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1 Introdu
tion

Many real-time systems are 
riti
al, and therefore deserve to be spe
i�ed

with mathemati
al pre
ision. To this end, real-time temporal logi
s [6℄ have

been proposed as the basis of spe
i�
ation languages. They use real numbers

for time, whi
h has advantages for spe
i�
ation and 
ompositionality. Sev-

eral syntaxes are possible to deal with real time: freeze quanti�
ation [4, 11℄,

expli
it 
lo
ks in a �rst-order temporal logi
 [18, 9℄ and time-bounded opera-

tors [14℄. We study logi
s with time bounded operators be
ause those logi
s

are the only ones that have a de
idable satis�ability problem. Note however

that the propositional fragment of the time-bounded operator logi
s, 
alled

Metri
TL

R

+
, is unde
idable and furthermore not re
ursively axiomatizable.

It be
omes de
idable with 
ertain restri
tions (Metri
IntervalTL [3℄), allow-

ing programs veri�
ation using automata-based te
hniques. However, when

the spe
i�
ation is large or when it 
ontains �rst-order parts, a mixture of

automati
 and manual proof generation is more suitable. Unfortunately, the


urrent automati
 reasoning te
hniques (based on timed automata) do not

provide expli
it proofs. Se
ondly, an axiomatization provides deep insights

into these logi
s. Third, the 
omplete axiomatization serves as a yardsti
k

for a de�nition of relative 
ompleteness for more expressive logi
s that are

not 
ompletely axiomatizable, in the style of [17, 13℄. This is why the ax-

iomatization of these logi
s is 
ited as an important open question in [6, 14℄.

We provide a 
omplete axiom system for de
idable real-time logi
s, and

a proof-building pro
edure. We build the axiom system by 
onsidering

in
reasingly 
omplex logi
s: LTR [7℄, EventClo
kTL with past 
lo
ks only,

EventClo
kTL with past and future 
lo
ks (also 
alled SCL [19℄), Metri
Inter-

valTL [3℄ with past and future operators, also 
alled Metri
IntervalTL

P

[5℄.

Previous works on axiomatization of real-time logi
s have 
on
entrated

on models where time is modeled by the natural numbers. For that 
ase,

[11℄ gives a 
omplete axiomatization. When time is modeled by the real-

time numbers, only \intuitive" axioms were proposed, e.g. in [14℄, without

taking into a

ount 
ompleteness issues.

2 Models and logi
s for real-time

2.1 Models

As time domain, we 
hoose the nonnegative reals R
+

. This dense domain is

natural and gives many advantages detailed elsewhere: 
ompositionality [7℄,

full abstra
tness [7℄, stuttering independen
e [1℄, easy re�nement. To avoid

Zeno's paradox, we add to our models the 
ondition of �nite variability [7℄

(
ondition (3) below): only �nitely many state 
hanges 
an o

ur in a �nite

amount of time.

An interval I � R
+

is a 
onvex non-empty subset of the nonnegative
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reals. Given t 2 R
+

, we freely use notations su
h as t + I for the interval

ft

0

j 9t

00

2 I with t

0

= t + t

00

g, t > I for the 
onstraint \t > t

0

for all

t

0

2 I", # I for the interval ft > 0j9t

0

2 I : t � t

0

g and ⇃ I for the interval

ft > 0j9t

0

2 I : t < t

0

g. Two intervals I and J are adja
ent if the right

endpoint of I, noted r(i), is equal to the left endpoint of J , noted l(J),

and either I is right-open and J is left-
losed or I is right-
losed and J is

left-open. We say that an interval I is singular if l(I) = r(I). An interval

sequen
e

�

I = I

0

; I

1

; I

2

; : : : is an in�nite sequen
e of (bounded) intervals so

that (1) the �rst interval I

0

is left-
losed with left endpoint 0, (2) for all i � 0,

the intervals I

i

and I

i+1

are adja
ent, and (3) for all t 2 R
+

, there exists

an i � 0 su
h that t 2 I

i

. Consequently, an interval sequen
e partitions

the nonnegative real line so that every bounded subset of R
+

is 
overed

by �nitely many elements of the partition. Let P be a set of propositional

symbols. A state s � P is a set of propositions. A timed state sequen
e

� = (�s;

�

I) is a pair that 
onsists of an in�nite sequen
e �s of states and an

interval sequen
e

�

I. Intuitively, it states the period I

i

during whi
h the state

was s

i

. Thus, a timed state sequen
e � 
an be viewed as a fun
tion from

R
+

to 2

P

, indi
ating for ea
h time t 2 R
+

a state �(t) = s

i

where t 2 I

i

.

2.2 The Linear Temporal Logi
 of Real Numbers (LTR)

The formulae of LTR [13℄ are built from propositional symbols, boolean


onne
tives, the temporal \until" and \sin
e" and are generated by the

following grammar:

� ::= p j �

1

^ �

2

j :� j �

1

U�

2

j �

1

S�

2

where p is a proposition.

The LTR formula � holds at time t 2 R
+

of the timed state sequen
e � ,

written (�; t) j= � a

ording to the following de�nition:

(�; t) j= p i� p 2 �(t)

(�; t) j= �

1

^ �

2

i� (�; t) j= �

1

and (�; t) j= �

2

(�; t) j= :� i� (�; t) 6j= �

(�; t) j= �

1

U�

2

i� 9t

0

> t^ (�; t

0

) j= �

2

and 8t

00

2 (t; t

0

), (�; t

00

) j=

�

1

_ �

2

(�; t) j= �

1

S�

2

i� 9t

0

< t ^ (�; t

0

) j= �

2

and 8t

00

2 (t

0

; t), (�; t

00

) j=

�

1

_ �

2

An LTR formula � is satis�able if there exists � and a time t su
h that

(�; t) j= �, an LTR formula � is valid if for every � and every time t we have

(�; t) j= �. Our operators U;S are slightly non-
lassi
al, but more intuitive:

they do not require �

2

to start in a left-
losed interval.
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2.3 Event-Clo
k Temporal Logi


The formulae of EventClo
kTL [19℄ are built from propositional symbols,

boolean 
onne
tives, the temporal \until" and \sin
e" operators, and two

real-time operators: at any time t, the history operator /

I

� asserts that �

was true last in the interval t � I, and the prophe
y operator .

I

� asserts

that � will be true next in the interval t+ I. The formulae of EventClo
kTL

are generated by the following grammar:

� ::= p j �

1

^ �

2

j :� j �

1

U�

2

j �

1

S�

2

j /

I

� j .

I

�

where p is a proposition and I is an interval whi
h 
an be singular and

whose bounds are natural numbers. The EventClo
kTL formula � holds at

time t 2 R
+

of the timed state sequen
e � , written (�; t) j= � a

ording to

the rules for LTR and the following additional 
lauses:

(�; t) j= /

I

� i� 9t

0

< t ^ t

0

2 t � I ^ (�; t

0

) j= � and 8t

00

: t � I < t

00

<

t; (�; t

00

) 6j= �

(�; t) j= .

I

� i� 9t

0

> t^t

0

2 t+I^(�; t

0

) j= � and 8t

00

: t < t

00

< t+I; (�; t

00

) 6j=

�

A .

I

� formula 
an intuitively be seen as expressing a 
onstraint on the

value of a 
lo
k that measures the distan
e from now to the next time where

the formula � will be true. In the sequel, we use this analogy and 
all this


lo
k a prophe
y 
lo
k for �. Similarly, a /

I

� formula 
an be seen as a


onstraint on the value of a 
lo
k that re
ords the distan
e from now to the

last time su
h that the formula � was true. We 
all su
h a 
lo
k a history


lo
k for �. For an history (resp. prophe
y) 
lo
k about �,

� the next /

=1

� (resp. previous .

=1

�) is 
alled its ti
k;

� the point where � held last (resp. will hold next) is 
alled its event;

� the point (if any) at whi
h � will hold again (resp. held last) is 
alled

its reset;

� if � is true at time t and was true just before t (resp. and will still be

true just after t) then we say that the 
lo
k is blo
ked at time t;

� if � was never true before t (resp. will never be true after t) then the


lo
k is unde�ned at time t.

The main part of our axiomatization 
onsists in des
ribing the behavior

and the relation of su
h 
lo
ks over time. For a more formal a

ount on the

relation between EventClo
kTL formulae and 
lo
ks, we refer the interested

reader to [19℄.

Example 1 �(p ! .

=5

p) asserts that after every p state, the �rst subse-

quent p state is exa
tly 5 units later (so in the interval t+(0,5), p is false);

the formula �(/

=5

p! q) asserts that whenever the last p state is exa
tly 5

units ago, then q is true now (time-out).
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Theorem 1 [19℄ The satis�ability problem for EventClo
kTL is 
omplete for

Pspa
e.

2.4 Metri
-Interval Temporal Logi


The formulae of Metri
IntervalTL [3℄ are built from propositional symbols,

boolean 
onne
tives, and the time-bounded \until" and \sin
e" operators:

� ::= p j �

1

^ �

2

j :� j �

1

^

U

I

�

2

j �

1

^

S

I

�

2

where p is a proposition and I is a nonsingular interval whose bounds are

natural numbers. The Metri
IntervalTL formula � holds at time t 2 R
+

of

the timed state sequen
e � , written (�; t) j= � a

ording to the following

de�nition (the propositional and boolean 
lauses are as for LTR):

(�; t) j= �

1

^

U

I

�

2

i� 9t

0

2 t+ I ^ (�; t

0

) j= �

2

and 8t

00

: t < t

00

< t

0

; (�; t

0

) j= �

1

(�; t) j= �

1

^

S

I

�

2

i� 9t

0

2 t� I ^ (�; t

0

) j= �

2

and 8t

00

: t

0

< t

00

< t; (�; t

0

) j= �

1

Example 2 �(q ! r

^

S

�5

p) asserts that every q state is pre
eded by a p

state of time di�eren
e at most 5, and all intermediate states are r states;

the formula �(p!

