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Abstrat

Although the Hausdor� distane is a popular devie to measure the di�er-

enes between sets, it is not natural for some spei� lasses of sets, espeially

for the medial axis transform whih is de�ned as the set of all pairs of the

enters and the radii of the maximal balls ontained in another set. In spite

of its many advantages and possible appliations, the medial axis transform

has one great weakness, namely its instability under the Hausdor� distane

when the boundary of the original set is perturbed. Though many attempts

have been made for the resolution of this phenomenon, most of them are

heuristi in nature and lak preise error analysis.

In this paper, we show that this instability an be remedied by intro-

duing a new metri alled the hyperboli Hausdor� distane, whih is most

natural for measuring the di�erenes between medial axis transforms. We

analyze the properties of the hyperboli Hausdor� distane in detail, and

show that it is a omplete metri on the anonial set ontaining medial axis

transforms. Using the hyperboli Hausdor� distane, we obtain error bounds,

whih make the operation of medial axis transform almost an isometry. By

various examples, we also show that the bounds obtained are sharp. In doing

so, we show that bounding both the Hausdor� distane between domains and

the Hausdor� distane between their boundaries is neessary and suÆient

for bounding the hyperboli Hausdor� distane between their medial axis

transforms. These results drastially improve the previous results, and open

a new way to pratially ontrol the Hausdor� distane error of the domains

under their medial axis transform error, and vie versa.

Keywords

Hausdor� distane, hyperboli Hausdor� distane, medial axis transform,

instability, Minkowski spae-time, error bound.



1 Introdution

Among the many desriptors of shape, medial axis transform is one of the

most fundamental and widely-used ones. It has natural de�nitions, and is ho-

motopially equivalent to the the original shape, while dereasing the dimen-

sion by one [1, 2℄. It is also the set of the singularities of the distane funtion

from the boundary, and the meeting points of the waves starting from the

boundary [3℄. It ould also be onsidered as a limit of Voronoi diagram [4℄

as the number of the generating points beomes in�nite. Due to these nie

properties, medial axis transform has been a fous of many appliations in

suh diverse �elds as omputational geometry [5℄, omputer vision [6℄, shape

modeling [7, 8, 9℄, mehanial engineering [10℄, optis [11, 12℄, biologial

shape reognition [13, 14℄, harater reognition and representation [15, 16℄,

�ngerprint lassi�ation [17℄, visual analysis of iruit boards [18℄.

In this paper, we de�ne the medial axis transform as the set of all pairs

of the enters and the radii of the maximal insribed balls in a domain. One

merit of inluding the radii is that we an ompletely reonstrut the original

domain with its medial axis transform. In ontrast to the other literature,

we generalize the domains of the de�nition to the general ompat sets in R

n

for n = 1; 2; � � �, for we will show that our results hold in this general ontext.

One of the problems with the medial axis transform is its instability to

noises. Medial axis transform may hange very unstably, even when the

boundary of the domain has only a slight perturbation. This phenomenon is

illustrated in Figure 1: When measured by the usual Hausdor� distane, the

domains (a) and (b) are very lose to eah other, but their medial axis trans-

forms di�er muh. In fat, an in�nitesimally small di�erene between the do-

mains an result in a drasti di�erene between their medial axis transforms.

In other words, the map MAT : fdomainsg ! fmedial axis transformsg,

whih orresponds to taking the medial axis transforms from the domains is

not ontinuous under the usual Hausdor� metri.

Obviously, this instability ould produe muh problems, espeially when

one wants to get the medial axis transform of an input whih might have

noises. In fat, this is the ase in most pratial situations. So there have

been many attempts to get around this unplausible phenomenon. Mainly,

there has been the so-alled \pruning" approah [19, 20℄, whih prunes the

less important part of the medial axis transform, leaving only the essential

part. Some have also tried to smooth the boundary of the domain so that the

resulting medial axis transform beome more simple, hopefully apturing only

important features [21, 22, 23℄. But one ommon drawbak of these methods

is that they seldom provide preise error analysis, whih makes them heuristi

in most ases.
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(a) (b)

Figure 1: Instability of Medial Axis Transform

Reently, there has been an attempt [24℄ to obtain error bounds for the dif-

ferene between the medial axis transforms when the domains are perturbed.

They showed that the one-sided Hausdor� distaneH(MAT(


1

)jMAT(


2

))

of the medial axis transformMAT(


1

) of a plane domain 


1

satisfying some

regularity ondition on the shape with respet to the medial axis transform

MAT(


2

) of any reasonable plane domain 


2

, is bounded as follows:

H(MAT(


1

)jMAT(


2

)) <

p

�

2

+ (� + �)

2

;

for every max fH(


1

;


2

);H(�


1

; �


2

)g < � < min f� tan

2

�=2; �=2g. Here

� = ��=(� sin

2

�=2 � � os

2

�=2), where � and � are the positive onstants

depending only on 


1

, and H(�; �) is the usual two-sided Hausdor� distane.

In this paper, instead of using the usual Hausdor� distane, we introdue a

new metri alled the hyperboli Hausdor� distane to measure the di�erene

between the medial axis transforms. We show that, if we endow this new

metri on the spae of the medial axis transforms, then the proess of taking

medial axis transform beomes almost an isometry. More spei�ally, let 


1

,




2

be ompat sets in R

n

suh that their respetive medial axis transforms

MAT(


1

), MAT(


2

) be ompat. Then we show that

H

h

(MAT(


1

);MAT(


2

)) � 3 �max fH(


1

;


2

);H(�


1

; �


2

)g; (1)

and

max fH(


1

;


2

);H(�


1

; �


2

)g � H

h

(MAT(


1

);MAT(


2

)); (2)

where H

h

(�; �) denotes the hyperboli Hausdor� distane. Thus, as a result of

swithing to the hyperboli Hausdor� distane, we get muh stronger results,

whih implies that the hyperboli Hausdor� distane is a most natural metri

for the medial axis transforms. As a result, we an now e�etively ontrol
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the perturbation of medial axis transform by that of the domain and its

boundary, and onversely, the perturbation of the domain the boundary by

that of the medial axis transform. We also show that the above bounds are

sharp by various examples. Note that these results are more symmetri than

those in [24℄, sine we have no di�erenes of the assumptions on 


1

and 


2

.

Also, the assumption itself is very general, in that only the ompatness is

required, and the onsiderations are in R

n

for n = 1; 2; � � �, rather than only

in R

2

.

One byprodut of the above results is that we have a haraterization

of the medial axis transforms being lose to eah others under the hyper-

boli Hausdor� distane, in terms of the usual Hausdor� distanes between

the original domains: There are two traditional methods to measure the

di�erene between the domains with the Hausdor� distane. One is to mea-

sure the Hausdor� distane between the domains themselves, and the other

is to measure the Hausdor� distane between their boundaries. We show

that the hyperboli Hausdor� distane between the medial axis transforms

are enough to bound both the Hausdor� distane between the original do-

mains and the Hausdor� distane between their boundaries. Conversely, we

show that both types of the Hausdor� distanes are needed for bounding the

hyperboli Hausdor� distane between their medial axis transforms. Thus

the two types of measuring the Hausdor� distane between the domains are

both neessary and suÆient for bounding the hyperboli Hausdor� distane

between their medial axis transforms.

