o

INFORMATTIK

Axioms for Real-Time Logics

Thomas Henzinger
Jean-Francois Raskin
Pierre-Yves Schobbens

MPI-1-99-3-005 August 1999

N J

FORSCHUNGSBERICHT RESEARCH REPORT

MAX-PLANCK-INSTITUT
FUR
INFORMATIK

Im Stadtwald 66123 Saarbriicken Germany

Authors’ Addresses

Thomas Henzinger
Max-Planck-Institut fiir Informatik
Im Stadtwald

66123 Saarbriicken
tah@mpi-sb.mpg.de

Jean-Francois Raskin
Max-Planck-Institut fiir Informatik
Im Stadtwald

66123 Saarbriicken
jfr@mpi-sb.mpg.de

Pierre-Yves Schobbens
Computer Science Department
University of Namur

Namur

Begium pys@info.fundp.ac.be

Publication Notes

A revised version of this report has been accepted for publication in the
journal of Theoretical Computer Science.

Acknowledgements

This work was supported by the Belgian National Fund for Scientific Research
(FNRS).

Keywords

Temporal Logic, Real-Time Logic, Completness, Decidability, Complexity.

1 Introduction

Many real-time systems are critical, and therefore deserve to be specified
with mathematical precision. To this end, real-time temporal logics [6] have
been proposed as the basis of specification languages. They use real numbers
for time, which has advantages for specification and compositionality. Sev-
eral syntaxes are possible to deal with real time: freeze quantification [4, 11],
explicit clocks in a first-order temporal logic [18, 9] and time-bounded opera-
tors [14]. We study logics with time bounded operators because those logics
are the only ones that have a decidable satisfiability problem. Note however
that the propositional fragment of the time-bounded operator logics, called
MetricTLg+, is undecidable and furthermore not recursively axiomatizable.
It becomes decidable with certain restrictions (MetriclntervalTL [3]), allow-
ing programs verification using automata-based techniques. However, when
the specification is large or when it contains first-order parts, a mixture of
automatic and manual proof generation is more suitable. Unfortunately, the
current automatic reasoning techniques (based on timed automata) do not
provide explicit proofs. Secondly, an axiomatization provides deep insights
into these logics. Third, the complete axiomatization serves as a yardstick
for a definition of relative completeness for more expressive logics that are
not completely axiomatizable, in the style of [17, 13]. This is why the ax-
iomatization of these logics is cited as an important open question in [6, 14].

We provide a complete axiom system for decidable real-time logics, and
a proof-building procedure. We build the axiom system by considering
increasingly complex logics: LTR [7], EventClockTL with past clocks only,
EventClockTL with past and future clocks (also called SCL [19]), Metriclnter-
valTL [3] with past and future operators, also called MetricInterval TLp [5].

Previous works on axiomatization of real-time logics have concentrated
on models where time is modeled by the natural numbers. For that case,
[11] gives a complete axiomatization. When time is modeled by the real-
time numbers, only “intuitive” axioms were proposed, e.g. in [14], without
taking into account completeness issues.

2 Models and logics for real-time

2.1 Models

As time domain, we choose the nonnegative reals R™. This dense domain is
natural and gives many advantages detailed elsewhere: compositionality [7],
full abstractness [7], stuttering independence [1], easy refinement. To avoid
Zeno’s paradox, we add to our models the condition of finite variability [7]
(condition (3) below): only finitely many state changes can occur in a finite
amount of time.

An interval I C RT is a convex non-empty subset of the nonnegative

reals. Given t € RT, we freely use notations such as t + I for the interval
{t' | ;" € I with ¢’ =t +t"}, ¢t > I for the constraint “¢ > ¢’ for all
t'" € 17, | T for the interval {t > 0|3’ € I : t < '} and | I for the interval
{t > 0|3t € I : t < t'}. Two intervals I and J are adjacent if the right
endpoint of I, noted r(i), is equal to the left endpoint of J, noted I(.J),
and either I is right-open and J is left-closed or I is right-closed and J is
left-open. We say that an interval I is singular if [(I) = r(I). An interval
sequence I = Iy, Iy, Io,... is an infinite sequence of (bounded) intervals so
that (1) the first interval Iy is left-closed with left endpoint 0, (2) for alls > 0,
the intervals I; and I;,q are adjacent, and (3) for all £ € R, there exists
an 7 > 0 such that ¢ € I;. Consequently, an interval sequence partitions
the nonnegative real line so that every bounded subset of R is covered
by finitely many elements of the partition. Let P be a set of propositional
symbols. A state s C P is a set of propositions. A timed state sequence
7 = (5,1) is a pair that consists of an infinite sequence 5 of states and an
interval sequence I. Intuitively, it states the period I; during which the state
was s;. Thus, a timed state sequence 7 can be viewed as a function from
R+ to 2P, indicating for each time ¢+ € Rt a state 7(t) = s; where ¢ € I;.

2.2 The Linear Temporal Logic of Real Numbers (LTR)

The formulae of LTR [13] are built from propositional symbols, boolean
connectives, the temporal “until” and “since” and are generated by the
following grammar:

¢ = p| 1 Ada| ¢ | dp1Uds | $15¢2

where p is a proposition.
The LTR formula ¢ holds at time t € R™ of the timed state sequence 7,
written (7,%) = ¢ according to the following definition:

Epiff pe 7(t)

F ¢1 Ao iff (7,1) | ¢1 and (7,1) = ¢2

g iff (1,t) = ¢

L gy Ugbo if 3 > £ A (7,) = o and VE” € (4, #), (r, ") b=
d1V po

(1.1) = $1Sgho iff I < £ A (1, #) = ¢y and VE" € (£,1), (r,2") =
d1V po

An LTR formula ¢ is satisfiable if there exists 7 and a time ¢ such that
(1,t) = ¢, an LTR formula ¢ is valid if for every 7 and every time ¢ we have
(1,t) = ¢. Our operators U, S are slightly non-classical, but more intuitive:
they do not require ¢o to start in a left-closed interval.

T,
T,
T,
T,

(1,1)
(7,%)
(1,%)
(7,%)

2.3 Event-Clock Temporal Logic

The formulae of EventClockTL [19] are built from propositional symbols,
boolean connectives, the temporal “until” and “since” operators, and two
real-time operators: at any time ¢, the history operator <;¢ asserts that ¢
was true last in the interval ¢ — I, and the prophecy operator >;¢ asserts
that ¢ will be true next in the interval £+ I. The formulae of EventClockTL
are generated by the following grammar:

¢ = plorANda| ¢ | dr1Uds | p1Sha [ar | eré

where p is a proposition and I is an interval which can be singular and
whose bounds are natural numbers. The EventClockTL formula ¢ holds at
time t € R™ of the timed state sequence 7, written (7,t) |= ¢ according to
the rules for LTR and the following additional clauses:
(r,t) Eqrpiff W <tAt et —ITAN(r, ') Epand V" : t -1 < " <
t,(r,t") ¢
(1,t) Evr @ iff 3" > tA € t+IN(T,) E pand V" - t <" <t+1,(r,t") £
¢

A >r¢ formula can intuitively be seen as expressing a constraint on the
value of a clock that measures the distance from now to the next time where
the formula ¢ will be true. In the sequel, we use this analogy and call this
clock a prophecy clock for ¢. Similarly, a <r¢ formula can be seen as a
constraint on the value of a clock that records the distance from now to the
last time such that the formula ¢ was true. We call such a clock a history
clock for ¢. For an history (resp. prophecy) clock about ¢,

e the next <—1¢ (resp. previous >b_1¢) is called its tick;
e the point where ¢ held last (resp. will hold next) is called its event;

e the point (if any) at which ¢ will hold again (resp. held last) is called
its reset;

e if ¢ is true at time ¢ and was true just before ¢ (resp. and will still be
true just after ¢) then we say that the clock is blocked at time t;

e if ¢ was never true before ¢ (resp. will never be true after ¢) then the
clock is undefined at time t.

The main part of our axiomatization consists in describing the behavior
and the relation of such clocks over time. For a more formal account on the
relation between EventClockTL formulae and clocks, we refer the interested
reader to [19].

Example 1 O(p — >_5p) asserts that after every p state, the first subse-
quent p state is exactly 5 units later (so in the interval t+(0,5), p is false);
the formula (<=5 p — ¢) asserts that whenever the last p state is exactly 5
units ago, then ¢ is true now (time-out).

Theorem 1 [19] The satisfiability problem for EventClockTL is complete for
PSPACE.