^♦
[5;6)

p) asserts that every p state is followed by a p state

at a time di�eren
e of at least 5 and less than 6 time units. This is weaker

than the EventClo
kTL example, sin
e p might also hold in between.

Theorem 2 [3℄ The satis�ability problem for Metri
IntervalTL is 
omplete

for Expspa
e.

2.5 Abbreviations

In the sequel we use the following abbreviations:

� �

1

^

U�

2

� �

1

^

U

(0;1)

�

2

, the untimed \Until" of Metri
IntervalTL. Let us

note that �

1

^

U�

2

� �

1

U(�

2

^⊖�
1

) (⊖ is de�ned below);

1

� �

1

U

+

�

2

� �

1

^ �

1

U�

2

, the \Until" re
exive for its �rst argument;

� �

1

U

�

�

2

� �

2

_ �

1

U

+

�

2

, the \Until" re
exive for its two arguments;

�

e

� � ?U�, meaning \just after in the future" or \arbitrarily 
losed

in the future";

� ♦� � >U�, meaning \eventually in the future";

� �� � :♦:�, meaning \always in the future";

� their re
exive 
ounterparts: ♦�;��

;

1

Let us note that the \Until" of EventClo
kTL and the \Until" of Metri
IntervalTL are

interde�nable, in fa
t, we also have: �

1

U�

2

� (�

1

_ �

2

)

^

U�

2

.

4



� �

1

W�

2

� �

1

U�

2

_��
1

, meaning \unless";

� its re
exive 
ounterparts: W

+

, W

�

.

and the past 
ounterpart of all those abbreviations:

� �

1

^

S�

2

� �

1

^

S

(0;1)

�

2

, the untimed \Sin
e" of Metri
IntervalTL. Let us

note that �

1

^

S�

2

� �

1

S(�

2

^

e

�

1

);

� �

1

S

+

�

2

� �

1

^ �

1

S�

2

, the \Sin
e" re
exive for its �rst argument;

� �

1

S

�

�

2

� �

2

_ �

1

S

+

�

2

, the \Sin
e" re
exive for its two arguments;

� ⊖� � ?S�, meaning \just before in the past" or \arbitrarily 
losed in

the past";

� ♦�� � >S�, meaning \eventually in the past";

� ⊟� � :♦�:�, meaning \always in the past";

� their re
exive 
ounterparts: ♦��

;⊟�

;

� �

1

Z�

2

� �

1

S�

2

_⊟�
1

, meaning \unless in the past";

� its re
exive 
ounterparts: Z

+

, Z

�

.

3 Axiomatization of EventClo
kTL

In Subse
tion 4, we will present a proof-building pro
edure for EventClo
kTL.

In this se
tion, we simply 
olle
t the axioms used in the pro
edure, and

present their intuitive meaning. Our logi
s are symmetri
 for past and future

(a duality that we 
all the \mirror prin
iple"), ex
ept that time begins but

does not end: therefore the axioms will be only written for the future, but

with the understanding that their mirror images, obtained by repla
ing U

by S, . by /, et
. are also axioms. This does not mean that we have an

axiomatization of the future fragment of these logi
s: our axioms make past

and future intera
t, and we believe that this intera
tion is unavoidable.

3.1 Qualitative axioms (
omplete for LTR)

We use the rule of inferen
e:

�$  �( )

�(�)

(RE)

All propositional tautologies
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For the non-metri
 part, we use the following axioms and their mirror

images:

:( U?) (N)

�U( ^  

0

)! �U (K)

e

( ^ �)$

e

 ^

e

� (JA)

⊖> ! (⊖:�$ :⊖ �) (BN)

e

( U�)$  U� (JU)

e

( S�)$

e

� _ (

e

 ^ ( S

�

�)) (JS)

 U�$

e

( U

�

�) (UJ)

�U ! ♦ (SF)

�(( ^

e

> !

e

 ) ^ (⊖ !  ))! (

e

 ! � ) (JI)

They mainly make use of the

e

operator, be
ause as we shall see, it 
orre-

sponds to the transition relation of our stru
ture. Axiom (N) is the usual

ne
essitation or modal generalization rule, expressed as an axiom. Similarly,

(K) is the usual weakening prin
iple, expressed in a slightly non-
lassi
al

form. (JA), (BN) allow to distribute

e

with boolean operators. Note that

the validity of (BN) requires �nite variability. (JU), (JS) des
ribe how the

U and S operators are transmitted over interval boundaries. (UJ) gives lo-


al 
onsisten
y 
onditions over this transmission. (SF) ensures eventuality

when 
ombined with (JI). It 
an also be seen as weakening the left side of

the U to >. The indu
tion axiom (JI) is essential to express �nite variability:

If a property is transmitted over interval boundaries, then it will be true at

any point: said otherwise, any point is rea
hed by 
rossing �nitely many

interval boundaries.

The axioms below express that time begins (B) but has no end (JT):

♦��

:⊖> (BE)

e

> (JT)

We have written the other axioms so that they are independent of the

begin or end axioms, in order to deal easily with other time domains. For

instan
e, to deal with the (positive and negative) reals numbers, we just use

the mirror of (JT) instead of (BE).

Remark 1 It is easy to 
he
k that the proof of 
ompleteness of se
tion 4

only uses the axioms above for a formula without real-time; therefore they

form a 
omplete axiomatization of the logi
 of the reals with �nite variability,

de�ned as LTR in [7℄. The system proposed in [7℄ is unfortunately unsound,

redundant and in
omplete. Indeed, axiom F5 of [7℄ is unsound (this is a

simple typo); axiom F7 
an be dedu
ed from axiom F8; and the system 
annot

derive the indu
tion axiom (JI). To see this last point, take the stru
ture

6



formed by R
+

followed by R, with �nite variability: it satis�es the system of

[7℄ but not the indu
tion axiom. Thus this valid formula 
annot be proved

in their system.

3.2 Quantitative axioms

For the real-time part, we �rst des
ribe the stati
 behavior; interse
tion,

union of intervals 
an be translated into 
onjun
tion, disjun
tion due to the

fa
t that there is a single next event:

.

I[J

�$ .

I

� _ .

J

� (OR)

.

I\J

�$ .

I

� ^ .

J

� (AND)

: .

=0

� (F)

.

>0

 $ ♦ (P-S)

.

�m+n

�$ .

�m

.

�n

� (NLE)

.

<m+n

�$ .

<m

.

�n

� (NLT)

The next step of the proof is to des
ribe how a single real-time .

I

� evolves

over time, using

e

and ⊖. We use (LO) to redu
e left-open events to the

easier 
ase of left-
losed ones. The formula :�

^

U� expresses that the next

�-interval is left-
losed and its negation that the next �-interval, if it exists,

is left-open.

:(:�

^

U�)! (.

[l;m)

e

�$ .

(l;m)

�) (LO)

:

e

.

=m

 (J=)

: 

^

U ! (

e

.

<m

 $ .

�m

 ) (JP)

⊖ .

<m

 $ ((.

<m

 _  _⊖ ) ^⊖>) (JH)

e

 ! .

<m

 (J-P)

These axioms are 
omplete for formulae where the only real-time oper-

ators are predi
tion operators .

I

� and they all tra
k the same (qualitative)

formula �. For a single history tra
ked formula, we use the mirror of the

axioms plus an axiom expressing that the future time is in�nite, so that any

bound will be ex
eeded:

 ! (♦ _ ♦ /
>m

 ) (ER)

As soon as several su
h formulae are present, we 
annot just 
ombine

their individual behavior, be
ause the .; / have to evolve syn
hronously

(with the 
ommon impli
it real time). We use a family of \shift" and \order"

axioms and their mirrors to express this 
ommon speed. These axioms use

U to express the ordering of events: :pUq means that q will o

ur before (or

at the same time than) any p. The \shift" axioms say that the ordering the

7



ti
ks should be preserved: the main ante
edent : /

=1

 U

�

/

=1

� in (SHH)

states that � will ti
k before  ; in this 
ase the events shall be in the same

order: :�S . The side 
onditions ensure that the 
lo
ks were a
tive in the

meantime, so that the ti
ks indeed refer to events �;  of the 
on
lusion.

The \order" axioms states a similar but simpler property: (OHH) says that

if last � was less than 1 ago, and  was before, than last  was less than 1

ago.

/

�1

 ^ : U

�

/

=1

� ^ : /

=1

 U

�

/

=1

�! :�S (SHH)

(.

<1

 _  ) ^ : U

�

�! : .

=1

�Z .

=1

 _ : .

=1

�Z 

(SPP)

(.

<1

 _  ) ^ : U

�

/

=1

�! :�Z .

=1

 _ :�Z (SPH)

/

�1

 ^ : U

�

� ^ : /

=1

 U

�

�! : .

=1

�S (SHP)

/

<1

� ^ :�S ! /

<1

 (OHH)

/

<1

 ^ : S .

