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1 Introdution

Many real-time systems are ritial, and therefore deserve to be spei�ed

with mathematial preision. To this end, real-time temporal logis [6℄ have

been proposed as the basis of spei�ation languages. They use real numbers

for time, whih has advantages for spei�ation and ompositionality. Sev-

eral syntaxes are possible to deal with real time: freeze quanti�ation [4, 11℄,

expliit loks in a �rst-order temporal logi [18, 9℄ and time-bounded opera-

tors [14℄. We study logis with time bounded operators beause those logis

are the only ones that have a deidable satis�ability problem. Note however

that the propositional fragment of the time-bounded operator logis, alled

MetriTL

R

+
, is undeidable and furthermore not reursively axiomatizable.

It beomes deidable with ertain restritions (MetriIntervalTL [3℄), allow-

ing programs veri�ation using automata-based tehniques. However, when

the spei�ation is large or when it ontains �rst-order parts, a mixture of

automati and manual proof generation is more suitable. Unfortunately, the

urrent automati reasoning tehniques (based on timed automata) do not

provide expliit proofs. Seondly, an axiomatization provides deep insights

into these logis. Third, the omplete axiomatization serves as a yardstik

for a de�nition of relative ompleteness for more expressive logis that are

not ompletely axiomatizable, in the style of [17, 13℄. This is why the ax-

iomatization of these logis is ited as an important open question in [6, 14℄.

We provide a omplete axiom system for deidable real-time logis, and

a proof-building proedure. We build the axiom system by onsidering

inreasingly omplex logis: LTR [7℄, EventClokTL with past loks only,

EventClokTL with past and future loks (also alled SCL [19℄), MetriInter-

valTL [3℄ with past and future operators, also alled MetriIntervalTL

P

[5℄.

Previous works on axiomatization of real-time logis have onentrated

on models where time is modeled by the natural numbers. For that ase,

[11℄ gives a omplete axiomatization. When time is modeled by the real-

time numbers, only \intuitive" axioms were proposed, e.g. in [14℄, without

taking into aount ompleteness issues.

2 Models and logis for real-time

2.1 Models

As time domain, we hoose the nonnegative reals R
+

. This dense domain is

natural and gives many advantages detailed elsewhere: ompositionality [7℄,

full abstratness [7℄, stuttering independene [1℄, easy re�nement. To avoid

Zeno's paradox, we add to our models the ondition of �nite variability [7℄

(ondition (3) below): only �nitely many state hanges an our in a �nite

amount of time.

An interval I � R
+

is a onvex non-empty subset of the nonnegative
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reals. Given t 2 R
+

, we freely use notations suh as t + I for the interval

ft

0

j 9t

00

2 I with t

0

= t + t

00

g, t > I for the onstraint \t > t

0

for all

t

0

2 I", # I for the interval ft > 0j9t

0

2 I : t � t

0

g and ⇃ I for the interval

ft > 0j9t

0

2 I : t < t

0

g. Two intervals I and J are adjaent if the right

endpoint of I, noted r(i), is equal to the left endpoint of J , noted l(J),

and either I is right-open and J is left-losed or I is right-losed and J is

left-open. We say that an interval I is singular if l(I) = r(I). An interval

sequene

�

I = I

0

; I

1

; I

2

; : : : is an in�nite sequene of (bounded) intervals so

that (1) the �rst interval I

0

is left-losed with left endpoint 0, (2) for all i � 0,

the intervals I

i

and I

i+1

are adjaent, and (3) for all t 2 R
+

, there exists

an i � 0 suh that t 2 I

i

. Consequently, an interval sequene partitions

the nonnegative real line so that every bounded subset of R
+

is overed

by �nitely many elements of the partition. Let P be a set of propositional

symbols. A state s � P is a set of propositions. A timed state sequene

� = (�s;

�

I) is a pair that onsists of an in�nite sequene �s of states and an

interval sequene

�

I. Intuitively, it states the period I

i

during whih the state

was s

i

. Thus, a timed state sequene � an be viewed as a funtion from

R
+

to 2

P

, indiating for eah time t 2 R
+

a state �(t) = s

i

where t 2 I

i

.

2.2 The Linear Temporal Logi of Real Numbers (LTR)

The formulae of LTR [13℄ are built from propositional symbols, boolean

onnetives, the temporal \until" and \sine" and are generated by the

following grammar:

� ::= p j �

1

^ �

2

j :� j �

1

U�

2

j �

1

S�

2

where p is a proposition.

The LTR formula � holds at time t 2 R
+

of the timed state sequene � ,

written (�; t) j= � aording to the following de�nition:

(�; t) j= p i� p 2 �(t)

(�; t) j= �

1

^ �

2

i� (�; t) j= �

1

and (�; t) j= �

2

(�; t) j= :� i� (�; t) 6j= �

(�; t) j= �

1

U�

2

i� 9t

0

> t^ (�; t

0

) j= �

2

and 8t

00

2 (t; t

0

), (�; t

00

) j=

�

1

_ �

2

(�; t) j= �

1

S�

2

i� 9t

0

< t ^ (�; t

0

) j= �

2

and 8t

00

2 (t

0

; t), (�; t

00

) j=

�

1

_ �

2

An LTR formula � is satis�able if there exists � and a time t suh that

(�; t) j= �, an LTR formula � is valid if for every � and every time t we have

(�; t) j= �. Our operators U;S are slightly non-lassial, but more intuitive:

they do not require �

2

to start in a left-losed interval.
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2.3 Event-Clok Temporal Logi

The formulae of EventClokTL [19℄ are built from propositional symbols,

boolean onnetives, the temporal \until" and \sine" operators, and two

real-time operators: at any time t, the history operator /

I

� asserts that �

was true last in the interval t � I, and the prophey operator .

I

� asserts

that � will be true next in the interval t+ I. The formulae of EventClokTL

are generated by the following grammar:

� ::= p j �

1

^ �

2

j :� j �

1

U�

2

j �

1

S�

2

j /

I

� j .

I

�

where p is a proposition and I is an interval whih an be singular and

whose bounds are natural numbers. The EventClokTL formula � holds at

time t 2 R
+

of the timed state sequene � , written (�; t) j= � aording to

the rules for LTR and the following additional lauses:

(�; t) j= /

I

� i� 9t

0

< t ^ t

0

2 t � I ^ (�; t

0

) j= � and 8t

00

: t � I < t

00

<

t; (�; t

00

) 6j= �

(�; t) j= .

I

� i� 9t

0

> t^t

0

2 t+I^(�; t

0

) j= � and 8t

00

: t < t

00

< t+I; (�; t

00

) 6j=

�

A .

I

� formula an intuitively be seen as expressing a onstraint on the

value of a lok that measures the distane from now to the next time where

the formula � will be true. In the sequel, we use this analogy and all this

lok a prophey lok for �. Similarly, a /

I

� formula an be seen as a

onstraint on the value of a lok that reords the distane from now to the

last time suh that the formula � was true. We all suh a lok a history

lok for �. For an history (resp. prophey) lok about �,

� the next /

=1

� (resp. previous .

=1

�) is alled its tik;

� the point where � held last (resp. will hold next) is alled its event;

� the point (if any) at whih � will hold again (resp. held last) is alled

its reset;

� if � is true at time t and was true just before t (resp. and will still be

true just after t) then we say that the lok is bloked at time t;

� if � was never true before t (resp. will never be true after t) then the

lok is unde�ned at time t.

The main part of our axiomatization onsists in desribing the behavior

and the relation of suh loks over time. For a more formal aount on the

relation between EventClokTL formulae and loks, we refer the interested

reader to [19℄.

Example 1 �(p ! .

=5

p) asserts that after every p state, the �rst subse-

quent p state is exatly 5 units later (so in the interval t+(0,5), p is false);

the formula �(/

=5

p! q) asserts that whenever the last p state is exatly 5

units ago, then q is true now (time-out).
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Theorem 1 [19℄ The satis�ability problem for EventClokTL is omplete for

Pspae.

2.4 Metri-Interval Temporal Logi

The formulae of MetriIntervalTL [3℄ are built from propositional symbols,

boolean onnetives, and the time-bounded \until" and \sine" operators:

� ::= p j �

1

^ �

2

j :� j �

1

^

U

I

�

2

j �

1

^

S

I

�

2

where p is a proposition and I is a nonsingular interval whose bounds are

natural numbers. The MetriIntervalTL formula � holds at time t 2 R
+

of

the timed state sequene � , written (�; t) j= � aording to the following

de�nition (the propositional and boolean lauses are as for LTR):

(�; t) j= �

1

^

U

I

�

2

i� 9t

0

2 t+ I ^ (�; t

0

) j= �

2

and 8t

00

: t < t

00

< t

0

; (�; t

0

) j= �

1

(�; t) j= �

1

^

S

I

�

2

i� 9t

0

2 t� I ^ (�; t

0

) j= �

2

and 8t

00

: t

0

< t

00

< t; (�; t

0

) j= �

1

Example 2 �(q ! r

^

S

�5

p) asserts that every q state is preeded by a p

state of time di�erene at most 5, and all intermediate states are r states;

the formula �(p!

