
'$�

�

'$

Æ


��

I N F O R M A T I K


 	

� �

Hyperboli
 Hausdor� Distan
e for

Medial Axis Transform

Sung Woo Choi and Hans-Peter Seidel

MPI{I{2000{4{003 September 2000

FORSCHUNGSBERICHT RESEARCH REPORT

M A X - P L A N C K - I N S T I T U T

F

�

UR

I N F O R M A T I K

Stuhlsatzenhausweg 85 66123 Saarbr�u
ken Germany





Author's Address

Sung Woo Choi and Hans-Peter Seidel

Computer Graphi
s Group

Max-Plan
k-Institut f�ur Informatik

Stuhlsatzenhausweg 85, 66123 Saarbr�u
ken, Germany

Email: fsw
hoi,hpseidelg� mpi-sb.mpg.de



Abstra
t

Although the Hausdor� distan
e is a popular devi
e to measure the di�er-

en
es between sets, it is not natural for some spe
i�
 
lasses of sets, espe
ially

for the medial axis transform whi
h is de�ned as the set of all pairs of the


enters and the radii of the maximal balls 
ontained in another set. In spite

of its many advantages and possible appli
ations, the medial axis transform

has one great weakness, namely its instability under the Hausdor� distan
e

when the boundary of the original set is perturbed. Though many attempts

have been made for the resolution of this phenomenon, most of them are

heuristi
 in nature and la
k pre
ise error analysis.

In this paper, we show that this instability 
an be remedied by intro-

du
ing a new metri
 
alled the hyperboli
 Hausdor� distan
e, whi
h is most

natural for measuring the di�eren
es between medial axis transforms. We

analyze the properties of the hyperboli
 Hausdor� distan
e in detail, and

show that it is a 
omplete metri
 on the 
anoni
al set 
ontaining medial axis

transforms. Using the hyperboli
 Hausdor� distan
e, we obtain error bounds,

whi
h make the operation of medial axis transform almost an isometry. By

various examples, we also show that the bounds obtained are sharp. In doing

so, we show that bounding both the Hausdor� distan
e between domains and

the Hausdor� distan
e between their boundaries is ne
essary and suÆ
ient

for bounding the hyperboli
 Hausdor� distan
e between their medial axis

transforms. These results drasti
ally improve the previous results, and open

a new way to pra
ti
ally 
ontrol the Hausdor� distan
e error of the domains

under their medial axis transform error, and vi
e versa.

Keywords

Hausdor� distan
e, hyperboli
 Hausdor� distan
e, medial axis transform,

instability, Minkowski spa
e-time, error bound.



1 Introdu
tion

Among the many des
riptors of shape, medial axis transform is one of the

most fundamental and widely-used ones. It has natural de�nitions, and is ho-

motopi
ally equivalent to the the original shape, while de
reasing the dimen-

sion by one [1, 2℄. It is also the set of the singularities of the distan
e fun
tion

from the boundary, and the meeting points of the waves starting from the

boundary [3℄. It 
ould also be 
onsidered as a limit of Voronoi diagram [4℄

as the number of the generating points be
omes in�nite. Due to these ni
e

properties, medial axis transform has been a fo
us of many appli
ations in

su
h diverse �elds as 
omputational geometry [5℄, 
omputer vision [6℄, shape

modeling [7, 8, 9℄, me
hani
al engineering [10℄, opti
s [11, 12℄, biologi
al

shape re
ognition [13, 14℄, 
hara
ter re
ognition and representation [15, 16℄,

�ngerprint 
lassi�
ation [17℄, visual analysis of 
ir
uit boards [18℄.

In this paper, we de�ne the medial axis transform as the set of all pairs

of the 
enters and the radii of the maximal ins
ribed balls in a domain. One

merit of in
luding the radii is that we 
an 
ompletely re
onstru
t the original

domain with its medial axis transform. In 
ontrast to the other literature,

we generalize the domains of the de�nition to the general 
ompa
t sets in R

n

for n = 1; 2; � � �, for we will show that our results hold in this general 
ontext.

One of the problems with the medial axis transform is its instability to

noises. Medial axis transform may 
hange very unstably, even when the

boundary of the domain has only a slight perturbation. This phenomenon is

illustrated in Figure 1: When measured by the usual Hausdor� distan
e, the

domains (a) and (b) are very 
lose to ea
h other, but their medial axis trans-

forms di�er mu
h. In fa
t, an in�nitesimally small di�eren
e between the do-

mains 
an result in a drasti
 di�eren
e between their medial axis transforms.

In other words, the map MAT : fdomainsg ! fmedial axis transformsg,

whi
h 
orresponds to taking the medial axis transforms from the domains is

not 
ontinuous under the usual Hausdor� metri
.

Obviously, this instability 
ould produ
e mu
h problems, espe
ially when

one wants to get the medial axis transform of an input whi
h might have

noises. In fa
t, this is the 
ase in most pra
ti
al situations. So there have

been many attempts to get around this unplausible phenomenon. Mainly,

there has been the so-
alled \pruning" approa
h [19, 20℄, whi
h prunes the

less important part of the medial axis transform, leaving only the essential

part. Some have also tried to smooth the boundary of the domain so that the

resulting medial axis transform be
ome more simple, hopefully 
apturing only

important features [21, 22, 23℄. But one 
ommon drawba
k of these methods

is that they seldom provide pre
ise error analysis, whi
h makes them heuristi


in most 
ases.
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(a) (b)

Figure 1: Instability of Medial Axis Transform

Re
ently, there has been an attempt [24℄ to obtain error bounds for the dif-

feren
e between the medial axis transforms when the domains are perturbed.

They showed that the one-sided Hausdor� distan
eH(MAT(


1

)jMAT(


2

))

of the medial axis transformMAT(


1

) of a plane domain 


1

satisfying some

regularity 
ondition on the shape with respe
t to the medial axis transform

MAT(


2

) of any reasonable plane domain 


2

, is bounded as follows:

H(MAT(


1

)jMAT(


2

)) <

p

�

2

+ (� + �)

2

;

for every max fH(


1

;


2

);H(�


1

; �


2

)g < � < min f� tan

2

�=2; �=2g. Here

� = ��=(� sin

2

�=2 � � 
os

2

�=2), where � and � are the positive 
onstants

depending only on 


1

, and H(�; �) is the usual two-sided Hausdor� distan
e.

In this paper, instead of using the usual Hausdor� distan
e, we introdu
e a

new metri
 
alled the hyperboli
 Hausdor� distan
e to measure the di�eren
e

between the medial axis transforms. We show that, if we endow this new

metri
 on the spa
e of the medial axis transforms, then the pro
ess of taking

medial axis transform be
omes almost an isometry. More spe
i�
ally, let 


1

,




2

be 
ompa
t sets in R

n

su
h that their respe
tive medial axis transforms

MAT(


1

), MAT(


2

) be 
ompa
t. Then we show that

H

h

(MAT(


1

);MAT(


2

)) � 3 �max fH(


1

;


2

);H(�


1

; �


2

)g; (1)

and

max fH(


1

;


2

);H(�


1

; �


2

)g � H

h

(MAT(


1

);MAT(


2

)); (2)

where H

h

(�; �) denotes the hyperboli
 Hausdor� distan
e. Thus, as a result of

swit
hing to the hyperboli
 Hausdor� distan
e, we get mu
h stronger results,

whi
h implies that the hyperboli
 Hausdor� distan
e is a most natural metri


for the medial axis transforms. As a result, we 
an now e�e
tively 
ontrol
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the perturbation of medial axis transform by that of the domain and its

boundary, and 
onversely, the perturbation of the domain the boundary by

that of the medial axis transform. We also show that the above bounds are

sharp by various examples. Note that these results are more symmetri
 than

those in [24℄, sin
e we have no di�eren
es of the assumptions on 


1

and 


2

.

