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Abstract

In this research report we present a framework for evaluating and comparing the

quality of various lossy image compression techniques based on a multiresolution

decomposition of the image data. In contrast to many other publications, much

attention is paid to the interdependencies of the individual steps of such compres-

sion techniques. In our result section we are able to show that it is quite worthwile

to fine-tune the parameters of every step to obtain an optimal interplay among

them, which in turn leads to a higher reconstruction quality.
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1 Introduction

State-of-the-art algorithms for lossy still image compression are usually based on

a multiresolution decomposition of the image data. The idea behind this technique

has already been introduced in [BA83], the complete compression scheme was

described in [ABDM92]. Due to a fast algorithm for a discrete wavelet transform

published in [Mal89], this technique allows for high quality image compression in

a fraction of the time needed for instance by fractal compression techniques such

as [Jac92] or [Sau95].

The principle of such wavelet-based lossy image compression techniques can be

grouped into three generic steps:

compression

1. basis transform of the image data;

2. quantization of the transformed coefficients;

3. coding of the quantized coefficients.

Each of these steps will be described in more detail in the following sections 2–

4. Since usually steps 1 and 3 are losslessly invertible, the lossy compression

happens in step 2.

The decompression is done in a straightforward way, which can be described again

in three steps:

decompression

1. decoding of the compressed data;

2. dequantization of the decoded coefficients;

3. inverse basis transform of the dequantized coefficients.

Obviously, the second step will introduce some approximation error, since the

quantization step in the compression scheme is not losslessly invertible. Thus,

the approximated dequantized coefficients fed into the inverse basis transform

step in the decompression scheme will be transformed into an approximation of

the original image data. It is up to the design and implementation of every step

and the interplay of all these steps to produce an approximation error as small as

possible given a fixed compression ratio.

Even though a lot of work has been published on the examination of each step,

cf. for example [OB96, HSW95, CS94, VBL95, CW90, Wic90, CW92] on step 1,
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[Llo82, LBG80, Equ89, ABM91] on step 2 and [GG92, Sha93, VTC96] on step 3,

there are only few publications to our knowledge that take into account at least

some of the very important interdependecies of these three steps, cf. [Bal98].

Unfortunately, not all of these interdependencies can be motivated mathemati-

cally. In this case, an optimal set of parameters for each step has to be found

heuristically. Evaluating all reasonable combinations of parameters can become a

very time-consuming task. However, our results show that for a whole scenario of

images, a set of sub-optimal parameters can be given, which produces an approxi-

mation error close to the optimal one in the average. The term scenario of images

in our terminology denotes a collection of images, which are similar to each other

by some means.

2 Transformation

The first step in the compression scheme is given by a basis transform of the im-

age data. The objective of this transform is to reduce the entropy of the input

data. Due to [Kar47, Loè48], the Karhunen-Loève transform is optimal in this

sense. Unfortunately, the computational overhead for this transform is too big

for practical applications. On the other hand, a (discrete) wavelet transform has

proven to be a good compromise between computational time and entropy re-

duction. Particularly for use in lossy image compression, another transform has

gained wide-spread popularity: the discrete cosine transform (DCT), as it is used

e.g. in the JPEG standard [PM93]. However, because of the local support of the

associated filter, a block structure artifact becomes clearly visible in the recon-

structed images, especially when using high compression ratios. This makes the

DCT rather unalluring for high quality image compression.

2.1 Wavelet Theory

In this section we will give a brief overview of wavelet theory as far as it applies

to image compression. Good introductory textbooks on wavelet theory have been

written by many authors, see for instance [Chu92, Dau92, Mey92, VK95, SN96].

Among the many approaches to wavelet theory the introduction of a multiresolu-

tion analysis (MRA) by MALLAT [Mal89] seems to be most appropriate for image

compression. An MRA of the L2

(R) is a nested sequence of closed subspaces

V

j

� L

2

(R):

f0g � : : :� V

�1

� V

0

� V

1

� : : :� L

2

(R) (1)
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such that

[

j2Z

V

j

= L

2

(R) (2)

\

j2Z

V

j

= f0g (3)

f(�) 2 V

j

() f(2

�j

�) 2 V

0

(4)

9 ' 2 L

2

(R) with V

0

= spanf'(� � k) j k 2 Zg : (5)

If in addition f'(� � k) j k 2 Zg is a Riesz basis of V
0

with some Riesz bounds

0 < A � B <1, then it follows that for each j 2 Z the family f'
j;k

j k 2 Zg is

a Riesz basis of V
j

, where

'

j;k

(x) := 2

j=2

'(2

j

x� k) : (6)

Such a function ' 2 L2

(R) is called a scaling function, if the subspaces

V

j

:= spanf'
j;k

j k 2 Zg 2 L

2

(R) (j 2 Z)

satisfy the properties (1), (2) and (4).