^♦
[5;6)

p) asserts that every p state is followed by a p state

at a time di�erene of at least 5 and less than 6 time units. This is weaker

than the EventClokTL example, sine p might also hold in between.

Theorem 2 [3℄ The satis�ability problem for MetriIntervalTL is omplete

for Expspae.

2.5 Abbreviations

In the sequel we use the following abbreviations:

� �

1

^

U�

2

� �

1

^

U

(0;1)

�

2

, the untimed \Until" of MetriIntervalTL. Let us

note that �

1

^

U�

2

� �

1

U(�

2

^⊖�
1

) (⊖ is de�ned below);

1

� �

1

U

+

�

2

� �

1

^ �

1

U�

2

, the \Until" reexive for its �rst argument;

� �

1

U

�

�

2

� �

2

_ �

1

U

+

�

2

, the \Until" reexive for its two arguments;

�

e

� � ?U�, meaning \just after in the future" or \arbitrarily losed

in the future";

� ♦� � >U�, meaning \eventually in the future";

� �� � :♦:�, meaning \always in the future";

� their reexive ounterparts: ♦�;��

;

1

Let us note that the \Until" of EventClokTL and the \Until" of MetriIntervalTL are

interde�nable, in fat, we also have: �

1

U�

2

� (�

1

_ �

2

)

^

U�

2

.
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� �

1

W�

2

� �

1

U�

2

_��
1

, meaning \unless";

� its reexive ounterparts: W

+

, W

�

.

and the past ounterpart of all those abbreviations:

� �

1

^

S�

2

� �

1

^

S

(0;1)

�

2

, the untimed \Sine" of MetriIntervalTL. Let us

note that �

1

^

S�

2

� �

1

S(�

2

^

e

�

1

);

� �

1

S

+

�

2

� �

1

^ �

1

S�

2

, the \Sine" reexive for its �rst argument;

� �

1

S

�

�

2

� �

2

_ �

1

S

+

�

2

, the \Sine" reexive for its two arguments;

� ⊖� � ?S�, meaning \just before in the past" or \arbitrarily losed in

the past";

� ♦�� � >S�, meaning \eventually in the past";

� ⊟� � :♦�:�, meaning \always in the past";

� their reexive ounterparts: ♦��

;⊟�

;

� �

1

Z�

2

� �

1

S�

2

_⊟�
1

, meaning \unless in the past";

� its reexive ounterparts: Z

+

, Z

�

.

3 Axiomatization of EventClokTL

In Subsetion 4, we will present a proof-building proedure for EventClokTL.

In this setion, we simply ollet the axioms used in the proedure, and

present their intuitive meaning. Our logis are symmetri for past and future

(a duality that we all the \mirror priniple"), exept that time begins but

does not end: therefore the axioms will be only written for the future, but

with the understanding that their mirror images, obtained by replaing U

by S, . by /, et. are also axioms. This does not mean that we have an

axiomatization of the future fragment of these logis: our axioms make past

and future interat, and we believe that this interation is unavoidable.

3.1 Qualitative axioms (omplete for LTR)

We use the rule of inferene:

�$  �( )

�(�)

(RE)

All propositional tautologies

5



For the non-metri part, we use the following axioms and their mirror

images:

:( U?) (N)

�U( ^  

0

)! �U (K)

e

( ^ �)$

e

 ^

e

� (JA)

⊖> ! (⊖:�$ :⊖ �) (BN)

e

( U�)$  U� (JU)

e

( S�)$

e

� _ (

e

 ^ ( S

�

�)) (JS)

 U�$

e

( U

�

�) (UJ)

�U ! ♦ (SF)

�(( ^

e

> !

e

 ) ^ (⊖ !  ))! (

e

 ! � ) (JI)

They mainly make use of the

e

operator, beause as we shall see, it orre-

sponds to the transition relation of our struture. Axiom (N) is the usual

neessitation or modal generalization rule, expressed as an axiom. Similarly,

(K) is the usual weakening priniple, expressed in a slightly non-lassial

form. (JA), (BN) allow to distribute

e

with boolean operators. Note that

the validity of (BN) requires �nite variability. (JU), (JS) desribe how the

U and S operators are transmitted over interval boundaries. (UJ) gives lo-

al onsisteny onditions over this transmission. (SF) ensures eventuality

when ombined with (JI). It an also be seen as weakening the left side of

the U to >. The indution axiom (JI) is essential to express �nite variability:

If a property is transmitted over interval boundaries, then it will be true at

any point: said otherwise, any point is reahed by rossing �nitely many

interval boundaries.

The axioms below express that time begins (B) but has no end (JT):

♦��

:⊖> (BE)

e

> (JT)

We have written the other axioms so that they are independent of the

begin or end axioms, in order to deal easily with other time domains. For

instane, to deal with the (positive and negative) reals numbers, we just use

the mirror of (JT) instead of (BE).

Remark 1 It is easy to hek that the proof of ompleteness of setion 4

only uses the axioms above for a formula without real-time; therefore they

form a omplete axiomatization of the logi of the reals with �nite variability,

de�ned as LTR in [7℄. The system proposed in [7℄ is unfortunately unsound,

redundant and inomplete. Indeed, axiom F5 of [7℄ is unsound (this is a

simple typo); axiom F7 an be dedued from axiom F8; and the system annot

derive the indution axiom (JI). To see this last point, take the struture

6



formed by R
+

followed by R, with �nite variability: it satis�es the system of

[7℄ but not the indution axiom. Thus this valid formula annot be proved

in their system.

3.2 Quantitative axioms

For the real-time part, we �rst desribe the stati behavior; intersetion,

union of intervals an be translated into onjuntion, disjuntion due to the

fat that there is a single next event:

.

I[J

�$ .

I

� _ .

J

� (OR)

.

I\J

�$ .

I

� ^ .

J

� (AND)

: .

=0

� (F)

.

>0

 $ ♦ (P-S)

.

�m+n

�$ .

�m

.

�n

� (NLE)

.

<m+n

�$ .

<m

.

�n

� (NLT)

The next step of the proof is to desribe how a single real-time .

I

� evolves

over time, using

e

and ⊖. We use (LO) to redue left-open events to the

easier ase of left-losed ones. The formula :�

^

U� expresses that the next

�-interval is left-losed and its negation that the next �-interval, if it exists,

is left-open.

:(:�

^

U�)! (.

[l;m)

e

�$ .

(l;m)

�) (LO)

:

e

.

=m

 (J=)

: 

^

U ! (

e

.

<m

 $ .

�m

 ) (JP)

⊖ .

<m

 $ ((.

<m

 _  _⊖ ) ^⊖>) (JH)

e

 ! .

<m

 (J-P)

These axioms are omplete for formulae where the only real-time oper-

ators are predition operators .

I

� and they all trak the same (qualitative)

formula �. For a single history traked formula, we use the mirror of the

axioms plus an axiom expressing that the future time is in�nite, so that any

bound will be exeeded:

 ! (♦ _ ♦ /
>m

 ) (ER)

As soon as several suh formulae are present, we annot just ombine

their individual behavior, beause the .; / have to evolve synhronously

(with the ommon impliit real time). We use a family of \shift" and \order"

axioms and their mirrors to express this ommon speed. These axioms use

U to express the ordering of events: :pUq means that q will our before (or

at the same time than) any p. The \shift" axioms say that the ordering the

7



tiks should be preserved: the main anteedent : /

=1

 U

�

/

=1

� in (SHH)

states that � will tik before  ; in this ase the events shall be in the same

order: :�S . The side onditions ensure that the loks were ative in the

meantime, so that the tiks indeed refer to events �;  of the onlusion.

The \order" axioms states a similar but simpler property: (OHH) says that

if last � was less than 1 ago, and  was before, than last  was less than 1

ago.

/

�1

 ^ : U

�

/

=1

� ^ : /

=1

 U

�

/

=1

�! :�S (SHH)

(.

<1

 _  ) ^ : U

�

�! : .

=1

�Z .

=1

 _ : .

=1

�Z 

(SPP)

(.

<1

 _  ) ^ : U

�

/

=1

�! :�Z .

=1

 _ :�Z (SPH)

/

�1

 ^ : U

�

� ^ : /

=1

 U

�

�! : .

=1

�S (SHP)

/

<1

� ^ :�S ! /

<1

 (OHH)

/

<1

 ^ : S .