Also, the assumption itself is very general, in that only the 
ompa
tness is

required, and the 
onsiderations are in R

n

for n = 1; 2; � � �, rather than only

in R

2

.

One byprodu
t of the above results is that we have a 
hara
terization

of the medial axis transforms being 
lose to ea
h others under the hyper-

boli
 Hausdor� distan
e, in terms of the usual Hausdor� distan
es between

the original domains: There are two traditional methods to measure the

di�eren
e between the domains with the Hausdor� distan
e. One is to mea-

sure the Hausdor� distan
e between the domains themselves, and the other

is to measure the Hausdor� distan
e between their boundaries. We show

that the hyperboli
 Hausdor� distan
e between the medial axis transforms

are enough to bound both the Hausdor� distan
e between the original do-

mains and the Hausdor� distan
e between their boundaries. Conversely, we

show that both types of the Hausdor� distan
es are needed for bounding the

hyperboli
 Hausdor� distan
e between their medial axis transforms. Thus

the two types of measuring the Hausdor� distan
e between the domains are

both ne
essary and suÆ
ient for bounding the hyperboli
 Hausdor� distan
e

between their medial axis transforms.

As a worthwhile property of the hyperboli
 Hausdor� distan
e itself, we

show that it is a 
omplete metri
 on the 
anoni
al spa
e 
ontaining the me-

dial axis transforms. As we will give a more pre
ise des
ription later, this


anoni
al spa
e is in some sense the most natural spa
e for the hyperboli


Hausdor� distan
e. This result shows the usefulness of the hyperboli
 Haus-

dor� distan
e in another viewpoint.

We also mention that the de�nition of the hyperboli
 Hausdor� distan
e

is simple and natural, taking its motivation from Lorentz metri
 for the hy-

perboli
 spa
es [25℄. The fa
t that the hyperboli
 Hausdor� distan
e requires

essentially the same 
omputational e�ort 
ompared to the usual Hausdor�

distan
e, is expe
ted to be a great advantage in applying the hyperboli


Hausdor� distan
e to many pra
ti
al appli
ations.

The rest of this paper is organized as follows: In Se
tion 2, we introdu
e

the Hausdor� distan
e in R

n

. Espe
ially, we show, by examples, that both

types of the Hausdor� distan
es, i.e., that between the domains and that

between their boundaries, are important. Then we introdu
e the hyperboli


Hausdor� distan
e and show some of its basi
 properties in Se
tion 3. In

Se
tion 4, the medial axis transform for the general 
ompa
t set in R

n

is
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introdu
ed. In Se
tion 5, we obtain the bound (2), and show this is sharp

by examples, and in Se
tion 6, we obtain the bound (1), and also show its

sharpness by examples. Together, they show that the pro
ess of taking the

medial axis transform is almost an isometry under the Hausdor� distan
e

for the domains and the hyperboli
 Hausdor� distan
e for the medial axis

transforms. In Se
tion 7, we further explore the hyperboli
 Hausdor� dis-

tan
e, and show that it is a 
omplete metri
 on the quotient spa
e of the set

of all 
ompa
t sets in R

n

� R

�0

by a 
anoni
al equivalen
e relation. Finally,

we summarize our results and dis
uss some impli
ations and appli
ations of

them in Se
tion 8.

2 Hausdor� Distan
e of Domains vs. Bound-

aries

Let 


1

and 


2

be two nonempty 
ompa
t sets in R

n

, where n = 1; 2; � � �. The

Hausdor� distan
e H(


1

;


2

) between 


1

and 


2

is de�ned by

H(


1

;


2

) = max fH(


1

j


2

);H(


2

j


1

)g;

where the one-sided Hausdor� distan
e H(


1

j


2

) of 


1

with respe
t to 


2

is

de�ned by

H(


1

j


2

) = max

p

1

2


1

d(p

1

;


2

):

Here, we denote by d(�; �) the usual Eu
lidean distan
e in R

n

.

The following is a basi
 property of the Hausdor� distan
e.

Proposition 1 ([26℄)

For ea
h n = 1; 2; � � �, the Hausdor� distan
e is a 
omplete metri
 on the

spa
e of all nonempty 
ompa
t sets in R

n

.

Usually, the Hausdor� distan
e is 
onsidered as a good devi
e to measure

the di�eren
es between two sets. Meanwhile, in many situations, espe
ially

where the sets are represented by their boundaries, it is 
ustomary to mea-

sure the di�eren
es between the sets by the Hausdor� distan
e between the

boundaries of the sets. In this se
tion, we will dis
uss the di�eren
e be-

tween these two methods, and show by examples that both of them 
an be

sometimes misleading when used alone.

Example 1 Let 


1

and 


2

be two domains in R

2

as depi
ted below. Note

that H(


1

;


2

) 
an be made arbitrarily small, although H(�


1

; �


2

) 
an be

made 
onverge to some positive number. This example sharply shows that the
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Hausdor� distan
e between the domains may overlook the di�eren
es whi
h

the Hausdor� distan
e between the boundaries 
onsiders to be important.

H(


1

;


2

)

H(�


1

; �


2

)




2




1

Here is the opposite extreme.

Example 2 Let 


1

and 


2

be two domains in R

2

as depi
ted below. Note

that H(�


1

; �


2

) 
an be made arbitrarily small, although H(


1

;


2

) 
an be

made 
onverge to some positive number. This example sharply shows that

the Hausdor� distan
e between the boundaries may overlook the di�eren
es

whi
h the Hausdor� distan
e between the domains does not.

H(


1

;


2

)

H(�


1

; �


2

)




1




2

Note that, in Example 2, one whole domain lies in the vi
inity of the

other domain's boundary. The next example shows that this is not ne
essary

to make the Hausdor� distan
e between the boundaries signi�
antly smaller

than the Hausdor� distan
e between the domains.
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Example 3 Let 


1

and 


2

be two domains in R

2

as depi
ted below. Note

that

H(


1

j


2

) =

r

2

2

; H(


2

j


1

) =

r

1

2

;

H(�


1

j�


2

) = Æ; H(�


2

j�


1

) = Æ:

So we have

H(


1

;


2

) = max

n

r

1

2

;

r

2

2

o

; H(�


1

; �


2

) = Æ:

By varying r

1

, r

2

and Æ, we 
an make various 
on�gurations of the Hausdor�

distan
es.

H(


2

j


1

) =

r

1

2

H(


1

j


2

) =

r

2

2

H(�


1

j�


2

)

H(�


2

j�


1

)

Æ

p

2

r

1

Æ




1

Æ

p

2

r

2

Æ




2

Note that the above example 
an exhibit both features in Examples 1

and 2 by varying r

1

, r

2

and Æ.

The examples in this se
tion 
learly show that neither the Hausdor� dis-

tan
e between the sets nor the Hausdor� distan
e between the boundaries

alone is not enough to measure the di�eren
e of shapes. Later, we will see

that both are needed to bound the hyperboli
 Hausdor� distan
e between the

medial axis transforms, and 
onversely, they are bounded by the hyperboli


Hausdor� distan
e between their medial axis transforms.
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3 Hyperboli
 Hausdor� Distan
e

In this se
tion, we introdu
e the hyperboli
 Hausdor� distan
e, and show

some of its basi
 properties.

We will denote R

�0

= fx 2 R j x � 0g. Let (p; r) 2 R

n

� R

�0

, where

n = 1; 2; � � �. By B

r

(p), we denote the 
losed ball in R

n


entered at p with

the radius r, i.e., B

r

(p) = fx 2 R

n

j d(x; p) � rg. Note that, when the radius

is zero, a ball 
onsists of only one point (the 
enter).

De�nition 1 (Hyperboli
 Distan
e)

Let P

1

= (p

1

; r

1

); P

2

= (p

2

; r

2

) be in R

n

� R

�0

, where n = 1; 2; � � �. Then

the hyperboli
 distan
e d

h

(P

1

jP

2

) from P

1

to P

2

is de�ned by

d

h

(P

1

jP

2

) = max f0; d(p

2

; p

1

)� (r

2

� r

1

)g:

Figure 2 illustrates the hyperboli
 distan
e for various 
ases.

