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Abstract

We describe how a shortest vector of a 2—dimensional integral lattice corresponds to
a best approximation of a unique rational number defined by the lattice. This rational
number and its best approximations can be computed with the euclidean algorithm
and its speedup by Schdnhage (1971) from any basis of the lattice. The described
correspondence allows, on the one hand, to reduce a basis of a 2-dimensional in-
tegral lattice with the euclidean algorithm, up to a single normalization step. On
the other hand, one can use the classical result of Schonhage (1971) to obtain a
shortest vector of a 2-dimensional integral lattice with respect to the flog-norm. It
follows that in two dimensions, a fast basis-reduction algorithm can be solely based
on Schonhage’s algorithm and the reduction algorithm of GauB (1801).





1 Introduction

Lattice basis-reduction is an important technique in computer science. Well known ap-
plications are integer programming in fixed dimension (Lenstra 1983), factorization of
rational polynomials (Lenstra, Lenstra & Lovasz 1982) or the development of strongly
polynomial algorithms in combinatorial optimization (Frank & Tardos 1987), among
others.

GauB (1801) invented an algorithm that finds a “short” or reduced basis of a 2-
dimensional integral lattice. Such a basis consists of two integral vectors b1, b2 6 Z2
that generate the lattice, with the additional property that the enclosed angle between
b1 and [)2 is in the range 90° :1: 30°. A shortest vector of a reduced basis is then a
shortest vector of the lattice. The algorithm mimics the euclidean algorithm by sub-
tracting integral multiples of the shorter vector from the larger vector thereby reducing
its length. This normalization step is analogous to the division with remainder in the
euclidean algorithm for integers.

Algorithm. GAUSS(b1,b2)

repeat
arrange that 191 is the shorter vector of b1 and [22
find k E Z such that 192 — kbl is of minimal euclidean length
192 <— ([92 —— kbl) (normalization step)

until k = 0
return (121,192)

The integer k in the repeat-loop of algorithm GAUSS is the nearest integer to the
number (bfbfi/(brlrbl ). Figure 1 shows the effect of a normalization step. The length
of the second basis vector b; has been reduced by subtracting integral multiples of b1.
Lagarias (1980) showed that the Gaussian algorithm has worst-case complexity O(n3),
where n is the size of the binary encoding of the input. (Rote 1997) showed that the 2-
dimensional modm shortest vector problem can be reduced to the classical case. See,
e.g., (Yap 1999) for a thorough treatment of the Gaussian reduction algorithm.

Figure l: The effect of a normalization step.

A reduced basis of a 2—dimensional integral lattice can actually be computed much
faster. Schonhage (1991) and independently Yap (1992) invented basis-reduction al-
gorithms for 2-dimensional lattices with worst—case complexity O(M(n) log n), where
M(n) is the time needed to multiply two n-bit integers. This is in contrast to the
fastest known algorithm for the shortest vector problem in arbitrary fixed dimension



(Kannan 1987), which runs in time O(M(n)n). In fact Schonhage (1991) solves
the closely related but more general problem of reducing an integral not necessarily
definite binary quadratic form. The algorithm of Yap (1992) is in the setting of 2-
dimensional integral lattices. Both algorithms are based on new techniques and are
fairly involved compared to the classical algorithm of Schonhage (1971), that com-
putes the common convergent of two rationals in time O(M(n) log n).

We show in this paper that a shortest vector of a 2-dimensional integral lattice cor—
responds to a best approximation of a rational number 0t, which is uniquely defined by
the lattice. This number oz can be obtained from any basis of the lattice with the ex-
tended euclidean algorithm for integers. The best approximations of 0L are convergents
of at and can again be obtained with the extended euclidean algorithm for integers.
This shows that the extended euclidean algorithm can be used to reduce a lattice basis,
up to a single normalization step.

On the other hand, this also implies that there is no need for a special algorithm for
the fast basis-reduction of a 2-dimensional integral lattice, since the classical result of
Schonhage (1971) can be directly applied to find a shortest vector w.r.t. the Zoo-norm
and thus to find an “almost reduced” basis. A reduced basis can then be obtained by
applying a constant number of Gaussian normalization steps.

