries

We work in a many-sorted framework and assume that the function symbol
+ is declared on a sort G. If t is a term of sort G and n € N, then nt is an



abbreviation for the n-fold sum ¢ + - - - 4+ ¢; in particular, 0t = 0 and 1¢ = ¢.

Without loss of generality we assume that the equality relation ~ and the
semantic ordering > are the only predicates of our language. Hence a literal is
either an equation ¢t ~ t/, or a negated equation t % t', where t and ' have the
same sort, or an inequation ¢ > ', or a negated inequation t # t', where ¢ and
t' have sort G. Occasionally we write ¢’ < ¢ instead of ¢ > ¢'. The symbol =
denotes either > or <, the symbol > stands for > or ~, the symbol ~ means
either 2 or =, and ~ denotes = or ~ or %. The equality symbol is supposed to
be symmetric. Multiple occurrences of one of the symbols 2, ~, or ~ within a
single inference rule denote consistently the same relation. A clause is a finite
multiset of literals, usually written as a disjunction.

A (Herbrand) interpretation E is a set of equations and inequations. A
positive ground literal e is true in F, if e € F; a negative ground literal — e is
true in E, if e ¢ E. A ground clause C is true in E, if at least one of its literals
is true in F; a non-ground clause is true in F, if all its ground instances are
true in E. If a clause C is true in F, we also say that E is a model of C, or
that E satisfies C.

The clauses

(z+y)+zxz+(y+2) (Associativity (A))
r+y~xy+z (Commutativity (C))
r+0=x~zx (Identity (U))
(—z)+2z~=0 (Inverse (Inv))

n divided-by,(z) =~ z (Divisibility (Div))
ap %0 (Non-Triviality (Nt))

T i (Irreflexivity (Ir))
rpyVytzVe>z (Transitivity (Tr))
rpyVaet+z>y+z (Monotonicity (Mon))
r>yVy>zVrxy (Totality (Tot))

plus the equality axioms! are the axioms ODAG of totally ordered divisible
abelian groups.
The following clauses are consequences of these axioms (for every ¢ € N~0):

r+zEy+zVaery (Cancellation (K)
vrgYyyVexy (Torsion-Freeness (T)
r+zFy+zVae>y (>-Cancellation (K
v pyYy VvV x>y (>-Torsion-Freeness (T

)
)
7))
7))

Yincluding the congruence axiom z £y V y Z 2 V z Z z for the predicate >.



We write OTfCAM for the union of the clauses A, C, U, K, T, Ir, Tr, Mon,
K=, T~ and the equality axioms.

We denote the entailment relation modulo ODAG by Fopag, and the en-
tailment relation modulo OTfCAM by =oTfcam- That is, {Cy,...,Ch} Fobac
Cy if and only if {Cy,...,C,} UODAG [ Cy, and {C1,...,Cp} EFortcam Co
if and only if {C1,...,C,} UOT{CAM |= C.

A function symbol is called free, if it is different from 0 and +. A term is
called atomic, if it is not a variable and its top symbol is different from +. We
say that a term ¢ occurs at the top of s, if there is a position o € pos(s) such
that s|, =t and for every proper prefix o of o, s(0’) equals +; the term ¢ occurs
in s below a free function symbol, if there is an o € pos(s) such that s|, = ¢
and s(0') is a free function symbol for some proper prefix o' of o. A variable
is called shielded in a clause C| if it occurs at least once below a free function
symbol in C, or if it does not have sort G. Otherwise, z is called unshielded.

A clause C is called fully abstracted, if no non-variable term of sort G
occurs below a free function symbol in C. Every clause C' can be transformed
into an equivalent fully abstracted clause abs(C') by iterated rewriting

Clf(...t,..)] — z#tVCf(...,z,...)],

where x is a new variable and ¢ is a non-variable term of sort G occurring
immediately below the free function symbol f in C.

We say that an ACU-compatible ordering > has the multiset property, if
whenever a ground atomic term u is greater than v; for every i in a finite
non-empty index set I, then u >~ ), ; v;. Every reduction ordering over terms
not containing + that is total on ground terms and for which 0 is minimal
can be extended to an ordering that is ACU-compatible and has the multiset
property (Waldmann [9]).2

From now on we will work only with ACU-congruence classes, rather than
with terms. So all terms, equations, substitutions, inference rules, etc., are
to be taken modulo ACU, i.e., as representatives of their congruence classes.
The symbol > will always denote an ACU-compatible ordering that has the
multiset property, is total on ground ACU-congruence classes, and satisfies
t # st], for every term s[t],.

Let A be a ground literal. Then the largest atomic term occurring on either
side of A is denoted by mt(A). If C' is a ground clause, then mt(C') is the largest
atomic term occurring in C.

The balance value of a ground literal A is 3, if mt(A) occurs on both sides
of A, it is 2, if A is an inequation [-] s > ¢ and mt(A) occurs only in s,
and otherwise it is 1. The ordering > on literals compares lexicographically

?In fact, we use the extended ordering only as a theoretical device; as we work with fully
abstracted clauses, the original reduction ordering is sufficient for actual computations.



first the maximal atomic terms of the literals, then the polarities (negative
- positive), then the kinds of the literals (inequation > equation), then the
balance values of the literals, then the multisets of all non-zero terms occurring
at the top of the literals, and finally the multisets {{s}, {t}} (for equations
[-] s = t) or {{s,s},{t}} (for inequations [-] s > t). The ordering >, on
clauses is the multiset extension of the literal ordering »>.. Both >, and >
are noetherian and total on ground literals/clauses.

2.2 Superposition and Chaining

We present the ground versions of the inference rules of the base calculus
OClInf. The non-ground versions can be obtained by lifting in a rather straight-
forward way (see below).

Let us start the presentation of the inference rules with a few general
conventions: Every term occurring in a sum is assumed to have sort G. The
letters v and v, possibly with indices, denote atomic terms, unless explicitly
said otherwise. In an expression like mu + s, m is a natural number, s may be
zZero.

If an inference involves a literal, then it must be maximal in the respective
clause (except for the last but one literal in factoring inferences). A positive
literal that is involved in a superposition or chaining inference must be strictly
maximal in the respective clause. In all superposition or chaining inferences,
the left premise is smaller than the right premise.

C'Vmu+s~mu+s
C'Vm-mu+s~sg

Cancellation

ifm>m'>1,u=s u>s.

C'Vuzu
Cl

if u either equals 0 or does not have sort G.

Equality Resolution

C'"Vv0o>0

Inequality Resolution o

D'Vnut+twt C'"Vmu+s~s
D'V C"V ns+ mt ~ns' +mt

Canc. Superposition

ifn>1,m>1u>su>s, u>tus>t?

31f gecd(m,n) > 1, then the conclusion of this inference can be simplified to D' V C' V
s + xt' ~ s’ + xt, where ¢p = n/ged(m,n) and x = m/ged(m,n) (and similarly for
the following inference rules). To enhance readability, we leave out this optimization in the
sequel.



D'Vt Znu+t C'"Vmu+szs
D' v C'"V ns+mt 2 ns' +mt

Canc. Chaining

fn>1l,m>Lu>=s,u>s,u=tux>t.

D'VvVurxu C'V s[u] ~ ¢
D'v C'V s[u'] ~ s

Std. Superposition

if u occurs in a maximal atomic subterm of s
and does not have sort G, u > v/, s[u] > s

C'"Vnut+tet Vmut+ss'
C'"Vmt+ns'Zmt +nsV nu+txt

Canc. Eq. Factoring

ifn>1l,m>1Lu>su>s,u>t us>t.

C'Vnu+tzt Vmu+szs
C'"Vmt+ns' Z2mt' +nsV mmu+s2s

Canc. Ineq. Factoring (I)

fn>l,m>Lu>=s,u>s,u=t u>t.

C'Vnut+tzt Vmu+sz=s
C'"Vmt +nsz2mt+ns' Vout+tzt

Canc. Ineq. Factoring (II)

fn>l,m>1Lu>=s,u>s,u=tu>t.

