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1 Introdu
tion

The temporal logi
 has been 
reated by Prior [13, 14℄. Its importan
e for

program 
onstru
tion and veri�
ation has been noted by [12℄, and has sin
e

then been a topi
 of intensive resear
h [9, 1, 4, 6, 7℄. The 
reation of 
om-

plete inferen
e systems, as required for pra
ti
al proofs of programs, is an

important sub-topi
. A ri
h propositional dis
rete-time linear temporal logi


is treated in [9℄: we shall use the same te
hnique here. Treating �rst-order

[17, 2℄, se
ond-order, bran
hing, or dense-time [5, 15℄ temporal logi
s is more

diÆ
ult and often only relative 
ompleteness results are available.

In this arti
le we deal with a simple propositional temporal logi
 re-

stri
ted to two modal operators: initially, noted �, and next, noted 
.

This logi
 is very useful sin
e sequential and 
on
urrent programs are de-

s
ribed by their initial values and by their transitions [8, 10, 11℄. The logi


thus allows to prove invarian
e properties of programs, of the form 
 ` �,

where 
 is a des
ription of the program, and � is an invarian
e property to

be 
he
ked.

Se
tion 2 re
alls the problem [3℄, Se
tion 3 will give simple lemmas for use

in the 
ompleteness proof, whi
h form Se
tion 4. Se
tion 5 sket
hes a simple

tableau algorithm for de
iding the logi
. Se
tion 6 shows that this algorithm

is theoreti
ally optimal, and thus gives the 
omplexity de
iding entailment

and satis�ability, whi
h are PSPACE-
omplete. In 
ontrast, validity is only


o-NP-
omplete. This might be surprising, sin
e all temporal logi
s studied

by [16℄ have the same 
omplexity for both problems. In modal logi
s, this

needs not be the 
ase, sin
e satis�ability is not the 
omplement of validity.

2 The logi
 of initially and next

For programs, time is modelled as a sequen
e of exe
ution steps, beginning

when the program is laun
hed. Time is thus dis
rete: we are not interested in

what happens inside a step, and linear: we observe the exe
ution sequen
es

of the program, but do not want to look into the de
isions open to the

program. Therefore, we model time by the natural numbers. Only the

ordering of time points is relevant: thus we do not need operations like

multipli
ation, and we use the stru
ture of time T = hN; 0; su

;�i.

2.1 Syntax

Given a set of proposition symbols p 2 P , the syntax of the the logi
 is

de�ned by:

� ::= 
� j � � j p j �

1

! �

2

j :�

We will also use the other propositional 
onne
tives as shorthands.
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2.2 Semanti
s

Sin
e the stru
ture of time is �xed, we only need to know the evolution of

propositions; we re
ord the subset of propositions that are true.

Mod = N ! 2

P

Given a model and a point of time, we are now ready to de�ne the satisfa
-

tion of formulae:

M; t 
 p � p 2M(t)

M; t 
 �

1

! �

2

� M; t 
 �

2

if M; t 
 �

1

M; t 
 :� � M; t 
 � does not hold.

M; t 
 
� � M; su

(t) 
 �

M; t 
 �� � M; 0 
 �

A model satis�es are formula, noted M 
 � i� M; t 
 � at all times

t 2 N. A formula � is satis�able if we 
an �nd M satisfying it: M 
 �.

A formula entails another, noted 
 � � i� M 
 
 implies M 
 � for any

model M . We are interested by this entailment relation between formulae.

Axiomatizing it is 
alled medium 
ompleteness in [3℄, to 
ontrast it with

strong 
ompleteness where we allow an in�nite set of formulas on the left

instead of 
, and weak 
ompleteness where no 
 is allowed. No e�e
tive

proof system 
an be strongly 
omplete for this logi
, sin
e the logi
 is not


ompa
t.

2.3 Proof theory

To perform proofs of this type, we use a Hilbert system: the formula 
 will

be used as a supplementary axiom, and we also use the following axioms

and inferen
e rules, on top of the well-known boolean rules:
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�(�!  ) ! (��! � ) (K

�

)


(�!  ) ! (
�!
 ) (K




)

�:�$ :� � (fun

�

)


:�$ :
 � (fun




)

��$ �� � (
on'

�

)

��$
� � (
on"

�

)

�; �!  

