o

INFORMATTIK

Proving a conjecture of Andreka
on temporal logic

Jean-Francois Raskin
Pierre-Yves Schobbens

MPI-1-99-3-004 August 1999

N J

FORSCHUNGSBERICHT RESEARCH REPORT

MAX-PLANCK-INSTITUT
FUR
INFORMATIK

Im Stadtwald 66123 Saarbriicken Germany

Authors’ Addresses

Jean-Francois Raskin
Max-Planck-Institut fiir Informatik
Im Stadtwald

66123 Saarbriicken
jfrOmpi-sb.mpg.de

Pierre-Yves Schobbens
Computer Science Department
University of Namur

Namur

Begium pys@info.fundp.ac.be

Publication Notes

A revised version of this report has been accepted for publication in Infor-
mation Processing Letters.

Acknowledgements

This work was supported by the Belgian National Fund for Scientific Research
(FNRS).

Keywords

Temporal Logic, Completness, Decidability, Complexity.

1 Introduction

The temporal logic has been created by Prior [13, 14]. Its importance for
program construction and verification has been noted by [12], and has since
then been a topic of intensive research [9, 1, 4, 6, 7]. The creation of com-
plete inference systems, as required for practical proofs of programs, is an
important sub-topic. A rich propositional discrete-time linear temporal logic
is treated in [9]: we shall use the same technique here. Treating first-order
[17, 2], second-order, branching, or dense-time [5, 15] temporal logics is more
difficult and often only relative completeness results are available.

In this article we deal with a simple propositional temporal logic re-
stricted to two modal operators: initially, noted ®, and next, noted ().
This logic is very useful since sequential and concurrent programs are de-
scribed by their initial values and by their transitions [8, 10, 11]. The logic
thus allows to prove invariance properties of programs, of the form v F 3,
where y is a description of the program, and £ is an invariance property to
be checked.

Section 2 recalls the problem [3], Section 3 will give simple lemmas for use
in the completeness proof, which form Section 4. Section 5 sketches a simple
tableau algorithm for deciding the logic. Section 6 shows that this algorithm
is theoretically optimal, and thus gives the complexity deciding entailment
and satisfiability, which are PSPACE-complete. In contrast, validity is only
co-NP-complete. This might be surprising, since all temporal logics studied
by [16] have the same complexity for both problems. In modal logics, this
needs not be the case, since satisfiability is not the complement of validity.

2 The logic of initially and next

For programs, time is modelled as a sequence of execution steps, beginning
when the program is launched. Time is thus discrete: we are not interested in
what happens inside a step, and linear: we observe the execution sequences
of the program, but do not want to look into the decisions open to the
program. Therefore, we model time by the natural numbers. Only the
ordering of time points is relevant: thus we do not need operations like
multiplication, and we use the structure of time T = (N, 0, succ, <).

2.1 Syntax

Given a set of proposition symbols p € P, the syntax of the the logic is
defined by:

p=0d| ©¢[p|d1—= 2| ¢

We will also use the other propositional connectives as shorthands.

2.2 Semantics

Since the structure of time is fixed, we only need to know the evolution of
propositions; we record the subset of propositions that are true.

Mod =N — 2F

Given a model and a point of time, we are now ready to define the satisfac-
tion of formulae:

M,t lFp = peM(t)

Mt 1= = Mty if M tIF ¢y
M.t I+ =¢ = M,tIF ¢ does not hold.
M,t I+ O¢ = M, succ(t) I ¢

M,t I+ o¢ = M,0lF¢

A model satisfies are formula, noted M I+ ¢ iff M,t IF ¢ at all times
t € N. A formula ¢ is satisfiable if we can find M satisfying it: M I ¢.
A formula entails another, noted v E 8 iff M I+ v implies M I+ 3 for any
model M. We are interested by this entailment relation between formulae.
Axiomatizing it is called medium completeness in [3], to contrast it with
strong completeness where we allow an infinite set of formulas on the left
instead of v, and weak completeness where no v is allowed. No effective
proof system can be strongly complete for this logic, since the logic is not
compact.

