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6 Conlusion 99

1 Introdution

A run of a reative system produes an in�nite sequene of events. A prop-

erty of a reative system, then, is an !-language ontaining the in�nite

event sequenes that satisfy the property. There is a very pleasant expres-

sive equivalene between modal logis, lassial logis, and �nite automata

for de�ning !-languages [B�u62, Kam68, GPSS80, Wol82℄. Let LTL stand

for the propositional linear temporal logi with next and until operators,

and let Q-TL and E-TL stand for the extensions of LTL with propositional

quanti�ers and grammar (or automata) onnetives, respetively. Let ML

1

and ML

2

stand for the �rst-order and seond-order monadi theories of the

natural numbers with suessor and omparison (also alled S1S or the Se-

quential Calulus). Let BA stand for B�uhi automata. Then we obtain the

following two levels of expressiveness:

Languages Temporal logis Monadi theories Finite automata

1 ounter-free !-regular LTL ML

1

2 !-regular Q-TL = E-TL ML

2

BA

For example, the LTL formula 2(p! ♦q), whih spei�es that every p event

is followed by a q event, is equivalent to the ML

1

formula (8i)(p(i)! (9j �

i)q(j)) and to a B�uhi automaton with two states. The di�erene between

the �rst and seond levels of expressiveness is the ability of automata to

ount. A ounting requirement, for example, may assert that all even events

are p events, whih an be spei�ed by the Q-TL formula (9q)(q ^ 2(q $

:q) ^ 2(q ! p)).

We say that a formalism is positively deidable if it is onstrutively

losed under positive boolean operations, and satis�ability (emptiness) is

deidable. A formalism is fully deidable if it is positively deidable and also

onstrutively losed under negation (omplement). All of the formalisms in

the above table are fully deidable. The temporal logis and B�uhi automata

are less suint formalisms than the monadi theories, beause only the

former satis�ability problems are elementarily deidable.

A run of a real-time system produes an in�nite sequene of time-stamped

events. A property of a real-time system, then, is a set of in�nite time-

stamped event sequenes. We all suh sets timed !-languages. If all

time stamps are natural numbers, then there is again a very pleasant ex-

pressive equivalene between modal logis, lassial logis, and �nite au-

tomata [AH93℄. Spei�ally, there are two natural ways of extending tem-

poral logis with timing onstraints. The Metri Temporal Logi MetriTL

(also alled MTL [AH93℄) adds time bounds to temporal operators; for ex-

ample, the MetriTL formula 2(p ! ♦
=5

q) spei�es that every p event is

followed by a q event suh that the di�erene between the two time stamps

is exatly 5. The Clok Temporal Logi ClokTL (also alled TPTL [AH94℄)
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adds lok variables to LTL; for example, the time-bounded response re-

quirement from above an be spei�ed by the ClokTL formula 2(p! (x :=

0)♦(q ^ x = 5)), where x is a variable representing a lok that is started

by the quanti�er (x := 0). Interestingly, over natural-numbered time, both

ways of expressing timing onstraints are equally expressive. Moreover, by

adding the ability to ount, we obtain again a anonial seond level of ex-

pressiveness. Let TimeFuntionMLR stand for the monadi theory of the

natural numbers extended with a unary funtion symbol that maps event

numbers to time stamps, and let TA (Timed Automata) be �nite automata

with lok variables. In the following table, the formalisms are annotated

with the supersript N to emphasize the fat that all time stamps are natural

numbers:

Languages Temporal logis Monadi theories Finite automata

N-timed

1 ounter-free MetriTL

N
= ClokTL

N
TimeFuntionMLR

N

1

!-regular

2 N-timed Q-MetriTL

N
= Q-ClokTL

N
= TimeFuntionMLR

N

2

TA

N

!-regular E-MetriTL

N
= E-ClokTL

N

One again, all these formalisms are fully deidable, and the temporal logis

and �nite automata with timing onstraints are elementarily deidable.

If time stamps are real instead of natural numbers, then the situation

seems muh less satisfatory. Several positively and fully deidable for-

malisms have been proposed, but no expressive equivalene results were

known for fully deidable formalisms [AH92℄. The previously known results

are listed in the following table, where the omission of supersripts indiates

that time stamps are real numbers:

Temporal logis Monadi theories Finite automata

Fully deidable

MetriIntervalTL [AFH96℄

EventClokTL [RS97℄

REventClokTA [AFH94℄

Positively deidable

LTL

+

+ TA [Wil94℄ Ld

$

[Wil94℄ TA [AD94℄

Fully undeidable

MetriTL [AH93℄

ClokTL [AH94℄

TimeFuntionMLR

1

[AH93℄

TimeFuntionMLR

2

On one hand, the lass of Timed Automata is unsatisfatory, beause over

real-numbered time it is only positively deidable: R-timed automata are

not losed under omplement, and the orresponding temporal and monadi

logis (and regular expressions [?℄) have no negation operator. On the other

hand, the lasses of Metri and Clok Temporal Logis (as well as monadi
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logi with a time funtion), whih inlude negation, are unsatisfatory, be-

ause over real-numbered time their satis�ability problems are undeidable.

Hene several restritions of these lasses have been studied.

1. The �rst restrition onerns the style of speifying timing onstraints

using time-bounded temporal operators. The Metri-Interval Logi

MetriIntervalTL (also alledMITL [AFH96℄) is obtained fromMetriTL

by restriting the time bounds on temporal operators to nonsingular

intervals. For example, the MetriIntervalTL formula 2(p ! ♦
[4;6℄

q)

spei�es that every p event is followed by a q event suh that the

di�erene between the two time stamps is at least 4 and at most 6.

The restrition to nonsingularity prevents the spei�ation of the exat

real-numbered time di�erene 5 between events.

2. The seond restrition onerns the style of speifying timing on-

straints using lok variables. The Event-Clok Logi EventClokTL

(also alled SCL [RS97℄) and Event-Clok Automata REventClokTA

are obtained from ClokTL and TA, respetively, by restriting the

use of loks to refer to the times of previous and next ourrenes of

events only. For example, if y

q

is a lok that always refers to the time

di�erene between now and the next q event, then the EventClokTL

formula 2(p ! y

q

= 5) spei�es that every p event is followed by a q

event suh that the di�erene between time stamps of the p event and

the �rst subsequent q event is exatly 5. A lok suh as y

q

, whih is

permanently linked to the next q event, does not need to be started

expliitly, and is alled an event lok. The restrition to event loks

prevents the spei�ation of time di�erenes between a p event and

any subsequent (rather than the �rst subsequent) q event.

Both restritions lead to pleasing formalisms that are fully (elementarily) de-

idable and have been shown suÆient in pratial appliations. However,

nothing was known about the relative expressive powers of these two inde-

pendent approahes, and so the question whih sets of timed !-languages

deserve the labels \R-timed ounter-free !-regular" and \R-timed !-regular"
remained open.

In this paper, we show thatMetriIntervalTL and EventClokTL are equally

expressive, and by adding the ability to ount, as expressive as REventClokTA.

This result is quite surprising, beause (1) over real-numbered time, unre-

strited MetriTL is known to be stritly less expressive than unrestrited

ClokTL [AH93℄, and (2) the nonsingularity restrition (whih prohibits ex-

at time di�erenes but allows the omparison of unrelated events) is very

di�erent in avor from the event-lok restrition (whih allows exat time

di�erenes but prohibits the omparison of unrelated events). Moreover,

the expressive equivalene of Metri-Interval and Event-Clok logis reveals

a robust piture of anonial spei�ation formalisms for real-numbered time

that parallels the untimed ase and the ase of natural-numbered time.
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We omplete this piture by haraterizing both the ounter-free and the

ounting levels of expressiveness also by fully deidable monadi theories,

alled MinMaxML

1

and MinMaxML

2

. These are �rst-order and seond-order

monadi theories of the real numbers with integer addition, omparison, and

(besides universal and existential quanti�ation) two �rst-order quanti�ers

that determine the �rst time and the last time at whih a formula is true.

Our results, whih are summarized in the following table, suggest that we

have identi�ed two lasses of !-languages with real-numbered time stamps

that may justly be alled \R-timed ounter-free !-regular" and \R-timed
!-regular":

Languages Temporal logis Monadi theories Finite automata

Fully deidable

R-timed

1 ounter-free MetriIntervalTL = EventClokTL MinMaxML

1

!-regular

2 R-timed Q-MetriIntervalTL = Q-EventClokTL = MinMaxML

2

REventClokTA

!-regular E-MetriIntervalTL = E-EventClokTL

Finally, we explain the gap between the R-timed !-regular languages and
the languages de�nable by positively deidable formalisms suh as timed au-

tomata. We show that the riher lass of languages is obtained by losing the

R-timed !-regular languages under projetion. (It is unfortunate, but well-
known [AFH94℄ that we annot nontrivially have both full deidability and

losure under projetion in the ase of real-numbered time.) The omplete

piture, then, results from adding the following line to the previous table

(projetion, or outermost existential quanti�ation, is indiated by P-):

Positively deidable

3 projetion-losed P-EventClokTL P-MinMaxML

2

= Ld

$

P-REventClokTA = TA

R-timed !-regular

The rest of this paper is organized as follows. The real-time models

that we are onsidering in this papers are presented in setion 2. Two

real-time logis and a lassial theories are introdued in setion 3. Their

relative expressive power is studied in details: those logis are shown to be

expressively equivalent and they identify the \ounter-free regular realt-ime

languages". Setion 4 ontains the de�nition and a study of the properties

of the reursive event lok automata. It is shown that the lass of lan-

guages reognized by reursive event-lok automata stritly subsumes the

lass of \ounter-free regular realt-ime languages" and we all this lass the

\(full) regular real-time languages". Setion 5 studies the relation that ex-

ists between the logial and automata theoreti formalisms. Furthermore,

we show how to bridge the gap that exists between \ounter-free regular

realt-ime languages" and \(full) regular real-time languages". Finally some

onlusions are drawn in a last setion.
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2 The Continuous Real-Time Models

In this paper, we onsider real-time behaviors that are modeled by a funtion

� that assign to eah point of the real line a state desription. Thus the

funtion � at eah t 2 R+

indiates the state �(t) in whih the system is at

that time t. We make two assumptions about the funtion �:

Finite Variability (also alled Non Zenoness) The funtion � has the �nite

variability property: during eah �nite interval of time I, the value of

� only hanges a �nite number of time. This assumption avoids the

so-alled zeno paradox: the system does an in�nite number of ations

into a �nite amount of time.

Finite State Systems The number of di�erent disrete states, i.e. the

size of the set of possible states that the system an reah is �nite.

The �nite state assumption allows us to use a �nite set of propositions to

desribe those states. The odomain of the funtion � is then the powerset

of P, noted 2

P

. The �nite variability assumption allows us to represent the

funtion � using two in�nite sequenes: one in�nite sequene of subsets of P

to represent the disrete part of the behavior of the system, and an in�nite

sequene of intervals of time indiating for eah state when the system was

in that state. We all those pairs of sequenes, timed state sequenes and

de�ne them formally in the sequel. Later, we use also the notion of �nite

variable formula, it simply means that the truth value of the formula hange

only a �nite number of times in every bounded interval of time.

De�nition 2.1 (Intervals of Time) An interval (of time) I � R+

is a

onvex nonempty subset of the nonnegative reals. And interval I is bounded

(above) by b 2 R+

if for all t 2 I, t � b. Due to our de�nition, every

interval is bounded below by 0. By ompleteness of the real numbers, every

bounded interval has a least upper bound, that we all its right bound. If

the interval is unbounded, we onventionally de�ne its least upper bound

as 1. Symmetrially, eah interval has a greatest lower bound, that we also

all its left bound. In eah ase, the bound an be either inluded in I, this

is noted by a square braket, or exluded from I, this is noted by a round

parenthesis. We have thus the six following possibilities:

1. losed �nite: [l; r℄ with l; r 2 R+

and l � r. Speially, when l = r, the

interval is alled singular;

2. left open, right losed: (l; r℄ with l; r 2 R+

and l < r;

3. left losed, right open: [l; r) with l; r 2 R+

and l < r;

4. open: (l; r) with l; r 2 R+

and l < r;
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5. left losed, in�nite: [l;1) with l 2 R+

;

6. left open, in�nite: (l;1) with l 2 R+

.

Two intervals I and J are adjaent if the right bound of I is equal to

the left bound of J , and either I is right-open and J is left-losed or I is

right-losed and J is left-open. Thus two adjaent intervals are disjoint. 2

Notation 2.2 (Intervals) The left bound of interval I is noted l(I), the

right end bound of interval I is noted r(I). Given t 2 R+

, we freely use

notation suh as t + I for the interval ft

0

j exists t

00

2 I with t

0

= t + t

00

g,

and t > I for the onstraint \t > t

0

for all t

0

2 I." 2

De�nition 2.3 (Interval Sequene) An interval sequene I = I

0

; I

1

; : : :

is a �nite or in�nite sequene of bounded intervals so that for all i � 0, the

intervals I

i

and I

i+1

are adjaent. We say that the interval sequene I overs

the interval

S

i�0

I

i

. If I overs [0;1), then I partitions the nonnegative

real line so that every bounded subset of R+

is ontained within a �nite

union of elements from the partition. 2

We are now in position to de�ne our notion of ontinuous models alled

timed state sequene and noted TSS.

De�nition 2.4 (Timed State Sequene) The set of states is alled �.

A timed state sequene � = (�; I) over � is a pair that onsists of an trae

� = �

0

�

1

: : : �

n

: : : over � and an in�nite interval sequene I = I

0

I

1

: : : I

n

: : :

that overs [0;1). 2

Equivalently, the timed state sequene � an be viewed as a funtion

from R+

to �, indiating for eah time t 2 R+

a state �(t).

We now introdue two di�erent type of real-time languages: the anhored

and oating real-time languages. The notion of anhored languages is the

lassial one, the notion oating languages is not lassial and is needed for

tehnial reasons in the sequel of this paper.

De�nition 2.5 (Pointwise Real-Time !-Languages) A pointwise an-

hored real-time !-language is a set of timed traes. A pointwise oating

real-time !-language is a set of pairs (�; i) where � is a timed trae and i � 0

is a position. 2

In the sequel we onsider that � = 2

P

and we need notion related to

the addition and suppression of propositions in the set on whih a timed

state sequenes is de�ned. It is why we introdue the notion the notion of

P

0

-extension and P

0

-projetion of a TSS.
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De�nition 2.6 (P

0

-Extension of a TSS) Given a TSS � = (�; I) de�ned

on the set of propositions P, a set of propositions P

0

, suh that P \P

0

= ;,

�

0

= (�

0

; I

0

) is a P

0

-extension of � if �

0

is de�ned on the set of propositions

P [ P

0

and for all position i � 0: (i) �

0

i

\ P = �

i

, that is, state desription

�

0

i

and �

i

agree on the set of propositions P, and (ii) I

0

i

= I

i

, the real-time

information attahed to the state desriptions is similar in the two TSS. We

note � " P

0

the set of P

0

-extension of �.

De�nition 2.7 (P

0

-Projetion of a TSS) Given a TSS � = (�; I) de�ned

on the set of propositions P, a set of propositions P

0

� P, �

0

is the P

0

-

projetion of �, if �

0

is de�ned on the set of propositions P

0

and for every

positions i � 0: (i) �

0

i

= �

i

\ P

0

that is �

0

i

and �

i

agree on the value of

propositions in P

0

, and (ii) I

0

i

= I

i

, the real-time information attahed to

the state desriptions is similar in the two TSS. In the sequel, we note � # P

0

the P

0

-projetion of �.

As we onsider ontinuous models, it will turn out, in setion 4.4.2, that

the notion of limit losure is useful:

De�nition 2.8 (Limit Closure - Literal) Given a set of propositions P,

we de�ne its limit losure, noted Limit(P), as the following set fp;

�!

p ;

 �

p j

p 2 P [ f>gg,

�!

p is alled the future limit of p and

 �

p is alled the past

limit of p. In what follows, we all the elements of Limit(P) literals. In what

follows, we use L, L

1

, L

2

, ..., to denote limit losure sets. 2

Later, we will generalize the use of limit. We will apply the limit not

only to propositions but also to atomi lok onstraints.

De�nition 2.9 (Satisfation Relation) We write (�; t) j= �, where �

is a proposition, an literal, an atomi lok onstraint or more generally a

formula, read \� is satis�ed at time t of the TSS �". We de�ne the semantis

for propositions p 2 P and for the speial symbol > (true):

� (�; t) j= p i� p 2 �(t);

� (�; t) j= > for all time t 2 R+

.

2

The rules for more general formulas will be given later, we now give the

semantis for the limit literals:

De�nition 2.10 (Future and Past Limits Semantis) The truth value

of the future limit of p 2 P [ f>g along a TSS � is de�ned by the following

lause:

(�; t) j=

�!

p i� for all time t

1

> t there exists a time t

2

, suh that

t < t

2

< t

1

and (�; t

2

) j= p;

8



The truth value of the past limit of p 2 P [ f>g along a TSS � is de�ned

by the following lause:

(�; t) j=

 �

p i� for all time t

1

< t there exists a time t

2

� 0, suh

that t

1

< t

2

< t and (�; t

2

) j= p.

Note that

�!

> is always equivalent to >. In time 0,

 �

> is equivalent to ? and

equivalent to > elsewhere. 2

Intuitively, the future (resp. past) limit of p at time t allows us to aess

the truth value of p just after (resp. before) time t.

We now de�ne a serie a useful properties of TSS:

De�nition 2.11 (	� Fine TSS) Given a set of �nite variable formulas 	,

we say that a TSS � = (�

0

; I

0

)(�

1

; I

1

) : : : is 	�Fine i� for all positions i � 0,

for all formula  2 	, for any time t

1

; t

2

2 I

i

, we have that (�; t

1

) j=  i�

(�; t

2

) j=  , that is, the truth value of the formula  does not hange inside

the intervals of �. 2

De�nition 2.12 (Alternating-TSS) We say that a TSS � = (s

0

; I

0

)(s

1

; I

1

) : : :

is alternating i�

1. I

0

is the singular interval [0; 0℄;

2. for all even positions i, I

i

is a singular interval, and

3. for all odd positions i, I

i

is a open interval.

2

De�nition 2.13 (Hintikka Property) Given a set of formulas 	, a timed

state sequene � has the Hintikka property for 	, i�

1. � is de�ned on a set of propositions that ontains the set P of proposi-

tions appearing in the formulas of 	 and the following set of hintikka

propositions P

	

= fp

 

j  2 	g, that is, a hintikka proposition for

eah formula of the set 	,

2. for every time t 2 R+

, (�; t) j= p

 

i� (�; t) j=  , that is, a hintikka

proposition is true along a Hintikka sequene at time t if and only if

its assoiated formula is true at time t.

2

When manipulating a Hintikka TSS � = (�; I), we sometimes write

� 2 �

i

instead of p

�

2 �

i

in order to simplify the notations.

De�nition 2.14 (Equivalent TSS) Two TSS �

1

, �

2

are equivalent i� �

1

(t) =

�

2

(t) for all time t 2 R+

, that is, if the two TSS de�ne the same funtion

from the positive real numbers to state desriptions. 2
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So two TSS are equivalent if they only di�er by the way they split the

real line is into intervals.

De�nition 2.15 (Re�nement of TSS) A TSS �

1

= (�

1

; I

1

) is a re�ne-

ment of a TSS �

2

= (�

2

; I

2

), noted �

1

� �

2

i� there exists a surjetive

funtion f : N! N suh that:

� for all positions j � 0, �

2

j

= �

1

f(j)

;

� for all positions i � 0, I

1

i

=

S

fI

2

j

j f(j) = ig

In what follows, we also say that �

2

is oarser than �

1

. 2

Note that TSS �

1

is a re�nement of the TSS �

2

then �

1

and �

2

are

equivalent.

Lemma 2.16 (Re�nability of TSS) For every TSS � and every set of

formula 	 with the �nite variability property, there exists a TSS �

0

suh

that (i) �

0

� �, that is, �

0

is a re�nement of � and (ii) �

0

is 	� Fine.

Note also that:

Lemma 2.17 (Re�nement and Fine-TSS) For every set of formulas 	,

every re�nement �

0

of a 	� Fine TSS � is 	� Fine.

And thus this re�nement an be alternating:

Lemma 2.18 For every TSS �, there exists a re�nement �

0

of �, i.e. �

0

� �

that is alternating.

In the sequel we use sets of literals to label loations of automata. We

will need the notion of singular and open set of literals. Intuitively, a singular

literal desribes an instantaneous, unstable situation and thus annot hold

during an open interval of time. Here are their de�nitions:

De�nition 2.19 (Singular-Open Set of Literals) A set of literals � �

L is said singular i� one of the two following properties of � is veri�ed

� there exist literals a;

�!

a 2 L suh that a 2 � and

�!

a 62 �, or, a 62 �

and

�!

a 2 �;

� there exist literals a;

 �

a 2 L suh that a 2 � i�

 �

a 62 �, or, a 62 � i�

 �

a 2 �. An set of literals � � L is said open i� it is not singular.

