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Abstract

A key ingredient of the most successful algorithms for the Steiner problem
are reduction methods, i.e. methods to reduce the size of a given instance
while preserving at least one optimal solution (or the ability to efficiently re-
construct one). While classical reduction tests just inspected simple patterns
(vertices or edges), recent and more sophisticated tests extend the scope of
inspection to more general patterns (like trees). In this paper, we present such
an extended reduction test, which generalizes different tests in the literature.
We use the new approach of combining alternative- and bound-based meth-
ods, which substantially improves the impact of the tests. We also present sev-
eral algorithmic improvements, especially for the computation of the needed
information. The experimental results show a substantial improvement over
previous methods using the idea of extension.
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1 Introduction

The Steiner problem in networks is the problem of connecting a subset of the vertices
of a weighted network at minimum cost. This is a classical N"P-hard problem [5] with
many important applications in network design in general and VLSI design in particular.
Background information on this problem can be found in [4].

A key ingredient of the most successful algorithms [1, 6, 10] for the Steiner problem are
reduction methods, i.e. methods to reduce the size of a given instance while preserving
at least one optimal solution (or the ability to efficiently reconstruct one). While clas-
sical reduction tests just inspected simple patterns (vertices or edges), recent and more
sophisticated tests extend the scope of inspection to more general patterns (like trees).

In this paper, we present such an extended reduction test, which generalizes different tests
in the literature. We use the new approach of combining alternative- and bound-based
methods, which substantially improves the impact of the tests. We also present several
algorithmic improvements, especially for the computation of the needed information. The
experimental results show a substantial improvement over previous methods using the
idea of extension.

After some preliminaries in the next two subsections, in Section 2 we first describe the
test in a generic form. The generic algorithm is substantiated by presenting the applied
test conditions (Section 2.1) and criteria for guiding and truncation of expansion (Section
2.2). A very critical issue for the success of such a test is the computation of the needed
information; this and other implementation issues are discussed in Section 2.3. Different
design decisions lead to different variants of the test, as described in Section 2.4. Some
computational experiments on the impact of the tests are reported in Section 3. Finally,
Section 4 contains some concluding remarks.

1.1 Definitions

The Steiner problem in networks can be stated as follows (see [4] for details): Given an
(undirected, connected) network G = (V, E,c) (with vertices V' = {vy,...,v,}, edges
E and edge weights ¢;; > 0 for all (v;,v;) € E) and a set R, 0 # R C V, of required
vertices (or terminals), find a minimum weight tree in G that spans R (called a Steiner
minimal tree). If we want to stress that v; is a terminal, we will write z; instead of v;.

We also look at a reformulation of this problem using the (bi-)directed version of the graph,
because it yields stronger relaxations: Given G = (V| F, ¢) and R, find a minimum weight
arborescence in G = (V, 4, ¢) (A == {[vi, v;], [vj,vi] | (vi,v;) € E}, ¢ defined accordingly)
with a terminal (say z1) as the root that spans Ry := R\{z}.

For any two vertices v; and v;, the distance d;; = d(v;, v;) between v; and v; is the length
of a shortest path between v; and v;. A Steiner bottleneck of a path P;; between v; and
v; is a longest subpath with (only) endpoints in RU{v;, v;}; and the Steiner bottleneck
distance s;; between v; and v; is the minimum Steiner bottleneck length over all P;;.



For every tree T'in GG, we denote by L(T') the leaves of T', by V(T') the vertices of T, and
by ¢(T) the sum of the costs of edges in T. Let T” be a subtree of T. The linking set
between T and 7" is the set of vertices v; € V(1") with at least one fundamental path
from v; to a leaf of T not containing any edge of T". If the linking set between T and 1" is
equal to L(T"), T" is said to be peripherally contained in 7. A set L' C V(T), #L' > 1,
induces a subtree Ty, of T containing for every two vertices v;,v; € L' the fundamental
path between v; and v; in T. We define L' to be a pruning set if L' contains the linking
set between T and T7,. A key node in a tree is a node which is either a terminal or
a nonterminal of degree at least 3. A key path in a tree is a path in which (only) the
endpoints are key nodes. A tree bottleneck between v; € T" and v; € T is a longest key
path on the fundamental path between v; and v; in T'; and ¢;; denotes the length of such
a tree bottleneck.

1.2 Preliminaries for Reduction Tests

We distinguish between two major classes of reduction tests, namely the alternative-based
tests and the bound-based tests [10].

The alternative-based tests use the existence of alternative solutions. For example in
case of exclusion tests, it is shown that for any solution containing a certain part of the
graph (e.g. a vertex or an edge) there is an alternative solution of no greater cost without
this part; the inclusion tests use the converse argument.

A basic alternative-based test is the co-called SD-test [3] (here called s-test): Any edge
(vi,vj) with s;; < ¢;; can be excluded. (This test can be extended to the case of equality,
if a path corresponding to s;; does not contain (v;, v;)).

The bound-based tests use a lower bound for the value of an optimal solution under
the assumption that a certain part of the graph is contained (in case of exclusion tests)
or is not contained (in case of inclusion tests) in the solution; these tests are successful
if such a constrained lower bound exceeds a known upper bound, typically the value of a
(not necessarily optimal) Steiner tree. But it is usually too costly to recompute a (strong)
lower bound from scratch for each constraint. Here one can use the following simple, but
quite generally applicable observation:

Observation 1 Let G = (V, A, ¢) be a (directed) network (with a given set of terminals)
and ¢’ < c. Let lower’ be a lower bound for the value of any (directed) Steiner tree in
G' = (V, A, ) with ¢ := ¢—¢". For each incidence vector x representing a feasible Steiner
tree for G, it holds: lower’ + " - x < c¢- x.

Proof:c-x =c -+ " x> lower' + " - x. O

A typical application of this observation is an approach based on Linear Programming:
Any linear relaxation can provide a dual feasible solution of value lower’ and reduced
costs ¢”. We can use a fast method to compute a constrained lower bound lower! , with
respect to ¢”. Using Observation 1, it easily follows that lower,,, := lower’ + lower!  is

con
a lower bound for the value of any solution satisfying the constraint.



As an example for such a relaxation, consider the (directed) cut formulation Py [17]: The
Steiner problem is formulated as an integer program by introducing a binary x-variable for
each arc (in case of undirected graphs, the bidirected counterpart is used, fixing a z; € R
as the root). For each cut separating the root from another terminal, there is a constraint
requiring that the sum of x-values of the cut arcs is at least 1. In this way, every feasible
binary solution represents a feasible solution for the Steiner problem and each minimum
solution (with value v(P¢)) a Steiner minimal tree. Now we can use a dual feasible solution
of value lower’ for LPg, the linear relaxation of Pg, to apply the method described above.
For example, a lower bound for any Steiner tree with the additional constraint that it
must contain a certain nonterminal v can be computed by adding lower’ to the length of
a shortest path with respect to the reduced costs ¢” from z; via v to another terminal,
because any optimal Steiner tree including v must contain such a path.

If a test condition is successful, a test action is performed, which modifies the current
graph. For the tests in this paper, two such modifications are relevant: the elimination
of an edge (or some edges), which is straightforward, and replacing a nonterminal. The
latter action is performed once it is established that this vertex has degree at most two
in an optimal Steiner tree. The graph is modified by deleting the vertex and the incident
edges and introducing a clique over the adjacent vertices in which the cost of each edge is
the sum of the costs of the two edges it replaces. Note that in case of parallel edges, only
one of minimum cost is kept.