A scaling function ' is said to generate an MRA. It can be shown that there exists

a unique sequence fh
k

g (h

k

2 R; k 2 Z) so that the so-called two-scale relation

holds:

'(x) =

p

2

X

k

h

k

'(2x� k) : (7)

With the help of our function'we can now define the associated (mother) wavelet

 (x) :=

p

2

X

k

g

k

'(2x� k) (8)

with

g

k

:= (�1)

k

h

1�k

2 R ; (9)

and, analogously to (6), its dilated and translated versions

 

j;k

(x) := 2

j=2

 (2

j

x� k) : (10)

Since f 
j;k

j k 2 Zg is now an orthonormal basis of W
j

, where

V

j

�W

j

= V

j+1

(j 2 Z) ;

3



it follows that

L

2

(R) =

M

j

W

j

; (11)

i.e. f 
j;k

j j; k 2 Zg is an orthonormal basis of the L2

(R). Thus any function

f 2 L

2

(R) can be represented as a linear combination of the basis functions  
j;k

:

f(x) =

X

j;k

d

j;k

 

j;k

(x) : (12)

2.2 Discrete Wavelet Transform

A multiresolution analysis of the L2

(R) as it was introduced by MALLAT [Mal89]

does not only lead to the construction of a wavelet  , but in addition delivers an

algorithm for a fast, discrete wavelet transform (DWT).

Let f 2 V
0

� L

2

(R). According to (5), f can be written as

f(x) =

X

k



0

k

'(x� k)

with real coefficients



0

k

:= hf; '

0;k

i

L

2

(R)

:

By using the notation



m

k

:= hf; '

m;k

i

L

2

(R)

;

d

m

k

:= hf;  

m;k

i

L

2

(R)

;

one yields with the help of the two-scale relation (7) the recursive identities:



m

k

=

X

l

h

l

hf; '

m+1;2k+l

i

L

2

(R)

=

X

l

h

l



m+1

2k+l

=

X

l

h

l�2k



m+1

l

;

d

m

k

=

X

l

g

l

hf; '

m+1;2k+l

i

L

2

(R)

=

X

l

g

l



m+1

2k+l

=

X

l

g

l�2k



m+1

l

:

These recursive formulas can be rewritten as



m

= H

m+1

;

d

m

= G

m+1

;

(13)
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Figure 1: Wavelet decomposition of the signal 0 with M levels of resolution
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Figure 2: Reconstruction of the signal 0 from M levels of resolution

with m := f

m

k

g

k2Z

; d

m

:= fd

m

k

g

k2Z

and

H : `

2

(Z) ! `

2

(Z) (14)

 7! H =

(

X

l

h

l�2k



l

)

k2Z

;

G : `

2

(Z) ! `

2

(Z) (15)

 7! G =

(

X

l

g

l�2k



l

)

k2Z

:

The process of decomposing a signal 0 into M levels of resolution is depicted in

Figure 1. The inversion of this decomposition is called the reconstruction of 0

(see Figure 2). It is given by



m+1

= H

�



m

+ G

�

d

m (16)

with

H

�

 =

(

X

l

h

k�2l



l

)

k2Z

;

G

�

 =

(

X

l

g

k�2l



l

)

k2Z

:
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2.3 Two-Dimensional Wavelet Transform

A straightforward construction of a two-dimensional wavelet transform was pro-

posed MALLAT [Mal89]. In the context of image compression, however, a ten-

sor product wavelet transform is commonly used. If we define (analogously to

Eqs. (14),(15)) new decomposition operators H
l

; G

l

and H


; G



that operate on

the lines and on the columns of an image f , respectively, the two-dimensional

wavelet transform of f yields the following four sub-images:

f

LL

= H



H

l

f ;

f

LH

= G



H

l

f ;

f

HL

= H



G

l

f ;

f

HH

= G



G

l

f :

(17)

The reconstruction of the image f is obtained by applying the corresponding ad-

juct operators H�

l

; G

�

l

; H

�



; G

�



to these sub-images:

f = H

�

l

H

�



f

LL

+ H

�

l

G

�

S

f

LH

+ G

�

l

H

�



f

HL

+ G

�

l

G

�

S

f

HH

= H

�

l

[H

�



f

LL

+ G

�



f

LH

℄ + G

�

l

[H

�



f

HL

+ G

�



f

HH

℄ :