 

(MP)

�

��

(NEC

�

)

�


�

(NEC




)

 !
 ; � 

 

(IND)

If we 
an provide a Hilbert proof of a formula � without using the sup-

plementary axiom 
, we say that � is a theorem and we write this as ` �.

If we used 
, we write 
 ` �. In [3℄, ` is noted `

0

�


.

3 Preparation

By looking at the proposed inferen
e system, one 
an make simple but useful

observations that will be used in the next se
tion:

Lemma 1 The repla
ement rule is derivable (two equivalent formulae 
an

be repla
ed in any 
ontext):

�$  

�(�) $ �( )

(RE)

Proof. By indu
tion on �: for boolean 
onne
tives this is a basi
 prop-

erty, for temporal 
onne
tives we deal with ea
h dire
tion of the equivalen
e

separately, use ne
essitation, then modus ponens.

2

Lemma 2 (AND) �(� ^  ) ! �� is derivable.

Proof. We use NEC

�

on (� ^  ) ! �, then K

�

and MP.

2
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Lemma 3 Any boolean operator 
ommutes with � and 
, i.e.:

�(� ^  ) $ �� ^ � (COM

^�

)

�(�!  ) $ ��! � (COM

!�

)

�(� _  ) $ �� _ � (COM

_�

)


(� ^  ) $
� ^
 (COM

^


)


(�!  ) $
�!
 (COM

!


)


(� _  ) $
� _
 (COM

_


)

Proof. We treat just the impli
ation sin
e the other operators are de�ned

from it. �(� !  ) $ �� ! � . The �rst dire
tion ! is just the axiom

K

�

. For the other dire
tion, we prove the 
ontraposite : � (� !  ) !

:(�� ! � ). Using fun

�

, it gives �(� ^ : ) ! (�� ^ : �  ), whi
h is

provable by two uses of (AND). All other boolean 
onne
tives are de�nable

for :;!. The proof for 
 is similar.

2

Lemma 4 (NXT) :
? is a theorem.

Proof. By NEC




, fun




.

2

Lemma 5 The rule (IND')

�!
�

��!�

is derivable.

Proof. We instantiate the indu
tion rule

 !
 ; � 

 

by  := (�� ! �).

Using (COM), (
on'

�

), (
on"

�

) the rule simpli�es to

��!��; ��!(�!
�)

��!�

.

The �rst ante
edent is trivial, and the se
ond 
an be proved from the an-

te
edent of the rule to be proved.

2

4 Completeness

In this se
tion, we prove the medium 
ompleteness of the proof system

proposed in [3℄. So we must prove that if 
 � � then 
 ` �. We 
onstru
t a

model by a variant of the �ltration of the 
anoni
al model, as in [9℄.

De�nition 1 The 
losure C is the smallest set:

1. 
ontaining all subformulae of 
; �,

2. 
losed under �;:.
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3. su
h that �� 2 C !
� � 2 C

This set is used to obtain a �nite number of relevant formulae, to enable the

later indu
tion step. This is 
alled �ltration.

We preserve �niteness by using the simpli�
ation rules ::�$ :�, ��

� $ �� (
on'

�

), �:� $ : � �, 
� � $ ��. So, for instan
e, we will

note that � � p 2 a even though we only keep �p 2 a. Now, we de�ne a

sequen
e of stru
tures S

0

; S

1

; : : : ; S

k

and study their properties:

De�nition 2 The stru
ture S

0

= (A

0

; R

0




; R

0

�

) where:

� A

0

is the set of atoms, i.e. maximally propositionally 
onsistent sub-

sets of C, i.e.:

{ for all a 2 A

0

, for all � 2 C, � 2 a i� :� 62 a,

{ for all a 2 A

0

, for all �

1

_ �

2

2 C, �

1

_ �

2

2 a i� �

1

2 a or

�

2

2 a.

� for all a; b 2 A

0

, aR

0




b i� 8
 � 2 C : 
� 2 a$ � 2 b;

� for all a; b 2 A

0

, aR

0

�

b i� 8 � � 2 C : �� 2 a$ � 2 b;

Note that R

0




is not fun
tional, sin
e C is not 
losed under 
, whereas

R

0

�

is a partial fun
tion sin
e C is 
losed under �. Had we added (COM)

in our simpli�
ation rules, it would have been total.