Here, we mention a motivation for the name hyperboli
: The usual Eu-


lidean distan
e is asso
iated to the standard Eu
lidean metri
 dx

2

1

+� � �+dx

2

n

on R

n

. Now it 
an be 
learly seen that the hyperboli
 distan
e has an analo-

gous asso
iation to the hyperboli
 or Lorentz metri
 [25℄ dx

2

1

+� � �+dx

2

n

�dx

2

n+1

on R

n+1

.

The following is a basi
 property of the hyperboli
 distan
e.

Lemma 1 Let P

1

= (p

1

; r

1

), P

2

= (p

2

; r

2

) be in R

n

�R

�0

, where n = 1; 2; � � �.

Then we have d

h

(P

1

jP

2

) = H (B

r

1

(p

1

)jB

r

2

(p

2

)). Suppose r

1

� � for some

� � 0. Then the following two 
onditions are equivalent:

(1) d

h

(P

1

jP

2

) � �,

(2) B

r

1

��

(p

1

) � B

r

2

(p

2

).

Proof. Easy. See Figure 2. 2

De�nition 2 (Hyperboli
 Hausdor� Distan
e)

Let M

1

, M

2

be nonempty 
ompa
t sets in R

n

� R

�0

, where n = 1; 2; � � �.

Then the one-sided hyperboli
 Hausdor� distan
e H

h

(M

1

jM

2

) from M

1

to

M

2

is de�ned by

H

h

(M

1

jM

2

) = max

P

1

2M

1

�

min

P

2

2M

2

d

h

(P

1

jP

2

)

�

:

The hyperboli
 Hausdor� distan
e between M

1

and M

2

is de�ned by

H

h

(M

1

;M

2

) = max fH

h

(M

1

jM

2

);H

h

(M

2

jM

1

)g:
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p

1

p

2

r

1

r

2d

d

h

(P

1

jP

2

)

d

h

(P

2

jP

1

)

p

1

p

2

r

1

r

2d

d

h

(P

1

jP

2

) d

h

(P

2

jP

1

)

p

1

p

2

r

1

r

2d

d

h

(P

1

jP

2

) d

h

(P

2

jP

1

)

p

1

p

2

r

1

r

2d

d

h

(P

1

jP

2

) d

h

(P

2

jP

1

)

p

1

p

2

r

1

r

2d

d

h

(P

1

jP

2

) = 0 d

h

(P

2

jP

1

)

p

1

p

2

r

1

r

2d

d

h

(P

1

jP

2

) = 0 d

h

(P

2

jP

1

)

Figure 2: Hyperboli
 Hausdor� distan
e for various 
ases
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Lemma 2 (Comparison with Hausdor� Distan
e)

Let n = 1; 2; � � �.

(1) For every P

1

; P

2

2 R

n

� R

�0

, we have

d(P

1

; P

2

) � max fd

h

(P

1

jP

2

); d

h

(P

2

jP

1

)g �

p

2 � d(P

1

; P

2

):

(2) For every 
ompa
t sets M

1

;M

2

� R

n

� R

�0

, we have

H

h

(M

1

;M

2

) �

p

2 � H(M

1

;M

2

):

Proof. (1) Let P

i

= ((x

i;1

; � � � ; x

i;n

); r

i

) for i = 1; 2. Note that

max fd

h

(P

1

jP

2

); d

h

(P

2

jP

1

)g = d(p

1

; p

2

) + jr

1

� r

2

j

=

q

(x

1;1

� x

2;1

)

2

+ � � �+ (x

1;n

� x

2;n

)

2

+

q

(r

1

� r

2

)

2

:

Sin
e

p

a+ b �

p

a+

p

b �

p

2 �

p

a + b for every a; b � 0, we have

d(P

1

; P

2

) =

q

(x

1;1

� x

2;1

)

2

+ � � �+ (x

1;n

� x

2;n

)

2

+ (r

1

� r

2

)

2

�

q

(x

1;1

� x

2;1

)

2

+ � � �+ (x

1;n

� x

2;n

)

2

+

q

(r

1

� r

2

)

2

= max fd

h

(P

1

jP

2

); d

h

(P

2

jP

1

)g

�

p

2 �

q

(x

1;1

� x

2;1

)

2

+ � � �+ (x

1;n

� x

2;n

)

2

+ (r

1

� r

2

)

2

=

p

2 � d(P

1

; P

2

):

(2) From (1), we have

H

h

(M

1

;M

2

) = max

�

max

P

1

2M

1

�

min

P

2

2M

2

d

h

(P

1

jP

2

)

�

; max

P

2

2M

2

�

min

P

1

2M

1

d

h

(P

2

jP

1

)

��

� max

�

max

P

1

2M

1

�

min

P

2

2M

2

p

2 � d(P

1

; P

2

)

�

;

max

P

2

2M

2

�

min

P

1

2M

1

p

2 � d(P

2

; P

1

)

��

=

p

2 � H(M

1

;M

2

):

2

Remark 1 The bound in (2) is sharp, whi
h 
an be seen from the following

example: Let M

1

= f((x; y); r) 2 R

2

� R

�0

j � 1 � x � 1; y = 0; r = 1g, and

let M

2

= f((x; y); r) 2 R

2

� R

�0

j � 1 � x � 1; y = 1; r = 2g. It is easy to

see that H

h

(M

1

;M

2

) = 2 and H(M

1

;M

2

) =

p

2.

9



Remark 2 There is no positive 
onstant k su
h that H(M

1

;M

2

) � k �

H

h

(M

1

;M

2

) for every 
ompa
t sets M

1

, M

2

in R

n

� R

�0

. For example, let

M

1

= f((0; 0); 1)g � R

2

�R

�0

, and let M

2

= f((x; y); r) 2 R

2

�R

�0

j

x

a

+ r =

1; y = 0; r � 1g for a > 1. Then it is easy to see that H(M

1

;M

2

) =

p

1 + a

2

,

whereas H

h

(M

1

;M

2

) = a � 1. So, as a & 1, we have H(M

1

;M

2

) !

p

2,

whereas H

h

(M

1

;M

2

)! 0.

4 Medial Axis Transform

Usually, medial axis transforms are de�ned for well-behaved domains, whose

boundaries 
onsist of 
urves with suÆ
ient pie
ewise di�erentiability. One

reason for this is that the medial axis transform has been used mainly in

the appli
ation-oriented areas, where more pathologi
ally-shaped domains

are outside of the interests.

Another reason is that the medial axis transform of a set without suÆ
ient

regularity of their shape may lose the �nite graph stru
ture, whi
h is an

impli
it assumption in most appli
ations. In fa
t, Choi et al. [1℄ showed

that the medial axis transform of a 
ompa
t set 
 in R

2


an exhibit quite

anomalous behaviours like in�nitely may prongs or in�nitely many bran
hes,

if 
 does not satisfy the following rather stri
t 
ondition: �
 is a disjoint

union of �nitely many simple 
losed 
urves, ea
h of whi
h 
onsists of �nitely

may real-analyti
 
urves. They also showed that, if a set 
 satisfy the above

assumption, its medial axis transform is shaped as expe
ted:

Proposition 2 ([1℄)

Suppose a 
ompa
t set 
 � R

2

satis�es the above assumption. Then its

medial axis transform has a �nite graph stru
ture.

In this paper, we de�ne the medial axis transform for the general 
ompa
t

sets in R

n

, sin
e the results we show are independent of the regularity of the

shapes.