2

Lemma 2.20 Let I be a non singular interval. If � is singular, then for all

�, there exists t 2 I suh that (�; t) 6j= �. 2

10



3 The Counter-Free Regular Real-Time !-Languages

3.1 Introdution

In this setion, we introdue two real-time logis and a lassial theory for

de�ning real-time properties. We study their expressive power in details and

show that they all identify the same lass of real-time languages that we all

the ounter-free regular real-time languages. Before, we reall the de�nition

of two qualitative time formalisms and review a theorem about their relative

expressive power introdued by Kamp.

3.2 Qualitative Formalisms

3.2.1 The Temporal Logi of the Reals

We review in this setion a temporal logi that is evaluated over ontinuous

models. That temporal logi is alled the temporal logi of the reals, noted

LTR, and has been proposed by Pnueli et al in [BKP86℄. We reall its syntax

and semantis.

De�nition 3.1 (LTR-Syntax) The formulas of LTR are built from propo-

sitional symbols, boolean onnetives, and the temporal \until" and \sine"

operators:

� ::= p j �

1

^ �

2

j :� j �

1

U�

2

j �

1

S

I

�

2

where p is a proposition, �, �

1

and �

2

are well-formed LTR formulas. 2

De�nition 3.2 (LTR-Semantis) The LTR formula � holds at time t 2 R+

of the timed state sequene �, denoted (�; t) j= �, aording to the following

de�nition:

(�; t) j= p i� p 2 �(t);

(�; t) j= �

1

^ �

2

i� (�; t) j= �

1

and (�; t) j= �

2

;

(�; t) j= :� i� not (�; t) j= �;

(�; t) j= �

1

U�

2

i� exists a real t

0

> t with (�; t

0

) j= �

2

, and for

all reals t

00

2 (t; t

0

), we have (�; t

00

) j= �

1

_ �

2

;

(�; t) j= �

1

S�

2

i� exists a real t

0

2 [0; t) with (�; t

0

) j= �

2

, and

for all reals t

00

2 (t

0

; t), we have (�; t

00

) j= �

1

_ �

2

.

2

De�nition 3.3 (LTR-Languages) The anhored language de�ned by an

LTR formula � is the set of TSS � 2 TSS(2

P

�

), suh that (�; 0) j= �, this set

is noted AnLang(�). The oating language de�ned by an LTR formula � is

the set of pairs (�; t) with � 2 TSS(2

P

�

) and t 2 R+

suh that (�; t) j= �,

this set is noted FloatLang(�). 2
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3.2.2 The First Order Monadi Logi over the Reals

We now review the de�nition of the �rst-order monadi logi of the reals.

We reall its syntax and semantis.

De�nition 3.4 (MLR

1

-Syntax) The formulas of the �rst- order monadi

logi over the reals MLR

1

are generated by the following grammar:

� ::= p(x) j x

1

= x

2

j x

1

< x

2

j :� j �

1

_ �

2

j 9x � �

where x; x

1

; x

2

2 X are position variables (�rst-order variable), p 2 P is

an unary prediate and �;�

1

;�

2

are well-formed MLR

1

formulas. We say

that a formula � of MLR

1

is losed if it does not ontain any free position

variable. 2

De�nition 3.5 (Valuation) A valuation for the set of �rst-order variables

X is a mapping � : X ! R+

assigning a nonnegative real number value to

eah variable x 2 X. We note �[y 7! t℄ the mapping that extend the

mapping � for the variable y and maps y on the value t 2 R+

. 2

De�nition 3.6 (MLR

1

-Semantis) The semantis of an MLR

1

formula �

is evaluated in pair (�; �) where � is a TSS and � is a valuation for the free

variables appearing in � aording to the following rules:

(�; �) j= q(x) i� q 2 �(�(x));

(�; �) j= x

1

= x

2

i� �(x

1

) = �(x

2

);

(�; �) j= x

1

< x

2

i� �(x

1

) < �(x

2

);

(�; �) j= :� i� (�; �) 6j= �;

(�; �) j= �

1

_ �

2

i� (�; �) j= �

1

or (�; �) j= �

2

;

(�; �) j= 9x �� i� there exists a value t 2 R+

suh that (�; �[x 7!

t℄) j= �.

2

De�nition 3.7 (MLR

1

-language) The anhored language de�ned by a losed

MLR

1

formula � is the set of TSS � 2 TSS(2

P

�

), suh that � j= �, this set

is noted AnLang(�). The oating language de�ned by an MLR

1

formula

�(x), with one free variable x is the set of pairs (�; t) with � 2 TSS(2

P

�

)

and t 2 R+

suh that (�; [x 7! t℄) j= �, this set is noted FloatLang(�). 2

3.2.3 Expressiveness Equivalene Result

Kamp has proved, see [Kam68℄, that the expressiveness equivalene result

between temporal logi and the �rst-order monadi logi is also valid in the

ase of ontinuous interpretations:
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Theorem 3.8 (LTR = MLR

1

) The logis LTR and MLR

1

are equally ex-

pressive: given an LTR formula �, there always exists a losed formula

� of MLR

1

suh that AnLang(�) = AnLang(�), and onversely: given

an MLR

1

formula �, there always exists a formula � of LTR suh that

AnLang(�) = AnLang(�). Furthermore, given an LTR formula �, there

always exists a formula �(x) with one free variable x of MLR

1

suh that

FloatLang(�) = FloatLang(�(x)), and onversely: given an MLR

1

formula

�(x) with one free variable x, there always exists a formula � of LTR suh

that FloatLang(�) = FloatLang(�). 2

3.3 Two Real-Time Temporal Logis

3.3.1 The Metri Interval Temporal Logi

Here, we reall the de�nition of the logi MetriIntervalTL [AFH91, AFH96℄.

This logi is a syntatial restrition of the undeidable real-time logi

MetriTL [AH90℄. The logi MetriIntervalTL prohibits the spei�ation of

puntuality onstraints by allowing only subsripts in real-time operators

that are non-singular intervals. This restrition makes the formalism deid-

able.

De�nition 3.9 (MetriIntervalTL-Syntax) The formulas ofMetriIntervalTL [AFH96℄

are built from propositional symbols, boolean onnetives, and time-bounded

\until" and \sine" operators:

� ::= p j �

1

^ �

2

j :� j �

1

b

U

I

�

2

j �

1

b

S

I

�

2

where p is a proposition and I is a nonsingular interval whose �nite end-

points are nonnegative integers. 2

Note that we use hats in the syntax of the temporal operators above in

order to deferentiate them from the operator of LTR that have a slightly

di�erent semantis in the qualitative ase. We also de�ne an interesting

subset of MetriIntervalTL, alled MetriIntervalTL

0;1

:

De�nition 3.10 (MetriIntervalTL

0;1

-Syntax) The formulas of the frag-

ment MetriIntervalTL

0;1

are de�ned as for MetriIntervalTL, exept that

the interval I must either have the left endpoint 0, or be unbounded; in

these ases I an be replaed by an expression of the form � , for a non-

negative integer onstant  and �2 f<;�;�; >g. 2

De�nition 3.11 (MetriIntervalTL Continuous Semantis) TheMetriIntervalTL

formula � holds at time t 2 R+

of the timed state sequene �, denoted

(�; t) j= �, aording to the following de�nition
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(�; t) j= p i� p 2 �(t)

(�; t) j= �

1

^ �

2

i� (�; t) j= �

1

and (�; t) j= �

2

(�; t) j= :� i� not (�; t) j= �

(�; t) j= �

1

b

U

I

�

2

i� exists a real t

0

2 (t+ I) with (�; t

0

) j= �

2

, and

for all reals t

00

2 (t; t

0

), we have (�; t

00

) j= �

1

(�; t) j= �

1

b

S

I

�

2

i� exists a real t

0

2 (t� I) with (�; t

0

) j= �

2

, and

for all reals t

00

2 (t

0

; t), we have (�; t

00

) j= �

1

2

We now introdue some useful abbreviations:

De�nition 3.12 (MetriIntervalTL-Abbreviations) For the future:

�

b♦
I

� = >

b

U

I

�, \eventually in the future within interval I";

�
b
2

I

= :

b♦
I

:�, \always in the future within interval I".

Symetrially, for the past:

�

b♦�
I

� = >

b

S

I

�, \eventually in the past within interval I";

�

b⊟
I

= :

b♦�
I

:�, \always in the past within interval I".

De�nition 3.13 (MetriIntervalTLContinuous Languages) TheMetriIntervalTL

formula � de�nes the anhored language that ontains all timed state se-

quenes � with (�; 0) j= �. As usual, we note this language AnLang(�).

The MetriIntervalTL formula � de�nes the oating language that ontains

all pairs (�; t) with (�; t) j= �. As usual, we note this language FloatLang(�).

2

Example 3.14 The MetriIntervalTL formula
b
2

(0;1)

(p !

b♦
[1;2℄

q) asserts

when evaluated in time t, that every p-state, in the interval t + (0; 1), is

followed by a q-state at a time di�erene of at least 1 and at most 2 time

units. 2

The omplexity of the satis�ability and validity problems forMetriIntervalTL

and its fragments MetriIntervalTL

0;1

are given in the next theorem.

Theorem 3.15 [AFH96℄ The satis�ability and validity problems forMetriIntervalTL

are ExpSpae-Complete. The satis�ability and validity problems forMetriIntervalTL

0;1

are PSpae-Complete. 2

Interestingly, the omplexity of the satis�ability and validity problems

for MetriIntervalTL

0;1

are easier that for the full logi.
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3.3.2 The Logi of Event Cloks

The formulas of EventClokTL are built from propositional symbols, boolean

onnetives, the temporal \until" and \sine" operators, and two real-time

operators: at any time t, the history operator �

I

� asserts that � was true

last time in the interval t� I, and the prophey operator �

I

� asserts that

� will be true next time in the interval t+ I.

De�nition 3.16 (Continuous-EventClokTL-Syntax) The formulas of (on-

tinuous) EventClokTL for timed state sequenes are generated by the fol-

lowing grammar:

� ::= p j �

1

_ �

2

j :� j �

1

U�

2

j �

1

S�

2

j �

I

� j �

I

�

where p is a proposition and I is an interval whose �nite endpoints are

nonnegative integers. 2

We an now de�ne how to evaluate the truth value of an EventClokTL

formula along timed state sequenes.

De�nition 3.17 (Continuous-EventClokTL-Semantis) Let � be an (on-

tinuous) EventClokTL formula and let � be a timed state sequene whose

propositional symbols ontain all propositions that our in �. The formula

� holds at time t 2 R+

of � , denoted (�; t) j= �, aording to the following

de�nition:

(�; t) j= p i� p 2 �(t)

(�; t) j= �

1

_ �

2

i� (�; t) j= �

1

or (�; t) j= �

2

(�; t) j= :� i� not (�; t) j= �

(�; t) j= �

1

U�

2

i� exists a real t

0

> t with (�; t

0

) j= �

2

, and for

all reals t

00

2 (t; t

0

), we have (�; t

00

) j= �

1

_ �

2

(�; t) j= �

1

S�

2

i� exists a real t

0

< t with (�; t

0

) j= �

2

, and for all

reals t

00

2 (t

0

; t), we have (�; t

00

) j= �

1

_ �

2

(�; t) j= �

I

� i� exists a real t

0

< t with t

0

2 (t�I) and (�; t

0

) j= �,

and for all reals t

00

< t with t

00

> (t� I), not (�; t

00

) j= �

(�; t) j= �

I

� i� exists a real t

0

> t with t

0

2 (t+I) and (�; t

0

) j= �,

and for all reals t

00

> t with t

00

< (t+ I), not (�; t

00

) j= �

2

Note that the temporal and real-time operators are de�ned in a strit

manner; that is, they do not onstrain the urrent state. Non strit operators

are easily de�ned from their strit ounterparts.

Example 3.18 2(p ! �

�5

q): a p position is always followed by a q po-

sition within 5 time units. Suh a formula spei�es a maximal distane

between a request p and its response q. Suh a property is alled a bounded
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time response. Here, it assumes that only one request an be outstanding.

p^2(p! �

=1

p): this formula asserts that p is true every integer time unit.

Suh a formula allows the spei�er to de�ne periodiity of events. Here p an

model the tik of an ideal lok, that tiks every time unit. 2((�

=3

q)! p).

This formula asserts that if the last q position is exatly distant of 3 time

units then p must be true now. It is a typial time-out requirement.

2

We now give a de�nition of the real-time languages that a EventClokTL

formula is de�ning.

De�nition 3.19 (Continuous-EventClokTL-Languages) The (ontinu-

ous) EventClokTL formula � de�nes the anhored language AnLang(�) =

f� j (�; 0) j= �g, that is the set of timed state sequenes that satisfy � at

their initial position. The (ontinuous) EventClokTL formula � de�nes the

oating language FloatLang(�) = f(�; t) j (�; t) j= �g, that is the set of pairs

(timed state sequene, time) where � is veri�ed. 2

3.4 A First-Order Classial Theory

In the sequel, we use p, q, and r for (�nite variable) monadi prediates over

the nonnegative reals, and t, t

1

, and t

2

for �rst-order variables over R+

.

De�nition 3.20 (MinMaxML

1

-Syntax) The formulas of the First-Order

Real-Time Sequential Calulus, noted MinMaxML

1

, are generated by the

following grammar:

� ::= p(t) j t

1

� t

2

j

(Min t

1

)(t

1

> t

2

^	(t

1

)) � (t

2

+ ) j

(Max t

1

)(t

1

< t

2

^	(t

1

)) � (t

2

� ) j

�

1

^�

2

j :� j (9t)�

where 	(t

1

) is a MinMaxML

1

formula that ontains no free ourrenes of

�rst-order variables other than t

1

, where  is a nonnegative integer onstant,

and �2 f<;�;=;�; >g. 2

The truth value of a MinMaxML

1

formula � is evaluated over a pair

(�; �) that onsists of a timed state sequene � whose propositional sym-

bols ontain all monadi prediates of �, and a valuation � that maps

eah free �rst-order variable of � to a nonnegative real. By �

[t7!v℄

we de-

note the valuation that agrees with � on all variables exept t, whih is

mapped to the value v. We �rst de�ne for eah MinMaxML

1

term & a value

Val

�;�

(&), whih is either a nonstandard real or unde�ned. Intuitively, the

term (Min t

1

)(t

1

> t

2

^	(t

1

)) denotes the smallest value greater than t

2

that

satis�es the formula 	. If there is no value greater than t

2

that satis�es 	,

then the term (Min t

1

)(t

1

> t

2

^ 	(t

1

)) denotes the unde�ned value ?. If
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	 is satis�ed throughout a left-open interval with left endpoint v > t

2

, then

the term (Min t

1

)(t

1

> t

2

^	(t

1

)) denotes the nonstandard real number v

+

.

Similarly, the term (Max t

1

)(t

1

< t

2

^ 	(t

1

)) denotes the greatest value

smaller than t

2

that satis�es 	.

2

Formally:

De�nition 3.21 (MinMaxML

1

-Term Values) The value of a term & in the

TSS � and valuation �, denoted Val

�;�

(&), is de�ned by the following rules:

Val

�;�

(t) = �(t)

Val

�;�

(t+ ) = �(t) + 

Val

�;�

(t� ) =

�

�(t) �  if �(t) � 

? otherwise

Val

�;�

((Min t

1

)(t

1

> t

2

^	(t

1

)) =

8

>

>

>

>

<

>

>

>

>

:

v if (�; �

[t

1

7!v℄

) j= (t

1

> t

2

^	(t

1

));

and for all v

0

< v, not (�; �

[t

1

7!v

0

℄

) j= (t

1

> t

2

^	(t

1

))

v

+

if for all v

0

> v, exists v

00

< v

0

with (�; �

[t

1

7!v

00

℄

) j= (t

1

> t

2

^	(t

1

));

and for all v

0

� v, not (�; �

[t

1

7!v

0

℄

) j= (t

1

> t

2

^	(t

1

))

? if for all v � 0, not (�; �

[t

1

7!v℄

) j= (t

1

> t

2

^	(t

1

))

Val

�;�

((Max t

1

)(t

1

< t

2

^	(t

1

)) =

8

>

>

>

>

<

>

>

>

>

:

v if (�; �

[t

1

7!v℄

) j= (t

1

< t

2

^	(t

1

));

and for all v

0

> v, not (�; �

[t

1

7!v

0

℄

) j= (t

1

< t

2

^	(t

1

))

v

�

if for all v

0

< v, exists v

00

> v

0

with (�; �

[t

1

7!v

00

℄

) j= (t

1

< t

2

^	(t

1

));

and for all v

0

� v, not (�; �

[t

1

7!v

0

℄

) j= (t

1

< t

2

^	(t

1

))

? if for all v � 0, not (�; �

[t

1

7!v℄

) j= (t

1

< t

2

^	(t

1

))

2

Now we an de�ne the satisfation relation for MinMaxML

1

formulas:

De�nition 3.22 (MinMaxML

1

-semantis) The following rules de�ne when

a formula is satis�ed by a TSS � and a valuation �:

(�; �) j= p(t) i� p 2 �(�(t))

(�; �) j= t

1

� t

2

i� Val

�;�

(t

1

) � Val

�;�

(t

2

), with �2 f<;�;=;�

; >g

(�; �) j= �

1

_ �

2

i� (�; �) j= �

1

or (�; �) j= �

2

(�; �) j= :� i� not (�; �) j= �

(�; �) j= (9t)� i� exists v � 0 with (�; �

[t7!v℄

)�

2

A MinMaxML

1

formula is losed i� it ontains no free ourrenes of

�rst-order variables. Every losed MinMaxML

1

formula de�nes an anhored

real-time language:

2

Note that although the terms take their value in non standard real numbers plus

unde�ned, quanti�ers only range over the real numbers.
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De�nition 3.23 (MinMaxML

1

-Anhored Language) Every losedMinMaxML

1

formula � de�nes an anhored real-time !-language, namely, the set of real-

time state sequenes � suh that (�; ;) j= �.

And every MinMaxML

1

formula with one free variable de�nes a oating

real-time language:

De�nition 3.24 (MinMaxML

1

-Floating Language) EveryMinMaxML

1

for-

mula � with one free �rst-order variable t

1

de�nes a oating real-time !-

language, namely, the set of pairs (�; t) suh that (�; [t

1

7! t℄) j= �.

Example 3.25 (MinMaxML

1

formula)

(8t

1

)(p(t

1

)! (9t

2

)(t

2

> t

1

^ q(t

2

) ^ (Min t

3

)(t

3

> t

2

^ r(t

3

)) = t

2

+ 5))

asserts that every p-state is followed by a q-state that is followed by an

r-state after, but no sooner than, 5 time units.

We will show in the next setion that the formalism that we have de�ned

in this setion is deidable.

3.5 Expressiveness Results

Remember that in setion 3.2.3, we have realled a result proved by Kamp

that states the expressive equivalene between the temporal logi of the reals,

LTR, and the �rst-order monadi logi over the reals, MLR

1

, see theorem 3.8.

We will use this result in the sequel to establish the same theorem about

the relative expressive power of MinMaxML

1

and EventClokTL.

3.5.1 EventClokTL versus MinMaxML

1

We �rst prove that EventClokTL is at least as expressive asMinMaxML

1

. To

prove that result, we use theorem 3.8 and reason on the level of MinMaxML

1

formulas. The level of a MinMaxML

1

formula is de�ned as follows:

De�nition 3.26 (level of MinMaxML

1

Formulas) The level of aMinMaxML

1

formula �, noted level(�), is de�ned as follows:

� level(q(t)) = 0, where q is a monadi prediate;

� level(t

1

� t

2

) = 0, where t

1

; t

2

are �rst order variables;

� level(�

1

_ �2) =Maximum(level(�

1

); level(�

2

));

� level(:�) = level(�);

� level(9t � �(t)) = level(�(t));

� level(Max

t

2

� t

2

< t

1

^�(t

2

) � t

1

� ) = 1 + level(�(t

2

));
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� level(Min

t

2

� t

2

> t

1

^ �(t

2

) � t

1

+ ) = 1 + level(�(t

2

));

So the level of a MinMaxML

1

formula is the number of imbriations of Min�

Max quanti�ers in the formula. 2

We now prove the following lemma:

Lemma 3.27 (MinMaxML

1

� EventClokTL) For every formula �(t

1

) of

MinMaxML

1

with one free variable t

1

, there exists a ongruent formula

�

T

of EventClokTL, that is for every TSS � and every time t 2 R+

:

(�; [t

1

7! t℄) j= 	(t

1

) i� (�; t) j= 	

T

.

Proof. We reason by indution on the level of formula.