It is known that the Gaussian reduction algorithm and the euclidean algorithm are
related. Vallée (1991) provided an “a posteriori” connection when one already knows
a reduced basis. Daudé, Flajolet & Valle’e (1997) showed that the Gaussian algorithm
translates into a complex continued fraction expansion and used this for an average-
case analysis of the algorithm GAUSS.

In this paper we do not investigate relationships between the Gaussian algorithm
and the euclidean algorithm. Instead we show that the classical euclidean algorithm
and its speedup by Schonhage (1971) can be used to find short vectors of 2-dimensional
lattices.

The Gaussian reduction algorithm is often considered as a 2-dimensional general-
ization of the euclidean algorithm. Our research implies that the euclidean algorithm
is general enough to solve the shortest vector problem in 2-dimensions.

2 Preliminaries

The letters Z,Q, and R denote the integers, rationals and reals respectively. The sym-
bol N+ denotes the positive natural numbers whereas N0 denotes the natural numbers
including 0. In this paper, the running times of algorithms are always given in terms
of the binary encoding length n of the input data. The function M(n) denotes the time
needed to multiply two integers. All basic arithmetic operations +, -, *, / can
be done in time O(M(n)) (Aho, Hopcroft & Ullman 1974). The loo, 2 1, and Ez-norm of
a vector c =(c1,c2)T E R2 are the numbers ||c||m : max{|c1|,|c2},|c||1=lc1|+lc2|,
and Hell; = (c? +c%)1/2, respectively. One has Hell... g ||c||2 g \/§| c.

A 2-dimensi0nal or planar integral lattice A is a set of the form A(A) = {Ax | x E
Z2}, where A E Z2><2 is a nonsingular integral matrix. The matrix A is called basis of
A. One has A(A) = A(B) for B E Z2X2 if and only if B 2 AU with some unimodular
matrix U E ZZXZ, i.e., det(U) : i1. Denote by a“), 1': 1,2, the i—th column ofA. The



basis A of A is called reduced if

2|a(1)Ta(2)'<a(1)Ta(1) gamma). (1)

A shortest vector of A w.r.t. H - H is a nonzero member 0 aé v of A whose norm ”V“
is minimal. Here [I - || stands for the £00, £1 or €2—norm. The first column of a reduced
basis of A is a shortest vector of A w.r.t. the flz-norm.

x2.1 The euclidean algorithm

The extended euclidean algorithm takes as input a pair of integers (a, b) and computes
d = gcd(a,b) and a pair of integers (x,y) with xa+yb = d (see, e.g., (Bach & Shallit
1996, p. 71)).

Algorithm. EXGCD(a, b)

10“(0 1)
n +— 0
while ([7 75 0) do

(1 +- la/bl
M<—M (‘11 (1))
(a,b) <— (b,a—qb)
n <— n+1

return (d = a,x= (—1)"M2,2, y =(—1)"+1M172)

Let M(k), k 2 0, denote the matrix M after the k + l-st iteration of the while-loop in
EXGCD. The running time of the extended euclidean algorithm is quadratic (see, e.g.,
(Bach & Shallit 1996)).

2.2 Continued fractions

Continuedfractions are a classic in mathematics, see, e.g., the books of Perron (1954)
and Khintchine (1963). A very nice and short treatment can also be found in (Grotschel,
Lovasz & Schrijver 1988, p. 134—137). Let (10,. .. ,a, be integers, all positive, except
perhaps a0. The continued fraction ((10,. .. ,a,) is inductively defined as am, if t = 0
and as a0+ l/(a1,... ,a,) ift > 0. The function fk(x) : (a0,... ,ak_1,x), 0 g k g t is
increasing for x > 0 if k is even and decreasing for x > 0 if k is odd. Consider the two
sequences gk and hk that are inductively defined as

8—1 8—2 1 0 8k gk—i gk—i gk—z ak 1= = > . 2(11—1 h—z) (0 1)’ (hk hk—l) (I’lk—l hk—2> (1 0) ’k / 0 ( )
Let Bk 2 gk/hk, then one has (a0, . .. ,ak) = Bk for 0 g k g t. Note that hk is increasing
in k.