2.3 Proof theory

To perform proofs of this type, we use a Hilbert system: the formula v will
be used as a supplementary axiom, and we also use the following axioms
and inference rules, on top of the well-known boolean rules:

(¢ =) = (O — ©) (Ko)
O(¢ =) = (O¢ — Oy) (Ko)
O=p & O ¢ (fung)
O¢+-0¢ (funp)
Ol R NOXOX) (con’s)
P> OGP (con”)

¢, b=
Boot (MP)

¢
®—¢ (NECp)
¢

v (NECp)
Y — O;[}a oy (IND)

If we can provide a Hilbert proof of a formula 8 without using the sup-
plementary axiom -y, we say that § is a theorem and we write this as - .
If we used v, we write v - 5. In [3], - is noted '_?DO'

3 Preparation

By looking at the proposed inference system, one can make simple but useful
observations that will be used in the next section:

Lemma 1 The replacement rule is derivable (two equivalent formulae can
be replaced in any context):

Y
x(#) © x(¥)

Proof. By induction on y: for boolean connectives this is a basic prop-
erty, for temporal connectives we deal with each direction of the equivalence
separately, use necessitation, then modus ponens.

(RE)

a
Lemma 2 (AND) ®(¢ A1p) = O¢ is derivable.

Proof. We use NECg, on (¢ A) — ¢, then K and MP.

a

Lemma 3 Any boolean operator commutes with ® and (), i.e.:

O(PAY) & OpAOY (COM o)
O(¢ = 1) & O = OY (COM_;0)
O(@VY) < 0PV oY (COMyo)
Olg Ap) < O¢ A Oy (COMAo)
Og = ¢) & Op = Oy (COM-,0)
Olg V) « O¢V Oy (COMy()

Proof. We treat just the implication since the other operators are defined
from it. ©(¢ — ¥) <> ©p — ®1p. The first direction — is just the axiom
Kg. For the other direction, we prove the contraposite = ® (¢ —) —
—(®¢ — ©v). Using fung, it gives ©(p A) = (Op A = ® 1), which is
provable by two uses of (AND). All other boolean connectives are definable
for =, —. The proof for () is similar.

a
Lemma 4 (NXT) -~ () L is a theorem.

Proof. By NEC(, funp.

a

Lemma 5 The rule (IND’) ¢_)O¢ is derivable.

Proof. We instantiate the induction rule W by ¢ := (©¢ — ¢).
0p—=0d, Op—=(d—=0O¢)
Op—¢ ’

Using (COM), (con’s), (con”) the rule simplifies to
The first antecedent is trivial, and the second can be proved from the an-
tecedent of the rule to be proved.

a

4 Completeness

In this section, we prove the medium completeness of the proof system
proposed in [3]. So we must prove that if v F 3 then v - 8. We construct a
model by a variant of the filtration of the canonical model, as in [9].

Definition 1 The closure C' is the smallest set:
1. containing all subformulae of v, B,

2. closed under ©, .

3. such that ©p € C - O 0 p e’

This set is used to obtain a finite number of relevant formulae, to enable the
later induction step. This is called filtration.

We preserve finiteness by using the simplification rules =—¢ < —¢, © ®
¢} O¢p (con’), O < 7O p, OO ¢ <> Op. So, for instance, we will
note that ® ® p € a even though we only keep ©p € a. Now, we define a
sequence of structures S°, S', ..., S* and study their properties:

Definition 2 The structure S° = (A%, RY,, RY) where:

o AC is the set of atoms, i.e. mazimally propositionally consistent sub-
sets of C, i.e.:

— foralla € A°, for all p € C, ¢ € a iff ~¢ & a,

— for all a € A°, for all p1 V ¢y € C, ¢1 V ¢o € a iff ¢p1 € a or
P9 € a.

o foralla,bec A", aROOb WVYOhpelC:Opeapeb;
e forall a,be A°, aROQb ifVOopel:0p€a+ peb;

Note that RUO is not functional, since C is not closed under (), whereas

RY is a partial function since C is closed under ®. Had we added (COM)
in our simplification rules, it would have been total.