2.4 Metric-Interval Temporal Logic

The formulae of Metriclnterval TL [3] are built from propositional symbols,
boolean connectives, and the time-bounded “until” and “since” operators:

¢ = pldiAda|-d|d1Urdo| ¢iSr o

where p is a proposition and I is a nonsingular interval whose bounds are
natural numbers. The MetricInterval TL formula ¢ holds at time ¢ € Rt of
the timed state sequence 7, written (7,t) = ¢ according to the following
definition (the propositional and boolean clauses are as for LTR):

(r.8) = 1Ur o i I €t +TA(7,t)) f= pp and VE" 1 £ < t" < H' (1,') |= ¢y
(1,t) = p1Sr o iff I €t — T A (1,8) = o and V" : ' < t" < ¢, (1, t) E ¢

Example 2 O(¢ — Tégg, p) asserts that every ¢ state is preceded by a p
state of time difference at most 5, and all intermediate states are r states;
the formula O(p — @[5’6)1)) asserts that every p state is followed by a p state
at a time difference of at least 5 and less than 6 time units. This is weaker
than the EventClockTL example, since p might also hold in between.

Theorem 2 [3] The satisfiability problem for Metriclnterval TL is complete
for EXPSPACE.
2.5 Abbreviations

In the sequel we use the following abbreviations:

o U¢2 = gblU(O,oo)qﬁg, the untimed “Until” of MetricIntervalTL. Let us
note that ¢Ugy = ¢ U(ds A O¢y) (O is defined below); !

P1UT o = ¢y A p1Udha, the “Until” reflexive for its first argument;

H1UZ ¢ = o V Ut o, the “Until” reflexive for its two arguments;

0¢ = LU¢, meaning “just after in the future” or “arbitrarily closed
in the future”;

O¢p = TU¢, meaning “eventually in the future”;
o [1p = —~0—¢, meaning “always in the future”;

e their reflexive counterparts: ¢=,0=;

'Let us note that the “Until” of EventClockTL and tIAle “Until” of Metriclnterval TL are
interdefinable, in fact, we also have: ¢1Ups = (¢1 V ¢2)Ugo.

o)Wy = p1Ups V ey, meaning “unless”;
e its reflexive counterparts: W+, W=,

and the past counterpart of all those abbreviations:

° ¢1§¢2 = ¢1§(0,oo)¢2, the untimed “Since” of MetriclntervalTL. Let us
note that ¢1Sés = $1S(da AOP);

o $1STPo = P A p1Seha, the “Since” reflexive for its first argument;
o $1SSy = Py V 1S o, the “Since” reflexive for its two arguments;

e O¢p = 1S¢, meaning “just before in the past” or “arbitrarily closed in
the past”;

e & = TS¢p, meaning “eventually in the past”;

e Hp = ~6—¢, meaning “always in the past”;

o their reflexive counterparts: &=, 52:

o P1Z¢po = $1S¢p2 V By, meaning “unless in the past”;

e its reflexive counterparts: Z+, Z=<.

3 Axiomatization of EventClockTL

In Subsection 4, we will present a proof-building procedure for EventClockTL.
In this section, we simply collect the axioms used in the procedure, and
present their intuitive meaning. Our logics are symmetric for past and future
(a duality that we call the “mirror principle”), except that time begins but
does not end: therefore the axioms will be only written for the future, but
with the understanding that their mirror images, obtained by replacing U
by S, > by <, etc. are also axioms. This does not mean that we have an
axiomatization of the future fragment of these logics: our axioms make past
and future interact, and we believe that this interaction is unavoidable.

3.1 Qualitative axioms (complete for LTR)

We use the rule of inference:

P x(y)
x(#)

All propositional tautologies

(RE)

For the non-metric part, we use the following axioms and their mirror
images:

~($UL) (N)

$U(H A ') — GUY (K)
Ot A §) ¢ 09 NOG (JA)
OT = (0-¢ & =0 ¢) (BN)
O(pUg) > UG (JU)
O(YS$) ¢+ 0PV (09 A ($5°¢)) (JS)
YUg ¢ O($U) (UJ)

$Uip — O (SF)

)

O((¥ AOT = 09) A (e = ¢)) = (09 = Ty)

—~
—
—

They mainly make use of the O operator, because as we shall see, it corre-
sponds to the transition relation of our structure. Axiom (N) is the usual
necessitation or modal generalization rule, expressed as an axiom. Similarly,
(K) is the usual weakening principle, expressed in a slightly non-classical
form. (JA), (BN) allow to distribute O with boolean operators. Note that
the validity of (BN) requires finite variability. (JU), (JS) describe how the
U and S operators are transmitted over interval boundaries. (UJ) gives lo-
cal consistency conditions over this transmission. (SF) ensures eventuality
when combined with (JI). It can also be seen as weakening the left side of
the U to T. The induction axiom (JI) is essential to express finite variability:
If a property is transmitted over interval boundaries, then it will be true at
any point: said otherwise, any point is reached by crossing finitely many
interval boundaries.
The axioms below express that time begins (B) but has no end (JT):

6S-0T (BE)
oT (JT)

We have written the other axioms so that they are independent of the
begin or end axioms, in order to deal easily with other time domains. For
instance, to deal with the (positive and negative) reals numbers, we just use
the mirror of (JT) instead of (BE).

Remark 1 It is easy to check that the proof of completeness of section /
only uses the axzioms above for a formula without real-time; therefore they
form a complete axiomatization of the logic of the reals with finite variability,
defined as LTR in [7]. The system proposed in [7] is unfortunately unsound,
redundant and incomplete. Indeed, aziom F5 of [7] is unsound (this is a
simple typo); axiom F7 can be deduced from axiom F8; and the system cannot
derive the induction aziom (JI). To see this last point, take the structure

formed by R™ followed by R, with finite variability: it satisfies the system of
[7] but not the induction axiom. Thus this valid formula cannot be proved
in their system.

3.2 Quantitative axioms

For the real-time part, we first describe the static behavior; intersection,
union of intervals can be translated into conjunction, disjunction due to the
fact that there is a single next event:

><man® ¢ ><m P<n @ (NLE
[><m+n¢ < Pam '>§n ¢ (NLT

Drusp <> >rdp Ve (OR)
DIng® <> D1 Ab s (AND)
b ¢ (F)

>0 < O (P-S)

)

)

The next step of the proof is to describe how a single real-time >;¢ evolves
over time, using O and ©. We use (LO) to reduce left-open events to the
easier case of left-closed ones. The formula —I¢U¢ expresses that the next
¢-interval is left-closed and its negation that the next ¢-interval, if it exists,
is left-open.

~(=pUd) = (B(1my OP > >(1m)®) (LO)
jel - (J=)

~pUp = (OPcmtp > B<mtp) (JP)
Obem P & (Pemtp VP VOUY) AOT) (JH)
O — Bemt) (J-P)

These axioms are complete for formulae where the only real-time oper-
ators are prediction operators >;¢ and they all track the same (qualitative)
formula ¢. For a single history tracked formula, we use the mirror of the
axioms plus an axiom expressing that the future time is infinite, so that any
bound will be exceeded:

P = (0P VO <am) (ER)

As soon as several such formulae are present, we cannot just combine
their individual behavior, because the >,< have to evolve synchronously
(with the common implicit real time). We use a family of “shift” and “order”
axioms and their mirrors to express this common speed. These axioms use
U to express the ordering of events: —pUq means that ¢ will occur before (or
at the same time than) any p. The “shift” axioms say that the ordering the

ticks should be preserved: the main antecedent — <—; U~ <—; ¢ in (SHH)
states that ¢ will tick before ; in this case the events shall be in the same
order: —¢St). The side conditions ensure that the clocks were active in the
meantime, so that the ticks indeed refer to events ¢, of the conclusion.
The “order” axioms states a similar but simpler property: (OHH) says that
if last ¢ was less than 1 ago, and 1 was before, than last 1) was less than 1
ago.

acip A =pUZ g p A = < YUZ 4 ¢ — ¢Sy (SHH)
Gath Vi) A=pUZ ¢ — ~b_y pZ by)V = >og ¢Ztp

(SPP)

(> Vp) A =pUZ aq ¢ = =pZ by P V ~pZi) (SPH)

Acih A pUZp A = a4z pUZ¢p — = >q ¢Sy (SHP)

dc1p N =pStp — a1 (OHH)

AP A—YPS>_1 p = >1d A~ (OHP)

3.3 Theorems

We also use in the proof some derived rules and theorems:

e the rule of Modus Ponens is derivable from replacement as follows:
from A we deduce propositionally A <+ T; by replacement we replace
Aby T in A — B giving T — B which yields propositionally B;

e the rule of modal generalization (also called necessitation) is derived
from (RE) and (N).

