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Abstract

A refined heuristic for computing schedules for gossiping in the telephone
model is presented. The heuristic is fast: for a network with n nodes and m
edges, requiring R rounds for gossiping, the running time is 0(R-n - log n - m)
for all tested classes of graphs. This moderate time consumption allows
to compute gossiping schedules for networks with more than 10,000 PUs
and 100,000 connections. The heuristic is good: in practice the computed
schedules never exceed the optimum by more than a few rounds. The heuristic
is versatile: it can also be used for broadcasting and more general information
dispersion patterns. It can handle both the unit-cost and the linear-cost
model.

Actually, the heuristic is so good, that for CCC, shuffle-exchange, butter-
fly de Bruijn, star and pancake networks the constructed gossiping schedules
are better than the best theoretically derived ones. For example, for gossip-
ing on a shuffle-exchange network with 213 PUs, the former upper bound was
49 rounds, while our heuristic finds a schedule requiring 31 rounds. Also for
broadcasting the heuristic improves on many formerly known results.

A second heuristic, works even better for CCC, butterfly, star and pancake
networks. For example, with this heuristic we found that gossiping on a
pancake network with 7! PUs can be performed in 15 rounds, 2 fewer than
achieved by the best theoretical construction. This second heuristic is less
versatile than the first, but by refined search techniques it can tackle even
larger problems, the main limitation being the storage capacity. Another
advantage is that the constructed schedules can be represented concisely.



1 Introduction

Gossiping. Collective communication operations occur frequently in parallel com-
puting, and their performance often determines the overall running time of an ap-
plication. One of the fundamental communication problems is gossiping (also called
total exchange or all-to-all non-personalized communication). Gossiping is the prob—
lem in which every processing unit, PU, wants to send the same packet to every other
PU. Said differently, initially each of the n PUs contains an amount of data of size
h, and finally all PUs know the complete data set of size h - n. This is a very com—
munication intensive operation. Gossiping appears in all applications in which the
PUs operate autonomously for a while, and then must exchange all gathered data
to update their databases. Gossiping belongs to the most investigated communica-
tion problems. Many aspects of the problem have been investigated for all kinds of
interconnections networks [2, 4, 5, 6, 10, 14, 19].

We study gossiping in the telephone model: it is assumed that a PU can exchange
data with only one other PU at a time, and that this connection is bidirectional. We
focus on networks with a known but not necessarily regular structure. Such networks
may represent a set of nodes in the internet, the servers of a banking institution or
the processors of a parallel computer. As computing optimal gossiping schedules is
NP hard for general networks, we have to resort to algorithms that find sub—optimal
schedules.

Heuristics. In this paper we present two heuristics for constructing gossiping
schedules and our experiences with them.

The matching heuristic combines simplicity and versatility and gives very good
performance. It can handle both the unit-cost and the linear-cost model (all defini—
tions are given in Section 2) and all kinds of initial packet distributions. Particularly,
it is also suited for computing broadcasting schedules. The matching heuristic op-
erates in rounds. In each round, it constructs a maximum weighted matching of the
graph underlying the interconnection network. The pairs of matched PUs commu-
nicate. The non-trivial part is how to set the weights so that the gossiping time
is minimized. In the linear-cost model, one also has to determine how much and
which data is going to be communicated. Other interesting aspects are the value of
look-ahead, and whether one might also compute approximate matchings without
incurring performance losses.

The coloring heuristic works differently: initially a small set of matchings is
constructed, and then schedules composed of these matchings are tested. Basically,
the algorithm performs an exhaustive search through all possible schedules, but
the order in which the schedules are tested is optimized and many less promising
schedules are pruned out. In principle the coloring heuristic can be applied to any
network, but it is most useful for g-regular networks that allow a g coloring: a
decomposition of all edges in 9 perfect matchings.

Previous Work. Heuristics have been applied for computing communication
schedules since many years [18]. The matching heuristic has been applied to several
communication problems by Fraigniaud and Vial [7, 8, 9]. Though the underlying
idea is the same, our paper goes beyond [7] in many respects. In [7], the matchings
are computed for graphs that are weighted by considering the number of packets
that may be transferred over each edge (for point-to—point communication, in [8]
a modified weighting is applied to keep packets on a shortest path). This is a



good idea, in Section 4, we consider it under the name potential approach, but often
substantially better results can be achieved by attributing the edge weights according
to more global criteria, as is done by our BFS approach. Furthermore, we introduce
a quite sophisticated technique for gossiping in the linear-cost model; we consider
the implications of using approximate matchings; we study the value of look-ahead.
The efficiency of our implementation makes the heuristic effective for large graphs,
and allowed us to perform sets of experiments that are sufficiently large to draw
meaningful conclusions. All this is complemented with the coloring heuristic and
the discovery of many new results for important classes of networks, suggesting new
theoretical research.

Benchmarks. Gossiping in the unit-cost model has been studied for numerous
networks. However, (almost) matching lower and upper bounds have been found
only for few classes of graphs underlying the network [12, 3]. For the linear—cost
model even fewer results could be found in the literature. As our algorithm is close
to optimal, we need very accurate estimates to evaluate its precise performance.
We have done two things. In the first place, we have written an exponential-time
exhaustive search. This program gives optimal gossiping schedules for graphs with
up to 20 nodes and 30 edges. In the second place, we have studied linear-cost
gossiping in detail for meshes and tori. The derived schedules are almost optimal,
even for odd side lengths. As far as we know, these results are new.

graph 77. m LW UP HR time
Meshgoxgo 6400 12640 158 158 158 22800
Hypercubem 8192 53248 13 13 13 8839
Kn6d€l13,3192 8192 53248 13 13 15 10571
Butterflylo 10240 20480 16 25 24 11021
DeBruijn13 8192 16381 18 41 25 9144
Pancake7 5040 30240 13 17 16 2688
Randomloooofioooo 10000 80000 14 T? 17 35393

Table 1: Quality of the matching heuristic for graphs taken from various classes.
From left to right the columns give the number of PUs, the number of connections,
the lower bound, the best—known upper bound, the value computed by our algorithm
and the time in seconds it took to compute the schedule. All results are given for
the unit-cost model.

Results. We thus obtained a set of benchmarks containing small graphs, meshes,
tori, complete graphs, hypercubes, Knédel graphs, cube-connected-cycles, shuffle-
exchanges, butterflies, de Bruijn graphs, star and pancake graphs, and random
graphs. A small selection of the results obtained with the matching heuristic are
given in Table 1. The graph properties of these classes are so diverse, that we believe
that if a heuristic performs so well for all of them, it will also perform well for graphs
that cannot be analyzed theoretically. Generally, the number of rounds required by
the matching heuristic appears to be away from the optimum by some slowly increas-
ing number. For networks with n PUs and m connections, the worst-case running
time of the matching heuristic is bounded by 0(n4 - m). However, for all above
mentioned classes of networks, the running time is bounded by (9(R ~ n - log n - m),
where R equals the number of rounds the gossiping schedule requires. In practice,
on a normal workstation, a schedule for a graph with a few thousand nodes can be



computed in less than one hour.
The coloring heuristic has been applied to cube-connected-cycles, butterflies,

shuffle-exchanges, de Bruijn graphs, star and pancake graphs. It is much faster than
the matching heuristic: even for graphs with thousands of nodes a solution is often
found in less than one minute. For the cube—connected-cycles, butterflies, star and
pancake graphs the coloring heuristic outperforms the matching heuristic using no
more than g matchings, where g is the degree of the graph. Particularly nice results
are obtained for butterflies (e.g., 22 rounds for Butterflylo with 10240 nodes) and
pancake graphs (e.g., 15 rounds for Pancake; with 7! nodes). A great advantage of
this approach is that the schedules can be represented concisely.