=1

�! .

<1

� ^ :� (OHP)

3.3 Theorems

We also use in the proof some derived rules and theorems:

� the rule of Modus Ponens is derivable from repla
ement as follows:

from A we dedu
e propositionally A$ >; by repla
ement we repla
e

A by > in A! B giving > ! B whi
h yields propositionally B;

� the rule of modal generalization (also 
alled ne
essitation) is derived

from (RE) and (N).

::�$ � (NN)

:⊖> ! (⊖�$ ?) (BB)

e⊖�$ e

� (JB)

⊖ ! ⊖> (BT)

ee

�$

e

� (JJ)

♦> (ST)

/

I

 ! ⊖> (HB)

:(: 

^

U )! : .

=m

� (N=)

:(: 

^

U )! (♦ e�$ ♦�) (SO)

.

I

�$ : .

<I

� ^ .

#I

(LOW)

e

(�

1

_ �

2

)$

e

�

1

_

e

�

2

(JO)

.

I

�! .

J

� with (I � J) (MON)

��
1

^ �

2

! ��
1

(KA)

8



4 Completeness of the axiomati
 system for EventClo
kTL

As usual, the soundness of the system of axioms 
an be proved by a simple

indu
tive reasoning on the stru
ture of the axioms. We 
on
entrate here on

the more diÆ
ult part of the adequation of the proposed axiomati
 system:

its 
ompleteness. As usual with temporal logi
, we only have weak 
omplete-

ness: for every valid formula of EventClo
kTL, there exists a �nite formal

derivation in our axiomati
 system for that formula. So if j= � then ` �.

As often, it is more 
onvenient to prove the 
ontrapositive: every 
onsistent

EventClo
kTL formula is satis�able. Our logi
s are symmetri
 for past and

future (a duality that we 
all \mirror prin
iple"), ex
ept that time begin

but does not end: therefore most explanations will be given for the future,

but the 
areful reader will 
he
k their appli
ability to the past as well.

Our proof is divided in steps, that prove the 
ompleteness for in
reasing

fragments of EventClo
kTL.

1. We �rst deal with the qualitative part, without real-time. This part of

the proof follows roughly the 
ompleteness proof of [16℄ for dis
rete-

time logi
.

(a) We work with worlds that are built synta
ti
ally, by maximal


onsistent sets of formulae.

(b) We identify the transition relation, and its synta
ti
 
ounterpart:

it was the \next" operator for dis
rete-time logi
 [16℄, here it is

the

e

, expressing the transition from a 
losed to an open interval,

and ⊖, expressing the transition from an open to a 
losed interval.

(
) We impose axioms des
ribing the possible transitions for ea
h

operator.

(d) We give an indu
tion prin
iple (JI) that extend the properties of

lo
al transitions to global properties.

2. For the real-time part:

(a) We give the stati
s of a 
lo
k;

(b) We des
ribe the transitions of a 
lo
k;

(
) By further axioms, we 
onstrain the 
lo
ks to evolve simultane-

ously. The 
ompleteness of these axioms is shown by solving the


onstraints on real-time generated the 
lo
k evolutions.

4.1 Qualitative part

Let us make the hypothesis that the formula � is 
onsistent and let us prove

that it is satis�able. To simplify the presentation of the proof, we use the

following lemma:

9



Lemma 1 Every EventClo
kTL formula  
an be rewritten into an equiva-

lent  

T

formula of EventClo
kTL

1

(using only the 
onstant 1).

Proof. First by the use of the theorem .

I

�$ : .

<I

� ^ .

#I

� (LOW), every

formula .

I

� with l(I) 6= 0 
an be rewritten as a 
onjun
tion of formulae

with 0-bounded intervals. Using the axioms .

�m+n

� $ .

�m

.

�n

� (NLE)

and .

<m+n

�$ .

<m

.

�n

� (NLT) every interval 
an be de
omposed into an

nesting of operators asso
iated with intervals of length 1. �

In the sequel, we make the hypothesis that the formula � for whi
h we

want to 
onstru
t a model is in EventClo
kTL

1

, this does not harm 
omplete-

ness as by lemma 1, every EventClo
kTL formula 
an �rst be transformed in

an equivalent EventClo
kTL

1

formula.

We now de�ned the set C(�) of formulae asso
iated with �:

� Sub: the sub-formulae of �.

� The formulae of Sub subje
t to a future real-time 
onstraint: R =

f� 2 Sj .

I

� 2 Subg. We will say that a predi
tion 
lo
k is asso
iated

to these formulae.

� For these formulae, we will also tra
k

e

� when the next o

urren
e of

� is left-open: this will simplify the notation. The information about

� will be re
onstru
ted by axiom (LO). J = f

e

�j� 2 Rg.

� To sele
t whether to tra
k � or

e

�, we need the formulae giving the

openness of next interval: L = f:�

^

U�j� 2 R [ Jg.

� The formulae giving the 
urrent integer value of the 
lo
ks: I =

f.

<1

�; .

=1

�; .

>1

�j� 2 R [ Jg. Thanks to our initial transformation,

we only have to 
onsider whether the integer value is below or above

1.

� Among these, the \ti
k" formulae will be used in F to determine the

fra
tional parts of the 
lo
ks: T = f.

=1

� 2 Ig.

� We also de�ne the mirror sets. For instan
e, R

�

= f� 2 Subj /

I

� 2

Subg.

� The formulae giving the ordering of the fra
tional parts of the 
lo
ks,


oded by the ordering of the ti
ks: F = f:�U ;:�S j�;  2 T [R [

J [ T

�

[R

�

[ J

�

g.

� The eventualities: E = f♦�j U� or  

^

U� 2 Sub [ L [ L

�

g

10



We 
lose the union of all sets above under :;

e

;⊖ to obtain the 
losure

of �, noted C(�). This step preserves �niteness sin
e:

ee

�$

e

� (JJ)

::�$ � (NN)

e⊖�$ e

� (JB)

For the negation, we only have

⊖> ! (⊖:�$ :⊖ �) (BN)

:⊖> ! (⊖�$ ?) (BB)

We only have two possible 
ases: if ⊖> is true, we 
an move all negations

outside and 
an
el them, ex
ept one. else, we know that all ⊖ are false.

In ea
h 
ase, at most one ⊖; eand one : are needed.

A Propositionally 
onsistent stru
ture

A set of formulae F � C(�) is 
omplete w.r.t. C(�) if for all formulae

� 2 C(�), either � 2 F or :� 2 F ; it is propositionally 
onsistent if (i) for

all formulae �

1

_ �

2

2 C(�), �

1

2 F or �

2

2 F i� �

1

_ �

2

2 F ; (ii) for all

formulae � 2 C(�), � 2 F i� :� 62 F . We 
all su
h a set a propositional

atom of C(�).

We de�ne a �rst stru
ture, whi
h is a �nite graph, S = (A;R) where A

is the set of all propositional atoms of C(�) and R � A�A is the transition

relation of the stru
ture. R is de�ned by 
onsidering two subtransition

relations:

� R
℄

represents the transition from a right-
losed to a left-open interval;

� R
[

represents the transition from a right-open to a left-
losed interval.

Let A;B be propositional atoms. We de�ne

� AR
℄

B , 8

e

� 2 C(�);

e

� 2 A$ � 2 B;

� AR
[

B , 8⊖ � 2 C(�); � 2 A$ ⊖� 2 B.

The transition relation R is the union of R
℄

and R
[

, i.e. R(A;B) i� either

R
℄

(A;B) or R
[

(A;B).

Now we 
an de�ne that the atom A is singular i� it 
ontains a formula of

the form �^:

e

� or symmetri
ally. Thus any atom 
ontaining a ti
k (.

=1

�)

is singular. As a 
onsequen
e, A is singular i� :AR
℄

A i� :AR
[

A (this is

expe
ted sin
e the logi
 is stuttering-insensitive), and that a singular state

is only 
onne
ted to non-singular states. A is initial i� it 
ontains : ⊖ >.

Thus it 
ontains no formula of the form: �

1

S�

2

or /

I

�. It is singular, sin
e

11



it 
ontains >^:⊖>. A is monitored i� it 
ontains �, the formula of whi
h

we 
he
k 
oating satis�ability.

Any atom is exa
tly represented by the 
onjun
tion of the formulae that

it 
ontains. For an atom A, we write

^

A for that formula, that formula is

�nite by de�nition of A. By propositional 
ompleteness, we have:

Lemma 2 `

W

A2A

^

A.

We de�ne the formula R(A) to be

W

BjARB

^

B.

W

BjAR

℄

B

^

B 
an be simpli-

�ed to

V

e

�2A

�, be
ause in the propositional stru
ture, all other members of

a B are allowed to vary freely and thus 
an
el ea
h other by the distribution

rule.

Lemma 3 `

^

A!

eR
℄

(A).

Proof.

eR
℄

(

^

A) =

e

W

BjAR

℄

B

^

B =

V

e

�2A

e

�. Using (JA) we obtain the

thesis. �

Dually,

W

BjAR

[

B

^

B 
an be simpli�ed to

V

�2A

⊖�. Therefore:

Lemma 4 ` ⊖ ^

A! R
[

(

^

A).

Now let R
+

be transitive 
losure of R. Sin
e R
℄

� R
+

, we have:

Lemma 5 ` ⊖ ^

A! R
+

(

^

A).