AR (NN)

“OT = (0¢« 1) (BB)
O00¢p +0¢ (JB)

oY —OT (BT)

00¢ > 0¢ (JJ)

OT (ST)

ayp = OT (HB)
~(=pUg) = = (N=)
~(=9pUg) = (000 ¢ 0¢) (SO)
Prp > mbor G AP (LOW)
O¢1 V ¢2) > Op1 VO (JO)
b1 — by with (I C J) (MON)
O A ¢po — Oepy (KA)

4 Completeness of the axiomatic system for EventClockTL

As usual, the soundness of the system of axioms can be proved by a simple
inductive reasoning on the structure of the axioms. We concentrate here on
the more difficult part of the adequation of the proposed axiomatic system:
its completeness. As usual with temporal logic, we only have weak complete-
ness: for every valid formula of EventClockTL, there exists a finite formal
derivation in our axiomatic system for that formula. So if &= ¢ then F ¢.
As often, it is more convenient to prove the contrapositive: every consistent
EventClockTL formula is satisfiable. Our logics are symmetric for past and
future (a duality that we call “mirror principle”), except that time begin
but does not end: therefore most explanations will be given for the future,
but the careful reader will check their applicability to the past as well.

Our proof is divided in steps, that prove the completeness for increasing
fragments of EventClockTL.

1. We first deal with the qualitative part, without real-time. This part of
the proof follows roughly the completeness proof of [16] for discrete-
time logic.

(a) We work with worlds that are built syntactically, by maximal
consistent sets of formulae.

(b) We identify the transition relation, and its syntactic counterpart:
it was the “next” operator for discrete-time logic [16], here it is
the O, expressing the transition from a closed to an open interval,
and ©, expressing the transition from an open to a closed interval.

(c) We impose axioms describing the possible transitions for each
operator.

(d) We give an induction principle (JT) that extend the properties of
local transitions to global properties.

2. For the real-time part:

(a) We give the statics of a clock;
(b) We describe the transitions of a clock;

, .

(c) By further axioms, we constrain the clocks to evolve simultane
ously. The completeness of these axioms is shown by solving the
constraints on real-time generated the clock evolutions.

4.1 Qualitative part

Let us make the hypothesis that the formula « is consistent and let us prove
that it is satisfiable. To simplify the presentation of the proof, we use the
following lemma:

Lemma 1 FEvery EventClockTL formula 1 can be rewritten into an equiva-
lent Y7 formula of EventClockTL; (using only the constant 1).

Proof. First by the use of the theorem >y <+ b1 p A> ;¢ (LOW), every
formula >;¢ with I[(I) # 0 can be rewritten as a conjunction of formulae
with 0-bounded intervals. Using the axioms b<ping < dap b<pn ¢ (NLE)
and bopqn@ < Doy P<p ¢ (NLT) every interval can be decomposed into an
nesting of operators associated with intervals of length 1. B

In the sequel, we make the hypothesis that the formula « for which we
want to construct a model is in EventClockTLq, this does not harm complete-
ness as by lemma 1, every EventClockTL formula can first be transformed in
an equivalent EventClockTL; formula.

We now defined the set C(«) of formulae associated with a:

o Sub: the sub-formulae of a.

e The formulae of Sub subject to a future real-time constraint: R =
{¢ € S|>r ¢ € Sub}. We will say that a prediction clock is associated
to these formulae.

e For these formulae, we will also track O¢ when the next occurrence of
¢ is left-open: this will simplify the notation. The information about
¢ will be reconstructed by axiom (LO). J = {O0¢|¢ € R}.

e To select whether to track ¢ or O¢, we need the formulae giving the
openness of next interval: L = {=¢Up|p € RU J}.

e The formulae giving the current integer value of the clocks: I =
{>c1d,>o10,>510|¢ € RU J}. Thanks to our initial transformation,
we only have to consider whether the integer value is below or above
1.

e Among these, the “tick” formulae will be used in F' to determine the
fractional parts of the clocks: T' = {p_1¢ € I}.

e We also define the mirror sets. For instance, R~ = {¢ € Sub| <; ¢ €
Sub}.

e The formulae giving the ordering of the fractional parts of the clocks,
coded by the ordering of the ticks: F = {=¢Us)p, ~¢St)|p,p € TURU
JUT " UR UJ }

e The eventualities: E = {O¢|1pUg or YU € SubUL U L~}

10

We close the union of all sets above under —,0,© to obtain the closure
of a, noted C(«). This step preserves finiteness since:

00¢ < O¢ (JJ)
g & ¢ (NN)
00¢p <+ 0¢ (JB)

For the negation, we only have

OT = (0=¢ =0 ¢) (BN)
—OT = (0¢ + 1) (BB)

We only have two possible cases: if OT is true, we can move all negations
outside and cancel them, except one. else, we know that all ©y are false.
In each case, at most one ©,0 and one — are needed.

A Propositionally consistent structure

A set of formulae F C C(«) is complete w.r.t. C(a) if for all formulae
¢ € C(a), either ¢ € F or —¢ € F; it is propositionally consistent if (i) for
all formulae ¢1 V ¢2 € C(a), ¢p1 € F or ¢o € F iff 1 V ¢po € F; (74) for all
formulae ¢ € C(a), ¢ € F iff =¢p ¢ F. We call such a set a propositional
atom of C(a).

We define a first structure, which is a finite graph, & = (2, R) where 2
is the set of all propositional atoms of C'(a) and R C 2 x 2 is the transition
relation of the structure. R is defined by considering two subtransition
relations:

® R represents the transition from a right-closed to a left-open interval;

e R represents the transition from a right-open to a left-closed interval.
Let A, B be propositional atoms. We define

o ARB & V0¢ € C(a),00 € A+ ¢ € B;

s ARB&VopeCC(a),p€ A 0pE€B.

The transition relation R is the union of Ry and R, i.e. R(A, B) iff either
R (A, B) or R((4, B).

Now we can define that the atom A is singular iff it contains a formula of
the form ¢ A =0 ¢ or symmetrically. Thus any atom containing a tick (>—1)
is singular. As a consequence, A is singular iff ~A%RA iff ~AR[A (this is
expected since the logic is stuttering-insensitive), and that a singular state
is only connected to non-singular states. A is initial iff it contains - © T.
Thus it contains no formula of the form: ¢{S¢s or <r¢. It is singular, since

11

it contains TA— O T. A is monitored iff it contains «, the formula of which
we check floating satisfiability.

Any atom is exactly represented by the conjunction of the formulae that
it contains. For an atom A, we write A for that formula, that formula is
finite by definition of A. By propositional completeness, we have:

Lemma 2 F VAteA

We define the formula :R(A) to be /g smp B. VB|A9%]B B can be simpli-

fied to A seA ¢, because in the propositional structure, all other members of
a B are allowed to vary freely and thus cancel each other by the distribution
rule.

Lemma 3 - A — ONRy(A).

Proof. O%R (A) = OVB|A9%]BB = NopeaO¢- Using (JA) we obtain the
thesis. W X
Dually, VB\AER[B B can be simplified to /\¢>€A ©¢. Therefore:

Lemma 4 - 0A — 9%[(14)

Now let |+ be transitive closure of R. Since R C RT , we have:
Lemma 5 - 0A — ®t(A).

Similarly,
Lemma 6 - A — 0RT(4).

Using the disjunction rule for each reachable A, we obtain: + R (fl) —
ORT(A) and - ORT(A) — R+ (A). Now we can use the induction axioms
provided by finite variability, i.e. O((¢) — O9) A (OY — 1)) — (09 —)
and B((yp AOT — 0Y) A (09 —) = (O — Bip), using necessitation
and modus ponens, we obtain:

Lemma 7 - A — ORT(A).

A EventClockTL-consistent structure

We say that an atom A is EventClockTL-consistent if it is propositionally
consistent and consistent with the axioms and rules given in section 3. Now,
we consider the structure & = (ﬁl Sj‘i) where 2 is the subset of propositional
atoms that are EventClockTL-consistent and R = {(A4, B)|R(4, B) and A, B €
52[} Note that the lemmas above are still valid in the structure & as only
inconsistent atoms are suppressed. We now investigate more deeply the

12

properties of the structure S and show how we can prove from that struc-
ture that the consistent formula « is satisfiable.

A mazimally strongly connected substructure (MSCS) D is a set of atoms
D C 2 of the structure & such that (i) for all Dy, Dy € D, R (D, Ds)
and R+ (D2, Dy), i.e. every atom can reach the other atoms of the set D
and conversely, and (i) for all Dy, Dy € 2 such that (D, Dy) € Rt and
(D9, Dy) € R+ and Dy € D then Dy € D, i.e. D is maximal. A MSCS D is
called initial if for all (D, Ds) € R and Dy € D then Dy € D, i.e. D has no
incoming edges. Conversely, a MSCS D is called final if for all (D1, Ds) € R
and Dy € D then Dy € D, i.e. D has no outgoing edges.

Lemma 8 FEvery final MSCS D of the structure S is self-fulfilling, i.e. for
every formula of the form ¢1U¢ps € A with A € D, there exists B € D such
that ¢2 € B.

