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Abstract

Although the Hausdorff distance is a popular device to measure the differ-
ences between sets, it is not natural for some specific classes of sets, especially
for the medial axis transform which is defined as the set of all pairs of the
centers and the radii of the maximal balls contained in another set. In spite
of its many advantages and possible applications, the medial axis transform
has one great weakness, namely its instability under the Hausdorff distance
when the boundary of the original set is perturbed. Though many attempts
have been made for the resolution of this phenomenon, most of them are
heuristic in nature and lack precise error analysis.

In this paper, we show that this instability can be remedied by intro-
ducing a new metric called the hyperbolic Hausdorff distance, which is most
natural for measuring the differences between medial axis transforms. We
analyze the properties of the hyperbolic Hausdorff distance in detail, and
show that it is a complete metric on the canonical set containing medial axis
transforms. Using the hyperbolic Hausdorff distance, we obtain error bounds,
which make the operation of medial axis transform almost an isometry. By
various examples, we also show that the bounds obtained are sharp. In doing
so, we show that bounding both the Hausdorff distance between domains and
the Hausdorff distance between their boundaries is necessary and sufficient
for bounding the hyperbolic Hausdorff distance between their medial axis
transforms. These results drastically improve the previous results, and open
a new way to practically control the Hausdorff distance error of the domains
under their medial axis transform error, and vice versa.

Keywords

Hausdorff distance, hyperbolic Hausdorff distance, medial axis transform,
instability, Minkowski space-time, error bound.



1 Introduction

Among the many descriptors of shape, medial axis transform is one of the
most fundamental and widely-used ones. It has natural definitions, and is ho-
motopically equivalent to the the original shape, while decreasing the dimen-
sion by one [1, 2]. Tt is also the set of the singularities of the distance function
from the boundary, and the meeting points of the waves starting from the
boundary [3]. It could also be considered as a limit of Voronoi diagram [4]
as the number of the generating points becomes infinite. Due to these nice
properties, medial axis transform has been a focus of many applications in
such diverse fields as computational geometry [5], computer vision [6], shape
modeling [7, 8, 9], mechanical engineering [10], optics [11, 12], biological
shape recognition [13, 14], character recognition and representation [15, 16],
fingerprint classification [17], visual analysis of circuit boards [18].

In this paper, we define the medial axis transform as the set of all pairs
of the centers and the radii of the maximal inscribed balls in a domain. One
merit of including the radii is that we can completely reconstruct the original
domain with its medial axis transform. In contrast to the other literature,
we generalize the domains of the definition to the general compact sets in R”
forn=1,2,---, for we will show that our results hold in this general context.

One of the problems with the medial axis transform is its instability to
noises. Medial axis transform may change very unstably, even when the
boundary of the domain has only a slight perturbation. This phenomenon is
illustrated in Figure 1: When measured by the usual Hausdorff distance, the
domains (a) and (b) are very close to each other, but their medial axis trans-
forms differ much. In fact, an infinitesimally small difference between the do-
mains can result in a drastic difference between their medial axis transforms.
In other words, the map MAT : {domains} — {medial axis transforms},
which corresponds to taking the medial axis transforms from the domains is
not continuous under the usual Hausdorff metric.

Obviously, this instability could produce much problems, especially when
one wants to get the medial axis transform of an input which might have
noises. In fact, this is the case in most practical situations. So there have
been many attempts to get around this unplausible phenomenon. Mainly,
there has been the so-called “pruning” approach [19, 20|, which prunes the
less important part of the medial axis transform, leaving only the essential
part. Some have also tried to smooth the boundary of the domain so that the
resulting medial axis transform become more simple, hopefully capturing only
important features [21, 22, 23]. But one common drawback of these methods
is that they seldom provide precise error analysis, which makes them heuristic
in most cases.



(a) (b)
Figure 1: Instability of Medial Axis Transform

Recently, there has been an attempt [24] to obtain error bounds for the dif-
ference between the medial axis transforms when the domains are perturbed.
They showed that the one-sided Hausdorff distance H(MAT(Q, )| MAT(,))
of the medial axis transform MAT(£;) of a plane domain €, satisfying some
regularity condition on the shape with respect to the medial axis transform
MAT () of any reasonable plane domain €2y, is bounded as follows:

H(MAT(Q)|MAT(Qy)) < V/n? + (e +1)?,

for every max {H(Qy,Qs), H(02,00)} < € < min{ptan®6/2,p/2}. Here
n = pe/(psin®6/2 — ecos®§/2), where p and 6 are the positive constants
depending only on €, and H(-,-) is the usual two-sided Hausdorff distance.

In this paper, instead of using the usual Hausdorff distance, we introduce a
new metric called the hyperbolic Hausdorff distance to measure the difference
between the medial axis transforms. We show that, if we endow this new
metric on the space of the medial axis transforms, then the process of taking
medial axis transform becomes almost an isometry. More specifically, let €2y,

(25 be compact sets in R” such that their respective medial axis transforms
MAT(€;), MAT(£3) be compact. Then we show that

Hh(MAT(Ql), MAT(QQ)) S 3 - max {%(Ql, Qg), 7‘[(891, 692)}, (].)
and
max {H(Q1, ), (001, 00)} < Hp(MAT(Q)), MAT(Q)),  (2)

where #Hy (-, ) denotes the hyperbolic Hausdorff distance. Thus, as a result of
switching to the hyperbolic Hausdorff distance, we get much stronger results,
which implies that the hyperbolic Hausdorff distance is a most natural metric
for the medial axis transforms. As a result, we can now effectively control
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the perturbation of medial axis transform by that of the domain and its
boundary, and conversely, the perturbation of the domain the boundary by
that of the medial axis transform. We also show that the above bounds are
sharp by various examples. Note that these results are more symmetric than
those in [24], since we have no differences of the assumptions on €; and .
Also, the assumption itself is very general, in that only the compactness is
required, and the considerations are in R” for n = 1,2, -, rather than only
in R?.