Lemma 6 R

0

�

(a) = f�j � � 2 ag

Proof. R

0

�

(a) � f�j � � 2 ag by de�nition of R

0

�

. This set is maximal,

sin
e the 
losure is 
losed under �, so that 8� 2 C;�� 2 a or :�� 2 a. In

this se
ond 
ase, : � � is the same as �:�.

2

Lemma 7 � 2 R

0

�

(a) $ �� 2 R

0

�

(a)

Proof. Sin
e �� = �� � 2 a, by simpli�
ation.

2

Lemma 8 aR

0




b implies R

0

�

(a) = R

0

�

(b)

Proof. �� is the same as 
 � �, thus b will 
ontain the same initial

formulae.

2

In those stru
tures, we are interested by parti
ular paths:
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De�nition 3 A path � = a

0

a

1

: : : a

n

: : : ful�lls � under hypothesis 
 in

stru
ture S

0

i�

� there exists n � 0 su
h that � 2 a

n

;

� for all i � 0, a

i

R

0

�

a

0

;

� for all i � 0, a

i

R

0




a

i+1

;

� for all i � 0, 
 2 a

i

;

Lemma 9 
 � :� i� there is no path � in S

0

that ful�lls � under the

hypothesis 


Proof.(sket
h) First, every model M su
h that there exists i � 0 with

M; i � � and for all j � 0, M; j � 
, 
an be transformed into a ful�lling

path as follows: take � = a

0

a

1

: : : a

n

: : : with a

i

= f�j� 2 C and M; i � �g.

It is trivial to verify that � is a ful�lling path for � under 
 in S

0

. For the

other dire
tion, we prove that every ful�lling path has the Hintikka property,

i.e. for all i � 0, for every � 2 a

i

, M

�

; i � �, where M

�

= p

0

p

1

: : : p

n

: : : is

the sequen
e of states obtained by proje
ting the atoms on the propositions,

i.e p

i

= a

i

\ P .

2

We now de�ne a series of stru
ture S

i

from S

0

by deleting atoms that


an not take part into a model for � under the hypothesis 
. Formally:

De�nition 4 The atom a is not useful in S

i

i� either:

1. 
 62 a: under hypothesis 
, 
 must be true in every atom;

2. a 62 (R

i




)

�

(R

i

�

(a))

1

: every atom in a ful�lling path must be rea
hable

from its initial atom;

3. :9b : aR

i




b, as ful�lling paths are in�nite sequen
es, every atom par-

ti
ipating to a ful�lling path must have a su

essor;

So we pass from S

i

to S

i+1

by deleting an a as above. More formally,

S

i+1

= (A

i+1

; R

i+1




; R

i+1

�

) where A

i+1

= A

i

nfag, R

i+1




= R

i




\(A

i+1

�A

i+1

)

and R

i+1

�

= R

i

�

\ (A

i+1

�A

i+1

). We have the following lemma:

Lemma 10 There exists a ful�lling path � for � under 
 in S

i+1

i� there

exists one in S

i

Proof.(sket
h) We must show that no atom that 
an parti
ipate in a ful-

�lling path is deleted. If we make the hypothesis that an atom a from a

ful�lling path is deleted for one of the four reasons above, we 
an derive a


ontradi
tion.

1

(R

i




)

�

denotes the re
exo-transitive 
losure of R

i

.

6



2

The pro
edure des
ribed above stops when there are no more atoms to

delete. Let us note S

k

the �nal stru
ture. We have the following lemma:

Lemma 11 
 � :� i� there is no a 2 A

k

su
h that � 2 A

k

.

Proof. If there is a ful�lling path then by de�nition it 
ontains an atom a

i

su
h that � 2 a

i

, take this a

i

. For the other dire
tion, we pro
eed as follows

to 
onstru
t a ful�lling path:

1. take one a su
h that � 2 a, a

i

= a;

2. take a

0

= R

k

�

(a), this atoms belongs to S

k

and from a

0

there exists a

path in S

k

that rea
hes a otherwise a would have been deleted;

3. from a we 
an 
onstru
t an in�nite suÆx as R

k




is total in S

k

(other-

wise other deletions would have been possible).