=1

�! .

<1

� ^ :� (OHP)

3.3 Theorems

We also use in the proof some derived rules and theorems:

� the rule of Modus Ponens is derivable from replaement as follows:

from A we dedue propositionally A$ >; by replaement we replae

A by > in A! B giving > ! B whih yields propositionally B;

� the rule of modal generalization (also alled neessitation) is derived

from (RE) and (N).

::�$ � (NN)

:⊖> ! (⊖�$ ?) (BB)

e⊖�$ e

� (JB)

⊖ ! ⊖> (BT)

ee

�$

e

� (JJ)

♦> (ST)

/

I

 ! ⊖> (HB)

:(: 

^

U )! : .

=m

� (N=)

:(: 

^

U )! (♦ e�$ ♦�) (SO)

.

I

�$ : .

<I

� ^ .

#I

(LOW)

e

(�

1

_ �

2

)$

e

�

1

_

e

�

2

(JO)

.

I

�! .

J

� with (I � J) (MON)

��
1

^ �

2

! ��
1

(KA)

8



4 Completeness of the axiomati system for EventClokTL

As usual, the soundness of the system of axioms an be proved by a simple

indutive reasoning on the struture of the axioms. We onentrate here on

the more diÆult part of the adequation of the proposed axiomati system:

its ompleteness. As usual with temporal logi, we only have weak omplete-

ness: for every valid formula of EventClokTL, there exists a �nite formal

derivation in our axiomati system for that formula. So if j= � then ` �.

As often, it is more onvenient to prove the ontrapositive: every onsistent

EventClokTL formula is satis�able. Our logis are symmetri for past and

future (a duality that we all \mirror priniple"), exept that time begin

but does not end: therefore most explanations will be given for the future,

but the areful reader will hek their appliability to the past as well.

Our proof is divided in steps, that prove the ompleteness for inreasing

fragments of EventClokTL.

1. We �rst deal with the qualitative part, without real-time. This part of

the proof follows roughly the ompleteness proof of [16℄ for disrete-

time logi.

(a) We work with worlds that are built syntatially, by maximal

onsistent sets of formulae.

(b) We identify the transition relation, and its syntati ounterpart:

it was the \next" operator for disrete-time logi [16℄, here it is

the

e

, expressing the transition from a losed to an open interval,

and ⊖, expressing the transition from an open to a losed interval.

() We impose axioms desribing the possible transitions for eah

operator.

(d) We give an indution priniple (JI) that extend the properties of

loal transitions to global properties.

2. For the real-time part:

(a) We give the statis of a lok;

(b) We desribe the transitions of a lok;

() By further axioms, we onstrain the loks to evolve simultane-

ously. The ompleteness of these axioms is shown by solving the

onstraints on real-time generated the lok evolutions.

4.1 Qualitative part

Let us make the hypothesis that the formula � is onsistent and let us prove

that it is satis�able. To simplify the presentation of the proof, we use the

following lemma:

9



Lemma 1 Every EventClokTL formula  an be rewritten into an equiva-

lent  

T

formula of EventClokTL

1

(using only the onstant 1).

Proof. First by the use of the theorem .

I

�$ : .

<I

� ^ .

#I

� (LOW), every

formula .

I

� with l(I) 6= 0 an be rewritten as a onjuntion of formulae

with 0-bounded intervals. Using the axioms .

�m+n

� $ .

�m

.

�n

� (NLE)

and .

<m+n

�$ .

<m

.

�n

� (NLT) every interval an be deomposed into an

nesting of operators assoiated with intervals of length 1. �

In the sequel, we make the hypothesis that the formula � for whih we

want to onstrut a model is in EventClokTL

1

, this does not harm omplete-

ness as by lemma 1, every EventClokTL formula an �rst be transformed in

an equivalent EventClokTL

1

formula.

We now de�ned the set C(�) of formulae assoiated with �:

� Sub: the sub-formulae of �.

� The formulae of Sub subjet to a future real-time onstraint: R =

f� 2 Sj .

I

� 2 Subg. We will say that a predition lok is assoiated

to these formulae.

� For these formulae, we will also trak

e

� when the next ourrene of

� is left-open: this will simplify the notation. The information about

� will be reonstruted by axiom (LO). J = f

e

�j� 2 Rg.

� To selet whether to trak � or

e

�, we need the formulae giving the

openness of next interval: L = f:�

^

U�j� 2 R [ Jg.

� The formulae giving the urrent integer value of the loks: I =

f.

<1

�; .

=1

�; .

>1

�j� 2 R [ Jg. Thanks to our initial transformation,

we only have to onsider whether the integer value is below or above

1.

� Among these, the \tik" formulae will be used in F to determine the

frational parts of the loks: T = f.

=1

� 2 Ig.

� We also de�ne the mirror sets. For instane, R

�

= f� 2 Subj /

I

� 2

Subg.

� The formulae giving the ordering of the frational parts of the loks,

oded by the ordering of the tiks: F = f:�U ;:�S j�;  2 T [R [

J [ T

�

[R

�

[ J

�

g.

� The eventualities: E = f♦�j U� or  

^

U� 2 Sub [ L [ L

�

g

10



We lose the union of all sets above under :;

e

;⊖ to obtain the losure

of �, noted C(�). This step preserves �niteness sine:

ee

�$

e

� (JJ)

::�$ � (NN)

e⊖�$ e

� (JB)

For the negation, we only have

⊖> ! (⊖:�$ :⊖ �) (BN)

:⊖> ! (⊖�$ ?) (BB)

We only have two possible ases: if ⊖> is true, we an move all negations

outside and anel them, exept one. else, we know that all ⊖ are false.

In eah ase, at most one ⊖; eand one : are needed.

A Propositionally onsistent struture

A set of formulae F � C(�) is omplete w.r.t. C(�) if for all formulae

� 2 C(�), either � 2 F or :� 2 F ; it is propositionally onsistent if (i) for

all formulae �

1

_ �

2

2 C(�), �

1

2 F or �

2

2 F i� �

1

_ �

2

2 F ; (ii) for all

formulae � 2 C(�), � 2 F i� :� 62 F . We all suh a set a propositional

atom of C(�).

We de�ne a �rst struture, whih is a �nite graph, S = (A;R) where A

is the set of all propositional atoms of C(�) and R � A�A is the transition

relation of the struture. R is de�ned by onsidering two subtransition

relations:

� R
℄

represents the transition from a right-losed to a left-open interval;

� R
[

represents the transition from a right-open to a left-losed interval.

Let A;B be propositional atoms. We de�ne

� AR
℄

B , 8

e

� 2 C(�);

e

� 2 A$ � 2 B;

� AR
[

B , 8⊖ � 2 C(�); � 2 A$ ⊖� 2 B.

The transition relation R is the union of R
℄

and R
[

, i.e. R(A;B) i� either

R
℄

(A;B) or R
[

(A;B).

Now we an de�ne that the atom A is singular i� it ontains a formula of

the form �^:

e

� or symmetrially. Thus any atom ontaining a tik (.

=1

�)

is singular. As a onsequene, A is singular i� :AR
℄

A i� :AR
[

A (this is

expeted sine the logi is stuttering-insensitive), and that a singular state

is only onneted to non-singular states. A is initial i� it ontains : ⊖ >.

Thus it ontains no formula of the form: �

1

S�

2

or /

I

�. It is singular, sine

11



it ontains >^:⊖>. A is monitored i� it ontains �, the formula of whih

we hek oating satis�ability.

Any atom is exatly represented by the onjuntion of the formulae that

it ontains. For an atom A, we write

^

A for that formula, that formula is

�nite by de�nition of A. By propositional ompleteness, we have:

Lemma 2 `

W

A2A

^

A.

We de�ne the formula R(A) to be

W

BjARB

^

B.

W

BjAR

℄

B

^

B an be simpli-

�ed to

V

e

�2A

�, beause in the propositional struture, all other members of

a B are allowed to vary freely and thus anel eah other by the distribution

rule.

Lemma 3 `

^

A!

eR
℄

(A).

Proof.

eR
℄

(

^

A) =

e

W

BjAR

℄

B

^

B =

V

e

�2A

e

�. Using (JA) we obtain the

thesis. �

Dually,

W

BjAR

[

B

^

B an be simpli�ed to

V

�2A

⊖�. Therefore:

Lemma 4 ` ⊖ ^

A! R
[

(

^

A).

Now let R
+

be transitive losure of R. Sine R
℄

� R
+

, we have:

Lemma 5 ` ⊖ ^

A! R
+

(

^

A).

Similarly,

Lemma 6 `

^

A!

eR
+

(

^

A).