C'Vux~v Vurxd
C'"Vu v Vuxd

Std. Eq. Factoring

if u, v’ and v’ do not have sort G, u > u',
u =

The inference rules of the calculus OCInf do not handle negative inequality
literals. We assume that in the beginning of the saturation process every literal
8 # t in an input clause is replaced by the two literals ¢ > s V t & s, which are
equivalent to s ¥ t by the totality, transitivity and irreflexivity axioms. Note
that the inference rules of OCInf do not produce any new negative inequality
literals.

In the standard superposition calculus, lifting means replacing equality in
the ground inference by unifiability. As long as all variables in our clauses
are shielded, the situation is similar here: For instance, in the second premise
C' VvV A; of a cancellative superposition inference the maximal literal A; need
no longer have the form mu + s ~ s’ with a unique maximal atomic term wu.
Rather, it may contain several (distinct but ACU-unifiable) maximal atomic
terms uy with multiplicities my, where k ranges over some finite non-empty
index set K. We obtain thus Ay = ),z mpup + s ~ s'. In the inference rule,



the substitution o that unifies all u; (and the corresponding terms v; from
the other premise) is applied to the conclusion. Consequently, the cancellative
superposition rule has now the following form:

D'V ottt OV Y mpug s~
(D" Vv C'"V ns+ mt' ~ ns' + mt)o

where

(i) m=>pexgmp>1l,n=>,m>1

)
(ii) o is a most general ACU-unifier of all u; and v; (k € K, € L).
(iii) u is one of the u (k € K).

(iv) uo £ so, uo £ s'o, uoc A to, uoc A t'o.

The other inference rules can be lifted in a similar way, again under the
condition that all variables in the clauses are shielded. As usual, the standard
superposition rule is equipped with the additional restriction that the subterm
of s that is replaced during the inference is not a variable. For clauses with un-
shielded variables, lifting would be significantly more complicated; however, as
we will combine the base calculus with an algorithm that eliminates unshielded
variables, we need not consider this case.

THEOREM 2.1 The inference rules of the calculus OCInf are sound with re-
spect to FopaG-

DEFINITION 2.2 Let N be a set of clauses, let N be the set of ground instances
of clauses in N. An inference is called OCRed -redundant with respect to N if
for each of its ground instances with conclusion Cyf and maximal premise C6
we have {D € N | D <¢c C8} Foricam Cob. A clause C is called OCRed -
redundant with respect to N, if for every ground instance C, { D € N | D <¢
CO} Foricam CO.

2.3 Rewriting on Equations

To prove that the inference system described so far is refutationally complete
we have to show that every saturated clause set that does not contain the
empty clause has a model. The traditional approach to construct such a model
is rewrite-based: First an ordering is imposed on the set of all ground instances
of clauses in the set. Starting with an empty interpretation all such instances
are inspected in ascending order. If a reductive clause is false and irreducible
in the partial interpretation constructed so far, its maximal positive literal
is turned into a rewrite rule and added to the interpretation. If the original



clause set is saturated and does not contain the empty clause, then the final
interpretation is a model of all ground instances, and thus of the original clause
set (Bachmair and Ganzinger [2]).

In order to be able to treat cancellative superposition we have modified
this scheme in [4] in such a way that the rewrite relation operates on equations
rather than on terms. But if we also have to deal with inequations, a further
extension is necessary: We need to be able to rewrite inequations with inequa-
tions; and unlike rewriting with equations, this does of course not produce
logically equivalent formulae.

DEFINITION 2.3 A ground equation or inequation e is called a cancellative
rewrite rule with respect to >, if mt(e) does not occur on both sides of e.

We will usually drop the attributes “cancellative” and “with respect to =",
speaking simply of “rewrite rules”.

Every rewrite rule has either the form mu + s ~ s', where u is an atomic
term, m € N”% u > s, and u > s, or the form u = s', where v > s’ and u
(and thus s') does not have sort G. This is an easy consequence of the multiset
property of >.

DEFINITION 2.4 Given a set R of rewrite rules, the four binary relations —~ g,
—5,R, —ro,R, and —,, on ground equations and inequations are defined (modulo
ACU) as follows:*

(i) mu+t~t — g s +t~t +s,
ifmu+ s~ s'isaruleinR.

(ii) t[s] ~t' —5 R t[s'] ~ 1,
if (i) s & s’ is a rule in R and (ii) s does not have sort G or s occurs in
t below some free function symbol.

(iii) mu+t 2t —op s+t 2t +s,
if mu+ s 2 s' is a rule in R.

(iv) u+t~u+t —, t~t,
uru —, 00,
if w is atomic and different from 0.

The union of =+ r, —§ R, —o,R, and — Iis denoted by —pgb

“While we have the restriction u > s, u > s’ for the rewrite rules, there is no such
restriction for the (in-)equations to which rules are applied.

®As we deal only with ground terms and as there are no non-trivial contexts around
(in-)equations, this operation does indeed satisfy the definition of a rewrite relation, albeit
in an unorthodox way.



If e —g € using a -, J- or k-step, then e and €' are equivalent modulo
OTfCAM and the applied rewrite rule. If s 2 s’ —, g ¢t = ¢/, then both ¢t = ¢/
and t ~ t' imply s = s’ modulo OTfCAM and the applied rewrite rule.

We say that an (in-)equation e is y-reducible, if e —, r €' (analogously for
d, o, and k). It is called reducible, if it is -, d-, o-, or k-reducible.

Unlike k-reducibility, 4-, §-, and o-reducibility can be extended to terms:
A term ¢ is called y-reducible, if ¢t ~ t' —, g €, where the rewrite step takes
place at the left-hand side (analogously for d and o). It is called reducible, if
it is -, §- or o-reducible.

LEMMA 2.5 The relation — g is contained in > and thus noetherian.

DEFINITION 2.6 Given a set R of rewrite rules, the relation —% is defined by
—r=(2R°=oRr°=R)

Given equations e; = s; ~ s] and ex = s2 = s, and a positive integer
¥, we write 1e; for the equation 1s; ~ ¥s| and e; + ey for the equation
$1 + s2 &= s} + s}. (Analogously, if e; and/or e are inequations s; > s} and
Sg > 8h).

DEFINITION 2.7 Given a set R of rewrite rules, the set tr(R) is the set of all
(in-)equations s ~ s' for which there exists a derivation s ~ s’ —7% 0~ 0. The
truth set tr°(R) of R is the set of all equations s ~ s' for which there exists a
derivation s ~ s' —%} 0 ~ 0, and the set of all inequations s 2 s' for which
there exists a derivation s 2 s' —% 0 = 0. The ¥-truth set try,(R) of R is the
set of all equations or inequations e = s ~ ', such that either e € tr°(R) and
s does not have sort G, or s ~ s’ € tr°(R) for some 1) € N~0.

All (in-)equations in trg(R) are logical consequences of the rewrite rules
in R and the theory axioms OT{fCAM.

2.4 Model Construction

DEFINITION 2.8 A ground clause C' V e is called reductive for e, if e is a
cancellative rewrite rule and strictly maximal in C' V e.

DEFINITION 2.9 Let N be a set of (possibly non-ground) clauses that does not
contain the empty clause, and let N the set of all ground instances of clauses
in N. Using induction on the clause ordering we define sets of rules R, Rg ,
E¢, and E(}I' , for all clauses C € N. Let C be such a clause and assume that
Rp, Rg, Ep, and Eg’ have already been defined for all D € N such that
C =c D. Then the set R¢ of primary rules and the set Rg’ of secondary rules



are given by

Re= |J Bp and RI= | EJ.
D<cC D<cC
E¢ is the singleton set {e}, if C' is a clause C' V e such that (i) C is reductive
for e, (ii) C is false in tr°(RY), (iii) C' is false in trg, (RS U {e}), and (iv)
xmt(e) is yd-irreducible with respect to RY for every x € N”0. Otherwise,
E¢ is empty.