As a worthwhile property of the hyperboli Hausdor� distane itself, we

show that it is a omplete metri on the anonial spae ontaining the me-

dial axis transforms. As we will give a more preise desription later, this

anonial spae is in some sense the most natural spae for the hyperboli

Hausdor� distane. This result shows the usefulness of the hyperboli Haus-

dor� distane in another viewpoint.

We also mention that the de�nition of the hyperboli Hausdor� distane

is simple and natural, taking its motivation from Lorentz metri for the hy-

perboli spaes [25℄. The fat that the hyperboli Hausdor� distane requires

essentially the same omputational e�ort ompared to the usual Hausdor�

distane, is expeted to be a great advantage in applying the hyperboli

Hausdor� distane to many pratial appliations.

The rest of this paper is organized as follows: In Setion 2, we introdue

the Hausdor� distane in R

n

. Espeially, we show, by examples, that both

types of the Hausdor� distanes, i.e., that between the domains and that

between their boundaries, are important. Then we introdue the hyperboli

Hausdor� distane and show some of its basi properties in Setion 3. In

Setion 4, the medial axis transform for the general ompat set in R

n

is
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introdued. In Setion 5, we obtain the bound (2), and show this is sharp

by examples, and in Setion 6, we obtain the bound (1), and also show its

sharpness by examples. Together, they show that the proess of taking the

medial axis transform is almost an isometry under the Hausdor� distane

for the domains and the hyperboli Hausdor� distane for the medial axis

transforms. In Setion 7, we further explore the hyperboli Hausdor� dis-

tane, and show that it is a omplete metri on the quotient spae of the set

of all ompat sets in R

n

� R

�0

by a anonial equivalene relation. Finally,

we summarize our results and disuss some impliations and appliations of

them in Setion 8.

2 Hausdor� Distane of Domains vs. Bound-

aries

Let 


1

and 


2

be two nonempty ompat sets in R

n

, where n = 1; 2; � � �. The

Hausdor� distane H(


1

;


2

) between 


1

and 


2

is de�ned by

H(


1

;


2

) = max fH(


1

j


2

);H(


2

j


1

)g;

where the one-sided Hausdor� distane H(


1

j


2

) of 


1

with respet to 


2

is

de�ned by

H(


1

j


2

) = max

p

1

2


1

d(p

1

;


2

):

Here, we denote by d(�; �) the usual Eulidean distane in R

n

.

The following is a basi property of the Hausdor� distane.

Proposition 1 ([26℄)

For eah n = 1; 2; � � �, the Hausdor� distane is a omplete metri on the

spae of all nonempty ompat sets in R

n

.

Usually, the Hausdor� distane is onsidered as a good devie to measure

the di�erenes between two sets. Meanwhile, in many situations, espeially

where the sets are represented by their boundaries, it is ustomary to mea-

sure the di�erenes between the sets by the Hausdor� distane between the

boundaries of the sets. In this setion, we will disuss the di�erene be-

tween these two methods, and show by examples that both of them an be

sometimes misleading when used alone.

Example 1 Let 


1

and 


2

be two domains in R

2

as depited below. Note

that H(


1

;


2

) an be made arbitrarily small, although H(�


1

; �


2

) an be

made onverge to some positive number. This example sharply shows that the
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Hausdor� distane between the domains may overlook the di�erenes whih

the Hausdor� distane between the boundaries onsiders to be important.

H(


1

;


2

)

H(�


1

; �


2

)




2




1

Here is the opposite extreme.

Example 2 Let 


1

and 


2

be two domains in R

2

as depited below. Note

that H(�


1

; �


2

) an be made arbitrarily small, although H(


1

;


2

) an be

made onverge to some positive number. This example sharply shows that

the Hausdor� distane between the boundaries may overlook the di�erenes

whih the Hausdor� distane between the domains does not.

H(


1

;


2

)

H(�


1

; �


2

)




1




2

Note that, in Example 2, one whole domain lies in the viinity of the

other domain's boundary. The next example shows that this is not neessary

to make the Hausdor� distane between the boundaries signi�antly smaller

than the Hausdor� distane between the domains.
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Example 3 Let 


1

and 


2

be two domains in R

2

as depited below. Note

that

H(


1

j


2

) =

r

2

2

; H(


2

j


1

) =

r

1

2

;

H(�


1

j�


2

) = Æ; H(�


2

j�


1

) = Æ:

So we have

H(


1

;


2

) = max

n

r

1

2

;

r

2

2

o

; H(�


1

; �


2

) = Æ:

By varying r

1

, r

2

and Æ, we an make various on�gurations of the Hausdor�

distanes.

H(


2

j


1

) =

r

1

2

H(


1

j


2

) =

r

2

2

H(�


1

j�


2

)

H(�


2

j�


1

)

Æ

p

2

r

1

Æ




1

Æ

p

2

r

2

Æ




2

Note that the above example an exhibit both features in Examples 1

and 2 by varying r

1

, r

2

and Æ.

The examples in this setion learly show that neither the Hausdor� dis-

tane between the sets nor the Hausdor� distane between the boundaries

alone is not enough to measure the di�erene of shapes. Later, we will see

that both are needed to bound the hyperboli Hausdor� distane between the

medial axis transforms, and onversely, they are bounded by the hyperboli

Hausdor� distane between their medial axis transforms.
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3 Hyperboli Hausdor� Distane

In this setion, we introdue the hyperboli Hausdor� distane, and show

some of its basi properties.

We will denote R

�0

= fx 2 R j x � 0g. Let (p; r) 2 R

n

� R

�0

, where

n = 1; 2; � � �. By B

r

(p), we denote the losed ball in R

n

entered at p with

the radius r, i.e., B

r

(p) = fx 2 R

n

j d(x; p) � rg. Note that, when the radius

is zero, a ball onsists of only one point (the enter).

De�nition 1 (Hyperboli Distane)

Let P

1

= (p

1

; r

1

); P

2

= (p

2

; r

2

) be in R

n

� R

�0

, where n = 1; 2; � � �. Then

the hyperboli distane d

h

(P

1

jP

2

) from P

1

to P

2

is de�ned by

d

h

(P

1

jP

2

) = max f0; d(p

2

; p

1

)� (r

2

� r

1

)g:

Figure 2 illustrates the hyperboli distane for various ases.

Here, we mention a motivation for the name hyperboli: The usual Eu-

lidean distane is assoiated to the standard Eulidean metri dx

2

1

+� � �+dx

2

n

on R

n

. Now it an be learly seen that the hyperboli distane has an analo-

gous assoiation to the hyperboli or Lorentz metri [25℄ dx

2

1

+� � �+dx

2

n

�dx

2

n+1

on R

n+1

.

The following is a basi property of the hyperboli distane.

Lemma 1 Let P

1

= (p

1

; r

1

), P

2

= (p

2

; r

2

) be in R

n

�R

�0

, where n = 1; 2; � � �.

Then we have d

h

(P

1

jP

2

) = H (B

r

1

(p

1

)jB

r

2

(p

2

)). Suppose r

1

� � for some

� � 0. Then the following two onditions are equivalent:

(1) d

h

(P

1

jP

2

) � �,

(2) B

r

1

��

(p

1

) � B

r

2

(p

2

).