Let n = 1; 2; � � �. We will denote by C

n

the set of all nonempty 
ompa
t

sets in R

n

. By C

n;1

, we denote the set of all nonempty 
ompa
t sets in

R

n

� R

�0

. For every 
 in C

n

, we de�ne the medial axis transform MAT(
)

of 
 by

MAT(
) = f(p; r) 2 R

n

� R

�0

jB

r

(p) � 
;

B

r

(p) � B

r

0

(p

0

) � 
) (p; r) = (p

0

; r

0

)g:

Unfortunately,MAT(
) may not be 
ompa
t, even if 
 is 
ompa
t. This


an be seen from the following example.

10



Example 4 For n = 1; 2; � � �, let 


n

be the domain in R

2

as depi
ted below.

Here we assume

P

1

n=1

r

n

<1.

b b b

b b b

b b b

p

q

P

1

n=1

r

n

r

1

r

2

r

n

p

1

p

2

p

n

r

Clearly, 


n

is a 
ompa
t set for every n. Note that H(


i

;


j

) ! 0 as

i; j ! 1. So, by Proposition 1, there exists a 
ompa
t set 
 su
h that

H(


n

;
) ! 0 as n ! 1. Now, it is easy to see that every (p

n

; r

n

) is

in MAT(
), and (p

n

; r

n

) ! (p; 0) in the usual Eu
lidean metri
 in R

3

.

But the ball B

r

(q), whi
h is 
ontained in 
, stri
tly 
ontains B

0

(p). So

(p; 0) =2MAT(
). Thus MAT(
) is not 
losed, and hen
e not 
ompa
t.

For every M in C

n;1

, we de�ne

TAM(M) = fx 2 R

n

j 9(p; r) 2M s.t. x 2 B

r

(p)g

=

[

(p;r)2M

B

r

(p):

In the 
ase of TAM, we 
an show that TAM(M) is 
ompa
t for every

M 2 C

n;1

, and so, TAM is a map from C

n;1

to C

n

.

Lemma 3 Let M 2 C

n;1

, where n = 1; 2; � � �. Then TAM(M) is in C

n

.

Proof. It is 
lear from the de�nition that TAM(M) is bounded, sin
e M

is bounded. So we only have to show that TAM(M) is 
losed. Suppose

q

n

! q, where q

n

2 TAM(M) for n = 1; 2; � � �. Obviously, there exists

(p

n

; r

n

) 2 M su
h that q

n

2 B

r

n

(p

n

) for n = 1; 2; � � �. Sin
e M is bounded,

11



we 
an 
hoose a subsequen
e (p

n

k

; r

n

k

) of (p

n

; r

n

) su
h that (p

n

k

; r

n

k

)! (p; r)

for some (p; r) 2 R

n

� R

�0

in the usual Eu
lidean metri
 in R

n+1

. Now it is

easy to see that q 2 B

r

(p). Sin
e M is 
losed, (p; r) is in M . So it follows

that q 2 TAM(M). Thus we 
on
lude that TAM(M) is 
losed, and hen
e,

is 
ompa
t. 2

Note that (TAM ÆMAT) (
) = 
 and (MAT ÆTAM) (M) = M for

every 
 2 C

n

and for every M 2MAT(C

n

). So TAM 
an be 
onsidered as

an inverse of the mapMAT. In fa
t, TAM 
orresponds to the re
onstru
tion

of the original domain from its medial axis transform. Note also that MAT

and TAMj

MAT(C

n

)

are one-to-one for n = 1; 2; � � �.

5 Bounding Domain/Boundary Perturbation

with MAT

In this se
tion, we show that, if two 
ompa
t sets in R

n

� R

�0

are 
lose

under the hyperboli
 Hausdor� distan
e, then their images in R

n

under the

map TAM are 
lose under the Hausdor� distan
e. Furthermore, we show

that, when the sets are medial axis transforms, then the boundaries of their

images are also 
lose under the Hausdor� distan
e. Thus, if two medial axis

transforms are 
lose under the hyperboli
 Hausdor� distan
e, then both the

Hausdor� distan
e between the original domains and the Hausdor� distan
e

between their boundaries are small.

We �rst start with the one-sided 
ase.

Lemma 4 Let n = 1; 2; � � �. For any M

1

;M

2

2 C

n;1

, we have

H (TAM(M

1

)jTAM(M

2

)) � H

h

(M

1

jM

2

):

Proof. Suppose H

h

(M

1

jM

2

) � � for some � � 0. Let 


i

= TAM(M

i

) for

i = 1; 2. Let p be a point in 


1

. From the de�nition of the map TAM, it

is 
lear that we 
an take P

1

= (p

1

; r

1

) in M

1

su
h that p 2 B

r

1

(p

1

). Sin
e

H

h

(M

1

jM

2

) � �, we 
an take P

2

= (p

2

; r

2

) in M

2

su
h that d

h

(P

1

jP

2

) � �.

From Lemma 1, it is easy to see that d(p; B

r

2

(p

2

)) � �, whi
h implies that

d(p;


2

) � �. Sin
e p is taken arbitrarily, we 
on
lude that H(


1

j


2

) � �

Now the proof follows, sin
e � is arbitrary. 2

From Lemma 4, we immediately have the two-sided result:

Theorem 1 Let n = 1; 2; � � �. For any M

1

;M

2

2 C

n;1

, we have

H (TAM(M

1

);TAM(M

2

)) � H

h

(M

1

;M

2

):
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When M

1

, M

2

are medial axis transforms, we 
an also bound the Haus-

dor� distan
e between the boundaries.

Theorem 2 Let n = 1; 2; � � �. For any M

1

;M

2

2MAT(C

n

) \ C

n;1

, we have

H (� (TAM(M

1

)) ; � (TAM(M

2

))) � H

h

(M

1

;M

2

):

Proof. Let 


i

= TAM(M

i

) for i = 1; 2. Suppose H

h

(M

1

;M

2

) � � for

some � � 0. Suppose also H(�


1

; �


2

) > �. With no loss of generality,

we 
an assume H(�


1

j�


2

) > �. Then there exists q

1

2 �


1

su
h that

d(q

1

; �


2

) > �. Take q

2

2 �


2

su
h that d(q

1

; q

2

) = d(q

1

; �


2

) > �.

�

p

2

q

1

q

2

�


2

B

r

2

(p

2

)

B

r

1

(p

1

)

B

r

2

��

(p

2

)

p

1

Note that q

1

2 int


2

. Otherwise, we would have H(


1

j


2

) � d(q

1

;


2

) =

d(q

1

; �


2

) > �, 
ontradi
ting the fa
t that H(


1

;


2

) � � (Theorem 1).

Sin
e M

2

is a medial axis transform, there exists unique P

2

= (p

2

; r

2

) in

M

2

su
h that q

2

2 �B

r

2

(p

2

) and q

1

q

2

� p

2

q

2

. Note that r

2

� � > 0 and

q

1

2 intB

r

2

��

(p

2

). Sin
e H

h

(M

2

jM

1

) � �, there exists P

1

= (p

1

; r

1

) in M

1

su
h that d

h

(P

2

jP

1

) � �. Now we have q

1

2 intB

r

1

(p

1

) � int


1

, sin
e

B

r

2

��

(p

2

) � B

r

1

(p

1

) by Lemma 1. This is a 
ontradi
tion to the fa
t that

q

1

2 �


1

. So H(�


1

j�


2

) � �. Sin
e we have assumed H(�


1

; �


2

) > �, it

follows that H(�


2

j�


1

) > �. But this 
an also be shown to be impossible by

the symmetri
 argument as above. Thus we 
on
lude that H(�


1

; �


2

) � �.

