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1 Introdution

The temporal logi has been reated by Prior [13, 14℄. Its importane for

program onstrution and veri�ation has been noted by [12℄, and has sine

then been a topi of intensive researh [9, 1, 4, 6, 7℄. The reation of om-

plete inferene systems, as required for pratial proofs of programs, is an

important sub-topi. A rih propositional disrete-time linear temporal logi

is treated in [9℄: we shall use the same tehnique here. Treating �rst-order

[17, 2℄, seond-order, branhing, or dense-time [5, 15℄ temporal logis is more

diÆult and often only relative ompleteness results are available.

In this artile we deal with a simple propositional temporal logi re-

strited to two modal operators: initially, noted �, and next, noted .

This logi is very useful sine sequential and onurrent programs are de-

sribed by their initial values and by their transitions [8, 10, 11℄. The logi

thus allows to prove invariane properties of programs, of the form  ` �,

where  is a desription of the program, and � is an invariane property to

be heked.

Setion 2 realls the problem [3℄, Setion 3 will give simple lemmas for use

in the ompleteness proof, whih form Setion 4. Setion 5 skethes a simple

tableau algorithm for deiding the logi. Setion 6 shows that this algorithm

is theoretially optimal, and thus gives the omplexity deiding entailment

and satis�ability, whih are PSPACE-omplete. In ontrast, validity is only

o-NP-omplete. This might be surprising, sine all temporal logis studied

by [16℄ have the same omplexity for both problems. In modal logis, this

needs not be the ase, sine satis�ability is not the omplement of validity.

2 The logi of initially and next

For programs, time is modelled as a sequene of exeution steps, beginning

when the program is launhed. Time is thus disrete: we are not interested in

what happens inside a step, and linear: we observe the exeution sequenes

of the program, but do not want to look into the deisions open to the

program. Therefore, we model time by the natural numbers. Only the

ordering of time points is relevant: thus we do not need operations like

multipliation, and we use the struture of time T = hN; 0; su;�i.

2.1 Syntax

Given a set of proposition symbols p 2 P , the syntax of the the logi is

de�ned by:

� ::= � j � � j p j �

1

! �

2

j :�

We will also use the other propositional onnetives as shorthands.
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2.2 Semantis

Sine the struture of time is �xed, we only need to know the evolution of

propositions; we reord the subset of propositions that are true.

Mod = N ! 2

P

Given a model and a point of time, we are now ready to de�ne the satisfa-

tion of formulae:

M; t  p � p 2M(t)

M; t  �

1

! �

2

� M; t  �

2

if M; t  �

1

M; t  :� � M; t  � does not hold.

M; t  � � M; su(t)  �

M; t  �� � M; 0  �

A model satis�es are formula, noted M  � i� M; t  � at all times

t 2 N. A formula � is satis�able if we an �nd M satisfying it: M  �.

A formula entails another, noted  � � i� M   implies M  � for any

model M . We are interested by this entailment relation between formulae.

Axiomatizing it is alled medium ompleteness in [3℄, to ontrast it with

strong ompleteness where we allow an in�nite set of formulas on the left

instead of , and weak ompleteness where no  is allowed. No e�etive

proof system an be strongly omplete for this logi, sine the logi is not

ompat.

2.3 Proof theory

To perform proofs of this type, we use a Hilbert system: the formula  will

be used as a supplementary axiom, and we also use the following axioms

and inferene rules, on top of the well-known boolean rules:
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�(�!  ) ! (��! � ) (K

�

)

(�!  ) ! (�! ) (K



)

�:�$ :� � (fun

�

)

:�$ : � (fun



)

��$ �� � (on'

�

)

��$� � (on"

�

)

�; �!  

 

(MP)

�

��

(NEC

�

)

�

�

(NEC



)

 ! ; � 

 

(IND)

If we an provide a Hilbert proof of a formula � without using the sup-

plementary axiom , we say that � is a theorem and we write this as ` �.

If we used , we write  ` �. In [3℄, ` is noted `

0

�

.

3 Preparation

By looking at the proposed inferene system, one an make simple but useful

observations that will be used in the next setion:

Lemma 1 The replaement rule is derivable (two equivalent formulae an

be replaed in any ontext):

�$  

�(�) $ �( )

(RE)

Proof. By indution on �: for boolean onnetives this is a basi prop-

erty, for temporal onnetives we deal with eah diretion of the equivalene

separately, use neessitation, then modus ponens.

2

Lemma 2 (AND) �(� ^  ) ! �� is derivable.