Proof. Easy. See Figure 2. 2

De�nition 2 (Hyperboli Hausdor� Distane)

Let M

1

, M

2

be nonempty ompat sets in R

n

� R

�0

, where n = 1; 2; � � �.

Then the one-sided hyperboli Hausdor� distane H

h

(M

1

jM

2

) from M

1

to

M

2

is de�ned by

H

h

(M

1

jM

2

) = max

P

1

2M

1

�

min

P

2

2M

2

d

h

(P

1

jP

2

)

�

:

The hyperboli Hausdor� distane between M

1

and M

2

is de�ned by

H

h

(M

1

;M

2

) = max fH

h

(M

1

jM

2

);H

h

(M

2

jM

1

)g:
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p

1

p

2

r

1

r

2d

d

h

(P

1

jP

2

)

d

h

(P

2

jP

1

)

p

1

p

2

r

1

r

2d

d

h

(P

1

jP

2

) d

h

(P

2

jP

1

)

p

1

p

2

r

1

r

2d

d

h

(P

1

jP

2

) d

h

(P

2

jP

1

)

p

1

p

2

r

1

r

2d

d

h

(P

1

jP

2

) d

h

(P

2

jP

1

)

p

1

p

2

r

1

r

2d

d

h

(P

1

jP

2

) = 0 d

h

(P

2

jP

1

)

p

1

p

2

r

1

r

2d

d

h

(P

1

jP

2

) = 0 d

h

(P

2

jP

1

)

Figure 2: Hyperboli Hausdor� distane for various ases
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Lemma 2 (Comparison with Hausdor� Distane)

Let n = 1; 2; � � �.

(1) For every P

1

; P

2

2 R

n

� R

�0

, we have

d(P

1

; P

2

) � max fd

h

(P

1

jP

2

); d

h

(P

2

jP

1

)g �

p

2 � d(P

1

; P

2

):

(2) For every ompat sets M

1

;M

2

� R

n

� R

�0

, we have

H

h

(M

1

;M

2

) �

p

2 � H(M

1

;M

2

):

Proof. (1) Let P

i

= ((x

i;1

; � � � ; x

i;n

); r

i

) for i = 1; 2. Note that

max fd

h

(P

1

jP

2

); d

h

(P

2

jP

1

)g = d(p

1

; p

2

) + jr

1

� r

2

j

=

q

(x

1;1

� x

2;1

)

2

+ � � �+ (x

1;n

� x

2;n

)

2

+

q

(r

1

� r

2

)

2

:

Sine

p

a+ b �

p

a+

p

b �

p

2 �

p

a + b for every a; b � 0, we have

d(P

1

; P

2

) =

q

(x

1;1

� x

2;1

)

2

+ � � �+ (x

1;n

� x

2;n

)

2

+ (r

1

� r

2

)

2

�

q

(x

1;1

� x

2;1

)

2

+ � � �+ (x

1;n

� x

2;n

)

2

+

q

(r

1

� r

2

)

2

= max fd

h

(P

1

jP

2

); d

h

(P

2

jP

1

)g

�

p

2 �

q

(x

1;1

� x

2;1

)

2

+ � � �+ (x

1;n

� x

2;n

)

2

+ (r

1

� r

2

)

2

=

p

2 � d(P

1

; P

2

):

(2) From (1), we have

H

h

(M

1

;M

2

) = max

�

max

P

1

2M

1

�

min

P

2

2M

2

d

h

(P

1

jP

2

)

�

; max

P

2

2M

2

�

min

P

1

2M

1

d

h

(P

2

jP

1

)

��

� max

�

max

P

1

2M

1

�

min

P

2

2M

2

p

2 � d(P

1

; P

2

)

�

;

max

P

2

2M

2

�

min

P

1

2M

1

p

2 � d(P

2

; P

1

)

��

=

p

2 � H(M

1

;M

2

):

2

Remark 1 The bound in (2) is sharp, whih an be seen from the following

example: Let M

1

= f((x; y); r) 2 R

2

� R

�0

j � 1 � x � 1; y = 0; r = 1g, and

let M

2

= f((x; y); r) 2 R

2

� R

�0

j � 1 � x � 1; y = 1; r = 2g. It is easy to

see that H

h

(M

1

;M

2

) = 2 and H(M

1

;M

2

) =

p

2.
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Remark 2 There is no positive onstant k suh that H(M

1

;M

2

) � k �

H

h

(M

1

;M

2

) for every ompat sets M

1

, M

2

in R

n

� R

�0

. For example, let

M

1

= f((0; 0); 1)g � R

2

�R

�0

, and let M

2

= f((x; y); r) 2 R

2

�R

�0

j

x

a

+ r =

1; y = 0; r � 1g for a > 1. Then it is easy to see that H(M

1

;M

2

) =

p

1 + a

2

,

whereas H

h

(M

1

;M

2

) = a � 1. So, as a & 1, we have H(M

1

;M

2

) !

p

2,

whereas H

h

(M

1

;M

2

)! 0.

4 Medial Axis Transform

Usually, medial axis transforms are de�ned for well-behaved domains, whose

boundaries onsist of urves with suÆient pieewise di�erentiability. One

reason for this is that the medial axis transform has been used mainly in

the appliation-oriented areas, where more pathologially-shaped domains

are outside of the interests.

Another reason is that the medial axis transform of a set without suÆient

regularity of their shape may lose the �nite graph struture, whih is an

impliit assumption in most appliations. In fat, Choi et al. [1℄ showed

that the medial axis transform of a ompat set 
 in R

2

an exhibit quite

anomalous behaviours like in�nitely may prongs or in�nitely many branhes,

if 
 does not satisfy the following rather strit ondition: �
 is a disjoint

union of �nitely many simple losed urves, eah of whih onsists of �nitely

may real-analyti urves. They also showed that, if a set 
 satisfy the above

assumption, its medial axis transform is shaped as expeted:

Proposition 2 ([1℄)

Suppose a ompat set 
 � R

2

satis�es the above assumption. Then its

medial axis transform has a �nite graph struture.

In this paper, we de�ne the medial axis transform for the general ompat

sets in R

n

, sine the results we show are independent of the regularity of the

shapes.

Let n = 1; 2; � � �. We will denote by C

n

the set of all nonempty ompat

sets in R

n

. By C

n;1

, we denote the set of all nonempty ompat sets in

R

n

� R

�0

. For every 
 in C

n

, we de�ne the medial axis transform MAT(
)

of 
 by

MAT(
) = f(p; r) 2 R

n

� R

�0

jB

r

(p) � 
;

B

r

(p) � B

r

0

(p

0

) � 
) (p; r) = (p

0

; r

0

)g:

Unfortunately,MAT(
) may not be ompat, even if 
 is ompat. This

an be seen from the following example.

10



Example 4 For n = 1; 2; � � �, let 


n

be the domain in R

2

as depited below.

Here we assume

P

1

n=1

r

n

<1.

b b b

b b b

b b b

p

q

P

1

n=1

r

n

r

1

r

2

r

n

p

1

p

2

p

n

r

Clearly, 


n

is a ompat set for every n. Note that H(


i

;


j

) ! 0 as

i; j ! 1. So, by Proposition 1, there exists a ompat set 
 suh that

H(


n

;
) ! 0 as n ! 1. Now, it is easy to see that every (p

n

; r

n

) is

in MAT(
), and (p

n

; r

n

) ! (p; 0) in the usual Eulidean metri in R

3

.