Lemma 6 R (a) = {¢| ® ¢ € a}

Proof. R2(a) D {¢| ® ¢ € a} by definition of RY. This set is maximal,
since the closure is closed under ®, so that V¢ € C,0¢p Eaor ~© ¢ € a. In
this second case, = ® ¢ is the same as ®—¢.

O

Lemma 7 ¢ € R)(a) +» ©¢ € R (a)

Proof. Since ®¢ = ® ® ¢ € a, by simplification.
O

Lemma 8 aROOb implies R (a) = RY (b)

Proof. ©¢ is the same as () ® ¢, thus b will contain the same initial
formulae.

O
In those structures, we are interested by particular paths:

Definition 3 A path ©# = agay...ay ... fulfills B under hypothesis v in
structure S° iff

e there exists n > 0 such that 8 € ap;
e foralli>0, aiRo@ao;

e for alli >0, aiROOai-i-l;

o foralli>0,v€a;

Lemma 9 v £ -3 iff there is no path 7 in S° that fulfills 5 under the
hypothesis

Proof.(sketch) First, every model M such that there exists i > 0 with
M,i E B and for all 5 > 0, M,j E «, can be transformed into a fulfilling
path as follows: take m = agay ...a, ... with a; = {¢|¢ € C and M,i E ¢}.
It is trivial to verify that =« is a fulfilling path for 8 under + in S°. For the
other direction, we prove that every fulfilling path has the Hintikka property,
i.e. for all ¢ > 0, for every ¢ € a;, M,,i E ¢, where M = pop1...pp ... i8S
the sequence of states obtained by projecting the atoms on the proposmons,
i.e p; =a; N P.

O
We now define a series of structure S’ from S° by deleting atoms that
can not take part into a model for 8 under the hypothesis y. Formally:

Definition 4 The atom a is not useful in S* iff either:
1. v & a: under hypothesis v, v must be true in every atom;

2. a¢ (Rb)*(RéD (a)) ': every atom in a fulfilling path must be reachable
from its initial atom;

3. —db: aRbb, as fulfilling paths are infinite sequences, every atom par-
ticipating to a fulfilling path must have a successor;

So we pass from S’ to S**! by deleting an a as above. More formally,
ST = (A RET REFY) where AT = AT\ {a}, RS = RHN(A™ ! x A™)
and RLT' = RL N (A" x A1), We have the following lemma:

Lemma 10 There ezists a fulfilling path 7 for 8 under v in S*T' iff there
exists one in S’

Proof.(sketch) We must show that no atom that can participate in a ful-
filling path is deleted. If we make the hypothesis that an atom a from a
fulfilling path is deleted for one of the four reasons above, we can derive a
contradiction.

1(Rio)* denotes the reflexo-transitive closure of R’.

O
The procedure described above stops when there are no more atoms to
delete. Let us note S* the final structure. We have the following lemma:

Lemma 11 v E =3 iff there is no a € A* such that B € A*.

Proof. If there is a fulfilling path then by definition it contains an atom a;
such that 3 € a;, take this a;. For the other direction, we proceed as follows
to construct a fulfilling path:

1. take one a such that 8 € a, a; = q;

2. take ap = R’é(a), this atoms belongs to S* and from ag there exists a
path in S* that reaches a otherwise a would have been deleted:;

3. from a we can construct an infinite suffix as R’é is total in S* (other-
wise other deletions would have been possible).

It is easy to show that the constructed path fulfills 5 under v and thus can
be used to construct a model.

O

We are now equipped to prove the completeness of the proposed proof
system. Assume that v E 8. Applying the procedure above gives us S* with
for all @ € A*¥, = € a. We establish the completeness of the proposed proof
system by proving the following lemmas:

Lemma 12 F V¢ 406 2

Proof. A" is the set of maximally propositionally consistent subsets of C.
So the lemma is obtained by propositional completeness.

a
Lemma 13 Foralla € A%, Fa — O \/beR%(a) b.