If Ec = {e}, then EJY is the set of all rewrite rules e’ € try,(RY U E¢) such
that mt(e') = mt(e) and €' is dk-irreducible with respect to RY. Otherwise,
EC‘? is empty.

Finally, the sets Ry, and RY, are defined by

Ro=|J) Bp and RY= ] ES.
DeN DeEN

Our goal is to show that, if N is saturated with respect to OCInf, then
tr°(RY) is a model of the axioms of totally ordered divisible abelian groups
and of the clauses in N. To this end, we will first put together some basic
properties of Rg’ and RY.

LEMMA 2.10 Let Ec = {mu + s = s'}. Then the inequation that is obtained
by dk-normalizing mu + s = s’ with respect to RC‘I’ is contained in Eg’ .

PRrROOF. As u is d-irreducible with respect to Rg , the dk-normalization of
mu + s = s has the form

mu+s s
®5Un

*
mu+r =7

Then u > s > r and u > s’ > r’. Starting from mu + r 2 r’ we can construct
a derivation

mu+r =71

®|o
sS+rzr'+s

@ dUK




where (2) uses mu + s = s’ and (3) simulates (). Hence mu + r 2 r' is contained
in try,(RY U E¢) and thus in EY. O

2.5 Refutational Completeness of OCInf

The relations — RY and —pe are in general not confluent, not even in the
purely equational case. One can merely show that that — RY is confluent on
equations in tr(RC ), that is, that any two derivations starting From an equation
e can be joined, provided that there is a derivation e —* 0 ~ 0. But even this
kind of restricted confluence does not hold for inequations, and in particular,
not for o-rewriting. We can only prove that two derivations starting from the
same inequation can be joined, if one of them leads to 0 > 0 and if the other
one does not use o-steps. This property will be sufficient for our purposes,
however.

DEFINITION 2.11 Let E be a set of equations and/or inequations. We say that
the relation — g is partially confluent on E, if for all equations eg € E and eq, e2
with e; <% eg —5 e2 there exists an equation e3 such that e; —} e3 <} €2,
and if for all inequations ey € E and ey with e <5 p ey =% 0 > 0 or
€l < snr €0 g 0 > 0 there is a derivation e =3 0 > 0 or ej =% 0 >0,
respectively.

LEMMA 2.12 Let C be a clause in N. If an inequation e € try(RY) is 0k-
irreducible with respect to RY, and — ry is partially confluent on tr(RY) N
{e' | mt(e) = mt(e')}, thene € RY. (Ana]ogously for C replaced by 00.)

Proor. We will prove the first part of the lemma, the proof of the second
one being similar. By the definition of try,(RY), an inequation e cannot be
in normal form with respect to — RE hence e is different from 0 > 0. Let
v = mt(e). By assumption, e is dx-irreducible. We may thus suppose that e
has the form kv + ¢ = t', where v = ¢t and v > t'. By definition of try (R ),
there is a derivation ¢'e —% 4 020 for some ¢’ € N~0. During this derivation
all occurrences of v are deleged eventually. As e is dx-irreducible, this can be
done only by (possibly several) v- or o-rewriting steps, using rules in Rg’ . We
distinguish between two cases, depending on whether the primary rules by
which these secondary rules have been generated are equations or inequations.

Case 1: {mv + s~ s'} = Ep C Re¢.

Then the occurrences of v are deleted using rules é; = m;v + 7; = fé and/or
€j =mjv+r; 2 f;-, and all all é; and é; are contained in £ . We may assume
without loss of generality that the derivation 1)'e —%e 020 has the form

C

11



P'ko + 't Z P

@l’yUo
+

|

020

*

where the rewrite steps of (1) use the sequence of rules é; and €;, the rewrite
steps of @ use rules from RY, and ., + >_;mj = Y'k. There exists a
¥ € N”0 and for every i and j an (Rp U Ep)-derivation

Ve = Y + Y =P ve; = Ymjv + i 2 Yr;
@lv 7J{®
+ +
é; = )A(iS' + Yr; = 'I/Jf; + X;$ é;- = )ZjS' + l,bfj 2 1/)7:; + )st
@l l@
* o]
0~0 020

starting with x;- or x;-fold application of mv + s =~ s', where ¥m; = x;m and
'I/Jﬁ’bj = ij.

Let ex = Yer + >, &, + Zj é';-. Then ey has a derivation to 0 = 0. Cancel-
lation of ¥ 7. (7; +7;) + 1 > ;(7j +7;) in ep yields

es = (02 Xi +22;X5)8 + 't 2 Yyt + (30 X + 22, Xj)s -
By partial confluence of —R¥ We obtain es —>;2\I, 0 > 0. Since mt(e3) < v,
C

rules in RC‘I’ \ Rg cannot be used in this derivation, hence ej _ﬂl:%‘l’ 0>0.
D
On the other hand, Y’k = 37, i + 3, Py = m(3; Xi + 22; Xy), thus
we can rewrite yy)’e to e3 by (3_; Xi +>_; X;j)-fold application of mv + s = .
As e is dk-irreducible with respect to Rg C Rg’ , e is contained in E[‘)I’ C RC‘I’
by Def. 2.9.

Case 2: Otherwise.

Otherwise, in the derivation ¢'e —% e 020 the occurrences of v are eliminated
C

by o-applications of secondary rules that have been generated by one or more
inequations. Let D be the maximal clause such that rules é; = m;v +7; = 7, in
EJ C RY are used in the derivation. Let é; = mjv + 7; = 7; be the remaining
rules in Rg used to eliminate the v’k occurrences of v. We may thus assume
that o'k = 37, m; + 3, m; and that the derivation ¢'e —>}‘%I, 0 = 0 has the
form

12



¢Ik,,v + ¢It 2 ¢It,

@0
+

0

020

*

where the rewrite steps of (7) use the sequence of rules é; from Eg’ and €; from
R}, and the rewrite steps of ®) use rules from R} with maximal term smaller
than v.

Let Ep = {mv + s = s'}. Then there exists a 1y € N”? and for every i an
(R} U Ep)-derivation
Yéi = Ymmv + YR 2 P
®|s
& = DTyt Xis' + U 2 i+ Xis + 30 T
o

020

*

where (9) uses the rule mv + s 2 s’ € Ep x; times and then the sequence
of rules &; = myv + 7y 2 7, from Rg, hence Y; = xim + Y, M.

Let ex = e + ), é;. Then ey has a derivation to 0 = 0. Cancellation of
Y >, (7 + 7) in eg yields

es = YO T+ D 2T+ 2 s+t
Z PPt Y Xas D0 D Ta Y T

By partial confluence of —RY We obtain e3 —7%4 0 > 0. Since mt(e3) < v,
C

rules in Ré’ \ Rg cannot be used in this derivation, hence e3 —%4 0> 0.
D
On the other hand, 'k = >, ¢miv; + 32 by = D2, xam + 32, 32 ma +
>_; ¥m;. Hence we can rewrite Y)'e to ez by (>, xi)-fold application of mv +
s 2 &', ¢-fold application of every €;, and application of every &;. As e is dk-
irreducible with respect to Rg C Rg’, e is contained in Eg’ C Rg’ by Def. 2.9.
O

LEMMA 2.13 Let C be a clause in N. If an inequation e € try (RS U Ec) is

dk-irreducible with respect to Rg’ U E¢, and — v Is partially confluent on
tr(R¥) N {e | mt(e) - mt(e') }, then e € RY UEY.

13



PROOF. If e is contained in try (RY ), then e € RY by Lemma 2.12. Otherwise,
let Ec ={nv+ s~ '} and e = ku +t = t/, such that u = mt(e). By definition
of try, (RS U Ec), there is a derivation

Yhu+ 9t 2 Pt 59 5 020

for some 1y € N”%. During this derivation all occurrences of u are deleted
eventually. If u were larger than v, this would be impossible, as u is §-irreducible
with respect to Rg U Ec. If u were smaller than v, then nv + s ~ s’ could not
be used during this derivation, hence e would be contained in trg(RY). Thus
u = v, and by Def. 2.9, e € EC‘,I’ O

When we have two primary rules nu + ¢t < t' and mu + s > s’ derived
from two clauses in N, then the conclusion of cancellative chaining of these
two clauses contains the literal ns + mt' > ns’ + mt. In this literal the maximal
term w is eliminated completely. In the proof that tr°(RY) is a model, however,
we have to deal with secondary rules, and moreover we have to deal with partial
overlaps, that is, overlaps where some occurrences of v remain. The following
lemma shows how a secondary rule with maximal term w can be represented
by means of primary rules with maximal term w.