2 Extending Reduction Tests

The classical reduction tests for the Steiner problem inspected just simple patterns (a
single vertex or a single edge). There have been some approaches in the literature for
extending the scope of inspection [2, 15, 16]. The following function EXTENDED-TEST
describes in pseudocode a general framework for many of these approaches. The argument
of EXTENDED-TEST is a tree T that is expanded recursively. For example, to eliminate
an edge e, T is initialized with e. The function returns 1 if the test is successful, i.e. it is
established that there is an optimal Steiner tree which does not peripherally contain T
otherwise it returns 0.

In the pseudocode, the function RULE-OUT(T, L) contains the specific test conditions
(see Section 2.1): RULE-OUT(T, L) returns 1 if it is established that T is not contained
with linking set L in at least one optimal Steiner tree.

EXTENDED-TEST(T) :
(returns 1 only if T is not contained peripherally in at least one optimal Steiner tree)

{  if RULE-OUT(T, L(T)) :

2 return 1 (test successful)
3 if TRUNCATE(T) :

4 return 0 (test truncated)
5 forall leaves v; of T :



6 if v; ¢ R and PROMISING (v;) :
7 success =1
8 forall nonempty extension C {(v;, v;)|
not RULE-OUT(T U {(v;,vj)}, L(T) U {v;})} :
9 if not EXTENDED-TEST(T U extension) :
10 success = ()
11 if success :
12 return 1 (no acceptable extension at v;)
13 return 0 (in all inspected cases, there was an acceptable extension)

The correctness can be proven easily by induction using the fact that if 7" is a subtree of
an optimal Steiner tree T* and contains no inner terminals, all leaves of 7" are connected
to some terminal by paths in 7% \ T".

Obviously the decisive factor in this algorithm is the realization of the functions RULE-
OUT, TRUNCATE and PROMISING.

Using this framework, previous extension approaches can be outlined easily:

e In [16] the idea of expansion was introduced for the rectilinear Steiner problem.

e In [15] this idea was adopted to the Steiner problem in networks. This variant of the
test tries to replace vertices with degree three; if this is successful, the newly intro-
duced edges are tested again with an expansion test. The expansion is performed
only if there is a single possible extension at a vertex, thus eliminating the need for
backtracking.

e In [2] backtracking was explicitly introduced, together with a number of new test
conditions to rule out subnetworks, dominating those mentioned in [15].

e In [10], we introduced a different test which tries to eliminate edges. Expansion is
performed only if there is at most one possible extension (thus inspecting a path)
and only if the elimination of one edge implies the elimination of all edges of the
path.

All previous approaches use only alternative-based methods. We present an expansion test
that explicitly combines the alternative-based and bound-based methods. This combina-
tion is far more effective than previous tests, because the two approaches have complemen-
tary strengths. Intuitively speaking, the alternative-based method is especially effective if
there are terminals in the vicinity, because it uses the Steiner bottleneck distances. On the
other hand, the bound-based method is especially effective if there are no close terminals,
because it uses the distances (with respect to reduced costs) to terminals. Furthermore,
for the expansion test to be successful, usually many possible extensions must be con-
sidered and it is often the case that not all of them can be ruled out using exclusively
the alternative- or the bound-based methods, whereas an explicit combination of both
methods can do the job.



Although the pseudocode of EXTENDED-TEST is simple, designing an efficient and effec-
tive complete version of it requires many algorithmic ideas and a careful implementation
of them, taking the interaction between different actions into account, which is highly
nontrivial. Since writing down many pages of pseudocode would be less instructive, we
prefer to explain the main building blocks. In the following, we first describe the test
conditions for ruling out trees (the function RULE-OUT), using the results of [2] and
introducing new ideas. Then we explain the used criteria for truncation and choice of
the leaves for expansion (the functions TRUNCATE and PROMISING). Finally, we will
address some implementation issues, especially by presenting data structures for querying
different types of distances.

2.1 Test Conditions

For the following test conditions we always consider a tree 7" with V(T) N R C L(T),
i.e. terminals may appear only as leaves of the tree. A very general formulation of the
alternative-based test condition is the following:

Observation 2 Consider a pruning set L' for T. If ¢(T}/) is larger than the cost of a
Steiner tree 7" in G' = (V, (‘2/), s) with L' as terminals, then there is an optimal Steiner
tree that does not peripherally contain 7.

This test can be strengthened to the case of equality if there is a vertex v in Ty, which is
not in any of the paths used for defining the s-values of the edges of T".

Proof:' Assume that T is peripherally contained in an (optimal) Steiner tree T* in G.
As L' is a pruning set for T and the leaves of T are a pruning set for T*, ' is also a
pruning set for 7. It follows that after removing the edges of Ty, from T, each of the
remaining subtrees contains one vertex of L’. The plan is to reconnect these subtrees to a
new Steiner tree by replacing each necessary edge of 7" with a path in G of no larger cost.
Consider the forest F' consisting of these subtrees together with the remaining nodes of
T' (i.e. nodes which are not in any of these subtrees). Merge all vertices of 7" that are in
one component of F', breaking emerging cycles by deleting an arbitrary edge of each cycle.
This operation does not increase the cost of T7”. Now, each component C; of F' corresponds
to one vertex t; of T'. We will ensure this invariant during the whole process of updating
T and F.

Choose a shortest edge (t;,t;) of T". Let P;; be a path of Steiner bottleneck length s;;
between v; and v;, vertices of V' corresponding to ¢; and ¢; (before merging). Let Py be a
subpath of P;; in which only the endpoints v, and v; are in RU {v;, v}, and v; and v; are
in different components C and C; of F. Remove an arbitrary edge on the fundamental
path in T" between ¢, and ¢; and merge ¢, and ¢; in 7". Finally, connect C} and C; in F’
by adding the necessary edges from Pj;. The sum of the costs of these edges is not larger
than s;;. Because (t;,t;) was a shortest edge of 7", the added cost in F' is also not larger
than the cost of the edge that was removed from 7".

Repeating this procedure leads to a new network that connects all terminals of G and
has cost at most ¢(T*) — c(T) + c¢(T"). If ¢(T") < ¢(T1s) or ¢(T") = ¢(Ty) and there is at

!There are proofs in [2, 4] for similar (but weaker) conditions, but they are not fully correct.




least one vertex in V(77,) that is not in the new tree (because it was not in any of the
paths that were used for defining the s-values of the edges in T"), we have a Steiner tree
of cost not larger then ¢(T*) which does not peripherally contain T O

If computing an optimal Steiner tree T” is considered too expensive, the cost of a minimum
spanning tree for L' with respect to s can be used as a valid upper bound.

Another test condition compares Steiner bottlenecks with tree bottlenecks. The proof
shows that it is a relaxation of the previous condition.

Observation 3 If s;; < t;; for any v;,v; € T', there is an optimal Steiner tree that does
not peripherally contain 7. Again, the test can be strengthened to the case of equality if
a path corresponding to s;; does not contain a tree bottleneck between v; and v;.

Proof: Consider v;,v; and all key nodes on the fundamental path P;; between v; and v;
in 7" as the pruning set L' in the previous observation. The induced subtree 77/ is the
path P,; itself. Removing a tree bottleneck from P;;, inserting an edge (v;,v;) of cost s;;
and substituting the c-values for the other edges with the (not larger) s-values leads to a
Steiner tree for L' in G' with cost at most ¢(P;;) + sij — tij. O

The bound-based test condition uses a dual feasible solution for LP. of value lower’ and
corresponding reduced costs ¢” (with resulting distances d”):

Observation 4 Let {l1,ls,...,l} = L(T) be the leaves of T'. Then lower,y, := lower’ +
ming{d" (z1, ;) + "(T;) + > j4i Min,er, d" (1, 2,)} defines a lower bound for the cost of
any Steiner tree under the assumption that it peripherally contains 7', where fz denotes
the directed version of 7" when rooted at [;.