Now the proof follows, sin
e � is arbitrary. 2

Remark 3 Theorem 2 does not hold for the general sets in C

n;1

. For exam-

ple, let

M

1

= f((x; y); r) 2 R

2

� R

�0

j x

2

+ y

2

= 1; r = 1g;

M

2

= f((x; y); r) 2 R

2

� R

�0

j x

2

+ y

2

= (1 + Æ)

2

; r = 1� Æg;

13



for 0 < Æ < 1. Let 


i

= TAM(M

i

) for i = 1; 2. Then,




1

= f(x; y) 2 R

2

j x

2

+ y

2

� 2

2

g;




2

= f(x; y) 2 R

2

j (2Æ)

2

� x

2

+ y

2

� 2

2

g:

Note that

H

h

(M

1

;M

2

) = 2Æ;

H(�


1

; �


2

) = 2� 2Æ:

So, as Æ ! 0, we have H

h

(M

1

;M

2

)! 0, but H(�


1

; �


2

)! 2.

Remark 4 While Theorem 1 has its one-sided version, i.e., Lemma 4, The-

orem 2 has no one-sided 
ounterpart. For example, let 


1

= B

1

((0; 0)),




2

= B

2

((0; 0)). Let M

i

= MAT(


i

) for i = 1; 2. Then M

1

= f((0; 0); 1)g

and M

2

= f((0; 0); 2)g. Note that H

h

(M

1

jM

2

) = 0, while H(�


1

j�


2

) = 1.

The following examples show that the inequalities in Theorem 1 and 2

are sharp in various ways.

Example 5 Let 


1

and 


2

be two domains in R

2

as depi
ted below. Note

that 


2


an be obtained by translating 


1

by the distan
e Æ. Let M

i

=

MAT(


i

) for i = 1; 2. Now it is easy to see that

H

h

(M

1

;M

2

) = H(


1

;


2

) = H(�


1

; �


2

);

for every Æ � 0.

H(�


1

; �


2

) = H(


1

;


2

) = Æ

H

h

(M

1

;M

2

) = Æ




1




2
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Example 6 Let 


1

and 


2

be two domains in R

2

as depi
ted below. Let

M

i

=MAT(


i

) for i = 1; 2. Here, we have

H(


1

;


2

) = r ;

H(�


1

; �


2

) = r � Æ ;

H

h

(M

1

;M

2

) = r + Æ ;

for every 0 < Æ < r. So

H

h

(M

1

;M

2

) > H(


1

;


2

) > H(�


1

; �


2

):

Note that H

h

(M

1

;M

2

)!H(


1

;


2

);H(�


1

; �


2

) as Æ ! 0.

H

h

(M

1

;M

2

)

= r + Æ

H(�


1

; �


2

)

= r � Æ

H(


1

;


2

) = r




1




2

Æ

Example 7 Let 


1

and 


2

be two domains in R

2

as depi
ted below. Here,

we assume 0 < Æ << r. Let M

i

=MAT(


i

) for i = 1; 2. Note that

H(


1

j


2

) =

r

2

� Æ

q

�

r

2

+ Æ

�

2

+ Æ

2

< Æ ;

H(�


1

j�


2

) = Æ ;

H

h

(M

1

jM

2

) =

r

2

;

and

H(


2

j


1

) = Æ ;

H(�


2

j�


1

) =

r

2

;

H

h

(M

2

jM

1

) = Æ :
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So we have

H(


1

;


2

) = Æ ;

H(�


1

; �


2

) =

r

2

;

H

h

(M

1

;M

2

) =

r

2

:

Thus, while H

h

(M

1

;M

2

) = H(�


1

; �


2

) =

r

2

, we have H(


1

;


2

)! 0 as

Æ ! 0.

Æ

Æ Æ

r

r

2

r + Æ

r

0

�Æ Æ

r

2

x

q

x

2

+

�

r

2

�

2




1




2

H(


1

;


2

) = Æ

H(


1

j


2

)

H

h

(M

1

;M

2

) = H(�


1

; �


2

)

=

r

2

6 Bounding MAT Perturbation with Domain/

Boundary

The opposite dire
tions of the inequalities in Theorem 1 and 2 do not hold

in general. This 
an be seen from Examples 8 and 9 below. Nevertheless, a
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slightly looser inequality turns out to be true.

Theorem 3 Let n = 1; 2; � � �. For any 


1

;


2

;2 C

n

su
h that MAT(


1

),

MAT(


2

) are 
ompa
t, we have

H

h

(MAT(


1

);MAT(


2

)) � 3 �max fH(


1

;


2

);H(�


1

; �


2

)g:

Proof. Let M

i

= MAT(


i

) for i = 1; 2. First, note that the above in-

equality is trivially true when max fH(


1

;


2

);H(�


1

; �


2

)g = 0. Suppose

max fH(


1

;


2

);H(�


1

; �


2

)g � � for some � > 0. Let P

1

= (p

1

; r

1

) be in

M

1

. Suppose �rst r

1

> 2�. Sin
e H(�


1

; �


2

) � �, we have intB

r

1

��

(p

1

) \

�


2

= ;. So either intB

r

1

��

(p

1

) � int


2

or intB

r

1

��

(p

1

) \ 


2

= ;. But, if

the latter is true, then we would have d(p

1

;


2

) > �, whi
h 
ontradi
ts the

assumption H(


1

;


2

) � �. So we must have intB

r

1

��

(p

1

) � int


2

. Sin
e

M

2

is a medial axis transform, it is 
lear that there exists P

2

= (p

2

; r

2

) 2M

2

su
h that B

r

1

��

(p

1

) � B

r

2

(p

2

). By Lemma 1, this means that d

h

(P

1

jP

2

) � �,

and hen
e, d

h

(P

1

jP

2

) � � � 3�.

Suppose now r

1

� 2�. Sin
e H(


1

;


2

) � �, there exists q

2

2 


2

su
h that d(p

1

; q

2

) � �. Clearly, we 
an take P

2

= (p

2

; r

2

) 2 M

2

su
h

that q

2

2 B

r

2

(p

2

). Now d

h

(P

1

jP

2

) = d(p

1

; p

2

) � (r

2

� r

1

) � d(p

1

; q

2

) +

d(q

2

; p

2

) � d(q

2

; p

2

) + 2� � 3�. Thus we have H

h

(M

1

jM

2

) < 3�, sin
e

P

1

is arbitrary. Sin
e � is arbitrary, we 
on
lude that H

h

(M

1

jM

2

) � 3 �

max fH(


1

;


2

);H(�


1

; �


2

)g. By the symmetri
 argument, we 
an also

show H

h

(M

2

jM

1

) � 3 � max fH(


1

;


2

);H(�


1

; �


2

)g. Thus the proof is


omplete. 2

The proof of Theorem 3 also shows the following plausible result:

Theorem 4 Let n = 1; 2; � � �. For any 


1

;


2

2 C

n

su
h that MAT(


1

),

MAT(


2

) are 
ompa
t and �




1

; �




2

> 2 �maxfH(


1

;


2

);H(�


1

; �


2

)g, we

have

H

h

(MAT(


1

);MAT(


2

)) = max fH(


1

;


2

);H(�


1

; �


2

)g:

Here, we de�ne �




= min fr : (p; r) 2MAT(
)g for every 
 2 C

n

.

Proof. The proof of Theorem 3 shows the � part, and the � part follows

from Theorem 1 and 2. 2

Theorem 4 tells that the transform MAT is in fa
t an isometry lo
ally

at every 
 with �




> 0. But note that the sets around su
h 
's on whi
h

MAT is an isometry are in general not open under the Hausdor� distan
e.

The following examples show that the bound in Theorem 3 is sharp.