� Base ase. Let �(t

1

) be suh that level(�(t

1

)) = 0. In that ase, the

formula �(t

1

) does not ontains any Min � Max quanti�er and thus

�(t

1

) is a ML

1

formula. By theorem 3.8, there exists an ongruent

LTR formula �

T

. As LTR is a subset of EventClokTL, �

T

is an Event-

ClokTL formula.

� Indution ase. Let �(t

1

) be suh that level(�(t

1

)) = i. By indution

hypothesis, we are able to onstrut for every level

j

, with j < i, formula

	 of MinMaxML

1

, a ongruent EventClokTL formula 	

T

. We now

show that we an also do it for level

i

formulas. By de�nition of the

level of a MinMaxML

1

formula, we know that for every subformula of

the form:

{ Max

t

2

� [t

2

< t

1

^	(t

2

)℄ � t

1

� 

{ Min

t

2

� [t

2

> t

1

^	(t

2

)℄ � t

1

+ 

	(t

2

) is at most of level

i�1

and by indution hypothesis, an be ex-

pressed in EventClokTL by a ongruent formula 	

T

. Also, by de�ni-

tion of the semantis ofMin�Max and�

�

;�

�

, we have the following:

C.1 (�; t) j= �

�

	

T

i� (�; [t

1

7! t℄) j= Min

t

2

� t

2

> t

1

^	(t

2

) � t

1

+ 

C.2 (�; t) j= �

�

	

T

i� (�; [t

1

7! t℄) j= Max

t

2

� t

2

< t

1

^	(t

2

) � t

1

� 

It remains us to show that the entire formulaMinMaxML

1

formula �(t)

an be expressed in EventClokTL. We do this by �rst transforming

�(t) as follows: every formula of the formMin

t

2

�t

2

> t

1

^	(t

2

) � t

1

+,

Max

t

2

� t

2

< t

1

^	(t

2

) � t

1

� is replaed by a fresh monadi prediate

p

	

, we note this formula

g

�(t) and P

	

the set of fresh monadi predi-

ates that we have used to obtain

g

�(t). We know that

g

�(t) is a ML

1

formula over the monadi prediates of P [ P

	

. By theorem 3.8, we

an ompute a ongruent formula

e

�

T

of LTR. To obtain the desired

EventClokTL formula, it remains us to replae every fresh proposi-

tions of p

	

in

e

�

T

by 	

T

(as given by the lauses C1 and C2 above) to

obtain the desired formula �

T

.
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2

We now show that the reverse also holds.

Lemma 3.28 (EventClokTL � MinMaxML

1

) For every formula � of EventClokTL,

there exists a ongruent formula �

T

with one free variable t

1

of MinMaxML

1

,

that is for every TSS � and every time t 2 R+

: (�; [t

1

7! t℄) j= �

T

(t

1

) i�

(�; t) j= �.

Proof. We do a lassial reasoning on the struture of formulas.

� Base ase. � is the proposition p. Then �

T

is simply p(t

1

).

� Indution ase. By indution hypothesis, we an onstrut for eah

subformula �

1

, �

2

of EventClokTL, the ongruent formulas �

T

1

and

�

T

2

of MinMaxML

1

. We show that for eah onstrut of EventClokTL

that are applied to �

1

and �

2

, we are able to onstrut the desired

formula of MinMaxML

1

:

{ for � = :�

1

, we take �

T

= :�

T

1

(t

1

);

{ for � = �

1

_ �

2

, we take �

T

= �

T

1

(t

1

) _ �

T

2

(t

1

);

{ for � = �

1

U�

2

, we take 9t

2

> t

1

� (�

T

2

(t

2

) ^ 8t

3

� t

1

< t

3

<

t

2

� �

T

1

(t

3

) _ �

T

2

(t

3

))

{ for � = �

1

S�

2

, we take 9t

2

� 0 � t

2

< t

1

� (�

T

2

(t

2

) ^ 8t

3

� t

2

< t

3

<

t

1

� �

T

1

(t

3

) _ �

T

2

(t

3

))

{ for � = �

�

�

1

, we take Min

t

2

[t

1

< t

2

^ �

T

1

(t

2

)℄ � t

1

+ ;

{ for � = �

�

�

1

, we take Max

t

2

[t

2

< t

1

^ �

T

1

(t

2

)℄ � t

1

� .

2

The two previous lemma allow us to derive the following theorem that

states the equivalent expressive power of the logis EventClokTL andMinMaxML

1

:

Theorem 3.29 The oating and anhored real-time !-regular languages de-

�nable by the logi EventClokTL and MinMaxML

1

are idential.

The lemma 3.27 allows us to derive the following deidability results for

MinMaxML

1

:

Theorem 3.30 (MinMaxML

1

-Deidability) The satis�ability and validity

problems of the logi MinMaxML

1

are deidable and in NonElem.
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3.5.2 EventClokTL versus MetriIntervalTL

We now turn to the relation that exists between the logi EventClokTL and

the logi MetriIntervalTL.

We �rst de�ne the fragment EventClokTL

0;1

of EventClokTL. We will

use it in the following proofs.

De�nition 3.31 (EventClokTL

0;1

) The formulas of the fragment EventClokTL

0;1

of EventClokTL are the formulas that only use real-time operators �

I

, �

I

where: either l(I) = 0 or r(I) =1. 2

The semantis of EventClokTL

0;1

formulas is as for full EventClokTL.

The following lemma expresses that EventClokTL

0;1

is expressively om-

plete:

Lemma 3.32 (EventClokTL = EventClokTL

0;1

) For every formula of � 2

EventClokTL we an onstrut a ongruent formula �

T

of the fragment

EventClokTL

0;1

, that is for every TSS �, for every time t 2 R+

, (�; t) j= �

i� (�; t) j= �

T

.

Proof. We reason by indution on the struture of formulas:

� Base ase. Let � = p. Then � 2 EventClokTL

0;1

.

� Indution ase. The boolean ases and temporal ases are trivial.

Let us onsider the formula �

I

 , with l(I) 6= 0 and r(I) 6= 1. By

indution hypothesis, we have  

T

2 EventClokTL

0;1

. We note I

1

the

interval ft > 0 j 9t

0

2 I and t � t

0

g, and I

2

the interval ft > 0 j 8t

0

2

I, t < t

0

g. By de�nition of �, we know that those two intervals are

non-empty, as l(I) > 0 and r(I) < 1 and their bounds are integer

numbers, and further that l(I

1

) = l(I

2

) = 0. It is easy to see that

the formula �

I

1

 

T

^�

I

2

 

T

is ongruent to � and in EventClokTL

0;1

.

The ase for the operator � is similar and left to the reader.

2

We now prove that the fragment MetriIntervalTL

0;1

is at least as ex-

pressive as the logi EventClokTL.

Lemma 3.33 (EventClokTL � MetriIntervalTL

0;1

) For every formula �

of EventClokTL, there exists a ongruent formula �

T

of MetriIntervalTL

0;1

,

that is for every TSS � and every time t 2 R+

: (�; t) j= �

T

i� (�; t) j= �.

Proof. By lemma 3.32, we know that EventClokTL

0;1

is equally expressive

to EventClokTL. Thus it is suÆient to show that EventClokTL

0;1

�

MetriIntervalTL

0;1

. We reason by indution on the struture of formulas.
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In the sequel, � belongs to EventClokTL

0;1

and �

T

denotes the ongruent

MetriIntervalTL

0;1

formula.

� Base ase. The formula � is the proposition p then �

T

= p;

� Indution ases: by indution hypothesis, �

1

and �

2

are translated by

�

T

1

and �

T

2

. Here are the di�erent ases:

{ for � = �

1

_ �

2

, we take �

T

= �

T

1

_ �

T

2

;

{ for � = :�

1

, we take �

T

= :�

T

1

;

{ for � = �

1

U�

2

, we take �

T

= (�

T

1

_ �

T

2

)

b

U

(0;1)

�

T

2

;

{ for � = �

1

S�

2

, we take �

T

= (�

T

1

_ �

T

2

)

b

S

(0;1)

�

T

2

;

{ � = �

J

�

1

with l(J) = 0. Note that the operator � is irreexive

so we an make the hypothesis that 0 62 J . We distinguish the

ase where the �rst �

1

-interval in the future is left losed from the

ase where it is left open. The two situations an be distinguished

by the following MetriIntervalTL

0;1

formula: :�

T

1

b

U

(0;1)

�

T

1

.

� In the ase that the former formula is veri�ed then the fol-

lowing �

1

-interval is left losed and we an hek that �

J

�

1

is veri�ed by heking the following MetriIntervalTL

0;1

for-

mula: :�

T

1

b

U

J

�

T

1

.

� In the seond ase, the �rst �

1

-interval is left open and then

we hek that �

T

1

_ :�

T

1

b

U

(0;l(J))

�

T

1

where �

T

1

denotes

?

b

U

(0;1)

�

T

1

and means that �

T

1

is true just after the present

time. Let us note that l(J) is exluded as we hek the event

�

T

1

and not the event �

T

1

.

This gives the following translation rule:

�

J

�

1

= ^ >

b

U

(0;1)

�

T

1

^ :�

T

1

b

U

(0;1)

�

T

1

! :�

T

1

b

U

J

�

T

1

^ :(:�

T

1

b

U

(0;1)

�

T

1

)! �

T

1

_ :�

T

1

b

U

(0;r(J))

�

T

1

{ � = �

J

�

1

with l(J) 6= 0. And thus r(J) =1 as � 2 EventClokTL

0;1

.

Here also, we distinguish the ase where the �rst �

1

-interval in

the future is left losed from the ase where it is left open. We

obtain the following translation rule:

�

J

�

1

= ^ >

b

U

(0;1)

�

T

1

^ :�

T

1

b

U

(0;1)

�

T

1

! :�

T

1

b

U

J

�

T

1

^ :(:�

T

1

b

U

(0;1)

�

T

1

)! :�

T

1

b

U

[l(J);1)

(:�

T

1

^ �

T

1

)

{ � = �

J

�

1

with l(j) = 0. By a similar reasoning we obtain:

�

J

�

1

= ^ >

b

S

(0;1)

�

T

1

^ :�

T

1

b

S

(0;1)

�

T

1

! :�

T

1

b

S

J

�

T

1

^ :(:�

T

1

b

S

(0;1)

�

T

1

)! ⊖�T
1

_ :�

T

1

b

S

(0;r(J))

⊖ �

T

1
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{ � = �

J

�

1

with l(j) 6= 0. And thus r(J) =1 as � 2 EventClokTL

0;1

.

By a similar reasoning we obtain:

�

J

�

1

= ^ >

b

S

(0;1)

�

T

1

^ :�

T

1

b

S

(0;1)

�

T

1

! :�

T

1

b

S

J

�

T

1

^ :(:�

T

1

b

S

(0;1)

�

T

1

)! :�

T

1

b

S

[l(J);1)

(:�

T

1

^⊖�T
1

)

2

We now prove that the reverse property also holds:

Lemma 3.34 (MetriIntervalTL

0;1

� EventClokTL) For every formula �

of MetriIntervalTL

0;1

, there exists a ongruent formula �

T

of EventClokTL,

that is for every TSS � and every time t 2 R+

: (�; t) j= �

T

(t) i� (�; t) j= �.

Proof. We reason by indution on the struture of formulas. The interesting

formulas are the

b

U

I

and

b

S

I

ones. In the sequel of the proof, we use the

following usual abbreviations:

�

b♦
I

� = >

b

U

I

� ;

�
b
2

I

= :

b♦
I

:�.

With the abbreviations given in de�nition 3.12, we an rewrite any

b

U

I

-

formulas as:

� if l(I) = 0 then �

1

b

U

I

�

2

= �

1

b

U

(0;1)

�

2

^

b♦
I

�

2

;

� if I = (;1) then �

1

b

U

(;1)

�

2

=
b
2

(0;℄

(�

1

^ �

1

b

U

(0;1)

�

2

);

� if I = [;1) then �

1

b

U

[;1)

�

2

= ^
b
2

(0;)

�

1

^
b
2

(0;℄

((�

1

b

U

(0;1)

�

2

) _ �

2

)

;

Let us also note that :

�

b♦
(;1)

� =
b
2

(0;℄

b♦
(0;1)

� ;

�

b♦
[;1)

� =
b
2

(0;℄

(� _

b♦
(0;1)

�) ;

So the only formula that we have to be able to treat are �

1

b

U

(0;1)

�

2

,

b♦
J

�

1

and
b
2

J

�

1

with l(J) = 0, and these are translated into EventClokTL as

follows:

� �

1

b

U

(0;1)

�

2

= �

T

1

U(�

T

2

^ ⊖�T
1

), where ⊖�T
1

is the abbreviation for

?S�

T

1

, see de�nition ??;

�

b♦
J

�

1

= �

J

�

T

1

;

�
b
2

J

�

1

= :�

J

:�

T

1

.

The past temporal and real-time operators are treated symmetrially. This

onludes our proof for MetriIntervalTL

0;1

� EventClokTL. 2
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A diret onsequene of the two previous lemmas is the following theo-

rem:

Theorem 3.35 (EventClokTL = EventClokTL

0;1

= MetriIntervalTL

0;1

)

The logis EventClokTL, EventClokTL

0;1

andMetriIntervalTL

0;1

are equally

expressive.

We now turn to the omparison of the expressive power of EventClokTL

with regard to the expressive power of (full) MetriIntervalTL. A orol-

lary of lemma 3.33 is that MetriIntervalTL is at least as expressive as

EventClokTL. It ould be thought that MetriIntervalTL has a stritly more

expressive power than EventClokTL, but the following lemma and its proof,

surprisingly, establishes that every MetriIntervalTL-formula is expressible in

EventClokTL:

Lemma 3.36 (MetriIntervalTL � EventClokTL) For every formula � of

MetriIntervalTL, there exists a ongruent formula �

T

of EventClokTL, that

is for every TSS � and every time t 2 R+

: (�; t) j= �

T

i� (�; t) j= �.

Proof. As we have proved in lemma 3.34 thatMetriIntervalTL

0;1

� EventClokTL,

we are allowed to show thatMetriIntervalTL � (EventClokTL[MetriIntervalTL

0;1

)

and we have only to onsider formulas that are not in MetriIntervalTL

0;1

.

The interesting formulas of this fragment are of the form:

1. �

1

b

U

I

�

2

;

2. �

1

b

S

I

�

2

.

with l(I) 6= 0, r(I) 6= 1 and I non-singular. In the following, we only

onsider the future formulas, past formulas are treated symmetrially. We

�rst make a rewriting of those formulas to failitate the rest of the proof:

� �

1

b

U

I

�

2

with l(I) 62 I an be rewritten as the following onjuntion:

1.^
b
2

(0;l(I)℄

(�

1

^ �

1

b

U

(0;1)

�

2

)

2.^

b♦
I

�

2

� �

1

b

U

I

�

2

with l(I) 2 I an be rewritten as the following onjuntion:

1.^
b
2

I\(0;l(I))

�

1

2.^
b
2

(0;l(I)℄

((�

1

b

U

(0;1)

�

2

) _ �

2

)

3.^

b♦
I

�

2
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And as eah
b
2

I

� formula an be rewritten as :

b♦
I

:� formula, we have only

to onsider

b♦
I

� formulas.

Let us now show that every formula

b♦
I

� an be expressed in EventClokTL[

MetriIntervalTL

0;1

. We �rst rewrite those formulas as a disjuntion of for-

mulas where l(I) = a and r(I) = a + 1. In fat, we have the following

equivalene:

b♦
(a;b℄

� =

W

i=b�1

i=a

b♦
(i;i+1℄

�

This equivalene an be extended for all sorts of non-singular intervals

(open-losed). We show in the sequel that eah formula of the form

b♦
I

�,

with l(I) =  and r(I) =  + 1, an be expressed by an EventClokTL [

MetriIntervalTL

0;1

formula and thus, by lemma 3.34 by an EventClokTL

formula. The proof is by indution on the size of the onstant  that appear

in the onstraining interval.

� Base ase. When  = 0, the formula is inMetriIntervalTL

0;1

and thus

the base ase is trivially veri�ed.

� Indution ase. We now treat the ase for an arbitrary  2 N. By

indution hypothesis every formula of the form

b♦
I

�, with l(I) � � 1

and r(I) �  an be translated into EventClokTL. We treat the ase

b♦
(;+1)

� in details, the other ases, i.e. [; +1℄; [; +1); (; +1℄ are

treated in the same way. Here is the translation:

b♦
(;+1)

� = a._

b♦
[�1;)

�

=1

�

b._

b♦
(�1;)

�

=1

�

._
b
2

(�1;℄

b♦
(0;1)

�

We �rst prove that the impliation from left to right is valid. There

are two mutually exlusive situations to disriminate:

(1) In the �rst ase, either the distane between the last �-interval

in t+ (� 1; ℄ and the �rst �-interval in t+ (;  + 1) is greater

or equal to 1 or there is no �-interval in t+ [� 1; ). We further

distinguish two subases:

(1a) the �rst �

1

interval is left losed;

(1b) the �rst �

1

interval is left open;

(2) In the seond ase, the distane between the last �-interval in

t+ (� 1; ℄ and the �rst �-interval in t+ (; +1) is stritly less

then 1.

In ase 1: by the hypothesis that the distane between the �rst �-

interval in t+(; +1), noted F

�

, and the last �-interval in t+(�1; ℄,

noted L

�

is greater than 1, we infer that there exists t

1

2 t+ (� 1; ℄
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suh that (�; t

1

) j= �

=1

� if the interval I

�

is left-losed (1a) and

that (�; t

1

) j= �

=1

� if I

�

is left open (1b). Using the indution

hypothesis, we express this property with the

b♦
(�1;)

operator in the

�rst ase and with the

b♦
[�1;)

operator in the seond ase.

In ase 2: the distane between the last �-interval in t + ( � 1; ℄

noted L

�

and the �rst �-interval in t+ (;  + 1), noted F

�

is stritly

less than one. For all time t 2 (� 1; r(L

�

)),

b♦
(0;1)

� is veri�ed thanks

to �-positions in L

�

and for all time t 2 [r(L

�

); ℄,

b♦
(0;1)

� is veri�ed

thanks to �-positions in F

�

(as the distane is less than 1).

The other diretion is immediate. We must show that the three parts

of the disjuntion implies the MetriIntervalTL formula

b♦
(;+1)

�:

1.

b♦
[�1;)

�

=1

�. Clearly this formula asserts that there is a time

t

1

2 t + [;  + 1) suh that at a distane of 1 time unit � is

veri�ed, let us note this position t

2

= t

1

+ . So there is a left-

open �-interval at a distane of 1 + [ � 1; ) from t and thus as

this �-interval is left-open, we have that

b♦
(;+1)

� is veri�ed in

time t.

2.

b♦
(�1;)

�

=1

�. By the same reasoning but for a left-losed interval,

we establish that

b♦
(;+1)

� is veri�ed in time t;

3.
b
2

(�1;℄

b♦
(0;1)

�. This formula diretly implies that

b♦
(0;1)

� is veri-

�ed in time t+ . So there is a time t

1

2 t+ + (0; 1) where � is

veri�ed as t

1

2 t+ (;  + 1) we have that

b♦
(;+1)

� is veri�ed at

time t.

The equivalene between the two formula is proved. As the formula

b
2

(�1;℄

� is equivalent to the formula :

b♦
(�1;℄

:� and that the onstant

appearing in the left-end bound of the onstraining interval is stritly

less than , by indution hypothesis, the formula :

b♦
(�1;℄

:� an be

expressed in EventClokTL.

2

The last lemma together with the lemma 3.33 gives:

Theorem 3.37 (EventClokTL = MetriIntervalTL) The logis EventClokTL

and MetriIntervalTL are equally expressive.

Corollary 3.38 (All Equally Expressive) The logis EventClokTL, EventClokTL

0;1

,

MetriIntervalTL

0;1

, MetriIntervalTL and MinMaxML

1

are equally expres-

sive.
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That is, all the logis de�ne the same lass of real-time !-languages. We

all this lass the ounter-free !-regular real-time languages.

De�nition 3.39 (Class of !-Regular Real-Time Languages) The sets

of timed state sequenes de�nable by the logis EventClokTL, EventClokTL

0;1

,

MetriIntervalTL

0;1

,MetriIntervalTL andMinMaxML

1

form the lass of ounter-

free !-regular real-time languages.

3.5.3 Minimal Expressively Complete Fragments

In this setion, we identify minimal fragments that are fully expressive. We

show that in eah of the previously de�ned logis, we an restrit the use of

onstants to be only 0 or 1.

De�nition 3.40 (MetriIntervalTL

0;1

-Fragment) MetriIntervalTL

0;1

is the

fragment ofMetriIntervalTL that onsists of all formulas � suh that for eah

interval I appearing in �, we have l(I) = 0 and r(I) = 1. 2

Similarly,

De�nition 3.41 (EventClokTL

0;1

-Fragment) EventClokTL

0;1

is the frag-

ment of EventClokTL that onsists of all formulas � suh that for eah

interval I appearing in �, we have l(I) = 0 and r(I) = 1. 2

We have the following lemma:

Lemma 3.42 (MetriIntervalTL

0;1

� MetriIntervalTL

0;1

) For every formula

� of MetriIntervalTL

0;1

, there exists a ongruent formula �

T

of MetriIntervalTL

0;1

,

that is for every TSS � and every time t 2 R+

: (�; t) j= �

T

i� (�; t) j= �.