Proof. Let us make the hypothesis that there exists ¢1Upo € A with A € D
and for all B € D, ¢ ¢ B. By lemma 7, - A — OR1(A4) and as by hy-
pothesis ¢o & B, for all B € Sf%*‘(A), by theorem (KA) and a propositional
reasoning, we conclude - A= [(O=¢9. Using the axiom (SF) and the hypoth-
esis that ¢ Ugs € A, we obtain F A — (¢ and by definition of ¢, we obtain
F A — =O-¢s in contradiction with - A — Cl-¢ which is impossible since
A is, by hypothesis, consistent. B

Lemma 9 FEvery initial MSCS D of the structure S contains an initial
atom, i.e. there exists A € D such that ©T ¢ A.

Proof. By definition of initial MSCS, we know that for all (Dq, Ds) € R
and Dy € D, then Dy € D. Let us make the hypothesis that for all D € D,
OT € D. By the mirror of lemma 7 - A — ElVB|9?H(B,A) B we conclude,
by a propositional reasoning and the hupothesis that ©T € D for all D
such that §%+(D, A), that F A — B80T, but as A is a consistent atom by
axiom (BE), we know that 6O T € A, thus we obtain a contradiction since
E|¢ = —@—@5. |

In the sequel, we concentrate on particular paths, called runs, of the
structure . A run of the structure & = (2, 9R) is an infinite sequence o =
ApAr ... (Ap ... Apim)¥ ..., paired with an infinite sequence of intervals
I'=1,...1,... such that:

1. Initiality: Ag is an initial atom;
Consecution: for every i > 0, (4;, Ajy1) € R;

Singularity: for every 7 > 0, if A; is a singular atom then I; is singular;

Ll S

Alternation: Iyly ... I, ... alternates between singular and open inter-
vals, i.e. I is singular, and for all 4 > 0, I; is singular iff I;_{ is open,
I; is open iff I; 1 is singular;

13

5. Eventuality: the set {A,,..., Ap4m} is a final MSCS of the structure
S.

Note that the timing information provided in I is purely qualitative
(singular or open); therefore any alternating sequence is adequate at this
qualitative stage. Later, we will construct a specific sequence satisfying also
the real-time constraints.

Lemma 10 The transition relation R of the structure S s total, i.e. for
all atom A € A, there exists an atom B € A such that R(A, B).

Proof. We prove if{] total, i.e. for all A € A, {¢|0¢ € A} is consistent. Then
it will be included in an atom. Assume it is not. We have then O¢,0—¢ € A.
Using (JA), (N) this yields a contradiction in A. (Note: the (JT) axiom is
implicitly used in the definition of R, instead of appearing here). W

Lemma 11 For every atom A of the structure S, for every alternating
interval sequence I, there is a run (o,1) that passes through A.

Proof. First the alternation and singularity constraints can always be verified
by taking stuttering steps when needed and by noting that in & two singular
atoms are never linked by fR. It remains us to show that :

1. Initiality, i.e. every atom of S is either initial or can be reached
by an initial atom. Let us consider an atom A, if A is initial then
we are done, otherwise, let us make the hypothesis that it can not be
reached by an initial atom, it means: for all B such that 93+ (B, A) then
=0T & B, so by propositional completeness ©T € B. By lemma, 7 and
a propositional reasoning, we obtain - A — HO T. Using axiom (BE)
and our hypothesis ©T, through &—© T, we obtain a contradiction.

2. Finality, i.e. every atom of S either is part of a final MSCS or can
reach one Aof the final MSCS of &. It is a direct consequence of the
fact that R is total and the fact that & is finite.

|

A run p = (0,I) of the structure S is semantically sound if it respects
the semantics of the qualitative temporal operators which is expressed by
the following conditions (real-time operators will be treated in the following
section):

1. if 0; is singular then I; is singular;
2. if p1U¢y € o; then:

e either A; is singular and there exists j > i s.t. ¢ € A; and for
all k s.t. i <k <j, p1 € Ag;

14

e or A; is not singular and
(a) either ¢y € A;
(b) or there exists j > i s.t. ¢ € Aj and for all £ s.t. ¢ <k < j,
¢1 € Ak;

3. if ¢1S¢2 € o; then:

e either A; is singular and there exists j < i s.t. ¢ € A; and for
all k s.t. j <k <i, ¢ € Ag;

e or A; is not singular and
(a) either ¢y € A;
(b) or there exists j < i s.t. ¢ € Aj and for all k£ s.t. j <k <4,
$1 € Ag;

A semantically sound run is called an Hintikka sequence. Next, we show
properties of runs:

Lemma 12 For every run p = (0, 1) of the structure S, with o = AgA; ...,
for every A; such that ¢ € A;:

o A; is singular and there exists j > i such that ¢ € Aj;

o A; is non-singular and there exists j > 4 such that ¢ € A;.

Proof. First let us prove the following properties of the transition relation
R:

o let S’A{} (A, B) and Q¢ € A then either ¢ € B or ¢¢ € B. In fact, recall
that 0¢ = TUg, and by definition of S)A‘i}, axiom ¢y Ugy <> O(po V (1 A
»1U¢2)) (UJ) and a propositional reasoning, we obtain that TU¢ € A
iff € Bor TU¢ € B;

o let 3%(A, B) and (¢ € A then either ¢ € A, ¢ € B or TU¢p € B. By
definition of i, axiom ©(¢1Ugs) <+ Oda V (Oh1 A 2 V (b1 A $1Ugb))
mirror of (JS) and a propositional reasoning, we obtain ¢ € Aor ¢ € B
or TU¢ € B.

By the two properties above, we have that if 0¢ € A; then either ¢ appears
in A; with j > 4 if A; is singular (and thus right closed), j > ¢ if A; is not
singular (and thus associated with an open interval) or ¢ is never true and (¢
propagates for the rest of the run. But let us show that this last possibility
is excluded by our definition of run. In fact, every run eventually loops into
a final self-fulfilling MSCS D. Then either the fatality ¢ associated with ¢¢
is realized before this looping or ¢ € D and by lemma 8 the fatality ¢ € D
and is thus eventually realized. l

15

Lemma 13 For every run p = (0,1I) of the structure @, for every position
1 in the run if p1Upy € A; then the property 2 of timed Hintikka sequences
is verified, i.e:

e either A; is singular and there exists j > i s.t. ¢o € A;j and for all k
st i< k<j, p1 € Ag;

e or A; is not singular and

1. either ¢y € A;

2. or there erists j > i s.t. ¢o € Aj and for all k s.t. i < k < j,
¢1 € Ay.

Proof. By hypothesis we know that ¢1U¢ps € A; and we first treat the case
where A; is singular.

e By the axiom ¢1U¢ps — Qo and lemma 12, we know that there exists
J > i such that ¢ € A;. Let us make the hypothesis that A; is the
first ¢o-atom after A;.

e It remains us to show that: for all £ s.t. ¢ < k < j, ¢1 € Ar. We
reason by induction on the value of k.

— Base case: k =i+ 1. By hypothesis we have ¢1U¢py € A; and also
A;RjA;iy 1 (as A; isright closed) and thus for allO¢ € A;, ¢ € A4
by definition of R). By axiom ¢1U¢s < O(¢1Ugz), we con-
clude that ¢;U¢y € A;j; and by axiom ¢;Ugs < O(d V (1 A
O(p1Ue2))), O(¢1 V) > Op1 VO P, O(d1 Ad2) > Oy AO o, and
the fact that by hypothesis ¢o € A;11, a propositional reasoning
allows us to conclude that ¢ € A;11.

— Induction case: k =i+ with 1 <[< j—1. By induction hypoth-
esis, we know that ¢ € Ax_1 and ¢1Uo € Ay_1, also =g € Ay,
and —¢o € Ap 1 as k < j (by hypothesis j is the first position
after i where ¢ is verified). To establish the result, we reason by
case : (i) Iy is open and thus I is singular and right closed.
We have Aj_iRjAy, and thus for all 0O¢ € C(¢),0¢ € A4;
¢ € Aiy1 by definition of R). As ¢1U¢y € Ap_1 by induction
hypothesis and the axiom ¢1U¢ps <> O(¢1Ugy), we conclude that
p1Ugo € Aj. Using the axioms ¢1Ugpo <> O(da V (p1 AO(¢1Ugho))),
O(1 V o) <> Op1 V Oha, O(d1 A ¢p2) <> Oy A Ogo, and the fact
that ¢o &€ Aj, and a proposition reasoning, we conclude that
¢1 € Ag. (i1) Ij is closed which implies that Ij_; is right open
and Ay_1R[Ag. By definition of R; we have that for all ©¢ €
C(y),0¢ € Ay, <> ¢ € Ar_1. So we have O(¢p1Ups), O € Ay,
by hypothesis k < 7 thus we have —¢9 € Ai. Using those proper-
ties, the axiom O(¢p1Ugps) <> Opa V (Od1 A (2 V (d1 A p1Udo))),
we conclude that ¢1 A p1Ugo € Ay,

16

We now have to treat the case where A; is not singular. By the axiom
$1Upa — O¢o and lemma 12 we know that there exists a later atom A;
g >4 such that ¢o € A;. If j = i then ¢y € A; and we are done. Otherwise
4 > 1, and we must prove that for all k s.t. 1 < k < j, ¢1 € A, this can be
done by the reasoning above. W

We now prove the reverse, i.e. every time that ¢1Ugs is verified in an
atom along the run then ¢;U¢s appears in that atom. This lemma is not
necessary for completeness but we use this property in the lemmas over
real-time operators.