It is easy to show that the 
onstru
ted path ful�lls � under 
 and thus 
an

be used to 
onstru
t a model.

2

We are now equipped to prove the 
ompleteness of the proposed proof

system. Assume that 
 � �. Applying the pro
edure above gives us S

k

with

for all a 2 A

k

, :� 2 a. We establish the 
ompleteness of the proposed proof

system by proving the following lemmas:

Lemma 12 ` _

a2A

0
â

2

Proof. A

0

is the set of maximally propositionally 
onsistent subsets of C.

So the lemma is obtained by propositional 
ompleteness.

2

Lemma 13 For all a 2 A

0

, ` â!
_

b2R

0




(a)

^

b.

Proof. The su

essors of a 
ontain all possible 
ombinations of formulae  

where 
 62 C. They 
an thus be eliminated, using distribution of _;^,

giving _

b2R

0




(a)

^

b =

V


�2a

�

2

Lemma 14 For all a 2 A

0

, ` â! �

^

R

0

�

(a)

Proof. By propositional 
ompleteness.

2

â denotes the 
onjun
tion of the formulas that belong to the atom a.
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2

As a 
onsequen
e of the three previous lemmas and monotoni
ity of `,

we have:

Corollary 1 
 ` _

a2A

0
â and 
 ` 
_

b2R

0




(a)

^

b, 
 ` â! �

^

R

0

�

(a).

Now we prove that the above lemmas are still valid in the stru
tures S

i

by an indu
tive reasoning:

Lemma 15 For every a 62 A

i

, 
 ` :â.

Proof. We prove that if a is not useful in S

i

, we have that: 
 ` â$ ?.

1. 
 62 a: in this 
ase, we have 
 ` â! :
, by a propositional reasoning

and the fa
t that 
 is a hypothesis, we derive 
 ` :â;

2. a 62 (R

i�1




)

�

(R

i�1

�

(a)): Let R

�

be the re
exive and transitive 
losure

of R

i�1




. Let R = R

�

(R

i�1

�

(a)). We 
an prove 
 `

�

R ! 


�

R, where

�

R =

W

a2R

â. Indeed, 
 ` b ! 


�

R

i�1




(b) by indu
tive hypothesis

(generalizing lemma 13). Thus 
 ` b ! 


�

R

�

(b), sin
e the 
losure


ontains the base relation, and using NEC




;K




;MP . We 
an do

this for any b 2 R, giving 
 `

�

R ! 


�

R using the propositional

disjun
tion rule and (COM). Now we 
an use the (IND') rule to derive


 ` �

�

R !

�

R. Now ` â ! �

^

R

�

(a) by lemma 6; `

^

R

�

(a) !

�

R

sin
e R

�

(a) 2 R; by NEC

�

, K

�

, MP, ` �

^

R

�

(a) ! �

�

R. Finally,

using the indu
tion result, we obtain 
 ` â !

�

R. Assume a is not

rea
hable, then R is a disjun
tion of atoms in
ompatible with a, or

said propositionally ` R! :â. Thus 
 ` â! :â, whi
h simpli�es to


 ` :â.

3. :9b : aR

i�1




b: in this 
ase, we have 
 ` â!
? by lemma 13. Using

theorem :
? and a propositional reasoning, we derive 
 ` :â.

2

Using the previous lemma, we update the following lemmas:

Lemma 16 For every a 2 A

i

, 
 ` 
 _

b2R

i




(a)

^

b, 
 ` â ! �

^

R

i

�

(a) and


 ` _

a2A

i
â.

Corollary 2 
 ` _

a2A

k

â.

Theorem 1 If 
 � � then 
 ` �.

Proof. Re
all that by hypothesis there is no ful�lling path for :� under 
,

by lemma 11, we have that :� 62 a for every a 2 A

k

. So, propositionally, we

obtain 
 ` ^

a2A

k

(â! �) and by 
orollary 2, that 
 ` �.

2
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5 A tableau system

The proof above strongly suggests a tableau pro
edure to de
ide whether


 ` �, that only 
onstru
ts the part of the stru
ture A

k

whi
h is really used.