Similarly,

Lemma 6 `

^

A!

eR
+

(

^

A).

Using the disjun
tion rule for ea
h rea
hable

^

A, we obtain: ` R
+

(

^

A)!

eR
+

(

^

A) and ` ⊖R
+

(

^

A) ! R
+

(

^

A). Now we 
an use the indu
tion axioms

provided by �nite variability, i.e. �(( !

e

 )^ (⊖ !  ))! (

e

 ! � )

and ⊟(( ^ ⊖> ! ⊖ ) ^ (

e

 !  )) ! (⊖ ! ⊟ ), using ne
essitation

and modus ponens, we obtain:

Lemma 7 `

^

A! �R
+

(

^

A).

A EventClo
kTL-
onsistent stru
ture

We say that an atom A is EventClo
kTL-
onsistent if it is propositionally


onsistent and 
onsistent with the axioms and rules given in se
tion 3. Now,

we 
onsider the stru
ture

^S = (

^A; ^R), where

^A is the subset of propositional

atoms that are EventClo
kTL-
onsistent and

^R = f(A;B)jR(A;B) and A;B 2

^Ag. Note that the lemmas above are still valid in the stru
ture

^S as only

in
onsistent atoms are suppressed. We now investigate more deeply the

12



properties of the stru
ture

^S and show how we 
an prove from that stru
-

ture that the 
onsistent formula � is satis�able.

A maximally strongly 
onne
ted substru
ture (MSCS) D is a set of atoms

D �

^A of the stru
ture

^S su
h that (i) for all D

1

;D

2

2 D,

^R
+

(D

1

;D

2

)

and

^R
+

(D

2

;D

1

), i.e. every atom 
an rea
h the other atoms of the set D

and 
onversely, and (ii) for all D

1

;D

2

2

^A su
h that (D

1

;D

2

) 2

^R+

and

(D

2

;D

1

) 2

^R
+

and D

1

2 D then D

2

2 D, i.e. D is maximal. A MSCS D is


alled initial if for all (D

1

;D

2

) 2

^R and D

2

2 D then D

1

2 D, i.e. D has no

in
oming edges. Conversely, a MSCS D is 
alled �nal if for all (D

1

;D

2

) 2

^R

and D

1

2 D then D

2

2 D, i.e. D has no outgoing edges.

Lemma 8 Every �nal MSCS D of the stru
ture

^S is self-ful�lling, i.e. for

every formula of the form �

1

U�

2

2 A with A 2 D, there exists B 2 D su
h

that �

2

2 B.

Proof. Let us make the hypothesis that there exists �

1

U�

2

2 A with A 2 D

and for all B 2 D, �

2

62 B. By lemma 7, `

^

A ! � ^R
+

(A) and as by hy-

pothesis �

2

62 B, for all B 2

^R
+

(A), by theorem (KA) and a propositional

reasoning, we 
on
lude `

^

A! �:�
2

. Using the axiom (SF) and the hypoth-

esis that �

1

U�

2

2 A, we obtain `

^

A! ♦�
2

and by de�nition of ♦, we obtain

`

^

A! :�:�
2

in 
ontradi
tion with `

^

A! �:�
2

whi
h is impossible sin
e

A is, by hypothesis, 
onsistent. �

Lemma 9 Every initial MSCS D of the stru
ture

^S 
ontains an initial

atom, i.e. there exists A 2 D su
h that ⊖> 62 A.

Proof. By de�nition of initial MSCS, we know that for all (D

1

;D

2

) 2

^R
+

and D

2

2 D, then D

1

2 D. Let us make the hypothesis that for all D 2 D,

⊖> 2 D. By the mirror of lemma 7 `

^

A ! ⊟
W

Bj

^

R

+

(B;A)

^

B we 
on
lude,

by a propositional reasoning and the hupothesis that ⊖> 2 D for all D

su
h that

^R
+

(D;A), that `

^

A ! ⊟ ⊖ >, but as A is a 
onsistent atom by

axiom (BE), we know that ♦�:⊖> 2 A, thus we obtain a 
ontradi
tion sin
e

⊟� � :♦�:�. �

In the sequel, we 
on
entrate on parti
ular paths, 
alled runs, of the

stru
ture

^S. A run of the stru
ture

^S = (

^A; ^R) is an in�nite sequen
e � =

A

0

A

1

: : : (A

n

: : : A

n+m

)

!

: : : , paired with an in�nite sequen
e of intervals

�

I = I

0

I

1

: : : I

n

: : : su
h that:

1. Initiality: A

0

is an initial atom;

2. Conse
ution: for every i � 0, (A

i

; A

i+1

) 2

^R;

3. Singularity: for every i � 0, if A

i

is a singular atom then I

i

is singular;

4. Alternation: I

0

I

1

: : : I

n

: : : alternates between singular and open inter-

vals, i.e. I

0

is singular, and for all i > 0, I

i

is singular i� I

i�1

is open,

I

i

is open i� I

i�1

is singular;

13



5. Eventuality: the set fA

n

; :::; A

n+m

g is a �nal MSCS of the stru
ture

S.

Note that the timing information provided in

�

I is purely qualitative

(singular or open); therefore any alternating sequen
e is adequate at this

qualitative stage. Later, we will 
onstru
t a spe
i�
 sequen
e satisfying also

the real-time 
onstraints.

Lemma 10 The transition relation

^R of the stru
ture

^S is total, i.e. for

all atom A 2

^A, there exists an atom B 2

^A su
h that

^R(A;B).

Proof. We prove

^R
℄

total, i.e. for all A 2

^A; f�j e� 2 Ag is 
onsistent. Then

it will be in
luded in an atom. Assume it is not. We have then

e

�;

e

:� 2 A.

Using (JA), (N) this yields a 
ontradi
tion in A. (Note: the (JT) axiom is

impli
itly used in the de�nition of

^R, instead of appearing here). �

Lemma 11 For every atom A of the stru
ture

^S, for every alternating

interval sequen
e

�

I, there is a run (�;

�

I) that passes through A.

Proof. First the alternation and singularity 
onstraints 
an always be veri�ed

by taking stuttering steps when needed and by noting that in

^S two singular

atoms are never linked by

^R. It remains us to show that :

1. Initiality, i.e. every atom of

^S is either initial or 
an be rea
hed

by an initial atom. Let us 
onsider an atom A, if A is initial then

we are done, otherwise, let us make the hypothesis that it 
an not be

rea
hed by an initial atom, it means: for allB su
h that

^R
+

(B;A) then

:⊖> 62 B, so by propositional 
ompleteness ⊖> 2 B. By lemma 7 and

a propositional reasoning, we obtain `

^

A! ⊟⊖>. Using axiom (BE)

and our hypothesis ⊖>, through ♦�:⊖>, we obtain a 
ontradi
tion.

2. Finality, i.e. every atom of

^S either is part of a �nal MSCS or 
an

rea
h one of the �nal MSCS of

^S. It is a dire
t 
onsequen
e of the

fa
t that

^R is total and the fa
t that

^S is �nite.

�

A run � = (�;

�

I) of the stru
ture

^S is semanti
ally sound if it respe
ts

the semanti
s of the qualitative temporal operators whi
h is expressed by

the following 
onditions (real-time operators will be treated in the following

se
tion):

1. if �

i

is singular then I

i

is singular;

2. if �

1

U�

2

2 �

i

then:

� either A

i

is singular and there exists j > i s.t. �

2

2 A

j

and for

all k s.t. i < k < j, �

1

2 A

k

;
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� or A

i

is not singular and

(a) either �

2

2 A

i

(b) or there exists j > i s.t. �

2

2 A

j

and for all k s.t. i � k < j,

�

1

2 A

k

;

3. if �

1

S�

2

2 �

i

then:

� either A

i

is singular and there exists j < i s.t. �

2

2 A

j

and for

all k s.t. j < k < i, �

1

2 A

k

;

� or A

i

is not singular and

(a) either �

2

2 A

i

(b) or there exists j < i s.t. �

2

2 A

j

and for all k s.t. j < k � i,

�

1

2 A

k

;

A semanti
ally sound run is 
alled an Hintikka sequen
e. Next, we show

properties of runs:

Lemma 12 For every run � = (�;

�

I) of the stru
ture

^S, with � = A

0

A

1

: : : ,

for every A

i

su
h that ♦� 2 A
i

:

� A

i

is singular and there exists j > i su
h that � 2 A

j

;

� A

i

is non-singular and there exists j � i su
h that � 2 A

j

.

Proof. First let us prove the following properties of the transition relation

^R:

� let

^R
℄

(A;B) and ♦� 2 A then either � 2 B or ♦� 2 B. In fa
t, re
all

that ♦� � >U�, and by de�nition of

^R
℄

, axiom �

1

U�

2

$

e

(�

2

_ (�

1

^

�

1

U�

2

)) (UJ) and a propositional reasoning, we obtain that >U� 2 A

i� � 2 B or >U� 2 B;

� let

^R
[

(A;B) and ♦� 2 A then either � 2 A, � 2 B or >U� 2 B. By

de�nition of

^R
[

, axiom ⊖(�

1

U�

2

)$ ⊖�
2

_ (⊖�
1

^ �

2

_ (�

1

^ �

1

U�

2

))

mirror of (JS) and a propositional reasoning, we obtain � 2 A or � 2 B

or >U� 2 B.