Discoveries. The newly obtained results show that some of the theoretical con-
structions are far from optimal. For gossiping on a shuffle-exchange and de Bruijn
networks of order k, the current upper bounds are 4- k — 3 and 3- k + 2, respectively,
[12]. Our algorithm suggests that the true values are [2% -k] — 3 and 2 - k — 2, respec-
tively. For all cube-connected-cycles, butterfly and pancake graphs the constructed
schedules improve the former ones [12, 3] by several rounds. Also for broadcasting
we find many new results.

2 Preliminaries

We are studying interconnection networks with n PU5 and m connections. The
network will be identified with its underlying graph: PUs correspond to nodes and
connections to edges. The PUs can send/receive packets to/from the PUs it is
connected to, its neighbors.

Communication Problems. Gossiping can be described as follows: initially
each PU holds a certain amount of private information; by communicating, the PUs
should establish the situation in which all PUs know all information. The complete
specification of the times each of the PUs is communicating with each of its neighbors
is called a gossiping schedule. Broadcasting is the simpler problem in which initially
only one PU holds a piece of information that must be made known to all other
PUs. Both problems are subproblems of the more general problem in which the
initial amount of data of PU,- has size hi. For gossiping all the h,- are equal, for
broadcasting all but one h,- are zero.

Communication Models. For the solution of the gossiping problem the commu-
nication model is of great importance. In the all-port model each PU can exchange
information with all its neighbors at the same time. The other extreme is the tele-
graph model, in which a PU can be involved in only one communication operation:
either receiving or sending, but not both. In the telephone model, a PU can com-
municate with only one of its neighbors at a time, but it can both send and receive
during this communication. In this paper we assume the telephone model, though
our heuristic might easily be extended to the telegraph model.

Cost Models. Next to the communication model, the cost model is of great
importance. In the unit-cost model it is assumed that it takes one time unit to start-
up communication with a neighbor, but that the actual data transfer takes negligible
time. In this case, it is natural to assume that all communication is performed in
discrete rounds, and for a given graph the goal is to determine a gossiping schedule
that minimizes R, the required number of rounds. For large data sets or slow



connections, this model may not be realistic. A two—parameter model gives a more
accurate description of the actual communication behavior: transferring a packet of
size 3 to a neighbor takes 1 + T - s time. 7' is the time it takes to transfer one packet
divided by the start-up time. Under this linear—cost model, it is not always optimal
to exchange the maximum amount of information. Our heuristic is taking care of
this. It might also be profitable to have PUs work asynchronously. The heuristic
can be modified to incorporate this possibility, but it would lead to a considerable
increase in computation time. Therefore we continue to assume that the rounds
are synchronized. In that case, the goal is to determine a gossiping schedule that
minimizes

T — R + T'grzfl<31§{sz’t},

where 3i,t denotes the number of packets PU, is sending in round t. While R is
called the number of rounds, S = ZKR maxi<n{s,-,t} will be called the number of
steps.

Graph Classes. We are considering graphs of several classes. Here we mention
only some fundamental parameters. Definitions and more details can be found in
[6, 12, 3, 15]. n and m denote the number of nodes and edges, LW and UP the
current lower and upper bounds for R.

Meshaxb: 2-dimensional a x b mesh. n = a - b, m = 2 - a - b— a — b, LW= a+b — 2.

Torusaxb: 2-dimensional a x b torus. n = a - b, m = 2 - a - b, LW= (a + b)/2.

Hypercubek: k-dimensional hypercube. n = 2’“, m = k/2 - 2k, LW= k, UP = k.

Knb'delAlk: Knodel graph. 71 = k, m = k - A/2, LW 2 [log k), UP = [log kl, for
A = [log k].

CCCk: k-dimensional cube—connected-cycles. n = k - 2k, m = 3/2 - k - 2k, LW 2
[5 - k/2l — 2, for k 2 5, UP: 5- [It/2].

SEk: k-th shuflie-exchange graph. n = 2", m = 3/2 - 2k — 3, for k even, and
m=3/2~2k—2,forkodd,LW=2-k—1,UP=4-k—3.

Butterflyk: k—th butterfly. n = k ~ 2’“, m = 2- k -2k, LW = 1.741 ‘k, for k >> 1,
UP 2 5- [Ir/2].

DeBruijnk: k-th de Bruijn graph. n = 2’“, m = 2-21“ - 3, LW= 1.317-k, for k >> 1,
UP = 3 - k + 2.

Stem, Pancakek: k-th star or pancake graph. n = k!, m = (k — 1) - kl, UP 2
k + 21:31 [log 1'], for k 3 3.

Randommb: Random graph from gm. n = a, m = b, LW= [logz a] + 0dd(a).

Here odd(n) = n mod 2. Bounds for gossiping in the linear-cost model are rare.
Obviously, on a network with n PUs, every PU must receive h - (n — 1) packets.
Thus, for any schedule, S 2 h - (n —— 1). Because R 2 [log n] + 0dd(n) [13], the
following trivial lower bound holds for all h, 7' and any network:

T2[lognl+0dd(n)+T-h-(n—1). (1)



3 Gossiping on Meshes and Tori
In a d—dimensional mesh the PUS are laid out on a d—dimensional grid. Each PU
is connected with its at most 2 - d neighbors. A torus is a mesh with additional
‘wrap-around’ connections, connecting the PUs on the outsides with the PUs on the
opposite outside. Meshes and tori are so simple, that almost optimal schedules can
be derived for them even for the linear—cost model. In a different context gossiping
on meshes has been studied in [11]. A path (one-dimensional mesh) with n PUS is
denoted by P“, a cycle (one—dimensional torus) by On, an a x b mesh by May, and an
a x b torus by T”. The PUs are indexed by their positions in the grid. The indices
for every dimension start with 0.

Lemma 1 For gossiping on paths and cycles of length n,

) = n—1+T-h-(2-n—3),foreverye'uenn22,
) = n+T-h-(2-n—3),f0revery0ddn25,
) = n/2+T~h-(n—1), for every evenn22, (2)
) = Ln/2j+2+T-h-(n+1), for every oddn23. (3)

Proof: The first three schedules alternatingly use the edges (2 - i, 2 - i —+— 1) and the
edges (2 - i + 1, 2 - i + 2). A node is always sending all packets that are unknown
to the receiving node. The first round consists of one step, all other rounds are
two steps long. Only for the case of gossiping on paths of odd length, the situation
is slightly different: one extra round is required, and during the last two rounds
the PUs send at most one packet. For cycles of odd length, node 2' remains idle
during round i. This leaves a unique maximum matching: giving the active edges
for round i. Whenever node 0 is communicating with node 1, it has a choice of 3
packets to send. It chooses the 2 that it knows longest. All rounds consist of 2 steps,
except for the first and the last round, which take one step each. El

(3) shows that, on a cycle of even length, gossiping can be performed optimally:
both the number of rounds and the number of steps are minimal. For the paths the
number of steps is almost twice as large as the lower bound.