Proof. In the proof of lemma 3.34, we have shown that everyMetriIntervalTL

0;1

formula an be rewritten using only the following real-time formulas: �

1

b

U

(0;1)

�

2

and

b♦
J

�

1

with l(J) = 0. So all we need to onsider is formulas of the form

♦
<

�

1

, ♦
�

�

1

. We treat the ase ♦
<

�

1

, the other ases are treated similarly

and left to the reader. We reason by indution on the size of the onstant 

and make the hypothesis that we an e�etively onstrut the formula �

T

1

.

� Base ase:  = 1. Then ♦
<1

�

T

1

is already in MetriIntervalTL

0;1

.

� Indution ase:  > 1 and by indution hypothesis we an handle

formulas ♦
<d

�

T

1

, with 0 � d < . For ♦
<

�

1

, we take: ♦
<1

(♦
�1

�

1

)

T

,

whih by indution hypothesis, is in MetriIntervalTL

0;1

.

2
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As a onsequene of this lemma and orollary 3.38, we have the following

orollary:

Corollary 3.43 The logis MetriIntervalTL andMetriIntervalTL

0;1

are equally

expressive.

Lemma 3.44 (EventClokTL � EventClokTL

0;1

) For every formula � of

EventClokTL, there exists a ongruent formula �

T

of EventClokTL

0;1

, that

is for every TSS � and every time t 2 R+

: (�; t) j= �

T

i� (�; t) j= �.

Proof. In lemma 3.32, we have shown that EventClokTL � EventClokTL

0;1

.

Thus, we must show that �

�

�

1

with �2 f<;�;�; >g an be translated

into EventClokTL

0;1

. We treat �

�

�

1

and�

�

�

1

, the other ases are similar

and left to the reader.

� � = �

�

�

1

. We reason by indution on the size of .

{  = 1. In that ase �

�1

�

1

is an EventClokTL

0;1

formula.

{  > 1. By indution hypothesis, we an treat every formula of

EventClokTL

0;1

with a onstant d < . Then we take �

�

�

1

=

�

�1

(�

��1

�

1

)

T

.

� � = �

�

�

1

. Note that we an rewrite this formula as follows: :(�

<

�

1

)^

♦�
1

. By the previous ase, we know that we an transform �

<

�

1

into

an EventClokTL

0;1

formula.

2

A diret onsequent of the previous lemma and orollary 3.38, we have

the following orollary:

Corollary 3.45 The logis MetriIntervalTL, MetriIntervalTL

0;1

, MetriIntervalTL

0;1

,

EventClokTL, EventClokTL

0;1

and MinMaxML

1

are equally expressive.

4 The Regular Real-Time !-Languages

4.1 Introdution

In this setion, we will study automata that are losely related to the logi

of event loks. This lass of automata, alled the reursive event-lok

automata is study in details: we study its losure properties, deidability

results as well as expressiveness results. It will turn out that the lass

of language aepted by the reursive event-lok automata is exatly the

languages aepted by the logis of the previous setion when ability to ount
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is added. For this reason, we all the languages aepted by the reursive

event-lok automata the \(full) regular real-time languages". This lass of

languages is losed under all boolean operations.

4.2 Propositional Event-Clok Automata

An event-lok automaton is a speial ase of a timed automaton [AD94℄,

where the starting of loks is determined by the input instead of by the

transition relation. We �rst reall the original de�nition with event loks

assoiated to proposition [AFH94℄.

The value of propositional event loks in the ontinuous semantis will

be non standard reals, whih are de�ned as follows:

De�nition 4.1 (Non-Standard Reals) The set of non-standard (posi-

tive) reals, noted R+

ns

, is the set fv; v

+

j v 2 R+

g, ordered by <

ns

as follows:

v

1

<

ns

v

+

2

i� v

1

� v

2

where � is the usual order on real-numbers. 2

We are now equipped to de�ne the value of propositional event loks

along timed state sequenes.

De�nition 4.2 (Value of Event Cloks-Continuous Semantis) The

value of an propositional event lok z 2 C along a TSS �, at time t, noted

Val

�

(z; t) is de�ned by the following lauses:

Val

�

(x

p

; t) =

8

>

>

>

>

<

>

>

>

>

:

v if p 2 �(t� v); v > 0;

and for all v

0

, 0 < v

0

< v, not p 2 �(t� v

0

)

v

+

if for all v

0

> v, exists v

00

, v < v

00

< v

0

with p 2 �(t� v

00

);

and for all v

0

, 0 < v

0

� v, not p 2 �(t� v

0

)

? if for all v, 0 < v � t, not p 2 �(t� v)

Val

�

(y

p

; t) =

8

>

>

>

>

<

>

>

>

>

:

v if p 2 �(t+ v); v > 0,

and for all v

0

, 0 < v

0

< v, not p 2 �(t+ v

0

)

v

+

if for all v

0

> v, exists v

00

, v < v

00

< v

0

with p 2 �(t+ v

00

);

and for all v

0

, 0 < v

0

� v, not p 2 (t+ v

0

)

? if for all v > 0, not p 2 �(t+ v)

2

De�nition 4.3 (Atomi Event Clok Constraints) Given a set of (propo-

sitional) event loks C, the set of atomi lok onstraints is fz �  j z 2

C and  2 Ng. 2

Let us now show how the truth value of atomi event lok onstraints

is evaluated along a TSS:
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De�nition 4.4 (Clok Constraints Semantis) A atomi event lok

onstraints z �  is true at time t 2 R+

of the TSS �, noted (�; t) j= z � ,

i� Val

�

(z; t) � . 2

De�nition 4.5 (Propositional Event-Clok Automata) A propositional

event-lok automaton, in the ontinuous semantis, is a tupleA = (Q;Q

0

; Æ;P;A; �;Q

F

)

where:

Q is a �nite set of loations,

Q

0

� Q is the set of starting loations,

Æ � Q�Q is the transition relation,

P is a �nite set of propositional symbols,

A is a �nite set of atomi real-time onstraints over propositional

loks,

�: Q! 2

Limit(P[A)

is a funtion that labels eah loation with a

set of literals;

Q

F

� Q is a set of aepting loations.

2

Let us note that we label here the loations with set of literals. We ould

have deided to label loations with boolean ombinations of literals instead.

We just adopt this onvention beause it will slightly simplify some proofs

later but the expressive power would have been the same if we had hosen to

label with boolean ombinations of literals instead. We now de�ne formally

the notion of aepted timed run of a EventClokTA on a TSS �. Let � be a

timed state sequene whose propositional symbols ontain all propositions

in P.

De�nition 4.6 (Aepted Timed Run) The propositional event-lok au-

tomaton A aepts �, denoted Aept

A

(�), i� there exist an aepted in�nite

timed run � = (q; I) suh that the following onditions are met.

Covering The run � onsists of an in�nite sequene q of loations from Q,

and an in�nite interval sequene I that overs [0;1).

Starting The run starts in a starting loation, i.e. q

0

2 Q

0

.

Conseution The run respets the transition relation; that is, (q

i

; q

i+1

) 2 Æ

for all i � 0.

Constraints The timed state sequene respets the onstraints that are

indued by the run �; that is, �(t) j= �(�(t)) for all real times t 2

[0;1).

Aepting The run is B�uhi aepting, that is, there exist in�nitely many

i � 0 suh that q

i

2 Q

F

.
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2

Eah EventClokTA de�nes a real-time !-regular language:

De�nition 4.7 (Continuous Anhored Real-Time Language) The on-

tinuous anhored real-time language de�ned by an propositional event-lok

automaton A, noted AnLang(A) is the set of TSS on whih it has an a-

epted run, that is AnLang(A) = f� j Aept

A

(�)g.

Theorem 4.8 (Closure Properties) The formalism of propositional event-

lok automaton is (onstrutively) losed, in the ontinuous semantis, un-

der all boolean operations. 2

By slightly adapting the region onstrution presented in setion ??,

we an also onstrut, for eah EventClokTAA, a BA R

A

that aepts the

untimed A:

Theorem 4.9 (Region Automaton) For every (ontinuous) propositional

event lok A, we an onstrut a B�uhi automaton B with AnLang(B) =

f� j (�; I) 2 AnLang(A)g. Further the number of loations in B is linear

in the number of loations used in A, singly exponential in the number of

loks used in A and singly exponential in the size of the maximal onstant

used in A. 2

The last theorem and the losure properties of ontinuous propositional

event lok automata allow us to derive:

Theorem 4.10 (Emptiness and Universality of EventClokTA) The empti-

ness and universality problems for (propositional) event lok automata in

ontinuous semantis are deidable and PSpae-Complete. 2

Unfortunately, the propositional version of event-lok automata does

not subsume the logi EventClokTL.

Theorem 4.11 (EventClokTL 6� EventClokTA, EventClokTA 6� EventClokTL)

The expressive power of ontinuous EventClokTL and ontinuous Event-

ClokTA are inomparable.

Proof. The non inlusion of the EventClokTA-languages in the EventClokTL-

languages is as for the pointwise ase: the logi EventClokTL is not able

to express ounting properties. For the non inlusion of the EventClokTL-

languages in the EventClokTA-languages, we onsider the two TSS �

1

=

(�; I

1

) and �

2

= (�; I

2

) de�ned on the singleton fpg:

� the two TSS share the same qualitative information whih is as follows:

� = fgfgfpgfgfpgfpgfpg : : : , that is p is false in the two �rst observa-

tions, beomes true in the third observation, beomes false again in the

fourth observation and then true for ever from the �fth observation.
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� let us now onsider the two following sequenes of intervals:

1. I

1

= [0; 0℄(0:5; 0:5)[0:5; 0:5℄(0:5; 1)[1; 1℄(1; 1:5)[1:5; 1:5℄ : : : , that is

every interval I

1

i

with i even is singular and equal to [(i � 1) �

0:5; (i � 1)� 0:5℄;

2. I

2

= [0; 0℄(0:4; 0:4)[0:4; 0:4℄(0:4; 0:8)[0:8; 0:8℄(0:8; 1:2)[1:2; 1:2℄ : : : ,

that is every interval I

2

i

with i even is singular and equal to

[(i� 1)� 0:4; (i � 1)� 0:4℄;

It is easy to show that for every lok onstraint z �  that we an

build from the propositional prophey loks x

p

and y

p

, that we have

the following property: for every positions i � 0, for every t

1

1

; t

1

2

2 I

1

1

,

for every t

2

1

; t

2

2

2 I

1

1

, we have that: (�

1

; t

1

1

) j= z �  i� (�

1

; t

1

2

) j= z � 

i� (�

2

; t

2

1

) j= z �  i� (�

2

; t

2

2

) j= z � . As the two timed state

sequenes are alternating, we have the same property for every atom

build from propositions and atomi lok onstraints. And thus every

EventClokTA either aepts or rejets the two TSS. On the order

hand, the EventClokTL formula � = �

=1

2p is true in time t = 0 of

the �rst TSS but false in t = 0 of the seond. As a onsequene, no

EventClokTA an express the property expressed by the EventClokTL

formula �.

2

This result motivates the following extension. We extend the use of event

loks: propositional event loks are loks that an only be assoiated to

propositional symbols, here we show that we an assoiate event loks with

automata reursively. The formalism that we obtain is alled the reursive

event-lok automata. Those reursive automata keep all nie properties of

their propositional version: losure under all boolean operations and both

emptiness and universality problems are deidable. Further, we will show

that ontrary to propositional event-lok automata, reursive event-lok

automata are able to express all EventClokTL-expressible properties.

4.3 Reursive Event-Clok Automata

We now generalize the use of loks to de�ne our reursive event-lok au-

tomata, noted REventClokTA. An automaton A aepts (or rejets) a given

pair (�; t) that onsists of a timed state sequene � and a time t 2 R+

.

The automaton is started at time t and views the \past" of the input se-

quene � by exeuting a bakward transition relation, and the \future" by

exeuting to a forward transition relation. If A aepts the pair (�; t), we

say that A aepts � at time t. This allows us to assoiate a history lok

and a prophey lok with eah automaton. The history lok x

A

always

32



shows the amount of time that has expired sine the last time at whih A

aepted �, and the prophey lok y

A

always shows the amount of time

that will expire until the next time at whih A will aept �. This de�nition

of event-lok automata is reursive. The base automata, whose transition

relations are not onstrained by loks, are alled oating automata, FloatA

for short. Formally,

De�nition 4.12 (FloatA) A oating automaton is a tupleA = (Q;Q

0

; Æ

f

; Æ

b

;P; �;Q

F

f

; Q

F

b

)

suh that

Q is a �nite set of loations,

Q

0

� Q is the set of starting loations,

Æ

f

� Q�Q is the forward transition relation,

Æ

b

� Q�Q is the bakward transition relation,

P is a �nite set of propositional symbols,

�: Q ! 2

Limit(P)

is a funtion that labels eah loation with a

set of literals over the set of propositions P;

Q

F

f

� Q is a set of forward aepting loations, and

Q

F

b

� Q is a set of bakward aepting loations.

2

Note that we have hosen to label loations with the set of literals that

are true when the ontrol reside in the loation. We have done this hoie

beause it will slightly simplify some proofs later. But for spei�ation

onveniene, we ould have hosen, with no e�et on the property of our

reursive event-lok automata, to label loations with boolean formulas

built from those literals. We will use those boolean formulas when illus-

trating the use of reursive event-lok automata for speifying real-time

properties. Examples will be more readable with this onvention.

We now de�ne the notion of aepted timed run for oating automata

on a pair (�; t).

De�nition 4.13 (FloatA-Aepted Run) Let � be a timed state sequene

whose propositional symbols ontain all propositions in P. The oating au-

tomaton A aepts � at time t 2 R+

, denoted Aept

A

(�; t), i� there exist

an in�nite forward timed run �

f

= (q

f

; I

f

) and a �nite bakward timed run

�

b

= (q

b

; I

b

) suh that the following onditions are met. We note �(t) the

loation in whih the run resides at time t 2 R+

.

Covering The forward run �

f

onsists of an in�nite sequene q

f

of loations

from Q, and an in�nite interval sequene I that overs [t;1). The

bakward run �

b

onsists of a �nite sequene q

b

of loations and a

�nite interval sequene I

b

, of the same length as q

b

, whih overs [0; t℄.

33



Starting The forward and bakward runs start in the same starting loa-

tion; that is, �

f

(t) = �

b

(t) and �

f

(t) 2 Q

0

.

Conseution The forward and bakward runs respet the orresponding

transition relations; that is, (q

f

i

; q

f

i+1

) 2 Æ

f

or q

f

i

= q

f

i+1

(stuttering)

for all i � 0, and (q

b

i

; q

b

i�1

) 2 Æ

b

or q

b

i

= q

b

i�1

(stuttering) for all

0 < i < jq

b

j.

Constraints The timed state sequene respets the onstraints that are

indued by the forward and bakward runs; that is, (�; t

0

) j= �(�

f

(t

0

))

for all real times t

0

2 [t;1), and (�; t

0

) j= �(�

b

(t

0

)) for all real times

t

0

2 [0; t℄.

Aepting The forward run is B�uhi aepting and the bakward run ends

in an bakward aepting loation; that is, there exist in�nitely many

i � 0 suh that q

f

i

2 Q

F

f

, and q

b

0

2 Q

F

b

.

2

Example 4.14 (A Floating Automaton) The simple oating automa-

ton A of �gure 2 has the following elements:

� loation q

1

is the starting loation of A;

� its forward transition relation (plain arrows) allows the ontrol to

evolve from loation q

1

to loation q

2

and to loop in loation q

2

;

� its bakward transition relation (dashed arrows) allows the ontrol to

reah loation q

0

from loation q

1

and afterwards to loop in loation

q

0

;

� loation q

0

is bakward aepting (double irle dashed) and loation

q

2

is forward aepting (double irle);

� its labels are as follows: in loation q

1

, the literal

�!

p must hold, it

means that p must be true just after the time at whih the automaton

is started (but not neessary at the time the automaton is started);

when the ontrol resides in loation q

2

, the proposition p must be

true; when the ontrol is in loation q

1

, no onstraint are imposed

(the loation is labeled with the literal >).

Following the rules given in de�nition 4.13, it is not diÆult to see the oat-

ing automaton A aepts exatly the pairs (�; t) suh that p is always true

just after t, that is the pairs where the EventClokTL formula 2p evaluates

positively, i.e. (�; t) j= 2p.

We are now in position to de�ne the notion of reursive automaton of

level i:
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q

1

q

2

>

�!

p p

q

0

Figure 1: Floating Automaton A.

De�nition 4.15 (REventClokTA) A reursive event-lok automaton of level

i 2 N is a tuple A = (Q;Q

0

; Æ

f

; Æ

b

;P;A; �;Q

F

f

; Q

F

b

) that has the same om-

ponents as a oating automaton plus a set of atomi lok onstraints A over

the set of level

i

loks, noted �

i

, that an be used by the labeling funtion �:

Q ! 2

Limit(P[A)

that labels eah loation with a set of literals over propo-

sitions and level

i

lok onstraints. The set �

i

of level-i lok onstraints

ontains all atomi formulas of the form x

B

�  and y

B

� , where B is

a reursive event-lok automaton of level less than i whose propositions

are ontained in P, where  is a nonnegative integer onstant, and where

�2 f<;�;=;�; >g. The lok x

B

is alled the history lok of automaton

B, and the lok y

B

, the prophey lok of automaton B. 2

In partiular, the set of level

0

lok onstraints is empty, and thus the

level

0

event-lok automata are the oating automata. The level

1

lok on-

straints are the lok onstraints built using event loks assoiated with

oating automata...

De�nition 4.16 (Subautomata) If A ontains a onstraint on x

B

or y

B

,

we say that B is a subautomaton of A. We use the notation SUB(A) to

denote the set of subautomata used in A or reursively, in a subautomaton

of A.

The de�nition of when the reursive event-lok automaton A of level i

aepts a timed state sequene � at time t is as for oating automata, only

that we need to de�ne the satisfation relation (�; t) j= (z � ) for every

time t 2 R+

and every level

i

lok onstraint (z � ) 2 �

i

. The rules for

evaluating the truth value of a lok onstraint are as in the propositional

ase. We only need to de�ne the value of reursive event loks. This is

done as follows.

De�nition 4.17 (Reursive Event-Clok Value) The value of a reur-

sive event-lok z

B

2 C with level(z

A

) = 1 along a TSS �, at time t, noted

Val

�

(z

A

; t) is de�ned by the following lauses:

Val

�

(x

B

; t) =
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8

>

>

>

>

<

>

>

>

>

:

v if Aept

B

(�; t� v); v > 0;

and for all v

0

, 0 < v

0

< v, not Aept

B

(�; t� v

0

)

v

+

if for all v

0

> v, exists v

00

, v < v

00

< v

0

with Aept

B

(�; t� v

00

);

and for all v

0

, 0 < v

0

� v, not Aept

B

(�; t� v

0

)

? if for all v, 0 < v � t, not Aept

B

(�; t� v)

Val

�

(y

B

; t) =

8

>

>

>

>

<

>

>

>

>

:

v if Aept

B

(�; t+ v); v > 0,

and for all v

0

, 0 < v

0

< v, not Aept

B

(�; t+ v

0

)

v

+

if for all v

0

> v, exists v

00

, v < v

00

< v

0

with Aept

B

(�; t+ v

00

);

and for all v

0

, 0 < v

0

� v, not Aept

B

(�; t+ v

0

)

? if for all v > 0, not Aept

B

(�; t+ v)

where Aept

B

(�; t) is as in de�nition 4.13. The reursive ase is treated

as follows. By indution hypothesis, Aept

B

(�; t) is de�ned for every au-

tomaton B of level

j

, with 0 � j < i, the value of reursive lok of level i is

simply:

Val

�

(x

B

; t) =

8

>

>

>

>

<

>

>

>

>

:

v if Aept

B

(�; t� v); v > 0;

and for all v

0

, 0 < v

0

< v, not Aept

B

(�; t� v

0

)

v

+

if for all v

0

> v, exists v

00

, v < v

00

< v

0

with Aept

B

(�; t� v

00

);

and for all v

0

, 0 < v

0

� v, not Aept

B

(�; t� v

0

)

? if for all v, 0 < v � t, not Aept

B

(�; t� v)

Val

�

(y

B

; t) =

8

>

>

>

>

<

>

>

>

>

:

v if Aept

B

(�; t+ v); v > 0,

and for all v

0

, 0 < v

0

< v, not Aept

B

(�; t+ v

0

)

v

+

if for all v

0

> v, exists v

00

, v < v

00

< v

0

with Aept

B

(�; t+ v

00

);

and for all v

0

, 0 < v

0

� v, not Aept

B

(�; t+ v

0

)

? if for all v > 0, not Aept

B

(�; t+ v)

2

>

q

2

q

0

q

1

>y

A

= 3

Figure 2: Reursive Event-Clok Automaton B.