But the ball B

r

(q), whih is ontained in 
, stritly ontains B

0

(p). So

(p; 0) =2MAT(
). Thus MAT(
) is not losed, and hene not ompat.

For every M in C

n;1

, we de�ne

TAM(M) = fx 2 R

n

j 9(p; r) 2M s.t. x 2 B

r

(p)g

=

[

(p;r)2M

B

r

(p):

In the ase of TAM, we an show that TAM(M) is ompat for every

M 2 C

n;1

, and so, TAM is a map from C

n;1

to C

n

.

Lemma 3 Let M 2 C

n;1

, where n = 1; 2; � � �. Then TAM(M) is in C

n

.

Proof. It is lear from the de�nition that TAM(M) is bounded, sine M

is bounded. So we only have to show that TAM(M) is losed. Suppose

q

n

! q, where q

n

2 TAM(M) for n = 1; 2; � � �. Obviously, there exists

(p

n

; r

n

) 2 M suh that q

n

2 B

r

n

(p

n

) for n = 1; 2; � � �. Sine M is bounded,

11



we an hoose a subsequene (p

n

k

; r

n

k

) of (p

n

; r

n

) suh that (p

n

k

; r

n

k

)! (p; r)

for some (p; r) 2 R

n

� R

�0

in the usual Eulidean metri in R

n+1

. Now it is

easy to see that q 2 B

r

(p). Sine M is losed, (p; r) is in M . So it follows

that q 2 TAM(M). Thus we onlude that TAM(M) is losed, and hene,

is ompat. 2

Note that (TAM ÆMAT) (
) = 
 and (MAT ÆTAM) (M) = M for

every 
 2 C

n

and for every M 2MAT(C

n

). So TAM an be onsidered as

an inverse of the mapMAT. In fat, TAM orresponds to the reonstrution

of the original domain from its medial axis transform. Note also that MAT

and TAMj

MAT(C

n

)

are one-to-one for n = 1; 2; � � �.

5 Bounding Domain/Boundary Perturbation

with MAT

In this setion, we show that, if two ompat sets in R

n

� R

�0

are lose

under the hyperboli Hausdor� distane, then their images in R

n

under the

map TAM are lose under the Hausdor� distane. Furthermore, we show

that, when the sets are medial axis transforms, then the boundaries of their

images are also lose under the Hausdor� distane. Thus, if two medial axis

transforms are lose under the hyperboli Hausdor� distane, then both the

Hausdor� distane between the original domains and the Hausdor� distane

between their boundaries are small.

We �rst start with the one-sided ase.

Lemma 4 Let n = 1; 2; � � �. For any M

1

;M

2

2 C

n;1

, we have

H (TAM(M

1

)jTAM(M

2

)) � H

h

(M

1

jM

2

):

Proof. Suppose H

h

(M

1

jM

2

) � � for some � � 0. Let 


i

= TAM(M

i

) for

i = 1; 2. Let p be a point in 


1

. From the de�nition of the map TAM, it

is lear that we an take P

1

= (p

1

; r

1

) in M

1

suh that p 2 B

r

1

(p

1

). Sine

H

h

(M

1

jM

2

) � �, we an take P

2

= (p

2

; r

2

) in M

2

suh that d

h

(P

1

jP

2

) � �.

From Lemma 1, it is easy to see that d(p; B

r

2

(p

2

)) � �, whih implies that

d(p;


2

) � �. Sine p is taken arbitrarily, we onlude that H(


1

j


2

) � �

Now the proof follows, sine � is arbitrary. 2

From Lemma 4, we immediately have the two-sided result:

Theorem 1 Let n = 1; 2; � � �. For any M

1

;M

2

2 C

n;1

, we have

H (TAM(M

1

);TAM(M

2

)) � H

h

(M

1

;M

2

):

12



When M

1

, M

2

are medial axis transforms, we an also bound the Haus-

dor� distane between the boundaries.

Theorem 2 Let n = 1; 2; � � �. For any M

1

;M

2

2MAT(C

n

) \ C

n;1

, we have

H (� (TAM(M

1

)) ; � (TAM(M

2

))) � H

h

(M

1

;M

2

):

Proof. Let 


i

= TAM(M

i

) for i = 1; 2. Suppose H

h

(M

1

;M

2

) � � for

some � � 0. Suppose also H(�


1

; �


2

) > �. With no loss of generality,

we an assume H(�


1

j�


2

) > �. Then there exists q

1

2 �


1

suh that

d(q

1

; �


2

) > �. Take q

2

2 �


2

suh that d(q

1

; q

2

) = d(q

1

; �


2

) > �.

�

p

2

q

1

q

2

�


2

B

r

2

(p

2

)

B

r

1

(p

1

)

B

r

2

��

(p

2

)

p

1

Note that q

1

2 int


2

. Otherwise, we would have H(


1

j


2

) � d(q

1

;


2

) =

d(q

1

; �


2

) > �, ontraditing the fat that H(


1

;


2

) � � (Theorem 1).

Sine M

2

is a medial axis transform, there exists unique P

2

= (p

2

; r

2

) in

M

2

suh that q

2

2 �B

r

2

(p

2

) and q

1

q

2

� p

2

q

2

. Note that r

2

� � > 0 and

q

1

2 intB

r

2

��

(p

2

). Sine H

h

(M

2

jM

1

) � �, there exists P

1

= (p

1

; r

1

) in M

1

suh that d

h

(P

2

jP

1

) � �. Now we have q

1

2 intB

r

1

(p

1

) � int


1

, sine

B

r

2

��

(p

2

) � B

r

1

(p

1

) by Lemma 1. This is a ontradition to the fat that

q

1

2 �


1

. So H(�


1

j�


2

) � �. Sine we have assumed H(�


1

; �


2

) > �, it

follows that H(�


2

j�


1

) > �. But this an also be shown to be impossible by

the symmetri argument as above. Thus we onlude that H(�


1

; �


2

) � �.

Now the proof follows, sine � is arbitrary. 2

Remark 3 Theorem 2 does not hold for the general sets in C

n;1

. For exam-

ple, let

M

1

= f((x; y); r) 2 R

2

� R

�0

j x

2

+ y

2

= 1; r = 1g;

M

2

= f((x; y); r) 2 R

2

� R

�0

j x

2

+ y

2

= (1 + Æ)

2

; r = 1� Æg;

13



for 0 < Æ < 1. Let 


i

= TAM(M

i

) for i = 1; 2. Then,




1

= f(x; y) 2 R

2

j x

2

+ y

2

� 2

2

g;




2

= f(x; y) 2 R

2

j (2Æ)

2

� x

2

+ y

2

� 2

2

g:

Note that

H

h

(M

1

;M

2

) = 2Æ;

H(�


1

; �


2

) = 2� 2Æ:

So, as Æ ! 0, we have H

h

(M

1

;M

2

)! 0, but H(�


1

; �


2

)! 2.

Remark 4 While Theorem 1 has its one-sided version, i.e., Lemma 4, The-

orem 2 has no one-sided ounterpart. For example, let 


1

= B

1

((0; 0)),




2

= B

2

((0; 0)). Let M

i

= MAT(


i

) for i = 1; 2. Then M

1

= f((0; 0); 1)g

and M

2

= f((0; 0); 2)g. Note that H

h

(M

1

jM

2

) = 0, while H(�


1

j�


2

) = 1.