As usual in modal logi
s, we 
onstru
t several tableaux, ea
h representing

a instant of time. To ea
h tableau, we add 
, sin
e 
 has to hold at ea
h

instant.

We 
onstru
t the tableaux:

1. T

0

(modelling a

n

, the instant at whi
h :� is satis�ed) 
ontaining ini-

tially :�; 
,

2. the initial tableau I

0

(modelling I) 
olle
ting all formulae f��; �j�� 2

T

i

; I

i

g and 
,

3. the su

essor tableaux I

i+1

= f
;��;  j � � 2 I

0

;
 2 I

i

g,

4. T

i+1

similarly (i 2 0::N � 1)

We stop after N su

essors, where N is 2




, and 
 is the size of f
�j 
 � 2

Cg. We unite T

0

with some I

u

. As a 
onsequen
e T

j

also unites with

I

u+j

; u + j � N .

We 
omplete the tableaux propositionally while maintaining these 
on-

straints. If we fail, we know by the previous proof that 
 ` �. If we su

eed,

we will have built a model of :�; 
.

To build a theoreti
ally optimal pro
edure for entailment, we start by

guessing u � N , whi
h takes a nondeterministi
 time and spa
e logN = 
.

Then we guess the initial tableau, in nondeterministi
 time and spa
e n. We


he
k propositional 
onsisten
y with 
. Now we 
ompute I

i

(1 � i < u) by

transferring formulae of the form 
� to the next tableau, guessing the miss-

ing formulae until we rea
h the tableau u. There we also 
he
k 
onsisten
y

with :�. We go on transferring formulae and 
he
king 
onsisten
y until we

rea
h tableau T

N

. Then a loop has been 
reated, that allows to build an

in�nite model. The pro
edure below uses exponential nondeterministi
 time

and linear spa
e. It is thus in PSPACE.

To build a theoreti
ally optimal pro
edure for expression entailment,

that is when 
 is 
onstant, we 
onstru
t a stru
ture B

k

similar to S

k

above,

but built only on the subformulae of 
. It has a 
onstant size bounded by

2

j
j

. We 
ompute its transition relation, and its re
exo-transitive 
losure.

Again, we �rst 
onje
ture about the time u at whi
h :� will hold. Either:

� u � n: We guess u. We guess the tableaux I

0

; I

1

; : : : I

u

and 
he
k

that their proje
tion in the stru
ture B

k

exists. For I

u

we 
he
k also


onsisten
y with :�. We pro
eed 
onstru
ting I

u

= T

0

; T

1

; : : : ; T

n

similarly. At this point we know that :� indeed holds. We also know

that the path 
an be 
ontinued in�nitely, sin
e ea
h atom of B

k

has a

su

essor.

9



� u > n Then the value of u is of no interest. We start guessing the

tableaux I

0

; I

1

; : : : I

n

and 
he
k that their proje
tion in the stru
ture

B

k

exists. Then we 
hoose a follower of the proje
tion of I

n

by the

transitive 
losure. We extend this atom to ensure that :� holds, giving

T

0

. We build T

1

; : : : ; T

n

as above. Again we do not have to 
he
k

further be
ause we are in B

k

.

This pro
edure has to 
onje
ture 2n tableaux, ea
h of size n, and thus

pro
eeds in quadrati
 nondeterministi
 time. It is thus in NP.

In pra
ti
e:

1. It is more eÆ
ient to move propositional 
onne
tives outside using

(COM). This also allows to use known optimisations on propositional

tableaux, su
h as 
lausal tableaux.

2. It is more eÆ
ient to simplify �; 
 using the (
on) axioms before start-

ing. These axioms will no longer be needed during the 
ourse of the

pro
edure.

3. As all �� must be the same everywhere, and �� $ � in the initial

tableau I

0

, it is more eÆ
ient to keep only � in I

0

and import �I

0

impli
itly everywhere.

4. Similarly, modal formulae 
an be put dire
tly in the right tableau: e.g.

instead of putting �


i

p in a tableau, we 
an put p into I

i

; similarly

instead of putting 


j

p into T

i

, we 
an put p into T

i+j

. In this 
ase we

have to use m supplementary su

essors, where n is the nesting level

of 
 in �; 
, but we only need to 
he
k 
onsisten
y on proposition

symbols for these last m tableaux (there is no need to 
he
k that they

satisfy 
).