The continued-fraction expansion of a number on E Q is inductively defined as
the sequence on if on E Z, and as [0L],a1,... ,a, if 0L ¢ Z and where (11,... ,a, is the
continued fraction expansion of 1/(oc — LOLJ). If k is even, then ak is maximal with



(a0,... ,ak) g at and if k is odd, then ak is maximal with at g (a0,... ,ak). For 0 g
k g t, the number (ao,... ,ak) = Bk is called the k-th convergent of 0L, and we have
[30 < [32 < < B, = 0L < < [33 < [31. It is easy to see that the continued fraction
expansion of a rational number on = u/v 7g 0 is the sequence of q’s which are computed
in the while—loop of the algorithm EXGCD on input (u, v). Let RU‘) denote the matrix

k _ a0 1 ak lR()_<1 0)...<1 0)

Then Rm 2 MU‘), when EXGCD is run on (u, v) and u/v = CL.
Afraction is a representation x/y, y > 0 of a rational number, where x and y are in-

tegers. The fraction is reduced if n(x, y) = l. A fraction x/y is a good approximation
to the number (x E Q, if one has |0L — x/yl g |0t -— x’ /y’l for all other fractions x’ /y’ with
0 < y’ g y. Each convergent bk, 0 g k g t, of 0L 6 Q is a good approximation to at. A
fraction x/y is a best approximation of the second kind to the number 0t 6 Q, if one has
[yet —x| < ly’tx —x’ I for all other fractions x’ /y’ with O < y’ g y, see (Khintchine 1963,
p. 28). A best approximation of the second kind to 0t 6 Q is a convergent of 0c.

The common convergent of two rational numbers Ot1,0L2 E Q is the convergent
((10,. .. ,ak) of 0L1 and a2 that corresponds to the longest common prefix of the con-
tinued fraction expansions of Oil and (x2. Thus k is maximal such that the k-th con-
vergent of a1 and the k-th convergent of a2 are equal. If on g 0L2, then this is the
common convergent of all rationals in the interval [061,0L2]. Schonhage (1971) showed
how to compute the common convergent [3k and the corresponding matrix RU‘) of two
rationals 0L1,0L2 E Q in time O(M(n)log n). Schonhage’s result yields an algorithm
that computes in time O(M(n)logn) the greatest common divisor, gcd(a,b), of two
n-bit integers a and b as well as two n—bit integers x and y that represent it, i.e.,
gcd(a, b) = xa + yb.

3 The Hermite normal form

Before we establish the connection between best approximations and shortest vectors
of planar lattices we perform some preprocessing on the lattice basis A E Z2”. Let A
be of the form A = (Z; 23) E Z2”. First we compute integers x and y that represent the
greatest common divisor d of a3 and a4, i.e., a’ = M3 + you. By multiplying the basis
A with the unimodular matrix (33/21:

a1 a2 614/d x _ a b EZ2><2
a3 a4 —a3/d y _ 0 c ‘

After some unimodular column operations, i.e., multiplying the first and second col—
umn with i1 and adding integral multiples of the first column to the second column,
we can assure that c > O and a > b 2 0 holds. This is the Hermite normal form, or
HNF, of A (see, e.g., (Schrijver 1986, p. 45)). The HNF of an integral lattice is unique
and its computation can be carried out in time O(M(n) log n) with the algorithm of
Schbnhage (1971).

) one obtains an upper triangular matrix



4 Best approximations and shortest vectors

Here we establish the connection between shortest vectors and best approximations.
Interestingly, our observation holds for any norm II - H which is invariant under the
replacement of components by their absolute value. The £1, £2 and Zea-norms have this
property.

Let A be given by its HNF (31;) e ZM, where c > 0 and a > b 2 0. Ifa g c,
then (3) is a shortest vector of A. Therefore assume that a > c. If a shortest vector has
a negative second component, then it yields a shortest vector with a positive second
component by multiplying it with — 1. Therefore we can assume that a shortest vector
is of the form (‘x‘y'jyb), where x E No, y E N+.