LEMMA 2.14 Let C be a clause in N, let —R¥ be partially confluent on
tr(RY) N {e | mt(C) = mt(e') }. Let C =¢ D, such that Ep = {mu + s 2 s'}
and ku +r = r' € ES. Then there exist rules mju + s; = s, € Rp U Ep and
positive integers v, x; (1 < i < n) such that Yk = )", xym;, and

ey = ¢T+ZzX23;2¢T"+ZzXzsz —>Eg, 020

PRrROOF. By definition of E[‘)I’ there exists a 1/3 such that @[;ku + 1/37‘ z 1/;7“' €
trO(REI,’ U Ep). Without loss of generality, we may assume that the derivation
has the form

Vku + Yr 2 or!
®l"

’
e = X'+ X Xy e 2 9+ 3 Xy + X
o)

020

*

where (D) uses x-fold application of mu + s 2 s’ (x > 0) and x;-fold application
of rules kju +r; 2 r; € Rp (1 <j <jo), and ¢k = xm + > Xiks-

14



By induction, for every kju + r; 2 r}- € Rg there exist positive integers
'I/Jj,)zj'l (1 § ] § lj) such that fnﬂu + gjl 2 §;~l € RD, Q,Djkj = Zl lemjl, and

~ T ~ =l T ~ = *
€j = ¢]r]+zlxﬂsjl 2%7']""219(]!531 —>Ré1, 020.

Let ¢ = I1; b;. Thven eh = hé + > zﬁszﬁfléj has a derivation to 0 = 0,
cancellation of > . X;¥(r; + r;) in ej yields eo, and the result follows from
partial confluence of — x O

This lemma allows us to prove the following crucial fact: If the results of
the complete chainings of primary rules with maximal term u are in tr°(RyY ),
and if moreover sufficiently many (small) peaks can be joined, then the result
of the partial overlap of secondary rules mu + 5 > 3’ and nu +t < t' is itself a
secondary rule:

LEMMA 2.15 Let Ec = {mju+ s; = s} }. Suppose that for every pair of rules
mu+ s> s and nu+t <t from Rc U Ec the inequation ns +mt' > ns' +mt
is contained in tr°(RY ). Let —py be partially confluent on tr(RE)N{e | u >
mt(e') }. For U J finite,i €I, j € J, let e; =m;u+3; > §; and é; =t > t; +nju
be inequations in RC‘I’ U Eg Let e be the result of k-normalizing >, e; + . é;.
Then e is contained in Eg U Rg’ .

PROOF. Let m* = 3°,m; and n* = > . ;. Without loss of generality we
assume that § = m* —n* > 0. Then the x-normalization of ), e; + > _, é; has
the form

i€t €
o
Bu+35+ 21> 305+,
o

e = Bu+qg>q

By Lemma 2.14, for every ¢ and j there exist rules m;zu + s;; > s;k and
nju + tj < t;’l € R¢c U E¢, with ym; = Zk Wik Mk 'I/Jﬁj = Zl ujln]-l,6 such
that there are Rg -derivations
el = Y8+ Yy HikSy, > VS, + Dy MikSik
|
*
0>0

5We assume that v is independent of 7 and 7; this is possible since we may take the least
common multiple of all values of 1 obtained from Lemma 2.14 for the individual rules.
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e = Yt + > vt > Yt + > vt
g
0>0

*

Furthermore, by assumption, for all ¢, j, k, and [, there is an RC‘I’ -derivation

2 — ! !
€kl = MNjlSik + miktﬂ > nj18;, + Mikts

@L
0>0

Define the inequation e3 by

e = > ijkl Mikyjle?jkl + Y Ym*el + > ¢m*é}
= Zz’jkl HikVjin 18k + Zz’jkl uikujlmikt;.l
+ DS WPmMAE A+ Y vmF sy,
D0 M S dmF ity
> Dk HikVaniS, + 2 HikViimikt i
+ 30 P mEE A Y hmF paksin
+ Zj ¢2m*£j + Zjl ¢m*l/jlt;.l
= ik YN pisik + Yo vmivity
+> P>m*s; + Yok m* st
+ Ej ¢2m*£;- + Zjl Ym*ujit
> D T Yt piksy, + D vmt vty
+ 20 P mEE A 3 hmF ki
+2 P>m*t; + > mruty

By construction, e has an Rg -derivation to 0 > 0 using a combination of all
derivations (3), @), and (§). On the other hand, we can cancel ) .. ¥n* k(s +
Sig) T 2 ¥ym vt +1) in % and then continue as in (2) and obtain

et = P mrq+ 3 VBRiksl, > vPmrd + Y ¥BuikSik

By partial confluence of —RI et —xe 0>0.
C
Let mipu + 3; > &, be either miu + s > s, (if the latter equation
is contained in E¢), or the equation in Rg obtained from mjpu + si > sl
by dk-normalization as in Lemma 2.10 (if the latter equation is contained in
Ep C Rc). Then e? rewrites using dx-steps to

e’ = ¢2m*q + sz ¢5Nzk§;k > 1/12m*q, + sz YOk Sk
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and e° _ﬂ}:%g’ 0 > 0 by partial confluence of —RE

On the other hand, ¥?*m*Bu = Y3, pimiru, hence ¥?m*e rewrites to
e by B uir-fold o-application of every mgu + 5 > 8... Now there are two
possibilities: Either 8 > 0, then there is at least one o-step in the derivation
from ¢?m*e to €>. Or f = 0, then both I and J must be non-empty and

e? —>°Rg, 0 > 0 because of (5). Consequently et _>3%(‘§’ 0>0andé® —>°Rg, 0>0.

In both cases, ¥?>m*e _>OR‘I’UEC 0 > 0. Therefore, e € Rg U Eg by Lemma 2.13.
C
O

In the model construction, equations mu + s ~ s’ as primary rules can
produce (in-)equations nou + tp 2 t; and nqu + t; < ¢) as secondary rules.

If sufficiently many (small) peaks can be joined, then the result of the partial
overlap of such secondary rules is likewise 0 2 0 or a secondary rule:

LEMMA 2.16 Let Ec = {mu + s =~ s'}, let —RY be partially confluent on
tr(RY)N{€ | u>mt(e')}. For IUJ finite, i € I, j € J, let e; = nju +t; > t,

and & = t; 2 t; + nju be (in-)equations in EY. Let e be the result of k-
normalizing Y, e; + Y ; éj. Then e is contained in EZ U RS U {0 ~ 0}.