Example 4.18 (A Reursive Event-Clok Automaton) Let us onsider

MEventClokTA of �gure 2. As q

0

is the starting loation of B, if B aepts
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(�; t) then the �rst following time that A is aepting � after time t is at time

t + 3. So the automaton B expresses exatly the semantis of the formula

�

=3

2p.

For our reursive event-lok automata, we de�ne two notions of timed

languages: the anhored language and the oating language. The anhored

real-time language is the traditional notion when the oating real-time lan-

guage apture the notion of oating aeptane. The two types of real-time

languages are de�ned formally as follows:

De�nition 4.19 (REventClokTA-Languages) A reursive event-lok au-

tomaton A de�nes the oating timed language f(�; t) j Aept

A

(�; t)g, that

is, the oating language of A is the set of pairs (�; t) that it aepts; we note

FloatLang(A) the oating real-time language de�ned by A. Furthermore, A

de�nes the anhored language f� j Aept

A

(�; 0)g that is the set of TSS that

A aepts at time 0; we note AnLang(A) the anhored language de�ned by

A. 2

The expressive power of reursive event-lok automata will be measured

in term of its ability to de�ne anhored real-time languages but the oating

real-time languages are important in the proofs.

In what follows, we use two notions of equivalene for automata:

De�nition 4.20 (Equivalent and Congruent Automata) Two reur-

sive event-lok automata are equivalent if they de�ne the same anhored

language and they are ongruent if they de�ne the same oating language.

2

Let us note that the notion of ongruene is stronger than the notion

of equivalene, that is: two ongruent automata are equivalent but two

equivalent automata are not neessarily ongruent.

In the proofs of the following setion, we will need the following notion.

As for timed state sequenes, we de�ne a notion of re�nement for forward

and bakward timed runs:

De�nition 4.21 (Run Re�nement) A forward (resp. bakward) timed

run �

2

= (q

2

; I

2

) is a re�nement of a forward (resp. bakward) timed run

�

1

= (q

1

; I

1

) i� there exists a surjetive funtion f : N! N suh that:

� for all positions j with 0 � j < j�

2

j, q

2

j

= q

1

f(j)

;

� for all positions 0 � i < j�

1

j, I

1

i

=

S

fI

2

j

j f(j) = ig

where j�j denotes the length of �, whih is a �nite natural number in the

ase of a bakward timed run and 1 in the ase of a forward timed run. 2
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In what follows, we need the following lemma, whih is a diret onse-

quene of the possibility to take stuttering steps in timed runs:

Lemma 4.22 (Run Re�nable) If �

f

1

and �

b

1

are aepted forward and

bakward timed runs of A on the TSS � at time t 2 R+

then all forward and

bakward timed runs �

f

2

, �

b

2

suh that �

f

2

re�nes �

f

1

and �

b

2

re�nes �

b

1

,

are timed aepted runs of A on the TSS � at time t 2 R+

. 2

4.4 Closure Properties of Reursive Event-Clok Automata

We now analyze the properties of our reursive event-lok automata. In

order to enhane the readability of the proofs, we �rst de�ne a variant of

the de�nition of reursive event-lok automata given above. We all this

variant \monitored reursive event-lok automata", noted MEventClokTA.

In those automata, the forward and bakward transition relations are re-

plaed by a unique transition relation and the notion of oating aeptane

is handled with a set of loations that we all monitored. We de�ne formally

the monitored event-lok automata and prove that their expressive power

in term of anhored as well as oating languages, is equal to the expressive

power of reursive event-lok automata. Again, we �rst de�ne the base

ase.

De�nition 4.23 (Monitored Floating Automata) A monitored oat-

ing automaton is a tuple A = (Q;Q

0

; Q

M

; Æ;P; �;Q

F

) where:

Q is a �nite set of loations,

Q

0

� Q is the set of starting loations,

Q

M

� Q is the set of monitored loations,

Æ � Q�Q is the transition relation,

P is a �nite set of propositional symbols,

�: Q ! 2

Limit(P)

is a funtion that labels eah loation with a

set of literals over propositions;

Q

F

� Q is a set of aepting loations (B�uhi ondition).

2

We now de�ne when an monitored oating automaton aepts a timed

state sequene � at time t.

De�nition 4.24 (Monitored Timed Run) Amonitored oating automa-

ton A = (Q;Q

0

; Q

M

; Æ;P; �;Q

F

) aepts the the timed state sequene � at

time t, noted Aept

A

(�; t) i� there exists a timed run � = (q

0

; I

0

); (q

1

; I

1

); : : : ; (q

n

; I

n

); : : :

suh that:

Covering The run � over the entire real time line, i.e. [

i

I

i

= [0;1);
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Starting The run � starts in a starting loation of A, that is q

0

2 Q

0

;

Monitoring The run � is in a monitored loation at time t, i.e. �(t) 2 Q

M

;

Conseution The run � respets the transition relation of A, i.e. for all i

suh that 1 � i, we have (q

i

; q

i+1

) 2 Æ or q

i

= q

i+1

;

Constraints The TSS � respets the onstraints indued by the timed run;

that is for all time t 2 [0;1) we have that (�; t) j= �(�(t));

Aepting The run � has in�nitely many positions in the set of aepting

loations, that is there exists in�nitely many i � 0 suh that q

i

2 Q

F

(B�uhi aeptane ondition).

We all suh run � an t-monitored and aepted run of A on �, noted

Aept

A

(�; t). 2

We all the monitored oating automata, level

0

monitored reursive

event-lok automata. A reursive monitored event-lok automaton of level

i

has the ability to use lok assoiated reursively to automata of level

j

, with

0 � j < i. Formally,

De�nition 4.25 (Monitored Reursive Automata) Amonitored reur-

sive event-lok automaton of level i is a tupleA = (Q;Q

0

; Q

M

; Æ;P;A; �;Q

F

)

suh that

Q is a �nite set of loations,

Q

0

� Q is the set of starting loations,

Q

M

� Q is the set of monitored loations,

Æ � Q�Q is the transition relation,

P is a �nite set of propositional symbols,

A is a �nite set of atomi lok onstraints over loks of at most

level i,

�: Q! 2

Limit(P[A)

is a funtion that labels eah loation with a

set of literals over propositions and level-i lok onstraints;

Q

F

� Q is a set of aepting loations (B�uhi ondition).

2

The de�nition of when a reursive monitored automata aepts a TSS �

at a given time t 2 R+

is as expeted. We now show that the variant that we

have de�ned is exatly as expressive as the reursive event-lok automata

for de�ning oating languages (and thus also anhored languages):

Lemma 4.26 (REventClokTA � MEventClokTA) For every reursive event-

lok automata A, we an onstrut a monitored reursive event-lok au-

tomata B that aepts exatly the same oating language.
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Proof. Our proof is onstrutive. We de�ne a funtion T : REventClokTA!

MEventClokTA that given a reursive event-lok automaton A returns a

monitored event-lok automaton B that aepts the same oating lan-

guage. In the following, we apply T to a reursive event-lok automaton

A = (Q

A

; Q

A

0

; Æ

A

f

; Æ

A

b

;P

A

; �

A

; Q

A

F

f

; Q

A

F

b

), it returns a monitored event-lok

automaton B.

� Base ase. Let us �rst treat the basi ase where A is a oating

automaton. Then B = (Q

B

; Q

B

0

; Q

B

M

; Æ

B

;P

B

; �

B

; Q

B

F

) is a monitored

oating automaton with the following elements:

{ Loations. The set of loations Q

B

= Q

A

� fb; f; bfg, i.e. we

take three opies of eah loations of A and tag the �rst with b,

the seond with f and the third with bf . The loations tagged

with b will be used to mimi the bakwards runs, the loations

tagged with f will be used to mimi the forward runs and, �nally,

the loations tagged with bf will be used to make the interfae

between forward and bakward runs.

{ Starting loations. The set Q

B

0

= f(q; b); (q; bf)jq 2 Q

A

F

b

g, of

starting loations of the monitored automaton B are the �nal

loations for the bakward runs of the automaton A tagged with

either b or bf .

{ Monitored loations. The set of monitored loationsQ

M

= f(q; bf) j

q 2 Q

A

0

g, that is the set of monitored loations are loations that

are the interfae between bakward and forward runs;

{ Transition relation. The transition relation Æ

B

of B is the union

of the four following sets:

1. f[(q

1

; b); (q

2

; b)℄ j (q

2

; q

1

) 2 Æ

A

b

g, i.e. two loations tagged

with b are linked by the transition relation in B if they are

linked by the bakward transition relation in A; we reverse

the diretion of the transition as we are working with a for-

ward transition relation in B;

2. f[(q

1

; f); (q

2

; f)℄ j (q

1

; q

2

) 2 Æ

A

f

g, i.e. two loations tagged

with f are linked by the transition relation in B if they are

linked by the forward transition relation in A;

3. f[(q

1

; bf); (q

2

; f)℄ j (q

1

; q

2

) 2 Æ

A

f

or q

1

= q

2

g, i.e. if the ontrol

of B is in a loation tagged with bf , it an only evolve to

loations tagged with f using the forward transition relation

of A or evolve to the same loation but tagged with f ;

4. f[(q

1

; b); (q

2

; bf)℄ j (q

2

; q

1

) 2 Æ

A

b

or q

1

= q

2

g, i.e. if the ontrol

of B is in a loation tagged with b, it an only evolve to

loations tagged with bf by using the inverse of the bakward

transition relation of A or it an evolve to the same loation

but tagged with bf ;
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{ Propositions. The set of propositions used by B is the same set

of propositions used by A, i.e. P

B

= P

A

;

{ Labeling funtion. The labeling of loation (q;�) in B is the same

as the labeling of q in A, that is for all (q;�) 2 Q

B

, �

B

((q;�)) =

�

A

(q);

{ Aeptane ondition. The aeptane ondition of B is de�ned

by the following set of aepting loations: f(q; f) j q 2 Q

A

F

f

g,

that is the same aeptane ondition that the one for forward

run in A.

Now let us prove that the oating language de�ned by the monitored

oating automaton B is equal to the oating language de�ned by the

oating automaton A.

{ First, let us prove that if (�; t) 2 FloatLang(A) then (�; t) 2

FloatLang(B).

If (�; t) 2 FloatLang(A) then we know that there exists an a-

epted bakward run �

b

= (q

b

0

; I

b

0

)(q

b

1

; I

b

1

) : : : (q

b

n

; I

b

n

) and an a-

epted forward run �

f

= (q

f

0

; I

f

0

)(q

f

1

; I

f

1

) : : : (q

f

n

; I

f

n

) : : : , further-

more we know that the bakward run ends at time t while the

forward run begins at time t and that q

b

n

= q

f

0

. Without loss

of generality, see lemma 4.22, we an make the hypothesis that

I

b

n

and I

f

n

are equal to [t; t℄. Now, we de�ne the run � as the

onatenation of the three following sequenes:

� �

1

= ((q

b

0

; b); I

b;0

)((q

b

1

; b); I

b

1

) : : : ((q

b

n�1

; b); I

b

n�1

). Intuitively,

�

1

is the translation of the bakward run in the b-tagged

loations of B;

� �

2

= ((q

f

0

; bf); [t; t℄). �

2

is just the loation that makes the

link between the part orresponding to the bakward run at

time t;

� �

3

= ((q

f

1

; f); I

f

1

)((q

f

2

; f); I

f

1

) : : : ((q

f

n

; f); I

f

n

) : : : . Intuitively,

�

3

is the translation of the forward run in the f -tagged loa-

tions of B.

We now have to prove that the run � = �

1

� �

2

� �

3

is e�etively

an t-monitored aepted run for � on B. For that, we hek that

� has the property of suh a run:

� Monitoring. By onstrution of �, we have �(t) = (q

f

0

; bf).

As q

f

0

is the �rst loation of the forward run �

f

, we know that

q

f

0

2 Q

A

0

whih implies, by de�nition of Q

B

M

that (q

f

0

; bf) 2

Q

B

M

and thus � is monitored at time t;

� Conseution. We show that the onseution rule is veri�ed

for the 3 onstituting part �

1

; �

2

; �

3

of �:
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� within �

1

: let us onsider the loations (q

b

i

; b); (q

b

i+1

; b).

By the onseution ondition for A, we know that either

(q

b

i+1

; q

b

i

) 2 Æ

A

b

or q

b

i+1

= q

b

i

. The seond ase is trivial. In

the �rst ase, by onstrution of B, we obtain by point

1 of the de�nition of the transition relation of B that

[(q

b

i

; b); (q

b

i+1

; b)℄ 2 Æ

B

and thus the onseution ondition

is veri�ed for �

1

;

� between �

1

and �

2

: we must show that [(q

b

n�1

; b); (q

f

0

; bf)℄ 2

Æ

B

. We know that either q

b

n

= q

f

0

(in the ase of a stut-

tering step) or (q

f

0

; q

b

n

) 2 Æ

A

B

. In the two ases, we know

that [(q

b

n�1

; b); (q

f

0

; bf)℄ 2 Æ

B

by point 4 of the de�nition

of Æ

B

.

� We leave the two last ases, i.e. between �

2

and �

3

and

within �

3

, for the reader, there are treated in the same

way as the two �rst ases.

� Constraints. By the de�nition of �

B

and the onstrution

of our run, it is easy to show that the onstraints indued

by � at eah time t are exatly the same as the onstraints

indued by the bakward and forward runs �

b

and �

f

. Thus

the onstraint ondition is satis�ed along � as the onstraint

is satis�ed for the bakward and the forward runs.

� Aepting. We know that the forward run �

f

= (q

f

0

; I

f

0

); (q

f

1

; I

f

1

); : : :

respets the aepting ondition imposed by A, that is there

exists in�nitely many positions i � 0 suh that q

f

i

2 Q

A

F

.

By onstrution � ontains for eah of those q

f

i

a position

(q

f

i

; f), whih belongs to Q

B

F

by onstrution. And thus � is

aepting.

{ Seond, let us prove that if (�; t) 2 FloatLang(B) then (�; t) 2

FloatLang(A). We know that there exists a t-monitored aepting

run for � on B. If we inspet the transition struture of automa-

ton B, it is not diÆult to see that the following property holds: a

t monitored and aepted run must �rst traverse loation tagged

with b, reahes at time t a loation tagged with bf and after this

time t stays within loations tagged with f . We note suh a run

� = ((q

0

; b); I

0

)((q

1

; b); I

1

) : : : ((q

n�1

; b); I

n�1

)((q

n

; bf); I

n

)((q

n+1

; f); I

n+1

) : : : ,

with t 2 I

n

. Without lose of generality, we an impose that

I

n

= [t; t℄, sine our automata are losed under stuttering re�ne-

ment. Now, let us show how to onstrut a bakward run �

b

and

a forward run �

f

from this run �:

� we take �

b

= ((q

0

; b); I

0

)((q

1

; b); I

1

) : : : ((q

n

; b); I

n

);

� and �

f

= ((q

n

; bf); I

n

)((q

n+1

; f); I

n+1

)((q

n+2

; f); I

n+2

) : : :
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It is routine to show that the onstruted runs respet the on-

ditions that allows us to onlude that (�; t) 2 FloatLang(A).

� Indutive ase. By indution hypothesis, we know that for every

REventClokTA C of level

j

, with 0 � j < i, we an onstrut a MEvent-

ClokTA D that aepts exatly the same oating language. In the se-

quel, we use the notation T (C) to represent that ongruent automaton.

Let us show that we an onstrut an ongruent MEventClokTA B for

every REventClokTA A of level

i

. The onstrution is similar to the

one for the base ase, exept that we must handle properly real-time

onstraints and the labeling funtion. We detail those points:

{ Atomi real-time onstraints. The set of atomi real-time on-

straints used in B is as follows: fz

T (C)

�  j z

C

�  2 A

A

g.

{ Labeling funtion. The labeling funtion of B is as for A ex-

ept that eah atomi real-time onstraint z

C

�  is replaed by

z

T (C)

� .

The proof for the equivalene of oating languages is similar to the

one for the base ase.

2

We also have the reverse lemma:

Lemma 4.27 (MEventClokTA � REventClokTA) For every monitored re-

ursive event-lok automata A, we an onstrut a reursive event-lok

automata B that aepts exatly the same oating language.

Proof. This diretion is simpler. We only treat the base ase. The indution

ase is left to the reader. Let us onsider a monitored oating automa-

ton A = (Q

A

; Q

A

0

; Q

A

M

; Æ

A

;P

A

; �

A

; Q

A

F

), we onstrut a ongruent oating

automaton B = (Q

B

; Q

B

0

; Æ

B

f

; Æ

B

b

;P

B

; �

B

; Q

B

F

f

; Q

B

F

b

) as follows:

� Loations. The set of loations Q

B

is the same as in A, i.e. Q

B

= Q

A

;

� Starting loations. The set of starting loation in B are the monitored

loations of A, i.e. Q

0

= Q

M

;

� Forward and bakward transition relations. The forward transition re-

lation of B is the transition relation of A, and the bakward transition

relation of B is the inverse of the transition relation of A, that is

Æ

B

f

= f(q

1

; q

2

) j (q

1

; q

2

) 2 Æ

A

g and Æ

A

b

= f(q

2

; q

1

) j (q

1

; q

2

) 2 Æ

A

g;

� Propositions. The set of propositions used by B is similar to the set

of propositions used by A, i.e. P

B

= P

A

;
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� Labeling funtion. The labeling funtion of B is as for A, that is for

all loations q 2 Q

B

, �

B

(q) = �

A

(q);

� Forward and bakward aepting loations. The forward aepting lo-

ations of B are the aepting loations of A, that is Q

B

F

f

= Q

A

F

, and

the bakward aepting loations of B are the initial loations of A,

i.e. Q

B

F

b

= Q

A

0

.

It is routine to prove that the onstruted automaton B aepts the same

oating language as A. 2

This two last lemmas allow us to derive the theorem:

Theorem 4.28 (REventClokTA = MEventClokTA) The lass of reursive

event-lok automata and monitored reursive event-lok automata are equally

expressive.

Now, we will onentrate on properties of monitored reursive event-

lok automata. We will simply derive the appropriate orollaries for reur-

sive event-lok automata.

4.4.1 Closure under Positive Boolean Operations

Let us now prove two �rst result about the losure property of monitored

reursive event-lok automata: they are losed under positive boolean op-

erations, i.e. losed under union and intersetion.

Theorem 4.29 (MEventClokTA-Union) Given two monitored reursive

event-lok automata A and B de�ned on the same set of propositions, there

always exists a third monitored reursive event-lok automaton C that a-

epts exatly the union of the timed oating languages of A and B, i.e.

FloatLang(C) = FloatLang(A) [ FloatLang(B).

Proof. The proof is onstrutive. Let A and B be MEventClokTA, we on-

strut the MEventClokTAC that aepts the union of the oating languages

of A and B as follows:

� Loations. The set of loations of C are the tuples (q;�) suh that

1. either q 2 Q

A

, � 2 Limit(P

C

[A

C

) and for all � 2 Limit(P

A

[A

A

):

� 2 � i� � 2 �

A

(q), whih will ensure the oherene of the

labeling of (q;�) with the labeling of q in A,

2. or q 2 Q

B

, � 2 Limit(P

C

[A

C

) and for all � 2 Limit(P

B

[A

B

):

� 2 � i� � 2 �

B

(q), whih will ensure the oherene of the

labeling of (q;�) with the labeling of q in B.
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� Starting loations. The subset of starting loations of C is the following

set Q

C

0

= f(q;�) 2 Q

C

j q 2 Q

A

0

or q 2 Q

B

0

g.

� Monitored loations. The subset of monitored loations of C is the

following set: Q

C

M

= f(q;�) 2 Q

C

j q 2 Q

A

M

or q 2 Q

B

M

g;

� Transition relation. The transition relation of C is the following subset

of Q

C

�Q

C

: Æ

C

= f[(q

1

;�

1

); (q

2

;�

2

)℄ j (q

1

; q

2

) 2 Æ

A

or (q

1

; q

2

) 2 Æ

B

g;

� Propositions and atomi lok onstraints. The propositions in C

are as in A, the atomi lok onstraints used in C is the union of

the atomi lok onstraints used in A and B, that is P

C

= P

A

=

P

B

,A

C

= A

A

[A

B

;

� Labeling funtion. The label of the loation (q;�) is simply the set of

literals �: �

C

((q;�)) = �, for every (q;�) 2 Q

C

.