One byproduct of the above results is that we have a characterization
of the medial axis transforms being close to each others under the hyper-
bolic Hausdorff distance, in terms of the usual Hausdorff distances between
the original domains: There are two traditional methods to measure the
difference between the domains with the Hausdorff distance. One is to mea-
sure the Hausdorff distance between the domains themselves, and the other
is to measure the Hausdorff distance between their boundaries. We show
that the hyperbolic Hausdorff distance between the medial axis transforms
are enough to bound both the Hausdorff distance between the original do-
mains and the Hausdorff distance between their boundaries. Conversely, we
show that both types of the Hausdorff distances are needed for bounding the
hyperbolic Hausdorff distance between their medial axis transforms. Thus
the two types of measuring the Hausdorff distance between the domains are
both necessary and sufficient for bounding the hyperbolic Hausdorff distance
between their medial axis transforms.

As a worthwhile property of the hyperbolic Hausdorff distance itself, we
show that it is a complete metric on the canonical space containing the me-
dial axis transforms. As we will give a more precise description later, this
canonical space is in some sense the most natural space for the hyperbolic
Hausdorff distance. This result shows the usefulness of the hyperbolic Haus-
dorff distance in another viewpoint.

We also mention that the definition of the hyperbolic Hausdorff distance
is simple and natural, taking its motivation from Lorentz metric for the hy-
perbolic spaces [25]. The fact that the hyperbolic Hausdorff distance requires
essentially the same computational effort compared to the usual Hausdorff
distance, is expected to be a great advantage in applying the hyperbolic
Hausdorff distance to many practical applications.

The rest of this paper is organized as follows: In Section 2, we introduce
the Hausdorff distance in R". Especially, we show, by examples, that both
types of the Hausdorff distances, i.e., that between the domains and that
between their boundaries, are important. Then we introduce the hyperbolic
Hausdorff distance and show some of its basic properties in Section 3. In
Section 4, the medial axis transform for the general compact set in R" is



introduced. In Section 5, we obtain the bound (2), and show this is sharp
by examples, and in Section 6, we obtain the bound (1), and also show its
sharpness by examples. Together, they show that the process of taking the
medial axis transform is almost an isometry under the Hausdorff distance
for the domains and the hyperbolic Hausdorff distance for the medial axis
transforms. In Section 7, we further explore the hyperbolic Hausdorff dis-
tance, and show that it is a complete metric on the quotient space of the set
of all compact sets in R” x R by a canonical equivalence relation. Finally,
we summarize our results and discuss some implications and applications of
them in Section 8.

2 Hausdorff Distance of Domains vs. Bound-
aries

Let ©; and €25 be two nonempty compact sets in R”, where n = 1,2,---. The
Hausdorff distance H (€21, 2s) between €y and € is defined by

H(Ql, QQ) = Imax {H(91|Qg), H(QQ|91)},

where the one-sided Hausdorff distance H(21]Qs) of ; with respect to 5 is
defined by
%(Qﬂgg) = Imax d(pl, QQ)
p1E
Here, we denote by d(-,) the usual Euclidean distance in R™.
The following is a basic property of the Hausdorff distance.

Proposition 1 ([26])
For eachn = 1,2, -, the Hausdorff distance is a complete metric on the
space of all nonempty compact sets in R™.

Usually, the Hausdorff distance is considered as a good device to measure
the differences between two sets. Meanwhile, in many situations, especially
where the sets are represented by their boundaries, it is customary to mea-
sure the differences between the sets by the Hausdorff distance between the
boundaries of the sets. In this section, we will discuss the difference be-
tween these two methods, and show by examples that both of them can be
sometimes misleading when used alone.

Example 1 Let Qy and Qo be two domains in R? as depicted below. Note
that H(Q4,Q) can be made arbitrarily small, although H (0, 0s) can be
made converge to some positive number. This example sharply shows that the
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Hausdorff distance between the domains may overlook the differences which
the Hausdorff distance between the boundaries considers to be important.

Qs
91

Y
(b X

Y

1

Here is the opposite extreme.

Example 2 Let Qy and Qo be two domains in R? as depicted below. Note
that H (024, 0) can be made arbitrarily small, although H (4, Q) can be
made converge to some positive number. This example sharply shows that
the Hausdorff distance between the boundaries may overlook the differences
which the Hausdorff distance between the domains does not.

SN )
2

0,0
H(09, 0%2) A8, $1)

N 5

Note that, in Example 2, one whole domain lies in the vicinity of the
other domain’s boundary. The next example shows that this is not necessary
to make the Hausdorff distance between the boundaries significantly smaller
than the Hausdorff distance between the domains.



Example 3 Let Qy and Qo be two domains in R? as depicted below. Note
that
H( ) =%, H(Q[N) =73,

5, H(0|00,) = 6.

So we have
H(Qy, Q) = max {—2 =) }, H(0Q,00) = 0.

By varying r1, 9 and 0, we can make various configurations of the Hausdorff
distances.

Note that the above example can exhibit both features in Examples 1
and 2 by varying rq, o and §.

The examples in this section clearly show that neither the Hausdorff dis-
tance between the sets nor the Hausdorff distance between the boundaries
alone is not enough to measure the difference of shapes. Later, we will see
that both are needed to bound the hyperbolic Hausdorff distance between the
medial axis transforms, and conversely, they are bounded by the hyperbolic
Hausdorff distance between their medial axis transforms.



3 Hyperbolic Hausdorff Distance

In this section, we introduce the hyperbolic Hausdorff distance, and show
some of its basic properties.