Using the disjuntion rule for eah reahable

^

A, we obtain: ` R
+

(

^

A)!

eR
+

(

^

A) and ` ⊖R
+

(

^

A) ! R
+

(

^

A). Now we an use the indution axioms

provided by �nite variability, i.e. �(( !

e

 )^ (⊖ !  ))! (

e

 ! � )

and ⊟(( ^ ⊖> ! ⊖ ) ^ (

e

 !  )) ! (⊖ ! ⊟ ), using neessitation

and modus ponens, we obtain:

Lemma 7 `

^

A! �R
+

(

^

A).

A EventClokTL-onsistent struture

We say that an atom A is EventClokTL-onsistent if it is propositionally

onsistent and onsistent with the axioms and rules given in setion 3. Now,

we onsider the struture

^S = (

^A; ^R), where

^A is the subset of propositional

atoms that are EventClokTL-onsistent and

^R = f(A;B)jR(A;B) and A;B 2

^Ag. Note that the lemmas above are still valid in the struture

^S as only

inonsistent atoms are suppressed. We now investigate more deeply the

12



properties of the struture

^S and show how we an prove from that stru-

ture that the onsistent formula � is satis�able.

A maximally strongly onneted substruture (MSCS) D is a set of atoms

D �

^A of the struture

^S suh that (i) for all D

1

;D

2

2 D,

^R
+

(D

1

;D

2

)

and

^R
+

(D

2

;D

1

), i.e. every atom an reah the other atoms of the set D

and onversely, and (ii) for all D

1

;D

2

2

^A suh that (D

1

;D

2

) 2

^R+

and

(D

2

;D

1

) 2

^R
+

and D

1

2 D then D

2

2 D, i.e. D is maximal. A MSCS D is

alled initial if for all (D

1

;D

2

) 2

^R and D

2

2 D then D

1

2 D, i.e. D has no

inoming edges. Conversely, a MSCS D is alled �nal if for all (D

1

;D

2

) 2

^R

and D

1

2 D then D

2

2 D, i.e. D has no outgoing edges.

Lemma 8 Every �nal MSCS D of the struture

^S is self-ful�lling, i.e. for

every formula of the form �

1

U�

2

2 A with A 2 D, there exists B 2 D suh

that �

2

2 B.

Proof. Let us make the hypothesis that there exists �

1

U�

2

2 A with A 2 D

and for all B 2 D, �

2

62 B. By lemma 7, `

^

A ! � ^R
+

(A) and as by hy-

pothesis �

2

62 B, for all B 2

^R
+

(A), by theorem (KA) and a propositional

reasoning, we onlude `

^

A! �:�
2

. Using the axiom (SF) and the hypoth-

esis that �

1

U�

2

2 A, we obtain `

^

A! ♦�
2

and by de�nition of ♦, we obtain

`

^

A! :�:�
2

in ontradition with `

^

A! �:�
2

whih is impossible sine

A is, by hypothesis, onsistent. �

Lemma 9 Every initial MSCS D of the struture

^S ontains an initial

atom, i.e. there exists A 2 D suh that ⊖> 62 A.

Proof. By de�nition of initial MSCS, we know that for all (D

1

;D

2

) 2

^R
+

and D

2

2 D, then D

1

2 D. Let us make the hypothesis that for all D 2 D,

⊖> 2 D. By the mirror of lemma 7 `

^

A ! ⊟
W

Bj

^

R

+

(B;A)

^

B we onlude,

by a propositional reasoning and the hupothesis that ⊖> 2 D for all D

suh that

^R
+

(D;A), that `

^

A ! ⊟ ⊖ >, but as A is a onsistent atom by

axiom (BE), we know that ♦�:⊖> 2 A, thus we obtain a ontradition sine

⊟� � :♦�:�. �

In the sequel, we onentrate on partiular paths, alled runs, of the

struture

^S. A run of the struture

^S = (

^A; ^R) is an in�nite sequene � =

A

0

A

1

: : : (A

n

: : : A

n+m

)

!

: : : , paired with an in�nite sequene of intervals

�

I = I

0

I

1

: : : I

n

: : : suh that:

1. Initiality: A

0

is an initial atom;

2. Conseution: for every i � 0, (A

i

; A

i+1

) 2

^R;

3. Singularity: for every i � 0, if A

i

is a singular atom then I

i

is singular;

4. Alternation: I

0

I

1

: : : I

n

: : : alternates between singular and open inter-

vals, i.e. I

0

is singular, and for all i > 0, I

i

is singular i� I

i�1

is open,

I

i

is open i� I

i�1

is singular;
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5. Eventuality: the set fA

n

; :::; A

n+m

g is a �nal MSCS of the struture

S.

Note that the timing information provided in

�

I is purely qualitative

(singular or open); therefore any alternating sequene is adequate at this

qualitative stage. Later, we will onstrut a spei� sequene satisfying also

the real-time onstraints.

Lemma 10 The transition relation

^R of the struture

^S is total, i.e. for

all atom A 2

^A, there exists an atom B 2

^A suh that

^R(A;B).

Proof. We prove

^R
℄

total, i.e. for all A 2

^A; f�j e� 2 Ag is onsistent. Then

it will be inluded in an atom. Assume it is not. We have then

e

�;

e

:� 2 A.

Using (JA), (N) this yields a ontradition in A. (Note: the (JT) axiom is

impliitly used in the de�nition of

^R, instead of appearing here). �

Lemma 11 For every atom A of the struture

^S, for every alternating

interval sequene

�

I, there is a run (�;

�

I) that passes through A.

Proof. First the alternation and singularity onstraints an always be veri�ed

by taking stuttering steps when needed and by noting that in

^S two singular

atoms are never linked by

^R. It remains us to show that :

1. Initiality, i.e. every atom of

^S is either initial or an be reahed

by an initial atom. Let us onsider an atom A, if A is initial then

we are done, otherwise, let us make the hypothesis that it an not be

reahed by an initial atom, it means: for allB suh that

^R
+

(B;A) then

:⊖> 62 B, so by propositional ompleteness ⊖> 2 B. By lemma 7 and

a propositional reasoning, we obtain `

^

A! ⊟⊖>. Using axiom (BE)

and our hypothesis ⊖>, through ♦�:⊖>, we obtain a ontradition.

2. Finality, i.e. every atom of

^S either is part of a �nal MSCS or an

reah one of the �nal MSCS of

^S. It is a diret onsequene of the

fat that

^R is total and the fat that

^S is �nite.

�

A run � = (�;

�

I) of the struture

^S is semantially sound if it respets

the semantis of the qualitative temporal operators whih is expressed by

the following onditions (real-time operators will be treated in the following

setion):

1. if �

i

is singular then I

i

is singular;

2. if �

1

U�

2

2 �

i

then:

� either A

i

is singular and there exists j > i s.t. �

2

2 A

j

and for

all k s.t. i < k < j, �

1

2 A

k

;
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� or A

i

is not singular and

(a) either �

2

2 A

i

(b) or there exists j > i s.t. �

2

2 A

j

and for all k s.t. i � k < j,

�

1

2 A

k

;

3. if �

1

S�

2

2 �

i

then:

� either A

i

is singular and there exists j < i s.t. �

2

2 A

j

and for

all k s.t. j < k < i, �

1

2 A

k

;

� or A

i

is not singular and

(a) either �

2

2 A

i

(b) or there exists j < i s.t. �

2

2 A

j

and for all k s.t. j < k � i,

�

1

2 A

k

;

A semantially sound run is alled an Hintikka sequene. Next, we show

properties of runs:

Lemma 12 For every run � = (�;

�

I) of the struture

^S, with � = A

0

A

1

: : : ,

for every A

i

suh that ♦� 2 A
i

:

� A

i

is singular and there exists j > i suh that � 2 A

j

;

� A

i

is non-singular and there exists j � i suh that � 2 A

j

.

Proof. First let us prove the following properties of the transition relation

^R:

� let

^R
℄

(A;B) and ♦� 2 A then either � 2 B or ♦� 2 B. In fat, reall

that ♦� � >U�, and by de�nition of

^R
℄

, axiom �

1

U�

2

$

e

(�

2

_ (�

1

^

�

1

U�

2

)) (UJ) and a propositional reasoning, we obtain that >U� 2 A

i� � 2 B or >U� 2 B;

� let

^R
[

(A;B) and ♦� 2 A then either � 2 A, � 2 B or >U� 2 B. By

de�nition of

^R
[

, axiom ⊖(�

1

U�

2

)$ ⊖�
2

_ (⊖�
1

^ �

2

_ (�

1

^ �

1

U�

2

))

mirror of (JS) and a propositional reasoning, we obtain � 2 A or � 2 B

or >U� 2 B.