Proof: If T is peripherally contained in an optimal Steiner tree T, then there is a path
in T* from the root terminal z; to a leaf [; of T'. After rooting T from [;, each (possibly
single-vertex) subtree of 7% corresponding to other leaves /; contains a terminal. Now the
observation follows directly using Observation 1 as described in Section 1.2. O

In the context of replacement of edges, one can use additionally the following observation.

Observation 5 Let e; and e, be two edges of T in a reduced network. If both edges
originate from a common edge e3 by a series of replacements, than no optimal Steiner
tree for the reduced network that corresponds to an optimal Steiner tree in the unreduced
network contains T'.

Proof: Assume that there is an optimal Steiner tree T for the reduced network containing
both e; and e;. Back-substituting the edges of 7™ leads to a solution in the original
network in which e; is used twice. This means that the solution value in the unreduced
and consequently in the reduced network can be decreased by c(e3), which contradicts the
optimality of T™. O

The conditions above cover the calls RULE-OUT(T, L) with L = L(T). In case other
vertices than the leaves need to be considered in the linking set (as in line 8 of the
pseudocode), one can easily establish that all observations above remain valid if we treat
all vertices of L as leaves.



2.2 Criteria for Expansion and Truncation

The basic truncation criterion is the number of backtracking steps, where there is an
obvious tradeoff between the running time and the effectiveness of the test. A typical
number of backtracking steps in our implementations is five.

Additionally, there are other criteria that guide and limit the expansion:

1. Of course, if a leaf is a terminal, we cannot easily expand over this leaf, because
we cannot assume anymore that an optimal Steiner tree must connect this leaf to
a terminal by edges not in the current tree. However, if all leaves are terminals (a
situation in which no expansion is possible for the original test), we know that at
least one leaf is connected by an edge-disjoint path to another terminal (as long as
not all terminals are spanned by the current tree). This can be built into the test
by another level of backtracking and some modifications of the test conditions. But
we do not describe the modifications in detail, because the additional cost did not
pay off in terms of significantly more reductions.

2. If the degree deg of a leaf is large, considering all 2(#9=1) — 1 possible extensions

would be too costly, and the desired outcome, namely that we can rule out all of
these extended subtrees, is less likely. Thus we limit the degree of possible candidates
for expansion by a small constant, e.g. 8.

3. It has turned out that a depth-first realization of backtracking is quite successful. In
each step, we consider only those leaves for expansion that have maximum depth in
T when rooted at the starting point. In this way, the bookkeeping of the inspected
subtrees becomes much easier and the whole procedure can be implemented without
recursion. A similar idea was already mentioned (but not explicitly used) in [2].

4. In case we do not choose the depth-first strategy, a tree T could be inspected more
than once. As an example, consider a tree T resulting from an expansion of 7" at
leaf v; and then at v;; if 7" cannot be ruled out, it is possible that we return to 77,
expand it at v; and then at v;, arriving at 7" again. This problem can be avoided by
using a (hashing-based) dictionary.

2.3 Implementation Issues

Precomputing (Steiner) Distances A crucial issue for the implementation of the test
is the calculation of Steiner bottleneck distances. An exact calculation of all s;; needs time
O([VI(|E] + |V |log|V])) [2] and space ©(|V'|?), which would make the test impractical
even for mid-size instances. So we need a good approximation of these distances and
some appropriate data structures for saving them partly. Duin [1], building upon a result
of Mehlhorn [8], gave a nice suggestion for the approximation of the Steiner bottleneck
distances which needs preprocessing time O(|E|+|V|log|V|) (mainly three shortest paths
calculations to determine the three nearest terminals for each nonterminal and a minimum



spanning tree calculation) and a small running time for each query (the query time can
even be constant, if all needed queries are known in advance [10]). Unfortunately, although
the resulting approximate values §;; produce quite satisfactory results for the original s-
test of Section 1.2, for the extended test the results are much worse than with the exact
values. But we observed that § = min{$,d} is almost always equal to the exact s-values,
and therefore can be used in the extended test as well. Still there remains the problem
of computing the needed d-values. Here we use three different approaches that reflect the
properties of different variants of the test.

1. A simple approach uses the precomputed $-values and an on-demand distance cal-
culation. This approach is used if we delete edges by an expansion test, because in
this case the Steiner bottleneck distances can increase, so a test that uses the old
s values may produce wrong results. Therefore, we carefully determine the region
where the shortest paths to the three nearest terminals could be destroyed and re-
compute them. If a deleted edge is contained in the minimum spanning tree, this
tree has to be recomputed as well.

2. If we just perform replacement operations (and possibly edge deletions for newly
inserted edges by the s-test), then the Steiner bottleneck distances do not increase.
Therefore, we can use a caching technique: For a small number of vertices we keep
a data structure for implementing an interruptible computation of distances by a
variant of Dijkstra’s algorithm. Upon a query for a 5;;, it is checked whether v; or
v; is in this cache. If this is the case and $;; has already been computed, we are
done; otherwise we resume the corresponding distance computation until the other
vertex is reached, then the computation is interrupted again, and the values s;; and
5;; are computed and stored. If none of the vertices is in the cache, one cache slot
is overwritten with the data for a new distance computation from either v; or v;.
For an extension of the test to the case of equality, observe that if neither v; nor v;
is a terminal, than the edge (v;,v;) can even be deleted if the old §;; is equal to ¢;;,
and the Steiner bottleneck distances still do not increase. Note that the value of the
approximated Steiner bottleneck distances may change due to edge deletions even
if the exact Steiner bottleneck distances stay the same.

3. If we limit the number of (backtracking) steps, then we can limit in advance the set
of all possible queries. In this case, we use the following strategy: First we compute
and store for each vertex the distances to a constant number (e.g. 50) of nearest
vertices. When a vertex is considered for replacement by the expansion test, we
first compute the set N of possibly visited neighbors (adjacent vertices, and vertices
adjacent to them, and so on, up to the limited depth). Then we initialize a distance
matrix for this set with the $-values and use the precomputed distances for vertices
in N to decrease these values if possible. Using this matrix, each query can be
answered in constant time.

Tree Bottlenecks The tree bottleneck test of Observation 3 can be very helpful, be-
cause every distance between tree vertices calculated for a minimum spanning tree or a



Steiner minimal tree computation can be tested against the tree bottleneck, and in many
of the cases where a tree can be ruled out, already an intermediate bottleneck test can
rule out this tree, leading to a shortcut in the computation. This is especially the case if
there are long chains of nodes with degree two in the tree. We promote the building of
such chains while choosing a leaf for extension: We first check, whether there is a leaf at
which the tree can be expanded only by one edge. In this case we immediately perform
this expansion, without creating a new key node and without the need of backtracking
through all possible combinations of expansion edges.

The tree bottleneck test can be sped up by storing for each node of the tree the length of
a tree bottleneck on the path to the starting vertex. For each two nodes v; and v; in the
tree, the maximum of these values gives an upper bound for the actual tree bottleneck
length #;;. Only if this upper bound is greater than the (approximated) Steiner bottleneck
distance, an exact tree bottleneck computation is performed.

Computations for the Bound-Based Tests An efficient method for generating the
dual feasible solution needed for the bound-based test of Observation 4 is the DUAL-
ASCENT algorithm described in [10] (a more detailed description of a fast implementation
of DUAL-ASCENT is described in [9]). We improve the strength of the test by calculating
a lower bound and reduced costs for different roots. Although the optimal value of the
dicut relaxation does not change with the choice of the root, this is not true concerning the
value of the dual feasible solution generated by DUAL-ASCENT and, more importantly,
the resulting reduced costs can have significantly different patterns, leading to a greater
potential for reductions.