Lemma 2 For gossiping on a X b meshes and tori,

H ( )Sa+b—1+7’-h-(a-b+a—1),f0ra,b22even, (4)
T(Mab)_<_a+b—1+7-h-(a-b-l—3/2-a—3), fora22 even,b230dd,

(MM)Sa+b+r-h-(2-a-b—a—~3), fora,b250dd,
TTab)

)
)

v

()
( =a/2+b/2+T-h-(a-b—l),fora,b226ven, ()

T(Ta,b la/2l+b/2+2+T'h-(a-b+1), fora230dd,b22 even, (7)

T(Tab la/2l+lb/2J+4+T-h-(a-b+2-a+1),fora,b23odd. ()y

S
S

Proof: All schedules consist of two phases, In phase 1 the gossiping is performed
within the rows. In phase 2, gossiping is performed in the columns. The cost of
these phases is estimated with Lemma 1. For tori the rows and columns constitute
cycles, for meshes they are paths. For meshes, if a is even, then phase 2 is performed
in pairs of adjacent columns that together constitute cycles of length 2 - b. If also b



is even, the same applies to phase 1. When a is even, either two or four (depending
on the parity of b) PUs on each cycle hold the same information at the beginning of
phase 2. Thus, for the analysis of phase 2, we may assume packets of size h - a/2. If
a and b are even, then the first round of phase 2 is omited. El

The result of (6) is optimal. The number of rounds is always optimal or close to
optimal. Only for meshes with a and b odd the number of steps is a factor two too
large. For 3 x 3 meshes we have an explicit construction with R = 5 and S = 11,
which is optimal. In the following we describe an algorithm that gives a better
trade-off between the numbers of rounds and steps for general odd a and b.

Round 1 & 2 Round 3 & 4 Round 5 & 6 Round 7 & 8 Round 9 & 10 Rfl’ound’ll &;12
"0—9 "0—0 -- "0—9 --o—o 4: gm. 9%

' l .: I

l

Figure 1: Gossiping schedule for a 3 x 7 mesh. The solid and dotted lines represent
the active link in the first and second round in each figure, respectively. In the first
10 rounds we gossip along the changing cycle. Excluded nodes are marked with
small circles. They will be short of at most 6 superpackets before the last 2 rounds.
The nodes that know superpacket a are marked with grey discs. The first round uses
one step, the last round uses 4 steps and all other rounds use 2 steps. Altogether
we need 25 steps, 5 more than the minimum for n = 20.

It”? was“

Lemma 3 For gossiping on a (a x b) mesh with a and b odd:

T(Ma,b) Sa+(3-b+3)/2+T'h'(la/3l-(3-b+4)+2-a—3).

Proof: The algorithm consists of two phases. In phase 1, the gossiping is performed
within the rows. In phase 2, the gossiping is performed in vertical strips consisting
of two columns each, except for one strip of width three.

We first consider gossiping on 3 x b meshes, showing that generally

T(M3,b) s (3'b+3)/2+T-h'(3-b+4).

Because b is odd, the 3 X b strip cannot be turned into a cycle of length 3 - b. If we
would use a fixed cycle of length 3 - b — 1, then the excluded PU still would have to
receive all packets at the end, requiring h-a-b steps. Therefore, we use [(3-b~ 1)/4]
different cycles. During round 1 and 2, the excluded PU is located at position (0,2).
Hereafter, it shifts up one row every other round, alternating between column 1
and 2. Because these changes are local, they do not disturb the dissemination for
most of the packets. After (3 - b — 1) /2 rounds, all but four packets are known by
all nodes except by those that missed two gossiping rounds. The other four packets
are known by at least 2 - b —— 2 nodes and can be disseminated to all other nodes
within two rounds and six steps. The construction is illustrated in Figure 1, details
are given in [17].



In our case the packets are actually superpackets, consisting of h-a/3 real packets
each. This means that the number of steps has to be multiplied by h - (1/3. The
gossiping on the 2 X b strips can be performed faster, but it should be modified to
also require about 3 - b/2 rounds. This can be easily achieved by sending h - (1/3
packets in the first round and 2 - h - a/3 packets in the further rounds. El

k=5

Figure 2: A 25 x 11 mesh divided into 12 strips. All strips contain an even number
of nodes except for the leftmost strip with 27 nodes. The constructed cycles have
length 26 at most and finish gossiping within 13 rounds. The nodes drawn as small
circles are idle for 4, 2, 2, 2 and 3 rounds respectively.

This construction asymptotically minimizes the number of steps at the expense
()f [b/2j + 4 additional rounds. Better trade—offs are possible: both the number of
steps and the number of rounds can be made asymptotically optimal.

Lemma 4 For gossiping on a x b meshes, a and b odd, the following result can be
achieved for all 3 S k < b:

T(Ma,b) s a + b+ W21 + T - h - ((a + 1) . (b+ b/k + [9/2 + 7/2). — 13/2)

Proof: We use vertical strips of width 2 for most of their height and width 3 for
some consecutive rows. The leftmost strip contains 2 - b + k nodes with 3 S k < b
odd. All other strips are smaller with an even number of nodes. In each strip we
gossip on cycles of even length for (2 - b + k —— l)/2 = R’ rounds. The routing in
the leftmost strip is most critical. As in the proof of Lemma 3, the gossiping in the
other strips can be tuned so that it has no impact on the duration of the rounds.

Each node in the leftmost strip is starting with a superpacket of size h - [rt/2].
The cycle is changing, using [C different idle nodes 1),, 0 S i < k. The U, are idle for
l,- successive rounds, 00 first, then m, and so on. The idea is illustrated in Figure 2.
The l, are chosen so, that 2, l, = R’, LR’/k_| — 1 S l, g [R'flc] + 1 for all k and l,-
even for 0 g 'i < k — 1. If node vi becomes idle in round 7”, then the two superpackets
it received in round r — 1 from its neighbor v are resent by v to vi_1 in round 7‘ + 1.
This causes a delay of two rounds for all packets passing 1; in this direction. Because
all l, are even for 2' < k — 1, only packets traveling in a counterclockwise sense are
concerned. Thus, only nodes in column 1, and none of the 11,, will be short of some
packets due to this delay. They can be informed by adjacent nodes from column 0
in one additional round which is also used to supply the v, with the at most 2 - l,-
superpackets they have missed. Phase 1 takes a + 7' - h - (2 - a — 3) time. The
first R’ rounds of phase 2 require [(1/2] - (2 - b + k — 2) steps, the additional round
[CL/2] - 2 - max,{li} S (a +1) - (b/k + 5/2) steps. El



For k = x/l), the x/ b/2 additional rounds as well as the a. (3/2 - «5+ 7/2) additional
steps are lower-order terms. The results can be immediately generalized to higher
dimensional meshes and tori:

Lemma 5 For gossiping on d-dimenslonal a1 X x ad meshes and tori,

(1 cl

T(Ma1,...,ad) g 2a, — d+1+ 'r - h - (H a, + a1 — 1), all a, Z 2, all a, even,
i=1 i=1

(1 d

T(Ta1,...,ad) g Zai/Z + 'r - h - (H a, — 1), all a,- 2 2, all a,- even.
i=1 i=1

Proof: For d—dimensional meshes, phase 3' is performed in cycles of length 2-a,. For
j > 1, the first round can be omited. At the beginning of phase j, the superpackets
are of size h - H{;11a,/2. Thus, phase j requires (2 - aj — 2) - h - Hi: ai/2 =
h - Hill a,- - (a, — 1) steps. Summing over all phases gives the result. The analysis
for tori is similar. 1:!