Moreover, Example 8 shows that bothH(


1

;


2

) andH(�


1

; �


2

) are 
ru
ial

for bounding H

h

(MAT(


1

);MAT(


2

)).
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Example 8 De�ne the two domains 


1

, 


2

in R

2

by




1

= f(x; y) 2 R

2

j x

2

+ y

2

� 2

2

g;




2

= f(x; y) 2 R

2

j (1 + Æ)

2

� x

2

+ y

2

� 2

2

g:

Here we assume 0 � jÆj << 1. Let M

i

=MAT(


i

) for i = 1; 2. It is easy to

see that

H(


1

;


2

) = 1 + Æ ;

H(�


1

; �


2

) = 1� Æ ;

H

h

(M

1

;M

2

) = 3 + Æ :

So, when Æ > 0, we have

3 � H(�


1

; �


2

) < H

h

(M

1

;M

2

) < 3 � H(


1

;


2

);

and, when Æ < 0, we have

3 � H(


1

;


2

) < H

h

(M

1

;M

2

) < 3 � H(�


1

; �


2

):

When Æ = 0, we have

H

h

(M

1

;M

2

) = 3 � H(


1

;


2

) = 3 � H(�


1

; �


2

):

H

h

(M

1

;M

2

)

= 3 + Æ

H(


1

;


2

) = 1 + Æ

H(�


1

; �


2

)

= 1� Æ




1




2

Example 9 Here we have a more realisti
 example. Let 


1

and 


2

be two

domains in R

2

as depi
ted below. Let M

i

= MAT(


i

) for i = 1; 2. Then it

is 
lear that

H(


1

;


2

) = Æ ;

H(�


1

; �


2

) = Æ ;

H

h

(M

1

;M

2

) = 3Æ ;
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for every Æ > 0. So we have

H

h

(M

1

;M

2

) = 3 � H(


1

;


2

) = 3 � H(�


1

; �


2

):

H

h

(M

1

;M

2

) = 3Æ

H(


1

;


2

) = Æ

H(�


1

; �


2

) = Æ




1




2

7 Completeness of Hyperboli
 Hausdor� Dis-

tan
e

In this se
tion, we further explore the hyperboli
 Hausdor� distan
e. In par-

ti
ular, we show that the hyperboli
 Hausdor� distan
e is a 
omplete metri


on the 
anoni
al quotient spa
e of C

n;1

in
luding the medial axis transforms.

From the de�nition of the hyperboli
 Hausdor� distan
e, it is 
lear that

H

h

(M

1

;M

2

) = H

h

(M

2

;M

1

) for every M

1

;M

2

2 C

n;1

and for every n =

1; 2; � � �.

First, we examine the triangular inequalities for the hyperboli
 Hausdor�

distan
e. For every P 2 R

n

� R

�0

and M 2 C

n;1

, we denote d

h

(P jM) =

min

P

0

2M

d

h

(P jP

0

).

Lemma 5 (Triangular Inequalities)

Let n = 1; 2; � � �. For i = 1; 2; 3, let P

i

2 R

n

� R

�0

and M

i

2 C

n;1

. Then

we have the following inequalities:

(1) d

h

(P

1

jP

3

) � d

h

(P

1

jP

2

) + d

h

(P

2

jP

3

).

(2) H

h

(M

1

jM

3

) � H

h

(M

1

jM

2

) +H

h

(M

2

jM

3

).

(3) H

h

(M

1

;M

3

) � H

h

(M

1

;M

2

) +H

h

(M

2

;M

3

).
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Proof. (1) Note that

d

h

(P

1

jP

2

) + d

h

(P

2

jP

3

) = max f0; d(p

1

; p

2

)� (r

2

� r

1

)g

+max f0; d(p

2

; p

3

)� (r

3

� r

2

)g

� max f0; d(p

1

; p

2

) + d(p

2

; p

3

)

�(r

2

� r

1

)� (r

3

� r

2

)g

� max f0; d(p

1

; p

3

)� (r

3

� r

1

)g

= d

h

(P

1

jP

3

):

(2) Take P

1

2 M

1

su
h that d

h

(P

1

jM

3

) = H

h

(M

1

jM

3

). Take P

2

2 M

2

su
h that d

h

(P

1

jP

2

) = d

h

(P

1

jM

2

). Take P

3

2 M

3

su
h that d

h

(P

2

jP

3

) =

d

h

(P

2

jM

3

). Now by (1), we have

H

h

(M

1

jM

3

) = d

h

(P

1

jM

3

) � d

h

(P

1

jP

3

) � d

h

(P

1

jP

2

) + d

h

(P

2

jP

3

)

= d

h

(P

1

jM

2

) + d

h

(P

2

jM

3

)

� H

h

(M

1

jM

2

) +H

h

(M

2

jM

3

):

(3) From (2), we have

H

h

(M

1

jM

3

) � H

h

(M

1

jM

2

) +H

h

(M

2

jM

3

);

H

h

(M

3

jM

1

) � H

h

(M

3

jM

2

) +H

h

(M

2

jM

1

):

So

H

h

(M

1

;M

3

) = max fH

h

(M

1

jM

3

);H

h

(M

3

;M

1

)g

� max fH

h

(M

1

jM

2

) +H

h

(M

2

jM

3

) ;

H

h

(M

3

jM

2

) +H

h

(M

2

jM

1

)g

� max fH

h

(M

1

jM

2

);H

h

(M

2

jM

1

)g

+max fH

h

(M

2

jM

3

);H

h

(M

3

jM

2

)g

= H

h

(M

1

;M

2

) +H

h

(M

2

;M

3

):

2

Let M

1

;M

2

2 C

n;1

for some n = 1; 2; � � �. Note that H

h

(M

1

;M

2

) = 0 does

not ne
essarily imply M

1

= M

2

. For example, let

M

1

= M [ f(x; r) 2 R � R

�0

j r = x + 3;�2 � x � �1g;

M

2

= M [ f(x; r) 2 R � R

�0

j r = �x + 3; 1 � x � 2g;

where

M = f(x; r) 2 R � R

�0

j � 1 � x � 1; r = 1g:
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x

r

0

M

1

135

Æ

x

r

0

M

2

135

Æ

Figure 3: M

1

�M

2

See Figure 3. Though M

1

6= M

2

, it is easy to see that H

h

(M

1

;M

2

) = 0.

We introdu
e the relation � on C

n;1

, for n = 1; 2; � � �: For every M

1

;M

2

2

C

n;1

, we denote M

1

�M

2

, if and only ifH

h

(M

1

;M

2

) = 0. Let M;M

1

;M

2

;M

3

be in C

n;1

. It is 
lear that M � M , and M

1

� M

2

if and only if M

2

� M

1

.

Suppose M

1

� M

2

and M

2

� M

3

. Then, by the triangular inequality in

Lemma 5 (3), we have H

h

(M

1

;M

3

) � H

h

(M

1

;M

2

) + H

h

(M

2

;M

3

) = 0. So

H

h

(M

1

;M

3

) = 0, and hen
e M

1

� M

3

. The above argument shows that the

relation � is an equivalen
e relation.

The following lemma shows that the hyperboli
 Hausdor� distan
e does

not 
hange within ea
h equivalen
e 
lass of �, and thus it 
an in fa
t be


onsidered to be de�ned on the quotient spa
e C

n

= �.

Lemma 6 Let M

1

;M

0

1

;M

2

;M

0

2

2 C

n;1

for n = 1; 2; � � �. Suppose M

1

� M

0

1

and M

2

�M

0

2

. Then H

h

(M

1

;M

2

) = H

h

(M

0

1

;M

0

2

).

Proof. By the triangular inequality in Lemma 5 (3), we have

H

h

(M

0

1

;M

0

2

) � H

h

(M

0

1

;M

1

) +H

h

(M

1

;M

2

) +H

h

(M

2

;M

0

2

) = H

h

(M

1

;M

2

):

Similarly, we have also H

h

(M

1

;M

2

) � H

h

(M

0

1

;M

0

2

). Thus the proof follows.

2

We now assign a spe
ial set in R

n

� R

�0

to ea
h equivalen
e 
lass of �.

De�nition 3 Let M � R

n

� R

�0

, where n = 1; 2; � � �. We will 
all M

essential, if d

h

(P

1

jP

2

) > 0 for every P

1

6= P

2

in M .

Note that an essential set M has only a minimal part to generate the set

TAM(M).
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Lemma 7 In ea
h equivalen
e 
lass of �, there 
an be at most one essential

element.