Lemma 1. There exists a shortest vector (‘xgj'yb ) , x E No, y E N+ of A such that at
least one of the following conditions is satisfied.

1'. The fraction x/y is a best approximation of the second kind to the number b/a.

ii. If the fraction p/q is the reduced representation ofb/a, then p is odd, q is even,
x E {Le/21, lp/Zl} andy = 61/2-

Proof. Let (”$i ) , x E No, y E N+ be a shortest vector of A with minimal (ll—norm
among all shortest vectors. We show that one of the above conditions holds.

Suppose that x/y is not a best approximation of the second kind of b/a. Then
there exists a fraction fl/y’ 7E x/y with y’ g y and |by' — afll g lby —— axl. If y’ < y or
|by’ — ad | < |by — ax|, then (mg-Vb) is not a shortest vector with minimal ll-nonn
among the shortest vectors. So we have y’ = y and lby — ax’ | = |by — ax| Assume
without loss of generality that x < 26’ holds. The numbers x and ,6 have been chosen
such that

b/a~x| = b/a—x’l = minlyb/a—zl
ZENo

holds. Thus we conclude that x’ = x+ 1 and that p/q = b/a = (2x+ 1)/2y. Suppose
there is a prime 3 > 2 dividing both (2x+ 1) and 2y. Let u : (2x+1)/£ and v = 2y/fi.
Then

”(W)” = veneer”)+<-<x+;2a+yb>ll
1/6 (Iv-ere)“ + H<“*+12“+y”)ll)
2/€||("“;c+y”)ll < ||(—’“;2“>”’)|

//\

7

a contradiction. Thus gcd(2x+ 1,2y) = 1 which implies 2x+ 1 = p and 2y 2 q and
finishes the proof. 1:!

Lemma 1 reveals that one can find a shortest vector with the classical extended
euclidean algorithm. '

A naive method would work as follows. First we compute the reduced represen-
tation p/q of b/a. Then we compute the vectors (— Lp/Zj a+ [q/Zj b, [(1/2] c)T and
(a, O)T. We store the shortest one of the two vectors in a container MIN. Then we com-
pute successively the convergents gk/hk of b/a with EXGCD(b,a) and compare the



length of the induced vector (—gka + hk b,hk c)T with MIN. If it is shorter, we replace
MIN by (—gk a + hk b, hk c)T. In the end MIN contains a shortest vector. This algorithm
would require a linear search through all convergents of b/a. In the next section we
show a substantial improvement.

5 Finding a shortest vector with respect to £00

Let A be given by its HNF (3 f) E Z2”, where c > O and a > b 2 0. In this section, we
identify two candidate convergents of b/a that come into question to form a shortest
vector and we apply the result of Schonhage (1971) to find them. Throughout this
section, we consider only shortest vectors w.r.t. the Zoo-norm.

Consider the set of vectors

— hb{( “Z; k >lk=o,...,t}, (3)

where Bk 2 gk/hk, 0 g k g t are the convergents of b/a.

Proposition 2. The shortest vector in (3) w.r.t. A, is the last convergent of b/a that
lies outside the interval [(b — c)/a, (b + c)/a] or the first convergent of b/a that lies
inside [(b — c)/a7 (b + c)/a].

Proof. The absolute value of the first component of the vectors (‘g’fighk 1’) , k = 0, . . . ,t
is decreasing, since each convergent of b/a is a good approximation of b/a. The abso-
lute value of the second components is increasing for growing k. We have to determine
the first k, for which the absolute value of the second component of ( 1’31?" b) is larger
than the absolute value of the first component. Either this, or the previous k, is the k of
the shortest vector. But | —gka+hkb| g hkc if and only if |b/a— gk/hkl g c/a. E]

In the next proposition we show that the common convergent of the interval [(b —
c)/a, (b + c) /a] is a good starting point for the convergent of b/a which is “shortest”
in (3).

Proposition 3. Let Bk 2 gk/hk be the common convergent of (b — c) /a and (b + c) /a.
Then the k-th, k+ l-st or the k+ 2-nd convergent ofb/a is a shortest vector in (3) w.r.t.
the Zoo-norm.