5. It is often useful to 
he
k for loops in the tableaux 
onstru
ted. This

sometimes allows to use less than N tableaux.

6. It is often useful to develop T

0

, then the I

i

in in
reasing order to 
hoose

the right I

u

to unite with T

0

, then develop the T

i

.

6 Complexity

6.1 Complexity of validity

First note that the 
omplexity of the validity problem, de
iding whether ` �,

is 
o-NP-hard, be
ause our logi
 
ontains propositional logi
 whose validity

problem is 
o-NP-
omplete.

However, we de
ide to solve the more general problem of expression

entailment de�ned by [18℄: here, we assume a 
onstant ante
edent 
, whi
h

needs not be >.

10



6.2 Complexity of entailment

The problem of entailment is more 
omplex, as expe
ted from the fa
t that

it 
an represent interesting programming problems:

Lemma 17 De
iding the satis�ability is PSPACE-hard.

Proof. We 
an en
ode a deterministi
 PSPACE Turing ma
hine in this

satis�ability problem. Let M = (Q; Æ; q

0

; F ) be a Turing ma
hine that only

uses P

1

(n) 
ells of tape, where n is the length of its inputs, and P

1

is some

polynomial. The 
omponents of the ma
hine are:

1. Q is the set of 
ontrol states;

2. Æ : Q� f0; 1g ! Q� f0; 1g � fL;Rg is the transition fun
tion: given

the 
urrent state and the 
urrent reading of the tape, it gives the new

state, the new 
ontents of the tape, and the move of the head.

3. q

0

is the initial state;

4. F is the set of �nal states (the answer is then on the tape).

We 
onstru
t a formula 
 des
ribing the rule of evolution of the ma
hine. We

en
ode ea
h 
ontrol state q 2 Q by a proposition q; the 
ontents of ea
h 
ell

of the tape by a proposition 


i

(i � P

1

(n)) ; and h

i

tells whether the head is

in front of 
ell i. Clearly, we have the property that there is a single 
ontrol:

:(q

i

^ q

j

)(q

i

6= q

j

; q

i

; q

j

2 Q) and a single head position: :(h

i

^ h

j

)(h

i

6=

h

j

; i; j � S(n)) The evolution rule states exa
tly the evolution of a Turing

ma
hine: Given 
urrent 
ontrol at q and 
ontent v, the 
ontrol goes to a new

state given by the �rst 
omponent of Æ, the new 
ontent of the 
ell is given

by the se
ond 
omponent, the head moves a

ording to the third 
omponent

of delta, for whi
h we de�ne: s(q; v; i) = i + 1if�

3

(Æ(q; v)) = R; s(q; v; i) =

i � 1if�

3

(Æ(q; v)) = L. The other 
ells, whi
h are not under the head, are

un
hanged.

^

i�P

1

(n)

^

q2Q

^

v2f0;1g

(q ^ h

i

^ (


i

$ v)) ! ^
�

1

Æ(q; v)

^ 



i

$ �

2

(Æ(q; v))

^ 
h

s(q;v;i)

^

V

j 6=i

(



j

$ 


j

)

The size of this formula is dominated by the last part, of size P

2

1

(n). The

initial 
ontent of the tape, X, is 
oded by a formula �

V

j�n




i

$ X

i

.

The ma
hine is deterministi
, and thus the formula above has at most

one model. It a

epts X i� it terminates, that is if

W

q2F

q is true at some

instant. Thus, we de�ne 
 as the 
onjun
tion of all formulae above and

V

q2F

:q. M a

epts X i� 
 is not satis�able, thus the problem is 
o-

PSPACE-hard, whi
h is the same as PSPACE-hard.

11



2

A similar problem is the data entailment de�ned by [18℄: here, we assume

a 
onstant 
onsequent �. This problem thus generalises the problem of 
o-

satis�ability.

Theorem 2 The problems of entailment, data entailment and satis�ability

are PSPACE-
omplete.

Proof.

1. They are PSPACE-easy: we 
an use the tableau pro
edure above.

2. They are PSPACE-hard: even the easiest problem, satis�ability, is

already PSPACE-hard.

2
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