Proof. Let M 2 C

n;1

for some n = 1; 2; � � �. Suppose there exist two di�erent

essential M

1

;M

2

2 C

n;1

su
h that M

1

� M and M

2

� M . With no loss of

generality, assume there exists P

1

= (p

1

; r

1

) 2 M

1

nM

2

. Sin
e M

1

� M

2

,

there exists P

2

= (p

2

; r

2

) 2 M

2

su
h that d

h

(P

1

jP

2

) = 0. Note that P

1

6= P

2

.

If follows from Lemma 1 that B

r

2

(p

2

) stri
tly 
ontains B

r

1

(p

1

). Now again

there exists P

0

1

= (p

0

1

; r

0

1

) 2 M

1

su
h that d

h

(P

2

jP

0

1

) = 0, whi
h means that

B

r

0

1

(p

0

1

) 
ontains B

r

2

(p

2

) by Lemma 1. Sin
e B

r

0

1

(p

0

1

) stri
tly 
ontains B

r

1

(p

1

),

it follows that P

1

6= P

0

1

. In the meanwhile, by the triangular inequality in

Lemma 5 (1), we have d

h

(P

1

jP

0

1

) � d

h

(P

1

jP

2

)+d

h

(P

2

jP

0

1

) = 0. So d

h

(P

1

jP

0

1

) =

0, whi
h 
ontradi
ts the fa
t that M

1

is essential. Thus we 
on
lude that

M

1

= M

2

, and the proof is 
omplete. 2

Remark 5 Not every equivalen
e 
lass of � has an essential representative

within itself. For example, let M = f(p; r) 2 R

2

�R

�0

jB

r

(p) � 
g, where 


is the domain in Example 4. It is easy to see that M 2 C

n;1

. Suppose there

exists an essential 
ompa
t set M

0

su
h that M �M

0

. Sin
e H

h

(M jM

0

) = 0,

M

0

must 
ontain (q

0

; r

0

) and (p

0

n

; r

0

n

) for n = 1; 2; � � �, su
h that B

r

(q) �

B

r

0

(q

0

) and B

r

n

(p

n

) � B

r

0

n

(p

0

n

) for every n = 1; 2; � � �. But, if any of the

above in
lusions is stri
t, then we would have a 
ontradi
tion to the fa
t that

H

h

(M

0

jM) = 0. So we have (q; r); (p

n

; r

n

) 2 M

0

for n = 1; 2; � � �. Now,

sin
e M

0

is 
ompa
t, M should also 
ontain (p; 0), whi
h is the limit of the

points (p

n

; r

n

). This 
ontradi
ts the assumption that M

0

is essential, sin
e

d

h

((p; 0)j(q; r)) = 0. Thus we 
on
lude that there are no essential element in

the equivalen
e 
lass of M .

Remark 6 It is easy to see that every set in MAT(C

n

) is essential for n =

1; 2; � � �. But the 
onverse is not true. For example, let 
 2 C

2

be the unit

disk. i.e., 
 = B

1

((0; 0)). Then MAT(
) = f((0; 0); 1)g. De�ne M 2 C

2;1

by

M =

(

((x; y); r) 2 R

2

� R

�0

j x

2

+ y

2

=

�

1

2

�

2

; r =

1

2

)

:

Clearly, M is essential. Note that TAM(M) = 
 = TAM(MAT(
)).

But M 6= MAT(
). Sin
e TAM is one-to-one on MAT(C

n

) for every

n = 1; 2; � � �, we 
an see that M is not in MAT(C

2

).

Let (X; d) be a metri
 spa
e. We denote by C(X) the set of all nonempty


ompa
t sets in X. For every A;B 2 C(X), de�ne the generalized Hausdor�
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distan
e by

H(A;B) = max

�

max

a2A

�

min

b2B

d(a; b)

�

;max

b2B

�

min

a2A

d(a; b)

��

:

It is easy to 
he
k that (C(X);H) be
omes a metri
 spa
e. In fa
t, we have

the following general fa
ts:

Proposition 3 ([26, 27℄)

Let (X; d) be a metri
 spa
e.

(1) If (X; d) is 
ompa
t, then (C(X);H) is a 
ompa
t metri
 spa
e.

(2) If (X; d) is 
omplete, then (C(X);H) is a 
omplete metri
 spa
e.

Thus, in parti
ular, the spa
e (C

n

;H) is a 
omplete metri
 spa
e for every

n = 1; 2; � � �.

Now we show the 
ompleteness of the hyperboli
 Hausdor� distan
e on

the quotient spa
e C

n;1

= �.

Theorem 5 (Completeness of the Hyperboli
 Hausdor� Distan
e)

The hyperboli
 Hausdor� distan
e is a 
omplete metri
 on C

n;1

= � for

ea
h n = 1; 2; � � �.

Proof. SupposeM

i

, i = 1; 2; � � � are in C

n;1

, andH

h

(M

i

;M

j

)! 0 as i; j !1.

We only need to show that there exists M in C

n;1

su
h that H

h

(M

i

;M) !

0 as i ! 1. Let 


i

= TAM(M

i

) for i = 1; 2; � � �. By Theorem 1, we

have H(


i

;


j

) ! 0 as i; j ! 1. So there exists a 
ompa
t set

e


 2 R

n

su
h that 


i

�

e


 for every i = 1; 2; � � �. Let � be the diameter of

e


, i.e.,

� = max

p;q2

e




d(p; q). Let

f

M =

e


 � [0; �℄ 2 C

n;1

. Then it is easy to see

that M

i

�

f

M , i.e., M

i

2 C

�

f

M

�

for every i = 1; 2; � � �. We know from

Proposition 3 that

�

C

�

f

M

�

;H

�

is a 
ompa
t metri
 spa
e, where H is the

usual Hausdor� distan
e. So there exists a subsequen
e M

i

1

;M

i

2

; � � � whi
h is


onverging with respe
t to the usual Hausdor� distan
e. Let M be the limit,

i.e., H(M

i

k

;M)! 0 as k !1. Then by the inequality in Lemma 2 (2), we

have H

h

(M

i

k

;M)! 0 as k !1. Now it is straightforward to see from the

triangular inequality in Lemma 5 (3) that H

h

(M

i

;M)! 0 as i!1. 2

Remark 7 The sequen
e M

i

in Theorem 5 does not ne
essarily have a limit

under the usual Hausdor� distan
e, even if ea
h M

i

is in MAT(C

n

) \ C

n;1

.

This 
an be seen from Example 10. Even though the limit under the usual

Hausdor� distan
e exists, it may not be essential. See Example 11.

23



Example 10 For i = 1; 2; � � �, de�ne 


i

2 C

2

by




i

= B

1

((0; 0)) [4q

i

p

+

i

p

�

i

;

where p

�

i

= (
os �

i

;� sin �

i

), q

i

= (se
 �

i

; 0) and �

i

= (i� 1) � �+

�

�

1

2

�

i�1

�

�

4

.

For ea
h i, let M

i

be the medial axis transform of 


i

. So M

i

2 MAT(C

2

)

for every i = 1; 2; � � �. Now it is easy to see that H(


i

;


j

) ! 0 and

H(�


i

; �


j

) ! 0 as i; j ! 1. So by Theorem 3, we have H

h

(M

i

;M

j

) ! 0

as i; j ! 1. But it is 
lear that there is no sets M in R

2

� R

�0

su
h that

H(M

i

;M)! 0 as i!1.

x

y

0

p

+

i

p

�

i

q

i

�

i

�

i

for odd i




i

1

�1

M

i

x

y

0

p

+

i

p

�

i

q

i

�

i

�

i

for even i

1

1




i

M

i

Example 11 For i = 1; 2; � � �, de�ne 


i

2 C

2

by




i

= B

1

((0; 0)) [4q

i

p

+

i

p

�

i

;

where p

�

i

= (
os �

i

;� sin �

i

), q

i

= (se
 �

i

; 0) and �

i

=

�

1

2

�

i�1

�

�

4

. For ea
h

i, let M

i

be the medial axis transform of 


i

. So M

i

2 MAT(C

2

) for every

i = 1; 2; � � �. Now it is easy to see that H(


i

;


j

)! 0 and H(�


i

; �


j

) ! 0

as i; j !1. By Theorem 3, we have H

h

(M

i

;M

j

)! 0 as i; j !1. In this


ase, there exists a set M in R

2

� R

�0

su
h that H(M

i

;M) ! 0 as i !1.