We will denote Rsg = {z € R|z > 0}. Let (p,7) € R x Ry, where
n=1,2,---. By B,(p), we denote the closed ball in R" centered at p with
the radius r, i.e., B,(p) = {x € R" |d(z,p) < r}. Note that, when the radius
is zero, a ball consists of only one point (the center).

Definition 1 (Hyperbolic Distance)
Let Py = (p1,71), Po = (p2,72) be in R* X Ryq, where n =1,2,---. Then
the hyperbolic distance dj(P;|P,) from Py to P, is defined by

dp(P1|Py) = max {0, d(ps, p1) — (r2 — 1)}

Figure 2 illustrates the hyperbolic distance for various cases.

Here, we mention a motivation for the name hyperbolic: The usual Eu-
clidean distance is associated to the standard Euclidean metric dz?+- - -+dz?
on R”. Now it can be clearly seen that the hyperbolic distance has an analo-
gous association to the hyperbolic or Lorentz metric [25] da?+- - -+da2 —da?
on R+,

The following is a basic property of the hyperbolic distance.

Lemma 1 Let Py = (p1,71), Py = (p2,r2) be in R* XRsq, wheren =1,2,---.
Then we have dyp(Pi|Py) = H (By, (p1)|By,(p2)). Suppose ri > € for some
€ > 0. Then the following two conditions are equivalent:

(1) dp(P|Py) <€,

(2) By, —e(p1) C By, (p2).

Proof. Easy. See Figure 2. O
Definition 2 (Hyperbolic Hausdorff Distance)
Let My, My be nonempty compact sets in R* x Rsq, wheren =1,2,---.

Then the one-sided hyperbolic Hausdorff distance #;,(M;|M;) from M; to
M, is defined by

Hy, (M| M) = max { min dh(P1|P2)}.

PieMy | P2EM>
The hyperbolic Hausdorff distance between My and M, is defined by

Hh(Ml, MQ) = Imax {Hh(M1|M2), Hh(M2|M1)}
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1
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Figure 2: Hyperbolic Hausdorff distance for various cases



Lemma 2 (Comparison with Hausdorff Distance)
Letn=1,2,---.
(1) For every Py, P, € R* x Ry, we have

d(Py, P,) < max {d,(Pi|Py),dy(Po|P)} < V2-d(Py, Py).
(2) For every compact sets My, My C R" x Rsq, we have
Hy, (My, My) < V2 - H(My, M,).
Proof. (1) Let P, = ((zs1,++,%in), i) for i = 1,2. Note that
max {dy(P1| %), dp(P2| )} = d(p1,p2) + [r1 — 12

- \/(1‘1,1 — 220)" + o (L1 — T20)”

+4/ (11 —1)°.

Since vVa + b < \/a+ Vb < V2-a+ b for every a,b > 0, we have

d(P, P) = \/($1,1 - $2,1)2 + -t (T — $2,n)2 + (r; — 7“2)2

\/($1,1 - $2,1)2 + (T, — $2,n)2 + 4/ (r1 — 7“2)2
max {dh(P1|P2), dh(P2|P1)}

V2. \/(1?1,1 - $2,1)2 + o (@, — 1’2,n)2 + (r — 7“2)2
\/5 ' d(Pla P2)
(2) From (1), we have

IN

Hp(My, My) = max{ max { min dh(P1|P2)}, max { min d(Py|P;)

PieMy | P2EM> PaeMs | PreEM;

PieMy | P2EM>

max { min \/i-d(Pg,Pl)}}
PyeMy | PreM;
= V2 H(M,,M).

< max{ max { min \/E'd(PhP?)}a

f

O

Remark 1 The bound in (2) is sharp, which can be seen from the following
ezample: Let My = {((z,y),7) e RZ xRyp| —1 <2 <1,y =0,r =1}, and
let My = {((z,y),7) ER? xRp| =1 <2 <1,y=1,r=2}. It is easy to

see that Hy(My, My) = 2 and H(M,, My) = /2.
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Remark 2 There is no positive constant k such that H(M;, My) < k -
My (M, My) for every compact sets My, My in R* x Rso. For ezample, let
M; = {((0,0),1)} C R* xRx, and let M, = {((x,y),r) € R* xRsq | L +71 =
Ly=0,r <1} fora > 1. Then it is easy to see that H(M;, My) = V1 + a2,
whereas Hy (M, My) = a — 1. So, as a \, 1, we have H(M, M) — /2,
whereas Hy, (M, My) — 0.

4 Medial Axis Transform

Usually, medial axis transforms are defined for well-behaved domains, whose
boundaries consist of curves with sufficient piecewise differentiability. One
reason for this is that the medial axis transform has been used mainly in
the application-oriented areas, where more pathologically-shaped domains
are outside of the interests.

Another reason is that the medial axis transform of a set without sufficient
regularity of their shape may lose the finite graph structure, which is an
implicit assumption in most applications. In fact, Choi et al. [1] showed
that the medial axis transform of a compact set Q in R? can exhibit quite
anomalous behaviours like infinitely may prongs or infinitely many branches,
if 2 does not satisfy the following rather strict condition: 02 is a disjoint
union of finitely many simple closed curves, each of which consists of finitely
may real-analytic curves. They also showed that, if a set {2 satisfy the above
assumption, its medial axis transform is shaped as expected:

Proposition 2 ([1])
Suppose a compact set ) C R? satisfies the above assumption. Then its
medial axis transform has a finite graph structure.

In this paper, we define the medial axis transform for the general compact
sets in R”, since the results we show are independent of the regularity of the
shapes.

