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Abstract

We prove a separation bound for a large class of algebraic expressions specified by
expression dags. The bound applies to expressions whose leaves are integers and
whose internal nodes are additions, subtractions, multiplications, divisions, k-th
root operations for integral k, and taking roots of polynomials whose coefficients
are given by the values of subexpressions. The (logarithm of the) new bound de—
pends linearly on the algebraic degree of the expression. Previous bounds applied
to a smaller class of expressions and did not guarantee linear dependency.
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1 Introduction

The evaluation of conditions in a computer program frequently amounts to determining the signs
of arithmetic expressions. The evaluation of arithmetic expressions with floating point arithmetic
(more generally, any imprecise arithmetic) incurs round-off error and hence cannot guarantee the
computation of the correct sign. As a consequence, a computation may follow an incorrect path.
This may lead to catastrophic errors.

In the realm of geometric computations, the situation is particularly severe and known as the
precision caused robustness problem [15, 18, 27, 36, 39]. A popular approach to overcoming the
robustness problem is the exact computation paradigm [1, 2, 4, 5, 9, 10, 7, 13, 25, 33, 40, 41].
The paradigm calls for the exact evaluations of all conditions and hence the exact computation
of signs.

In this paper, we consider the sign computation for the following class of real algebraic
expressions. The value of a real algebraic expression is either a real number or undefined (in
Section 6 we show how to test whether the value of an expression is defined).

(1) Any integer v is a real algebraic expression. The integer is also the value of the expression.

(2) HE and E2 are real algebraic expressions, so are E1 +E2, E1 ~E2, E1 'E2, El/E2, and {7117,
where k 2 2 is an integer. The value of (WE—1 is undefined if k is even and the value of
E] is negative. The value of E1/E2 is undefined, if the value of E2 is zero. The value of
E1+ E2, E1 — E2, E1 -E2, El/E2, or k E] is undefined, if the value of E1 or the value of
E2 is undefined. Otherwise the value of E1 +E2, E1 ~ E2, E1 -E2, and E1/E2 is the sum,
the difference, the product and the quotient of the values of E1 and E2 respectively and the
value of \k/E’I is the k—th root of the value of E1.

(3) If E, Ed_1, ..., E1, E0 are real algebraic expressions and j is a positive integer, then
o(j,Ed,Ed__1,... ,E1,E0) is an expression. If the values of the E, are defined, the value
of the expression is the j-th smallest real root of the polynomial fidXd + £214 + . . .Eo, if
the polynomial has at least j real roots, where Q is the value of E. Otherwise, the value is
undefined.

Below, expression always means real algebraic expression. An expression is given as a directed
acyclic graph (dag) whose source nodes are labeled by the operands and whose internal nodes
are labeled by operators.

The class of real algebraic expressions can express precisely the class of real algebraic num—
bers. Every real algebraic number can be represented by an expression since every real algebraic
number is the root of a polynomial with integer coefficients. We simply use this polynomial in
an expression of type (3). On the other hand, the real algebraic numbers are closed under the
operations arising in (1) - (3).

A separation bound sep(E) for an expression E having value i is a positive real number with
the property that 3; 7E 0 implies |§l 2 sep(E). Separation bounds allow one to determine the sign
of an expression by numerical computation. An approximation E, of E, and an error bound Aer“,r
with [Q ~ El 3 Amer is computed. If the absolute value of E is larger than Amer, the sign of 2';



is equal to the sign of E. If not, the approximation is computed with higher precision, say as to
guarantee halving the error bound. This is repeated until either la] > Aem,r (and hence the Sign
of E is known by the above) or until [E] + Aemr < sep(E), in which case we may conclude that
E : 0. This strategy is used in the number type leda_rea1 [5, 8, 28] and the number type Expr
of the CORE package [21].

The efficiency of the sign computation described in the preceding paragraph crucially de-
pends on the quality of the separation bound. Separation bounds have been studied extensively
in computer algebra [12, 19, 30, 35, 31, 38], as well as in computational geometry [7, 4, 6, 26,
40, 24, 29]. We review some of this work below.

The starting point for the present work is the bound given by Bumikel et al. [6] for expressions
defined by items (1) and (2). We refer to this bound as the BFMS bound in the sequel.