4 The Matching Heuristic: Description and Analysis
4.1 Description

Given a undirected graph representing the underlying network, the heuristic com-
putes a gossiping schedule, which for each round specifies the active edges and the
routed packets. For each round, based on the current data distribution in the net-
work, the heuristic first determines the edges that are going to be used. Then, for
the linear-cost model, it selects the packets that are going to be transferred. Finally,
the data distribution as it arises after routing the selected packets is determined.
Such rounds are repeated until the gossiping has been completed.

In the considered telephone model, a node can exchange data with only one neigh-
bor per round. Thus, for every round, the set of active edges must form a matching
of the graph. Actually, the heuristic constructs a maximum-weight matching for
a graph whose edges are weighted as a function of the packet distribution in the
network: the more useful it appears to use an edge, the higher its weight. In the
unit-cost model, there is no limit on the number of packets that can be exchanged
during a round between two communicating PUs. On the other hand, in the linear-
cost model, for each round t its number of steps 3; has to be fixed. Choosing 3t
equal to the maximum number of packets any PU wants to transfer to a matched
neighbor might be ineflicient, because many other PUs may run out of packets in
fewer than 3, steps. Choosing 3, too small is inefficient, because then the start-up
costs are not amortized optimally. Thus, st must be chosen as a trade—off between
extra start-up costs and wasted transfer capacity. Once 5; has been fixed, we have to
decide for each active edge which packets to transfer. For this purpose each packet
is assigned a priority and the at most 3, edges with highest priority are transferred.
The operations performed in each round can be summarized as follows:

Algorithm ROUND_HEURISTIC
1. Compute the weights for all edges.
2. Construct a maximum weighted matching. Matched edges are active in this
round.



3. In the linear-cost model: Fix the number of steps for this round.

4. In the linear-cost model: For each active edge, choose the set of packets to be
transferred.

5. Calculate the packet distribution as it arises after transferring all selected
packets.

The crux of the heuristic lies in step 1: how to set the edge weights? We use two
different methods.

Potential Approach. The weight of an edge (11,111) is set equal to its potential,
defined as the number of packets known by either 1; or w, but not by both of them.

Lemma 6 Using the potential approach, calculating the edge weights of a graph with
n nodes and m edges takes 0(n . m/log n) time and (9(n2/log n) space.

Proof: An array of n bits is used to store for each node the packets it already
knows. For n nodes we need (9(n2) bits storage. For each edge, the exclusive-or of
two arrays of n bits can easily be computed in O(n) time. Using that log n bits fit in
one word, and that exor can be performed on words, the time and storage bound can
be reduced by a factor log n. number_of_ones is not a standard operation, but it can
be determined in constant time by precomputing a table of size n and table-lookup.
El

BFS Approach. The potential approach is simple, requires little storage and is
very fast, but as a pure local, greedy approach it lacks a global view. The Breadth-
First-Search (BFS) approach, though far more expensive, is much better in that
respect.

Definition 1 The dispersion region DR(p,t) of a packet p is the set of nodes that
know p at the beginning of round t. For a node v, dist1,( ,t) denotes the shortest
distance in the graph from v to a node w E DR(p, t). The set of border—crossing
edges bce(p,t) is defined as bce(p,t) = {(v,w) E El ’1) E DR(p, t) and 11: ¢ DR(p,t)}.
For a node 1) ¢ DR(p, t), bcev(p, t) consists of all edges in bce(p, t) that lie on a
shortest path from DR(p, t) to 1).

Obviously, the subgraphs induced by the dispersion regions are connected. The
above notions are illustrated in Figure 3.

Figure 3: The dispersion region DR(p, t) for some packet p. The edges of bce(p,t)
are drawn bold. distv(p,t) = 3 and bcev(p,t) = {e1,e2}.

The weight attributed to an edge is given as the sum of the contributions by each
of the data packets p. Only border—crossing edges can disseminate p further and will



be provided with weight. Consider an edge e E bce(p, t). How useful is e for the
rapid dissemination of p? Packet p should preferably be routed on shortest paths
from DR(p, t) to all other nodes: if, for a node 1), an edge e E bcev (p, t) is chosen to
be active in round t, then distv(p,t + 1) = distv(p, t) — 1. If e lies on many of these
shortest paths it is more useful. The larger dist” (p, t) is, the more priority should
be given to forwarding p towards 11. These criteria motivate the following choice of
the weight, involving parameters Dist_Exp and Num_Ezp, that is attributed by all
nodes 11 ¢ DR(p,t) to every edge e 6 been (p, t):

. distv (p, t)Dist-Ezp
weight(v,p, t) —W, (9)

In round t, for all data packets p, we have to compute distv (p, t) and bcev (p, t) for
all nodes i). We use a modified breadth first search algorithm, so nodes are considered
in order of increasing distv (p, t). The edges in bcev (p, t) are maintained in sorted lists
and computed as follows. For all nodes i) E DR(p, t) the set bcev (p, t) is empty. For
nodes '0 with dist” (p, t) = 1, bcev(p, t) consists of all incident edges that connect 1)
to a node in DR(p,t). For larger distv(p,t) the algorithm computes the union of
the sets bcew, (p, t), for all nodes w, adjacent to v with distw, (p, t) = distv(p, t) — 1.
If the number of these it), equals j and Z,- lbcew, (p, t)| = l, then this union can be
computed in (9(1 - min{log j, log(m-j/l) + 1}) Thus, the calculation of the bee, (p, t)
can easily be incorporated into the BFS search.

Lemma 7 Computing the edge weights for a graph with n nodes and m edges us-
ing the BFS approach without considering the time to maintain the sets of border-
crossing edges bcev(p, t) takes O(n-(n+m)) time and 0(n2/log n) space. Computing
the bcev(p,t) takes (9(n3 - m) time and (9(n - m) space.

Proof: The modified BFS algorithm is called for all n packets. Without maintaining
the bee, (p, t) the time for one call is 0(n + m). Each of the n dispersion region can
be maintained with n bits. For a node 1), (ice, (p, t) is the union of at most it sets with
at most m elements each. This computation takes O(n - m) time. The bcev (p, t) are
computed for all p and 1), giving a running time of (9(n3 - m). At any given time, at
most n sets bcev (p, t) are stored, each of maximal size m. Working with bit arrays,
a factor logn is saved again for time and storage. El

Because the gossiping takes at most n rounds, the total time-consumption is bounded
by (’)(n4 - m). Figure 4 gives a graph with m = @(nz), for which the computation
of the contributions to the weights caused by a single node p takes 9(n4) time. So,
the estimate in Lemma 7 might actually be sharp.