Proof. The successors of a contain all possible combinations of formulae
where Ot € C. They can thus be eliminated, using distribution of V, A,

giving Viero ()0 = Aogea ¢
O

Lemma 14 For alla € A°, - a — ®R0®(a)

Proof. By propositional completeness.

24 denotes the conjunction of the formulas that belong to the atom a.

O
As a consequence of the three previous lemmas and monotonicity of +,
we have:

Corollary 1 7 Ve i and 7 = O Vieps () b, v Fa — ORY(a).

Now we prove that the above lemmas are still valid in the structures S*
by an inductive reasoning;:

Lemma 15 For every a ¢ A?, v F —a.

Proof. We prove that if a is not useful in S?, we have that: v - a < L.

1. v € a: in this case, we have v F & — —y, by a propositional reasoning
and the fact that - is a hypothesis, we derive v - —a;

2. a ¢ (Rgl)*(Rgl(a)): Let R* be the reflexive and transitive closure
of Rgl. Let R = R*(R%'(a)). We can prove v - R — OR, where
R = Vg Indeed, v = b — ORG'(D) by inductive hypothesis
(generalizing lemma 13). Thus v = b — QR*(b), since the closure
contains the base relation, and using NEC, K~, MP. We can do
this for any b € R, giving v - R — (R using the propositional
disjunction rule and (COM). Now we can use the (IND’) rule to derive
¥+ ®GR = R. Now F @ — ©ORy(a) by lemma 6; - Ro(a) — R
since Rg(a) € R; by NECy, Kg, MP, - ®Ry(a) — ®R. Finally,
using the induction result, we obtain v - @ — R. Assume a is not
reachable, then R is a disjunction of atoms incompatible with a, or
said propositionally - R — —a. Thus v F @ — —a, which simplifies to
v —a.

3. —3b: aRglb: in this case, we have v+ a — ()L by lemma 13. Using
theorem — () L and a propositional reasoning, we derive v - —a.

O
Using the previous lemma, we update the following lemmas:

Lemma 16 For every a € A’, v - O vbeRb(a) l;, yEa— QRg(a) and
Y F vaeAi&'

Corollary 2 vV, xa.

Theorem 1 If yE [then v 5.

Proof. Recall that by hypothesis there is no fulfilling path for -3 under -,
by lemma 11, we have that =3 ¢ a for every a € A*. So, propositionally, we
obtain vy = A,c 4x (@ = () and by corollary 2, that v - £.

a

5 A tableau system

The proof above strongly suggests a tableau procedure to decide whether
v F B, that only constructs the part of the structure A* which is really used.
As usual in modal logics, we construct several tableaux, each representing
a instant of time. To each tableau, we add <, since v has to hold at each
instant.

We construct the tableaux:

1. Ty (modelling a,, the instant at which —f is satisfied) containing ini-
tlally _'57 Y,

2. the initial tableau I, (modelling I) collecting all formulae {®¢, ¢|®¢ €
,I'ia IZ} and Y,

3. the successor tableaux I;11 = {v,®¢,¢| ® ¢ € Iy, Oy € I;},
4. T;yq similarly (i € 0..N — 1)

We stop after N successors, where N is 2¢, and ¢ is the size of {O¢| O ¢ €
C}. We unite Ty with some I,. As a consequence Tj also unites with
Iyj,u+j <N.

We complete the tableaux propositionally while maintaining these con-
straints. If we fail, we know by the previous proof that v F 3. If we succeed,
we will have built a model of =3, 7.