Proof. We use NEC

�

on (� ^  ) ! �, then K

�

and MP.

2
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Lemma 3 Any boolean operator ommutes with � and , i.e.:

�(� ^  ) $ �� ^ � (COM

^�

)

�(�!  ) $ ��! � (COM

!�

)

�(� _  ) $ �� _ � (COM

_�

)

(� ^  ) $� ^ (COM

^

)

(�!  ) $�! (COM

!

)

(� _  ) $� _ (COM

_

)

Proof. We treat just the impliation sine the other operators are de�ned

from it. �(� !  ) $ �� ! � . The �rst diretion ! is just the axiom

K

�

. For the other diretion, we prove the ontraposite : � (� !  ) !

:(�� ! � ). Using fun

�

, it gives �(� ^ : ) ! (�� ^ : �  ), whih is

provable by two uses of (AND). All other boolean onnetives are de�nable

for :;!. The proof for  is similar.

2

Lemma 4 (NXT) :? is a theorem.

Proof. By NEC



, fun



.

2

Lemma 5 The rule (IND')

�!�

��!�

is derivable.

Proof. We instantiate the indution rule

 ! ; � 

 

by  := (�� ! �).

Using (COM), (on'

�

), (on"

�

) the rule simpli�es to

��!��; ��!(�!�)

��!�

.

The �rst anteedent is trivial, and the seond an be proved from the an-

teedent of the rule to be proved.

2

4 Completeness

In this setion, we prove the medium ompleteness of the proof system

proposed in [3℄. So we must prove that if  � � then  ` �. We onstrut a

model by a variant of the �ltration of the anonial model, as in [9℄.

De�nition 1 The losure C is the smallest set:

1. ontaining all subformulae of ; �,

2. losed under �;:.
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3. suh that �� 2 C !� � 2 C

This set is used to obtain a �nite number of relevant formulae, to enable the

later indution step. This is alled �ltration.

We preserve �niteness by using the simpli�ation rules ::�$ :�, ��

� $ �� (on'

�

), �:� $ : � �, � � $ ��. So, for instane, we will

note that � � p 2 a even though we only keep �p 2 a. Now, we de�ne a

sequene of strutures S

0

; S

1

; : : : ; S

k

and study their properties:

De�nition 2 The struture S

0

= (A

0

; R

0



; R

0

�

) where:

� A

0

is the set of atoms, i.e. maximally propositionally onsistent sub-

sets of C, i.e.:

{ for all a 2 A

0

, for all � 2 C, � 2 a i� :� 62 a,

{ for all a 2 A

0

, for all �

1

_ �

2

2 C, �

1

_ �

2

2 a i� �

1

2 a or

�

2

2 a.

� for all a; b 2 A

0

, aR

0



b i� 8 � 2 C : � 2 a$ � 2 b;

� for all a; b 2 A

0

, aR

0

�

b i� 8 � � 2 C : �� 2 a$ � 2 b;

Note that R

0



is not funtional, sine C is not losed under , whereas

R

0

�

is a partial funtion sine C is losed under �. Had we added (COM)

in our simpli�ation rules, it would have been total.

Lemma 6 R

0

�

(a) = f�j � � 2 ag

Proof. R

0

�

(a) � f�j � � 2 ag by de�nition of R

0

�

. This set is maximal,

sine the losure is losed under �, so that 8� 2 C;�� 2 a or :�� 2 a. In

this seond ase, : � � is the same as �:�.

2

Lemma 7 � 2 R

0

�

(a) $ �� 2 R

0

�

(a)

Proof. Sine �� = �� � 2 a, by simpli�ation.

2

Lemma 8 aR

0



b implies R

0

�

(a) = R

0

�

(b)

Proof. �� is the same as  � �, thus b will ontain the same initial

formulae.

2

In those strutures, we are interested by partiular paths:
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De�nition 3 A path � = a

0

a

1

: : : a

n

: : : ful�lls � under hypothesis  in

struture S

0

i�

� there exists n � 0 suh that � 2 a

n

;

� for all i � 0, a

i

R

0

�

a

0

;

� for all i � 0, a

i

R

0



a

i+1

;

� for all i � 0,  2 a

i

;

Lemma 9  � :� i� there is no path � in S

0

that ful�lls � under the

hypothesis 

Proof.(sketh) First, every model M suh that there exists i � 0 with

M; i � � and for all j � 0, M; j � , an be transformed into a ful�lling

path as follows: take � = a

0

a

1

: : : a

n

: : : with a

i

= f�j� 2 C and M; i � �g.