Linear-Cost Model. In step 2 of ROUNDJHEURISTIC, a maximum weighted
matching M is constructed that determines the active links. Thereupon, in the unit-
cost model, a PU sends all packets that are new to the receiver. In the linear-cost
model, the packets that are going to be routed along the active links are determined
in step 3 and 4. We now describe how this is done.

Let 73(1)) denote the set of packets known by a node v, and let
Transfer- Volume(s, M) be the number of packets that can be sent in 3 steps along
all edges in M:

Transfer- V0lume(s,M) = Z Inin{s, I’P(v)\'P(w)|} + min{s, |P(w)\73(v)|}
(v,w)€M
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Dispersion Region

all DR,“ (1), t) have size n/4

all DR“, (p, t) have size 712/16

Every node has n/4 predecessors

Figure 4: Example for a set of border-crossing edges of maximal size. Each of the
levels consists of 71/4 nodes. In each level, all nodes have the same distance to
the dispersion region. Edges exist between each pair of nodes in adjacent levels.
There are n2 / 16 border-crossing edges altogether. For each node in level 3 the set
of border-crossing edges is computed from n/4 sets each of size 712/16. This takes
9(n4) time. When these costs apply for the dispersion regions of all packets, then
9(n5) time is needed.

We want to maximize the number of transferred packets per cost unit. Let sopt be
the value of s, 1 S s < n for which the expression Transfer. Volume(s, M) / (l-l-T-h-s)
is maximized. This value Sopt can be computed in C’)(n) time. We limit the round
to Sept steps. sopt depends on T, the ratio of transfer costs to start-up costs: larger
start-up costs result in longer rounds and vice versa. sopt is the best choice for
the current round, but does not guarantee optimality on a longer time scale. In
particular the choice of sop, is not optimal, if the gossiping can be finished in the
current round. The heuristic tests for this possibility.

Now we have to choose the packets that are going to be transferred. This is done
by assigning weights to the packets and then picking for each PU the at most sopt
packets with the highest weights larger than zero. For a node v with e = (v, w) E M,
a data packet p it is holding is given the weight that is assigned to 6 during the BFS
search for p. If the edge weights are stored for each of the data packets, then these
weights can be determined without additional work. However, this may require
9(n - m) storage. It is better to compute the packet weights only after the active
edges have been selected. In this way, less than n weights must be stored for each
of the n/2 edges in M.

4.2 Refinements and Extensions

Look-Ahead. For tori and hypercubes with an equal packet distribution, the
heuristic computes equal weights for all edges, independently of the parameters
used. In this case the weighted matching in step 2 of ROUND_HEURISTIC is not more
than a maximum cardinality matching. For hypercubes many different maximal
cardinality matchings exist, and only a few lead to an optimal gossiping schedule.
If we assume that in case of equal weights, the constructed matching depends on
the order in which edges are stored in memory, the heuristic cannot find an optimal
schedule for some inputs without look-ahead. For some graphs the quality of the
calculated schedules indeed depends on the input order of the edges. The optimal
results in Table 1 for hypercubes and tori are found for the most natural ordering of
the edges, but if they are permuted before applying the heuristic, a few extra rounds
are required.

The above considerations show that a round-by-round optimization cannot al-
ways lead to optimal results. A more refined approach considers several matchings

11



for a round, computes the resulting distribution of packets l rounds later, com-
pares them and then chooses the most promising matching. We use two methods
for generating a set of matchings. In step 2, ROUND_HEURISTIC constructs a maxi-
mum weighted matching Mopt. To obtain a suboptimal matching we may randomly
choose a small number of edges from Mopt, temporarily set their weights to 0 and
compute a new weighted matching. Another method uses different parameters for
(9) which leads to different edge weights. Unfortunately, there is no guarantee that
also the resulting matchings are different, and the cost for recomputing the edge
weights is high. Starting with several possible matchings M1, . . . ,Mj, we obtain
packet distributions D1, . . . Dj after I rounds. We should select the matching Mi
that leads to the packet distribution D, for which the gossiping can be finished
fastest. For this selection, we should define a function that attributes some measure
of cost to packet distributions. This function should be relatively simple, because
its evaluation determines the overall running time. Accuracy is not so important,
because it constitutes a secondary heuristic. For a packet distribution D, dist” (p, D)
denotes the distance in the graph from the node v to the dispersion region of the data
packet p under D. For a parameter DisLEarp’, that may be different from Dist_E:cp
in (9), we define the following function, that can be evaluated in O(n- (n+m)) time:

cost(D) : Z Z distv(p, D)Di5t‘Ez”'.
p<nv<n

Approximate Matching. Since constructing the maximum weighted matching in
step 2 consumes up to 60% of the running time, we are interested in approximation
algorithms with a smaller time complexity. [16] introduced a (9(n + m) algorithm
that computes a matching with weight at least 1/2 of the optimum. We use the
simpler 0(m - log n) algorithm from [1]

Broadcasting. The heuristic is also suitable for computing broadcasting sched—
ules. The algorithm is the same but now the distribution of only one data packet
determines the edge weights. With the potential approach, all edge weights are set
to 0 or 1. With the BFS approach optimal results can achieved for many graph
classes. Since the edge weights are computed n times faster, the computation of the
maximum weighted matching dominates the running time. Fortunately, even the
matching is much easier, since in many cases there are only few edges with non-zero
weights, particularly during the first rounds. As also the storage requirements are
much smaller than for gossiping, broadcasting schedules can be computed for graphs
with up to one million nodes.

5 The Matching Heuristic: Practical Behavior
5.1 Running Time

In order to analyze the running time, we have tested graphs with up to 16384 nodes
from numerous classes of graphs (in total we performed 93 measurements, at least
seven for every class, except for pancake and star graphs). We focus on the unit-cost
model: for the linear-cost model, the heuristic takes at most twice as long. The total
time consumption Ttotal has two main contributions: the time TM for constructing
the maximum weighted matchings; and the time TH for all the rest. TM varies
considerably, but the matching can be viewed as an external routine. Therefore, it
is not unreasonable to focus on TH. Inspired by theoretical considerations, we have

12



tested several functions that might describe TH as a function of n, m and the number
of required rounds R. Somewhat surprisingly, for all classes of graphs, TH can be
approximated to within a few percent by a single function of just two parameters:

Tapp(n,m,R)=a-R-n-m-log(n)+,3'R-n2. (10)

The values of a and B depend on the class of graphs. Table 2 gives the optimal
values for the considered classes of graphs. The first term is probably due to the
cost for maintaining the sets of border-crossing edges, the second term gives the cost
for handling all nodes. In some sense the values of a and fl give a measure for the
hardness of the graph classes, their ratio tells which of the two terms dominates.
For meshes, for example, it can be understood that the parameters are small (many
easy steps) and that the second term dominates (few border-crossing edges).

graph class a - 10-10 5- 10—8 Davg . 100 Dmax - 100 TMmm]
Mesh 72 x n 122 226 2.04 4.56 30% — 47%
Torus n X n 513 235 0.54 1.31 32% — 50%
Hypercube 939 254 1.88 3.33 17% — 21%
COO 1092 188 4.35 6.21 19% — 31%
Shuffle-Exch. 1371 123 3.80 8.47 28% — 43%
Butterfly 1188 174 2.23 3.63 17% — 27%
De Bruijn 1370 136 2.86 6.25 33% — 45%
Star 494 197 0.09 0.12 17% - 22%
Pancake 586 211 1.02 1.56 14% — 18%
Random 669 233 4.07 13.76 34% — 82%

Table 2: Parameters and properties for different graph classes. a and B are the
optimized choices for the parameters in (10). D3,vg and Dmax give the average and
maximum values of |Tapp(n, m, R) — THI/TH. The last column states how much of
the total running time is used for constructing the matching.