Lemma 14 For every run p = (0,1) of the structure @, for every position
i in the run, for every ¢p1Ups € C(av), if :

e either A; is singular and there exists j > 1 s.t. ¢po € A; and for all k
st 1< k<7, P € Ag;

e or A; is not singular and

1. either ¢y € A;

2. or there exists j > 1 s.t. ¢2 € Aj and for all k s.t. « <k < j,
P € Ag.

then ¢1U¢2 € A;.

Proof. We reason by considering the three following mutually exclusive
cases:

1. A; is singular and there exists j > 7 s.t. ¢2 € A; and for all k s.t.
i <k <j,$1 € Ap. We reason by induction to show that ¢1U¢ps € A;
forall [s.t. 1 <[l <j—i.

e Base case: [= 1. By hypothesis, we know that ¢ € A;. We now
reason by cases: (i) if A;_1 is right closed then we have A;_1RjA;
and by definition of R}, O¢s € A;_;. Using the axiom ¢1 Uy
O V (1 A p1Ughs), we deduce by a propositional reasoning that
$Upy € A;_q. (i) if Aj_; is right open then we know that
j— 1> 1 (as A; is singular by hypothesis) and thus ¢ € A;_;.
Also as A; 1RjAj, O¢1 € Aj. Using the axiom O(¢1U¢z)
Opa V (O1 A (P2 V (¢p1 A p1Ugs))) and a propositional reasoning,
we obtain O(¢1U¢2) € A; and by definition of Rj, ¢1Ups € A; 1.

e Induction case: 1 <[< i — 7 — 1 and we have established the
result for [— 1, ie. ¢1U¢do € A;_(;_1). Let us show that we
have the result for A;_ ;. First note that by hypothesis, ¢ €
Aj_(—1)- We again reason by cases: (i) I;_; is right closed. Then
we have A; R)A;__1) and by definition of R}, for allO¢ € C (1),
O¢ € A]‘_l iff ¢ € Aj_(l_l),thus O(p1Ugo) € A]‘_l and by axiom

17

¢1U¢2 — O(¢1U¢2), we have that ¢1U¢2 S Ajfl- ('LZ) Ajfl is
right open. Then we have A; ;RA;__;) and by definition of
Ry, for all ©0¢ € C(), Op € Aj_q_yy iff ¢ € A; ;. We know that
by hypothesis, ¢1 € Aj_; as j —1 # i (A; is singular and A,
not), thus O¢1 € A;__1), also p1Uga € A;__1y (by induction
hypothesis). Using the axiom ©(¢1U¢ps) <> Opo V (Op1 A (1 A
$1U¢2)) and a propositional reasoning, we obtain ©(¢1U¢e) €
Aj_q—1) and by definition of R| that ¢1U¢y € A; ;.

2. A; is not singular and ¢ € A;. As A; is not singular, we have A; R 4;,
by definition of R, we have O¢o € A;. By the axiom ¢;U¢s <> Oy V
(¢1 A O(p1Ugs)) and a proposition reasoning, we obtain the desired
result: ¢p1U¢py € A;.

3. A; is not singular, ¢o € A;, and there exists 7 > i s.t. ¢ € A; and
for all k s.t. 4 < k < j, ¢1 € Ag. This case is treated by an inductive
reasoning similar to the first one above.

|
We have also the two corresponding mirror lemmas for the S-operator.
From the previous proved lemmas, it can be shown that the quali-

tative axioms of section 3 are complete for the qualitative fragment of
EventClockTL, i.e. the logic LTR.

Lemma 15 A run p has the Hintikka property for LTR formula: for every
LTR formula ¢ € C,¢ € p(t) <> (p,t) = .

As a consequence, we have the following theorem:

Theorem 3 FEvery LTR formula that is consistent with the qualitative az-
ioms s satisfiable.

We now turn to the completeness of real-time axioms.

4.2 Quantitative part

A run p = (0,1) of the structure & has the timed Hintikka property if it
respects the Hintikka properties defined previously and the two following
additional properties:

1. if >7¢p € p(t) then at a later time t' € t+1,¢ € p(t') and V" : t <t <
t+I7 _'¢ € p(t”)

2. if <7¢ € p(t) then at an earlier time ¢’ with ¢ € t — I, ¢ € p(t') and
Vit > 1" >t —1, =¢ € p(t")

18

A run that respects those additional properties is called a well-timed run. In
the sequel, we will show that for each run of the structure é, we can modify
its sequence of intervals, using a procedure, in such a way that the modified
run is well-timed.

Recall that given a tracked formula ¢ € R,

e >_1 ¢ is called its tick;

e (P NO—¢) V (md A O¢) is called its event (note that the second case
need not be considered thanks to the axioms (LO), (JP));

o (PNOP)V (mp ANO@) is called its reset.

A constraint is a real-time formula of an atom A;. The reference of a
constraint is the index e at which its previous event, tick or reset occurred.
The reference is always singular. The anchor of a constraint is the index
J at which its next event, tick or reset occurred. We say that (the history
clock of) ¢ is active between an event ¢ and the next reset of ¢. It is small
between its event and the next tick or reset. It is sufficient to solve small
constraints, as we shall see. Thus we define the scope of a history constraint
as the interval between the event and the next tick or reset. Constraints are
either equalities (the time spend in their scope must be 1), linking an event
to a tick, or inequalities (the time spend in their scope must be less than 1).
The scope of an inequality extends from an event to a reset. Constraints can
be partially ordered by scope: it is enough to solve constraints of maximal
scope, as we shall see. An index is owned by a constraint, if it is in the scope
of no other constraint with an earlier reference. A constraint of maximal
scope always owns indexes: they are found at the end of its scope. We
will also use partial inequalities, representing the constraints known up to
an index of a path. Whether an atom is in the scope of a constraint, and
whether it is an equality, can be deduced from its contents. The table below
shows the contents of an atom A; that is the anchor of an equality:

Table 1: Equality constraints

reference anchor in A;
¢ (event) d-1¢ (tick)
>_1¢ (tick) | ¢, =S >_1 ¢ (event)

The table below shows the contents of an atom A; that defines an in-
equality:

The proof shows that these constraints can be solved iff they are com-
patible in the sense that the scope of an equality cannot be included in the
scope of an inequality, nor strictly in the scope of another equality.

19

Table 2: Inequality constraints

reference in A; anchor
>_1¢ (tick) b1 A =gST by ¢ ¢ (event)
¢ ANO—¢ (event) de1dp A =S¢ d=1¢ V ¢ (tick or reset)
(P ANO—¢) V (©¢ A ~¢) (reset) | = =1 $SP A ~(=¢S>=1 $) A (P<19V ¢) ¢ (event)

From any run p = (o,), we now build a timed run Attr(p) = (o, J) by
attributing well-chosen intervals to the atoms of the run. Recall that the
interval information T in the run p has only a qualitative value: the intervals
associated to the atoms are either open or singular. We now show that we
can attribute a new sequence of intervals J, given the timed run Attr(p)
that will satisfy the real-time constraints. We proceed by induction along
the run, attributing time points [¢;, ¢;] to the singular atoms A; with i even.
Therefore, an open interval (¢;_1,%;11) is attributed to non-singular atoms
A; with 7 odd.

1. Base: We attribute the interval [0, 0] to the initial atom Ay.

2. Induction: we identify 20 and solve the tightest constraint, that owns
the current index 7. We define e as the reference of this tightest con-
straint, by cases:

(a) equality constraints:

i. If there is an <—;1) € A; there has been a last (singular) atom
A, containing 1 before at time .

ii. Else, if 99y Ay A—-pS>_11p € A; there has been a last atom
A, containing >_q11) before A;, at time ..

We attribute [t. + 1,%. + 1] to A;.
(b) inequality constraints:

i. Else, we compute the earliest reference e of the small clocks
using table 2. ¢; has to be between ¢;_s and t.+1. We choose
ti = (tig +to +1)/2.

ii. Finally, when all clocks are undefined or blocked, we attribute
(say) ti—o + 1/2 to A;.