By the two properties above, we have that if ♦� 2 A
i

then either � appears

in A

j

with j > i if A

i

is singular (and thus right losed), j � i if A

i

is not

singular (and thus assoiated with an open interval) or � is never true and ♦�

propagates for the rest of the run. But let us show that this last possibility

is exluded by our de�nition of run. In fat, every run eventually loops into

a �nal self-ful�lling MSCS D. Then either the fatality � assoiated with ♦�

is realized before this looping or ♦� 2 D and by lemma 8 the fatality � 2 D

and is thus eventually realized. �
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Lemma 13 For every run � = (�;

�

I) of the struture

^S, for every position

i in the run if �

1

U�

2

2 A

i

then the property 2 of timed Hintikka sequenes

is veri�ed, i.e:

� either A

i

is singular and there exists j > i s.t. �

2

2 A

j

and for all k

s.t. i < k < j, �

1

2 A

k

;

� or A

i

is not singular and

1. either �

2

2 A

j

2. or there exists j > i s.t. �

2

2 A

j

and for all k s.t. i � k < j,

�

1

2 A

k

.

Proof. By hypothesis we know that �

1

U�

2

2 A

i

and we �rst treat the ase

where A

i

is singular.

� By the axiom �

1

U�

2

! ♦�
2

and lemma 12, we know that there exists

j > i suh that �

2

2 A

j

. Let us make the hypothesis that A

j

is the

�rst �

2

-atom after A

i

.

� It remains us to show that: for all k s.t. i < k < j, �

1

2 A

k

. We

reason by indution on the value of k.

{ Base ase: k = i+1. By hypothesis we have �

1

U�

2

2 A

i

and also

A

i

R

℄

A

i+1

(as A

i

is right losed) and thus for all

e

� 2 A

i

; � 2 A

i+1

by de�nition of R

℄

. By axiom �

1

U�

2

$

e

(�

1

U�

2

), we on-

lude that �

1

U�

2

2 A

i+1

and by axiom �

1

U�

2

$

e

(�

2

_ (�

1

^

e

(�

1

U�

2

))),

e

(�

1

_�

2

)$

e

�

1

_

e

�

2

,

e

(�

1

^�

2

)$

e

�

1

^

e

�

2

, and

the fat that by hypothesis �

2

62 A

i+1

, a propositional reasoning

allows us to onlude that �

1

2 A

i+1

.

{ Indution ase: k = i+l with 1 < l < j�i. By indution hypoth-

esis, we know that �

1

2 A

k�1

and �

1

U�

2

2 A

k�1

, also :�

2

2 A

k

and :�

2

2 A

k�1

as k < j (by hypothesis j is the �rst position

after i where �

2

is veri�ed). To establish the result, we reason by

ase : (i) I

k

is open and thus I

k�1

is singular and right losed.

We have A

k�1

R

℄

A

k

, and thus for all

e

� 2 C( );

e

� 2 A

i

$

� 2 A

i+1

by de�nition of R

℄

. As �

1

U�

2

2 A

k�1

by indution

hypothesis and the axiom �

1

U�

2

$

e

(�

1

U�

2

), we onlude that

�

1

U�

2

2 A

k

. Using the axioms �

1

U�

2

$

e

(�

2

_(�

1

^

e

(�

1

U�

2

))),

e

(�

1

_ �

2

) $

e

�

1

_

e

�

2

,

e

(�

1

^ �

2

) $

e

�

1

^

e

�

2

, and the fat

that �

2

62 A

k

, and a proposition reasoning, we onlude that

�

1

2 A

k

. (ii) I

k

is losed whih implies that I

k�1

is right open

and A

k�1

R

[

A

k

. By de�nition of R

[

we have that for all ⊖� 2

C( );⊖� 2 A
k

$ � 2 A

k�1

. So we have ⊖(�

1

U�

2

);⊖:�
2

2 A

k

,

by hypothesis k < j thus we have :�

2

2 A

k

. Using those proper-

ties, the axiom ⊖(�

1

U�

2

)$ ⊖�
2

_ (⊖�
1

^ (�

2

_ (�

1

^ �

1

U�

2

))),

we onlude that �

1

^ �

1

U�

2

2 A

k

.
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We now have to treat the ase where A

i

is not singular. By the axiom

�

1

U�

2

! ♦�
2

and lemma 12 we know that there exists a later atom A

j

j � i suh that �

2

2 A

j

. If j = i then �

2

2 A

i

and we are done. Otherwise

j > i, and we must prove that for all k s.t. i � k < j, �

1

2 A

k

, this an be

done by the reasoning above. �

We now prove the reverse, i.e. every time that �

1

U�

2

is veri�ed in an

atom along the run then �

1

U�

2

appears in that atom. This lemma is not

neessary for ompleteness but we use this property in the lemmas over

real-time operators.

Lemma 14 For every run � = (�; I) of the struture

^S, for every position

i in the run, for every �

1

U�

2

2 C(�), if :

� either A

i

is singular and there exists j > i s.t. �

2

2 A

j

and for all k

s.t. i < k < j, �

1

2 A

k

;

� or A

i

is not singular and

1. either �

2

2 A

j

2. or there exists j > i s.t. �

2

2 A

j

and for all k s.t. i � k < j,

�

1

2 A

k

.

then �

1

U�

2

2 A

i

.

Proof. We reason by onsidering the three following mutually exlusive

ases:

1. A

i

is singular and there exists j > i s.t. �

2

2 A

j

and for all k s.t.

i < k < j, �

1

2 A

k

. We reason by indution to show that �

1

U�

2

2 A

j

for all l s.t. 1 � l � j � i.

� Base ase: l = 1. By hypothesis, we know that �

2

2 A

j

. We now

reason by ases: (i) if A

j�1

is right losed then we have A

j�1

R

℄

A

j

and by de�nition of R

℄

,

e

�

2

2 A

j�1

. Using the axiom �

1

U�

2

$

e

�

2

_ (�

1

^�

1

U�

2

), we dedue by a propositional reasoning that

�

1

U�

2

2 A

j�1

. (ii) if A

j�1

is right open then we know that

j � 1 > i (as A

i

is singular by hypothesis) and thus �

1

2 A

j�1

.

Also as A

j�1

R

[

A

j

, ⊖�
1

2 A

j

. Using the axiom ⊖(�

1

U�

2

) $

⊖�
2

_ (⊖�
1

^ (�

2

_ (�

1

^�

1

U�

2

))) and a propositional reasoning,

we obtain ⊖(�

1

U�

2

) 2 A

j

and by de�nition of R

[

, �

1

U�

2

2 A

j�1

.

� Indution ase: 1 � l < i � j � 1 and we have established the

result for l � 1, i.e. �

1

U�

2

2 A

j�(l�1)

. Let us show that we

have the result for A

j�l

. First note that by hypothesis, �

1

2

A

j�(l�1)

. We again reason by ases: (i) I

j�l

is right losed. Then

we have A

j�l

R

℄

A

j�(l�1)

and by de�nition of R

℄

, for all

e

� 2 C( ),

e

� 2 A

j�l

i� � 2 A

j�(l�1)

,thus

e

(�

1

U�

2

) 2 A

j�l

and by axiom
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�

1

U�

2

$

e

(�

1

U�

2

), we have that �

1

U�

2

2 A

j�l

. (ii) A

j�l

is

right open. Then we have A

j�l

R

[

A

j�(l�1)

and by de�nition of

R

[

, for all ⊖� 2 C( ), ⊖� 2 A
j�(l�1)

i� � 2 A

j�l

. We know that

by hypothesis, �

1

2 A

j�l

as j � l 6= i (A

i

is singular and A

j�l

not), thus ⊖�
1

2 A

j�(l�1)

, also �

1

U�

2

2 A

j�(l�1)

(by indution

hypothesis). Using the axiom ⊖(�

1

U�

2

) $ ⊖�
2

_ (⊖�
1

^ (�

1

^

�

1

U�

2

)) and a propositional reasoning, we obtain ⊖(�

1

U�

2

) 2

A

j�(l�1)

and by de�nition of R

[

that �

1

U�

2

2 A

j�l

.

2. A

i

is not singular and �

2

2 A

j

. As A

i

is not singular, we have A

i

R

℄

A

i

,

by de�nition of R

℄

, we have

e

�

2

2 A

i

. By the axiom �

1

U�

2

$

e

�

2

_

(�

1

^

e

(�

1

U�

2

)) and a proposition reasoning, we obtain the desired

result: �

1

U�

2

2 A

i

.

3. A

i

is not singular, �

2

62 A

j

, and there exists j > i s.t. �

2

2 A

j

and

for all k s.t. i � k < j, �

1

2 A

k

. This ase is treated by an indutive

reasoning similar to the �rst one above.

�

We have also the two orresponding mirror lemmas for the S-operator.