� Aepting loations. The aepting ondition for C is the union of the

aepting ondition for A and B, that is Q

C

F

= f(q;�) j q 2 Q

A

F

or q 2

Q

B

F

g;

It is diret to show that the onstruted automaton aepts the desired

oating language. 2

By the equivalene between monitored and non monitored reursive

event lok automata, see theorem 4.28, we have the following orollary:

Corollary 4.30 (REventClokTA-union) Given two reursive event-lok

automata A and B de�ned on the same set of propositions, there always

exists a third reursive event-lok automaton C that aepts exatly the

union of the oating real-time languages of A and B, i.e. FloatLang(C) =

FloatLang(A) [ FloatLang(B).

We now turn to the losure of MEventClokTA to intersetion. The

following theorem states that MEventClokTA are losed under intersetion:

Theorem 4.31 (MEventClokTA-Intersetion) Given two monitored re-

ursive event-lok automata A and B de�ned on the same set of proposi-

tions, there always exists a third monitored reursive event-lok automaton

C that aepts exatly the intersetion of the oating real-time languages of

A and B, i.e. FloatLang(C) = FloatLang(A) \ FloatLang(B).

Proof. Let A and B, we onstrut C that aepts the intersetion of the

timed oating languages of A and B as follows:
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� Loations. The set of loations of C are the tuples (q

a

; q

b

) suh that

q

a

2 Q

A

, q

b

2 Q

B

and for all literals � 2 Limit(P

A

[A

A

)\Limit(P

B

[

A

B

), � 2 �

A

(q

a

) i� � 2 �

B

(q

b

). So the set of loations of C is the set

of pairs of loations of A and B that have ompatible labels.

� Starting loations. The set of starting loations of C is the following

set Q

C

0

= f(q

a

; q

b

) 2 Q

C

j q

a

2 Q

A

0

and q

b

2 Q

B

0

g;

� Monitored loations. The set of monitored loations of C is the follow-

ing subset of Q

C

: Q

C

M

= f(q

a

; q

b

) 2 Q

C

j q

a

2 Q

A

M

and q

b

2 Q

B

M

g;

� Transition relation. The transition relation of C is the following sub-

set of Q

C

� Q

C

: Æ

C

= f[(q

a

1

; q

b

1

); (q

a

2

; q

b

2

)℄ j (q

a

1

; q

a

2

) 2 Æ

A

_ (q

a

1

=

q

a

2

) and (q

b

1

; q

b

2

) 2 Æ

B

_ (q

b

1

= q

b

2

)g;

� Propositions and Atomi real-time onstraints. The set of propositions

used in C is the set of propositions used in A and B, the set of atomi

real-time onstraints is the union of the sets used in A and B, that is

P

C

= P

A

= P

B

,A

C

= A

A

[A

B

;

� Labeling funtion The atom that labels a loation (q

a

; q

b

) of C is the

union (giving the onjuntion of onstraints) of the label of q

a

in A

and the label of q

b

in B (remember that by de�nition (q

a

; q

b

) have

ompatible labels), that is �

C

((q

a

; q

b

)) = �

A

(q

a

) [ �

B

(q

b

), for every

(q

a

; q

b

) 2 Q

C

;

� Aepting loations. For the aepting ondition, we de�ne a general-

ized B�uhi ondition: Q

C

F

= fF

A

; F

B

g, with F

A

= f(q

a

; q

b

) j q

a

2 Q

A

F

g

and F

B

= f(q

a

; q

b

) j q

b

2 Q

B

F

g. This generalized B�uhi aeptane

ondition an be onverted into a B�uhi aeptane ondition using

the usual tehnique. This osts only a doubling of the number of

loations.

It is diret to show that the onstruted automaton aepts the desired

oating language. 2

Again, by theorem 4.28, we obtain the following orollary:

Corollary 4.32 (REventClokTA-Intersetion) Given two reursive event-

lok automaton A and B de�ned on the same set of propositions, there al-

ways exists a third reursive event-lok automaton C that aepts exatly the

intersetion of the oating timed languages of A and B, i.e. FloatLang(C) =

FloatLang(A) \ FloatLang(B).
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4.4.2 Closure under Negation

Let us now turn to the problem of omplementing monitored reursive event-

lok automata. The problem is more ompliated. By inspeting the de�-

nition of run for ourMEventClokTA, we an see that the problem of oating

aeptane an be deomposed into two usual forward aeptanes. In fat,

a MEventClokTA aepts (�; t) if it has a �nite run on the pre�x (�; [0; t℄)

that ends in a monitored loation q

m

and a run on the suÆx (�; [t::1)) that

is aepting and starts in q

m

.

To formalize this intuition, we de�ne two new types of languages for

MEventClokTA. First, pre�x aeptane allows us to de�ne the pre�x real-

time language of a MEventClokTA A, noted PreLang(A). This language,

again, is a set of pairs (�; t) where � is a TSS and t 2 R+

. The intuition

behind this language is that if (�; t) 2 PreLang(A) then there exists a �nite

run � of length t of A suh that the run begins at time 0 in a starting loation,

ends at time t in a monitored loation and the onstraints that are indued

by the run are veri�ed by the TSS �. Seond, suÆx aeptane allows us to

de�ne the suÆx real-time language of a MEventClokTA, noted SufLang(A).

This language is also a set of pairs (�; t) where � is a TSS and t 2 R+

. Here,

the intuition is that if (�; t) 2 SufLang(A) then there exists a in�nite run

� of A on �, suh that the run begins at time t in a monitored loation,

goes through aepting loations in�nitely often and the onstraints that

are indued by the run are veri�ed by the TSS �. The PreLang and SufLang

will be assembled in lemma 4.46. Let us now de�ne formally PreLang and

SufLang:

De�nition 4.33 (Pre�x Language) Given a monitored reursive event-

lok automaton A = (Q;Q

0

; Q

M

; Æ;P;A; �;Q

F

), a pair (�; t) belongs to the

PreLang(A) i� there exists a �nite timed run � = (q

0

; I

0

); (q

1

; I

1

); : : : ; (q

n

; I

n

)

suh that:

Covering The run � overs time up to t, i.e.

S

i=n

i=0

I

i

= [0; t℄;

Starting The run � starts in a starting loation of A, that is q

0

2 Q

0

;

Conseution The run � respets the transition relation of A, i.e. for all

positions i suh that 1 � i < n, we have that (q

i

; q

i+1

) 2 Æ or q

i

= q

i+1

(stuttering steps are allowed);

Constraints The TSS � respets the onstraints indued by �, that is for

all time t

0

2 [0; t℄: (�; t

0

) j= �(�(t

0

));

Further, the run � is aepting if it ends in a monitored loation of A, i.e.

q

n

2 Q

M

. 2

De�nition 4.34 (SuÆx Language) Given a monitored reursive event-

lok automaton A = (Q;Q

0

; Q

M

; Æ;P;A; �;Q

F

), a pair (�; t) belongs to
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SufLang(A) i� there exists an in�nite timed run � = (q

0

; I

0

); (q

1

; I

1

); : : : ; (q

n

; I

n

); : : :

suh that:

Covering The run � overs time from t, i.e.

S

i=!

i=0

I

i

= [t;1);

Starting The run � starts in a monitored loation of A, that is q

0

2 Q

M

;

Conseution The run � respets the transition relation of A, i.e. for all

positions i � 0 we have that (q

i

; q

i+1

) 2 Æ or q

i

= q

i+1

(stuttering steps

are allowed);

Constraints The TSS � respets the onstraints indued by �, that is for

all time t

0

2 [t;1) : (Tss; t

0

) j= �(�(t

0

)).

The run � is aepting if it intersets in�nitely often with the set of aepting

loations, i.e. there exists in�nitely many positions i suh that q

i

2 Q

F

. 2

Next we show that MEventClokTA are determinizable and keep, in their

deterministi version, their expressive power for de�ning pre�x languages.

First, let us de�ne formally the notion of deterministi and total monitored

reursive event-lok automata.

De�nition 4.35 (Deterministi and Total MEventClokTA) Amonitored

reursive event-lok automaton A = (Q;Q

0

; Q

M

; Æ;P;A; �;Q

F

) is deter-

ministi i� the following onditions are satis�ed:

Unique initial loations All pairs of initial loations have di�erent (and

thus mutually non satis�able labels), that is, for all q

1

; q

2

2 Q

0

, with

q

1

6= q

2

, �(q

1

) 6= �(q

2

).

Unique next loation Given a loation q

1

, all suessor loations of q

1

have di�erent labels, i.e. for all q

2

; q

3

suh that (q

1

; q

2

) 2 Æ and

(q

1

; q

3

) 2 Æ then if q

2

6= q

3

then �(q

2

) 6= �(q

3

). As labels are set

of literals that are true when the ontrol resides in the loation, as

all suessor loations of a loation q

1

have di�erent labels and thus

mutually non satis�able labels, the possible suessor loation in a run

is unique;

Non repeating For every loation q, the labels of its next loations are all

di�erent from the one of q, i.e. for every q 2 Q, for every q

0

suh that

q

0

6= q and (q; q

0

) 2 Æ, �(q) 6= �(q

0

).

Furthermore, we say that A is total i� the following ondition is satis�ed:

Totality The two following points must be veri�ed:

1. For every � 2 2

Limit(P[A)

, there exists an initial loation q whose

label is �, that is q 2 Q

0

and �(q) = �;
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2. For every loation q

1

2 Q, for every � 2 2

Limit(P[A)

there exists a

loation q

2

suh that either q

1

= q

2

or (q

1

; q

2

) 2 Æ, and �(q

2

) = �.

2

\Unique initial loation" and \unique next loation" onditions ensure

that there exists at most one, up to stuttering, pre�x run (maybe non aept-

ing) for every pair (�; t) on a deterministi monitored event-lok automaton.

The ondition \non repeating" imposes that two onseutive loations in a

deterministi automaton an not be labeled with the same literals. This is

important and neessary beause we are onsidering automata that evolves

along (ontinuous) timed state sequenes and if two onseutive loations

are labeled with the same (open) label, the automaton an hange from one

loation to the next nondeterministially at any time of an open interval that

agrees with the label, making the automaton non deterministi. \Totality"

imposes that every pair (�; t) has one pre�x (not neessarily aepting) run

on the monitored event-lok automaton.

The usual subset onstrution does not work when diretly applied to

MEventClokTA. If the usual subset onstrution is applied without are, the

automaton obtained ould ontain two onseutive loations with the same

label and, thus, would violate the \non repeating ondition" and thus not

be deterministi. Before applying the subset onstrution, we apply to the

automaton a transformation that is exposed in the following lemma and its

proof.

Lemma 4.36 (Non Repeating MEventClokTA) For every monitored re-

ursive event-lok automata A, there exists an equivalent monitored event-

lok automata B that aepts the same anhored, oating, pre�x and suÆx

languages and that have the property that it does not have any two onse-

utive loations labeled identially, that is, there does not exists q

1

; q

2

2 Q

B

with q

1

6= q

2

suh that (q

1

; q

2

) 2 Æ

B

and �

B

(q

1

) = �

B

(q

2

).

Proof. First note that if two loations q

1

, q

2

are labeled by singular sets of

literals (see de�nition 2.19), and linked by an edge, i.e. (q

1

; q

2

) 2 Æ

A

, then

we an suppress this edge without hanging the languages (anhored and

oating) de�ned by the automaton A. In fat, this edge an not be used

by any run. As q

1

, q

2

are labeled with a singular literals, the ontrol an

only stay there during a singular interval of time. But two singular interval

of time an not follow eah other in a sequene of intervals. We an also

suppress edges between two loations that are labeled by two di�erent open

sets of literals. Suppose that we have a portion of a TSS where an open

label is true. From the de�nition of open label, it is diret to prove that this

portion of the TSS must be an open interval of time. So let us onsider that

the open label � is true during the open interval of time (a; b). If the ontrol

in time t 2 (a; b) is in a loation with label � then the ontrol an take any
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amount of transitions to reah other loations labeled with � before leaving

the interval (a; b). This intuition is formalized by the following funtions:

� SReah

A

: Q

A

! 2

Q

A

, this funtion, when applied to a loation q

returns all the loations that an be reahed from q in the transition

struture of A only by using loations labeled as q. Formally, the fun-

tion is de�ned as follows: q

0

2 SReah

A

(q) i� there exists a sequene

of loations q

0

; q

1

; : : : ; q

n

suh that

1. n � 0;

2. q

0

= q;

3. q

n

= q

0

;

4. for all positions i, 0 � i < n, either q

i

= q

i+1

or (q

i

; q

i+1

) 2 Æ

A

,

and �

A

(q

i

) = �

A

(q);

� SReahMoni

A

: Q

A

! 2

Q

A

, this funtion, when applied to a loation q

returns all the loations that an be reahed from q in the transition

struture of A by using only loations labeled as q and by passing at

least by a monitored loation. Formally, the funtion is de�ned as

follows: q

0

2 SReahMoni

A

(q) i� there exists a sequene of loations

q

0

; q

1

; : : : ; q

n

suh that

1. n � 0;

2. q

0

= q;

3. q

n

= q

0

;

4. for all positions i, 0 � i < n, either q

i

= q

i+1

or (q

i

; q

i+1

) 2 Æ

A

,

and �

A

(q

i

) = �

A

(q); and

5. there exists a position i, 0 � i < n suh that q

i

2 Q

A

M

;

� SReahA

A

: Q

A

! 2

Q

A

, this funtion, when applied to a loation q

returns all the loations that an be reahed from q in the transition

struture of A by using only loations labeled as q and by passing at

least by an aepting loation. Formally, the funtion is de�ned as

follows: q

0

2 SReahA

A

(q) i� there exists a sequene of loations

q

0

; q

1

; : : : ; q

n

suh that

1. n � 0;

2. q

0

= q;

3. q

n

= q

0

;

4. for all positions i, 0 � i < n, either q

i

= q

i+1

or (q

i

; q

i+1

) 2 Æ

A

,

and �

A

(q

i

) = �

A

(q); and

5. there exists a position i, 0 � i < n suh that q

i

2 Q

A

F

;
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We onstrut the MEventClokTA B = (Q

B

; Q

B

0

; Q

B

M

; Æ

B

;P

B

;A

B

; �

B

; Q

B

F

)

as follows:

� Loations. The loations of B will the set of 3-tuples (q; �; �) suh

that:

{ q 2 Q

A

;

{ � 2 fM;Mg and if � = M then SReahMoni

A

(q) 6= ;, that is q

an aess a monitored loation by staying on loations that are

labeled with the same open label;

{ � 2 fF; F g and if � = F then SReahA

A

(q) 6= ;, that is q

an aess an aepting loation by staying on loations that are

labeled with the same open label.

� Initial loations. The set of initial loations Q

B

0

is the set of loations

(q; �; �) 2 Q

B

with q 2 Q

A

0

, that is the tuples whose loation q is an

initial loation of A;

� Monitored loations. The set of monitored loations Q

B

M

is the set

of loations (q; �; �) 2 Q

B

with � = M , that is the tuples whose

loations q an aess, by staying on loations with the same label as

q, a monitored loation.

� Transition relation. A pair [(q

1

; �

1

; �

1

); (q

2

; �

2

; �

2

)℄ belongs to the tran-

sition relation Æ

B

i� the four following rules are veri�ed:

1. if �

1

= M and �

1

= F then q

2

2 SReah

A

(q

1

) and �

A

(q

2

) 6=

�

A

(q

1

);

2. if �

1

= M and �

1

= F then q

2

2 SReahMoni

A

(q

1

) and �

A

(q

2

) 6=

�

A

(q

1

);

3. if �

1

= M and �

1

= F then q

2

2 SReahA

A

(q

1

) and �

A

(q

2

) 6=

�

A

(q

1

);

4. if �

1

=M and �

1

= F then q

2

2 SReahMoni

A

(q

1

)\SReahA

A

(q

1

)

and �

A

(q

2

) 6= �

A

(q

1

);

� Propositions and atomi real-time onstraints. The set of propositions

and of atomi real-time onstraints used in B is the same as the ones

used in A, that is P

B

= P

A

and A

A

= A

B

;

� Labeling funtion. The labeling funtion of B is derived from the

labeling funtion of A as follows: for all (q; �; �) 2 Q

B

, �

B

((q; �; �)) =

�

A

(q);

� Aepting loations. The set of aepting loations Q

B

F

is the subset of

loations (q; �; �) 2 Q

B

suh that � = F .
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It is routine to establish that the oating language of B is exatly the

same as the oating language of A. 2

The next theorem states that every monitored event-lok automaton

with the non-repeating property, an be determinised.

Lemma 4.37 (MEventClokTA-Determinization) For every monitored event-

lok automaton A with the non repeating property, one an onstrut a de-

terministi and total monitored event-lok automaton C that aepts the

same pre�x language, i.e. PreLang(A) = PreLang(C).

Proof. Our proof is onstrutive. Let us onsider A and onstrut the

deterministi forward event-lok automaton B as follows:

� Loations. The set of loations of B is the set of non-empty subsets of

loations of A that share the same label, that is: fq

1

; : : : ; q

n

g 2 Q

B

i�

1. for all i, 1 � i � n: q

i

2 Q

A

(subset of Q

A

).

2. n � 1 (non-empty subset);

3. for all i; j suh that 1 � i < j � n, we have that �

A

(q

i

) = �

A

(q

j

)

(same label).

� Propositions and atomi real-time onstraints. The set of propositions

used in B is the same as the set of propositions used in A, i.e. P

B

=

P

A

, the set of atomi real-time onstraints used in B is the same as

the set of real-time onstraints used in A, i.e. A

B

= A

A

;

� Labeling funtion. The labeling funtion is de�ned as follows: �

B

(l) =

�

A

(q) with q 2 l, for all l 2 Q

B

. Reall that the loations appearing

in l are all labeled with the same label in A, we just take this label for

l.

� Starting loations. The set of starting loations of B is the subset of

loations that ontains only initial loations of A, expressed by point

1 below, and that are maximal for their label, expressed by point 2,

that is l 2 Q

B

0

i�

1. for all q 2 l, q 2 Q

A

0

, and

2. there does not exists a loation l

0

with

(a) �

B

(l

0

) = �

B

(l),

(b) for all q 2 l

0

, q 2 Q

A

0

and

() l � l

0

;
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� Monitored loations. A loation l 2 Q

B

belongs to the set Q

B

M

of mon-

itored loations i� there exists a loation of A in l that is monitored,

i.e. l 2 Q

B

M

i� there exists q 2 l suh that q 2 Q

A

M

.

� Transition relation. We have that (l

1

; l

2

) 2 Æ

B

� Q

B

�Q

B

i�

1. for all q

2

2 l

2

, there exists q

1

2 l

1

suh that (q

1

; q

2

) 2 Æ

A

;

2. for all q

2

2 Q

A

suh that �

A

(q

2

) = �

B

(l

2

) and suh that there

exists q

1

2 l

1

with (q

1

; q

2

) 2 Æ

A

, we have q

2

2 l

2

;

In words, the point (1) says that loations in l

2

are Æ

A

-suessors of

loations in l

1

and (2) says that l

2

is the maximal set of loations that

share the label of l

2

and are Æ

A

-suessors of a loation of l

1

.

� Aepting loations. As we are only interested in the pre�x language

of B, we take arbitrarily Q

B

F

= Q

B

.

It is not diÆult to show that (�; t) 2 PreLang(B) i� (�; t) 2 PreLang(A).

Now, let us see how we an transform B into a deterministi automaton C

that has the totality property. We onstrut C as follows:

� Loations. We take Q

C

= Q

B

[D, whereD is a set of dummy loations.

We take one dummy loations for eah possible label in B, that is

D = fl j l 2 2

Limit(P

B

[A

B

)

g. The loations of D, will be used to

handle the pairs (�; t) that does not belong to the pre�x language of

B.

� Starting loations. We take Q

C

0

= Q

B

0

[ D

init

, where D

init

= fq 2

Dj∄q0 2 QB
0

: �

B

(q

0

) = qg. So D

0

ontains loations that orrespond

to labels for whih there does not exists an initial loation in B;

� Monitored loations. Q

C

M

= Q

B

M

, the monitored loations are the mon-

itored loations of B, no dummy loations is monitored.

� Transition relation. The transition relation Æ

C

� Q

C

�Q

C

is the set

of pairs that respets the following onditions:

1. for all q

1

; q

2

2 Q

B

: (q

1

; q

2

) 2 Æ

C

i� (q

1

; q

2

) 2 Æ

B

;

2. for all q

1

; q

2

2 D with q

1

6= q

2

: (q

1

; q

2

) 2 Æ

C

;

3. for all q

1

2 Q

B

, q

2

2 D: (q

1

; q

2

) 2 Æ

C

i� �

B

(q

1

) 6= q

2

and there

does not exist q

3

2 Q

B

suh that �(q

3

) = q

2

and (q

1

; q

3

) 2 Æ

B

;

4. for all q

1

2 D, q

2

2 Q

B

: (q

1

; q

2

) 62 Æ

C

.