Let n = 1,2, ---. We will denote by C,, the set of all nonempty compact
sets in R*". By C, 1, we denote the set of all nonempty compact sets in
R" x Rsg. For every Q in C,, we define the medial azis transform MAT(Q)
of Q2 by

MAT(Q) = {(p,7) € R" xRsy | B,(p) C ,
B,(p) C By (p)) C 2= (p,r) = (¥, ")}

Unfortunately, MAT(Q2) may not be compact, even if  is compact. This
can be seen from the following example.
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Example 4 Forn=1,2,--, let Q, be the domain in R? as depicted below.
Here we assume Y > | 1, < 00.

fo:l I'n

Clearly, S, is a compact set for every n. Note that H(€;, ;) — 0 as
1,7 — 00. So, by Proposition 1, there exists a compact set Q0 such that
H(2,,Q2) — 0 as n — oo. Now, it is easy to see that every (pn,rn) is
in MAT(Q), and (pn,rn) — (p,0) in the usual Euclidean metric in R3.
But the ball B,(q), which is contained in Q, strictly contains By(p). So
(p,0) ¢ MAT(R2). Thus MAT(R) is not closed, and hence not compact.

For every M in C, ;, we define

TAM(M) = {zeR"|3(p,r) € M s.t. x € B.(p)}

(p,r)eM

In the case of TAM, we can show that TAM(M) is compact for every
M €, 1, and so, TAM is a map from C,; to C,.

Lemma 3 Let M € Cyy, where n=1,2,---. Then TAM(M) is in C,.

Proof. Tt is clear from the definition that TAM(M) is bounded, since M
is bounded. So we only have to show that TAM(M) is closed. Suppose
qn — ¢, where ¢, € TAM(M) for n = 1,2,---. Obviously, there exists
(Pn, ™) € M such that ¢, € B, (p,) for n =1,2,---. Since M is bounded,
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we can choose a subsequence (py, , ;) of (pn, ) such that (p,,,m,) — (p,7)
for some (p,r) € R” X Ry in the usual Euclidean metric in R**'. Now it is
easy to see that ¢ € B,(p). Since M is closed, (p,r) is in M. So it follows
that ¢ € TAM(M). Thus we conclude that TAM(M) is closed, and hence,
is compact. O

Note that (TAM o MAT) (2) = Q and (MAT o TAM) (M) = M for
every 2 € C, and for every M € MAT(C,). So TAM can be considered as
an inverse of the map MAT. In fact, TAM corresponds to the reconstruction
of the original domain from its medial axis transform. Note also that M AT
and TAM|uvaT(c,) are one-to-one for n =1,2,---.

5 Bounding Domain/Boundary Perturbation
with MAT

In this section, we show that, if two compact sets in R" x Ry, are close
under the hyperbolic Hausdorff distance, then their images in R” under the
map TAM are close under the Hausdorff distance. Furthermore, we show
that, when the sets are medial axis transforms, then the boundaries of their
images are also close under the Hausdorff distance. Thus, if two medial axis
transforms are close under the hyperbolic Hausdorff distance, then both the
Hausdorff distance between the original domains and the Hausdorff distance
between their boundaries are small.
We first start with the one-sided case.

Lemma 4 Let n=1,2,---. For any My, M € C, 1, we have
H (TAM(M;)| TAM(Ms)) < Hy (M| Ms).

Proof. Suppose H;(M;|Ms) < € for some ¢ > 0. Let ©; = TAM(M;) for
¢t = 1,2. Let p be a point in ;. From the definition of the map TAM, it
is clear that we can take P, = (p;,r) in M, such that p € B, (p;). Since
Hp(Mi|Ms) < €, we can take Py = (pg,73) in My such that dy(Pi|P,) < e.
From Lemma 1, it is easy to see that d(p, B,,(p2)) < €, which implies that
d(p,Q2) < e. Since p is taken arbitrarily, we conclude that H(Q|Qs) < €
Now the proof follows, since ¢ is arbitrary. O

From Lemma 4, we immediately have the two-sided result:
Theorem 1 Letn =1,2,---. For any My, My € C, 1, we have

H (TAM(M;), TAM(M>)) < Hp(My, Ma).

12



When M, M, are medial axis transforms, we can also bound the Haus-
dorff distance between the boundaries.

Theorem 2 Letn=1,2,---. For any M,, My € MAT(C,) NCp 1, we have

Proof. Let Q; = TAM(M;) for i = 1,2. Suppose H,(M;, M) < € for
some € > 0. Suppose also H(0Q;,002) > e. With no loss of generality,
we can assume H(0€;]|0Q3) > e. Then there exists ¢; € 0y such that
d(qy,08%) > €. Take ¢u € 05 such that d(q,q2) = d(q1, ) > €.

Note that ¢; € intQy. Otherwise, we would have H(Q[Qs) > d(q1, ) =
d(q,08%) > €, contradicting the fact that H(Q,Q3) < € (Theorem 1).
Since My is a medial axis transform, there exists unique P, = (po,72) in
M, such that ¢, € 0B,,(p2) and ¢1¢ C P2qz- Note that r5 — e > 0 and
q1 € intB,, (p2). Since Hj (My|M;) < e, there exists P, = (py,r1) in M
such that dj, (P,|P;) < e. Now we have ¢; € intB,,(p1) C intQy, since
B, «(p2) C By, (p1) by Lemma 1. This is a contradiction to the fact that
q1 € 0. So H(0|02s) < e. Since we have assumed H(0Q,08s) > e, it
follows that H(0€22|0€;) > €. But this can also be shown to be impossible by
the symmetric argument as above. Thus we conclude that H (0, 05) < e.
Now the proof follows, since € is arbitrary. O

Remark 3 Theorem 2 does not hold for the general sets in C, 1. For exam-
ple, let

Ml = {((xay)ar)eRZXRZU|$2—|—y2:1,7’:1},
My = {((z,y),r) €R® xRog |2 +y° = (146)*,r =1 -4},

13



for 0 < § < 1. Let Q; = TAM(M;) fori=1,2. Then,

O = {(z,y) eR |2 +y* < 2%},
Q = {(z,y) € R? | (25)2 <24yt < 22}_

Note that

Hp(My, M) = 25,
H(O0,00) = 2— 20

So, as 6 — 0, we have H(My, M) — 0, but H(0Q, Q) — 2.