Even more reductions can be achieved by using stronger lower bounds, as computed with
a row generating algorithm [10]. Concerning the tests for the replacement of vertices, we
use only the result of the final iteration, which provides an optimal dual solution of the
underlying linear relaxation. The dual feasible solutions of the intermediate iterations are
used only for the tests dealing with the deletion of edges, because the positive effect of
the replacement of a vertex (Section 1.2) cannot be translated easily into linear programs.

Replacement History Our program package can transform a tree in a reduced network
back into a tree in the original instance. For this purpose, we assign a unique ID number
to each edge. When a vertex is replaced, for each newly inserted edge we store a triple
with the new ID and the two old IDs of the replaced edges.

We use this information to implement the test described in Observation 5. First we do
some preprocessing, determining for each ID the edges it possibly originate from (here
called ancestors); this can be done in time and space linear in the number of IDs. Later,
a test for a conflict between two edges (i.e. they originate from the same edge) can be
performed by marking the IDs of the ancestors of one edge and then checking the IDs of
ancestors of the other edge; so each such test can be done in time linear in the number of
ancestors.

We perform this test each time the current tree T is to be extended over a leaf v; (with
(v, v;) in T') by an edge (v;,v;). Then we check for a conflict between (v;, v;) and (v, v;).
This procedure generalizes an idea briefly mentioned in [2], where a coloring scheme was



suggested for a similar purpose. Our scheme has the advantage that it may even discover
conflicts in situations where an edge is the result of a series of replacements.

2.4 Variants of the Test

A general principle for the application of reduction tests is to perform the faster tests first
so that the stronger (and more expensive) tests are applied to (hopefully) sufficiently re-
duced graphs. In the present context, different design decisions (e.g. trying to delete edges
or replace vertices) lead to different consequences for an appropriate implementation and
quite different versions of the test, some faster and some stronger.

We have implemented four versions of expansion tests and integrated them into the re-
duction process described in [10]. Some details of the corresponding implementations were
already given in Section 2.3.

1. For a fast preprocessing we use the linear time expansion test that eliminates paths,
as described in [10].

2. A stronger variant tries to replace vertices, but only expands at leaves that are most
edges away from the starting vertex.

3. Even stronger but more time-consuming is a version that performs full backtracking.

4. The most time-consuming variant tries to eliminate edges. This is especially expen-
sive, because the mentioned approaches for the precomputation of the (approximate)
Steiner bottleneck distances are not applicable.

3 Computational Results

In [10], we reported empirical times for the exact solution of the instances of the bench-
mark library SteinLib [7], which were by far the best results at the time of their submission
(April 1998). In that work, all instances of SteinLib (the version of that time) could be
solved fairly fast (at most about one minute) except some large VLSI-instances, which
took longer (up to a couple of hours) or could not even be solved in days (four instances).
In that work, we predicted that in the short term, major improvements, particularly for
those VLSI-instances, are to be expected from further reduction techniques. This turned
out to be the case: In the meantime, other researchers [15] and we could achieve major
improvements by using extended reduction techniques.

In this paper, we concentrate on the VLSI-Instances of SteinLib (including some new
instances added in the meantime). This makes it possible to compare both: Our methods
with other approaches using extended reduction tests and different variants of our meth-
ods. In a different context we report in [11] results on the so-called geometric instances
of SteinLib using (among other techniques) the methods described in this paper. Other
groups of instances could be either solved fairly fast already without these new techniques
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(as we reported in [10]), or (as for some groups of instances added meanwhile to SteinLib)
are deliberately constructed to be hard for the known methods, with the consequence that
the impact of the described methods on them is not decisive.

We report results both for the extended reduction techniques described in this paper and
for the optimal solution using this techniques. All these results are, to our knowledge, by
far the best results achieved for the corresponding instances. In particular, we could solve
all original VLSI-instances of SteinLib in at most a couple of minutes, with the average
times even much smaller. Also, we could solve several instances of the new version of
SteinLib for the first time.

Each of the test series was performed with the same parameters for all instances of all
groups. Although in some cases individual parameter tuning could lead to some improve-
ments, the used methods turn out to be fairly robust, so not much is lost by using the
same parameters for all instances.

All tests were performed on a PC with an AMD Athlon 1.1 GHz processor and 768 MB
of main memory, using the operating system Linux 2.2.13. We used the GNU egcs 1.1.2
compiler and CPLEX 7.0 as LP-solver.

In Tables 2-9, we report reduction results for different groups of VLSI-instances of Stein-
Lib. For each instance, three kinds of results are given:

1. using classical (not extended) reduction tests, as already described in [10];

2. using fast variants of the extended tests (variants 1 and 2 in Section 2.4 in addition
to 1 above);

3. using strong variants of the extended tests (variants 3 and 4 in Section 2.4 in addition
to 1 and 2 above).

For each of these test series, we report the size (|V], |E| and |R|) of the reduced instance;
the fraction (in percent) of the original edges remained and the time (in seconds) for
the corresponding reductions. A stroke means that the instance has been solved with the
corresponding reductions alone.

For an easier comparison, we provide in Table 1 an overview of these results together
with the best other results [15] we are aware of, giving for each group of instances the
average values for running time (in seconds) and the fraction of edges remained after the
corresponding reductions. Those other results were produced on a Sun ULTRA 167 MHz,
but even if one divides the corresponding running times by 10, our strong variants are still
much faster, while already our fast variants achieve better reduction results in all cases.

In Tables 10-17, we report the times (in seconds) for the optimal solution of different
groups of instances. The solution method is the same as in [10]; here we have used ad-
ditionally the extended reduction methods described in this paper (all variants) together
with some new methods we described in [12, 13]. Note that this means a different com-
bination of methods with the side-effect that for some instances, the time for the exact
solution is smaller than the reduction times reported in Tables 2-9.
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instance || classical reduction extended reduction, extended reduction, Uchoa et. al.
group fast variants strong variants
time [ % of [ET remained time [ % of [ET remained time [ % of [ET remained time [ % of [ET remained

ALUE 2.89 34.50 10.06 0.63 10.36 0.62 1310.93 14.25
ALUT 4.02 38.27 32.62 0.75 33.81 0.49 1806.44 11.76

DIW 0.35 11.57 0.88 0.00 0.88 0.00 214.67 4.10
DMXA 0.06 8.59 0.07 0.00 0.07 0.00 4.14 2.55

GAP 0.13 3.21 0.31 0.00 0.31 0.00 60.54 2.62

MSM 0.13 7.76 0.24 0.05 0.24 0.05 12.90 2.66

TAQ 0.39 23.83 0.98 0.18 0.99 0.16 69.29 11.33

Table 1: Comparison of Reduction Results (averages)

For the results reported in Table 17, a few additional comments are appropriate. This
group of instances has been added to SteinLib recently and includes several instances not
previously solved (1lin31-37). We have solved all instances of this group; but a couple of
them (all previously unsolved) needed relatively long computation times (up to a couple
of days). For those instances, the weak point of our current approach seems to be the
computation of sufficiently good lower bounds; with a solution (or a good approximation
of a solution) of a strong relaxation (such as LPg) at hand, the described reduction
methods lead to a relatively fast exact solution of the instance.

The best other optimal solution results we are aware of for the considered instances were
reported in [14], where a branch-and-cut algorithm was used after the reduction phase.
But because in [14] only results for the more time-consuming instances are reported, we
cannot perform a comparison of average times. For the instances considered there, the
running times in [14] are typically 100 times or more larger than ours, with the difference
growing with the size of the instances (again, the running times in [14] can be divided by
at most 10 to count for their slower machine). For example, the average times for solving
the largest four instances (alue7065, alue7080, alut2610, alut2625) are 665853 seconds in
[14] and 122 seconds in this work.