PROOF. Without loss of generality we assume that >, n; > >, ;. Then the
r-normalization of >, e; + > é; has the form

> i€ +Zj éj
@lf
(Cimi =2 hg)u+ 3t + 38 2 Dt 4+ D0
@lf:

e = (ni—2;n)utqgzd

Furthermore there exists a 1 € N”? and for every i € I and j € J derivations

Yngu + Pty > Pt Wi 2 bty + Piju
C)lv ”lCD
4 +
e; = xis' + Yty 2 ti + xS € = Xjs + vty 2 vtj + X8
®| |
* *
0>0 020
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where ¢Yn; = x;m and ¢Yn; = x;m. Let

= Dxis vt + D X8+ ) z,bf;-
2D Yt + Yo Xis + Zj Yt + Zj )ACJ'SI

Obviously, e” =74 0 2 0 using a combination of all derivations @) and (6). On
the other hand, k-steps as in (2) lead from e” to

= (ixi — Zj X8 +va 2 (00 xi— Zj Xj)s + 94
By partial confluence of —R¥, We obtain e —% 4 0 2 0. On the other
C
hand, (32, xi — Y25 X))m = (32, ni — >2;7y), thus e rewrites to e by
(22i Xa — 22 Xj)-fold ~y-application of mu + s ~ s'. Furthermore, if at least one

of the e; or é; is an inequation, then one of the derivations (4 or (6) must contain
r¥uE, 0> 0 Henceee EZURZU{0~0} by Lemma2.13

or by the correspondlng Lemma for the equational case (Waldmann [8]). O

an o-step, hence e —

There is one important technical difference between the equational case
developed in (Waldmann [8]) and the inequational case that we consider here:
In the equational case, one can show that —pe is confluent on tr(RY), and
hence that tr(RY) is a model of the theory axioms, without requiring that the
set V of clauses is saturated. Saturation is only necessary to prove that tr(RY)
is also a model of N. In the inequational case, such a separation does not work:
Proving partial confluence of —pe requires Lemma 2.15, and Lemma 2.15
requires that cancellative chaining inferences are redundant. For this reason,
the proof that —ge is partially confluent and the proof that tr°(RY)
model of N must be combined within a single induction.

Lemma 2.17 and Corollary 2.18 are copied almost verbatim from (Wald-

1S a

mann [8]).

LEMMA 2.17 The relation — RY is partially confluent on the equations in
tr°(RY) for every C € N. The relation —gry is partially confluent on the
equations in tr°(R2).”

COROLLARY 2.18 For every C € N, tr°(RY) and tr°(RY) satisfy ACUKT
and the equality axioms (except the congruence axiom for the predicate > ).

In a similar way as Lemma 2.17, we obtain by a rather tedious case analysis
over various kinds of critical pairs:

"Note that confluence and partial confluence differ only for inequations.
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LEMMA 2.19 If for every pair of rules mu + s > s’ and nu +t < t' from
Ec U R¢ the inequation ns + mt' > ns' + mt is contained in tr°(RY), then
—pgupy is partially confluent on tr(R¥ UEY).

PRrooOF. Traditionally the confluence of a noetherian relation is established in
two steps. First, one proves by induction that the confluence of a noetherian
relation follows from local confluence. Second, one shows that local confluence
is implied by the convergence of certain critical pairs. In our case, the induction
hypothesis is not only needed to show that local confluence implies confluence,
but even to prove local confluence. Consequently, we have to embed the analysis
of the critical pairs within the inductive confluence proof.

To show that — RIUEY is partially confluent on tr(RY> U EJY), it suffices
to show that it is partially confluent on tr(RS UES)N{e| ey =1, e} for every
eo € tr(RS U ES). We will do this by induction on the size of ey with respect
to .. We have to show that for any peak

e
RW W{E(}I’
Yk
el e
RgUEgl
*
0>0

such that ey > e there exists a derivation es _yl:%‘l’u By 0 > 0, which uses at
C C

least one o-step if the derivation from e to 0 > 0 via e; uses any o-steps.

For ey >, e, this follows directly from the induction hypothesis, so we assume

ey = €.

Case 1: Trivial peaks.

If e < e —,s5x ez and both rewrite steps take place at disjoint redexes,
then there is obviously an inequation ez such that e; —,s5. e3 < ez, the
induction hypothesis can be applied to e;, and hence there is a derivation
es — e3 —* 0 > 0. Note in particular that d-steps cannot take place at the
same redex as a - or o-step, hence v/d-peaks, d/y-peaks, and o/d-peaks are
necessarily trivial.

If e; <5 e =« e2 and the redexes are not disjoint, then e; can be rewritten
to es by duplicating the original §-step on the other side of the inequation,
followed by a x-step, hence e; —5 e3 — ez and the derivation from es to 0 > 0
is obtained by applying the induction hypothesis first to e; and then to es. In
a similar way, /K- and k/d-peaks can be handled.

It is easy to check that in all cases the derivation from e to 0 > 0 uses an
o-step whenever the derivation from e via e; to 0 > 0 uses an o-step.
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Case 2: y/k-peaks, o/k-peaks.

Suppose that e; <., e =, e2. We assume without loss of generality that the
~- or o-step takes place at the greater side of e (with respect to >), the other
case is proved analogously. Then the peak has the form

kv+s>v+s
‘®/ \®
Yo K
rr+s>v+s8+r (k—1v+s>s
|
0>0

where (1) uses a rewrite rule kv +r > r' € Eg’ - RC‘I’ U Eg’ At some step of
the derivation (3) the term v must be eventually deleted. As v is yo-reducible,
it must be d-irreducible, so this deletion can happen only by a k-step or by a
7- or o-step.

Case 2.1: v is deleted by a k-step.

The deletion of v by a k-step requires the existence of another occurrence of
v on the left-hand side. This occurrence can only be derived from s or s’. We
may thus assume that the derivation has the form @)-%)-(6).

kv+s>v+s
®/ &
Yo K
rr+s>v+s+r (k—1v+s>s
@ |o
r+t+o>v+t +r (k—Lv+t+ov>t
Yo
@""
r+t>t+r
®
0>0

As the steps (@ take place only at s and s, we can simulate them by (7).
Finally, we can close the diagram using v- or o-rewriting (8) by kv +r 2 r. Note
that the derivation (7)-(8)-(6) uses an o-step whenever the derivation 0)-(@-(5)-(6)
uses an o-step.
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Case 2.2: v is deleted by a ~y- or o-step.

Otherwise, the deletion of v during 3) happens by application of a rule kv +
rn S € Rg U E(}I' . Such a step requires the presence of k; — 1 further
occurrences of v on the right hand side. As r and r’ are smaller than v, these
occurrences can only be derived from s or s’. We may thus assume without
loss of generality that the derivation has the form (9)-@)-@:

kv+s>v+s
@/ \@
Yo K

rr+s>v+s+r (k—1v+s>4d

® e

* *

rr+t>v4+(kr— v+t +r (k—1Dv+t>(k— v+t

@]

rmtr+t>t+ri+r
@
0>0

The steps (9) take place only at s and s’, thus we can simulate them by @.

Consider the two rules kv +r 2 r' and kv +r; Srf € RC‘I’ U Eg’ We can
add these two rules, obtaining kv + r + r{ = kjv + r; + r'. By Lemma 2.15
and 2.16, the result of k-normalizing this (in-)equation is either 0 ~ 0 or a rule
from Rg U E(}I’

Case 2.2.1: k > k.
If k > kq, then s-normalization yields an (in-)equation (k — k1)v + ¢ 2 ¢' in
RIUEY:

kv+r+r] 2 kvo+r +7
lﬁ
*
(k—k)o+r+ri 2ri+7r
@ln
*

(k—k)v+qgzd

From @) it is easy to construct a derivation from ¢’ +r +r] 2> g+ ry + 7' using
only cancellation steps:
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d+r+ri2q+r+7
l”

*

0>0

Let us add the starting (in-)equations of @) and (. Obviously there is a deriva-
tion from this inequation to 0 > 0.

i+t i >t +ri+r+g+r+r

* %

0>0

On the other hand, we can cancel r +r' + ry +r{. By the induction hypothesis,
there is a derivation @) from ¢’ +¢ > t' + ¢ to 0 > 0.

We can now close the diagram above: We use k-steps @) to cancel k; — 1
occurrences of v. Then we continue by - or o-application of (k — k1)v + ¢ 2
q' @ and then append derivation @).

kv+s>v+s
® ®
Yo K
r+s>v+s +r (k—1v+s>4
® &)
r+t>v+ (ks — Do+t +r (k—1v+t> (kg — Lo+t
@ e x| ©
ri+r+t>t4ri+r (k—ki)v+t>t
vo | @)
*
@ d+t>t+gq
* /
*

Routine checking shows that the derivation (2-@6)-@)-@) uses an o-step when-
ever the derivation (1)-(9)-@0-@) uses an o-step.
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Case 2.2.2: k < k.