Condition 1 ensures that the transitions possible in B are possible in

C and vie versa; Condition 2 guarantees that when in a loation of

D the transition does no more onstraint the possible runs; Condition
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3 says that we an go from a loation of B to a dummy loation if and

only if the transition is not possible in B for a given label; Condition

4 ensures that when in a dummy loation it is not possible to return

into the loations of B.

� Propositions and atomi onstraints. P

C

= P

B

and A

C

= A

B

, the

propositions and atomi lok onstraints used in C are similar to the

ones used in B;

� Labeling funtion. �

C

is de�ned as follows:

{ for q 2 Q

B

, �

C

(q) = �

B

(q);

{ for q 2 D, �

C

(q) = q.

Thus the labels of loations ofB are onserved and the labels of dummy

loations are simply the set of literals that onstitutes the loations.

� Aepting loations. As for B, we take arbitrarily Q

C

F

= Q

C

.

Again, it is easy to show that the pre�x language of B is preserved by C. 2

Corollary 4.38 Let A, B and C as in the last lemma For every TSS � 2

TSS(P

A

), there exists one run � (up to stuttering)

3

of C on �, and the

following property is veri�ed: if �(t) 2 Q

B

then there exists, for eah q 2

�(t), a pre�x run �

q

on � in A that overs [0; t℄ and ends-up in loation q,

that is �

q

(t) = q. 2

We will use this last orollary in the onstrut for the emptiness of mon-

itored reursive event-lok automata.

Complement of the Pre�x Language We are now able to prove that

monitored event-lok automata are losed under negation for their pre�x

languages.

Lemma 4.39 (Pre�x Complement) For every monitored reursive event-

lok automaton A, we an onstrut another monitored reursive event-

lok automaton B that aepts exatly the omplement of the pre�x language

of A, i.e. PreLang(B) = PreLang(A).

Proof. As noted in orollary 4.38, a pair (�; t) has always one and only

one pre�x run on C, the deterministi and total version of A. In that ase

only the monitoring ondition determines if a pair (�; t) belongs to the pre�x

3

Note that here we identify two runs if they only di�er by stuttering steps, we are only

interested in the funtion � : R

+

! Q

C

.
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language of C. Thus to omplement the pre�x language of A, we just have to

omplement the monitoring ondition of C. So we onstrut B as follows.

First ompute C as in lemma 4.37. Seond, we take B as C exept for

the monitored loations where we take Q

B

M

= Q

C

n Q

C

M

. The onstruted

automaton B aepts PreLang(A), the desired language. 2

Complement of the SuÆx Language Complement the suÆx language

of a MEventClokTA is more diÆult. The diÆulty has nothing to do with

the fat that we are working with real-time automata beause we are on-

sidering a B�uhi aeptane ondition. For suh aeptane ondition, it

is well known that the usual subset onstrution does not work [℄. Instead

of \re-doing" all the proofs for the omplementation of B�uhi automata,

we show how to redue our problem of omplementation to the problem of

omplementation of usual B�uhi automata on !-sequenes.

To relate a pair (�; t) to a !-sequene  = 

1



2

: : : 

n

: : : , we use a

funtion, alled � and de�ned as follows:

De�nition 4.40 (Funtion �) Given a TSS �, a time t 2 R+

, the set of

propositions P on whih � = (�; I) is de�ned and a set of atomi lok

onstraints A, �(�; t;P;A) returns the in�nite sequene  de�ned on the

set of proposition P

0

= fp

�

j � 2 Limit(P [A)g suh that: if �

0

= (�

0

; I

0

) is

the oarsest Limit(P [A)� Fine TSS that re�nes �, and t 2 I

0

i

:



j

= fp

�

2 P

0

j (�

0

; t

0

) j= �, for all t

0

2 I

0

i+j

g

That is, 

j

ontains all propositions assoiated with literals of Limit(P [A)

that are true during the interval I

0

i+j

of �

0

. 2

Note that for every TSS �, there exists only one oarsest Limit(P

A

[

A

A

)� Fine TSS and thus  is unique for every pair (�; t).

The idea of the redution is depited in �gure 4.4.2 and is deomposed

in three steps:

(1) Given an MEventClokTA A, de�ned on the set of propositions P and

atomi lok onstraints A, we onstrut a B�uhi automaton B that

aepts a language that respets the following property:

for all � 2 TSS(P), for all time t 2 R+

,

(�; t) 2 SufLang(A) i� �(�; t;P;A) 2 AnLang(B)

(2) As the formalism of B�uhi automata is losed under negation [SVW85℄,

see theorem ??, we an onstrut C suh that:
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Figure 3: Complement of the suÆx language

for all � 2 TSS(P), for all time t 2 R+

,

(�; t) 2 SufLang(A) i� �(�; t;P;A) 2 AnLang(B) i� �(�; t;P;A) 62

AnLang(C)

(3) From C, it remains to onstrut a MEventClokTA D suh that:

for all � 2 TSS(P), for all time t 2 R+

,

(�; t) 2 SufLang(D) i� �(�; t;P;A) 2 AnLang(C)

This automatonD aepts exatly the desired language, that is, SufLang(D) =

SufLang(A).

The following two lemmas expressed that the transformation (1) and (3)

are indeed possible:

Lemma 4.41 (From MEventClokTA to BA) Given anMEventClokTA A

that uses the set of propositions P

A

and atomi lok onstraints A

A

, we an

onstrut a B�uhi automaton B on the set of propositions P

B

= fp

�

j � 2

Limit(P

A

[A

A

)g suh that:

for all � 2 TSS(P

A

), for all time t 2 R+

,

(�; t) 2 SufLang(A) i� �(�; t;P

A

;A

A

) 2 AnLang(B)

Proof.(sketh) By lemma 4.36, we an make the hypothesis that A has the

non-repeating property. In that ase, the B�uhi automaton B an simply

be obtain from A by:

� taking the same set of loations;
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� adding to the transition relation all pairs (q; q), for all loations q,

this is beause, the notion of run in MEventClokTA allows stuttering

steps;

� the initial loations of B are the monitored loations of A;

� adapting the labels are as follows: p

�

2 �

B

(q) i� � 2 �

A

(q), for all

� 2 Limit(P

A

[A

A

) and for all loations q;

It is not diÆult to prove that the onstruted B�uhi automaton B aepts

preisely the desired language. 2

Conversely, we have

Lemma 4.42 (From BA to MEventClokTA) Given a B�uhi automaton C

on the set of propositions P

C

= fp

�

j � 2 Limit(P

D

[A

D

)g, we an onstrut

an MEventClokTA D that uses the set of propositions P

D

and atomi lok

onstraints A

D

,suh that:

for all � 2 TSS(P

D

), for all time t 2 R+

,

(�; t) 2 SufLang(D) i� �(�; t;P

D

;A

D

) 2 AnLang(C)

Proof.(sketh) Again, the transformation is very simple. TheMEventClokTA

D is onstruted from the BA C by:

� taking the same set of loations and the same transition relation;

� taking the initial loations of C as the monitored loations of D;

� adapting the labels as follows: � 2 �

D

(q) i� p

�

2 �

C

(q), for all � 2

Limit(P

D

[A

D

), for all loations q;

It is not diÆult to prove that the onstruted automaton aepts the right

suÆx language. 2

The onstrution that we have presented above allows us to derive the

following lemma:

Lemma 4.43 (SuÆx Complement) For every monitored reursive event-

lok automaton A, we an onstrut another monitored reursive event-

lok automaton B that aepts exatly the omplement of the suÆx language

of A, i.e. SufLang(B) = SufLang(A). 2

It is important to note that the proposed onstrution only works beause

to every tuple (�; t;P;A) orresponds exatly one !-sequene . This is

beause the value of eah event-lok is determined by � at all time t 2 R+
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and onsequently, the truth value of the atomi lok onstraints of A is

also determined by � at all time t 2 R+

and not by a partiular run of the

automaton on �. Thus the proposed onstrution does not work for timed

automaton (and it is not a surprise, for timed automata are not losed under

negation). In a timed automaton, the value of a lok along a TSS � does

not only depend on the TSS � but also on the partiular run that is hosen

to read �. So to eah tuple (�; t;P;A) orresponds a set of !-sequene ,

one for eah possible run.

Complement of the Floating Language So far, we have shown how

we an omplement the pre�x et suÆx languages aepted by an MEvent-

ClokTA. Let us now turn to the problem of omplementing the oating

language aepted by a MEventClokTA. First, let us onsider the following

lemma:

Lemma 4.44 (Deomposition Monitored Condition) The oating lan-

guage aepted by a MEventClokTA A = (Q

A

; Q

A

0

; Q

A

M

; Æ

A

;P

A

;A

A

; �

A

; Q

A

F

)

with Q

A

M

= fq

1

; q

2

; : : : ; q

m

g an be expressed by the union of the oating

languages of a olletion A

1

; A

2

; : : : ; A

m

of m MEventClokTA that have an

unique monitored loation.

Proof. We take eah A

i

idential to A exept for the monitored loations:

for Q

A

i

M

, we take the singleton fq

i

g. If (�; t) 2 FloatLang(A) then A has

a q

j

-t-monitored and aepted run � on (�; t), for some j, 1 � j � m. By

onstrution of eah A

i

, � is also a monitored and aepted run of A

j

on (�; t)

implying that (�; t) 2 FloatLang(A

j

) and thus (�; t) 2

S

i=m

i=1

FloatLang(A

i

).

Conversely if A

j

has a monitored and aepted run � on (�; t) then � is an q

j

-

t-monitored and aepted run of A on (�; t) and thus (�; t) 2 FloatLang(A).

2

Note that if A has only one monitored loation, we have the following

interesting property:

Lemma 4.45 (Unique Monitored Loation) Let A be an monitored re-

ursive event-lok automaton with only one monitored loation, that is

jQ

M

j = 1 then FloatLang(A) = PreLang(A) \ SufLang(A).

Proof. Let us assume that Q

M

= fq

m

g. We �rst prove that if (�; t) 2

(PreLang(A)\SufLang(A)) then (�; t) 2 FloatLang(A). As (�; t) 2 PreLang(A),

we know that there exists a �nite pre�x run �

p

of A on � that ends at

time t in loation q

m

, the unique monitored loation of A. Similarly, as

(�; t) 2 SufLang(A), we know that there exists an in�nite suÆx run �

s

of A

on � that starts, at time t, in loation q

m

, the unique monitored loation of

A. The onatenation of �

p

and �

s

is a t-monitored and aepted run of A
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on (�; t) and thus (�; t) 2 FloatLang(A). We now turn to the other diretion.

If (�; t) 2 FloatLang(A) then we know that there exists a t-monitored and

aepted run on � and thus �(t) = q

m

. We simply deompose � into �

[0;t℄

and �

[t;1℄

, where �

[0;t℄

is the pre�x of � up to time t and �

[t;1℄

is the suÆx

of � that starts at time t. It is easy to show that �

[0;t℄

is an aepted pre�x

run of A on (�; t) and thus (�; t) 2 PreLang(A) and �

[t;1℄

is a suÆx run of

A on (�; t) and thus (�; t) 2 SufLang(A). 2

Thus for anMEventClokTA with only one loation, the problem is nearly

solved. In fat, last lemma tells us that if A has only one monitored loa-

tion, FloatLang(A) = PreLang(A) \ SufLang(A) and thus FloatLang(A) =

PreLang(A) [ SufLang(A). We already know how to obtain PreLang(A) and

SufLang(A). It just remains us to show how given an MEventClokTA that

aepts PreLang(A) how to onstrut a automaton B suh that FloatLang(B) =

PreLang(A) and similarly for the automaton aepting SufLang(A).

Lemma 4.46 (Complement Unique Monitored Loation) For every

monitored event-lok automaton A

m

= (Q

A

m

; Q

A

m

0

; Q

A

m

M

; Æ

A

m

;P

A

m

;A

A

m

; �

A

m

; Q

A

m

F

)

with a single monitored loation q

m

, we an ompute a monitored event-lok

automaton B that aepts the omplement of the oating language of A

m

.

Proof. From lemma 4.45, we know that FloatLang(A) = PreLang(A) \

SufLang(A) and by lemma 4.39, we an onstrut a MEventClokTA B suh

that PreLang(B) = PreLang(A) and by lemma 4.43 aMEventClokTA C suh

that SufLang(C) = SufLang(A). As MEventClokTA are losed under inter-

setion, see lemma 4.31, it remains to onstrut from B a MEventClokTA

E suh that FloatLang(E) = PreLang(B) and a MEventClokTA F suh that

FloatLang(F ) = SufLang(B).

� Constrution of E. All we need to do, is to transform B in suh a

way that when in a monitored loation at time t reading a TSS �,

it is always possible to ontinue a run on the suÆx [t;1℄ of � from

the monitored loation. To ahieve that spei�ation, we onstrut E

from B as follows:

{ Loations. We take Q

E

= Q

B

[D, where D is the following set of

\dummy" loations: D = fq j q 2 2

Limit(P

B

[A

B

)

g. Thus D on-

tains one element for eah possible label. We will use the dummy

loations to make possible the prolongation of every pre�x of run

that an reah a monitored loation of B.

{ Initial loations. We take Q

E

0

= Q

B

0

, that is, the set of initial

loations of E are the initial loations of B.

{ Monitored loations. We take Q

E

M

= Q

B

M

, that is, the set of

monitored loations of E are the monitored loations of B.
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{ Transition relation. The transition relation Æ

E

� Q

E

�Q

E

is the

union of the three following sets:

1. f(q

1

; q

2

) j q

1

; q

2

2 Q

B

and (q

1

; q

2

) 2 Æ

B

g. The moves possible

in B are possible in E.

2. f(q

1

; q

2

) j q

1

2 Q

B

M

; q

2

2 Dg. It is possible to move from a

monitored loation of B to all dummy loations.

3. f(q

1

; q

2

) j q

1

; q

2

2 Dg. Within the dummy loations, the

transition relation is not onstraining. Note that it is not

possible from a dummy loation to get bak to a loation of

B.

{ Propositions and atomi lok onstraints. The propositions and

atomi lok onstraints used in E are the ones used in B: P

E

=

P

B

, A

E

= A

B

.

{ Labelling funtion. The labeling funtion is de�ned as follows:

� if q 2 Q

B

: �

E

(q) = �

B

(q);

� if q 2 D: �

E

(q) = q.

{ Aepting loations. The set of aepting loations of E is simply

the set of dummy loations: Q

E

F

= D.

E aepts as oating language all pairs (�; t) suh that � allows a run to

reah a monitored loation of B at time t, that is (�; t) 2 PreLang(B).

� Constrution of F . The onstrution also uses \dummy" loations and

is very similar to the one for E, we leave it to the reader.

2

We are now equipped to prove the losure to omplementation ofMEvent-

ClokTA:

Theorem 4.47 (MEventClokTA-Complement) For every monitored event-

lok automaton A, we an ompute a monitored event-lok automaton

B that aepts exatly the omplement of the oating language of A, i.e.

FloatLang(B) = FloatLang(A).

Proof. By lemma 4.44, the oating language of A, whereQ

A

M

= fq

1

; q

2

; : : : ; q

n

g

an be expressed as the union of the oating language of n single mon-

itored loation event-lok automata A

1

; A

2

; : : : ; A

n

, i.e. FloatLang(A) =

S

i=n

i=1

FloatLang(A

i

). Also, note that FloatLang(A) =

S

i=n

i=1

FloatLang(A

i

)

and thus FloatLang(A) =

T

i=n

i=1

FloatLang(A

i

). By lemma 4.46, we an om-

pute A

1

; A

2

; : : : A

n

, and by lemma 4.31, we an ompute B =

N

i=n

i=1

A

i

that

aepts the desired language. 2
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A diret orollary of the last theorem and the lemma about the equiva-

lene between reursive event-lok automata and monitored reursive event-

lok automata:

Corollary 4.48 (REventClokTA-Complement) For every reursive event-

lok automaton A, we an ompute another reursive automaton B that

aepts exatly the omplement of the oating language of A, i.e. the pairs

(�; t) that are not aepted by A. 2

We now take a look at the omplexity of this omplementation proedure.

This information will be used later in this setion when we will haraterize

the omplexity of deision problems for (monitored) reursive event-lok

automata. We �rst de�ne a notion of size for the (monitored) reursive

event-lok automata.

De�nition 4.49 (Size of a MEventClokTA) We �rst de�ne the notion of

size for the base ase, that is when the onsidered automaton A is a (moni-

tored) oating automaton, we de�ne the reursive ase after.

� Base ase: the size of a (monitored) oating automaton is harater-

ized by:

1. its number of loations jQ

A

j, noted NumLos(A);

2. its number of possible labels j2

Limit(P

A

)

j, noted NumAtomsSets(A).

� Reursive ase: the size of a (monitored) reursive event-lok automa-

ton is haraterized by:

1. its number of loations jQ

A

j, noted NumLos(A);

2. its number of possible labels j2

Limit(P

A

)

j, noted NumAtomsSets(A).

3. the number of lok used by A, that is jfz

B

j 9(z

B

� ) 2 A

A

gj,

this is noted NumCloks(A);

4. the maximal onstant that A use in its lok onstraints, that is

Max(f j 9(z

B

� ) 2 A

A

gj, this is noted MaxConst(A);

5. reursively, the size of its subautomata.

2

To ease the haraterization of the size of the automaton obtained af-

ter applying the omplementation proedure presented above, we use the

�gure 4.4.2. This �gures shematizes the di�erent step used in the om-

plementation proedure. The following lemma haraterizes the size of the

automaton obtained after omplementation:

61



A

A

1

A

i

A

m

C

1

B

1

E

1

F

1

C

i

F

i

G

m

G

i

H

B

i

E

i

B

m

E

m

C

m

F

m

(1)

(3b)

(2a) (2b)

(3a)

(5)

(4)

G

1

Figure 4: Complementation proedure for MEventClokTA.
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Lemma 4.50 For every monitored event-lok automaton A, we an om-

pute a monitored event-lok automaton H that aepts exatly the om-

plement of the oating language of A, i.e. FloatLang(H) = FloatLang(A).

Further the size of H is de�ned in funtion of the size of A as follows:

� the number of loations of H is singly exponential in the number of

loations of A, that is NumLos(H) = O(2

NumLos(A)

);

� the number of possible labels of H is equal to the number of possible

labels of A, that is NumAtomsSets(H) = NumAtomsSets(A);

� the maximal onstant used by H in lok onstraints is the same as the

maximal onstant used by A, that is MaxConst(H) = MaxConst(A);

� the sizes of the subautomata of H are the same that sizes of the sub-

automata of A;

Proof. We prove this lemma by inspeting the omplexity of eah transfor-

mations involved in the proedure for omplementing the oating language

of A, those transformations are depited in �gure 4.4.2.

� Transformation (1). The transformation simply hange the set of mon-

itored loations. The size of eah A

i

is equal to the size A;

� Transformation (2a). Eah B

i

is obtained from A

i

by determinization.

So we examine the determinization proedure, see proof of lemma 4.37.

We �rst note that the step needed to obtain the non-repeating property

an be negleted as its only e�et is to multiply by 3 the number of

loations, the other elements of the automaton remain unhanged. The

subsets onstrution uses pairs omposed of a set of loations of the

non-repeating automaton as loations and labels of A. The labels part

has no inuene as the labels are the ones used by A. So the number

of loations of eah B

i

is singly exponential in the number of loations

of eah A

i

and thus singly exponential in the number of loations of

A plus a dummy loation is added for eah label (to obtain a total

automaton), so NumLos(B

i

) = O(2

NumLos(A)

) + NumAtomsSets(A),

the other elements of the automaton remains unhanged;

� Transformation (2b). Eah C

i

is obtained form A

i

using the omple-

mentation proedure for B�uhi automata whih by theorem ?? leads

to an exponential blow-up of the loations, that is NumLos(C

i

) =

O(2

NumLos(A

i

)

) The other elements have the same size as in A.

� Transformation (3a). The transformation is desribed in the proof of

lemma 4.39. Eah automata E

i

is obtained from B

i

by adding a set

of dummy loations. The number of suh dummy loations is linear

in the size of the number of possible labels for B

i

whih is equal to
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the number of possible labels for A. So the number of loations in

eah E

i

is haraterize as follows: NumLos(E

i

) = O(2

NumLos(A)

+

NumAtomsSets(A)). The other elements of the size of E

i

are as for A.

� Transformation (3b). This transformation is similar to the transforma-

tion (3a) and thus NumLos(F

i

) = O(2

NumLos(A)

+NumAtomsSets(A)).

� Transformation (4). The transformation onsists in taking the union

of the automata E

i

and F

i

. By theorem 4.29, as the two automaton

E

i

and F

i

share the same set of possible labels, the number of loa-

tions of G

i

is just the sum of the number of loations of E

i

and F

i

.

So we have that NumLos(G

i

) = O(2

NumLos

(A)+NumAtomsSets(A))+

O(2

NumLos(A)

+NumAtomsSets(A)) and thusNumLos(G

i

) = O(2

NumLos

(A)+

NumAtomsSets(A)). The other elements of the size of G

i

are as for A.