4 Concluding Remarks

In this paper, we described a generic algorithm and some concrete variants of it for extend-
ing the scope of reduction tests. The new approach of explicitly combining alternative-
and bound-based methods, together with many algorithmic ideas, lead to substantial
improvement over previous tests which used the idea of expansion.

A very important issue in the context of reduction tests is the interaction of different
methods. This is especially important for the tests described in this paper, because they
tend to transform instances not only in their size, but also in their type. In particular, the
success of the described tests for replacing nonterminals, in cooperation with the edge-
elimination tests, tend to transform graphs of high connectivity to graphs with many
small vertex separators, often consisting of terminals alone. This prepares the ground for
another group of reduction tests, which we describe in [12].
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instance | original size Il classical reductions [ extended reductions, fast variants || extended reductions, strong variants
[ VI [ TeT T IRT || time [ Wof [ET [ [VI [ [ET [ R [| time [ % of [ET [ TV] [ TET [ [R] [| time [ % of [ET [ [V [ TET [ [RT |
taq0014 6466 11046 128 1.61 64.83 4123 7161 115 2.42 0.00 — 2.37 0.00 —
taq0023 572 963 11 0.06 10.70 68 103 6 0.06 0.00 — 0.05 0.00 —
taq0365 4186 7074 22 0.31 21.44 918 1517 21 0.69 0.00 — 0.70 0.00 —
taq0377 6836 11715 136 1.69 76.85 5192 9003 134 5.30 2.54 187 | 297 | 66 5.44 2.26 170 | 265 | 62
taq0431 1128 1905 13 0.06 0.00 — 0.14 0.00 — 0.14 0.00 —
taq0631 609 932 10 0.03 8.69 55 81 7 0.02 0.00 — 0.02 0.00 —
taq0739 837 1438 16 0.08 26.29 233 378 12 0.12 0.00 — 0.12 0.00 —
taq0741 712 1217 16 0.10 25.80 197 314 14 0.12 0.00 — 0.10 0.00 —
taq0751 1051 1791 16 0.07 22.78 252 408 16 0.13 0.00 — 0.11 0.00 —
taq0891 331 560 10 0.01 0.00 — 0.01 0.00 — 0.01 0.00 —
taq0903 6163 10490 130 1.40 76.20 4581 | 7993 | 109 4.71 0.00 — 4.72 0.00 —
taq0910 310 514 17 0.01 0.00 — 0.01 0.00 — 0.01 0.00 —
taq0920 122 194 17 0.01 0.00 — 0.01 0.00 — 0.01 0.00 —
taq0978 i 1239 10 0.02 0.00 — 0.01 0.00 — 0.02 0.00 —
Average: || 039 | 23.83 | [ 098 ] 0.18 | [ 099 ] 0.16 |
Table 2: Reduction Results for the TAQ-Instances
instance original size Il classical reductions [ extended reductions, fast variants || extended reductions, strong variants |
VI [ TET T IR [| ®ime [ % of [ET [ VI [ [ET [ [R[ [[ time [ % of [E]T [ [V [ [ET [ [R[ || time [ % of [ET [ TV [ [ET [ [R[ |
diw0234 5349 10086 25 0.33 8.67 496 | 874 | 23 1.17 0.00 — 1.12 0.00 —
diw0250 353 608 11 0.01 0.00 — 0.01 0.00 — 0.01 0.00 —
diw0260 539 985 12 0.01 0.00 — 0.01 0.00 — 0.01 0.00 —
diw0313 468 822 14 0.01 0.00 — 0.01 0.00 — 0.01 0.00 —
diw0393 212 381 11 0.01 0.00 — 0.01 0.00 — 0.01 0.00 —
diw0445 1804 3311 33 0.16 17.70 346 | 586 | 26 0.09 0.00 — 0.09 0.00 —
diw0459 3636 6789 25 0.21 4.67 184 | 317 | 14 0.12 0.00 — 0.13 0.00 —
diw0460 339 579 13 0.01 0.00 — 0.01 0.00 — 0.01 0.00 —
diw0473 2213 4135 25 0.08 0.00 — 0.08 0.00 — 0.08 0.00 —
diw0487 2414 4386 25 0.11 0.00 — 0.12 0.00 — 0.12 0.00 —
diw0495 938 1655 10 0.02 0.00 — 0.04 0.00 — 0.04 0.00 —
diw0513 918 1684 10 0.03 0.00 — 0.03 0.00 — 0.03 0.00 —
diw0523 1080 2015 10 0.02 0.00 — 0.03 0.00 — 0.02 0.00 —
diw0540 286 465 10 0.01 0.00 — 0.01 0.00 — 0.01 0.00 —
diw0559 3738 7013 18 0.41 29.59 1130 2075 18 0.34 0.00 — 0.34 0.00 —
diw0778 7231 13727 24 0.82 26.98 1979 3704 21 0.80 0.00 — 0.81 0.00 —
diw0779 11821 22516 50 1.90 78.80 9294 17743 50 6.36 0.00 — 6.33 0.00 —
diw0795 3221 5938 10 0.36 0.00 — 0.84 0.00 — 0.85 0.00 —
diw0801 3023 5575 10 0.24 0.00 — 0.69 0.00 — 0.68 0.00 —
diw0819 10553 20066 32 0.70 0.00 — 2.53 0.00 — 2.50 0.00 —
diw0820 11749 22384 37 1.83 76.47 8987 | 17117 | 37 5.27 0.00 — 5.28 0.00 —
Average: || 0.35 | 11.57 | [ 0.88 | 0.00 | [ 0.88 | 0.00 |

Table 3: Reduction Results for the DIW-Instances



instance | original size Il classical reductions [ extended reductions, fast variants || extended reductions, strong variants |

[ VI [ 12T T TR[ || time [ % of [ET [ [VI [ TET [ [R[ |[ time [ % of [ET [ TVT [ [ET [ [R[ [| time [ % of TET [ TV [ TET [ [R[ |
dmxa0296 233 386 12 0.01 0.00 — 0.01 0.00 — 0.01 0.00 —
dmxa0368 | 2050 | 3676 18 0.15 11.51 | 254 | 423 [ 11 0.12 0.00 — 0.12 0.00 —
dmxa0454 1848 3286 16 0.06 0.00 — 0.13 0.00 — 0.13 0.00 —
dmxa0628 169 280 10 0.01 0.00 — 0.01 0.00 — 0.01 0.00 —
dmxa0734 663 1154 11 0.02 0.00 — 0.01 0.00 — 0.03 0.00 —
dmxa0848 499 861 16 0.03 8.71 49 | 75 | 7 0.05 0.00 — 0.05 0.00 —
dmxa0903 632 1087 10 0.05 30.73 202 | 334 | 9 0.08 0.00 — 0.07 0.00 —
dmxal010 3983 7108 23 0.14 0.00 — 0.14 0.00 — 0.14 0.00 —
dmxall09 343 559 17 0.02 6.44 23 | 36 | 6 0.01 0.00 — 0.01 0.00 —
dmxal200 770 1383 21 0.09 26.54 216 | 367 | 19 0.04 0.00 — 0.03 0.00 —
dmxal304 298 503 10 0.01 0.00 — 0.02 0.00 — 0.01 0.00 —
dmxal516 720 1269 11 0.02 0.00 — 0.03 0.00 — 0.02 0.00 —
dmxal721 1005 1731 18 0.03 0.00 — 0.04 0.00 — 0.04 0.00 —
dmxal801 2333 4137 17 0.22 36.35 842 | 1504 | 17 0.32 0.00 — 0.33 0.00 —

| Average: || 0.06 | 359 | [ 0.07 | 0.00 | [ 0.07 ] 0.00 |
Table 4: Reduction Results for the DMXA-Instances
—_
(@)

instance | original size Il classical reductions [ extended reductions, fast variants [| extended reductions, strong variants |