By the two properties above, we have that if ♦� 2 A
i

then either � appears

in A

j

with j > i if A

i

is singular (and thus right 
losed), j � i if A

i

is not

singular (and thus asso
iated with an open interval) or � is never true and ♦�

propagates for the rest of the run. But let us show that this last possibility

is ex
luded by our de�nition of run. In fa
t, every run eventually loops into

a �nal self-ful�lling MSCS D. Then either the fatality � asso
iated with ♦�

is realized before this looping or ♦� 2 D and by lemma 8 the fatality � 2 D

and is thus eventually realized. �
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Lemma 13 For every run � = (�;

�

I) of the stru
ture

^S, for every position

i in the run if �

1

U�

2

2 A

i

then the property 2 of timed Hintikka sequen
es

is veri�ed, i.e:

� either A

i

is singular and there exists j > i s.t. �

2

2 A

j

and for all k

s.t. i < k < j, �

1

2 A

k

;

� or A

i

is not singular and

1. either �

2

2 A

j

2. or there exists j > i s.t. �

2

2 A

j

and for all k s.t. i � k < j,

�

1

2 A

k

.

Proof. By hypothesis we know that �

1

U�

2

2 A

i

and we �rst treat the 
ase

where A

i

is singular.

� By the axiom �

1

U�

2

! ♦�
2

and lemma 12, we know that there exists

j > i su
h that �

2

2 A

j

. Let us make the hypothesis that A

j

is the

�rst �

2

-atom after A

i

.

� It remains us to show that: for all k s.t. i < k < j, �

1

2 A

k

. We

reason by indu
tion on the value of k.

{ Base 
ase: k = i+1. By hypothesis we have �

1

U�

2

2 A

i

and also

A

i

R

℄

A

i+1

(as A

i

is right 
losed) and thus for all

e

� 2 A

i

; � 2 A

i+1

by de�nition of R

℄

. By axiom �

1

U�

2

$

e

(�

1

U�

2

), we 
on-


lude that �

1

U�

2

2 A

i+1

and by axiom �

1

U�

2

$

e

(�

2

_ (�

1

^

e

(�

1

U�

2

))),

e

(�

1

_�

2

)$

e

�

1

_

e

�

2

,

e

(�

1

^�

2

)$

e

�

1

^

e

�

2

, and

the fa
t that by hypothesis �

2

62 A

i+1

, a propositional reasoning

allows us to 
on
lude that �

1

2 A

i+1

.

{ Indu
tion 
ase: k = i+l with 1 < l < j�i. By indu
tion hypoth-

esis, we know that �

1

2 A

k�1

and �

1

U�

2

2 A

k�1

, also :�

2

2 A

k

and :�

2

2 A

k�1

as k < j (by hypothesis j is the �rst position

after i where �

2

is veri�ed). To establish the result, we reason by


ase : (i) I

k

is open and thus I

k�1

is singular and right 
losed.

We have A

k�1

R

℄

A

k

, and thus for all

e

� 2 C( );

e

� 2 A

i

$

� 2 A

i+1

by de�nition of R

℄

. As �

1

U�

2

2 A

k�1

by indu
tion

hypothesis and the axiom �

1

U�

2

$

e

(�

1

U�

2

), we 
on
lude that

�

1

U�

2

2 A

k

. Using the axioms �

1

U�

2

$

e

(�

2

_(�

1

^

e

(�

1

U�

2

))),

e

(�

1

_ �

2

) $

e

�

1

_

e

�

2

,

e

(�

1

^ �

2

) $

e

�

1

^

e

�

2

, and the fa
t

that �

2

62 A

k

, and a proposition reasoning, we 
on
lude that

�

1

2 A

k

. (ii) I

k

is 
losed whi
h implies that I

k�1

is right open

and A

k�1

R

[

A

k

. By de�nition of R

[

we have that for all ⊖� 2

C( );⊖� 2 A
k

$ � 2 A

k�1

. So we have ⊖(�

1

U�

2

);⊖:�
2

2 A

k

,

by hypothesis k < j thus we have :�

2

2 A

k

. Using those proper-

ties, the axiom ⊖(�

1

U�

2

)$ ⊖�
2

_ (⊖�
1

^ (�

2

_ (�

1

^ �

1

U�

2

))),

we 
on
lude that �

1

^ �

1

U�

2

2 A

k

.
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We now have to treat the 
ase where A

i

is not singular. By the axiom

�

1

U�

2

! ♦�
2

and lemma 12 we know that there exists a later atom A

j

j � i su
h that �

2

2 A

j

. If j = i then �

2

2 A

i

and we are done. Otherwise

j > i, and we must prove that for all k s.t. i � k < j, �

1

2 A

k

, this 
an be

done by the reasoning above. �

We now prove the reverse, i.e. every time that �

1

U�

2

is veri�ed in an

atom along the run then �

1

U�

2

appears in that atom. This lemma is not

ne
essary for 
ompleteness but we use this property in the lemmas over

real-time operators.

Lemma 14 For every run � = (�; I) of the stru
ture

^S, for every position

i in the run, for every �

1

U�

2

2 C(�), if :

� either A

i

is singular and there exists j > i s.t. �

2

2 A

j

and for all k

s.t. i < k < j, �

1

2 A

k

;

� or A

i

is not singular and

1. either �

2

2 A

j

2. or there exists j > i s.t. �

2

2 A

j

and for all k s.t. i � k < j,

�

1

2 A

k

.

then �

1

U�

2

2 A

i

.

Proof. We reason by 
onsidering the three following mutually ex
lusive


ases:

1. A

i

is singular and there exists j > i s.t. �

2

2 A

j

and for all k s.t.

i < k < j, �

1

2 A

k

. We reason by indu
tion to show that �

1

U�

2

2 A

j

for all l s.t. 1 � l � j � i.

� Base 
ase: l = 1. By hypothesis, we know that �

2

2 A

j

. We now

reason by 
ases: (i) if A

j�1

is right 
losed then we have A

j�1

R

℄

A

j

and by de�nition of R

℄

,

e

�

2

2 A

j�1

. Using the axiom �

1

U�

2

$

e

�

2

_ (�

1

^�

1

U�

2

), we dedu
e by a propositional reasoning that

�

1

U�

2

2 A

j�1

. (ii) if A

j�1

is right open then we know that

j � 1 > i (as A

i

is singular by hypothesis) and thus �

1

2 A

j�1

.

Also as A

j�1

R

[

A

j

, ⊖�
1

2 A

j

. Using the axiom ⊖(�

1

U�

2

) $

⊖�
2

_ (⊖�
1

^ (�

2

_ (�

1

^�

1

U�

2

))) and a propositional reasoning,

we obtain ⊖(�

1

U�

2

) 2 A

j

and by de�nition of R

[

, �

1

U�

2

2 A

j�1

.

� Indu
tion 
ase: 1 � l < i � j � 1 and we have established the

result for l � 1, i.e. �

1

U�

2

2 A

j�(l�1)

. Let us show that we

have the result for A

j�l

. First note that by hypothesis, �

1

2

A

j�(l�1)

. We again reason by 
ases: (i) I

j�l

is right 
losed. Then

we have A

j�l

R

℄

A

j�(l�1)

and by de�nition of R

℄

, for all

e

� 2 C( ),

e

� 2 A

j�l

i� � 2 A

j�(l�1)

,thus

e

(�

1

U�

2

) 2 A

j�l

and by axiom
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�

1

U�

2

$

e

(�

1

U�

2

), we have that �

1

U�

2

2 A

j�l

. (ii) A

j�l

is

right open. Then we have A

j�l

R

[

A

j�(l�1)

and by de�nition of

R

[

, for all ⊖� 2 C( ), ⊖� 2 A
j�(l�1)

i� � 2 A

j�l

. We know that

by hypothesis, �

1

2 A

j�l

as j � l 6= i (A

i

is singular and A

j�l

not), thus ⊖�
1

2 A

j�(l�1)

, also �

1

U�

2

2 A

j�(l�1)

(by indu
tion

hypothesis). Using the axiom ⊖(�

1

U�

2

) $ ⊖�
2

_ (⊖�
1

^ (�

1

^

�

1

U�

2

)) and a propositional reasoning, we obtain ⊖(�

1

U�

2

) 2

A

j�(l�1)

and by de�nition of R

[

that �

1

U�

2

2 A

j�l

.

2. A

i

is not singular and �

2

2 A

j

. As A

i

is not singular, we have A

i

R

℄

A

i

,

by de�nition of R

℄

, we have

e

�

2

2 A

i

. By the axiom �

1

U�

2

$

e

�

2

_

(�

1

^

e

(�

1

U�

2

)) and a proposition reasoning, we obtain the desired

result: �

1

U�

2

2 A

i

.

3. A

i

is not singular, �

2

62 A

j

, and there exists j > i s.t. �

2

2 A

j

and

for all k s.t. i � k < j, �

1

2 A

k

. This 
ase is treated by an indu
tive

reasoning similar to the �rst one above.

�

We have also the two 
orresponding mirror lemmas for the S-operator.

From the previous proved lemmas, it 
an be shown that the quali-

tative axioms of se
tion 3 are 
omplete for the qualitative fragment of

EventClo
kTL, i.e. the logi
 LTR.

Lemma 15 A run � has the Hintikka property for LTR formula: for every

LTR formula � 2 C; � 2 �(t)$ (�; t) j= �.