(18)

MALLAT Algorithm

The MALLAT algorithm [Mal89] for a two-dimensional discrete wavelet trans-

form withM levels of resolution is obtained by iterating the decomposition scheme

(Eq. (17)) in the same way as it was shown for one-dimensional signals in Sec-

tion 2.2. Using the notation from Section 2.3, the MALLAT algorithm with M

levels of resolution can be written as:

f

(0)

!

n

f

(1)

LL

; f

(1)

LH

; f

(1)

HL

; f

(1)

HH

o

!

n

f

(2)

LL

; f

(2)

LH

; f

(2)

HL

; f

(2)

HH

; f

(1)

LH

; f

(1)

HL

; f

(1)

HH

o

...

!

n

f

(M)

LL

; f

(M)

LH

; f

(M)

HL

; f

(M)

HH

;

f

(M�1)

LH

; f

(M�1)

HL

; f

(M�1)

HH

;

...

f

(1)

LH

; f

(1)

HL

; f

(1)

HH

o

:

In this scheme, the upper index in parantheses denotes the level of resolution. The

set of sub-images obtained by the MALLAT algorithm for M = 3 is shown in

Figure 3(b).
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(a) original image (b) MALLAT algorithm (c) best-basis algorithm

Figure 3: Comparison of MALLAT Algorithm and Best-Basis Algorithm

Best-Basis Algorithm

In contrast to the MALLAT algorithm, the best-basis algorithm introduced by

COIFMAN and WICKERHAUSER [CW92] performs a decomposition of every sub-

image from the previous level of resolution to obtain the sub-images of the next

level. From the (redundant) set of sub-images obtained by this decomposition pro-

cess a subset is chosen subsequently. This subset is chosen to be both sufficient

for lossless reconstruction of the original image and optimal in a certain sense.

A common optimality condition is to minimize the sum of the pseudo-entropies

of all sub-images. The pseudo-entropy of a sub-image s = (s

i;j

)

i;j

is defined by:

E(s) := �

X

i;j

s

2

i;j

log

2

s

2

i;j

(19)

with the predefinition 0 � log

2

0 := 0.

Starting with the sub-images f
(M)

j;(i)

(j 2 fLL, LH , HL, HHg := f0; 1; 2; 3g,

i = 1; : : : ; 4

M�1

) of the finest level m := M , the sum of the pseudo-entropies

of each quadrupel f
(m)

j;(i)

, (j = 0; : : : ; 3) is compared to the pseudo-entropy of the

corresponding sub-image f
(m�1)

j;(k)

(j = i mod 4; k = b

i

4

) of the coarser level

m�1. If

3

X

j=0

E(f

(m)

j;(i)

) < E(f

(m�1)

imod 4;(b

i

4

)

) ;

the four sub-images f
(m)

j;(i)

, (j = 0; : : : ; 3) are kept and the sum of their pseudo-

entropies is assigned to the sub-image f
(m�1)

imod 4;(b

i

4

)

, otherwise the four sub-images

of level m are discarded. This process is carried out for all levels m =M; : : : ; 1.

7



In the end, a subset of sub-images remains, that fulfils both the reconstruction and

the optimality condition. A possible set of sub-images generated by the best-basis

algorithm for M = 3 is shown in Figure 3(c).

3 Quantization

After a wavelet transform has been applied to the image data, the resulting real

wavelet coefficients are mapped to some integer symbols. It is obvious, that in

general this step cannot be reverted without introducing some approximation er-

ror. Thus the design of the quantization step plays an important role for the recon-

struction quality. A scalar quantization quantizes every single wavelet coefficient

seperately, a vector quantization groups several wavelet coefficients together and

maps this coefficent vector to a single output symbol. The latter is usually more

efficient, but also computationally more expensive.

3.1 Scalar Quantization

A uniform scalar quantization can be obtained by equidistant partitioning of the in-

terval of the real coefficients into n subintervals. These subintervals (quantization

intervals) are numbered from 0; : : : ; n � 1, and for every wavelet coefficient the

number of its subinterval is output to the coder. Because of the following coding

step, n should generally be chosen to be a power of 2. During the dequantization

step, the midpoint of every quantization interval is used as an approximation for

all the coefficients in this interval. This choice is known to minimize the average

approximation error in an L2 norm, cf. [Say96, GG92].