From the previous proved lemmas, it an be shown that the quali-

tative axioms of setion 3 are omplete for the qualitative fragment of

EventClokTL, i.e. the logi LTR.

Lemma 15 A run � has the Hintikka property for LTR formula: for every

LTR formula � 2 C; � 2 �(t)$ (�; t) j= �.

As a onsequene, we have the following theorem:

Theorem 3 Every LTR formula that is onsistent with the qualitative ax-

ioms is satis�able.

We now turn to the ompleteness of real-time axioms.

4.2 Quantitative part

A run � = (�;

�

I) of the struture

^S has the timed Hintikka property if it

respets the Hintikka properties de�ned previously and the two following

additional properties:

1. if .

I

� 2 �(t) then at a later time t

0

2 t+ I; � 2 �(t

0

) and 8t

00

: t < t

00

<

t+ I, :� 2 �(t

00

)

2. if /

I

� 2 �(t) then at an earlier time t

0

with t

0

2 t � I; � 2 �(t

0

) and

8t

00

: t > t

00

> t� I, :� 2 �(t

00

)
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A run that respets those additional properties is alled a well-timed run. In

the sequel, we will show that for eah run of the struture

^S, we an modify

its sequene of intervals, using a proedure, in suh a way that the modi�ed

run is well-timed.

Reall that given a traked formula � 2 R,

� .

=1

� is alled its tik;

� (� ^

e

:�) _ (:� ^ ⊖�) is alled its event (note that the seond ase

need not be onsidered thanks to the axioms (LO), (JP));

� (� ^⊖:�) _ (:� ^

e

�) is alled its reset.

A onstraint is a real-time formula of an atom A

i

. The referene of a

onstraint is the index e at whih its previous event, tik or reset ourred.

The referene is always singular. The anhor of a onstraint is the index

j at whih its next event, tik or reset ourred. We say that (the history

lok of) � is ative between an event � and the next reset of �. It is small

between its event and the next tik or reset. It is suÆient to solve small

onstraints, as we shall see. Thus we de�ne the sope of a history onstraint

as the interval between the event and the next tik or reset. Constraints are

either equalities (the time spend in their sope must be 1), linking an event

to a tik, or inequalities (the time spend in their sope must be less than 1).

The sope of an inequality extends from an event to a reset. Constraints an

be partially ordered by sope: it is enough to solve onstraints of maximal

sope, as we shall see. An index is owned by a onstraint, if it is in the sope

of no other onstraint with an earlier referene. A onstraint of maximal

sope always owns indexes: they are found at the end of its sope. We

will also use partial inequalities, representing the onstraints known up to

an index of a path. Whether an atom is in the sope of a onstraint, and

whether it is an equality, an be dedued from its ontents. The table below

shows the ontents of an atom A

i

that is the anhor of an equality:

Table 1: Equality onstraints

referene anhor in A

i

� (event) /

=1

� (tik)

.

=1

� (tik) �;:�S .

=1

� (event)

The table below shows the ontents of an atom A

i

that de�nes an in-

equality:

The proof shows that these onstraints an be solved i� they are om-

patible in the sense that the sope of an equality annot be inluded in the

sope of an inequality, nor stritly in the sope of another equality.
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Table 2: Inequality onstraints

referene in A

i

anhor

.

=1

� (tik) .

<1

� ^ :�S

+

.

=1

� � (event)

� ^

e

:� (event) /

<1

� ^ :�

^

S� /

=1

� _ � (tik or reset)

(� ^

e

:�) _ (⊖� ^ :�) (reset) : .

=1

�S� ^ :(:�S .

=1

�) ^ (.

<1

� _ �) � (event)

From any run � = (�;

�

I), we now build a timed run Attr(�) = (�;

�

J) by

attributing well-hosen intervals to the atoms of the run. Reall that the

interval information

�

I in the run � has only a qualitative value: the intervals

assoiated to the atoms are either open or singular. We now show that we

an attribute a new sequene of intervals

�

J , given the timed run Attr(�)

that will satisfy the real-time onstraints. We proeed by indution along

the run, attributing time points [t

i

; t

i

℄ to the singular atoms A

i

with i even.

Therefore, an open interval (t

i�1

; t

i+1

) is attributed to non-singular atoms

A

i

with i odd.

1. Base: We attribute the interval [0; 0℄ to the initial atom A

0

.

2. Indution: we identify 20 and solve the tightest onstraint, that owns

the urrent index i. We de�ne e as the referene of this tightest on-

straint, by ases:

(a) equality onstraints:

i. If there is an /

=1

 2 A

i

there has been a last (singular) atom

A

e

ontaining  before at time t

e

.

ii. Else, if ⊖: ^ ^: S.
=1

 2 A

i

there has been a last atom

A

e

ontaining .

=1

 before A

i

, at time t

e

.

We attribute [t

e

+ 1; t

e

+ 1℄ to A

i

.

(b) inequality onstraints:

i. Else, we ompute the earliest referene e of the small loks

using table 2. t

i

has to be between t

i�2

and t

e

+1. We hoose

t

i

= (t

i�2

+ t

e

+ 1)=2.

ii. Finally, when all loks are unde�ned or bloked, we attribute

(say) t

i�2

+ 1=2 to A

i

.

The algorithm selets arbitrarily an equality onstraint, but is still de-

terministi:

Lemma 16 If two equality onstraints have the same anhor i, their refer-

enes e

1

; e

2

are idential.
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Proof. Four ombinations of equality onstraints are possible:

� The �rst onstraint is /

=1

�

{ The seond onstraint is /

=1

 : A

i

ontains : U

�

/

=1

�;: /

=1

 U

�

/

=1

� sine its eventuality /

=1

� is true now. It ontains

/

=1

 , and thus /

�1

 by (OR). We apply (SHH) to obtain :�S .

We repeat this with  ; � inverted to obtain : S�. These formulae

imply by the mirror of Lemma 14 that  annot our before �,

and onversely, thus they our in the same atom.

{ The seond onstraint is the event  ^ : ⊖  with : S .

=1

 :

then A

i

ontains :�U

�

 ;: /

=1

�U

�

 sine its eventuality  is

true now. It ontains /

=1

 , and thus /

�1

 by (OR). We apply

(SHP) to obtain : .

=1

 S�.

Sine A

i

ontains : U

�

/

=1

� sine its eventuality /

=1

� is true

now. We apply (SPH) to obtain :�Z.

=1

 _:�Z . Sine : S.

=1

 , we know that the �rst branh is true.

These formulae imply by Lemma 14 that  annot our before

�, and onversely, thus they our in the same atom.

� The �rst onstraint is the event � with :�S .

=1

�:

{ The seond onstraint is /

=1

 : This ase is simply the previous

one, with �;  inverted.

{ The seond onstraint is the event  with : S.

=1

 : A

i

ontains

: U

�

� sine its eventuality � is true now. We apply (SPP) to

obtain :.

=1

�Z(.

=1

 _ ). By : S.

=1

 , the tik .

=1

 ourred.

We repeat this with  ; � inverted. These formulae imply by

Lemma 14 that .

=1

 annot our before .

=1

�, and onversely,

thus they our in the same atom.

�

Solving an equation at its anhor also solves urrent partial inequations:

Lemma 17 If A

i

is in the sope of an inequation, and the anhor of an

equation, then the referene A

j

of the inequation is after the referene A

e

of

the equation.

Proof. There are 3 possible forms of inequations in A

i

(see table 4.2):

1. /

<1

 ;: 

^

S 2 A

i

:

let j � i be its referene (its event), i.e.  2 A

j

. We must show that

e < j. The equation an be:

� /

=1

� 2 A

i

and � 2 A

e

:

A

i

ontains : U

�

/

=1

�;: /

=1

 U

�

/

=1

� sine its eventuality
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/

=1

� is true now. We apply (SHH) to obtain :�S , meaning by

the mirror of lemma 14 that e � j. : S� 62 A

i

, for otherwise

we apply (OHH) yielding/

<1

� 2 A

i

ontraditing /

=1

� 2 A

i

by

(AND), so we onlude e < j.

� �;:�S .

=1

� 2 A

i

and .

=1

� 2 A

e

:

by (SHP) : .

=1

�S 2 A

j

, so e � j. We annot have the reverse

: S.

=1

�, for otherwise we apply the mirror of (OHP) and dedue

:� 2 A

i

, so we onlude e < j.

2. : .

=1

 S ^ :(: S .

=1

 ) ^ (.

<1

 _  ) 2 A

i

:

let j � i be its referene (a reset), i.e. � ^

e

:� 2 A

j

. Sine .

<1

 2

A

i�1

and there is no intervening  between j and i, the transition

rules imply .

<1

 2 A

j+1

and thus .