It is trivial to verify that � is a ful�lling path for � under  in S

0

. For the

other diretion, we prove that every ful�lling path has the Hintikka property,

i.e. for all i � 0, for every � 2 a

i

, M

�

; i � �, where M

�

= p

0

p

1

: : : p

n

: : : is

the sequene of states obtained by projeting the atoms on the propositions,

i.e p

i

= a

i

\ P .

2

We now de�ne a series of struture S

i

from S

0

by deleting atoms that

an not take part into a model for � under the hypothesis . Formally:

De�nition 4 The atom a is not useful in S

i

i� either:

1.  62 a: under hypothesis ,  must be true in every atom;

2. a 62 (R

i



)

�

(R

i

�

(a))

1

: every atom in a ful�lling path must be reahable

from its initial atom;

3. :9b : aR

i



b, as ful�lling paths are in�nite sequenes, every atom par-

tiipating to a ful�lling path must have a suessor;

So we pass from S

i

to S

i+1

by deleting an a as above. More formally,

S

i+1

= (A

i+1

; R

i+1



; R

i+1

�

) where A

i+1

= A

i

nfag, R

i+1



= R

i



\(A

i+1

�A

i+1

)

and R

i+1

�

= R

i

�

\ (A

i+1

�A

i+1

). We have the following lemma:

Lemma 10 There exists a ful�lling path � for � under  in S

i+1

i� there

exists one in S

i

Proof.(sketh) We must show that no atom that an partiipate in a ful-

�lling path is deleted. If we make the hypothesis that an atom a from a

ful�lling path is deleted for one of the four reasons above, we an derive a

ontradition.

1

(R

i



)

�

denotes the reexo-transitive losure of R

i

.
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2

The proedure desribed above stops when there are no more atoms to

delete. Let us note S

k

the �nal struture. We have the following lemma:

Lemma 11  � :� i� there is no a 2 A

k

suh that � 2 A

k

.

Proof. If there is a ful�lling path then by de�nition it ontains an atom a

i

suh that � 2 a

i

, take this a

i

. For the other diretion, we proeed as follows

to onstrut a ful�lling path:

1. take one a suh that � 2 a, a

i

= a;

2. take a

0

= R

k

�

(a), this atoms belongs to S

k

and from a

0

there exists a

path in S

k

that reahes a otherwise a would have been deleted;

3. from a we an onstrut an in�nite suÆx as R

k



is total in S

k

(other-

wise other deletions would have been possible).

It is easy to show that the onstruted path ful�lls � under  and thus an

be used to onstrut a model.

2

We are now equipped to prove the ompleteness of the proposed proof

system. Assume that  � �. Applying the proedure above gives us S

k

with

for all a 2 A

k

, :� 2 a. We establish the ompleteness of the proposed proof

system by proving the following lemmas:

Lemma 12 ` _

a2A

0
â

2

Proof. A

0

is the set of maximally propositionally onsistent subsets of C.

So the lemma is obtained by propositional ompleteness.

2

Lemma 13 For all a 2 A

0

, ` â!_

b2R

0



(a)

^

b.

Proof. The suessors of a ontain all possible ombinations of formulae  

where  62 C. They an thus be eliminated, using distribution of _;^,

giving _

b2R

0



(a)

^

b =

V

�2a

�

2

Lemma 14 For all a 2 A

0

, ` â! �

^

R

0

�

(a)

Proof. By propositional ompleteness.

2

â denotes the onjuntion of the formulas that belong to the atom a.
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2

As a onsequene of the three previous lemmas and monotoniity of `,

we have:

Corollary 1  ` _

a2A

0
â and  ` _

b2R

0



(a)

^

b,  ` â! �

^

R

0

�

(a).

Now we prove that the above lemmas are still valid in the strutures S

i

by an indutive reasoning:

Lemma 15 For every a 62 A

i

,  ` :â.

Proof. We prove that if a is not useful in S

i

, we have that:  ` â$ ?.

1.  62 a: in this ase, we have  ` â! :, by a propositional reasoning

and the fat that  is a hypothesis, we derive  ` :â;

2. a 62 (R

i�1



)

�

(R

i�1

�

(a)): Let R

�

be the reexive and transitive losure

of R

i�1



. Let R = R

�

(R

i�1

�

(a)). We an prove  `

�

R ! 

�

R, where

�

R =

W

a2R

â. Indeed,  ` b ! 

�

R

i�1



(b) by indutive hypothesis

(generalizing lemma 13). Thus  ` b ! 