Since wavelet coefficients1 have an expected value of � = 0, it is advantageous

to use an odd number (e.g. n = 2

p

� 1) of quantization intervals lying symmetri-

cally around zero. Thus the approximation value 0.0 will be used for all wavelet

coefficients lying close to zero.

The approximation error can be further reduced by adapting the partitioning of

the coefficient interval to the frequency distribution of the wavelet coefficients.

This technique is called a nonuniform scalar quantization or pdf-quantization. A

finer partitioning resulting in a smaller approximation error is used in regions with

many wavelet coefficients while a coarser partitioning increases the approxima-

tion error for regions with only few wavelet coefficients.

Usually the density function of a normal distribution is used as a model for the

1except those from the smooth residuum of the last transform step
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frequency distribution of the wavelet coefficients:

f(x) =

1

�

p

2�

e

�

1

2

(

x��

�

)

2

: (20)

Since � = 0, the standard deviation � of the coefficients is the only parameter to

be fitted.

LLOYD and MAX [Llo57, Max60] have introduced an algorithm to adapt the par-

titioning of the coefficient interval to the model (20). Again, the (nonuniform)

quantization intervals are numbered from 0; : : : ; n�1 and these numbers are out-

put as symbols to the coder. Note that for the dequantization step the standard

deviation � has to be stored in addition to the boundary values of the coefficient

interval and the number n of subintervals.

3.2 Vector Quantization

Unlike the scalar case, a vector quantizer groups several wavelet coefficients to-

gether and outputs a single symbol for this coefficient vector. On the one hand, this

can greatly reduce the number of different symbols needed, on the other hand, the

approximation error might become too large. It is the crucial point of every vector

quantizer to use a carefully chosen set of code vectors, which act as representa-

tives for the coefficient vectors. For every coefficient vector, its best matching

code vector is determined, and the number of this code vector is output to the

coder. In the dequantization step, a code vector is used as an approximation for

all the coefficient vectors which have been mapped to this code vector. The best

matching code vector for a particular coefficient vector is the one which minimizes

the Euclidian distance to the coefficient vector among all code vectors.

The most important aspect of vector quantization is the computation of the code-

book, i.e. the set of all code vectors. This task has been studied by LINDE, BUZO

and GRAY [LBG80]. They proposed an iterative algorithm called the LBG algo-

rithm, which converges against a local optimal codebook. An even better adapted

codebook can be obtained by using our modified LBG algorithm, see [HS00].

4 Coding

The final step in the compression scheme takes the symbols from the quantizer

and codes them into a bitstream, which can be written to a file. The coding it-

self is losslessly invertible. Many different coding schemes have been developed

and studied, ranging from a fast but usually not very efficient run-length cod-

ing over a variable code size Huffman coding [Huf52] to any of the variants of

a quite efficient but computationally expensive arithmetic coding [Pas76, RL79,
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WNC87]). Instead of re-describing these well-known coding techniques, we refer

to the literature mentioned before or to the excellent textbook by GERSHO and

GRAY [GG92], which covers these aspects as well.

One aspect of coding deserves special attention: more efficient coding schemes

like Huffman coding or arithmetic coding use a variable code size for each input

symbol depending on the symbol’s probability of occurence. However, the latter is

unknown to the coder a priori. Therefore the coder has to adapt to the probabilities

of occurence with every new symbol being coded. Again we refer to [GG92] for

a detailed description of this adaptive control.

5 Implementation

Our framework for evaluating the quality of lossy image compression consists of

several independent modules, which can be easily exchanged or extended. The

following list gives a brief overview of the capabilities of our system:

� wavelet transform:

– many different pre-defined wavelets + user-definable wavelets

– MALLAT algorithm

– best-basis algorithm

� quantization:

– uniform scalar quantization

– non-uniform scalar quantization

– vector quantization

� coding:

– adaptive arithmetic coding

– adaptive arithmetic coding with preceeding run-length coding

The coefficients of the wavelets available in our framework are taken from [Dau92,

SS96, BCR91, Dau93, ASH87, ABDM92, VBL95, VTC96, OB96, Bri93]. Addi-

tional wavelets can be integrated easily by the user. Both wavelet transforms are

implemented as described in Section 2.3.