Lemma 1 ([6]) Let E be an expression with integral operands and operations +, —, *, /7 \If for
integral k 2 2. Let 2'; be the value of E, let D(E) be the product of the indices of the radical
operations in E, and let u(E) and l (E) be defined inductively on the structure ofE by the rules
shown in the table below.

ME) l(E)
integerN |N| 1
EliEz u(E1)-l(E2)+l(E1)-u(E2) [(E
E1 'E2 u(E1) -u(E2) ' [(E

l EEl/Ez u(E1)- (E2) l(

{71:71 k u(El)
Then eitheré = 0 or

IfE is division-free, [(E) = 1, and the above bound holds with D(E)2 replaced by D(E).

We give an example to illustrate the dependence on D = D(E). We refer to D as the degree
bound of the expression. Observe that D is an upper bound on the algebraic degree of the value
of the expression. Consider the expression

210,8/28—(28— 1)—261 .

Here u(E) z 210, [(E) = 1 and D(E) = 8. So the BFMS bound is 2-‘063 = 2-630, since E is
not division—free and hence the dependence (of the logarithm of the bound) on D is quadratic.
Without the final redundant division, the expression is division-free and the bound becomes
2‘10'7 : 2‘70. The example shows that linear or quadratic dependency on D makes a tremendous
difference for the quality of the separation bound.

Li and Yap [24] and Mehlhom and Schirra [29] considered a class of expressions more gen—
eral than the class considered in [6] (though not as general as the one considered in this paper):
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they require the expressions Ed to E0 in (3) to be integral. The bound in [29] is similar to the
bound from [6] above; there is one additional rule covering roots of polynomials with integer
coefficients. In particular, the bound is linear in D for division—free expressions and depends on
Dz, in general. The bound in [24] is identical to the bound in [29] for division—free expressions.
For expressions with divisions, the dependence on D is frequently linear but may be worse than
quadratic.

In this paper, we prove a bound which is always linear in D. The paper is structured as
follows. In Section 2, we review some facts about roots of polynomials and separation bounds.
In Section 3, we show that a simple modification of the arguments in [6] gives a bound linear in
D for the expressions defined by (1) and (2). In Section 4, we prove our main theorem, the bound
for expressions defined by (1), (2), and (3). In Section 5 we compare our bound to other root
bounds, in Section 6 we discuss an application to polynomial system solving, and in Section 7
we offer conclusions.

2 Preliminaries

An algebraic integer is the root of a polynomial with integer coefficients and leading coefficient
one. The following three Lemmas were already used in [6] and [24].

Lemma 2 Let 0t be an algebraic integer and let deg(0t) be the algebraic degree of 0t. If U is an
upper bound on the absolute value ofall conjugates of 0t, then

lal Z Ul—deg(0t)

Proof: The proof is simple. Let d be the degree of 0t and let on : 0t, ocz, , ocd be the
conjugates of 0t. The product of the conjugates is equal to the constant coefficient of the defining
polynomial and hence in Z. Thus |0t| -U"—1 2 1. I

Lemma 3 Let 0t and B be algebraic integers Then CC + B, OtB and W are algebraic integers.

Proof: See [17] or [23] or [6, Theorem 4]. I

Lemma 4 Let 0t and B be algebraic integers and let Ua and U5 be upper bounds on the absolute
size of the conjugates of 0t and B, respectively. Then Ua + U5 is an upper bound on the absolute
size of the conjugates of Cl :t B, UaUB is an upper bound on the absolute size of the conjugates of
OLB, and (k/U; is an upper bound on the absolute size of the conjugates of (7a.

Proof: See [6, Lemma 6]. |

We also need to cover item (3) in the definition of algebraic expressions.