As a 
onsequen
e, we have the following theorem:

Theorem 3 Every LTR formula that is 
onsistent with the qualitative ax-

ioms is satis�able.

We now turn to the 
ompleteness of real-time axioms.

4.2 Quantitative part

A run � = (�;

�

I) of the stru
ture

^S has the timed Hintikka property if it

respe
ts the Hintikka properties de�ned previously and the two following

additional properties:

1. if .

I

� 2 �(t) then at a later time t

0

2 t+ I; � 2 �(t

0

) and 8t

00

: t < t

00

<

t+ I, :� 2 �(t

00

)

2. if /

I

� 2 �(t) then at an earlier time t

0

with t

0

2 t � I; � 2 �(t

0

) and

8t

00

: t > t

00

> t� I, :� 2 �(t

00

)
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A run that respe
ts those additional properties is 
alled a well-timed run. In

the sequel, we will show that for ea
h run of the stru
ture

^S, we 
an modify

its sequen
e of intervals, using a pro
edure, in su
h a way that the modi�ed

run is well-timed.

Re
all that given a tra
ked formula � 2 R,

� .

=1

� is 
alled its ti
k;

� (� ^

e

:�) _ (:� ^ ⊖�) is 
alled its event (note that the se
ond 
ase

need not be 
onsidered thanks to the axioms (LO), (JP));

� (� ^⊖:�) _ (:� ^

e

�) is 
alled its reset.

A 
onstraint is a real-time formula of an atom A

i

. The referen
e of a


onstraint is the index e at whi
h its previous event, ti
k or reset o

urred.

The referen
e is always singular. The an
hor of a 
onstraint is the index

j at whi
h its next event, ti
k or reset o

urred. We say that (the history


lo
k of) � is a
tive between an event � and the next reset of �. It is small

between its event and the next ti
k or reset. It is suÆ
ient to solve small


onstraints, as we shall see. Thus we de�ne the s
ope of a history 
onstraint

as the interval between the event and the next ti
k or reset. Constraints are

either equalities (the time spend in their s
ope must be 1), linking an event

to a ti
k, or inequalities (the time spend in their s
ope must be less than 1).

The s
ope of an inequality extends from an event to a reset. Constraints 
an

be partially ordered by s
ope: it is enough to solve 
onstraints of maximal

s
ope, as we shall see. An index is owned by a 
onstraint, if it is in the s
ope

of no other 
onstraint with an earlier referen
e. A 
onstraint of maximal

s
ope always owns indexes: they are found at the end of its s
ope. We

will also use partial inequalities, representing the 
onstraints known up to

an index of a path. Whether an atom is in the s
ope of a 
onstraint, and

whether it is an equality, 
an be dedu
ed from its 
ontents. The table below

shows the 
ontents of an atom A

i

that is the an
hor of an equality:

Table 1: Equality 
onstraints

referen
e an
hor in A

i

� (event) /

=1

� (ti
k)

.

=1

� (ti
k) �;:�S .

=1

� (event)

The table below shows the 
ontents of an atom A

i

that de�nes an in-

equality:

The proof shows that these 
onstraints 
an be solved i� they are 
om-

patible in the sense that the s
ope of an equality 
annot be in
luded in the

s
ope of an inequality, nor stri
tly in the s
ope of another equality.
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Table 2: Inequality 
onstraints

referen
e in A

i

an
hor

.

=1

� (ti
k) .

<1

� ^ :�S

+

.

=1

� � (event)

� ^

e

:� (event) /

<1

� ^ :�

^

S� /

=1

� _ � (ti
k or reset)

(� ^

e

:�) _ (⊖� ^ :�) (reset) : .

=1

�S� ^ :(:�S .

=1

�) ^ (.

<1

� _ �) � (event)

From any run � = (�;

�

I), we now build a timed run Attr(�) = (�;

�

J) by

attributing well-
hosen intervals to the atoms of the run. Re
all that the

interval information

�

I in the run � has only a qualitative value: the intervals

asso
iated to the atoms are either open or singular. We now show that we


an attribute a new sequen
e of intervals

�

J , given the timed run Attr(�)

that will satisfy the real-time 
onstraints. We pro
eed by indu
tion along

the run, attributing time points [t

i

; t

i

℄ to the singular atoms A

i

with i even.

Therefore, an open interval (t

i�1

; t

i+1

) is attributed to non-singular atoms

A

i

with i odd.

1. Base: We attribute the interval [0; 0℄ to the initial atom A

0

.

2. Indu
tion: we identify 20 and solve the tightest 
onstraint, that owns

the 
urrent index i. We de�ne e as the referen
e of this tightest 
on-

straint, by 
ases:

(a) equality 
onstraints:

i. If there is an /

=1

 2 A

i

there has been a last (singular) atom

A

e


ontaining  before at time t

e

.

ii. Else, if ⊖: ^ ^: S.
=1

 2 A

i

there has been a last atom

A

e


ontaining .

=1

 before A

i

, at time t

e

.

We attribute [t

e

+ 1; t

e

+ 1℄ to A

i

.

(b) inequality 
onstraints:

i. Else, we 
ompute the earliest referen
e e of the small 
lo
ks

using table 2. t

i

has to be between t

i�2

and t

e

+1. We 
hoose

t

i

= (t

i�2

+ t

e

+ 1)=2.

ii. Finally, when all 
lo
ks are unde�ned or blo
ked, we attribute

(say) t

i�2

+ 1=2 to A

i

.

The algorithm sele
ts arbitrarily an equality 
onstraint, but is still de-

terministi
:

Lemma 16 If two equality 
onstraints have the same an
hor i, their refer-

en
es e

1

; e

2

are identi
al.
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Proof. Four 
ombinations of equality 
onstraints are possible:

� The �rst 
onstraint is /

=1

�

{ The se
ond 
onstraint is /

=1

 : A

i


ontains : U

�

/

=1

�;: /

=1

 U

�

/

=1

� sin
e its eventuality /

=1

� is true now. It 
ontains

/

=1

 , and thus /

�1

 by (OR). We apply (SHH) to obtain :�S .

We repeat this with  ; � inverted to obtain : S�. These formulae

imply by the mirror of Lemma 14 that  
annot o

ur before �,

and 
onversely, thus they o

ur in the same atom.

{ The se
ond 
onstraint is the event  ^ : ⊖  with : S .

=1

 :

then A

i


ontains :�U

�

 ;: /

=1

�U

�

 sin
e its eventuality  is

true now. It 
ontains /

=1

 , and thus /

�1

 by (OR). We apply

(SHP) to obtain : .

=1

 S�.

Sin
e A

i


ontains : U

�

/

=1

� sin
e its eventuality /

=1

� is true

now. We apply (SPH) to obtain :�Z.

=1

 _:�Z . Sin
e : S.

=1

 , we know that the �rst bran
h is true.

These formulae imply by Lemma 14 that  
annot o

ur before

�, and 
onversely, thus they o

ur in the same atom.

� The �rst 
onstraint is the event � with :�S .

=1

�:

{ The se
ond 
onstraint is /

=1

 : This 
ase is simply the previous

one, with �;  inverted.

{ The se
ond 
onstraint is the event  with : S.

=1

 : A

i


ontains

: U

�

� sin
e its eventuality � is true now. We apply (SPP) to

obtain :.

=1

�Z(.

=1

 _ ). By : S.

=1

 , the ti
k .

=1

 o

urred.

We repeat this with  ; � inverted. These formulae imply by

Lemma 14 that .

=1

 
annot o

ur before .

=1

�, and 
onversely,

thus they o

ur in the same atom.

�

Solving an equation at its an
hor also solves 
urrent partial inequations:

Lemma 17 If A

i

is in the s
ope of an inequation, and the an
hor of an

equation, then the referen
e A

j

of the inequation is after the referen
e A

e

of

the equation.

Proof. There are 3 possible forms of inequations in A

i

(see table 4.2):

1. /

<1

 ;: 

^

S 2 A

i

:

let j � i be its referen
e (its event), i.e.  2 A

j

. We must show that

e < j. The equation 
an be:

� /

=1

� 2 A

i

and � 2 A

e

:

A

i


ontains : U

�

/

=1

�;: /

=1

 U

�

/

=1

� sin
e its eventuality
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/

=1

� is true now. We apply (SHH) to obtain :�S , meaning by

the mirror of lemma 14 that e � j. : S� 62 A

i

, for otherwise

we apply (OHH) yielding/

<1

� 2 A

i


ontradi
ting /

=1

� 2 A

i

by

(AND), so we 
on
lude e < j.

� �;:�S .

=1

� 2 A

i

and .

=1

� 2 A

e

:

by (SHP) : .

=1

�S 2 A

j

, so e � j. We 
annot have the reverse

: S.

=1

�, for otherwise we apply the mirror of (OHP) and dedu
e

:� 2 A

i

, so we 
on
lude e < j.

2. : .

=1

 S ^ :(: S .

=1

 ) ^ (.

<1

 _  ) 2 A

i

:

let j � i be its referen
e (a reset), i.e. � ^

e

:� 2 A

j

. Sin
e .

<1

 2

A

i�1

and there is no intervening  between j and i, the transition

rules imply .

<1

 2 A

j+1

and thus .

�1

 2 A

j

by (JH). We must show

that e < j. The equation 
an be:

� /

=1

� 2 A

i

and � 2 A

e

:

if .

<1

 _  2 A

i

, we apply (SPH) to obtain :�Z .