The following examples show that the inequalities in Theorem 1 and 2

are sharp in various ways.

Example 5 Let 


1

and 


2

be two domains in R

2

as depited below. Note

that 


2

an be obtained by translating 


1

by the distane Æ. Let M

i

=

MAT(


i

) for i = 1; 2. Now it is easy to see that

H

h

(M

1

;M

2

) = H(


1

;


2

) = H(�


1

; �


2

);

for every Æ � 0.

H(�


1

; �


2

) = H(


1

;


2

) = Æ

H

h

(M

1

;M

2

) = Æ




1




2
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Example 6 Let 


1

and 


2

be two domains in R

2

as depited below. Let

M

i

=MAT(


i

) for i = 1; 2. Here, we have

H(


1

;


2

) = r ;

H(�


1

; �


2

) = r � Æ ;

H

h

(M

1

;M

2

) = r + Æ ;

for every 0 < Æ < r. So

H

h

(M

1

;M

2

) > H(


1

;


2

) > H(�


1

; �


2

):

Note that H

h

(M

1

;M

2

)!H(


1

;


2

);H(�


1

; �


2

) as Æ ! 0.

H

h

(M

1

;M

2

)

= r + Æ

H(�


1

; �


2

)

= r � Æ

H(


1

;


2

) = r




1




2

Æ

Example 7 Let 


1

and 


2

be two domains in R

2

as depited below. Here,

we assume 0 < Æ << r. Let M

i

=MAT(


i

) for i = 1; 2. Note that

H(


1

j


2

) =

r

2

� Æ

q

�

r

2

+ Æ

�

2

+ Æ

2

< Æ ;

H(�


1

j�


2

) = Æ ;

H

h

(M

1

jM

2

) =

r

2

;

and

H(


2

j


1

) = Æ ;

H(�


2

j�


1

) =

r

2

;

H

h

(M

2

jM

1

) = Æ :

15



So we have

H(


1

;


2

) = Æ ;

H(�


1

; �


2

) =

r

2

;

H

h

(M

1

;M

2

) =

r

2

:

Thus, while H

h

(M

1

;M

2

) = H(�


1

; �


2

) =

r

2

, we have H(


1

;


2

)! 0 as

Æ ! 0.

Æ

Æ Æ

r

r

2

r + Æ

r

0

�Æ Æ

r

2

x

q

x

2

+

�

r

2

�

2




1




2

H(


1

;


2

) = Æ

H(


1

j


2

)

H

h

(M

1

;M

2

) = H(�


1

; �


2

)

=

r

2

6 Bounding MAT Perturbation with Domain/

Boundary

The opposite diretions of the inequalities in Theorem 1 and 2 do not hold

in general. This an be seen from Examples 8 and 9 below. Nevertheless, a
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slightly looser inequality turns out to be true.

Theorem 3 Let n = 1; 2; � � �. For any 


1

;


2

;2 C

n

suh that MAT(


1

),

MAT(


2

) are ompat, we have

H

h

(MAT(


1

);MAT(


2

)) � 3 �max fH(


1

;


2

);H(�


1

; �


2

)g:

Proof. Let M

i

= MAT(


i

) for i = 1; 2. First, note that the above in-

equality is trivially true when max fH(


1

;


2

);H(�


1

; �


2

)g = 0. Suppose

max fH(


1

;


2

);H(�


1

; �


2

)g � � for some � > 0. Let P

1

= (p

1

; r

1

) be in

M

1

. Suppose �rst r

1

> 2�. Sine H(�


1

; �


2

) � �, we have intB

r

1

��

(p

1

) \

�


2

= ;. So either intB

r

1

��

(p

1

) � int


2

or intB

r

1

��

(p

1

) \ 


2

= ;. But, if

the latter is true, then we would have d(p

1

;


2

) > �, whih ontradits the

assumption H(


1

;


2

) � �. So we must have intB

r

1

��

(p

1

) � int


2

. Sine

M

2

is a medial axis transform, it is lear that there exists P

2

= (p

2

; r

2

) 2M

2

suh that B

r

1

��

(p

1

) � B

r

2

(p

2

). By Lemma 1, this means that d

h

(P

1

jP

2

) � �,

and hene, d

h

(P

1

jP

2

) � � � 3�.

Suppose now r

1

� 2�. Sine H(


1

;


2

) � �, there exists q

2

2 


2

suh that d(p

1

; q

2

) � �. Clearly, we an take P

2

= (p

2

; r

2

) 2 M

2

suh

that q

2

2 B

r

2

(p

2

). Now d

h

(P

1

jP

2

) = d(p

1

; p

2

) � (r

2

� r

1

) � d(p

1

; q

2

) +

d(q

2

; p

2

) � d(q

2

; p

2

) + 2� � 3�. Thus we have H

h

(M

1

jM

2

) < 3�, sine

P

1

is arbitrary. Sine � is arbitrary, we onlude that H

h

(M

1

jM

2

) � 3 �

max fH(


1

;


2

);H(�


1

; �


2

)g. By the symmetri argument, we an also

show H

h

(M

2

jM

1

) � 3 � max fH(


1

;


2

);H(�


1

; �


2

)g. Thus the proof is

omplete. 2

The proof of Theorem 3 also shows the following plausible result:

Theorem 4 Let n = 1; 2; � � �. For any 


1

;


2

2 C

n

suh that MAT(


1

),

MAT(


2

) are ompat and �




1

; �




2

> 2 �maxfH(


1

;


2

);H(�


1

; �


2

)g, we

have

H

h

(MAT(


1

);MAT(


2

)) = max fH(


1

;


2

);H(�


1

; �


2

)g:

Here, we de�ne �




= min fr : (p; r) 2MAT(
)g for every 
 2 C

n

.

Proof. The proof of Theorem 3 shows the � part, and the � part follows

from Theorem 1 and 2. 2

Theorem 4 tells that the transform MAT is in fat an isometry loally

at every 
 with �




> 0. But note that the sets around suh 
's on whih

MAT is an isometry are in general not open under the Hausdor� distane.

The following examples show that the bound in Theorem 3 is sharp.