[ VI [ TET [ TR[ [[ time [ %of [E] [ TVI [ TET [ [R[ || time [ Wof [ET [ [VI [ [ET [ [RT [ time [ % of [ET [ TV] [ TET [ [R[ |
gapl307 342 552 17 0.01 0.00 — 0.02 0.00 — 0.02 0.00 —
gapl413 541 906 10 0.01 0.00 — 0.02 0.00 — 0.01 0.00 —
gapl500 220 374 17 0.01 0.00 — 0.01 0.00 — 0.01 0.00 —
gapl810 429 702 17 0.02 0.00 — 0.02 0.00 — 0.01 0.00 —
gapl904 735 1256 21 0.02 0.00 — 0.06 0.00 — 0.06 0.00 —
gap2007 2039 3548 17 0.13 16.80 355 | 596 | 15 0.10 0.00 — 0.12 0.00 —
gap2119 1724 2975 29 0.09 0.00 — 0.14 0.00 — 0.14 0.00 —
gap2740 1196 2084 14 0.04 0.00 — 0.09 0.00 — 0.07 0.00 —
gap2800 386 653 12 0.01 0.00 — 0.01 0.00 — 0.01 0.00 —
gap2975 179 293 10 0.01 0.00 — 0.01 0.00 — 0.01 0.00 —
gap3036 346 583 13 0.02 0.00 — 0.02 0.00 — 0.03 0.00 —
gap3100 921 1558 11 0.04 0.00 — 0.10 0.00 — 0.10 0.00 —
gap3128 10393 18043 104 1.28 24.95 2590 | 4501 | 89 3.39 0.00 — 3.42 0.00 —

| Average: [[ 0.13 | 321 | [ 031 ] 0.00 | [ 031 ] 0.00 |

Table 5: Reduction Results for the GAP-Instances
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instance | original size Il classical reductions [ extended reductions, fast variants [| extended reductions, strong variants |
[ VI T TeT T IR[ [ time [ %of JET [ [V [ [ET [ [R[ [ time [ % of [E] [ V] [ [E] [ [R[ || time [ % of [ET [ [V] [ TET [ [R[ |

msm0580 338 541 11 0.04 12.01 44 | 65 | 7 0.03 0.00 — 0.02 0.00 —

msm0654 1290 2270 10 0.02 0.00 — 0.07 0.00 — 0.06 0.00 —

msm0709 1442 2403 16 0.03 0.00 — 0.09 0.00 — 0.08 0.00 —

msm0920 752 1264 26 0.04 0.00 — 0.07 0.00 — 0.06 0.00 —

msm1008 402 695 11 0.06 23.02 96 | 160 | 9 0.02 0.00 — 0.03 0.00 —

msm1234 933 1632 13 0.02 0.00 — 0.04 0.00 — 0.04 0.00 —

msm1477 1199 2078 31 0.05 0.00 — 0.06 0.00 — 0.04 0.00 —

msm1707 278 478 11 0.01 0.00 — 0.02 0.00 — 0.01 0.00 —

msm1844 90 135 10 0.01 0.00 — 0.01 0.00 — 0.01 0.00 —

msm1931 875 1522 10 0.01 0.00 — 0.04 0.00 — 0.04 0.00 —

msm2000 898 1562 10 0.03 0.00 — 0.02 0.00 — 0.03 0.00 —

msm2152 2132 3702 37 0.38 23.10 501 | 855 | 25 0.24 0.00 — 0.23 0.00 —

msm2326 418 723 14 0.01 0.00 — 0.01 0.00 — 0.02 0.00 —

msm2492 4045 7094 12 0.21 6.74 288 | 478 | 11 0.32 0.00 — 0.34 0.00 —

msm2525 3031 5239 12 0.10 0.00 — 0.24 0.00 — 0.23 0.00 —

msm2601 | 2961 [ 5100 16 0.22 23.12 676 | 1179 | 14 0.38 0.00 — 0.36 0.00 —

msm2705 1359 2458 13 0.02 7.08 107 | 174 | 10 0.05 0.00 — 0.05 0.00 —

msm2802 1709 2963 18 0.09 0.00 — 0.06 0.00 — 0.09 0.00 —

msm2846 | 3263 | 5783 | 89 || 0.47 50.10 | 1939 | 3418 | 86 || 0.61 157 | 58 | 91 [ 22 || 0.62 157 | 58 | 91 | 22

msm3277 1704 2991 12 0.04 0.00 — 0.05 0.00 — 0.05 0.00 —

msm3676 957 1554 10 0.02 0.00 — 0.02 0.00 — 0.03 0.00 —

msm3727 4640 8255 21 0.21 9.50 473 | 784 | 19 0.51 0.00 — 0.50 0.00 —

msm3829 4221 7255 12 0.57 24.66 1049 | 1789 | 12 1.39 0.00 — 1.35 0.00 —

msm4038 237 390 11 0.01 0.00 — 0.01 0.00 — 0.01 0.00 —

msm4114 402 690 16 0.01 0.00 — 0.01 0.00 — 0.01 0.00 —

msm4190 391 666 16 0.01 0.00 — 0.01 0.00 — 0.01 0.00 —

msm4224 191 302 11 0.02 0.00 — 0.01 0.00 — 0.01 0.00 —

msm4312 5181 8893 10 1.05 44.57 2290 | 3964 | 10 2.79 0.00 — 2.75 0.00 —

msm4414 317 476 11 0.01 0.00 — 0.01 0.00 — 0.01 0.00 —

msm4515 i 1358 13 0.03 0.00 — 0.05 0.00 — 0.05 0.00 —

| Average: [[ 0.13 | 776 | [ 024 0.05 | [ 024 | 0.05 |
Table 6: Reduction Results for the MSM-Instances
instance | original size Il classical reductions Il extended reductions, fast variants Il extended reductions, strong variants
[ IVT_T_TEL_T TR e [ ol [EL [ VI ] TET T TR _|[ fime [ Yol [ET [ VI [ TET I TRl Fme [ %ol [E[ ] V] [ [E[ | IA]
alue2087 1244 1971 34 0.05 0.00 — 0.07 0.00 — 0.07 0.00 —
alue2105 1220 1858 34 0.02 0.00 — 0.05 0.00 — 0.06 0.00 —
alue3146 3626 5869 64 0.30 26.02 889 1527 57 0.29 0.00 — 0.32 0.00 —
alue5067 3524 5560 68 0.29 21.60 737 1201 65 0.70 0.00 — 0.71 0.00 —
alueb5345 5179 8165 68 0.59 55.59 2717 4539 68 3.19 1.90 98 155 36 3.14 1.87 98 153 36
alue5623 4472 6938 68 0.65 51.67 2150 3585 66 1.69 1.07 49 74 25 1.60 1.07 49 74 25
alue5901 11543 18429 68 1.03 22.73 2487 4188 68 2.72 0.83 96 153 31 2.84 0.80 94 148 31
alue6179 3372 5213 67 0.30 12.01 403 626 54 0.61 0.00 — 0.61 0.00 —
alue6457 3932 6137 68 0.62 27.90 1060 1712 63 0.80 0.00 — 0.83 0.00 —
alue6735 4119 6696 68 0.38 26.28 1065 1760 64 0.69 0.00 — 0.71 0.00 —
alue6951 2818 4419 67 0.30 30.21 831 1335 67 0.57 0.00 — 0.58 0.00 —
alue7065 34046 54841 544 10.50 90.00 28859 49355 497 88.14 1.05 353 | 576 | 138 88.32 1.00 340 | 547 | 138
alue7066 6405 10454 16 0.84 64.65 3935 6758 11 6.08 0.00 — 6.15 0.00 —
alue7080 34479 55494 2344 27.53 88.80 28838 49276 1856 45.24 4.67 1600 | 2593 | 613 49.44 4.54 1562 | 2520 | 605
alue7229 940 1474 34 0.02 0.00 — 0.04 0.00 — 0.04 0.00 —
Average: || 2.89 | 34.50 | [ 10.06 0.63 | [ 10.36 0.62 |