Remark 4 While Theorem 1 has its one-sided version, i.e., Lemma 4, The-
orem 2 has no one-sided counterpart. For example, let Q1 = B; ((0,0)),
and My = {((0,0),2)}. Note that Hp(M|My) =0, while H(0Q|0Q) = 1.

The following examples show that the inequalities in Theorem 1 and 2
are sharp in various ways.

Example 5 Let ©; and Qs be two domains in R? as depicted below. Note
that Q9 can be obtained by translating € by the distance §. Let M; =
MAT(Q;) for i =1,2. Now it is easy to see that

Hh(Ml, MQ) - H(Ql,ﬂg) - 7{(891, 892),

for every § > 0.

Ry

(891, 892) = H(Ql, Qg) = 6
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Example 6 Let Q; and Qs be two domains in R? as depicted below. Let
M; = MAT(S;) fori=1,2. Here, we have

H(Ql,ﬂg) = T,
H(891,892) = r—90 s
Hp(My, M) = 144,

for every 0 <6 <r. So

%h(MI; MQ) > H(Ql, Qg) > H(@Ql, 892)
Note that Hy (M, M) — H(Q1, Qs), H(OQ,00s) as 6 — 0.

%(Ql, QQ) =T

Qs

H (09, 0)

=r—94
My (M, M)
=r+4

Example 7 Let Q, and Q0 be two domains in R? as depicted below. Here,
we assume 0 < 6 << r. Let M; = MAT(Q;) for i =1,2. Note that

)

H(QﬂQg) = 2 > <(S,
(5+6)" +62
%(891|892) — 5,
HA(MIM) = 5,
and
H(QQ|91) - 6,
H(OQ|00,) = g
Hp(My|My) = 6.
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So we have

H(Ql,Qg) - (5 y
r

7’[(391,692) — 5 )
r

Hh(MlaMQ) - 5 .

Thus, while Hy (M, My) = H(0Q4,08) = 5, we have H(Q21,Q) — 0 as
0 — 0.

H(QlaQQ) =9

7
e
e

e
e

e
e
4
e
///////////

7
V4
e
e
7/

4

e
a4

\,

e

e

6 Bounding MAT Perturbation with Domain/
Boundary

The opposite directions of the inequalities in Theorem 1 and 2 do not hold
in general. This can be seen from Examples 8 and 9 below. Nevertheless, a
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slightly looser inequality turns out to be true.

Theorem 3 Let n = 1,2,---. For any y,Qs, € C, such that MAT(,),
MAT(Qy) are compact, we have

Hp(MAT(Q)), MAT () < 3 - max {H(Q1, D), H(Q, 0) 1.

Proof. Let M; = MAT(Q;) for i = 1,2. First, note that the above in-
equality is trivially true when max {H (4, Qz), H(0Q;,00,)} = 0. Suppose
max {H(Qy, Qa), H(0Q,00,)} < € for some € > 0. Let P, = (py,71) be in
M. Suppose first r; > 2¢. Since H (92, 00s) < €, we have intB,, _(p;) N
0Qy = (. So either intB,, _(p1) C intSdy or intB,,_(p1) N Qy = (). But, if
the latter is true, then we would have d(p;,22) > €, which contradicts the
assumption H(Q,Qs) < €. So we must have intB,, .(p1) C intfs. Since
M, is a medial axis transform, it is clear that there exists Py = (pa,79) € My
such that By, _(p1) C By,(p2). By Lemma 1, this means that dj,(P;|P;) < e,
and hence, d,(P|P;) < e < 3e.

Suppose now r; < 2e. Since H(Q,Qs) < €, there exists ¢o € Qo
such that d(pi,q2) < e. Clearly, we can take P, = (py,73) € M, such
that ¢o € B,,(p2). Now dyp(Pi|P) = d(p1,p2) — (12 — 1) < d(p1,¢2) +
d(q2,p2) — d(q2,p2) + 2¢ < 3e. Thus we have Hp(M;|My) < 3e, since
Py is arbitrary. Since € is arbitrary, we conclude that #H;,(M;|My) < 3 -
max {H(Qy,Qa), H(02,0Q,)}. By the symmetric argument, we can also
show H,(My|M;) < 3 - max {H(Qy,Q), H(0,00,)}. Thus the proof is
complete. O

The proof of Theorem 3 also shows the following plausible result:

Theorem 4 Let n = 1,2,---. For any ,Qs € C, such that MAT(,),
MAT(Qy) are compact and pq,, pa, > 2-max {H (2, Qa), H(0Q4,00s) }, we

have
Hh(MAT(Ql), MAT(QQ)) = max {H(Ql, QQ), ’H(@Ql, 892)}
Here, we define po = min{r : (p,r) € MAT(Q)} for every Q € C,.

Proof. The proof of Theorem 3 shows the < part, and the > part follows
from Theorem 1 and 2. O

Theorem 4 tells that the transform MAT is in fact an isometry locally
at every 2 with po > 0. But note that the sets around such 2’s on which
MAT is an isometry are in general not open under the Hausdorff distance.

The following examples show that the bound in Theorem 3 is sharp.
Moreover, Example 8 shows that both H (€4, Q) and H (994, 0€2,) are crucial
for bounding H,(MAT(€,), MAT(Q,)).
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Example 8 Define the two domains Qy, Qs in R? by
Q= {(z,y) e R |2? +y* <27},
0y = {(r,y) eR[(146)* <a® +y* < 2%}

Here we assume 0 < |§| << 1. Let M; = MAT(Y;) fori=1,2. It is easy to
see that

H(,Q) = 1+0,
H(0Q, 00s) 1-4,
Hh(Ml,MQ) - 3+6 .