Moreover, Example 8 shows that bothH(


1

;


2

) andH(�


1

; �


2

) are ruial

for bounding H

h

(MAT(


1

);MAT(


2

)).
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Example 8 De�ne the two domains 


1

, 


2

in R

2

by




1

= f(x; y) 2 R

2

j x

2

+ y

2

� 2

2

g;




2

= f(x; y) 2 R

2

j (1 + Æ)

2

� x

2

+ y

2

� 2

2

g:

Here we assume 0 � jÆj << 1. Let M

i

=MAT(


i

) for i = 1; 2. It is easy to

see that

H(


1

;


2

) = 1 + Æ ;

H(�


1

; �


2

) = 1� Æ ;

H

h

(M

1

;M

2

) = 3 + Æ :

So, when Æ > 0, we have

3 � H(�


1

; �


2

) < H

h

(M

1

;M

2

) < 3 � H(


1

;


2

);

and, when Æ < 0, we have

3 � H(


1

;


2

) < H

h

(M

1

;M

2

) < 3 � H(�


1

; �


2

):

When Æ = 0, we have

H

h

(M

1

;M

2

) = 3 � H(


1

;


2

) = 3 � H(�


1

; �


2

):

H

h

(M

1

;M

2

)

= 3 + Æ

H(


1

;


2

) = 1 + Æ

H(�


1

; �


2

)

= 1� Æ




1




2

Example 9 Here we have a more realisti example. Let 


1

and 


2

be two

domains in R

2

as depited below. Let M

i

= MAT(


i

) for i = 1; 2. Then it

is lear that

H(


1

;


2

) = Æ ;

H(�


1

; �


2

) = Æ ;

H

h

(M

1

;M

2

) = 3Æ ;
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for every Æ > 0. So we have

H

h

(M

1

;M

2

) = 3 � H(


1

;


2

) = 3 � H(�


1

; �


2

):

H

h

(M

1

;M

2

) = 3Æ

H(


1

;


2

) = Æ

H(�


1

; �


2

) = Æ




1




2

7 Completeness of Hyperboli Hausdor� Dis-

tane

In this setion, we further explore the hyperboli Hausdor� distane. In par-

tiular, we show that the hyperboli Hausdor� distane is a omplete metri

on the anonial quotient spae of C

n;1

inluding the medial axis transforms.

From the de�nition of the hyperboli Hausdor� distane, it is lear that

H

h

(M

1

;M

2

) = H

h

(M

2

;M

1

) for every M

1

;M

2

2 C

n;1

and for every n =

1; 2; � � �.

First, we examine the triangular inequalities for the hyperboli Hausdor�

distane. For every P 2 R

n

� R

�0

and M 2 C

n;1

, we denote d

h

(P jM) =

min

P

0

2M

d

h

(P jP

0

).

Lemma 5 (Triangular Inequalities)

Let n = 1; 2; � � �. For i = 1; 2; 3, let P

i

2 R

n

� R

�0

and M

i

2 C

n;1

. Then

we have the following inequalities:

(1) d

h

(P

1

jP

3

) � d

h

(P

1

jP

2

) + d

h

(P

2

jP

3

).

(2) H

h

(M

1

jM

3

) � H

h

(M

1

jM

2

) +H

h

(M

2

jM

3

).

(3) H

h

(M

1

;M

3

) � H

h

(M

1

;M

2

) +H

h

(M

2

;M

3

).
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Proof. (1) Note that

d

h

(P

1

jP

2

) + d

h

(P

2

jP

3

) = max f0; d(p

1

; p

2

)� (r

2

� r

1

)g

+max f0; d(p

2

; p

3

)� (r

3

� r

2

)g

� max f0; d(p

1

; p

2

) + d(p

2

; p

3

)

�(r

2

� r

1

)� (r

3

� r

2

)g

� max f0; d(p

1

; p

3

)� (r

3

� r

1

)g

= d

h

(P

1

jP

3

):

(2) Take P

1

2 M

1

suh that d

h

(P

1

jM

3

) = H

h

(M

1

jM

3

). Take P

2

2 M

2

suh that d

h

(P

1

jP

2

) = d

h

(P

1

jM

2

). Take P

3

2 M

3

suh that d

h

(P

2

jP

3

) =

d

h

(P

2

jM

3

). Now by (1), we have

H

h

(M

1

jM

3

) = d

h

(P

1

jM

3

) � d

h

(P

1

jP

3

) � d

h

(P

1

jP

2

) + d

h

(P

2

jP

3

)

= d

h

(P

1

jM

2

) + d

h

(P

2

jM

3

)

� H

h

(M

1

jM

2

) +H

h

(M

2

jM

3

):

(3) From (2), we have

H

h

(M

1

jM

3

) � H

h

(M

1

jM

2

) +H

h

(M

2

jM

3

);

H

h

(M

3

jM

1

) � H

h

(M

3

jM

2

) +H

h

(M

2

jM

1

):

So

H

h

(M

1

;M

3

) = max fH

h

(M

1

jM

3

);H

h

(M

3

;M

1

)g

� max fH

h

(M

1

jM

2

) +H

h

(M

2

jM

3

) ;

H

h

(M

3

jM

2

) +H

h

(M

2

jM

1

)g

� max fH

h

(M

1

jM

2

);H

h

(M

2

jM

1

)g

+max fH

h

(M

2

jM

3

);H

h

(M

3

jM

2

)g

= H

h

(M

1

;M

2

) +H

h

(M

2

;M

3

):

2

Let M

1

;M

2

2 C

n;1

for some n = 1; 2; � � �. Note that H

h

(M

1

;M

2

) = 0 does

not neessarily imply M

1

= M

2

. For example, let

M

1

= M [ f(x; r) 2 R � R

�0

j r = x + 3;�2 � x � �1g;

M

2

= M [ f(x; r) 2 R � R

�0

j r = �x + 3; 1 � x � 2g;

where

M = f(x; r) 2 R � R

�0

j � 1 � x � 1; r = 1g:
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x

r

0

M

1
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x

r

0

M

2

135

Æ

Figure 3: M

1

�M

2

See Figure 3. Though M

1

6= M

2

, it is easy to see that H

h

(M

1

;M

2

) = 0.

We introdue the relation � on C

n;1

, for n = 1; 2; � � �: For every M

1

;M

2

2

C

n;1

, we denote M

1

�M

2

, if and only ifH

h

(M

1

;M

2

) = 0. Let M;M

1

;M

2

;M

3

be in C

n;1

. It is lear that M � M , and M

1

� M

2

if and only if M

2

� M

1

.

Suppose M

1

� M

2

and M

2

� M

3

. Then, by the triangular inequality in

Lemma 5 (3), we have H

h

(M

1

;M

3

) � H

h

(M

1

;M

2

) + H

h

(M

2

;M

3

) = 0. So

H

h

(M

1

;M

3

) = 0, and hene M

1

� M

3

. The above argument shows that the

relation � is an equivalene relation.

The following lemma shows that the hyperboli Hausdor� distane does

not hange within eah equivalene lass of �, and thus it an in fat be

onsidered to be de�ned on the quotient spae C

n

= �.

Lemma 6 Let M

1

;M

0

1

;M

2

;M

0

2

2 C

n;1

for n = 1; 2; � � �. Suppose M

1

� M

0

1

and M

2

�M

0

2

. Then H

h

(M

1

;M

2

) = H

h

(M

0

1

;M

0

2

).

Proof. By the triangular inequality in Lemma 5 (3), we have

H

h

(M

0

1

;M

0

2

) � H

h

(M

0

1

;M

1

) +H

h

(M

1

;M

2

) +H

h

(M

2

;M

0

2

) = H

h

(M

1

;M

2

):

Similarly, we have also H

h

(M

1

;M

2

) � H

h

(M

0

1

;M

0

2

). Thus the proof follows.

2

We now assign a speial set in R

n

� R

�0

to eah equivalene lass of �.

De�nition 3 Let M � R

n

� R

�0

, where n = 1; 2; � � �. We will all M

essential, if d

h

(P

1

jP

2

) > 0 for every P

1

6= P

2

in M .

Note that an essential set M has only a minimal part to generate the set

TAM(M).
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Lemma 7 In eah equivalene lass of �, there an be at most one essential

element.