For the quantization step we implemented the techniques from Section 3.1 and

3.2. In order to find an optimal bit allocation for the quantization of the sub-

bands [JN84, GS88], we use a numerical bisection method to minimize a cost

functional subject to auxiliary conditions (LAGRANGE method).
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Our coding scheme is restricted to an adaptive arithmetic coder [BCW90], which

has been modified to be optionally preceeded by a run-length coding step. The

arithmetic coding is performed in integer arithmetics, the adaption of the coding

to the input data follows the technique presented in [GG92, Sec. 9.7].

6 Results

One major aspect that influenced the development of our framework was to com-

pare different parameter settings for each of the compression steps and to study

their interdependecies. We chose several digitized images from both the Hub-

ble Space Telescope Archive [HST99] and the FBI fingerprint archive [Bri96].

These two archives are denoted as scenarios in the following. Some of the chosen

test images are shown in Figure 4 and Figure 5. For each of the test images we

performed numerous compression–decompression–comparison cycles using dif-

ferent parameter settings each time. The following parameters have been varied

according to the given ranges:

1. choice of the wavelet: 18 different wavelets have been examined; the most

useful wavelets for image compression according to our tests are printed in

Table 1 (page 15);

2. choice of the transform algorithm (MALLAT vs. best-basis);

3. number of levels of resolution (M = 3; : : : ; 8);

4. choice of quantization technique: uniform scalar, non-uniform scalar, and

vector quantization; using vector quantization, the codebook size n = 2

p,

p = 7; : : : ; 10 and the code vector length l = 4; 16 have been varied as well

(see [HS00] for details);

5. choice of coding scheme: adaptive arithmetic coder with or without pre-

ceeded run-length coding.

All combinations of settings for these parameters have been evaluated and an-

alyzed. The decompressed images have been compared to the original images

using both the well-know peak-signal-to-noise ratio (PSNR) and the distortion

measure adapted to human perception (DMHP) proposed in [BWW96]. A de-

tailed description of the results has been published in [Hab99]. In this report we

wil give a short summary of the results obtained. It is worthwhile to note that

these results differ only very little between different images within each scenario.

Therefore we present the results grouped by the two scenarios investigated.
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Figure 4: Images from the Hubble Space Telescope Archive [HST99]

Figure 5: Images from the fingerprint archive of the FBI [Bri96]

6.1 Astronomy Scenario

The results of our simulations using images from the astronomy scenario can be

summarized as follows:

� very good results are obtained by using the waveletsW
1

, W
2

and the MAL-

LAT algorithm with M = 5; : : : ; 8 levels of resolution;

� using the best-basis algorithm withM = 5; : : : ; 7, the waveletW
1

produces

very good results as well;

� uniform scalar quantization produces better results than non-uniform scalar

quantization (see remark in Section 6.3);

� vector quantization yields outstanding results compared to scalar quantiza-

tion: a code vector length of l = 16 should be chosen always, a codebook

size of n � 256 is usually sufficient to produce better results than a scalar

quantization (cf. Section 6.3);
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� an additional run-length coding step before the arithmetic coding leads to

very little improvement of the results.

6.2 Fingerprint Scenario

For the fingerprint scenario, the following observations have been made:

� the wavelet W
3

yields very good results using the MALLAT algorithm and

M = 4; : : : ; 7 levels of resolution;

� even better results are produced by using the waveletsW
1

,W
3

and the best-

basis algorithm with M = 4; : : : ; 6;

� concerning the quantization step, the same observations as stated in Sec-

tion 6.1 have been made; the only difference is that a code vector length of

l = 4 yields better results for small codebook sizes n � 256 in this scenario;

� the benefit of an additional run-length coding step before the arithmetic cod-

ing depends heavily on the quantization technique being used: it is recom-

mended to use a run-length coding in combination with a uniform quantiza-

tion; there is no improvement when using vector quantization.

6.3 Summary

Our simulations showed that it is possible to find a common set of parameters for

each of the examined scenarios, which leads to very good results in the average

when compressing arbitrary images from theses scenarios. We suggest to run a

similar parameter analysis in all cases, where a huge number of images from a

single scenario has to be compressed.

However, some observations from our simulations need to be explained in more

detail. At first glance, one expects from a non-uniform scalar quantizer to produce

better results than a uniform scalar quantizer. Our results showed correctly, that

this is generally not the case. The reason for this unexpected behaviour is given by

the entropy coding step that follows the quantization step. A non-uniform quan-

tizer generates symbols whose probabilities of occurence are rather uniformly dis-

tributed. This is actually the worst case for any entropy coding! To our knowledge,

the only published statement about this fact is given in [GG92, Sec. 9.9]: “ : : : a

uniform quantizer is approximately optimal if entropy coding is used.”