To build a theoretically optimal procedure for entailment, we start by
guessing 4 < N, which takes a nondeterministic time and space logN = c.
Then we guess the initial tableau, in nondeterministic time and space n. We
check propositional consistency with v. Now we compute I;(1 < i < u) by
transferring formulae of the form ()¢ to the next tableau, guessing the miss-
ing formulae until we reach the tableau u. There we also check consistency
with =5. We go on transferring formulae and checking consistency until we
reach tableau Th. Then a loop has been created, that allows to build an
infinite model. The procedure below uses exponential nondeterministic time
and linear space. It is thus in PSPACE.

To build a theoretically optimal procedure for expression entailment,
that is when + is constant, we construct a structure B¥ similar to S* above,
but built only on the subformulae of «. It has a constant size bounded by
2171, We compute its transition relation, and its reflexo-transitive closure.
Again, we first conjecture about the time u at which = will hold. Either:

e u < n: We guess u. We guess the tableaux Iy, I,...I, and check
that their projection in the structure B¥ exists. For I, we check also
consistency with —=3. We proceed constructing I,, = Ty, T1,... , T,
similarly. At this point we know that —3 indeed holds. We also know
that the path can be continued infinitely, since each atom of B* has a
SUCCessor.

e u > n Then the value of u is of no interest. We start guessing the

tableaux Iy, I1,... I, and check that their projection in the structure
B* exists. Then we choose a follower of the projection of I,, by the
transitive closure. We extend this atom to ensure that =/ holds, giving
Ty. We build Ty,...,T, as above. Again we do not have to check
further because we are in B".

This procedure has to conjecture 2n tableaux, each of size n, and thus
proceeds in quadratic nondeterministic time. It is thus in NP.
In practice:

1.

It is more efficient to move propositional connectives outside using
(COM). This also allows to use known optimisations on propositional
tableaux, such as clausal tableaux.

It is more efficient to simplify 3,y using the (con) axioms before start-
ing. These axioms will no longer be needed during the course of the
procedure.

As all ®¢ must be the same everywhere, and ®¢ <> ¢ in the initial
tableau Iy, it is more efficient to keep only ¢ in Iy and import ®I
implicitly everywhere.

Similarly, modal formulae can be put directly in the right tableau: e.g.
instead of putting ® ()’ p in a tableau, we can put p into I;; similarly
instead of putting O)/p into T}, we can put p into T;yj. In this case we
have to use m supplementary successors, where n is the nesting level
of O in 8,7, but we only need to check consistency on proposition
symbols for these last m tableaux (there is no need to check that they
satisfy 7).

It is often useful to check for loops in the tableaux constructed. This
sometimes allows to use less than N tableaux.

It is often useful to develop Tj, then the I; in increasing order to choose
the right I,, to unite with Ty, then develop the T;.

6 Complexity

6.1

Complexity of validity

First note that the complexity of the validity problem, deciding whether - 3,
is co-NP-hard, because our logic contains propositional logic whose validity
problem is co-NP-complete.

However, we decide to solve the more general problem of ezpression
entailment defined by [18]: here, we assume a constant antecedent 7, which
needs not be T.

10

6.2 Complexity of entailment

The problem of entailment is more complex, as expected from the fact that
it can represent interesting programming problems:

Lemma 17 Deciding the satisfiability is PSPACE-hard.

Proof. We can encode a deterministic PSPACE Turing machine in this
satisfiability problem. Let M = (Q, d, qo, F') be a Turing machine that only
uses P;(n) cells of tape, where n is the length of its inputs, and P; is some
polynomial. The components of the machine are:

1. @ is the set of control states;

2. 0:Q x{0,1} - @Q x{0,1} x {L, R} is the transition function: given
the current state and the current reading of the tape, it gives the new
state, the new contents of the tape, and the move of the head.

3. qo is the initial state;
4. F is the set of final states (the answer is then on the tape).