Proof. Let M 2 C

n;1

for some n = 1; 2; � � �. Suppose there exist two di�erent

essential M

1

;M

2

2 C

n;1

suh that M

1

� M and M

2

� M . With no loss of

generality, assume there exists P

1

= (p

1

; r

1

) 2 M

1

nM

2

. Sine M

1

� M

2

,

there exists P

2

= (p

2

; r

2

) 2 M

2

suh that d

h

(P

1

jP

2

) = 0. Note that P

1

6= P

2

.

If follows from Lemma 1 that B

r

2

(p

2

) stritly ontains B

r

1

(p

1

). Now again

there exists P

0

1

= (p

0

1

; r

0

1

) 2 M

1

suh that d

h

(P

2

jP

0

1

) = 0, whih means that

B

r

0

1

(p

0

1

) ontains B

r

2

(p

2

) by Lemma 1. Sine B

r

0

1

(p

0

1

) stritly ontains B

r

1

(p

1

),

it follows that P

1

6= P

0

1

. In the meanwhile, by the triangular inequality in

Lemma 5 (1), we have d

h

(P

1

jP

0

1

) � d

h

(P

1

jP

2

)+d

h

(P

2

jP

0

1

) = 0. So d

h

(P

1

jP

0

1

) =

0, whih ontradits the fat that M

1

is essential. Thus we onlude that

M

1

= M

2

, and the proof is omplete. 2

Remark 5 Not every equivalene lass of � has an essential representative

within itself. For example, let M = f(p; r) 2 R

2

�R

�0

jB

r

(p) � 
g, where 


is the domain in Example 4. It is easy to see that M 2 C

n;1

. Suppose there

exists an essential ompat set M

0

suh that M �M

0

. Sine H

h

(M jM

0

) = 0,

M

0

must ontain (q

0

; r

0

) and (p

0

n

; r

0

n

) for n = 1; 2; � � �, suh that B

r

(q) �

B

r

0

(q

0

) and B

r

n

(p

n

) � B

r

0

n

(p

0

n

) for every n = 1; 2; � � �. But, if any of the

above inlusions is strit, then we would have a ontradition to the fat that

H

h

(M

0

jM) = 0. So we have (q; r); (p

n

; r

n

) 2 M

0

for n = 1; 2; � � �. Now,

sine M

0

is ompat, M should also ontain (p; 0), whih is the limit of the

points (p

n

; r

n

). This ontradits the assumption that M

0

is essential, sine

d

h

((p; 0)j(q; r)) = 0. Thus we onlude that there are no essential element in

the equivalene lass of M .

Remark 6 It is easy to see that every set in MAT(C

n

) is essential for n =

1; 2; � � �. But the onverse is not true. For example, let 
 2 C

2

be the unit

disk. i.e., 
 = B

1

((0; 0)). Then MAT(
) = f((0; 0); 1)g. De�ne M 2 C

2;1

by

M =

(

((x; y); r) 2 R

2

� R

�0

j x

2

+ y

2

=

�

1

2

�

2

; r =

1

2

)

:

Clearly, M is essential. Note that TAM(M) = 
 = TAM(MAT(
)).

But M 6= MAT(
). Sine TAM is one-to-one on MAT(C

n

) for every

n = 1; 2; � � �, we an see that M is not in MAT(C

2

).

Let (X; d) be a metri spae. We denote by C(X) the set of all nonempty

ompat sets in X. For every A;B 2 C(X), de�ne the generalized Hausdor�
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distane by

H(A;B) = max

�

max

a2A

�

min

b2B

d(a; b)

�

;max

b2B

�

min

a2A

d(a; b)

��

:

It is easy to hek that (C(X);H) beomes a metri spae. In fat, we have

the following general fats:

Proposition 3 ([26, 27℄)

Let (X; d) be a metri spae.

(1) If (X; d) is ompat, then (C(X);H) is a ompat metri spae.

(2) If (X; d) is omplete, then (C(X);H) is a omplete metri spae.

Thus, in partiular, the spae (C

n

;H) is a omplete metri spae for every

n = 1; 2; � � �.

Now we show the ompleteness of the hyperboli Hausdor� distane on

the quotient spae C

n;1

= �.

Theorem 5 (Completeness of the Hyperboli Hausdor� Distane)

The hyperboli Hausdor� distane is a omplete metri on C

n;1

= � for

eah n = 1; 2; � � �.

Proof. SupposeM

i

, i = 1; 2; � � � are in C

n;1

, andH

h

(M

i

;M

j

)! 0 as i; j !1.

We only need to show that there exists M in C

n;1

suh that H

h

(M

i

;M) !

0 as i ! 1. Let 


i

= TAM(M

i

) for i = 1; 2; � � �. By Theorem 1, we

have H(


i

;


j

) ! 0 as i; j ! 1. So there exists a ompat set

e


 2 R

n

suh that 


i

�

e


 for every i = 1; 2; � � �. Let � be the diameter of

e


, i.e.,

� = max

p;q2

e




d(p; q). Let

f

M =

e


 � [0; �℄ 2 C

n;1

. Then it is easy to see

that M

i

�

f

M , i.e., M

i

2 C

�

f

M

�

for every i = 1; 2; � � �. We know from

Proposition 3 that

�

C

�

f

M

�

;H

�

is a ompat metri spae, where H is the

usual Hausdor� distane. So there exists a subsequene M

i

1

;M

i

2

; � � � whih is

onverging with respet to the usual Hausdor� distane. Let M be the limit,

i.e., H(M

i

k

;M)! 0 as k !1. Then by the inequality in Lemma 2 (2), we

have H

h

(M

i

k

;M)! 0 as k !1. Now it is straightforward to see from the

triangular inequality in Lemma 5 (3) that H

h

(M

i

;M)! 0 as i!1. 2

Remark 7 The sequene M

i

in Theorem 5 does not neessarily have a limit

under the usual Hausdor� distane, even if eah M

i

is in MAT(C

n

) \ C

n;1

.

This an be seen from Example 10. Even though the limit under the usual

Hausdor� distane exists, it may not be essential. See Example 11.
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Example 10 For i = 1; 2; � � �, de�ne 


i

2 C

2

by




i

= B

1

((0; 0)) [4q

i

p

+

i

p

�

i

;

where p

�

i

= (os �

i

;� sin �

i

), q

i

= (se �

i

; 0) and �

i

= (i� 1) � �+

�

�

1

2

�

i�1

�

�

4

.

For eah i, let M

i

be the medial axis transform of 


i

. So M

i

2 MAT(C

2

)

for every i = 1; 2; � � �. Now it is easy to see that H(


i

;


j

) ! 0 and

H(�


i

; �


j

) ! 0 as i; j ! 1. So by Theorem 3, we have H

h

(M

i

;M

j

) ! 0

as i; j ! 1. But it is lear that there is no sets M in R

2

� R

�0

suh that

H(M

i

;M)! 0 as i!1.

x

y

0

p

+

i

p

�

i

q

i

�

i

�

i

for odd i




i

1

�1

M

i

x

y

0

p

+

i

p

�

i

q

i

�

i

�

i

for even i

1

1




i

M

i

Example 11 For i = 1; 2; � � �, de�ne 


i

2 C

2

by




i

= B

1

((0; 0)) [4q

i

p

+

i

p

�

i

;

where p

�

i

= (os �

i

;� sin �

i

), q

i

= (se �

i

; 0) and �

i

=

�

1

2

�

i�1

�

�

4

. For eah

i, let M

i

be the medial axis transform of 


i

. So M

i

2 MAT(C

2

) for every

i = 1; 2; � � �. Now it is easy to see that H(


i

;


j

)! 0 and H(�


i

; �


j

) ! 0

as i; j !1. By Theorem 3, we have H

h

(M

i

;M

j

)! 0 as i; j !1. In this

ase, there exists a set M in R

2

� R

�0

suh that H(M

i

;M) ! 0 as i !1.