Lemma 5 Let p be the root ofa monic polynomial

P(X) = X" + Otn_1X"_1-’r- an_2X"—2 + ~ - - + one

of degree n where the coefficients 0t,1_1,0t,,_27 . .. ,Oto are algebraic integers. Then p is an alge-
braic integer

Proof: This fact is well—known, a proof can, for example, be found in [34, Theorem 2.4]. We
include a proof for completeness. The proof uses an argument similar to the proof of Lemma 3.
Let OLE-Ii), l S ij 3 deg(0tj), be the conjugates of Otj for 0 g j g n — l and let 59 be the vector
formed by the conjugates of 0t}: Consider the polynomial

Q(X) = HH"'H(X" +<x£f:‘l‘)X"_l +onfj1-22’X"“2+ - . - +aff°l).
i0 il inwl

p is a root of Q X and Q X is symmetric in the Ot(-ij) for all j. The theorem on elementaryJ
symmetric function implies that Q(X) is a polynomial in X and the elementary symmetric func—
tions 01(5tj), , odeg(aj)(&j). The elementary symmetric function c,(&,-) is the coefficient of
Xdegmf)" in the minimal polynomial of Otj and hence in Z (since Otj is an algebraic integer).
Thus Q(X ) is a monic polynomial in Z[X] and p is an algebraic integer. |

We also need bounds for the absolute size of roots of monic polynomials. Such bounds are
well known. Let P(X) = X" +an_1X”—l -l—a,1_2X"_2 + -~—+—a0 be a monic polynomial with
arbitrary real coefficients, not necessarily integral, and let 0t be a root of A(X ). A root bound E
is any function of the coefficients of P that bounds the absolute value of 0t, i.e.,

IOLI S E(an_1,an_2, . .. ,ao)

We require that E is monotone, i.e., if Iai| S bi for 0 g i S n — 1, then

E(a,,_1,an_2, . .. ,ao) S E(bn_1,bn_2, . .. ,bo).

Examples of root bounds are:

lat s Zmax(Ian—1|,\/|an—2l,\3/lan—3lan-axn/laol)
IOL] < 1+max(lan—lialan—2la-HalaOI)

‘ai S max ("Ian—1i; V nlan~2|7 V3 n‘an_3[,... 7 V" niaOI)

..,
n _ —1max Ian—1| inn—2| 3 lan—sl. n laol(“i 1) (<7) ’\/ (3) ’V o’ N

A proof of all bounds can be found in [38]. The first bound is called the Lagrange—Zassenhaus
bound and the middle two bounds are called the Cauchy bounds.

E /\
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3 A Modified BFMS Bound

The BFMS bound is quadratic in D(E). We show that a simple modification of the construction
in [6] results in a linear dependency in D.

In the proof of the BFMS bound, the expression dag is restructured such that is contains only
a single division and this division is the final operation in the dag. More precisely, for every node
A in the original dag, there are two nodes AV and A5 in the restructured dag such that the value of
A is equal to the quotient of the values of AV and A5. For the leaves (which stand for integers), the
replacement is trivial (we take AV : A and A5 = 1), for additions and multiplications the rules are
obvious, for divisions the role of AV and A5 are interchanged, and in the case of a root—operation,
the operation is applied to AV as well as A5, i.e., each root operation in the original dag gives rise
to two root operations in the restructured dag. Therefore D(EV) and D(E5) are at most D(E)?
The bound for division free expressions applies to EV and E5.

A slight modification in the rule for y-operations gives a bound which is linear in D(E)
We again replace A by a quotient A’V /A’ , but use a different replacement rule for root operations.

Consider B = (7A. We set B; : ,"/A(,(Ag3)k—1 and BE 2 Ag. Hence D(E(,) and D(Eé) are at most
D(E). The rules for computing upper bounds for the values of A; and A8 are given below.

Lemma 6 Let E be an expression with integral operations and operations +, —, *, / , \If for in-
tegral k, let D(E) be the product of the indices of the radical operations in E, and let u(E) and
l (E) be defined inductively on the structure ofE by the rules shown in the table below.

integerN [NI 1E] 1132 u’(E1)-l’(E2)+l’(E1)'u/(E2) l’(E1)-l’(
E1 ‘E2 I 1)‘ '
El/Ez u’(E1)-l,(E2) l’(E1)-u’(E2)

k(VET \k/MI(E1)l/(E1) _1 ll(E1)