Table 7: Reduction Results for the ALUE-Instances
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instance | original size Il classical reductions Il extended reductions, fast variants Il extended reductions, strong variants |
VT T 187 T TR e T %ol (5] [ VT T TE[ [ TR ]| tme [ %ol [B] [ VI [ 121 ][R || e [ %of[E] [ [V] [ 5] [ I%]
alut0787 1160 2089 34 0.05 0.00 — 0.04 0.00 — 0.05 0.00 —
alut0805 966 1666 34 0.11 2.70 30 45 7 0.07 0.00 — 0.07 0.00 —
alutl181 3041 5693 64 0.37 49.22 1500 2802 57 0.36 0.00 — 0.36 0.00 —
alut2010 6104 11011 68 0.91 41.05 2523 4520 66 1.04 0.00 — 1.08 0.00 —
alut2288 9070 16595 68 1.45 39.69 3661 6587 67 2.54 0.00 — 2.57 0.00 —
alut2566 5021 9055 68 0.53 43.25 2192 3916 67 1.98 0.82 50 74 22 1.98 0.82 50 74 22
alut2610 33901 62816 204 11.69 74.72 23823 46933 198 130.63 0.87 313 545 75 132.52 0.51 194 319 68
alut2625 36711 68117 879 21.08 93.81 34221 63899 824 156.91 5.05 1985 3442 457 165.68 3.10 1281 2111 425
alut2764 387 626 34 0.01 0.00 — 0.01 0.00 — 0.01 0.00 —
| Average: || 4.02 | 38.27 | [ 32.62 | 0.75 | [ 33.8L | 0.49 | |
Table 8: Reduction Results for the ALUT-Instances
instance | original size Il classical reductions Il extended reductions, fast variants Il extended reductions, strong variants
[ VI T TET T IRI [ time [ of [ET T VI [ TEI T IR[ | time [ % of [ET [ VI [ TE[I T IR[ || time | % of [ET [ TVI [ TET T IR]
1in01 53 80 4 0.01 0.00 — 0.01 0.00 — 0.01 0.00 —
1in02 55 82 6 0.01 0.00 — 0.01 0.00 — 0.01 0.00 —
1in03 57 84 8 0.01 0.00 — 0.01 0.00 — 0.01 0.00 —
1in04 157 266 6 0.01 0.00 — 0.01 0.00 — 0.01 0.00 —
1in05 160 269 9 0.01 0.00 — 0.01 0.00 — 0.02 0.00 —
1in06 165 274 14 0.01 0.00 — 0.01 0.00 — 0.01 0.00 —
1in07 307 526 6 0.01 0.00 — 0.02 0.00 — 0.02 0.00 —
1in08 311 530 10 0.01 0.00 — 0.03 0.00 — 0.03 0.00 —
1in09 313 532 12 0.01 0.00 — 0.05 0.00 — 0.04 0.00 —
1linl0 321 540 20 0.01 0.00 — 0.03 0.00 — 0.03 0.00 —
linll 816 1460 10 0.05 7.05 65 | 103 | 6 0.17 0.00 — 0.17 0.00 —
1in12 818 1462 12 0.05 0.00 — 0.22 0.00 — 0.21 0.00 —
1in13 822 1466 16 0.03 0.00 — 0.12 0.00 — 0.12 0.00 —
linl4 828 1472 22 0.04 0.00 — 0.18 0.00 — 0.19 0.00 —
linl5 840 1484 34 0.04 0.00 — 0.17 0.00 — 0.16 0.00 —
1in16 1981 3633 12 0.16 12.00 265 [ 436 [ 11 0.44 0.00 — 0.43 0.00 —
1linl7 1989 3641 20 0.10 0.00 — 0.54 0.00 — 0.55 0.00 —
Tinls 1994 | 3646 | 25 0.38 14.93 925 | 1638 | 24 1.10 0.80 21 [ 29 ] 10 .15 0.80 21 ] 29 [ 10
1in19 2010 3662 41 0.28 23.51 500 | 861 | 28 1.09 0.00 — 1.08 0.00 —
1in20 3675 6709 11 0.18 0.00 — 1.33 0.00 — 1.30 0.00 —
lin21 3683 6717 20 0.39 21.85 851 18 0.97 0.00 — 1.01 0.00 —
1in22 3692 6726 28 0.41 27.43 1087 27 1.85 0.00 — 1.77 0.00 —
1in23 3716 6750 52 0.97 59.16 2252 49 2.60 0.00 — 2.60 0.00 —
1lin24 7998 14734 16 1.16 37.79 3106 16 8.87 0.00 — 8.81 0.00 —
1lin25 8007 14743 24 1.20 48.27 3974 24 12.28 0.00 — 12.23 0.00 —
1in26 8013 14749 30 1.99 61.28 4973 30 15.21 0.00 — 15.14 0.00 —
Tin27 8017 | 14753 | 36 1.25 43.35 | 3597 36 13.29 0.57 54 [ 84| 19 13.45 0.56 54 | 8 [ 19
1in28 8062 14798 81 2.44 66.85 5494 78 61.20 12.13 1026 | 1795 | 63 154.73 2.99 273 | 442 | 58
1in29 19083 35636 24 6.46 43.60 8555 24 41.20 0.00 — 41.16 0.00 —
1in30 19091 35644 31 4.55 48.79 9591 31 82.22 0.00 — 82.32 0.00 —
1in31 19100 35653 40 6.49 58.10 11342 39 359.70 12.03 2362 4288 31 1084.54 0.47 97 166 26
1in32 19112 35665 53 6.29 62.32 12168 53 200.88 26.40 5188 9414 52 3514.53 0.42 94 150 31
1in33 19177 35730 117 7.50 70.66 13803 115 203.70 23.09 4592 8251 99 1680.11 1.11 239 395 66
1in34 38282 71521 34 19.52 59.91 23332 34 900.92 16.97 6605 12137 30 6490.52 0.16 69 111 24
1in35 38294 71533 45 22.09 64.90 24322 45 834.63 23.36 9140 16707 44 9246.80 0.24 104 175 30
1in36 38307 71546 58 18.50 57.30 22420 57 451.85 32.28 12628 23097 57 10805.50 23.83 9345 17047 57
1in37 38418 71657 172 27.60 81.46 31647 170 731.21 43.14 16858 30914 168 16019.90 27.89 10955 19983 156
Average: [[  3.52 | 27.04 ] [ 106.17 ] 5.16 [ 1329.21 ] 1.58 ]

Table 9: Reduction

Results for the LIN-Instances




instance | size [ opt H time ‘
VT [ TET T IRT ]

taq0014 6466 11046 128 5326 2.38
taq0023 572 963 11 621 0.07
taq0365 4186 7074 22 1914 0.69
taq0377 6836 11715 136 6393 5.45
taq0431 1128 1905 13 897 0.14
taq0631 609 932 10 581 0.02
taq0739 837 1438 16 848 0.11
taq0741 712 1217 16 847 0.11
taq0751 1051 1791 16 939 0.11
taq0891 331 560 10 319 0.01
taq0903 6163 10490 130 5099 4.70
taq0910 310 514 17 370 0.01
taq0920 122 194 17 210 0.01
taq0978 T 1239 10 566 0.02
[ Average: [[ 0.99 |