5.2 Quality of Computed Schedules

The quality of the heuristic heavily depends on the choice of the parameters. Partic-
ularly important is Dist_E:cp from (9) which determines the influence of the distance
between nodes and dispersion regions. We used values in the range from 0.25 to 60.
The optimal value depends on the the graph class, the size of the graph and the cost
model. For larger graphs larger values of DisLEzp tend to give better results. For
the linear-cost model, values between 0.5 and 2.5 are suitable. Better results are
achieved when Dist_E$p decreases from round to round. When using approximate
matching in step 2, then the optimum of Dist_Exp is usually higher than for exact
matching. For meshes, the best choice is Dist-E:cp = 4. For butterflies, the best
choice is Dist-E:I:p = 2.

For the unit-cost model, a selection of the results is given in Table 1. For cube—
connected—cycles, shuffle-exchanges, butterflies and de Bruijn graphs further results
are presented in Table 5. For meshes, tori and hypercubes the computed schedules
are optimal, though we should remark that for hypercubes a few extra rounds are
required if the nodes are indexed differently. Generally, for all cases in which the
lower bound is sharp, our heuristic comes rather close to it. Studying the develop-
ments for the graph classes in Table 5 gives the impression that with increasing R
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the heuristic looses a round every now and then. The series are not long enough to
quantify this statement.

T220 720.5 7:01 7:0
graph class n m R S R S R S R S
Mesh20x20 400 360 62 497 49 517 40 612 38 2713
Torusmxgl 441 882 34 488 30 486 28 528 23 1023
0007 896 1344 24 902 22 904 23 943 20 1139
SE10 1024 1533 63 2047 50 2051 37 2073 23 3933
Butterfly», 896 1792 39 1044 33 1107 22 1110 17 1229
DeBruijnw 1024 2045 46 1221 39 1270 31 1513 18 2733
Randomlooo’sooo 1000 8000 19 1009 18 1014 16 1028 13 1281

Table 3: R and S values achieved by the matching heuristic for various 7' values in
the linear-cost model for graphs taken from various classes.

For the linear-cost model we found the results in Table 3. These are typical
examples, not the best we could find. The adaptiveness of the heuristic is exposed
clearly: with decreasing T the number of steps becomes less important and gradually
increases. At the same time the number of rounds decreases. Comparing the results
for T = 0 and 'r = 0.1, shows that often S can be reduced considerably without
increasing R by much. Apparently, computing schedules for the linear-cost model is
much harder than for the unit-cost model: the deviations from the optimum values
(as far as known) are considerable. For example, for a 20 x 20 mesh, the heuristic
finds schedules with T(’T = 2) = 1056, T(T = 0.5) = 308, T(7' = 0.2) = 153,
T(7' = 0.1) = 102, respectively. All of these are about 25% more than required by
the schedule underlying (4), which has R = 39 and S = 419 for all T. All results
were computed with the BFS approach. For Knodel, Star and Pancake graphs, S is
optimal for all k independently of 7'. For cube-connected-cycles and butterflies S is
optimal for all even k.

5.3 Refinements and Extensions

Look-Ahead. Look-ahead is most useful for small graphs. Probably, the reason
is that, even though the number of matchings that lead to an optimal gossiping
grows with increasing graph sizes, the ratio to all possible matchings is rapidly
decreasing. So it becomes much harder to find them by randomly testing suboptimal
matchings. One example for an improvement using look-ahead is the 5 x 5 mesh.
This is the only instance of meshes for which the simple heuristic was not able to
find an optimal schedule. For random graphs with 30 nodes and 60 edges, look-
ahead improves the result for about 40% of the graphs. We tested a maximum of
ten different matchings per round, computed another two rounds look—ahead using
only the optimal matching and compared the resulting distributions of packets.
Sometimes the result with look-ahead is worse than without. This is due to the
fact, that even when, cost(D1) < cost(’D2), for two distributions D1 and D2, it may
nevertheless take longer to complete ’D1 than D2.

Approximate Matching. Using approximative methods, the time for construct-
ing the weighted matching decreases from about 30% to less than 1% of the overall
running time. The quality of the schedules depends on the graph class. The larger
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k CCU;c SE1, Butterfly,C DeBruijnk
Opt HR Opt HR LB UB HR LB UB HR

6 6 5 5 5 5 5 4 6
9 9 7 ’7 7 7 7 6 8

11 11 9 9 8 9 9 7 9
13 13 11 11 10 11 10 8 11
16 16 13 13 11 13 12 10 12 9
18 18 15 15 13 15 14 11 14 11

9 21 21 17 17 15 17 16 12 15 12
10 23 23 19 19 16 19 17 13 17 14
11 26 26 21 21 18 21 19 15 18 15
12 28 28 23 24 19 23 22 16 20 17
13 31 5’1 25 26 21 25 23 18 21 18
14 33 33 27 28 23 27 24 19 23 20

o
o

q
a

m
a

b
w

m
fl
U

‘h

Table 4: Broadcasting in four different graph classes. Given is the best result of the
heuristic together with the current lower and upper bound, or the optimum value,
if they are identical. For SE;c and DeBruijnk, the results hold for broadcasting from
node 0 and several other nodes. For (ICC;c and Butterfly,c the results hold for any
source node. Italic printing indicates that the number matches the best previously
obtained value, bold printing indicates that the number improves the best previous
value. The “lower bounds” are not really lower bounds: they are computed with
the formulas in [12], which only hold asymptotically. Thus it may happen that for
DeBruz’jn7 the heuristic requires fewer rounds than given by the lower bound.

the graphs, the bigger the loss of quality. For meshes of almost all sizes the calculated
schedules are still optimal or at most one round away from it. For shuffle-exchange
graphs we loose at most one round, for de Bruijn graphs one or two. Generally, the
differences are not big, but if performance is important, then exact matching is to
be preferred. Approximate matching is particularly interesting, when the weighted
graph is constructed with the much faster potential approach. Approximate match-
ing is even more suited for broadcasting: the edge weights are computed in O(m+n)
per round, much less than the time for exact matching. Furthermore, for broadcast-
ing, the quality of the computed schedules is almost the same.