Then either E, = 0 or

(l’<E>u’<E>D<E>-1) s It! : u'<E>z’<E>D<E>—‘
Lemma 6 is a special case of our main theorem and hence we do not give a separate proof for

it. The separation bound provided by Lemma 6 is frequently much better than the bound in [6]
due to the linear dependence on D. It is not always better because u’ (E) and l' (E) are larger than
the original u(E) and [(E) values of [6]. We give a simple example. Consider the expressions
x/Nl/Nz and x/N1/N2 — i/N3/N4, where the N,- are positive integers. We have u(N1 /N2) 2
u/(Nl/Ng) .—. N1 and [(Nl/NQ) =l/(N1/N2) = N2, u(y/Nl/Nz) = W,l(\/N1/N2)= W,

u’(\/N1/N2) = x/NlNz, and l’(‘/N1/N2) = N2. The original BFMS-bound for (/Nl/Ng is
(M(\/I\Tl)3)_l and the modified bound is (N2(\/N1N2)l)_1, i.e., the bounds are incompara-
ble. ForE : (/Nl/Nz — (/N3/N4, we have u(E) : (/N1N4+ x/NZN , [(E) : (/NzN , u’(E) :



t/N1N2N4 + x/N3N4N2, and l’(E) = N2N4. The original BFMS—bound for \ /N1 /N2 — ‘ /N3/N4 is
(d/N2N4(‘/N{N4 + t/N2N3)15)—1 and the modified bound is (N2N4(d/N1N2N4 + x/N3N_4N2)3)‘ 1.
Assuming that N; z 2" the original bound is 2‘16k—15 and the modified bound is 2'8k—3.

4 The General Bound

We derive a separation bound for the expressions defined by (l), (2), and (3). For pedagogical
reasons we proceed in two steps. We first consider division—free expressions and only monic
polynomials in (3), Le, we restrict Ed to l in (3). These restrictions guarantee that the values
of our expressions are algebraic integers. In the second step, we treat the general case. In either
case the goal is to extend the table given in Lemma 6 by a rule covering (3).

4.1 Algebraic Integers

We start with the algebraic integer case. Let p be the root of a monic polynomial

P(X) = Xd + ad_1Xd“ + ad_2Xd‘2 + - . - + do

of degree d where the coefficients Old—1,0ld—2, . . . ,Oto are algebraic integers, given by expressions
Ed_1, . .. ,E0. The expressions are division—free and use the diamond—operator only with leading
coefficient one. The size of p and all its conjugates is bounded by E(OLd_] , ad._2, . .. ,0t0) which
in turn is bounded by E(u(Ed_1),u(Ed_2),... ,u(E0)). We therefore define u(E) as the latter
quantity.

Lemma 7 Let E be an expression with integer operands and operations +, —, *, \k/, for integral
k and <>(j, 1, . . .) operations]. Let i be the value ofE and let deg(§) denote the algebraic degree
of Ex Let u(E) be defined inductively on the structure ofE according to the following rules.

E u(E)
integerN |N|
EliEz u(E1)+u(E2)
E1 'E2 u(E1)-u(E2)

«E7 ME 5
<>(j,l,Ed_1... ,Eo) E(... ,u(E,~),...)

Then either i = 0 or
d —1 ‘1(u(E) 8W ) s Id : u(E).

Lemma 7 is a special case of our main theorem and hence we only sketch the proof: One proves
by induction on the structure of E that there is a monic polynomial PE (X) E Z[X] such that
PE(§) I 0 and IBI S u(E) for all roots B of PE.

1Observe that the leading coefficient is restricted to be equal to one.
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Why do we give a separate rule for the root-operation. After all, it is a special case of
the diamond—operation; the k-th root operation applied to an expression E corresponds to the
diamond operation applied to the polynomial Xk — E. We treat the root operation separately
because general root bounds E give weaker bounds than our special rule. The first Cauchy bound
gives us only 1 + u(E) instead of ‘k/u(E) The other bounds are off by a factor of 2, {/1}, and

—1
(W — l) , respectively.