�

R

�

(b), sine the losure

ontains the base relation, and using NEC



;K



;MP . We an do

this for any b 2 R, giving  `

�

R ! 

�

R using the propositional

disjuntion rule and (COM). Now we an use the (IND') rule to derive

 ` �

�

R !

�

R. Now ` â ! �

^

R

�

(a) by lemma 6; `

^

R

�

(a) !

�

R

sine R

�

(a) 2 R; by NEC

�

, K

�

, MP, ` �

^

R

�

(a) ! �

�

R. Finally,

using the indution result, we obtain  ` â !

�

R. Assume a is not

reahable, then R is a disjuntion of atoms inompatible with a, or

said propositionally ` R! :â. Thus  ` â! :â, whih simpli�es to

 ` :â.

3. :9b : aR

i�1



b: in this ase, we have  ` â!? by lemma 13. Using

theorem :? and a propositional reasoning, we derive  ` :â.

2

Using the previous lemma, we update the following lemmas:

Lemma 16 For every a 2 A

i

,  `  _

b2R

i



(a)

^

b,  ` â ! �

^

R

i

�

(a) and

 ` _

a2A

i
â.

Corollary 2  ` _

a2A

k

â.

Theorem 1 If  � � then  ` �.

Proof. Reall that by hypothesis there is no ful�lling path for :� under ,

by lemma 11, we have that :� 62 a for every a 2 A

k

. So, propositionally, we

obtain  ` ^

a2A

k

(â! �) and by orollary 2, that  ` �.

2

8



5 A tableau system

The proof above strongly suggests a tableau proedure to deide whether

 ` �, that only onstruts the part of the struture A

k

whih is really used.

As usual in modal logis, we onstrut several tableaux, eah representing

a instant of time. To eah tableau, we add , sine  has to hold at eah

instant.

We onstrut the tableaux:

1. T

0

(modelling a

n

, the instant at whih :� is satis�ed) ontaining ini-

tially :�; ,

2. the initial tableau I

0

(modelling I) olleting all formulae f��; �j�� 2

T

i

; I

i

g and ,

3. the suessor tableaux I

i+1

= f;��;  j � � 2 I

0

; 2 I

i

g,

4. T

i+1

similarly (i 2 0::N � 1)

We stop after N suessors, where N is 2



, and  is the size of f�j  � 2

Cg. We unite T

0

with some I

u

. As a onsequene T

j

also unites with

I

u+j

; u + j � N .

We omplete the tableaux propositionally while maintaining these on-

straints. If we fail, we know by the previous proof that  ` �. If we sueed,

we will have built a model of :�; .

To build a theoretially optimal proedure for entailment, we start by

guessing u � N , whih takes a nondeterministi time and spae logN = .

Then we guess the initial tableau, in nondeterministi time and spae n. We

hek propositional onsisteny with . Now we ompute I

i

(1 � i < u) by

transferring formulae of the form � to the next tableau, guessing the miss-

ing formulae until we reah the tableau u. There we also hek onsisteny

with :�. We go on transferring formulae and heking onsisteny until we

reah tableau T

N

. Then a loop has been reated, that allows to build an

in�nite model. The proedure below uses exponential nondeterministi time

and linear spae. It is thus in PSPACE.

To build a theoretially optimal proedure for expression entailment,

that is when  is onstant, we onstrut a struture B

k

similar to S

k

above,

but built only on the subformulae of . It has a onstant size bounded by

2

jj

. We ompute its transition relation, and its reexo-transitive losure.

Again, we �rst onjeture about the time u at whih :� will hold. Either:

� u � n: We guess u. We guess the tableaux I

0

; I

1

; : : : I

u

and hek

that their projetion in the struture B

k

exists. For I

u

we hek also

onsisteny with :�. We proeed onstruting I

u

= T

0

; T

1

; : : : ; T

n

similarly. At this point we know that :� indeed holds. We also know

that the path an be ontinued in�nitely, sine eah atom of B

k

has a

suessor.

9



� u > n Then the value of u is of no interest. We start guessing the

tableaux I

0

; I

1

; : : : I

n

and hek that their projetion in the struture

B

k

exists. Then we hoose a follower of the projetion of I

n

by the

transitive losure. We extend this atom to ensure that :� holds, giving

T

0

. We build T

1

; : : : ; T

n

as above. Again we do not have to hek

further beause we are in B

k

.

This proedure has to onjeture 2n tableaux, eah of size n, and thus

proeeds in quadrati nondeterministi time. It is thus in NP.