This is essentially the mirror image of Case 2.2.1.

Case 2.2.3: k = k.

If & = kp, then s-normalization yields an (in-)equation ¢ 2 ¢' that is either
0 ~ 0 or a rule from RY. In any case, ¢ > ¢’ has itself a derivation to 0 > 0
(containing at least one o-step if ¢ = ¢’ is an inequation).

kv+r+r] 2 ko+r +7r

K
*

r+ry 2+
@ |«
a24q
0>0

Let us add the starting (in-)equations of @) and @. Obviously there is a deriva-
tion from this inequation to 0 > 0.

ri+rFttrdr >ty +r g+

\

t>t

* %

0>0

On the other hand, we can cancel r + ' + r; + . By the induction hy-
pothesis, there is a derivation ) from ¢ >t to 0 > 0.

The diagram above can now be closed by using x-steps @) to cancel k — 1
occurrences of v, followed by derivation €0).
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kv+s>v+s

rr+s>v+s8+r (k—1v+s>4

® e
* *

rr+t>v4+ (kg — v+t +r (k—Lv+t> (kg — Lo+t

® | @
ri+r At >t i+ t>t

oL
0>0

Routine checking shows that the derivation (2-@D)-@) uses an o-step whenever
the derivation (D-(9)-@9-@) uses an o-step.
Case 3: o/~-peaks.

Suppose that e; <—, e —, ez at overlapping redexes. Without loss of generality
both the o- and the v-step take place at the greater side of e (with respect to
>), the other case is proved analogously. Then we may assume that the y-step
uses a rule kov + 79 = r{ and the o-step uses a rule kyv +ry > r].

Case 3.1: k1 > ky.
If k&1 > kg, then the peak has the form

kiv +s > s
® ©
/ \
ri+s>s+nr (k1 —ko)v+ry+s> s +rg
o)
0>0

We can add the two rules kjv +7r1 > ri and r(’) ~ kov + rg, obtaining kv + 71 +
ro > kov + o + 7. By Lemma 2.16, the result of k-normalizing this inequation
must be a rule (k1 — ko)v +¢ > ¢’ from RY UEJ.
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kiv+ry 4+ ry > kov + ro + 1}

ln
(k1 — ko)v+7r1 + 7y > 1o+ 7]
@ln
*

(k1 —ko)v+q > ¢

From (3 it is easy to construct a derivation from ¢’ +ry +7r{ > g+ ro + 1}
using only cancellation steps:

¢ +ri+ry>q+ro+r]
®|x

*

0>0

Let us add the starting inequations of 3) and (5). Obviously there is a derivation
from this inequation to 0 > 0.

rits+qd +ri+ryg>s+ri+qg+ro+r]

S

s+q +ry>s+q+r

* /

0>0

On the other hand, we can cancel r; + r|. By the induction hypothesis, there
is a derivation 6) from s+ ¢' +ry > s’ + g+ 1o to 0 > 0.

The diagram above can now be closed by an o-step using (k1 — ko)v + ¢ >
q'" (@ followed by derivation (6).

kv +s> s
ri+s>s +r kl—k0v+r0+s>s + 1o
ol@)
® s+q +ry>s+q+r
* %
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Note that the derivation (7)-(6) contains at least one o-step.

Case 3.2: k1 < ky.
If k1 < kg, then the peak has the form

kov + s > s
y \®4\
0 v
(ko —k1)v+ri+s>s8+m ro+s>s +rg
®|,
0>0

During the derivation (3), the kg — k1 occurrences of v are deleted completely.
As v is d-irreducible, this can happen only by k-, v-, or o-steps. We may assume
that ks > 0 and k3 > 0 further occurrences of v are generated on the left-hand
and right-hand side, respectively, such that k3 occurrences of v are eliminated
by k-steps and the remaining kg — k1 + ko — k3 ones are eliminated by - or
o-steps. Without loss of generality the derivation has the form

kov + s > &'

@/ \@

0 Y

(ko — ki )v+ri+s>8+r ro+s>s8 4+
® |®

(kO—k1+k2)’v+7‘i+t>tl+r1+k‘3v k2v+r(l)+t>tl+7‘0+k‘30
® |70

rh+ksv+ri+t>t +r+ksv+ro
® |
E
ro+ri+t >t +ri 4
@
0>0

where the steps (@) take place only at s and s’ and (5) uses rules e} € Rg U E(}I’
such that ) . el = (ko — k1 + k2 — k3)v +ro 2 75. As the steps (@) take place
only at s and s’ we can simulate them by (8.
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Case 3.2.1: ko > k3.

We can add the rules kyv + 71 > r} and r{ & kgv + g and all rules e} obtaining
(ko + k2 — k3)v + 11 + ro + 7y > kov + r] + ry + ro. By Lemma 2.16, the
result of k-normalizing this inequation must be a rule (ks — k3)v + q¢ > ¢ from
RIUEZ.

(ko + ko — k3)v + 11 4+ 1o + 15 > kov + 1) + 15 + 19

ln
*
(ka —ks)v+ri+ro+ry>r]+rh+ 10
®l“

(ke —k3)v+q >

From (9) it is easy to construct a derivation from ¢’ + 71 +ro +7) > g+ +
rh + 1o using only cancellation steps:

¢d4+rit+rot+ry>qg+ri+rh+ro
l“

0>0

Let us add the starting inequations of (7) and (0. Obviously there is a derivation
from this inequation to 0 > 0.

rhtri+t+qd +ritrotryg >t +ri+rat+qtri+rh+r

\

¢ +rg+t>t' +ro+q

* *A/

0>0

On the other hand, we can cancel ry 4+ r2 + ] + r5. By the induction hypothesis,
there is a derivation @ from t + ¢ 4+ ry >t + ¢+ ro to 0 > 0.

The diagram above can now be closed by cancellation of ksv @), followed
by an o-step using (ky — k3)v + q > ¢’ ® followed by derivation @).
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(ko—ki)v+ri+s>8+nr ro+s>s +rg
@
* *
(ko—ki+ke)v + 1] +t >t + 11 + kv kov + 1y +t >t + 1o + kv
@ZO ,:@
ro+ksv+ri+t >t +r+ksv+re (ka—ks)v+ryg+t >t 41
® |~ 0|®
x
ry + i+t >t Fry 4 ¢ +rg+t>t+ro+q
@%
0>0*

Case 3.2.2: ky < kg.

This is essentially the mirror image of Case 3.2.1.

Case 3.2.3: ko = kg.

Again, we add the rules kjv + 1 > 7} and rj = kov + ro and all rules e}
obtaining kov + 71 + ro + vy > kov + 7} + rh + ro. By Lemma 2.16, the result
q > ¢' of k-normalizing this inequation must be a rule from Rg U E(}I’ , hence
q > ¢ has itself a derivation to 0 > 0.

kov+r + 1o+ 1y > kov+ 1] + 75+ 1

K
*

ri+re+ry >y +rh+ 1)

@ |~

q>4q
0>0

!
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Let us add the starting (in-)equations of (7) and @). Obviously there is a deriva-
tion from this inequation to 0 > 0.

rh+ri+t+ritro+rg>t+ri+reo+ri+ry 4+

s

ro+t >t +rg

0

[¢]

0>0

On the other hand, we can cancel ry + rp + 7] + 5. By the induction
hypothesis, there is a derivation @) from ¢ + r{, > t' + ro to 0 > 0.

The diagram above can now be closed by using k-steps €1 to cancel kov
followed by derivation €0).

kov + s > s’
@ @
o o]

(ko—ki)v+ri+s>8+mr ro+s>s+rg

® |®

(ko—ki1+ke)v + 1] +t >t + 11 + kv kov + 1y +t >t + 1o + kv

® | @
ry+ksv + 1)+t >t +r 4 ksv+ro ro+t >t +ro

®|x

*
rh+ri+t >t +r+r %
@
0>0

Case 4: y/v-peaks, d/d-peaks, k/vy-peaks.