In fat, M is de�ned by

M =

�

((x; y); r) 2 R

2

� R

�0

j x+ r = 1; y = 0; r � 1

	

:

But learly, M is not essential.
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x

y

0

p

+

i

p

�

i

q

i

�

i

�

i




i

1

�1

M

i

x

y

0




1

1

M

Sine every set in MAT(C

n

) is essential, we an onsider the metri

spae (MAT(C

n

) \ C

n;1

;H

h

) as a subspae of the omplete metri spae

(C

n;1

= �;H

h

). Unfortunately, it turns out that this spae is not losed, and

hene is not a omplete metri spae itself. This an be seen from the fol-

lowing example.

Example 12 De�ne 


i

2 C

2

, i = 1; 2; � � �, by




i

=

�

(x; y) 2 R

2

j

1

i + 1

� x

2

+ y

2

� 1

�

:

It is easy to hek that H(


i

;


j

) ! 0 and H(�


i

; �


j

) ! 0 as i; j ! 1.

Suppose there exists a set 
 2 C

2

suh that H(


i

;
)! 0 and H(�


i

; �
)!

0 as i ! 1. Clearly, 
 must be the unit disk in R

2

. But then, we have

H(�


i

; �
) ! 1 as i ! 1. So there are no sets 
 suh that H(


i

;
) ! 0

and H(�


i

; �
)! 0 as i!1.

Let M

i

=MAT(


i

) for i = 1; 2; � � �. By Theorem 3, H

h

(M

i

;M

j

)! 0 as

i; j !1. Suppose there exists M 2MAT(C

2

)\C

2;1

suh that H

h

(M

i

;M)!

0 as i!1. Then by Theorem 1 and 2, we must have H(


i

;TAM(M))! 0

and H(�


i

; �TAM(M)) ! 0 as i ! 1. But this ontradits the above

fat that there are no suh sets as TAM(M). So the sequene fM

i

g in

MAT(C

2

) \ C

2;1

does not have a limit in MAT(C

2

) \ C

2;1

under H

h

.

8 Summary

Now we summarize our results. For this purpose, we �nd it useful to interpret

the results in terms of the properties of the maps MAT and TAM.
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For eah n = 1; 2; � � �, de�ne a new metri H

�

on C

n

by:

H

�

(


1

;


2

) = max fH(


1

;


2

);H(�


1

; �


2

)g;

for every 


1

;


2

2 C

n

. It is straightforward to hek that H

�

is indeed a

metri on C

n

for n = 1; 2; � � �. But unfortunately, the metri spae (C

n

;H

�

)

is not omplete, as an be seen from Example 12. We observed in Setion 4

that a medial axis transform may not be ompat, even if its original domain

is ompat. This leads us to de�ne the spae D

n

= TAM(C

n;1

\MAT(C

n

))

for n = 1; 2; � � �. Note that D

n

� C

n

by Lemma 3. In fat, D

n

is the

largest reasonable subspae in C

n

onerning ompatness of the medial axis

transform.

We view the mapsMAT and TAM as bijetions between the two metri

spaes (D

n

;H

�

) and (M

n

;H

h

), where M

n

denotes C

n

\MAT(C

n

) for n =

1; 2; � � �. Then the two maps are the exat inverses to eah other. Note that

both of the above metri spaes are not omplete.

Now Theorem 1, 2 and 3 together have the following impliation:

Theorem 6 For every n = 1; 2; � � �, the mapsMAT : (D

n

;H

�

)! (M

n

;H

h

)

and TAM : (M

n

;H

h

)! (D

n

;H

�

), whih are the inverses to eah other, are

uniformly ontinuous. In fat, we have

H

h

(MAT(


1

);MAT(


2

)) � 3 � H

�

(


1

;


2

);

for every 


1

;


2

2 D

n

, and

H

�

(TAM(M

1

);TAM(M

2

)) � H

h

(M

1

;M

2

);

for every M

1

;M

2

2 M

n

. In partiular, MAT (and thus TAM) is a homeo-

morphism.

The above result tells us that, when we introdue the hyperboli Hausdor�

distane, the proess of taking the medial axis transform and its inverse

reonstrution proess an be made to be ontinuous. This is an important

feature, sine the ontinuity is an important requirement for any proesses

whih we want to be under ontrol. Moreover, the uniformity result means

that we don't need a priori knowledge of the individual domains or the

medial axis transforms to do the ontrol, whih is ertainly another advane

ompared to the previous result in [24℄.

Suppose we approximate a given domain with other domains. Then the

result of the approximation for their medial axis transforms will be almost the

same under the hyperboli Hausdor� distane. Conversely, if we approximate

26



a given medial axis transform with other medial medial axis transforms under

the hyperboli Hausdor� distane, then the result of the approximation for

the reonstruted domains will be exatly the same.

In fat, our bounds, whih we saw are sharp in Setions 5 and 6, are good

enough to make the mapsMAT and TAM even isometri in some important

ases. Remember that we de�ned �




= min fr : (p; r) 2MAT(
)g for 
 2

C

n

, n = 1; 2; � � �. Note that �




> 0 means that �
 has a relatively smooth

shape, e.g., with no sharp orners, et. For every 
 2 D

n

suh that �




> 0,

we de�ne 
 2 O




� D

n

by

O




=

�




0

2 D

n

j H

�

(


0

;
) <

1

4

�




; �




0
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�

:

Intuitively speaking, O




is a set ontaining the domains whih are lose

to 
 and have reasonable smoothness. Now Theorem 4 has the following

onsequene:

Theorem 7 Let n = 1; 2; � � �. For every 
 2 D

n

suh that �




> 0, MAT :

(D

n

;H

�

)! (M

n

;H

h

) is an isometry on O




.

Proof. Suppose 


0

;


00

2 O




. Then we have H

�

(


0

;


00

) � H

�

(


0

;
) +

H

�

(


00

;
) <

1

2

�




�

1

2

� min f�




0

; �




00

g. Thus, H

h

(MAT(


0

);MAT(


00

)) =

H

�

(


0

;


00

) by Theorem 4, whih ompletes the proof. 2

Thus, the perturbation of the domains and that of the medial axis trans-

forms are exatly same in quantity, provided that the domains have reason-

able smoothness. Here, by the smoothness, we mean, of ourse, the ondition

�




> 0, and this inludes the important and wide lass of domains in [1℄ with-

out sharp orners, whih we mentioned in Setion 4.

We showed in Setion 7 that the hyperboli Hausdor� distane is a om-

plete metri on the spae C

n;1

= �. By this ompleteness, we an guarantee

that an approximation always leads to a limit, though sometimes this limit

may not be a reasonable one. Nevertheless, this may be valuable in many

ases.
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