Proof Assume that k is even, the proof is analogous for odd k. Then [3k S (b — c)/a.
If Bk : (b —— c)/a, then ('gkzkthkb) is a shortest vector in (3) since the absolute values
of the first and second components are equal. So assume that Bk < (b — c) /a.

Let [3531 = 8:11 Milli, i = 1,2,3 be the k+ 1—st convergent of the numbers (b —
c)/a, b/a and (b + c)/a respectively. We show now that Bk or [55:31 is the last con—
vergent of b/a which is not in [(b — c)/a,(b + c)/a]. The claim follows then from
Proposition 2.

Suppose (35:31 is not in [(b—c)/a, (b+c)/a]. Then one has (b—c)/a g [3&1 < b/a
and (b+c)/a g [35321 = [35:21. Let a1 > a2 6 N+ be the numbers in N+ with

(119:1: hk_1+a1hk and hi1)! = hk_1+a2hk.



Since the sequence [306) = (gk—1 +xgk)/ (hk_1 +xhk), x E N+ is decreasing and since
(12 is maximal with b/a S B(a2) and since (b — c)/a g [3(a1) < b/a we see that [3(a2 +
1) E [(b — c) /a,b/a]. Let hfiZ be the denominator of the k + 2-nd convergent of b/a.
One has

r4322 2 hi. + hk-1+a2hk = hk_1+(a2 +1)h,..
Since each convergent of b/a is a good approximation to b/a, the k + 2-nd convergent
ofb/a has to lie in [(b—c)/a,(b+c)/a]. 1:]

These observations show that the classical result of Schonhage (1971) can be used
to compute a shortest vector of a lattice.

Corollary 4. There exists an algorithm that computes in time O(M(n) log n) a basis B
of a 2-dimensi0nal integral lattice A defined by A E Z2“, with the property that the
first column ofB is a shortest vector ofA w.r.t. the Eco-norm.

Proof. First we compute the HNF (3 16’) of A. Next, we compute the reduced represen—
tation p/q of b/a. Then we compute the vectors (a,0)T, (— Lp/Zj a+ [q/Zj b, [q/ZJ c)T
and store a shortest nonzero one in a container MIN. Next we compute the common
convergent Bk of [(b — c) /a, (b + c) /a] and the corresponding matrix RU‘). The next two
convergents of b/a can then be computed as follows. We perform two runs through the
while-loop of EXGCD on input R(")_1 (Z) and we store the matrix M(2). The next two
convergents Bk+1 and Bk+2 of b/a are then obtained from the matrix R(k)M(2) accord-
ing to (2). We replace MIN if one of the convergents yields a shorter vector. Lemma 1
and Proposition 3 imply that MIN then contains a shortest vector w.r.t. the Eco-norm.

If one has a shortest vector (““3” ) , then one computes two integers u and v with
gcd(x, y) = 1 = uy —— vx. The matrix (7‘ 'v“) is unimodular. Thus

(3 i) (7‘ 1”)
is a basis of A whose first column vector consists of a shortest vector of A w.r.t. the
Zoo-norm.

It is easy to see that the described method runs in time O(M(n) log n) if the algo-
rithm of Schonhage (1971) is used. El

6 Finding a reduced basis

In this section, [ - M denotes the Ez-norm. Let B E Z2><2 be a basis of A whose first
column is a shortest vector of A w.r.t. the Eco-norm. Let C be a reduced basis according
to (1). Then the first column of C is a shortest vector of A w.r.t. the Ez-norm. Let b“)
and c“) be the first columns of B and C respectively. It follows that x/E ”cm H 2 ”17(1)”
holds, and thus that the basis B is “almost reduced”.

Lagarias (1980, proof of Theorem 4.2) has shown that in this case the algorithm
GAUSS requires only a constant number of runs through the repeat—loop to reduce B.
We thus have the following corollary.

Corollary 5. There exists an algorithm that computes in time O(M (n) log n) a reduced
basis C ofa 2-dimensional integral lattice A defined by A E Z2”.
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