The algorithm selects arbitrarily an equality constraint, but is still de-
terministic:

Lemma 16 If two equality constraints have the same anchor i, their refer-
ences ey, ey are identical.

20

Proof. Four combinations of equality constraints are possible:

e The first constraint is <—¢

The second constraint is <—j¢: A; contains —pUZ <4—1 ¢, - <—y
PpUZ <—; ¢ since its eventuality <—;¢ is true now. It contains
<=1, and thus <<y by (OR). We apply (SHH) to obtain —¢Ss).
We repeat this with 1), ¢ inverted to obtain —1S¢. These formulae
imply by the mirror of Lemma 14 that ¢ cannot occur before ¢,
and conversely, thus they occur in the same atom.

The second constraint is the event 1 A = © 1 with =S >_q :
then A; contains —¢pUZ1p, ~ a—; ¢pUZ9) since its eventuality 1) is
true now. It contains <—;¢, and thus <<19 by (OR). We apply
(SHP) to obtain —>_1 ¥S¢.

Since A; contains —1pUZ <_; ¢ since its eventuality <—;¢ is true
now. We apply (SPH) to obtain =¢Z>_11)V—¢Zp. Since —1pS>_q
1, we know that the first branch is true.

These formulae imply by Lemma 14 that ¢ cannot occur before
¢, and conversely, thus they occur in the same atom.

e The first constraint is the event ¢ with =¢S>_1 ¢:

The second constraint is <—;1: This case is simply the previous
one, with ¢, inverted.

The second constraint is the event i with —)S>_1: A; contains
—1pUZ ¢ since its eventuality ¢ is true now. We apply (SPP) to
obtain =>_1 ¢Z(>=19pV1)). By =pS>_1 1, the tick >_11) occurred.
We repeat this with 1, ¢ inverted. These formulae imply by
Lemma 14 that >_11 cannot occur before >_1¢, and conversely,
thus they occur in the same atom.

Solving an equation at its anchor also solves current partial inequations:

Lemma 17 If A; is in the scope of an inequation, and the anchor of an
equation, then the reference A; of the inequation is after the reference A, of
the equation.

Proof. There are 3 possible forms of inequations in A; (see table 4.2):

1. <c19p, ~pStp € A;:

let j < i be its reference (its event), i.e. 1 € A;. We must show that
e < j. The equation can be:

419 € A; and ¢ € Ag:
A; contains —pUZ <_q ¢, = a—; pUZ a_; ¢ since its eventuality

21

d—1¢ is true now. We apply (SHH) to obtain —=¢St, meaning by
the mirror of lemma 14 that e < j. —S¢ & A;, for otherwise
we apply (OHH) yielding<.1¢ € A; contradicting <—1¢ € A; by
(AND), so we conclude e < j.
e),—¢pSp>_1 P € A; and p_1¢ € Ag:

by (SHP) = >_; ¢S9p € A}, so e < j. We cannot have the reverse
—1pS>_1 ¢, for otherwise we apply the mirror of (OHP) and deduce
—¢ € A;, so we conclude e < j.

2. 2> YSY A= (=S >y) A (batp V) € A;:
let j < i be its reference (a reset), i.e. $ AO—=¢p € A;. Since b.i1) €
A; 1 and there is no intervening 1 between j and i, the transition
rules imply >.1¢ € A1 and thus ><19 € A; by (JH). We must show
that e < j. The equation can be:

o <i_1p € A; and ¢ € Ag:
if >.19 V1 € A;, we apply (SPH) to obtain =¢Z >_y ¢ V —¢Z1),
which means e < j. The first branch is false by hypothesis as
—(—9S>_19) € A;, since we deal with an inequality. Thus —>_;
Y € Ay using p<p € Ay, byp € Aj. Again because there
are no intervening 1 between j and ¢, using lemma 14 we have
—1pU a—; ¢ € A;. Using the mirror of (OPH), ac1p A =¢p € Aj,
thus j = e is impossible, since =¢ € A; and ¢ € A.. We conclude
e <j.

o ¢, ¢pS>_1 p € A; and >_1¢ € Ag:
so ~pUZ¢ € A;, and we use (SPP) to obtain = >_y ¢pZ >_1 ¢ V
- >y ¢Z1p € A;. 1 must occur first (= >y Sty € A;), so the
first case is excluded, giving ~>—1 ¢ € Aj; using ><1¢p € Aj,
b<1p € Aj. Again because there are no intervening ¢ between
positions j and %, we have =¢)U <= ¢ € A;. Using the mirror of
(OHH), >1¢ € Aj . The second case is thus true, and means
e < j. e = j is impossible, since b.1¢ € A; Ab_1¢ € A.. We
conclude e < 7.

3. b ApSTo_11p € A; and p_q9p € Aj:
let j < be its reference, i.e. >—19 € A;. We must show that e < j.
The equation can be:

o <i_1p € A; and ¢ € Ag:
thus =pUZ a—; ¢ € A;; by (SPH) —¢Z>—y ¢ V ~¢pZyp € A;. The
first case is true as by hypothesis =)S* >_1 ¢ € A; (>—1¢ must
occur before 9 in the past), and gives e < j.

e ¢, pS>_1 p € A; and p_1¢p € Ag:
using (SPP), we obtain - >_y ¢Z>_1 p V = >y ¢pZ1p) € A;. The

22

first case is true, by hypothesis, and gives e < j. We cannot
assume e = j, because the mirror of lemma 16 then gives ¢ € A;,
contradicting =)S* >_; 1) € A;. We conclude e < j.

|
We now show that the algorithm Attr assigns time bounds of intervals
that are increasing.

Lemma 18 The sequence t; built by Attr is increasing.

Proof. In the notation of the definition, this amounts to prove ¢;_o < . + 1
when e is defined, since ¢; is either ¢, + 1 (in the case of an equality) or the
middle point of (#;_2,%.+ 1) (in the case of an inequality). If e is not defined
(no constraints) then it is trivially verified as we attribute ¢;_o + 1/2 to t;.
We prove the non trivial cases by induction on i:

1. base case: 7 = 2. Hither:

e no constraint is active, e is undefined;

e ¢c=0,t, =0,t;_o = 0. We just have to prove 0 < 1.

2. induction: We divide in cases according to the constraint selected at
1 — 2, whose reference is called e;_o:

(a) an equality: by lemmas 16, 17, its reference was before, i.e.,
ei—2 < e. By inductive hypothesis, ¢; is increasing: t,, , < te.
Thus t;,_9 = te, , +1<t.+ 1.

(b) an inequality: Thus the reference e; 5 < e;, since it was obtained
by sorting. By inductive hypothesis, ¢; is increasing: so te, , < t.
By inductive hypothesis, t;_4 < t., , + 1. Thus ¢;_9 = (t;_4 +
te; » +1)/2 < (te,_, +1+41te;_,+1)/2=1t¢;_,+1<t.+ 1.

Furthermore, the algorithm Attr ensures that time increases beyond any
bounds:

Lemma 19 The sequence of intervals I of Attr(p) = (o,1) built above has
finite variability: for all t € RT, there exists an i > 0 such that t € I;.

Proof. Although there is no lower bound on the duration of an interval,
we show that the time spend in each passage through the final cycle of
g =ApA1...(ApApi1 ... Apim)® is at least 1/2. Thus any real number ¢
will be reached before index 2tc, where ¢ is the number of atoms in the final
cycle. We divide in cases:

1. If the cycle A,Apyq ... Aptm contains an atom which is not in the
scope of any constraint, the time spent there will be 1/2.

23

2. Else, the cycle contains constraints, and thus constraints of maximal
scope. Let 7 be owned by such a constraint. The time spent in the
scope of the constraint until 7 is at least 1/2: Since e is the beginning of
the scope of the constraint, and, ¢;_o > te, and t; > (t;_o+te+1)/2 >
te +1/2. Furthermore, note that the scope cannot be greater than one
cycle: thus the time spent is a cycle is at least 1/2.

|
This procedure correctly solves all constraints:

Lemma 20 The interval attribution Attr transforms any run p in a well-
timed run Attr(p).

Proof. We show the two supplementary properties of a well-timed run:

1. Let <1y € p(t) = A;. We must show that the next ¢ occurs in ¢ — I.
<7y can be:

(a) <s1%: These constraints are automatically satisfied because:

e the mirror of the eventuality rule (P-S) guarantees ¢ has
occurred: 35 < i Y € Aj ;

e the transition rules (J axioms) guarantee that there is first a
time where equality is satisfied: 3k 7 < k < j A<—1¢ € Ay;

e the reset rule (CR) guarantees that satisfying the equality
will entail satisfying the greater-than constraint, since they
refer to the same tracked event, and since the equality is
later.