=1

 _ :�Z ,

whi
h means e � j. The �rst bran
h is false by hypothesis as

:(: S .

=1

 ) 2 A

i

, sin
e we deal with an inequality. Thus : .

=1

 2 A

j

; using .

�1

 2 A

j

, .

<1

 2 A

j

. Again be
ause there

are no intervening  between j and i, using lemma 14 we have

: U /

=1

� 2 A

j

. Using the mirror of (OPH), /

<1

� ^ :� 2 A

j

,

thus j = e is impossible, sin
e :� 2 A

j

and � 2 A

e

. We 
on
lude

e < j.

� �;:�S .

=1

� 2 A

i

and .

=1

� 2 A

e

:

so : U

�

� 2 A

i

, and we use (SPP) to obtain : .

=1

�Z .

=1

 _

: .

=1

�Z 2 A

i

.  must o

ur �rst (: .

=1

 S 2 A

i

), so the

�rst 
ase is ex
luded, giving : .

=1

 2 A

j

; using .

�1

 2 A

j

,

.

<1

 2 A

j

. Again be
ause there are no intervening  between

positions j and i, we have : U /

=1

� 2 A

j

. Using the mirror of

(OHH), .

<1

� 2 A

j

. The se
ond 
ase is thus true, and means

e � j. e = j is impossible, sin
e .

<1

� 2 A

j

^ .

=1

� 2 A

e

. We


on
lude e < j.

3. .

<1

 ^ : S

+

.

=1

 2 A

i

and .

=1

 2 A

j

:

let j � i be its referen
e, i.e. .

=1

 2 A

j

. We must show that e < j.

The equation 
an be:

� /

=1

� 2 A

i

and � 2 A

e

:

thus : U

�

/

=1

� 2 A

i

; by (SPH) :�Z .

=1

 _ :�Z 2 A

i

. The

�rst 
ase is true as by hypothesis : S

+

.

=1

 2 A

i

(.

=1

 must

o

ur before  in the past), and gives e � j.

� �;:�S .

=1

� 2 A

i

and .

=1

� 2 A

e

:

using (SPP), we obtain : .

=1

�Z .

=1

 _ : .

=1

�Z 2 A

i

. The
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�rst 
ase is true, by hypothesis, and gives e � j. We 
annot

assume e = j, be
ause the mirror of lemma 16 then gives  2 A

i

,


ontradi
ting : S

+

.

=1

 2 A

i

. We 
on
lude e < j.

�

We now show that the algorithm Attr assigns time bounds of intervals

that are in
reasing.

Lemma 18 The sequen
e t

i

built by Attr is in
reasing.

Proof. In the notation of the de�nition, this amounts to prove t

i�2

< t

e

+ 1

when e is de�ned, sin
e t

i

is either t

e

+ 1 (in the 
ase of an equality) or the

middle point of (t

i�2

; t

e

+1) (in the 
ase of an inequality). If e is not de�ned

(no 
onstraints) then it is trivially veri�ed as we attribute t

i�2

+ 1=2 to t

i

.

We prove the non trivial 
ases by indu
tion on i:

1. base 
ase: i = 2. Either:

� no 
onstraint is a
tive, e is unde�ned;

� e = 0; t

e

= 0; t

i�2

= 0. We just have to prove 0 < 1.

2. indu
tion: We divide in 
ases a

ording to the 
onstraint sele
ted at

i� 2, whose referen
e is 
alled e

i�2

:

(a) an equality: by lemmas 16, 17, its referen
e was before, i.e.,

e

i�2

< e. By indu
tive hypothesis, t

i

is in
reasing: t

e

i�2

< t

e

.

Thus t

i�2

= t

e

i�2

+ 1 < t

e

+ 1.

(b) an inequality: Thus the referen
e e

i�2

� e

i

, sin
e it was obtained

by sorting. By indu
tive hypothesis, t

i

is in
reasing: so t

e

i�2

� t

e

.

By indu
tive hypothesis, t

i�4

< t

e

i�2

+ 1. Thus t

i�2

= (t

i�4

+

t

e

i�2

+ 1)=2 < (t

e

i�2

+ 1 + t

e

i�2

+ 1)=2 = t

e

i�2

+ 1 � t

e

+ 1.

�

Furthermore, the algorithm Attr ensures that time in
reases beyond any

bounds:

Lemma 19 The sequen
e of intervals

�

I of Attr(�) = (�;

�

I) built above has

�nite variability: for all t 2 R
+

, there exists an i � 0 su
h that t 2 I

i

.

Proof. Although there is no lower bound on the duration of an interval,

we show that the time spend in ea
h passage through the �nal 
y
le of

�� = A

0

A

1

: : : (A

n

A

n+1

: : : A

n+m

)

!

is at least 1=2. Thus any real number t

will be rea
hed before index 2t
, where 
 is the number of atoms in the �nal


y
le. We divide in 
ases:

1. If the 
y
le A

n

A

n+1

: : : A

n+m


ontains an atom whi
h is not in the

s
ope of any 
onstraint, the time spent there will be 1=2.
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2. Else, the 
y
le 
ontains 
onstraints, and thus 
onstraints of maximal

s
ope. Let i be owned by su
h a 
onstraint. The time spent in the

s
ope of the 
onstraint until i is at least 1=2: Sin
e e is the beginning of

the s
ope of the 
onstraint, and, t

i�2

� t

e

, and t

i

� (t

i�2

+ t

e

+1)=2 �

t

e

+1=2. Furthermore, note that the s
ope 
annot be greater than one


y
le: thus the time spent is a 
y
le is at least 1=2.

�

This pro
edure 
orre
tly solves all 
onstraints:

Lemma 20 The interval attribution Attr transforms any run � in a well-

timed run Attr(�).

Proof. We show the two supplementary properties of a well-timed run:

1. Let /

I

 2 �(t) = A

i

. We must show that the next  o

urs in t� I.

/

I

 
an be:

(a) /

>1

 : These 
onstraints are automati
ally satis�ed be
ause:

� the mirror of the eventuality rule (P-S) guarantees  has

o

urred: 9j < i  2 A

j

;

� the transition rules (J axioms) guarantee that there is �rst a

time where equality is satis�ed: 9k i < k < j ^ /

=1

 2 A

k

;

� the reset rule (CR) guarantees that satisfying the equality

will entail satisfying the greater-than 
onstraint, sin
e they

refer to the same tra
ked event, and sin
e the equality is

later.

(b) /

=1

 : Sin
e this is an equality 
onstraint, the algorithm Attr

must have 
hosen an equality 
onstraint with referen
e e. Thus

t

i

= t

e

+ 1. By lemma 16, the referen
e event � is also in A

e

.

(
) /

<1

 : Let j � i be its referen
e, � 2 A

j

. The 
onstraint sele
ted

by Attr at i 
an be:

� an equality, by lemma 17, its referen
e e < j, so that t

i

=

t

e

+ 1 < t

j

+ 1.

� or the 
onstraint 
hosen in A

i

is an inequality. The pair

/

<1

 2 A

i

;  2 A

j

is also an inequality in A

i

: let f be its

referen
e. The algorithm has sele
ted the 
onstraint with the

earliest referen
e e. Thus e � f � j � i, and t

i

< t

e

+ 1.

Thus t

i

< t

j

+ 1.

2. Let .

I

 2 �(t) = A

i

. We must show that the next  o

urs in t+ I.

.

I

 
an be:

(a) .

>1

 : These 
onstraints are automati
ally satis�ed be
ause:

24



� the eventuality rule (P-S) guarantees  will o

ur: 9j <

i  2 A

j

;

� the transition rules (J axioms) guarantee that there is �rst a

ti
k: 9k i < k < j ^ .

=1

 2 A

k

;

� the reset rule (CR) guarantees that satisfying the equality

will entail satisfying the greater-than 
onstraint, sin
e they

refer to the same an
hor event, and sin
e the equality is later.

(b) .

=1

 : let A

j


ontain the next event of  . Sin
e this is an equal-

ity 
onstraint, the algorithm Attr must have 
hosen an equality


onstraint at A

j

. By lemma 16, its referen
e is i. Thus t

j

= t

i

+1.

(
) .

<1

 : Let A

j


ontain the next event of  . The 
onstraint sele
ted

by Attr at j 
an be:

� an equality by lemma 17 its referen
e e < i, so that t

j

=

t

e

+ 1 < t

i

+ 1.

� or the 
onstraint 
hosen in A

j

is an inequality. The pair

.

<1

 2 A

i

;  2 A

j

is also an inequality in A

j

: let f be its

referen
e. The algorithm has sele
ted the 
onstraint with the

earliest referen
e e. Thus e � f � i � j, and t

j

< t

e

+ 1.

Thus t

j

< t

i

+ 1.

�

Theorem 4 A timed run has the Hintikka property for EventClo
kTL: 8� 2

C; � 2 �(t)$ (�; t) j= �.

Proof. In lemma 14, we proved this for the (qualitative) runs. In theo-

rem 20, we proved the impli
ation for the real-time operators. It remains

only to prove the 
onverse, whi
h also results from timed: if .

I

� 62 �(t), by

maximality : .

I

� 2 �(t) and thus either :♦� 2 �(t) and the result follows

by lemma 14, or .

I

� 2 �(t) and the result follows by lemma 20. �

Finally, we obtain the desired theorem:

Theorem 5 Every EventClo
kTL-
onsistent formula � is satis�able.