We construct a formula 7y describing the rule of evolution of the machine. We
encode each control state g €) by a proposition g; the contents of each cell
of the tape by a proposition ¢;(i < P;(n)) ; and h; tells whether the head is
in front of cell 7. Clearly, we have the property that there is a single control:
=(qi A q)(@i # qj,4i,q; € Q) and a single head position: —(h; A hj)(h; #
hj,i,5 < S(n)) The evolution rule states exactly the evolution of a Turing
machine: Given current control at ¢ and content v, the control goes to a new
state given by the first component of §, the new content of the cell is given
by the second component, the head moves according to the third component
of delta, for which we define: s(q,v,7) =i + lifn3(d(q,v)) = R;s(q,v,1) =
i — lifm3(d(q,v)) = L. The other cells, which are not under the head, are
unchanged.

A A A @rhin(e o) = AOmé(g,v)
i<Pi(n) ¢€Q ve{0,1} A Qe > m3(d(q,v))
A Ohs(q,v,i)
A Nj2i(Ocj <)

The size of this formula is dominated by the last part, of size P2(n). The
initial content of the tape, X, is coded by a formula ® /\jgn c + X;.

The machine is deterministic, and thus the formula above has at most
one model. It accepts X iff it terminates, that is if qu ¢ is true at some
instant. Thus, we define v as the conjunction of all formulae above and
/\qe rq. M accepts X iff v is not satisfiable, thus the problem is co-
PSPACE-hard, which is the same as PSPACE-hard.

11

|

A similar problem is the data entailment defined by [18]: here, we assume

a constant consequent 5. This problem thus generalises the problem of co-
satisfiability.

Theorem 2 The problems of entailment, data entailment and satisfiability
are PSPACE-complete.

Proof.

1. They are PSPACE-easy: we can use the tableau procedure above.

2. They are PSPACE-hard: even the easiest problem, satisfiability, is

O

already PSPACE-hard.

References

[1]

2]

M. Abadi. Temporal-Logic Theorem Proving. PhD thesis, Stanford
University, 1987.

Martin Abadi. Corrigendum: The power of temporal proofs. Theoretical
Computer Science, 70(2):275, 26 January 1990.

H. Andréka, V. Goranko, S. Mikulds, I. Németi, and I. Sain. Effective
temporal logics of programs. In L. Bolc and A. Szalas, editors, Time
and logic: a computational approach, chapter 2, pages 51-130. UCL
Press, 1995.

H. Barringer. The use of temporal logic in the compositional specifica-
tion of concurrent systems. In A. Galton, editor, Temporal Logics and
their Applications, pages 53-90. Academic Press, 1987.

H. Barringer, R. Kuiper, and A. Pnueli. A really abstract concurrent
model and its temporal logic. In Proceedings of the 18th Annual Sym-
posium on Principles of Programming Languages, pages 173-183. ACM
Press, 1986.

E.A. Emerson. Temporal and modal logic. In J. van Leeuwen, editor,
Handbook of Theoretical Computer Science, volume B, pages 995-1072.
Elsevier Science Publishers, 1990.

D. Gabbay, I. Hodkinson, and M. Reynolds. Temporal Logic. Clarendon
Press, Oxford, 1994.

12

8]

[14]
[15]

[16]

[17]

[18]

E. Pascal Gribomont. A programming logic for formal concurrent sys-
tems. In J. C. M. Baeten and J. W. Klop, editors, CONCUR ’90:
Theories of Concurrency: Unification and FExtension, volume 458 of
Lecture Notes in Computer Science, pages 298-313, Amsterdam, The
Netherlands, 27-30August 1990. Springer.

O. Lichtenstein, A. Pnueli, and L.D. Zuck. The glory of the past.
In R. Parikh, editor, Logics of Programs, Lecture Notes in Computer
Science 193, pages 196-218. Springer-Verlag, 1985.

Z. Manna and A. Pnueli. The Temporal Logic of Reactive and Concur-
rent Systems-Specification. Springer, 1992.

Z. Manna and A. Pnueli. Temporal Verification of Reactive Systems:
Safety. Springer, New York, 1995.

A. Pnueli. The temporal logic of programs. In Proceedings of the 18th
Annual Symposium on Foundations of Computer Science, pages 46-57.
IEEE Computer Society Press, 1977.