In pratie:

1. It is more eÆient to move propositional onnetives outside using

(COM). This also allows to use known optimisations on propositional

tableaux, suh as lausal tableaux.

2. It is more eÆient to simplify �;  using the (on) axioms before start-

ing. These axioms will no longer be needed during the ourse of the

proedure.

3. As all �� must be the same everywhere, and �� $ � in the initial

tableau I

0

, it is more eÆient to keep only � in I

0

and import �I

0

impliitly everywhere.

4. Similarly, modal formulae an be put diretly in the right tableau: e.g.

instead of putting �

i

p in a tableau, we an put p into I

i

; similarly

instead of putting 

j

p into T

i

, we an put p into T

i+j

. In this ase we

have to use m supplementary suessors, where n is the nesting level

of  in �; , but we only need to hek onsisteny on proposition

symbols for these last m tableaux (there is no need to hek that they

satisfy ).

5. It is often useful to hek for loops in the tableaux onstruted. This

sometimes allows to use less than N tableaux.

6. It is often useful to develop T

0

, then the I

i

in inreasing order to hoose

the right I

u

to unite with T

0

, then develop the T

i

.

6 Complexity

6.1 Complexity of validity

First note that the omplexity of the validity problem, deiding whether ` �,

is o-NP-hard, beause our logi ontains propositional logi whose validity

problem is o-NP-omplete.

However, we deide to solve the more general problem of expression

entailment de�ned by [18℄: here, we assume a onstant anteedent , whih

needs not be >.
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6.2 Complexity of entailment

The problem of entailment is more omplex, as expeted from the fat that

it an represent interesting programming problems:

Lemma 17 Deiding the satis�ability is PSPACE-hard.

Proof. We an enode a deterministi PSPACE Turing mahine in this

satis�ability problem. Let M = (Q; Æ; q

0

; F ) be a Turing mahine that only

uses P

1

(n) ells of tape, where n is the length of its inputs, and P

1

is some

polynomial. The omponents of the mahine are:

1. Q is the set of ontrol states;

2. Æ : Q� f0; 1g ! Q� f0; 1g � fL;Rg is the transition funtion: given

the urrent state and the urrent reading of the tape, it gives the new

state, the new ontents of the tape, and the move of the head.

3. q

0

is the initial state;

4. F is the set of �nal states (the answer is then on the tape).

We onstrut a formula  desribing the rule of evolution of the mahine. We

enode eah ontrol state q 2 Q by a proposition q; the ontents of eah ell

of the tape by a proposition 

i

(i � P

1

(n)) ; and h

i

tells whether the head is

in front of ell i. Clearly, we have the property that there is a single ontrol:

:(q

i

^ q

j

)(q

i

6= q

j

; q

i

; q

j

2 Q) and a single head position: :(h

i

^ h

j

)(h

i

6=

h

j

; i; j � S(n)) The evolution rule states exatly the evolution of a Turing

mahine: Given urrent ontrol at q and ontent v, the ontrol goes to a new

state given by the �rst omponent of Æ, the new ontent of the ell is given

by the seond omponent, the head moves aording to the third omponent

of delta, for whih we de�ne: s(q; v; i) = i + 1if�

3

(Æ(q; v)) = R; s(q; v; i) =

i � 1if�

3

(Æ(q; v)) = L. The other ells, whih are not under the head, are

unhanged.

^

i�P

1

(n)

^

q2Q

^

v2f0;1g

(q ^ h

i

^ (

i

$ v)) ! ^�

1

Æ(q; v)

^ 

i

$ �

2

(Æ(q; v))

^ h

s(q;v;i)

^

V

j 6=i

(

j

$ 

j

)

The size of this formula is dominated by the last part, of size P

2

1

(n). The

initial ontent of the tape, X, is oded by a formula �

V

j�n



i

$ X

i

.

The mahine is deterministi, and thus the formula above has at most

one model. It aepts X i� it terminates, that is if

W

q2F

q is true at some

instant. Thus, we de�ne  as the onjuntion of all formulae above and

V

q2F

:q. M aepts X i�  is not satis�able, thus the problem is o-

PSPACE-hard, whih is the same as PSPACE-hard.

11



2

A similar problem is the data entailment de�ned by [18℄: here, we assume

a onstant onsequent �. This problem thus generalises the problem of o-

satis�ability.

Theorem 2 The problems of entailment, data entailment and satis�ability

are PSPACE-omplete.

Proof.

1. They are PSPACE-easy: we an use the tableau proedure above.

2. They are PSPACE-hard: even the easiest problem, satis�ability, is

already PSPACE-hard.

2
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