4.2 The General Case
The diamond operation allows one to take the root of a polynomial

P(X) = adXd + ad_1Xd‘1+---+ 0a +oc0
where the Oti are arbitrary real algebraic numbers. Every real algebraic number can be written as
the quotient of two algebraic integers; this is well—known, but will be reproved below as part of
the proof of of our main theorem. Let 0t,- : vi/Si where vi and 5,- are algebraic integers. Then

V V_ _ V V

Let D : H 5,-. By multiplication with D we obtain

D . P(X) = (vdD/Sd)Xd +(vd_,D/5d_1)Xd—1+~--+(VID/51)X + (Von/50),
a polynomial whose coefficients are algebraic integers. We next derive a monic polynomial.
To get rid off the leading coefficient (vdD/Sd), we multiply by (vdD/Sd)d_l and substitute
X/(vdD/Sd) for X. We obtain

Dow/8(1)“ egg/5d) = Q(X) =
xd + (vdD/sd)(vd_ID/5d_l)xd*‘ + - - . + (vdD/Bd)d_1 (l/81)X + (vdD/Sd)d (Von/50)

which is monic and has algebraic integer coefficients.
Our root bounds provide us with an upper bound on the size of the roots of Q(X): the size of

any root of Q(X) is bounded by

14 = 3((VdD/5d)(Vd—1D/5d—l)a - ~ a(VdD/5d)d—l (VlD/51)7 (VdD/5d)d (VOD/50))~
Since the roots of P are simply the roots of Q divided by vdD/Sd, this suggests to extend the
definitions of u and l as follows:

For an expression E denoting a root of a polynomial of degree d with coefficients given by
Ed,Ed_1,Ed_2, . .. ,Eo we define

d—i

u(E) = E(... , (may) Hum) u(E,-)Hl(Ek),...)
Iqed k5éi



and

[(E) = u(Ed)Hl(Ek).
kaéd

We still need to define the weight D(E) of an expression. We do so in the obvious way. The
weight D(E) of an expression E dag is the product of the weights of the nodes and leaves of
the dag. Leaves and +, —, * and /—operations have weight 1, a \If—node has weight k, and a
<>(j,Ed, . . . )—operation has weight d.

We can now state our main theorem.

Theorem 1 Let E be an expression with integer operands and operations +, —, *, \Iffor integral
k and <>( j, . . ) operations. Let g be the value ofE. Let u(E) and [(E) be defined inductively on
the structure ofE according to the following rules:

integerN |N| l
EliEz u(E1)-l(E2)+l(E1)-M(E2) l(
E] -E2 u(E1)- (
El/Ez u(E1)-

\k/E_i k “(Elli
<>(j,Ed,... ,Eo) E(... , (l(E)d_‘u(Ei)Hk¢,-Z(Ek)) ,...) u(Edmk,é [(Ek)

Let D(E) be the weight ofE. Then either g = 0 or

(l(E)u(E)D(E)—1)—1 S lil S u(E)l(E)D(E)—l

Proof: We show that the rules for u and I keep the invariant that there are algebraic integers B .
and V such that F, 2 B/Y and u(E) is an upper bound on the absolute size of the conjugates of B
and l (E) is an upper bound on the absolute size of the conjugates of y.

We prove this by induction on the structure of E. The base case is trivial. If E is an integer
N, we take B = N and 0t : 1; Bis the root of the polynomial X —N and 0t is a root ofX — 1.

Now let E : E; :E E2. By induction hypothesis we have @1- : Bj/yj for j = 1,2. We set
B = B1y2 j: Bgyl and y = Y1Y2- Since algebraic integers are closed under operations additions,
subtractions and multiplications, B and Y are algebraic integers. By Lemma 4, [(E) : u(El) -
[(Ez) +l(E1) - u(Ez) is an upper bound on the absolute size of the conjugates of B. Similarly,
I (E) is an upper bound on the absolute size of the conjugates of y.

If E : El ~E2, we set B : B1B2 and y = Y1'Y2. The claim follows analogously to the previous
case by Lemma 4.

If E : E1/E2, we set B 2 Bug and y = Bzyz. Again, the claim follows using Lemma 4.
If E : \k/E , we set B = ‘k/ Blyji‘l and y : y]. Since algebraic integers are closed under {/-

operations, B is an algebraic integer. By Lemma 4, u(E) is an upper bound on the absolute size
of the conjugates of B. There is nothing to show for y = yl.