Broadcasting. Broadcasting schedules cannot only be computed much faster
than for gossiping, the structure of the problem is also so much simpler, that their
lengths are much closer to the optimum. Some results are given in Table 4. For
cube-connected—cycles and for shuffle-exchange graphs, optimal schedules are known,
so we could not hope to improve them. Nevertheless, it is very positive that our
heuristic, in a matter of minutes!, finds almost optimal results. For butterflies and
de Bruijn graphs, our heuristic improves the former constructions by a few rounds.

6 The Coloring Heuristic
The coloring heuristic is an alternative general gossiping heuristic. Initially, the
computer or the user constructs a set S of p matchings Mi, 0 S i < p, that appear
suitable for gossiping. Then the program tests for sequences (Mic, Mi, , . . . , MiR_,)
whether this is a gossiping schedule, until a solution has been found. By making
the right choice of S, by pruning most of the sequences and by enumerating the
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remaining ones in a non-trivial order, this simple idea can be turned into an approach
that beats the matching heuristic in speed and performance for several classes of
graphs.

The program essentially consists of R nested loops, implemented recursively. At
the top level, we start with one packet in every node. The operations in the loop at
level j, 0 S j <= R — 2, can be summarized as follows:

1. Consider all Mi, 0 S i < p, and filter out those that appear useless.

2. Sort the surviving matchings according to their estimated usefulness.

3. Apply the highest ranked matching that has not been tried before to the
current data set and proceed to level j + 1.

At level R — 1 the resulting data set is tested for completeness.

Choosing the Matchings. A good idea is to perform a minimum edge coloring of
the graph (whence the name of the heuristic) and then completing the sets of edges
with the same color to a maximal cardinality matching. Sometimes fewer matchings
will do, sometimes one should better add some more, but this approach gives the
smallest number of matchings that together contain all edges at least once. Clearly
this approach is most suited for regular graphs of degree 9 that allow a coloring
with 9 perfect matchings. Examples are cube-connected-cycles, butterflies, star and
pancake graphs.

Pruning Sequences. If, for given 8 and R, solutions exist at all, then typically
there are many of them. The goal is to minimize the time for finding one. So, we
should focus on parts of the search space where solutions lie most densely, pruning
out less promising sequences, even if we may miss some solutions by this. An
elementary observation is that we should have Mi]. # Mij_,, for all 1 g j < R.
This reduces the number of sequences from pH to p~ (p — 1)R‘1. For most classes
of graphs it was effective to also impose Mi]. ¢ Mij_2, for all 2 g j < R. This
reduces the number of sequences to p - (p — 1) - (p — 2)R‘2. Adding the condition
that each matching occurs at least once in every subsequence of p + 1 matchings
reduces the number of sequences even much stronger. Another filtering technique is
the following: if W packets are transferred when using the best matching, then we
consider only matchings for which at least f - W packets are transferred, for some
0 < f < 1. If it is applied with the right choice of f, this technique is the most
effective of all.

Focusing. In the current implementation the usefulness of a matching is estimated
by the number of packets that it allows to transfer (as in the potential approach).
For the matching heuristic there is a trade-off between time and quality. Here a more
elaborate ranking of the matchings is useful only if this leads to solutions faster. We
doubt that this is the case, because the precise order of the matchings at the earlier
stages of the recursion is not so important, while the latter stages can be rapidly
tested exhaustively.

Broadcasting. The coloring heuristic has also been implemented for broadcasting.
It is remarkably fast, but it cannot compete with the matching heuristic in quality:
the idea of working with a fixed set of matchings is limited to gossiping.
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k C'CC;c SEk Butterflyk DeBruijnk
LB UB HR LB UB HR LB UB HR LB UB HR

3 7 10 7 5 9 5 6 10 6 4 11 4
4 9 10 9 7 13 7 7 10 7 6 14 6
5 1 1 15 13 9 17 10 8 15 1 1 7 17 8
6 13 15 14 11 21 12 10 15 12 8 20 10
7
8

16 20 19 13 25 15 11 20 16 10 23 12
18 20 18 15 29 17 13 20 17 11 26 14

9 21 25 23 17 33 20 15 25 21 12 29 16
10 23 25 23 19 37 23 16 25 22 13 32 18
11 26 30 29 21 41 26 18 30 26 15 35 20
12 28 30 28 23 45 28 19 30 27 16 38 23
13 31 35 25 49 31 21 35 18 41 25
14 33 35 27 53 35 23 35 19 44 28

Table 5: Gossiping in four different graph classes. Given is the best heuristic re-
sult together with lower and former upper bound. The new lower bound for BF3
was found with the exact algorithm: trying all possible sequences of five maximal
matchings, shows that none of them can be used for gossiping.

7 Discoveries and Hypotheses
The heuristics were applied to regular graphs with known gossiping schedules for
testing their performance. Then it turned out that in many cases the schedules they
find are better than the best schedules in the literature. All results that could be
computed in a reasonable amount of time are given in Table 5 and Table 6.

For 000k, [12] gives an upper bound of 5- [Ir/2], our coloring heuristic achieves
better for all k. It appears that for even k the lower bound can be matched. The
results for odd k are less good. It may even be the case that R does not increase
monotonously with k. For SEC, [12] gives an upper bound of 4- k — 3. Our matching
heuristic achieves much better. The results suggest that going from k to k + 1
increases the number of rounds by 3 if k is even and by 2 if k is odd. This would
give an upper bound of [5/2 - k] — 3. For Butterflyk, [12] gives an upper bound of
5- [It/2]. Our coloring heuristic achieves somewhat better. The results suggest that
going from k to k + 1 increases the number of rounds by 4 if k is even and by 1 if k
is odd. This would give an upper bound of 3 - [Ir/2] + k — 3.

For DeBruijnk, [12] gives an upper bound of 3 - k + 2. Our matching heuristic
achieves much better. The results suggest that going from k to k + 1 increases the
number of rounds by 2. This would give an upper bound of 2 - k: — 2. Our results
for Stark and Pancake;c are better than those in [3] (for k = 3,4,5,6, 7, 8, the best
construction in [3] gives R = 3,6,9,13,17,21, respectively), but it is hard to draw
conclusions from this except for the fact that apparently pancakes are better suited
for gossiping than star graphs. This means that there cannot be a single general
optimal Caley graph gossiping strategy. In Table 4, for broadcasting, the differences
of the heuristic results with the lower bounds are so small, that they appear to be
sharp.
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Figure 5: Gossiping on Butterfly3 with n = 24 and m = 48. Indicated is the situation
at the beginning of each of the six rounds. In each picture, the matched edges are
drawn bold. The packet originating from some node v is placed at the position
within the rectangles that corresponds to the position of node v in the network.
The rounds take 1+ 2 +4 + 8 + 6 + 4 = 25 steps, two more than the trivial minimum.

8 Schedules and Examples
The matching heuristic constructs explicit schedules. These might be stored and
used for gossiping. However, only for small networks these are suited for human
interpretation. Figure 5 gives a schedule for Butterflyg with R = 6 and S = 25 as it
was computed by the matching heuristic. This graph is already of a complexity that
excludes any construction by hand: one has to resort to general approaches that are
far from optimal.