Table 10: Optimal Solution of the TAQ-Instances

instance | size [ opt H time ‘
VI T TET T IRT]
diw0234 5349 10086 25 1996 1.15
diw0250 353 608 11 350 0.01
diw0260 539 985 12 468 0.01
diw0313 468 822 14 397 0.01
diw0393 212 381 11 302 0.01
diw0445 1804 3311 33 1363 0.07
diw0459 3636 6789 25 1362 0.12
diw0460 339 579 13 345 0.01
diw0473 2213 4135 25 1098 0.08
diw0487 2414 4386 25 1424 0.13
diw0495 938 1655 10 616 0.04
diw0513 918 1684 10 604 0.03
diw0523 1080 2015 10 561 0.03
diw0540 286 465 10 374 0.01
diw0559 3738 7013 18 1570 0.35
diw0778 7231 13727 24 2173 0.81
diw0779 11821 22516 50 4440 6.39
diw0795 3221 5938 10 1550 0.86
diw0801 3023 5575 10 1587 0.68
diw0819 10553 20066 32 3399 2.52
diw0820 11749 22384 37 4167 5.37

[ Average: [[ 0.89 |

Table 11: Optimal Solution of the DIW-Instances

instance | size [ opt H time ‘
[ VI T TET T IRT ]

dmxa0296 233 386 12 344 0.02
dmxa0368 2050 3676 18 1017 0.12
dmxa0454 1848 3286 16 914 0.14
dmxa0628 169 280 10 275 0.01
dmxa0734 663 1154 11 506 0.03
dmxa0848 499 861 16 594 0.05
dmxa0903 632 1087 10 580 0.07
dmxal010 3983 7108 23 1488 0.14
dmxall09 343 559 17 454 0.02
dmxal200 770 1383 21 750 0.03
dmxal304 298 503 10 311 0.01
dmxal516 720 1269 11 508 0.02
dmxal721 1005 1731 18 780 0.02
dmxal801 2333 4137 17 1365 0.34

[ Average: [[ 0.07 |

Table 12: Optimal Solution of the DMXA-Instances
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instance | size [ opt H time

[ VT T TET T TRT |
gap1307 342 552 17 549 0.02
gapl413 541 906 10 457 0.02
gapl500 220 374 17 254 0.01
gapl810 429 702 17 482 0.02
gap1904 735 1256 21 763 0.05
gap2007 2039 3548 17 1104 0.12
gap2119 1724 2975 29 1244 0.13
gap2740 1196 2084 14 745 0.08
gap2800 386 653 12 386 0.02
gap2975 179 293 10 245 0.01
gap3036 346 583 13 457 0.02
gap3100 921 1558 11 640 0.10
gap3128 10393 18043 104 4292 3.36
[ Average: [[ 0.30 ]

Table 13: Optimal Solution of the GAP-Instances

‘ instance | size [ opt H time ‘
[ VI T TET T TR ]
msmO0580 338 541 11 467 0.02
msm0654 1290 2270 10 823 0.06
msmO0709 1442 2403 16 884 0.09
msm0920 752 1264 26 806 0.06
msm1008 402 695 11 494 0.03
msm1234 933 1632 13 550 0.04
msm1477 1199 2078 31 1068 0.07
msm1707 278 478 11 564 0.02
msm1844 90 135 10 188 0.01
msm1931 875 1522 10 604 0.04
msm2000 898 1562 10 594 0.03
msm2152 2132 3702 37 1590 0.23
msm2326 418 723 14 399 0.02

msm2492 4045 7094 12 1459 0.34
msm2525 3031 5239 12 1290 0.24
msm2601 2961 5100 16 1440 0.38

msm2705 1359 2458 13 714 0.04
msm2802 1709 2963 18 926 0.06
msm?2846 3263 5783 89 3135 0.67
msm3277 1704 2991 12 869 0.05
msm3676 957 1554 10 607 0.03
msm3727 4640 8255 21 1376 0.48
msm3829 4221 7255 12 1571 1.38
msm4038 237 390 11 353 0.01
msm4114 402 690 16 393 0.02
msm4190 391 666 16 381 0.01
msm4224 191 302 11 311 0.01
msm4312 5181 8893 10 2016 2.77
msm4414 317 476 11 408 0.01
msm4515 777 1358 13 630 0.05
[ Average: [[ 0.24 |

Table 14: Optimal Solution of the MSM-Instances

‘ instance | size [ opt H time ‘
VI T TET T IR[ |

alue2087 1244 1971 34 1049 0.07
alue2105 1220 1858 34 1032 0.05
alue3146 3626 5869 64 2240 0.30
alue5067 3524 5560 68 2586 0.70
alue5345 5179 8165 68 3507 3.35
alue5623 4472 6938 68 3413 1.64
alue5901 11543 18429 68 3912 2.89
alue6179 3372 5213 67 2452 0.62
alue6457 3932 6137 68 3057 0.83
alue6735 4119 6696 68 2696 0.68
alue6951 2818 4419 67 2386 0.57
alue7065 34046 54841 544 23881 83.21
alue7066 6405 10454 16 2256 6.14
alue7080 34479 55494 2344 62449 98.02
alue7229 940 1474 34 824 0.04

[ Average: [[ 13.27 ]

Table 15: Optimal Solution of the ALUE-Instances
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instance | size [ opt H time ‘
[ v T TeT T IRT |

alut0787 1160 2089 34 982 0.05
alut0805 966 1666 34 958 0.06
alut1181 3041 5693 64 2353 0.36
alut2010 6104 11011 68 3307 1.06
alut2288 9070 16595 68 3843 2.64
alut2566 5021 9055 68 3073 2.02
alut2610 33901 62816 204 12239 92.49
alut2625 36711 68117 879 35459 215.48
alut2764 387 626 34 640 0.01

[ Average: [ 34.91 |

Table 16: Optimal Solution of the ALUT-Instances

instance | size [ opt H time
[ VI T TET T IRT |
1in01 53 80 4 503 0.01
1in02 55 82 6 557 0.01
1in03 57 84 8 926 0.01
1in04 157 266 6 1239 0.01
1in05 160 269 9 1703 0.01
1in06 165 274 14 1348 0.02
1in07 307 526 6 1885 0.03
1in08 311 530 10 2248 0.03
1in09 313 532 12 2752 0.05
lin10 321 540 20 4132 0.05
linll 816 1460 10 4280 0.18
1lin12 818 1462 12 5250 0.22
1in13 822 1466 16 4609 0.13
linl4 828 1472 22 5824 0.18
linl5 840 1484 34 7145 0.17
lin16 1981 3633 12 6618 0.44
1linl7 1989 3641 20 8405 0.55
1inl8 1994 3646 25 9714 1.17
1lin19 2010 3662 41 13268 1.08
1in20 3675 6709 11 6673 1.28
lin21 3683 6717 20 9143 1.00
1in22 3692 6726 28 10519 1.81
1in23 3716 6750 52 17560 2.63
1in24 7998 14734 16 15076 8.89
1in25 8007 14743 24 17803 12.19
1in26 8013 14749 30 21757 15.24
1in27 8017 14753 36 20678 13.37
1in28 8062 14798 81 32584 85.26
1in29 19083 35636 24 23765 41.26
1in30 19091 35644 31 27684 82.08
1in31 19100 35653 40 31696 1117.09
1in32 19112 35665 53 39832 3497.84
1in33 19177 35730 117 56061 1682.76
1in34 38282 71521 34 45018 6518.15
1in35 38294 71533 45 50559 9214.52
1in36 38307 71546 58 55608 564932.00
1in37 38418 71657 172 99560 153972.00
[ Average: || 20032.53 |

Table 17: Optimal Solution of the LIN-Instances
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