�1

 2 A

j

by (JH). We must show

that e < j. The equation an be:

� /

=1

� 2 A

i

and � 2 A

e

:

if .

<1

 _  2 A

i

, we apply (SPH) to obtain :�Z .

=1

 _ :�Z ,

whih means e � j. The �rst branh is false by hypothesis as

:(: S .

=1

 ) 2 A

i

, sine we deal with an inequality. Thus : .

=1

 2 A

j

; using .

�1

 2 A

j

, .

<1

 2 A

j

. Again beause there

are no intervening  between j and i, using lemma 14 we have

: U /

=1

� 2 A

j

. Using the mirror of (OPH), /

<1

� ^ :� 2 A

j

,

thus j = e is impossible, sine :� 2 A

j

and � 2 A

e

. We onlude

e < j.

� �;:�S .

=1

� 2 A

i

and .

=1

� 2 A

e

:

so : U

�

� 2 A

i

, and we use (SPP) to obtain : .

=1

�Z .

=1

 _

: .

=1

�Z 2 A

i

.  must our �rst (: .

=1

 S 2 A

i

), so the

�rst ase is exluded, giving : .

=1

 2 A

j

; using .

�1

 2 A

j

,

.

<1

 2 A

j

. Again beause there are no intervening  between

positions j and i, we have : U /

=1

� 2 A

j

. Using the mirror of

(OHH), .

<1

� 2 A

j

. The seond ase is thus true, and means

e � j. e = j is impossible, sine .

<1

� 2 A

j

^ .

=1

� 2 A

e

. We

onlude e < j.

3. .

<1

 ^ : S

+

.

=1

 2 A

i

and .

=1

 2 A

j

:

let j � i be its referene, i.e. .

=1

 2 A

j

. We must show that e < j.

The equation an be:

� /

=1

� 2 A

i

and � 2 A

e

:

thus : U

�

/

=1

� 2 A

i

; by (SPH) :�Z .

=1

 _ :�Z 2 A

i

. The

�rst ase is true as by hypothesis : S

+

.

=1

 2 A

i

(.

=1

 must

our before  in the past), and gives e � j.

� �;:�S .

=1

� 2 A

i

and .

=1

� 2 A

e

:

using (SPP), we obtain : .

=1

�Z .

=1

 _ : .

=1

�Z 2 A

i

. The
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�rst ase is true, by hypothesis, and gives e � j. We annot

assume e = j, beause the mirror of lemma 16 then gives  2 A

i

,

ontraditing : S

+

.

=1

 2 A

i

. We onlude e < j.

�

We now show that the algorithm Attr assigns time bounds of intervals

that are inreasing.

Lemma 18 The sequene t

i

built by Attr is inreasing.

Proof. In the notation of the de�nition, this amounts to prove t

i�2

< t

e

+ 1

when e is de�ned, sine t

i

is either t

e

+ 1 (in the ase of an equality) or the

middle point of (t

i�2

; t

e

+1) (in the ase of an inequality). If e is not de�ned

(no onstraints) then it is trivially veri�ed as we attribute t

i�2

+ 1=2 to t

i

.

We prove the non trivial ases by indution on i:

1. base ase: i = 2. Either:

� no onstraint is ative, e is unde�ned;

� e = 0; t

e

= 0; t

i�2

= 0. We just have to prove 0 < 1.

2. indution: We divide in ases aording to the onstraint seleted at

i� 2, whose referene is alled e

i�2

:

(a) an equality: by lemmas 16, 17, its referene was before, i.e.,

e

i�2

< e. By indutive hypothesis, t

i

is inreasing: t

e

i�2

< t

e

.

Thus t

i�2

= t

e

i�2

+ 1 < t

e

+ 1.

(b) an inequality: Thus the referene e

i�2

� e

i

, sine it was obtained

by sorting. By indutive hypothesis, t

i

is inreasing: so t

e

i�2

� t

e

.

By indutive hypothesis, t

i�4

< t

e

i�2

+ 1. Thus t

i�2

= (t

i�4

+

t

e

i�2

+ 1)=2 < (t

e

i�2

+ 1 + t

e

i�2

+ 1)=2 = t

e

i�2

+ 1 � t

e

+ 1.

�

Furthermore, the algorithm Attr ensures that time inreases beyond any

bounds:

Lemma 19 The sequene of intervals

�

I of Attr(�) = (�;

�

I) built above has

�nite variability: for all t 2 R
+

, there exists an i � 0 suh that t 2 I

i

.

Proof. Although there is no lower bound on the duration of an interval,

we show that the time spend in eah passage through the �nal yle of

�� = A

0

A

1

: : : (A

n

A

n+1

: : : A

n+m

)

!

is at least 1=2. Thus any real number t

will be reahed before index 2t, where  is the number of atoms in the �nal

yle. We divide in ases:

1. If the yle A

n

A

n+1

: : : A

n+m

ontains an atom whih is not in the

sope of any onstraint, the time spent there will be 1=2.
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2. Else, the yle ontains onstraints, and thus onstraints of maximal

sope. Let i be owned by suh a onstraint. The time spent in the

sope of the onstraint until i is at least 1=2: Sine e is the beginning of

the sope of the onstraint, and, t

i�2

� t

e

, and t

i

� (t

i�2

+ t

e

+1)=2 �

t

e

+1=2. Furthermore, note that the sope annot be greater than one

yle: thus the time spent is a yle is at least 1=2.

�

This proedure orretly solves all onstraints:

Lemma 20 The interval attribution Attr transforms any run � in a well-

timed run Attr(�).

Proof. We show the two supplementary properties of a well-timed run:

1. Let /

I

 2 �(t) = A

i

. We must show that the next  ours in t� I.

/

I

 an be:

(a) /

>1

 : These onstraints are automatially satis�ed beause:

� the mirror of the eventuality rule (P-S) guarantees  has

ourred: 9j < i  2 A

j

;

� the transition rules (J axioms) guarantee that there is �rst a

time where equality is satis�ed: 9k i < k < j ^ /

=1

 2 A

k

;

� the reset rule (CR) guarantees that satisfying the equality

will entail satisfying the greater-than onstraint, sine they

refer to the same traked event, and sine the equality is

later.

(b) /

=1

 : Sine this is an equality onstraint, the algorithm Attr

must have hosen an equality onstraint with referene e. Thus

t

i

= t

e

+ 1. By lemma 16, the referene event � is also in A

e

.

() /

<1

 : Let j � i be its referene, � 2 A

j

. The onstraint seleted

by Attr at i an be:

� an equality, by lemma 17, its referene e < j, so that t

i

=

t

e

+ 1 < t

j

+ 1.

� or the onstraint hosen in A

i

is an inequality. The pair

/

<1

 2 A

i

;  2 A

j

is also an inequality in A

i

: let f be its

referene. The algorithm has seleted the onstraint with the

earliest referene e. Thus e � f � j � i, and t

i

< t

e

+ 1.

Thus t

i

< t

j

+ 1.

2. Let .

I

 2 �(t) = A

i

. We must show that the next  ours in t+ I.

.

I

 an be:

(a) .

>1

 : These onstraints are automatially satis�ed beause:
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� the eventuality rule (P-S) guarantees  will our: 9j <

i  2 A

j

;

� the transition rules (J axioms) guarantee that there is �rst a

tik: 9k i < k < j ^ .

=1

 2 A

k

;

� the reset rule (CR) guarantees that satisfying the equality

will entail satisfying the greater-than onstraint, sine they

refer to the same anhor event, and sine the equality is later.

(b) .

=1

 : let A

j

ontain the next event of  . Sine this is an equal-

ity onstraint, the algorithm Attr must have hosen an equality

onstraint at A

j

. By lemma 16, its referene is i. Thus t

j

= t

i

+1.

() .

<1

 : Let A

j

ontain the next event of  . The onstraint seleted

by Attr at j an be:

� an equality by lemma 17 its referene e < i, so that t

j

=

t

e

+ 1 < t

i

+ 1.

� or the onstraint hosen in A

j

is an inequality. The pair

.

<1

 2 A

i

;  2 A

j

is also an inequality in A

j

: let f be its

referene. The algorithm has seleted the onstraint with the

earliest referene e. Thus e � f � i � j, and t

j

< t

e

+ 1.

Thus t

j

< t

i

+ 1.

�

Theorem 4 A timed run has the Hintikka property for EventClokTL: 8� 2

C; � 2 �(t)$ (�; t) j= �.

Proof. In lemma 14, we proved this for the (qualitative) runs. In theo-

rem 20, we proved the impliation for the real-time operators. It remains

only to prove the onverse, whih also results from timed: if .

I

� 62 �(t), by

maximality : .

I

� 2 �(t) and thus either :♦� 2 �(t) and the result follows

by lemma 14, or .