So, when 6 > 0, we have

3 H(O0, 00) < Hp(My, My) < 3- H(Q, ),

and, when 6 < 0, we have

3-H(Q, Q) < Hp(My, My) < 3-H(0Q1,00s).
When 6 = 0, we have

Hp(My, My) = 3-H(Q, Q) = 3 - H(IQ, 00y).

Example 9 Here we have a more realistic example. Let 0y and €y be two
domains in R% as depicted below. Let M; = MAT(SY;) fori=1,2. Then it
s clear that

H(QI,QQ) — (5 y
H (O, 00y) 5,
Hh(MI;MZ) = 30 )
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for every 6 > 0. So we have

Hh(Ml, Mg) = 3 . ?‘[(Ql, Qg) = 3 . ’H(@Ql, 892)

H(O,,00,) = 6
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7 Completeness of Hyperbolic Hausdorff Dis-

tance

In this section, we further explore the hyperbolic Hausdorff distance. In par-
ticular, we show that the hyperbolic Hausdorff distance is a complete metric
on the canonical quotient space of C,; including the medial axis transforms.

From the definition of the hyperbolic Hausdorff distance, it is clear that
Hp (M, My) = Hp(Ms, My) for every My, M, € C,; and for every n

1,2,---.

First, we examine the triangular inequalities for the hyperbolic Hausdorff
distance. For every P € R* x Ry and M € C, 1, we denote dy(P|M) =

minp/eM dh(P|Pl)

Lemma 5 (Triangular Inequalities)

Letn=1,2,---. Fori=1,2,3, let P, € R* xRy¢ and M; € C, 1. Then

we have the following inequalities:
(1) dp(P1|P3) < dp(Pi|Ps) + dp(Ps|Ps).
(2) Hp (M| Ms) < Hp (M| My) + Hp (M| Ms).
(8) Hp(My, M3) < Hp(My, My) + Hy (Mo, Ms3).
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Proof. (1) Note that

dn(P1|Py) + dy(Po|Ps) = max {0, d(py, ps) — (r2 — 1)}
+max {0, d(p2, p3) — (r3 —12)}
> max {0, d(p1, p2) + d(p2, p3)
—(rg —r1) = (r3 —12)}
> max{0,d(p1,p3) — (r3 — 1)}
= du(P|Ps).

(2) Take P1 € M1 such that dh(P1|M3) = Hh(M1|M3) Take P2 € MQ
such that d,(P|P,) = dn(Py|My). Take P3 € Mj such that d(P|P3) =
dp(P2|Mj3). Now by (1), we have

Hp (M| Ms) = dp(PL|Ms) < dp(P1|P3) < dp(Pi|P2) + dn(P2|Ps3)
== dh(P1|M2)+dh(P2|M3)
< Hp (M| M) + Hy (M| Ms).

(3) From (2), we have

Hy (M| M)
Hy (M| M)

Hip (M| M) + Hp (M| M),
Hp(Ms|My) + Hp (M| My).

So

Hp(My, M3) = max {Hp(M;|Ms), Hy(Ms, M)}
max {Hy (M| Ma) + Hp(Ma|Ms),
Hp(Ms|Mz) + Hp (M| My)}
max {Hp (M| Ms), Hp (M| M)}
+ max {Hy, (Ma|Ms), Hp(Ms| M)}
= Hn(My, My) + Hp(My, Ms).

IA

IN

O

Let My, M, € Cp, for some n =1,2,---. Note that H, (M, My) = 0 does
not necessarily imply M; = M,. For example, let

My = MU{(z,r)eRxRyg|r=2+3,-2<z<-1},
My = MU{(z,r) e RxRyo|r=—-2+3,1<uz <2}

where
M:{(x,T)GRXR20| —1§.’L’§1,T:1}
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Figure 3: M, ~ M,

See Figure 3. Though M; # M, it is easy to see that H,(M;, M) = 0.

We introduce the relation ~ on C,, ;, for n = 1,2, - -+ For every M;, M, €
Cn.1, we denote My ~ My, if and only if H,, (M, My) = 0. Let M, My, My, M3
be in C,, ;. It is clear that M ~ M, and M; ~ My if and only if My ~ M.
Suppose M; ~ M, and M, ~ Mj. Then, by the triangular inequality in
Lemma 5 (3), we have Hh(Ml,Mg) S Hh(Ml,MQ) + Hh(MQ,Mg) = 0. So
Hp (M, M3) = 0, and hence M; ~ M;. The above argument shows that the
relation ~ is an equivalence relation.

The following lemma shows that the hyperbolic Hausdorff distance does
not change within each equivalence class of ~, and thus it can in fact be
considered to be defined on the quotient space C,/ ~.

Lemma 6 Let M, Mj, My, M} € C,, for n =1,2,---. Suppose M; ~ M
and MQ ~ Mé Then Hh(Ml, MQ) = %h(M{, Mé)

Proof. By the triangular inequality in Lemma 5 (3), we have
Hi (M, My) < Hp(My, My) + Hy(My, Ma) 4+ Hy(My, My) = Hp(My, My).

Similarly, we have also H, (M, M) < Hp(Mj, Ms). Thus the proof follows.
|

We now assign a special set in R” x R5( to each equivalence class of ~.

Definition 3 Let M C R" x Ry, where n = 1,2,---. We will call M
essential, if d,(Py|Py) > 0 for every Py # Py in M.

Note that an essential set M has only a minimal part to generate the set
TAM(M).
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Lemma 7 In each equivalence class of ~, there can be at most one essential
element.