Finally, let E be defined by a <>(j,Ed, . .. ,Eo)—operation. We set

5: 0(17 1, qYd—z - ' ‘YOaYBd—ZYd—l—Z - * 'Yoy - -- ,Y"_1Yd—1Yd—2 ' ' ‘Y1B0)

and

Y = Bd—i—z - ' 'Yo-

By the discussion preceding the statement of our main theorem, g = B/y, B and y are algebraic
integers, l (E) is an upper bound on the absolute size of the conjugates of y, and u(E) is an upper
bound on the absolute value of the conjugates of B. This completes the induction step.

Rewriting E as 8/)! corresponds to a restructuring of the expression dag defining E into an
expression dag E’ with a single division—operation. We have D(E’) = D(E).

We still need to argue that D(E) is an upper bound on the algebraic degree of B. This follows
from the fact that every operation leads to a field extensions whose degree is bounded by the
weight of the operation.

We now have collected all ingredients to bound the absolute value of i from below. If g 75 0,
we have B # O. The absolute value of B and all its conjugates is bounded by u(E). Thus IBI Z
(u(E)d‘"'g(f’)_1)‘l by Lemma 2. Also M S [(E). Thus

1 l 1
”(macaw—1 'l(E) ”(Ewan—1 .1(E)

-9lil—YZ

5 Comparison to Other Constructive Root Bounds
The Li—Yap bound is incomparable to the original BFMS bound as well as to our new bound. Its
dependence on the degree bound is at least quadratic in the worst case. This dependence occurs
for continued fraction type expressions where additions and divisions alternate. It would be very
interesting to compare the bounds experimentally. It would also be very interesting to combine
the bounds.

In [6] we compared the original BFMS—bound to bounds provided by Mignotte [31] and
Canny [12] and showed that the BFMS—bound is never worse than the other bounds for the
expressions defined by (1) and (2). Canny’s bound also applies to the expressions defined by (l),
(2), and (3). We conjecture that the bound presented in this paper is usually better.

6 Testing Wellformedness and Solving Polynomial Systems
In this section. we want to show that the sign test for algebraic expressions described in the
introduction also allows us to test whether the value of an expression is well—defined and whether

9



a system of polynomial equations has a solution. We leave it for future work to clarify whether
the strategies outlined in this section are of any computational value.

The value of an algebraic expression may be undefined. Divisions by zero and taking a root
of even degree of a negative number are easily caught by the sign test. We want to show that the
sign test also allows us to test whether the diamond-operation is well defined. For this matter,
we need to determine the number of zeros of a polynomial. Sturm sequences, see [31, chapter 5]
or [38, Chapter 7] are the appropriate tool. The computation of Sturm sequences amounts to a
gcd computation between a polynomial and its derivative. Our sign test is sufficient to implement
a gcd computation.

The sign test can also be used to compute the real zeros of a finitely solvable system of
polynomial equations in triangular form [32, 20],, i.e., a system of the form

f(1,1)(XI) = 0

f(l,k1)(xl) = 0
f(2,1)(x1,x2) = 0

f(2,k2)(x1,x2) = 0

f(n~1,1)(X1,---,xn—i) = 0

f(n—1,k,,_1)(XI,---,xn*1) = 0
f(n,l)(x17- ' ' 7xn—17xn) : 0

f(ri,kn)(x1a---axn—laxn) = O

with f0”) E Z[x],... ,xi]\Z[x1,... ,xi_1], 1 S j 3 kg. The algorithm is straightforward. One first
determines the number of roots of of fun by means of Sturm sequences. Then one uses the
diamond operation to form an expression for each root and feeds the roots into the polynomials
f(1~2)’ . . . , f(1‘kl)' One uses the sign test to find out the common roots. Once the common roots of
the polynomials in x1 are known, the same procedure is applied to the block of polynomials in x1
and x2 for every common root of the first block. Continuing in this way, we obtain all common
roots.

The algorithm extends to arbitrary systems as any finitely solvable system of polynomial
equations can be turned into an equivalent system in triangular form [37, 16, 20] by computing a
Grobner basis [3] with respect to a purely lexicographic ordering.
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7 Conclusions

The presented bound is the first constructive root bound that guarantees linear dependence on
the degree bound for all types of expressions. The work rises several interesting question. How
does our bound compare to other bounds, theoretically and experimentally? Is the application to
(tridiagonal) systems of polynomials of any computational value?

Acknowledgement: We want to thank Susanne Schmitt for helpful comments.
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