(b) <—1%: Since this is an equality constraint, the algorithm Attr
must have chosen an equality constraint with reference e. Thus
t; = te + 1. By lemma 16, the reference event ¢ is also in A,.

(c) <9<19: Let j <i be its reference, ¢ € A;. The constraint selected
by Attr at i can be:

e an equality, by lemma 17, its reference e < j, so that ¢; =
te+1<tj+1.

e or the constraint chosen in A; is an inequality. The pair
d<1p € Aj,np € Aj is also an inequality in A;: let f be its
reference. The algorithm has selected the constraint with the
earliest reference e. Thus e < f < 7 <4, and ¢; < t. + 1.
Thus t; <t; + 1.

2. Let >y € p(t) = A;. We must show that the next ¢ occurs in ¢ + 1.
>r1p can be:

(a) >>11: These constraints are automatically satisfied because:

24

e the eventuality rule (P-S) guarantees 1 will occur: 35 <
i P e Aj ;

e the transition rules (J axioms) guarantee that there is first a
tick: 3k i<k <jA>_19p € Ay

e the reset rule (CR) guarantees that satisfying the equality
will entail satisfying the greater-than constraint, since they
refer to the same anchor event, and since the equality is later.

(b) >_1¢: let A; contain the next event of 4. Since this is an equal-
ity constraint, the algorithm Attr must have chosen an equality
constraint at A;. By lemma 16, its reference is 7. Thus ¢; = £;+1.

(c) p<19: Let A; contain the next event of 4. The constraint selected
by Attr at j can be:

e an equality by lemma 17 its reference e < 4, so that ¢; =
te+1<t;+1.

e or the constraint chosen in A; is an inequality. The pair
bc1p € Aj,p € Aj is also an inequality in A;: let f be its
reference. The algorithm has selected the constraint with the
earliest reference e. Thus e < f <4 < j, and t; < t, + L.
Thus t; <t; + 1.

Theorem 4 A timed run has the Hintikka property for EventClockTL: V¢ €
C,¢ € p(t) < (p,1) = ¢

Proof. In lemma 14, we proved this for the (qualitative) runs. In theo-
rem 20, we proved the implication for the real-time operators. It remains
only to prove the converse, which also results from timed: if >;¢ & p(t), by
maximality = >; ¢ € p(t) and thus either =(¢ € p(¢) and the result follows
by lemma 14, or >;¢ € p(t) and the result follows by lemma 20. B

Finally, we obtain the desired theorem:

Theorem 5 FEvery EventClockTL-consistent formula « is satisfiable.

Proof. If a is a EventClockTL-consistent formula then there exists an
a-monitored atom A, in &. By lemma 11, there exists a set of runs 3 that
pass through A, and by the properties of the procedure Attr, lemma 13,
lemma 19 and lemma 20, at least one run (o,7) € ¥ has the Hintikka
property for EventClockTL. It is direct to see that (o NP, I) is a model for

a at time ¢ € I, (the interval of time associated to A, in (0,I)) and thus
« is satisfiable.

25

4.3 Comparison with Automata Construction

In spirit, the procedure given above can be considered as building an au-
tomaton corresponding to a formula. The known procedures [3] for deciding
Metriclnterval TL use a similar construction, first building a timed automaton
and then its region automaton. We could not use this construction directly
here, because it involves features of automata that have no counterpart in
the logic, and thus could not be expressed by axioms. However, the main
ideas are similar. The region automaton will record the integer value of
each clock: we code this by formulae of the form >y >_y ... >_1 ¢. Tt will
also record the ordering of the fractional parts of the clocks: this is coded
here by formulae of the form = >—q ... >—; U >_; ... >—1 1. There are some
small differences, however. For simplicity we maintain more information
than needed. For instance we record the ordering of any two ticks, even if
these ticks are not linked to the current value of the clock. This relationship
is only inverted for a very special case: when a clock has no previous and no
following tick, we need not and cannot maintain its fractional information.
It is easy to build a more careful and more efficient tableau procedure, that
only records the needed information.

The structure of atoms constructed here treats the eventualities in a
different spirit than automata: here, there may be invalid paths in the graph
of atoms. It is immediate to add acceptance conditions to eliminate them
and obtain a more classical automaton. But it is less obvious to design a
class of automata that is as expressive as the logic: this is done in [10].

5 Translating EventClockTLand Metriclnterval TL

The logics have been designed from a different philosophical standpoint:
Metriclnterval TL restricts the undecidable logic MetricTL by “relaxing punc-
tuality”, i.e., forbidding to look at exact time values; EventClockTL, in con-
trast, forbids to look past the next event in the future. However, we have
shown in [10] that, surprisingly, they have the same expressive power. The
power given by nesting connectives allows to each logic to do some of its for-
bidden work. Here, we need more than a mere proof of expressiveness, we
need a finite number of axioms expressing the translation between formulae
of the two logics. We give below both the axioms and a procedure that use
them to provide a proof of the equivalence.
First, we suppress intervals containing 0:

dUrp <> 4V (pUsep) with J =T\ {0} and 0 € T (RO)
Then we replace bounded untils U 1 by simpler {r:

U Ocr(9pV ¢U) A Ocor(dUy) ADcrd A Oryp (RU)

26

where the intervals < T = {t > 0|Vt; € I,t < t;}, < I ={t >0Vt; € I,t <
ti}, <ol = {t > 0|th el,t< ti}.
We suppress classical until using:

$Uy & ¢U(y A Og) (UC)

For infinite intervals, we reduce the lower bound to 0 using
1,00y ® > Do, 0 (10)
Olto0)® < Do,(d V O0) (IC)

For finite intervals with left bound equal to 0, we use the > operator: we
reduce the length of the interval to 1 using:

<>(O,u)§Zs Doy (DLT)

Q0@ © ><ud (DLE)
Note that the formulae >, ¢ and ><, ¢ can be reduced to formulae that only
use constant 1 using the axioms (NLE) and (NLT).

When the left bound of the interval is different from 0 and the right
bound different from oo, we reduce the length of the interval to 1 using:

Orugp < OrpV Os¢ (SOR)

Then we use the following rules recursively until the lower bound is reduced
to 0:

Qui+1)9 € Q=1 >=1 00V Oy b=1 ¢ VU1 <1 @ (FOO)
Quir11® < Qo1 P=100V Q1 g>=1 ¢ VO 1><1 ¢ (FOC)
Ori41)® < Q1) P=10¢ V 1y >=1 ¢V Oi—1,50p0,1)¢ (FCO)
Ou411® < Q1) >=1 00V Op—1,y>=1 ¢ V O—1,1070,1)¢ (FCC)
In this way, any MetricInterval TL formula can be translated into a Event-

ClockTL formula where bounds are always 0 or 1. Actually, we used a very
small part of EventClockTL; we can further eliminate > ¢:

Q

b1 < (~pUp A ooy pUTP) V (=(~¢pUg) A ~>_1 0pUT0O¢) (LT=)

showing that the very basic operators >—; and its mirror image have the
same expressive power as full Metriclnterval TL.
The converse translation is much simpler:

>rd <> =O<rd A O (o1 (P)
PUh <> (¢ V 1h)Ugp (U)

27

5.1 Axiomatization of Metriclnterval TL

To obtain an axiom system for MetriclntervalTL, we simply translate the
axioms of EventClockTL and to add axioms expressing the translation.

Indeed, we have translations 7" : EventClockTL — MetricIntervalTL, S :
MetricIntervalTL — EventClockTL. Therefore when we want to prove a
Metriclnterval TL formula p, we translate it into EventClockTL and prove
it there using the procedure of section 4. The proof 7 can be translated
back to Metriclnterval TL in T'(7) proving T'(S(x)). Indeed, each step is a re-
placement, and replacements are invariant under syntax-directed translation
preserving equivalence:

T(< ¢) =T() < T($)

T(xlp =) =T(X)lp :=T()]

To finish the proof we only have to add TSwW) Actually the translation

axioms above are stronger, stating T(S(u)) <> p. In our case, T (defined by
(P), (U)) is so simple that it can be considered as a mere shorthand. Thus
the axioms (RE)-(SHP) and (0)-(FCC) form a complete axiomatization of
Metriclnterval TL, with >7, U now understood as shorthands.

6 Conclusion

The specification of real-time systems using dense time is more natural, and
has many semantical advantages, but requires our discrete-time techniques
[8, 15] to be generalized. The model-checking and decision techniques have
been generalized in [2, 3].

This paper provides complete axiom systems and proof-building proce-
dures for linear real time, extending the technique of [16]. This procedure
can be used to automate the proof construction of propositional fragments
of a larger proof.