It remains to consider peaks of the form e; <— e —, ex or e <5 e —5 e
or e; < € —, ez. These can be joined in virtually the same way as the
corresponding peaks in the equational case. O
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Using the same techniques as in (Waldmann [8]) and (Bachmair and Gan-
zinger [3]) we can now prove the following theorem. Note in particular that
in the presence of the totality axiom cancellative inequality factoring (I)/(II)
inferences are simplifications, hence clauses where the maximal atomic term
occurs in two ordering literals do not produce primary rules.

THEOREM 2.20 Let N be a set of clauses without negative inequality literals
and without unshielded variables; suppose that N is saturated up to redun-
dancy and contains the theory axiom Div, Inv, Nt, and all ground instances
of Tot. If all clauses of N, except the ground instances of Tot, are fully ab-
stracted, and if N does not contain the empty clause, then we have for every
ground clause CH € N:

(i) The relation —p, 3 is partially confluent on tr(RJ,).

(ii) tr°(R5) satisfies the axioms Ir, Tr, Mon, K>, T~, and the congruence
axiom for the predicate >.

(iii) Eco = 0 if and only if C8 is true in tr°(R ).

(iv) C8 is true in tr°(RY) and in tr°(Rp},) for every DO ¢ C6.

(v) IfCH = C'0 V e and Ecy = {ef}, then C'0 is false in tr°(RY) and
tr°(Rp,) for any DO = C6.

(vi) The relation —p, Uy, 18 partially confluent on tr(RY, U EJ,).

(vii) tr°(R3y U EJ,) satisfies the axioms Ir, Tr, Mon, K, T, and the
congruence axiom for the predicate >.

(viii) The relation —pw is partially confluent on tr(RY) and tr°(RY) sat-
isfies the axioms Ir, Tr, Mon, K~, T~, and the congruence axiom for the
predicate >.

PRrOOF. We use induction on the clause ordering . and assume that (i)—(vii)
are already satisfied for all clauses in N that are smaller than C8.

Property (i) is a direct consequence of the fact that R>, is the union of
all Rbl'o with D6 <o C6: Note that every finite ch'e—derivation is also an RB’G—
derivation for some D§ € N with D@ <o C# and that (vi) is satisfied for
De.

Property (ii) follows from partial confluence. For the transitivity axiom,
consider two inequations r > s and s > t in tr°(RJ,).

r>s s>t
@l l@
0>0 0>0
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We can combine the derivations (1) and (2) and obtain a derivation (3):

r+s>s+t

~9

® *r>t

e

0>0

On the other hand, we can use k-steps (4) to cancel s on both sides of the
inequation. By partial confluence, there is a derivation (5), hence r > ¢t €
tr°(RY).

For the axiom T~ we have to show that s > ¢t € tr°(R>,) entails
s >t € tr°(RY,). Consider derivation (@:

\@
) *
P(s' +7r) > Yt +7r)

® "l@

*

ps' > Yt

o %

We can dx-normalize s > it, first by d-rewriting s to s’ +r and ¢ to t/ + r
(2), then by cancelling (3) the common part ¥r. By confluence, there exists a
derivation (@). The inequation s’ > 9t is dk-irreducible with respect to Rgo’
hence it is contained in some Eg'e C Rgo by Lemma 2.12. By the construction
of E, and by the definition of tr°, we get s' > ' € Epy C RY,. It is now easy
to construct a derivation from s > ¢ to 0 > 0, using first dk-normalization and
then s’ > t'.
The other axioms are proved in a similar way.

s > Pt

The “if” part of (iii) is obvious from the model construction. To prove
the “only if” part let us assume that C8 is false in tro(Rgg). We distinguish
between three cases:

If C contains a variable z such that 26 =~ r € tr°(R>,) for some term r < 26,
then there is a smaller instance of C' that is true in tr°(RJ,) by the induction
hypothesis. As tr°(RJ,) satisfies the equality axioms, Cf must also be true in
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tro(Rgo), contradicting our assumption. Similarly, if C'f is an instance of the
totality axiom and some term occurring in C8 equals some smaller term, then
there is a smaller instance of the totality axiom, and again C'@ must be true
in tr°(R%,).

Suppose that Cf contains a maximal negative literal = e;#. Then there
must be an Rge—derivation from e16 to 0 =~ 0. If the maximal atomic term of
e10 occurs on both sides of e1 8, then there is either a cancellation or an equality
resolution inference from C6. This inference is an instance of a cancellation
or equality resolution inference from C. By saturation up to redundancy, the
conclusion of the inference must be true in tro(Rgo), hence CO must also be
true, contradicting our assumption.

If the maximal term occurs on only one side, then it must be either -
or d-reducible, using a rule ¢’ € EJ, C RJ,. Consequently, there is either
a cancellative superposition or a standard superposition inference between D6
and C0, and by saturation up to redundancy, the conclusion of the inference
must be true in tro(Rgg). From this we can again infer that C@ is true in
tr°(R%y).

It remains to consider the case that C'# does not contain a maximal negative
literal. Then it must contain a maximal positive literal e;. If the maximal
atomic term of e; 8 occurs on both sides of e1 6, then there is either a cancellation
or an inequality resolution inference from C6 and C6 must be true in tr°(RJ,)
by saturation.

If the maximal atomic term occurs on only one side of e;0, then there
are again three possibilities: If e;0 is maximal, but not strictly maximal in
C0, then there is either a cancellative equality factoring, or a standard equality
factoring, or a cancellative inequality factoring inference from C6, from which
we can conclude that C8 is true in tr°(RJ,).

If x mt(e10) is y5-reducible for some x € N”? using a rule e” € Ej, C R%,,
then there is either a cancellative superposition or a standard superposition
inference between D@ and C6. Once more, C6 must be true in tr°(RJ,).

Otherwise, either Ecy = {e10} (then there is nothing to show), or C'0 is
true in try(RY, U {e16}). In this case, C'6 = C"0 V e26, where the literal e»
is smaller than e;# and is contained in trg,(Rg, U {e16}) \ tr°(R5y). This can
happen only if mt(e2f) = mt(e16). Then there is either a cancellative equality
factoring, or a standard equality factoring, or a cancellative inequality factoring
inference from C@, from which we can conclude that C8 is true in tr°(R5).

Property (iv) follows from (iii) and from the fact that rules in Ry \ Ry
cannot be used to disprove a negative equality in C8.
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If CO =C'0 V ed and Ecg = {ef}, then C'6 is obviously false in tr°(R%,).
Let €’ be any positive literal in C'. The literal ordering is defined in such a way
that there is only one situation in which rules in RY \ Rgo could be used in a
derivation €'0 —° 0 ~ 0, namely if both e and e’ are inequations and mt(e'0) =
mt(ef) occurs in both €' and ef either only on the greater side or only on the
smaller side (with respect to >). However, in this case (and in the presence
of the totality axiom) cancellative inequality factoring (I)/(II) inferences are
simplifications, that is the conclusions of both cancellative inequality factoring
inferences and some sufficiently small instance of the totality axiom imply C6.
As N is saturated up to redundancy, C# must be true in tro(Rgo), hence
Ecg = 0. This proves property (v).

Let mu +s > s’ and nu 4+t < t' be rules from Ecp U Rcg. Then there
is a cancellative chaining inference from the two clauses producing these two
rules. As this inference must be redundant, the inequation ns + mt' > ns’ +mt
is contained in tr°(RY,). By Lemma 2.19, — 5 L UBY, is partially confluent on
tr(Rgy U E,), hence property (vi) holds.

Property (vii) follows from (vi) in the same way as property (ii) follows
from (i). This completes the inductive proof of properties (i)—(vii).

It remains to prove property (viii): Partial confluence of — v follows from
the fact that Ry is the union of all RY, (cf. property (i)), the rest is proved
again in the same way as property (ii). O

THEOREM 2.21 Let N be a set of clauses without negative inequality literals
and without unshielded variables; suppose that N is saturated up to redun-
dancy and contains the theory axiom Div, Inv, Nt, and all ground instances
of Tot. Suppose that all clauses of N, except the ground instances of Tot, are
fully abstracted. Then N U ODAG is unsatisfiable if and only if N contains
the empty clause.