Proof. Let M € C,,, for some n =1,2,---. Suppose there exist two different
essential M;, My € C,; such that My ~ M and My ~ M. With no loss of
generality, assume there exists P; = (p1,71) € My \ My. Since M; ~ My,
there exists Py = (pg,2) € M such that d,(P;|P,) = 0. Note that Py # Ps.
If follows from Lemma 1 that B,,(ps) strictly contains B, (p;). Now again
there exists P| = (p}, ) € M such that d,(P2|P]) = 0, which means that
B, (p) contains B,,(p) by Lemma 1. Since B, (p}) strictly contains B, (p1),
it follows that P, # P/. In the meanwhile, by the triangular inequality in
Lemma 5 (1), we have d(Py|P]) < dp(Py|Py)+dp(Py|Py) = 0. So dp(P|P}) =
0, which contradicts the fact that M is essential. Thus we conclude that
M, = M, and the proof is complete. O

Remark 5 Not every equivalence class of ~ has an essential representative
within itself. For example, let M = {(p,7) € R> xRy | B,(p) C 2}, where Q
is the domain in Example 4. It is easy to see that M € C, 1. Suppose there
exists an essential compact set M' such that M ~ M'. Since Hp(M|M') = 0,
M' must contain (¢',r") and (pl,,rl) for n = 1,2,--+, such that B.(q) C
B, (¢") and By, (pn) C By (p),) for every n = 1,2,---. But, if any of the
above inclusions is strict, then we would have a contradiction to the fact that
Hp(M'|M) = 0. So we have (q,7), (pnyrn) € M' for n = 1,2,---. Now,
since M' is compact, M should also contain (p,0), which is the limit of the
points (pn,ry). This contradicts the assumption that M’ is essential, since
dn((p,0)|(q,7)) = 0. Thus we conclude that there are no essential element in
the equivalence class of M.

Remark 6 It is easy to see that every set in MAT(C,) is essential for n =
1,2,---. But the converse is not true. For example, let Q) € Cy be the unit
disk. i.e., Q@ = By ((0,0)). Then MAT(2) = {((0,0),1)}. Define M € Cy,

by
2 2 2 1 ? 1
M = ((Qﬁ,y),’l")ER XR20|.’L‘ +y = 5 ,7":5 .

Clearly, M is essential. Note that TAM(M) = Q = TAM(MAT(Q)).
But M # MAT(Q2). Since TAM is one-to-one on MAT(C,) for every
n=1,2,--, we can see that M is not in MAT(C,).

Let (X, d) be a metric space. We denote by C(X) the set of all nonempty
compact sets in X. For every A, B € C(X), define the generalized Hausdorff
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distance by

H(A, B) = max {max {min d(a, b)}, max {min d(a, b)}}
acA | beB beB | acA

It is easy to check that (C(X),H) becomes a metric space. In fact, we have
the following general facts:

Proposition 3 ([26, 27])
Let (X, d) be a metric space.
(1) If (X, d) is compact, then (C(X),H) is a compact metric space.
(2) If (X, d) is complete, then (C(X),H) is a complete metric space.

Thus, in particular, the space (C,, H) is a complete metric space for every
n=1,2,---

Now we show the completeness of the hyperbolic Hausdorff distance on
the quotient space Cy 1/ ~.

Theorem 5 (Completeness of the Hyperbolic Hausdorff Distance)
The hyperbolic Hausdorff distance is a complete metric on Cy, 1/ ~ for
eachn=1,2,---.

Proof. Suppose M;,i=1,2,---arein Cy, and H(M;, M;) — 0 asi,j — oo.
We only need to show that there exists M in C,; such that #,(M;, M) —
0as i — oco. Let Q; = TAM(M;) for i = 1,2,---. By Theorem 1, we
have H(€;,€;) — 0 as i,j — o0o. So there exists a compact set Qe R
such that ; C Q for every © = 1,2,---. Let p be the diameter of ﬁ, i.€e.,
p = max, 5d(p,q). Let M = Q x [0,p] € Cy1. Then it is easy to see

that M; C M, i.e., M; € C(M) for every ¢ = 1,2,---. We know from

Proposition 3 that (C (M) ,’H) is a compact metric space, where H is the

usual Hausdorff distance. So there exists a subsequence M;, , M;,, - - - which is
converging with respect to the usual Hausdorff distance. Let M be the limit,
i.e., H(M;, , M) — 0 as k — co. Then by the inequality in Lemma 2 (2), we
have Hp,(M;, , M) — 0 as k — oco. Now it is straightforward to see from the
triangular inequality in Lemma 5 (3) that H,(M;, M) — 0 as i — oo. 0

Remark 7 The sequence M; in Theorem 5 does not necessarily have a limit
under the usual Hausdorff distance, even if each M; is in MAT(C,) N Cy 1.
This can be seen from Example 10. FEven though the limit under the usual
Hausdorff distance exists, it may not be essential. See Example 11.
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Example 10 Fori=1,2,---, define Q; € Cy by

Q; = B ((0,0)) U Agip; p;

where pf = (cos 0, +sin6;), ¢; = (sec;,0) and O; = (i —1) -7 (—%) T
For each i, let M; be the medml axis transform of Q;. So M; € MAT(Cy)
for every i = 1,2,---. Now it is easy to see that H(£;,;) — 0 nd

H (0, 00;) = 0 as i,j — 00. So by Theorem 3, we have H;(M;, M;) —
as i,j — 0o. But it is clear that there is no sets M in R? x Rsq such that
H(M;, M) — 0 as i — oo.

for even 1

Example 11 Fori=1,2,---, define €); € Cy by

Q; = By ((0,0)) U Agip) py,

where pi = (cos By, £sinb;), ¢; = (sech;,0) and §; = (%)Zf1 - . For each
i, let M; be the medial azxis transform of Q;. So M; € MAT(Cy) for every
i=1,2,---. Now it is easy to see that H(S, ;) — 0 and H(0;, 0;) — 0
as i,j — 0o. By Theorem 3, we have Hy(M;, M;) — 0 as i, j — oo. In this
case, there exists a set M in R? x Rso such that H(M;, M) — 0 as i — oo.