Our work also presents the following shortcomings, that we hope to
address in the future:

e The proof rules are admittedly cumbersome, since they exactly reflect
the layered structure of the proof: for instance, real-time axioms are
clearly separated from the qualitative axioms. More intuitive rules
can be devised if we relax this constraint. This paper provides an easy
way to show their completeness: it is enough to prove the axioms of
this paper. This also explain why we have not generalized the axioms,
even if when obvious generalizations are possible: we prefer to stick
to the axioms needed in the proof, to facilitate a later completeness
proof using this technique.

28

The proofs constructed by our procedure are often tedious case anal-
yses. A proof beautification procedure will be useful when the proof
has to be understood by a user, e.g. when the user is attempting to
generalize a machine-generated propositional proof to a first-order one.
This procedure would use the nicer axioms mentioned in the previous
point.

The logics used in this paper assume that concrete values are given for
real-time constraints. As demonstrated in the HyTech checker [12], it is
often useful to mention parameters instead (symbolic constants), and
derive the needed constraints on the parameters, instead of a simple
yes/no answer. We hope to obtain a similar procedure for the validity
of Metriclnterval TL formulae.

The extension of the results of this paper to first-order variants of
Metriclnterval TL should be explored. Fragments with a complete proof-
building procedure are our main interest.

The development of programs from specifications should be supported:
the automaton produced by the proposed technique might be helpful
as a program skeleton in the style of [20].

29

References

[1]

2]

M. Abadi and L. Lamport. The existence of refinement mappings.
Theoretical Computer Science, 82(2):253-284, 1991.

R. Alur, C. Courcoubetis, and D.L. Dill. Model checking in dense real
time. Information and Computation, 104(1):2-34, 1993.

R. Alur, T. Feder, and T.A. Henzinger. The benefits of relaxing punc-
tuality. Journal of the ACM, 43(1):116-146, 1996.

R. Alur and T.A. Henzinger. A really temporal logic. In Proceedings
of the 30th Annual Symposium on Foundations of Computer Science,
pages 164-169. IEEE Computer Society Press, 1989.

R. Alur and T.A. Henzinger. Back to the future: towards a theory of
timed regular languages. In Proceedings of the 33rd Annual Symposium
on Foundations of Computer Science, pages 177-186. TEEE Computer
Society Press, 1992.

R. Alur and T.A. Henzinger. Logics and models of real time: a survey.
In J.W. de Bakker, K. Huizing, W.-P. de Roever, and G. Rozenberg,
editors, Real Time: Theory in Practice, Lecture Notes in Computer
Science 600, pages 74-106. Springer-Verlag, 1992.

H. Barringer, R. Kuiper, and A. Pnueli. A really abstract concurrent
model and its temporal logic. In Proceedings of the 13th Annual Sym-
posium on Principles of Programming Languages, pages 173-183. ACM
Press, 1986.

E.M. Clarke, E.A. Emerson, and A.P. Sistla. Automatic verification
of finite-state concurrent systems using temporal-logic specifications.
ACM Transactions on Programming Languages and Systems, 8(2):244—
263, 1986.

E. Harel, O. Lichtenstein, and A. Pnueli. Explicit-clock temporal logic.
In Proceedings of the Fifth Annual Symposium on Logic in Computer
Science, pages 402-413. IEEE Computer Society Press, 1990.

T. Henzinger, J.-F. Raskin, and P.-Y. Schobbens. The regular real-time
languages. In Kim G. Larsen, editor, [CALP 98: Automata, Languages,
and Programming, Lecture Notes in Computer Science. Springer-Verlag,
1998.

T.A. Henzinger. Half-order modal logic: how to prove real-time prop-
erties. In Proceedings of the Ninth Annual Symposium on Principles of
Distributed Computing, pages 281-296. ACM Press, 1990.

30

[12]

[13]

[20]

T.A. Henzinger, P.-H. Ho, and H. Wong-Toi. HYTECH: the next gener-
ation. In Proceedings of the 16th Annual Real-time Systems Symposium,
pages 56—65. IEEE Computer Society Press, 1995.

Yonit Kesten and Amir Pnueli. A complete proof systems for QPTL.
In Proceedings, Tenth Annual IEEE Symposium on Logic in Computer
Science, pages 2-12, San Diego, California, 26-29 June 1995. IEEE
Computer Society Press.

Ron Koymans. Specifying message passing and time-critical systems
with temporal logic. LNCS 651, Springer-Verlag, 1992.

O. Lichtenstein and A. Pnueli. Checking that finite-state concurrent
programs satisfy their linear specification. In Proceedings of the 12th
Annual Symposium on Principles of Programming Languages, pages
97-107. ACM Press, 1985.

O. Lichtenstein, A. Pnueli, and L.D. Zuck. The glory of the past.
In R. Parikh, editor, Logics of Programs, Lecture Notes in Computer
Science 193, pages 196-218. Springer-Verlag, 1985.

Z. Manna and A. Pnueli. Completing the temporal picture. In
G. Ausiello, M. Dezani-Ciancaglini, and S. Ronchi Della Rocca, editors,
ICALP 89: Automata, Languages, and Programming, Lecture Notes in
Computer Science 372, pages 534-558. Springer-Verlag, 1989.

J.S. Ostroff. Temporal Logic of Real-time Systems. Research Studies
Press, 1990.

J.-F. Raskin and P.-Y. Schobbens. State clock logic: a decidable real-
time logic. In O. Maler, editor, HART 97: Hybrid and Real-time Sys-
tems, Lecture Notes in Computer Science 1201, pages 33-47. Springer-
Verlag, 1997.

P. Wolper. Synthesis of Communicating Processes from Temporal-Logic
Specifications. PhD thesis, Stanford University, 1982.

31

o

INFORMATIK

Below you find a list of the most recent technical reports of the research group Logic of Programming
at the Max-Planck-Institut fiir Informatik. They are available by anonymous ftp from our ftp server
ftp.mpi-sb.mpg.de under the directory pub/papers/reports. Most of the reports are also accessible via
WWW using the URL http://www.mpi-sb.mpg.de. If you have any questions concerning ftp or WWW
access, please contact reports@mpi-sb.mpg.de. Paper copies (which are not necessarily free of charge)
can be ordered either by regular mail or by e-mail at the address below.

Max-Planck-Institut fiir Informatik
Library

attn. Birgit Hofmann

Im Stadtwald

D-66123 Saarbriicken

GERMANY

e-mail: library@mpi-sb.mpg.de

MPI-I-98-2-011
MPI-I-98-2-010
MPI-I-98-2-009

MPI-I-98-2-008

MPI-1-98-2-007

MPI-1-98-2-006
MPI-1-98-2-005

MPI-1-98-2-004

MPI-1-98-2-003
MPI-1-97-2-012

MPI-I-97-2-011
MPI-I-97-2-010

MPI-1-97-2-009
MPI-I-97-2-008

MPI-1-97-2-007
MPI-1-97-2-006
MPI-I-97-2-005
MPI-1-97-2-004
MPI-I-97-2-003
MPI-1-97-2-002

A. Degtyarev, A. Voronkov
S. Ramangalahy
S. Vorobyov

S. Vorobyov

S. Vorobyov

P. Blackburn, M. Tzakova
M. Veanes

S. Vorobyov

R.A. Schmidt

L. Bachmair, H. Ganzinger,
A. Voronkov

L. Bachmair, H. Ganzinger

S. Vorobyov, A. Voronkov

A. Bockmayr, F. Eisenbrand
A. Bockmayr, T. Kasper

P. Blackburn, M. Tzakova
S. Vorobyov

L. Bachmair, H. Ganzinger
W. Charatonik, A. Podelski
U. Hustadt, R.A. Schmidt
R.A. Schmidt

Equality Reasoning in Sequent-Based Calculi
Strategies for Conformance Testing

The Undecidability of the First-Order Theories of
One Step Rewriting in Linear Canonical Systems

AE-Equational theory of context unification is
Co-RE-Hard

The Most Nonelementary Theory (A Direct Lower
Bound Proof)

Hybrid Languages and Temporal Logic

The Relation Between Second-Order Unification
and Simultaneous Rigid E-Unification

Satisfiability of Functional+Record Subtype
Constraints is NP-Hard

E-Unification for Subsystems of S4

Elimination of Equality via Transformation with
Ordering Constraints

Strict Basic Superposition and Chaining

Complexity of Nonrecursive Logic Programs with
Complex Values

On the Chvétal Rank of Polytopes in the 0/1 Cube

A Unifying Framework for Integer and Finite
Domain Constraint Programming

Two Hybrid Logics

Third-order matching in A —-Curry is undecidable
A Theory of Resolution

Solving set constraints for greatest models

On evaluating decision procedures for modal logic

Resolution is a decision procedure for many
propositional modal logics