A. N. Prior. Time and Modality. Oxford University Press, Oxford, UK,
1957.

A. N. Prior. Papers on time and tense. Oxford UP, 1968.

J.-F. Raskin, P.-Y. Schobbens, and T. A. Henzinger. Axioms for real-
time logics. In Proceedings of CONCUR’98, LNCS. Springer Verlag,
1999.

A. P. Sistla and E. M. Clarke. The complexity of propositional linear
temporal logic. Journal of the ACM, 32(3):733-749, July 1985.

A. Szalas. A complete axiomatic characterization of first-order temporal
logic of linear time. Theoretical Computer Science, 54(2-3):199-214,
October 1987.

Moshe Y. Vardi. The complexity of relational query languages. In ACM
STOC’82, pages 137-146, Baltimore, USA, May 1982. ACM Press.

13

o

INFORMATIK

Below you find a list of the most recent technical reports of the research group Logic of Programming
at the Max-Planck-Institut fiir Informatik. They are available by anonymous ftp from our ftp server
ftp.mpi-sb.mpg.de under the directory pub/papers/reports. Most of the reports are also accessible via
WWW using the URL http://www.mpi-sb.mpg.de. If you have any questions concerning ftp or WWW
access, please contact reports@mpi-sb.mpg.de. Paper copies (which are not necessarily free of charge)
can be ordered either by regular mail or by e-mail at the address below.

Max-Planck-Institut fiir Informatik
Library

attn. Birgit Hofmann

Im Stadtwald

D-66123 Saarbriicken

GERMANY

e-mail: library@mpi-sb.mpg.de

MPI-I-98-2-011
MPI-I-98-2-010
MPI-I-98-2-009

MPI-I-98-2-008

MPI-1-98-2-007

MPI-1-98-2-006
MPI-1-98-2-005

MPI-1-98-2-004

MPI-1-98-2-003
MPI-1-97-2-012

MPI-I-97-2-011
MPI-I-97-2-010

MPI-1-97-2-009
MPI-I-97-2-008

MPI-1-97-2-007
MPI-1-97-2-006
MPI-I-97-2-005
MPI-1-97-2-004
MPI-I-97-2-003
MPI-1-97-2-002

A. Degtyarev, A. Voronkov
S. Ramangalahy
S. Vorobyov

S. Vorobyov

S. Vorobyov

P. Blackburn, M. Tzakova
M. Veanes

S. Vorobyov

R.A. Schmidt

L. Bachmair, H. Ganzinger,
A. Voronkov

L. Bachmair, H. Ganzinger

S. Vorobyov, A. Voronkov

A. Bockmayr, F. Eisenbrand
A. Bockmayr, T. Kasper

P. Blackburn, M. Tzakova
S. Vorobyov

L. Bachmair, H. Ganzinger
W. Charatonik, A. Podelski
U. Hustadt, R.A. Schmidt
R.A. Schmidt

Equality Reasoning in Sequent-Based Calculi
Strategies for Conformance Testing

The Undecidability of the First-Order Theories of
One Step Rewriting in Linear Canonical Systems

AE-Equational theory of context unification is
Co-RE-Hard

The Most Nonelementary Theory (A Direct Lower
Bound Proof)

Hybrid Languages and Temporal Logic

The Relation Between Second-Order Unification
and Simultaneous Rigid E-Unification

Satisfiability of Functional+Record Subtype
Constraints is NP-Hard

E-Unification for Subsystems of S4

Elimination of Equality via Transformation with
Ordering Constraints

Strict Basic Superposition and Chaining

Complexity of Nonrecursive Logic Programs with
Complex Values

On the Chvétal Rank of Polytopes in the 0/1 Cube

A Unifying Framework for Integer and Finite
Domain Constraint Programming

Two Hybrid Logics

Third-order matching in A —-Curry is undecidable
A Theory of Resolution

Solving set constraints for greatest models

On evaluating decision procedures for modal logic

Resolution is a decision procedure for many
propositional modal logics