PRrROOF. If N contains the empty clause, then it is unsatisfiable. Otherwise,
tr°(RY) is a model of the equality axioms, of ODAG, and of N. O

We may assume without loss of generality that the constant ag does not oc-
cur in non-theory input clauses and that the function symbols — and divided-by,
are eliminated eagerly from all non-theory input clauses. In this case, no infer-
ences are possible with the axioms Div, Inv, and Nt. Furthermore, one can show
that inferences with instances of the totality axiom Tot are always redundant
(analogously to Bachmair and Ganzinger [3]).
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3 The Extended Calculus

3.1 Variable Elimination

As we have mentioned in the introduction, the calculus OCInf works on clauses
without unshielded variables, but its inference rules may produce clauses with
unshielded variables. To make it effectively saturate a given set of clauses, it
has to be supplemented by a variable elimination algorithm.

In the equational case, every clause with unshielded variables can be trans-
formed into an equivalent clause without unshielded variables. However, in the
presence of ordering literals, this does no longer hold.

ExAMPLE 3.1 Consider the clause C = z >a V = b V x < c. This clause
is true for every value of z, if either ¢ > a or both a ~ b and ¢ = b. So C can
be replaced by the clause normal form of ¢ > a V (a b A ¢ ~ b), that is, by
the two clauses ¢ >a V a~band ¢ > a V ¢= b, but C is not equivalent to a
single clause without unshielded variables.

For any disjunction of conjunctions of literals F' let CNF(F’) be the clause
normal form of F' (represented as a multiset of clauses).

Let x be a variable of sort G. We define a binary relation —, over multisets
of clauses by

CancelVar MU{C'V mz+s~m'z+s'} —,
MU{C'"V (m—m')x + s~ '}
ifm>m'>1.

ElimNeg MU{C'"Vmz+sz#s} —;
MU{C"}

if m > 1 and x does not occur in C’, s, s'.

ElimPos MU{C'V Ve liz+ri=r, Vv Vjermiz + s; > s;
V Vier e +tg <ti} =
M UCNF(C' V Ve Vier (nisj +mjty, > nyss +mjty,
V Vie[(lisj + m]-ré ~ li59 + mjri A Lity, + nkré ~ lit;g + nkri)))
ifTUJUK #0,1; >1, mj > 1, n, > 1 and x does not occur in
C'\riyriy 85, Sy tey g, fori € I, j € J, k € K.

Coalesce MU{C'"Vmz+sz#s Vnr+t~t'} —,
MU{C'"V mz+sz#s Vmt+ns ~mt+ ns}

if m >1,n>1, and z does not occur in s, s, t,t.
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It is easy to show that —, is noetherian. We define the relation — 4}, over
multisets of clauses in such a way that M U {C} —eim M U M’ if and only
if C' contains an unshielded variable z and M’ is a normal form of {C} with
respect to —,.

The relation —¢im is again noetherian. For a clause C, elim(C') denotes
some (arbitrary but fixed) normal form of {C} with respect to the rela-
tion —elim-

COROLLARY 3.2 For any C, the clauses in elim(C') contain no unshielded vari-
ables.

LEMMA 3.3 For every C, {C} Fopac elim(C) and elim(C) U Tot Fortcam C.
For every ground instance C8, elim(C)6 U Tot FoTtcam CH.

3.2 Integration of the Elimination Algorithm

Using the technique sketched so far, every clause Cy can be transformed into
a set of clauses elim(Cp) that do not contain unshielded variables, follow from
Cy and the axioms of totally ordered divisible abelian groups, and imply Cj
modulo OTfCAM U Tot. Obviously, we can perform this transformation for all
initially given clauses before we start the saturation process. However, when
clauses with unshielded variables are produced during the saturation process,
then logical equivalence is not sufficient to eliminate them. We have to require
that the transformed set of clauses elim(Cj) makes the inference ¢ producing
Cp redundant. Unfortunately, it may happen that the clauses in elim(Cp) or
the instances of the totality axiom needed in Lemma 3.3 are too large, at least
for some instances of ¢. To integrate the variable elimination algorithm into
the base calculus, it has to be supplemented by a case analysis technique.

Let k € {1,2}, let C4,...,C} be clauses without unshielded variables and
let ¢ be an OCInf-inference

Cp ... C4
Coo
We call the unifying substitution o that is computed during ¢ and applied to
the conclusion the pivotal substitution of ¢. (For ground inferences, the pivotal
substitution is the identity mapping.) If the last premise C; has the form
C] V A where A is maximal (and the replacement or cancellation takes place
at A) then we call Ao the pivotal literal of +.® Finally, if ug is the atomic term
that is cancelled out in ¢, or in which some subterm is replaced,’ then we call
ugo the pivotal term of .

81n cancellative inequality factoring inferences, the pivotal literal is not deleted; however,
factoring does not produce unshielded variables anyway.

9More precisely, uo is the maximal atomic subterm of s containing « in standard super-
position inferences, and the term w in all other inferences.
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Two properties of pivotal terms are important for us: First, whenever an
inference ¢ from clauses without unshielded variables produces a conclusion
with unshielded variables, then all these unshielded variables occur in the piv-
otal term of ¢. Second, no atomic term in the conclusion of ¢ can be larger than
the pivotal term of ¢.

One can now show that, if the clauses in elim(Cjp) or the instances of the
totality axiom needed in Lemma 3.3 are too large to make the OClInf-inference
¢ redundant, then there must be an atomic term in some clause in elim(Cj) that
is unifiable with the pivotal term. If we apply the unifier to the conclusion of the
OCInf-inference, then the result does no longer contain unshielded variables,
and moreover it subsumes the critical instances of ¢. Using this result, we
can now transform the inference system OCInf into a new inference system
that operates on clauses without unshielded variables and produces again such
clauses. The new system ODInf is given by two meta-inference rules:

Eliminating Inference

C, ... (4
C'

if the following conditions are satisfied:

cC, ... (1
Co

(i1) C" € elim(CY).

is a OCInf-inference.

Instantiating Inference

C, ... C1
Cor

if the following conditions are satisfied:

G ... G is a OCInf-inference with pivotal literal A and pivotal

term wu.
(ii) elim(Co) # {Co}-

(iii) A literal A; with the same polarity as A occurs in some clause in
ehm(C’g)

(iv) An atomic term u; occurs at the top of Aj.

(v) 7 is contained in a minimal complete set of ACU-unifiers of u and u;.
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We define the redundancy criterion for the new inference system in such
a way, that an ODInf-inference is redundant, if the appropriate instances of
its parent OCInf-inference are redundant. Then a set of clauses without un-
shielded variables that is saturated with respect to ODInf up to redundancy
is also saturated with respect to OCInf up to redundancy. ODInf can thus be
used for effective saturation of a given set of input clauses:

THEOREM 3.4 Let Ny be a set of clauses without negative inequality literals
and without unshielded variables; let Ny contain the theory axiom Div, Inv,
Nt, and all ground instances of Tot. Suppose that all clauses of Ny, except the
ground instances of Tot, are fully abstracted. Let No - N1+ No b ... be a fair
ODInf-derivation. Let N4, be the limit of the derivation. Then Ny U ODAG is
unsatisfiable if and only if N4, contains the empty clause.

4 Conclusions

We have presented a superposition-based calculus for first-order theorem prov-
ing in the presence of the axioms of totally ordered divisible abelian groups. It
is based on the DTAG-superposition calculus from (Waldmann [10]) and the
ordered chaining calculus for dense total orderings without endpoints (Bach-
mair and Ganzinger [3]), and it shares the essential features of these two calculi:
It is refutationally complete, it does not require explicit inferences with the
theory clauses, and due to the integrated variable elimination algorithm it does
not require variable overlaps. It offers thus an efficient way of treating equal-
ities and inequalities between additive terms over, e.g., the rational numbers
within a first-order theorem prover.
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