The matching heuristic has taught us that gossiping can be performed efficiently
by a sequence of matchings picked from a small set of matchings that are mutually
almost edge-disjoint. We have formalized this observation in the coloring heuristic
which specifically searches for such schedules. For CCCs, butterflies, star and pan-
cake graphs this leads to schedules that are as good or better as those found with
the matching heuristic. Before going in detail we consider Pancake; (see [3] for a
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k CCCk Butterflyk
R Schedule R Schedule

3 7 0120120 6 012320
4 9 012021202 7 0123023
5 13 2020120120210 11 02103231023
6 14 01202120212020 12 012030230123
7
8
9

19 2012010201202120210 16 0123012321032310
18 012120212021201212 17 01230123103230123
23 01212021202120212021210 21 012301231012321032031

10 23 01202012021202120210202 22 0123012301230123013210
11 29 01201201201202120212021202121 26 01230132012310231203210321
12 28 0121202120212021202120212101 27 012301230123012301230132103
k Stark Pancake;c

Schedule Schedule
010 010
012010 02102
012310320 01230130

13 0123402413203 11 02102432104
18 012345024153012540 15 012345021025012
22 0123456031526402143506 20 01234560245602456043
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Table 6: Schedules computed with the coloring heuristic and the resulting R and S
for four classes of graphs and various k.

definition and the best algorithm) as an example. The matchings are defined by a
3-coloring: color c, 0 S c < 3, consists of all edges between node (i0,i1,z'2,i3) and
the node with the first c+2 entries of its index reversed. The coloring heuristic finds
four schedules with R = 5 and S = 23: 02102, 12012, 20120 and 21021, the first
of these is illustrated in Figure 6. This shows that Pancake4 is a minimum linear
gossip graph for 24 nodes. Actually, it is the example given in [6]. In the following
we describe the matchings for the four most interesting classes of graphs, schedules
based on them are given in Table 6.

Cube-Connected-Cycles. The nodes are indexed by two-tuples (i, j), where
0 S 2' < 2’“, gives the index of the k-cycle on which this node is lying and where
0 g j < k, gives the index of this node within its cycle. We will speak of cross edges
for the edges between (2',j) and (i :1: 23,3), and of cycle edges for the edges between
(i, j) and (i, (j :l: 1) mod k). We use three matchings covering all edges of CCC';C
exactly once. For even k, M0 contains the edges between (1,2 - j) and (2', 2 - j + 1),
and M1 the edges between (i,2 -j — 1) and (2', 2 j-). M2 contains all cross edges.
For odd k the matchings must be slightly modified. Mo and M1 each contain Lie/2]
cycle edges: in M0, the nodes (2', k — 1) remain unmatched, in M1, the nodes (i, 0).
M0 additionally contains the edges between (2', k — 1) and (i :l: 2k’1,k — 1), M1 the
edges between (i, 0) and (i :1: 1,0). M2 contains all cross edges, except for those in
M0 and M1, plus the edges between (i,0) and (i, k — 1).
Butterflies. The nodes are indexed again by two-tuples (2', j), 0 S i < 2k, and
0 S j < k. The cycle edgeslare defined as before. The cross edges are now running
from a node (2',j) to (i :1; 23, (j + 1) mod k). For even k, Mo and M1 are taken as
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Figure 6: Gossiping on Pancake4 with n = 24 and m = 36. The rounds take
1 + 2 + 4 + 6 + 10 = 23 steps, the optimum.

for 000k. M2 contains the cross edges running from (i, 2 - j) to (2' i 22'], 2 'j + 1),
M3 the edges from (i,2 -j — 1) to (2' :t 22'j_1,2 j). For odd k, the matchings are
somewhat mixed up. Mo and M1 contain [ls/2] cycles edges from each cycle: for
0 S i < 2k—1, M0 contains the edges between (i,2 - j) and (i,2 - j + 1), for all
0 S j S (k — 3)/2, for 2k‘1 3 2' < 2'“, the edges between (1,2 -j — 1) and (i,2 -j),
for all 1 S j S (k — 1)/2. Additionally M0 contains the edges from (2',k — 1) to
(i + 2k_1,0) for all 0 S i < 2k‘1. For 0 S i < 219—1, M1 contains the edges that M0
contains for 2’“1 S i < 2k and vice—versa for the other i. The remaining edges are
attributed to M2 and M3. These are: the cross edges exept for those starting in
(i, k —- 1) plus the edges between (i, k — 1) and (2', 0). M2 contains these latter edges
for 2’94 S i < 2~2k‘2 and 3-2’“‘2 g 2' < 4-2k_2, M3 for the other i. The allocation
of the cross edges is uniquely determined by this. The construction is clarified in
Figure 7.

Star and Pancake Graphs. These are the ideal graphs for the coloring heuristic:
a minimum cardinality coloring with perfect matchings is so to say part of the
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definition of the graphs. For Star,c and Pancakek, the nodes are indexed with k:—
tuples (io,i1,...,ik_1), where the set {MO 3 l < k} constitutes a permutation
of {0,1,...,k — 1}. For Stark, MC, 0 S c g k: -— 2, contains all edges between
nodes (i0, i1, . . . ,z'k_1) and the node with i0 and ic+1 exchanged. For Pancakek, MC,
0 S c g k — 2, contains all edges between nodes (i0,i1, . . . ,ik_1) and the node with
i0, . . . ,ic+1 replaced by ic+1,. . . ,z'o.

M0 M1

Figure 7: Symbolic representation of the four matchings for Butterfiyk, for k odd.
The drawn lines indicate matched edges. The vertical lines are cycle edges, the
crosses are cross edges. The four columns in each picture indicates the following
ranges ofz' values: 0 g 2' < 2’“, 2’c-2 g i < 2 . 2H, 2- 2’6-2 3 i < 3 - 2’6-2 and
3 - 2"“2 g 2' < 4 - 2k’2, respectively.

9 Conclusions and Further Work

We have presented heuristics for gossiping in the telephone model with unit or lin-
ear costs. The matching heuristic computes almost optimal schedules and due to
its relative efficiency it can do so even for large graphs. Together with the coloring
heuristic it leads to improved upper bounds for various important classes of inter-
connection networks. Generally, these heuristics may become valuable tools for the
development of better gossiping and broadcasting schedules.

Not withstanding the achievements, there remains much work to be done. The
matching heuristic is fast, but for very large graphs, it is still too slow. If somewhat
larger deviations from optimality are acceptable, then the number of dispersion re-
gions can be strongly reduced by first gossiping in small subgraphs. Also one might
apply the potential approach in most steps and the BFS approach only in a few
critical steps. Parallelization comes without loss of quality: the computation of
the edge weights as it is performed in the BFS approach can easily be distributed
over the processors of a parallel computer or a cluster of workstations. On the other
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hand, if the computed schedules are not good enough, then deeper look-ahead might
help a bit. This might be developed into a full branch-and-cut approach. More re—
fined structural analysis of the graph might bring more. For the linear-cost model,
improvements might be achieved by allowing non-synchronous operations. The anal-
ysis should be extended to more practical classes of graphs. Next to the random
graphs, whose theoretical properties still should be further studied, we should look
at random geometric graphs, planar graphs and real-world examples.
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