In fact, M 1is defined by
M ={((z,y),r) eR* X Rsg |z +7r=1,y=0,r < 1}.

But clearly, M is not essential.
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Since every set in MAT(C,) is essential, we can consider the metric
space (MAT(C,) NCp,1,Hy) as a subspace of the complete metric space
(Cna/ ~,Hp). Unfortunately, it turns out that this space is not closed, and
hence is not a complete metric space itself. This can be seen from the fol-
lowing example.

Example 12 Define €); € Co, 1 =1,2,---, by
Q= (:ry)ER2|L<x2+y2<1
' ’ i+17~ - )

It is easy to check that H($;, ;) — 0 and H(0S;,09;) — 0 as i,j — oo.
Suppose there exists a set Q0 € Cy such that H(;,Q2) — 0 and H(0;, 02) —
0 as i — oo. Clearly, Q@ must be the unit disk in R®>. But then, we have
H(0Q;,00) — 1 as i — oco. So there are no sets Q such that H(Q;, Q) — 0
and H(0Q;, 02) — 0 as i — oo.

Let M; = MAT(Q;) fori=1,2,---. By Theorem 3, H,(M;, M;) — 0 as
i,j — 00. Suppose there exists M € MAT(C2)NCq, such that Hy(M;, M) —
0 as i — oo. Then by Theorem 1 and 2, we must have H(;, TAM(M)) — 0
and H(0Q;,0TAM(M)) — 0 as i — oo. But this contradicts the above
fact that there are no such sets as TAM(M). So the sequence {M;} in
MAT(Cy) NCyy does not have a limit in MAT(Cy) N Cyy under Hy,.

8 Summary

Now we summarize our results. For this purpose, we find it useful to interpret
the results in terms of the properties of the maps MAT and TAM.
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For each n = 1,2, -+, define a new metric Hy on C, by:
%3(91, Qg) = Imax {%(Ql, QQ), 7’[(891, 692)},

for every €2y,€y € C,. It is straightforward to check that Hy is indeed a
metric on C, for n = 1,2, ---. But unfortunately, the metric space (C,,Hs)
is not complete, as can be seen from Example 12. We observed in Section 4
that a medial axis transform may not be compact, even if its original domain
is compact. This leads us to define the space D,, = TAM(C,,; " MAT(C,))
for n = 1,2,.... Note that D, C C, by Lemma 3. In fact, D, is the
largest reasonable subspace in C,, concerning compactness of the medial axis
transform.

We view the maps M AT and TAM as bijections between the two metric
spaces (D,,, Hs) and (M,,, Hp,), where M,, denotes C,, N MAT(C,) for n =
1,2,---. Then the two maps are the exact inverses to each other. Note that
both of the above metric spaces are not complete.

Now Theorem 1, 2 and 3 together have the following implication:

Theorem 6 For everyn =1,2,---, the maps MAT : (D,,,Hs) — (M, H;)
and TAM : (M,,, Hp) — (Dn, Hs), which are the inverses to each other, are
uniformly continuous. In fact, we have

Hp (MAT(Q), MAT(Qs)) < 3-Hs(24,83),
for every ,Qs € D,,, and
Ho (TAM(M;), TAM(M,)) < Hp (M, Ms),

for every My, My € M,,. In particular, MAT (and thus TAM) is a homeo-
morphism.

The above result tells us that, when we introduce the hyperbolic Hausdorff
distance, the process of taking the medial axis transform and its inverse
reconstruction process can be made to be continuous. This is an important
feature, since the continuity is an important requirement for any processes
which we want to be under control. Moreover, the uniformity result means
that we don’t need a priori knowledge of the individual domains or the
medial axis transforms to do the control, which is certainly another advance
compared to the previous result in [24].

Suppose we approximate a given domain with other domains. Then the
result of the approximation for their medial axis transforms will be almost the
same under the hyperbolic Hausdorff distance. Conversely, if we approximate
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a given medial axis transform with other medial medial axis transforms under
the hyperbolic Hausdorff distance, then the result of the approximation for
the reconstructed domains will be exactly the same.

In fact, our bounds, which we saw are sharp in Sections 5 and 6, are good
enough to make the maps M AT and TAM even isometric in some important
cases. Remember that we defined po = min {r : (p,r) € MAT(Q)} for Q €
Cn, n=1,2,---. Note that po > 0 means that 02 has a relatively smooth
shape, e.g., with no sharp corners, etc. For every 2 € D,, such that pg > 0,
we define 2 € Og C D,, by

1
Oq = {Q' €D, | Has(,Q) < 1P P > PQ} :

Intuitively speaking, Ogq is a set containing the domains which are close
to 2 and have reasonable smoothness. Now Theorem 4 has the following
consequence:

Theorem 7 Letn =1,2,---. For every €2 € D,, such that pg > 0, MAT :
(D, Ho) = (Mo, Hp) is an isometry on Oq.

Proof. Suppose Q',Q" € Oq. Then we have Hy(2, Q") < Hy(, Q) +
7{3(9”,9) < %pQ < % - min {pQI,pQH}. ThllS, Hh(MAT(Q,),MAT(Q”)) =
Ha(, Q") by Theorem 4, which completes the proof. O

Thus, the perturbation of the domains and that of the medial axis trans-
forms are exactly same in quantity, provided that the domains have reason-
able smoothness. Here, by the smoothness, we mean, of course, the condition
pa > 0, and this includes the important and wide class of domains in [1] with-
out sharp corners, which we mentioned in Section 4.

We showed in Section 7 that the hyperbolic Hausdorff distance is a com-
plete metric on the space Cp,;/ ~. By this completeness, we can guarantee
that an approximation always leads to a limit, though sometimes this limit
may not be a reasonable one. Nevertheless, this may be valuable in many
cases.
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