Vector quantization has proven to be a very powerful technique in our simula-

tions. Even though the computational costs for compressing images can become

quite high, the advantage of fast decompression and high reconstruction quality

(given a fixed compression ratio) cannot be neglected. Our simulations show, that
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one codebook is sufficient for all images from one scenario. Such a scenario-

based codebook can be computed once and does not have to be stored with the

compressed data. In this case, a codebook size of n = 1024 produces very good

results.

7 Conclusions and Future Work

In this research report we describe a framework for determining the quality of

lossy image compression techniques based on a wavelet decomposition of the

image data. Our framework offers several possibilities to perform each of the three

steps “transform — quantization — coding” characteristic for this compression

technique.

From our simulations we can conclude that it is indeed worth the effort to perform

an analysis on several images of a scenario and find a (scenario dependend) set of

compression parameters, if a large number of images from a single scenario has

to be compressed subject to a high reconstruction quality.

It is left as a future work task to develop techniques and algorithms that are able to

find a (sub-)optimal set of compression parameters without evaluating all possible

parameter combinations. Such techniques might use available image information

like for instance color / gray tone histograms or frequency distributions obtained

through a Fast Fourier Transform to restrict the space of parameter combinations

being evaluated.
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Table 1: Wavelet coefficients (orthogonal wavelets have identical co-

efficients for analysis (A) and synthesis (S), biorthogonal wavelets

have different coefficients for each)

name mask coefficients reference

W

1

A + S: f �3:793512864380802 � 10

�3

;

7:782596425672746 � 10

�3

;

2:345269614207717 � 10

�2

;

�6:577191128146936 � 10

�2

;

�6:112339000297255 � 10

�2

;

4:051769024091182 � 10

�1

;

7:937772226260872 � 10

�1

;

4:284834763773700 � 10

�1

;

�7:179982161915484 � 10

�2

;

�8:230192710629983 � 10

�2

;

3:455502757329774 � 10

�2

;

1:588054486366945 � 10

�2

;

�9:007976136730624 � 10

�3

;

�2:574517688136797 � 10

�3

;

1:117518770830630 � 10

�3

;

4:662169598204029 � 10

�4

;

�7:098330250637900 � 10

�5

;

�3:459977319727278 � 10

�5

g

[BCR91, Dau93]

W

2

A: f 3:782845550699546 � 10

�2

;

�2:384946501938000 � 10

�2

;

�1:106244044184234 � 10

�1

;

3:774028556126538 � 10

�1

;

8:526986790094034 � 10

�1

;

3:774028556126538 � 10

�1

;

�1:106244044184234 � 10

�1

;

�2:384946501938000 � 10

�2

;

3:782845550699546 � 10

�2

g

S: f �6:453888262893844 � 10

�2

;

�4:068941760955844 � 10

�2

;

4:180922732222122 � 10

�1

;

7:884856164056644 � 10

�1

;

4:180922732222122 � 10

�1

;

�4:068941760955844 � 10

�2

;

�6:453888262893844 � 10

�2

g

[ABDM92],

[VBL95]

continued on next page
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name mask coefficients reference

W

3

A: f 2:885256501123136 � 10

�2

;

8:244478227504624 � 10

�5

;

�1:575264469076351 � 10

�1

;

7:679048884691436 � 10

�2

;

7:589077294537619 � 10

�1

;

7:589077294537619 � 10

�1

;

7:679048884691436 � 10

�2

;

�1:575264469076351 � 10

�1

;

8:244478227504624 � 10

�5

;

2:885256501123136 � 10

�2

g

S: f 9:544158682436510 � 10

�4

;

�2:727196296995984 � 10

�6

;

�9:452462998353147 � 10

�3

;

�2:528037293949898 � 10

�3

;

3:083373438534267 � 10

�2

;

�1:376513483818652 � 10

�2

;

�8:566118833165885 � 10

�2

;

1:633685405569888 � 10

�1

;

6:233596410344158 � 10

�1

;

6:233596410344158 � 10

�1

;

1:633685405569888 � 10

�1

;

�8:566118833165885 � 10

�2

;

�1:376513483818652 � 10

�2

;

3:083373438534267 � 10

�2

;

�2:528037293949898 � 10

�3

;

�9:452462998353147 � 10

�3

;

�2:727196296995984 � 10

�6

;

9:544158682436510 � 10

�4

g

[VTC96]
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