I

� 2 �(t) and the result follows by lemma 20. �

Finally, we obtain the desired theorem:

Theorem 5 Every EventClokTL-onsistent formula � is satis�able.

Proof. If � is a EventClokTL-onsistent formula then there exists an

�-monitored atom A

�

in

^S. By lemma 11, there exists a set of runs � that

pass through A

�

and by the properties of the proedure Attr, lemma 13,

lemma 19 and lemma 20, at least one run (�;

�

I) 2 � has the Hintikka

property for EventClokTL. It is diret to see that (� \ P;

�

I) is a model for

� at time t 2 I

�

(the interval of time assoiated to A

�

in (�;

�

I) ) and thus

� is satis�able. �
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4.3 Comparison with Automata Constrution

In spirit, the proedure given above an be onsidered as building an au-

tomaton orresponding to a formula. The known proedures [3℄ for deiding

MetriIntervalTL use a similar onstrution, �rst building a timed automaton

and then its region automaton. We ould not use this onstrution diretly

here, beause it involves features of automata that have no ounterpart in

the logi, and thus ould not be expressed by axioms. However, the main

ideas are similar. The region automaton will reord the integer value of

eah lok: we ode this by formulae of the form .

<1

.

=1

::: .

=1

�. It will

also reord the ordering of the frational parts of the loks: this is oded

here by formulae of the form : .

=1

::: .

=1

�U .

=1

::: .

=1

 . There are some

small di�erenes, however. For simpliity we maintain more information

than needed. For instane we reord the ordering of any two tiks, even if

these tiks are not linked to the urrent value of the lok. This relationship

is only inverted for a very speial ase: when a lok has no previous and no

following tik, we need not and annot maintain its frational information.

It is easy to build a more areful and more eÆient tableau proedure, that

only reords the needed information.

The struture of atoms onstruted here treats the eventualities in a

di�erent spirit than automata: here, there may be invalid paths in the graph

of atoms. It is immediate to add aeptane onditions to eliminate them

and obtain a more lassial automaton. But it is less obvious to design a

lass of automata that is as expressive as the logi: this is done in [10℄.

5 Translating EventClokTLand MetriIntervalTL

The logis have been designed from a di�erent philosophial standpoint:

MetriIntervalTL restrits the undeidable logi MetriTL by \relaxing pun-

tuality", i.e., forbidding to look at exat time values; EventClokTL, in on-

trast, forbids to look past the next event in the future. However, we have

shown in [10℄ that, surprisingly, they have the same expressive power. The

power given by nesting onnetives allows to eah logi to do some of its for-

bidden work. Here, we need more than a mere proof of expressiveness, we

need a �nite number of axioms expressing the translation between formulae

of the two logis. We give below both the axioms and a proedure that use

them to provide a proof of the equivalene.

First, we suppress intervals ontaining 0:

�

^

U

I

 $  _ (�

^

U

J

 ) with J = I n f0g and 0 2 I (R0)

Then we replae bounded untils

^

U

I

by simpler ♦
I

:

�

^

U

I

 $ �
�I

( _ �

^

U ) ^�
<

0

I

(�

^

U ) ^�
<I

� ^ ♦
I

 (RU)
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where the intervals � I = ft > 0j8t

i

2 I; t � t

i

g, < I = ft > 0j8t

i

2 I; t <

t

i

g, <

0

I = ft � 0j8t

i

2 I; t < t

i

g.

We suppress lassial until using:

�

^

U $ �U( ^⊖�) (UC)

For in�nite intervals, we redue the lower bound to 0 using

♦
(l;1)

�$ �
(0;l℄

♦� (IO)

♦
[l;1)

�$ �
(0;l℄

(� _ ♦�) (IC)

For �nite intervals with left bound equal to 0, we use the . operator: we

redue the length of the interval to 1 using:

♦
(0;u)

�$ .

<u

� (DLT)

♦
(0;u℄

�$ .

�u

� (DLE)

Note that the formulae .

<u

� and .

�u

� an be redued to formulae that only

use onstant 1 using the axioms (NLE) and (NLT).

When the left bound of the interval is di�erent from 0 and the right

bound di�erent from 1, we redue the length of the interval to 1 using:

♦
I[J

�$ ♦
I

� _ ♦
J

� (SOR)

Then we use the following rules reursively until the lower bound is redued

to 0:

♦
(l;l+1)

�$ ♦
[l�1;l)

.

=1

e

� _ ♦
(l�1;l)

.

=1

� _�
(l�1;l℄

.

<1

� (FOO)

♦
(l;l+1℄

�$ ♦
[l�1;l)

.

=1

e

� _ ♦
(l�1;l℄

.

=1

� _�
(l�1;l℄

.

<1

� (FOC)

♦
[l;l+1)

�$ ♦
[l�1;l)

.

=1

e

� _ ♦
[l�1;l)

.

=1

� _�
(l�1;l℄

♦
[0;1)

� (FCO)

♦
[l;l+1℄

�$ ♦
[l�1;l)

.

=1

e

� _ ♦
[l�1;l℄

.

=1

� _�
(l�1;l℄

♦
[0;1)

� (FCC)

In this way, any MetriIntervalTL formula an be translated into a Event-

ClokTL formula where bounds are always 0 or 1. Atually, we used a very

small part of EventClokTL; we an further eliminate .

<1

�:

.

<1

�$ (:�

^

U� ^ : .

=1

�U

+

�) _ (:(:�

^

U�) ^ : .

=1

e

�U

+

e

�) (LT=)

showing that the very basi operators .

=1

and its mirror image have the

same expressive power as full MetriIntervalTL.

The onverse translation is muh simpler:

.

I

�$ :♦
<I

� ^ ♦
Inf0g

� (P)

�U $ (� _  )

^

U (U)
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5.1 Axiomatization of MetriIntervalTL

To obtain an axiom system for MetriIntervalTL, we simply translate the

axioms of EventClokTL and to add axioms expressing the translation.

Indeed, we have translations T : EventClokTL ! MetriIntervalTL; S :

MetriIntervalTL ! EventClokTL. Therefore when we want to prove a

MetriIntervalTL formula �, we translate it into EventClokTL and prove

it there using the proedure of setion 4. The proof � an be translated

bak to MetriIntervalTL in T (�) proving T (S(�)). Indeed, eah step is a re-

plaement, and replaements are invariant under syntax-direted translation

preserving equivalene:

T ( $ �) = T ( )$ T (�)

T (�[p :=  ℄) = T (�)[p := T ( )℄

To �nish the proof we only have to add

T (S(�))

�

. Atually the translation

axioms above are stronger, stating T (S(�))$ �. In our ase, T (de�ned by

(P), (U)) is so simple that it an be onsidered as a mere shorthand. Thus

the axioms (RE){(SHP) and (0){(FCC) form a omplete axiomatization of

MetriIntervalTL, with .

I

;U now understood as shorthands.

6 Conlusion

The spei�ation of real-time systems using dense time is more natural, and

has many semantial advantages, but requires our disrete-time tehniques

[8, 15℄ to be generalized. The model-heking and deision tehniques have

been generalized in [2, 3℄.

This paper provides omplete axiom systems and proof-building proe-

dures for linear real time, extending the tehnique of [16℄. This proedure

an be used to automate the proof onstrution of propositional fragments

of a larger proof.

Our work also presents the following shortomings, that we hope to

address in the future:

� The proof rules are admittedly umbersome, sine they exatly reet

the layered struture of the proof: for instane, real-time axioms are

learly separated from the qualitative axioms. More intuitive rules

an be devised if we relax this onstraint. This paper provides an easy

way to show their ompleteness: it is enough to prove the axioms of

this paper. This also explain why we have not generalized the axioms,

even if when obvious generalizations are possible: we prefer to stik

to the axioms needed in the proof, to failitate a later ompleteness

proof using this tehnique.
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� The proofs onstruted by our proedure are often tedious ase anal-

yses. A proof beauti�ation proedure will be useful when the proof

has to be understood by a user, e.g. when the user is attempting to

generalize a mahine-generated propositional proof to a �rst-order one.

This proedure would use the nier axioms mentioned in the previous

point.

� The logis used in this paper assume that onrete values are given for

real-time onstraints. As demonstrated in the HyTeh heker [12℄, it is

often useful to mention parameters instead (symboli onstants), and

derive the needed onstraints on the parameters, instead of a simple

yes/no answer. We hope to obtain a similar proedure for the validity

of MetriIntervalTL formulae.

� The extension of the results of this paper to �rst-order variants of

MetriIntervalTL should be explored. Fragments with a omplete proof-

building proedure are our main interest.

� The development of programs from spei�ations should be supported:

the automaton produed by the proposed tehnique might be helpful

as a program skeleton in the style of [20℄.
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