Proof. If � is a EventClo
kTL-
onsistent formula then there exists an

�-monitored atom A

�

in

^S. By lemma 11, there exists a set of runs � that

pass through A

�

and by the properties of the pro
edure Attr, lemma 13,

lemma 19 and lemma 20, at least one run (�;

�

I) 2 � has the Hintikka

property for EventClo
kTL. It is dire
t to see that (� \ P;

�

I) is a model for

� at time t 2 I

�

(the interval of time asso
iated to A

�

in (�;

�

I) ) and thus

� is satis�able. �
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4.3 Comparison with Automata Constru
tion

In spirit, the pro
edure given above 
an be 
onsidered as building an au-

tomaton 
orresponding to a formula. The known pro
edures [3℄ for de
iding

Metri
IntervalTL use a similar 
onstru
tion, �rst building a timed automaton

and then its region automaton. We 
ould not use this 
onstru
tion dire
tly

here, be
ause it involves features of automata that have no 
ounterpart in

the logi
, and thus 
ould not be expressed by axioms. However, the main

ideas are similar. The region automaton will re
ord the integer value of

ea
h 
lo
k: we 
ode this by formulae of the form .

<1

.

=1

::: .

=1

�. It will

also re
ord the ordering of the fra
tional parts of the 
lo
ks: this is 
oded

here by formulae of the form : .

=1

::: .

=1

�U .

=1

::: .

=1

 . There are some

small di�eren
es, however. For simpli
ity we maintain more information

than needed. For instan
e we re
ord the ordering of any two ti
ks, even if

these ti
ks are not linked to the 
urrent value of the 
lo
k. This relationship

is only inverted for a very spe
ial 
ase: when a 
lo
k has no previous and no

following ti
k, we need not and 
annot maintain its fra
tional information.

It is easy to build a more 
areful and more eÆ
ient tableau pro
edure, that

only re
ords the needed information.

The stru
ture of atoms 
onstru
ted here treats the eventualities in a

di�erent spirit than automata: here, there may be invalid paths in the graph

of atoms. It is immediate to add a

eptan
e 
onditions to eliminate them

and obtain a more 
lassi
al automaton. But it is less obvious to design a


lass of automata that is as expressive as the logi
: this is done in [10℄.

5 Translating EventClo
kTLand Metri
IntervalTL

The logi
s have been designed from a di�erent philosophi
al standpoint:

Metri
IntervalTL restri
ts the unde
idable logi
 Metri
TL by \relaxing pun
-

tuality", i.e., forbidding to look at exa
t time values; EventClo
kTL, in 
on-

trast, forbids to look past the next event in the future. However, we have

shown in [10℄ that, surprisingly, they have the same expressive power. The

power given by nesting 
onne
tives allows to ea
h logi
 to do some of its for-

bidden work. Here, we need more than a mere proof of expressiveness, we

need a �nite number of axioms expressing the translation between formulae

of the two logi
s. We give below both the axioms and a pro
edure that use

them to provide a proof of the equivalen
e.

First, we suppress intervals 
ontaining 0:

�

^

U

I

 $  _ (�

^

U

J

 ) with J = I n f0g and 0 2 I (R0)

Then we repla
e bounded untils

^

U

I

by simpler ♦
I

:

�

^

U

I

 $ �
�I

( _ �

^

U ) ^�
<

0

I

(�

^

U ) ^�
<I

� ^ ♦
I

 (RU)
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where the intervals � I = ft > 0j8t

i

2 I; t � t

i

g, < I = ft > 0j8t

i

2 I; t <

t

i

g, <

0

I = ft � 0j8t

i

2 I; t < t

i

g.

We suppress 
lassi
al until using:

�

^

U $ �U( ^⊖�) (UC)

For in�nite intervals, we redu
e the lower bound to 0 using

♦
(l;1)

�$ �
(0;l℄

♦� (IO)

♦
[l;1)

�$ �
(0;l℄

(� _ ♦�) (IC)

For �nite intervals with left bound equal to 0, we use the . operator: we

redu
e the length of the interval to 1 using:

♦
(0;u)

�$ .

<u

� (DLT)

♦
(0;u℄

�$ .

�u

� (DLE)

Note that the formulae .

<u

� and .

�u

� 
an be redu
ed to formulae that only

use 
onstant 1 using the axioms (NLE) and (NLT).

When the left bound of the interval is di�erent from 0 and the right

bound di�erent from 1, we redu
e the length of the interval to 1 using:

♦
I[J

�$ ♦
I

� _ ♦
J

� (SOR)

Then we use the following rules re
ursively until the lower bound is redu
ed

to 0:

♦
(l;l+1)

�$ ♦
[l�1;l)

.

=1

e

� _ ♦
(l�1;l)

.

=1

� _�
(l�1;l℄

.

<1

� (FOO)

♦
(l;l+1℄

�$ ♦
[l�1;l)

.

=1

e

� _ ♦
(l�1;l℄

.

=1

� _�
(l�1;l℄

.

<1

� (FOC)

♦
[l;l+1)

�$ ♦
[l�1;l)

.

=1

e

� _ ♦
[l�1;l)

.

=1

� _�
(l�1;l℄

♦
[0;1)

� (FCO)

♦
[l;l+1℄

�$ ♦
[l�1;l)

.

=1

e

� _ ♦
[l�1;l℄

.

=1

� _�
(l�1;l℄

♦
[0;1)

� (FCC)

In this way, any Metri
IntervalTL formula 
an be translated into a Event-

Clo
kTL formula where bounds are always 0 or 1. A
tually, we used a very

small part of EventClo
kTL; we 
an further eliminate .

<1

�:

.

<1

�$ (:�

^

U� ^ : .

=1

�U

+

�) _ (:(:�

^

U�) ^ : .

=1

e

�U

+

e

�) (LT=)

showing that the very basi
 operators .

=1

and its mirror image have the

same expressive power as full Metri
IntervalTL.

The 
onverse translation is mu
h simpler:

.

I

�$ :♦
<I

� ^ ♦
Inf0g

� (P)

�U $ (� _  )

^

U (U)
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5.1 Axiomatization of Metri
IntervalTL

To obtain an axiom system for Metri
IntervalTL, we simply translate the

axioms of EventClo
kTL and to add axioms expressing the translation.

Indeed, we have translations T : EventClo
kTL ! Metri
IntervalTL; S :

Metri
IntervalTL ! EventClo
kTL. Therefore when we want to prove a

Metri
IntervalTL formula �, we translate it into EventClo
kTL and prove

it there using the pro
edure of se
tion 4. The proof � 
an be translated

ba
k to Metri
IntervalTL in T (�) proving T (S(�)). Indeed, ea
h step is a re-

pla
ement, and repla
ements are invariant under syntax-dire
ted translation

preserving equivalen
e:

T ( $ �) = T ( )$ T (�)

T (�[p :=  ℄) = T (�)[p := T ( )℄

To �nish the proof we only have to add

T (S(�))

�

. A
tually the translation

axioms above are stronger, stating T (S(�))$ �. In our 
ase, T (de�ned by

(P), (U)) is so simple that it 
an be 
onsidered as a mere shorthand. Thus

the axioms (RE){(SHP) and (0){(FCC) form a 
omplete axiomatization of

Metri
IntervalTL, with .

I

;U now understood as shorthands.

6 Con
lusion

The spe
i�
ation of real-time systems using dense time is more natural, and

has many semanti
al advantages, but requires our dis
rete-time te
hniques

[8, 15℄ to be generalized. The model-
he
king and de
ision te
hniques have

been generalized in [2, 3℄.

This paper provides 
omplete axiom systems and proof-building pro
e-

dures for linear real time, extending the te
hnique of [16℄. This pro
edure


an be used to automate the proof 
onstru
tion of propositional fragments

of a larger proof.

Our work also presents the following short
omings, that we hope to

address in the future:

� The proof rules are admittedly 
umbersome, sin
e they exa
tly re
e
t

the layered stru
ture of the proof: for instan
e, real-time axioms are


learly separated from the qualitative axioms. More intuitive rules


an be devised if we relax this 
onstraint. This paper provides an easy

way to show their 
ompleteness: it is enough to prove the axioms of

this paper. This also explain why we have not generalized the axioms,

even if when obvious generalizations are possible: we prefer to sti
k

to the axioms needed in the proof, to fa
ilitate a later 
ompleteness

proof using this te
hnique.
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� The proofs 
onstru
ted by our pro
edure are often tedious 
ase anal-

yses. A proof beauti�
ation pro
edure will be useful when the proof

has to be understood by a user, e.g. when the user is attempting to

generalize a ma
hine-generated propositional proof to a �rst-order one.

This pro
edure would use the ni
er axioms mentioned in the previous

point.

� The logi
s used in this paper assume that 
on
rete values are given for

real-time 
onstraints. As demonstrated in the HyTe
h 
he
ker [12℄, it is

often useful to mention parameters instead (symboli
 
onstants), and

derive the needed 
onstraints on the parameters, instead of a simple

yes/no answer. We hope to obtain a similar pro
edure for the validity

of Metri
IntervalTL formulae.

� The extension of the results of this paper to �rst-order variants of

Metri
IntervalTL should be explored. Fragments with a 
omplete proof-

building pro
edure are our main interest.

� The development of programs from spe
i�
ations should be supported:

the automaton produ
ed by the proposed te
hnique might be helpful

as a program skeleton in the style of [20℄.
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