In fa
t, M is de�ned by

M =

�

((x; y); r) 2 R

2

� R

�0

j x+ r = 1; y = 0; r � 1

	

:

But 
learly, M is not essential.
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x

y

0

p

+

i

p

�

i

q

i

�

i

�

i




i

1

�1

M

i

x

y

0




1

1

M

Sin
e every set in MAT(C

n

) is essential, we 
an 
onsider the metri


spa
e (MAT(C

n

) \ C

n;1

;H

h

) as a subspa
e of the 
omplete metri
 spa
e

(C

n;1

= �;H

h

). Unfortunately, it turns out that this spa
e is not 
losed, and

hen
e is not a 
omplete metri
 spa
e itself. This 
an be seen from the fol-

lowing example.

Example 12 De�ne 


i

2 C

2

, i = 1; 2; � � �, by




i

=

�

(x; y) 2 R

2

j

1

i + 1

� x

2

+ y

2

� 1

�

:

It is easy to 
he
k that H(


i

;


j

) ! 0 and H(�


i

; �


j

) ! 0 as i; j ! 1.

Suppose there exists a set 
 2 C

2

su
h that H(


i

;
)! 0 and H(�


i

; �
)!

0 as i ! 1. Clearly, 
 must be the unit disk in R

2

. But then, we have

H(�


i

; �
) ! 1 as i ! 1. So there are no sets 
 su
h that H(


i

;
) ! 0

and H(�


i

; �
)! 0 as i!1.

Let M

i

=MAT(


i

) for i = 1; 2; � � �. By Theorem 3, H

h

(M

i

;M

j

)! 0 as

i; j !1. Suppose there exists M 2MAT(C

2

)\C

2;1

su
h that H

h

(M

i

;M)!

0 as i!1. Then by Theorem 1 and 2, we must have H(


i

;TAM(M))! 0

and H(�


i

; �TAM(M)) ! 0 as i ! 1. But this 
ontradi
ts the above

fa
t that there are no su
h sets as TAM(M). So the sequen
e fM

i

g in

MAT(C

2

) \ C

2;1

does not have a limit in MAT(C

2

) \ C

2;1

under H

h

.

8 Summary

Now we summarize our results. For this purpose, we �nd it useful to interpret

the results in terms of the properties of the maps MAT and TAM.
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For ea
h n = 1; 2; � � �, de�ne a new metri
 H

�

on C

n

by:

H

�

(


1

;


2

) = max fH(


1

;


2

);H(�


1

; �


2

)g;

for every 


1

;


2

2 C

n

. It is straightforward to 
he
k that H

�

is indeed a

metri
 on C

n

for n = 1; 2; � � �. But unfortunately, the metri
 spa
e (C

n

;H

�

)

is not 
omplete, as 
an be seen from Example 12. We observed in Se
tion 4

that a medial axis transform may not be 
ompa
t, even if its original domain

is 
ompa
t. This leads us to de�ne the spa
e D

n

= TAM(C

n;1

\MAT(C

n

))

for n = 1; 2; � � �. Note that D

n

� C

n

by Lemma 3. In fa
t, D

n

is the

largest reasonable subspa
e in C

n


on
erning 
ompa
tness of the medial axis

transform.

We view the mapsMAT and TAM as bije
tions between the two metri


spa
es (D

n

;H

�

) and (M

n

;H

h

), where M

n

denotes C

n

\MAT(C

n

) for n =

1; 2; � � �. Then the two maps are the exa
t inverses to ea
h other. Note that

both of the above metri
 spa
es are not 
omplete.

Now Theorem 1, 2 and 3 together have the following impli
ation:

Theorem 6 For every n = 1; 2; � � �, the mapsMAT : (D

n

;H

�

)! (M

n

;H

h

)

and TAM : (M

n

;H

h

)! (D

n

;H

�

), whi
h are the inverses to ea
h other, are

uniformly 
ontinuous. In fa
t, we have

H

h

(MAT(


1

);MAT(


2

)) � 3 � H

�

(


1

;


2

);

for every 


1

;


2

2 D

n

, and

H

�

(TAM(M

1

);TAM(M

2

)) � H

h

(M

1

;M

2

);

for every M

1

;M

2

2 M

n

. In parti
ular, MAT (and thus TAM) is a homeo-

morphism.

The above result tells us that, when we introdu
e the hyperboli
 Hausdor�

distan
e, the pro
ess of taking the medial axis transform and its inverse

re
onstru
tion pro
ess 
an be made to be 
ontinuous. This is an important

feature, sin
e the 
ontinuity is an important requirement for any pro
esses

whi
h we want to be under 
ontrol. Moreover, the uniformity result means

that we don't need a priori knowledge of the individual domains or the

medial axis transforms to do the 
ontrol, whi
h is 
ertainly another advan
e


ompared to the previous result in [24℄.

Suppose we approximate a given domain with other domains. Then the

result of the approximation for their medial axis transforms will be almost the

same under the hyperboli
 Hausdor� distan
e. Conversely, if we approximate
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a given medial axis transform with other medial medial axis transforms under

the hyperboli
 Hausdor� distan
e, then the result of the approximation for

the re
onstru
ted domains will be exa
tly the same.

In fa
t, our bounds, whi
h we saw are sharp in Se
tions 5 and 6, are good

enough to make the mapsMAT and TAM even isometri
 in some important


ases. Remember that we de�ned �




= min fr : (p; r) 2MAT(
)g for 
 2

C

n

, n = 1; 2; � � �. Note that �




> 0 means that �
 has a relatively smooth

shape, e.g., with no sharp 
orners, et
. For every 
 2 D

n

su
h that �




> 0,

we de�ne 
 2 O




� D

n

by

O




=

�




0

2 D

n

j H

�

(


0

;
) <

1

4

�




; �




0

� �




�

:

Intuitively speaking, O




is a set 
ontaining the domains whi
h are 
lose

to 
 and have reasonable smoothness. Now Theorem 4 has the following


onsequen
e:

Theorem 7 Let n = 1; 2; � � �. For every 
 2 D

n

su
h that �




> 0, MAT :

(D

n

;H

�

)! (M

n

;H

h

) is an isometry on O




.

Proof. Suppose 


0

;


00

2 O




. Then we have H

�

(


0

;


00

) � H

�

(


0

;
) +

H

�

(


00

;
) <

1

2

�




�

1

2

� min f�




0

; �




00

g. Thus, H

h

(MAT(


0

);MAT(


00

)) =

H

�

(


0

;


00

) by Theorem 4, whi
h 
ompletes the proof. 2

Thus, the perturbation of the domains and that of the medial axis trans-

forms are exa
tly same in quantity, provided that the domains have reason-

able smoothness. Here, by the smoothness, we mean, of 
ourse, the 
ondition

�




> 0, and this in
ludes the important and wide 
lass of domains in [1℄ with-

out sharp 
orners, whi
h we mentioned in Se
tion 4.

We showed in Se
tion 7 that the hyperboli
 Hausdor� distan
e is a 
om-

plete metri
 on the spa
e C

n;1

= �. By this 
ompleteness, we 
an guarantee

that an approximation always leads to a limit, though sometimes this limit

may not be a reasonable one. Nevertheless, this may be valuable in many


ases.
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