� Transformation (5). The transformation onsists in taking the inter-

setion of the m automaton G

i

with 0 � i � m, where m is the

number of monitored loations in A and thus m = O(NumLos(A)).

By slightly generalizing the algorithm for intersetion, whih is de-

�ned for two MEventClokTA in the proof of theorem 4.31, and as

G

i

are de�ned on the same set of possible labels, we obtain that

NumLos(H) = O(m � (2

NumLos(A)

+ NumAtomsSets(A))) and thus

NumLos(H) = O(2

NumLos(A)

+O(NumLos(A))�NumAtomsSets(A)).

The other elements of the size of H are as for A.

2

4.4.3 Closure under Partial Projetion

Another important property of (monitored) reursive event-lok automaton

is that they are partially losed under projetion. Before proving this result,

we need to introdue a new notion.

De�nition 4.51 (FreeOfRTC) A proposition p is not real-time onstrained

into an monitored reursive event lok automaton A if this proposition does

not appear in the set of propositions used by the subautomata of A. We note

FreeOfRTC(A) the subset of propositions that are not real-time onstrained

by A. We de�ne them formally as follows: FreeOfRTC(A) = fq 2 P

A

j

for all B 2 SUB(A) : q 62 P

B

g. 2

We an now state and prove the following theorem:

Theorem 4.52 (Partial Projetion Closure) For every monitored re-

ursive event-lok automaton A de�ned on the set of propositions P, for

every subset of propositions P

0

� P suh that P n P

0

� FreeOfRTC(A), we
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an onstrut a reursive event-lok automaton B that aepts the language

FloatLang(B) = f(� # P

0

; t) j (�; t) 2 FloatLang(A)g.

Proof. We take B as A but hange the labels as follows: for every loations q,

�

B

(q) = �

A

(q) \ Limit(P

B

[A

B

), that is, as A

B

= A

A

, we simply suppress

the literals related to projeted propositions. It is diret to show that B

aepts the desired oating language. 2

The onstraint that imposes that projeted propositions are only propo-

sitions that are not real-time onstrained is essential. In fat, we will show

later, that allowing projetion of real-time onstrained propositions stritly

extends the expressive power of our reursive event-lok automata and

would destroy their losure under negation. Again, we an derive the orre-

sponding orollary for reursive event-lok automata.

4.5 Emptiness and Universality for REventClokTA

We now show that the emptiness problem for a monitored reursive event

lok automaton A, i.e. is the anhored language de�ned by the MEvent-

ClokTA A is empty or not, is deidable and we haraterize the omplexity

of deiding this problem. We show that it is possible to redue the empti-

ness problem for monitored reursive event-lok automata to the emptiness

problem of non reursive automata for whih a solution exists see [AFH94℄.

Again, the results for reursive event-lok automata are obtained as diret

orollaries of the lemma 4.28 that states the equivalene between reursive

event-lok automata and their monitored versions.

In the sequel, we show how to onstrut a propositional event-lok au-

tomaton that aepts TSS that are losely related to the TSS aepted by

the reursive event-lok automaton. To de�ne those TSS, we need some

more ingredients.

For a MEventClokTA A with set of propositions P

A

, we onstrut a

(non-reursive) EventClokTA B on the set of propositions

P

B

=P

A

[ fp

C

jC 2 SUB(A) or C = Ag

[ fp

z

D

�

j 9C 2 fAg [ SUB(A) : (z

D

� ) 2 A

C

g

, i.e. we assoiate a new proposition to A and to eah of its subautomata,

moreover we assoiate a new proposition with eah atomi real-time on-

straint appearing in A or in one of its subautomata.

In the sequel, we note

� P

Aut

the set fp

C

jC 2 SUB(A) or C = Ag
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� and P

Constr

the set fp

z

D

�

j 9C 2 fAg [ SUB(A) : (z

D

� ) 2 A

C

g.

Further, the automaton B will use the following set of atomi lok on-

straints A

B

= fz

p

D

�  j 9p

z

D

�

2 P

Constr

g. That is, we use a onstraint

z

p

D

�  over the proposition assoiated to the automaton D if there is a

lok onstraint z

D

�  over D in A or in one of its subautomata.

De�nition 4.53 (Hintikka Property) Given a TSS �, de�ned on P

A

,

the P

B

n P

A

extension of �, noted b� de�ned on the set of propositions P

B

,

has the timed Hintikka property for the MEventClokTA A if the following

onditions are veri�ed:

H1 p

A

2 b�(0), and for all time t 2 R+

:

H2 p

y

D

�

2 b�(t) i� there exists a time t

1

> t suh that:

� either: p

D

2 b�(t

1

) and for all time t

2

2 (t; t

1

): p

D

62 b�(t

2

), and

t

1

� t � ;

� or: for all time t

2

> t

1

, there exists a time t

3

2 (t

1

; t

2

) suh

that p

D

2 b�(t

3

) and for all time t

4

2 (t; t

1

℄: p

D

62 b�(t

3

), and

(t

1

� t)

+

� .

H3 p

x

D

�

2 b�(t) i� there exists a time t

1

2 [0; t) suh that:

� either: p

D

2 b�(t

1

) and for all time t

2

2 (t

1

; t): p

D

62 b�(t

2

), and

t� t

1

� ;

� or: for all time 0 � t

2

< t

1

, there exists a time t

3

2 (t

2

; t

1

) suh

that p

D

2 b�(t

3

) and for all time t

4

2 [t

1

; t): p

D

62 b�(t

3

), and

(t� t

1

)

+

� .

H4 if p

C

2 b�(t) then C has a t-monitored and aepted run on �

4

;

H5 if p

C

62 b�(t) then C has no t-monitored and aepted run on �.

Conditions H4 and H5 ensure that the proposition p

C

assoiated to the

automaton C, is true along b� at time t i� C has a t-monitored and aepted

timed run on b�. As a onsequene, H1 imposes that A aepts b� at time 0

and thus b� # P

A

2 AnLang(A), where b� # P

A

denotes the TSS obtained

from b� by projeting propositions that are not in P

A

. H2 and H3 relates

propositions p

z

D

�

to the semantis of the assoiated onstraint z

D

� . In

the sequel, we say that a TSS b� that has the Hintikka property for A, is a

timed Hintikka sequene for A, THS for short. 2

The following lemma states how THS of an MEventClokTA A an help

us to solve the emptiness problem of A:

4

Note that as b� is an extension of �, Aept

C

(�; t) i� Aept

C

(b�; t).
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Lemma 4.54 (Emptiness-Hintikka) The anhored language of a mon-

itored event-lok automaton A is non empty i� A has at least one timed

Hintikka sequene.

Proof. It is diret to show that if b� is a Hintikka sequene for A then

b� # P

A

2 AnLang(A). In fat, if b� has the Hintikka sequene for A then

p

A

2 b�(0) by ondition H1 and then by H4, we know that A has a 0-

monitored and aepted run on � and thus � 2 AnLang(A). Now the

extension b� of � 2 AnLang(A) de�ned as follows:

b�(t) =�(t)

[ fp

C

j p

C

2 P

Aut

and Aept

C

(�; t)g

[ fp

z

D

�

j p

z

D

�

2 P

Constr

and (�; t) j= z

D

� g

has the timed Hintikka property for A and is the unique extension of � with

this property. 2

In the sequel, we will show that the following lemma holds:

Lemma 4.55 (EventClokTA for Hintikka Sequenes) For every moni-

tored reursive event-lok automaton A, we an onstrut a propositional

event-lok automaton B that aepts exatly the timed Hintikka sequenes

of A, that is, AnLang(B) = f� j � is a THS of Ag.

Now we show that for eah ondition H1 to H5, we an onstrut a non

reursive event-lok automaton that heks the ondition. The �nal propo-

sitional event-lok automaton will simply be the produt of the automata

for eah onditions, i.e. the automaton that aepts the intersetion of the

TSS aepted by eah automaton. The onstrution that we will present

is inspirated from the onstrution, proposed by Wolper et al to solve the

satis�ability problem of the logi E-TL, see [WVS83, Wol83℄. We now on-

strut systematially an non reursive event-lok automaton for eah timed

Hintikka ondition:

Automaton for ondition H1,H2 and H3. We onstrut the EventClokTA

B

1

= (Q

B

1

; Q

B

1

0

; Æ

B

1

;P

B

1

; �

B

1

;A

B

1

; Q

B

1

F

), as follows:

� Propositions and atomi lok onstraints P

B

1

= P

B

and A

B

1

=

fz

p

D

�  j p

z

D

�

2 P

B

g, a lok is assoiated to eah proposition

assoiated to an automaton that appears in a lok onstraint in

A or one of its subautomata, those loks will be used to enfore

the right timing of those propositions;

� Loations. Q

B

1

= fq 2 2

Limit(P

B

[A

B

)

j 8p

z

D

�

2 P

Constr

:

p

z

D

�

2 q i� z

p

D

�  2 qg. So B

1

ontains a loation for eah pos-

sible label that respets the property that the proposition p

z

D

�
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is in the label i� the orresponding onstraint is also present.

Intuitively, when p

z

D

�

is true along b� at time t, it means that

the onstraint z

D

�  must be veri�ed in (�; t). As p

D

2 b� i�

(�; t) 2 FloatLang(D) (by H4 and H5), we simply use the on-

straint z

p

D

�  to enfore the semantis of z

D

� . For example,

if y

D

= 1 is true in (b�; t), it means that the following time t

1

> t

suh that D aepts b� must be t

1

= t + 1. We know by H4 and

H5 that for all time t 2 R+

, Aept

D

(�; t) i� p

D

2 b�, so we sim-

ply use the propositional lok y

p

D

to enfore the semantis of

y

D

= 1: we hek that y

p

D

= 1 is veri�ed.

� Labeling funtion. �

B

1

(q) = q, the labeling of loation q is simply

the literals that onstitute the loation;

� Initial loations. Q

B

1

0

= fq 2 Q

B

1

jp

A

2 qg, the initial ondition

impose that p

A

is true initially;

� Transition relation. Æ

B

1

= f(q

1

; q

2

)jq

1

; q

2

2 Q

B

1

g, i.e. there is no

restrition on the transition relation;

� Aeptane ondition. Q

B

1

F

= Q

B

1

, the aepting ondition is

trivial and thus does not impose any onstraint on the aepted

TSS.

The automaton B

1

ensures that p

A

is true initially (by the de�nition

of the initial loations and the de�nition of the labeling funtion) as

we have de�ned the initial loation as the loations labeled by p

A

.

Further, eah time that the proposition p

x

D

�

(p

y

D

�

, respetively) is

true in a loation, we deorate this loation with the real-time on-

straint x

p

D

�  (y

p

D

� , respetively) whih, by the semantis of

loks of EventClokTA, imposes the right timing on the last (�rst fol-

lowing, respetively) ourrene of p

D

and by H4 and H5, ensures the

veri�ation of real-time onstraints x

D

�  (resp.y

D

� ) assoiated

to the MEventClokTA D.

Automaton for ondition H4 We onstrut an automaton B

2;C

for eah

C 2 A [ SUB(A). Basially, to enfore the property H4 for C, the

automaton B

2;C

must, eah time that it enounters a state in b� where

the proposition p

C

is true, hek that: \there exists a t-monitored run

of C on b�". That an be done by heking the two following properties:

1. there exists a �nite run of C that over b� for the interval [0; t℄

and ends in a monitored loation, say in q

m

;

2. and that we an extend this run from q

m

to over the reminder

of b�, i.e. the interval [t;1), still respet the aepting ondition

of C.
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The diÆulty arises from the fat that we must hek the existene of

suh runs eah time that the proposition p

C

is true, and the proposition

p

C

is potentially true in an in�nite (and unountable) numbers of

time t 2 R+

. But fortunately, runs that are in the same loation of

C at a given time t 2 R+

an be merged. In fat, as the value of

loks does not depend on the history of the run but only on the TSS

the automaton is reading, two runs that reside in the same loation

have the same possible futures. More preisely, if �

[0;t℄

1

and �

[0;t℄

2

are

two pre�xes of runs on TSS b�, suh that �

[0;t℄

1

(t) = �

[0;t℄

2

(t) then if

�

[0;t℄

1

� �

(t;1)

3

is a aepted run of A on � then so is �

[0;t℄

2

� �

(t;1)

3

. Note

that this property is not true for timed automata in general. In fat,

in a timed automaton run the value of loks at a given time t depends

on the history of the run up to that time t. So two pre�xes of runs

that at time t end up in the same loation do not neessarily have the

same futures, as their lok values an be di�erent. This tehnique is

again inspirated by the deision proedure for E-TL.

Let us now show in details how we an solve the problem. To simplify

the presentation, we �rst de�ne two transition strutures.

De�nition 4.56 (Transition Struture) A transition struture is

a four-tuple � = (S; S

0

; R; F ) where:

� S is a set of states;

� S

0

� S is a set of initial states;

� R � S � S is the transition relation;

� and either F � S is a set of aepting states, or F � 2

S

is a set of

sets of aepting states. We will use set of aepting states when

we will need to de�ne a B�uhi aeptane ondition and we will

use set of sets of aepting states when we will need to de�ne a

generalized B�uhi ondition.

We will use transition struture as intermediate objets.

We onstrut one transition struture for the two properties above and

de�ne how to take their produt in order to obtain the automaton B

2

that heks ondition H4.

� Transition struture �

1

. To hek that there exists a run on

the pre�x of b� up to time t with p

C

2 b�(t), we simply maintain

a deterministi version of C, see de�nition 4.35 and lemma 4.37.

We note this deterministi version D and the struture �

1

=

(S

1

; S

1

0

; R

1

; F

1

) is de�ned from D as follows:
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{ S

1

= Q

D

, that is, the states of the transition struture �

1

is the set of loations of the deterministi version of C, and

thus a state of �

1

is a set of loations of C;

{ S

1

0

= Q

D

0

, the initial states of �

1

are the initial loations of

D;

{ R = Æ

D

, the transition relation is as in D;

{ F = S

1

, eah state is aepting and thus the aepting on-

dition is trivial.

This deterministi struture tells us at eah moment, when read-

ing b�, in whih loations of C the ontrol an reside. As a on-

sequene, the automaton tells us in whih loations all possible

runs an be. We will use this information in order to start runs

for suÆxes only from monitored loations where the ontrol an

reside.

� Transition struture �

2

. To hek the existene of runs on the

suÆxes of b� from time t, we onsider a transition struture �

2

=

(S

2

; S

2

0

; R

2

; F

2

), where:

{ the states of �

2

are n-tuples of loations hl

1

; l

2

; : : : ; l

n

i of

C, thus n = jQ

C

j. n-tuples are suÆient beause, at eah

moment, the ontrol of the automaton C an be, at most, in

n di�erent loations and we do not need more beause we are

allowed to merge runs that are in the same loation. Eah l

i

belongs to Q

C

[ f?g, the speial value ? is used for l

i

when

there is no ative i

th

run. We further impose the following

properties to the tuples: hl

1

; : : : ; l

n

i 2 S

2

i� there exists a j,

1 � j � n+ 1, suh that:

1. for all k, j � k � n: l

k

= ?;

2. for all k, 1 � k < j: l

k

2 Q

C

;

3. for all k

1

; k

2

, 1 � k

1

< k

2

< j: l

k

1

6= l

k

2

;

4. for all k

1

; k

2

, 1 � k

1

< k

2

< j: �

C

(l

k

1

) = �

C

(l

k

2

).

The onjuntion of ondition (1) and (2) ensures that \real"

loations oupy the �rst plaes in the tuple. Condition (3)

imposes that all loations are di�erent in the tuple. This

is neessary as we have only n plaes and we must hek

potentially in�nitely many runs, therefore, we must merge

runs that reah the same loation. Finally, in (4) we require

that loations in the tuples have the same label. In fat, at

eah time t of a TSS, only one label is true so, at eah time t,

the ontrol of C an only be in loations that share the same

label. In the sequel, we use the notation �

C

(hl

1

; l

2

; : : : ; l

n

i)

to refer to that label.

{ As initial states of �

2

, we take S

2

0

= S

2

.
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{ Let us now de�ne the transition relation of the struture �

2

:

we have (hl

1

1

; l

1

2

; : : : ; l

1

n

i; hl

2

1

; l

2

2

; : : : ; l

2

n

i) 2 R

2

i� for all k, 1 �

k � n: if l

1

k

6= ? then there exists j, 1 � j � k and (l

1

k

; l

2

j

) 2

Æ

C

. That is eah (non dummy) loation of the �rst tuple has

a Æ

C

-suessor loation in the seond tuple, merging runs is

allowed as j an be stritly less than k.

{ Let us now expose how we an hek that eah run simulated

in the struture �

2

respets the aeptane ondition of C.

To solve this problem we use a generalized B�uhi aeptane

ondition: we de�ne n sets of aepting loations, a run will

be aepting if it has, for eah n sets in�nitely many positions

in the set. The sets are de�ned as follows:

F

i

= fhl

0

; l

1

; : : : ; l

n

ij either l

i

= ? or l

i

2 Q

C

F

g

In the sequel, we note �

2

:F

i

, the i

th

set of aepting states

of the transition struture �

2

. Let us show that this hoie

for the aepting ondition is orret. Consider a run that

starts in the i

th

oordinate of the tuples. Either this run is

merged with another run j < i. In that ase l

i

= ? until

we start another run, or l

i

= ? for ever, in the last ase,

the run is aepted. Now, if the run ontinues for ever in

a oordinate k � j, whih must arrive sooner or later, then

we must hek that the run goes in�nitely often through an

aepting loation of C whih is heked by the set �

2

:F:F

k

.

We are now in position to de�ne the non reursive automaton B

2;C

=

(Q

B

2;C

; Q

B

2;C

0

; Æ

B

2;C

;P

B

2;C

; �

B

2;C

;A

B

2;C

; Q

B

2;C

F

):

� Loations. Q

B

2;C

is the set of tuples h�; s

1

; s

2

i where:

{ � 2 2

Limit(P

B

[A

B

)

, � is a label;

{ s

1

2 S

1

, this part will be used to hek the onstraints over

pre�xes as explained above;

{ s

2

2 S

2

, this part will be used to hek the onstraints over

suÆxes as explained above;

that respet the following restritions (with s

2

= hl

1

; : : : ; l

n

i):

1. (a) for all p 2 P

C

: p 2 � i� p 2 �

C

(s

1

) i� p 2 �

C

(hl

1

; : : : ; l

n

i);

(b) for all z

D

�  2 A

C

: p

z

D

�

2 � i� (z

D

� ) 2 �

C

(s

1

) i�

(z

D

� ) 2 �(hl

1

; : : : ; l

n

i).

2. if p

C

2 � and s

2

= hl

1

; : : : ; l

n

i then there exists j, 1 � j � n,

suh that l

j

2 Q

C

M

; that is, if p

C

is true then it is neessary to

hek that there exists a run of C on the rest of the TSS that

starts in a monitored loation, the struture �

2

will hek for

the existene of suh a run;
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3. if s

2

= hl

1

; l

2

; : : : ; l

n

i then for all j suh that 1 � j � n and

l

j

6= ?, we have l

j

2 s

1

; this onstraint imposes that the

loations ative in runs are a subset of the loations where

the ontrol of the automaton an reside (information given

by the struture �

1

).

� Initial loations. Q

B

2;C

0

= f(�; s

1

; s

2

)js

1

2 S

1

0

g, reall that S

1

0

ontains all the sets of loations where the automaton C an

start a run;

� Transition Relation. [(�

1

; s

1

1

; s

1

2

); (�

2

; s

2

1

; s

2

2

)℄ 2 Æ

B

2;C

i� (s

1

1

; s

2

1

) 2

R

1

and (s

1

2

; s

2

2

) 2 R

2

, thus there is a transition in B

2;C

if the

transition is possible in both �

1

and �

2

;

� Propositions and atomi lok onstraints. The propositions and

the loks onstraints are as for B: P

B

2;C

= P

B

and A

B

2;C

= A

B

.

� Labeling funtion. For all (�; s

1

; s

2

) 2 Q

B

2

, �

B

2

((�; s

1

; s

2

)) = �.

� Aepting ondition. For the aeptane ondition, we transpose

into B

2;C

the onstraints of �

2

. So we use the following general-

ized B�uhi aeptane ondition: Q

B

2;C

F

= fF

1

; F

2

; : : : ; F

n

g where

eah F

i

is de�ned by f(�; s

1

; hl

0

; : : : ; l

i

; : : : ; l

n

i) j l

i

2 Q

C

F

_l

i

= ?g.

Now, B

2

is obtained by taking the produt of eah B

2;C

for C 2

fAg [ SUB(A).

Automaton for ondition H5 One way to solve this problem would be

to onsider for eah automaton C 2 fA [ SUB(A)g, its omplement

C and hek ondition H4 for that automaton. As we have proved

that MEventClokTA are losed under omplementation, this strat-

egy works to omplete our onstrution for the emptiness problem of

MEventClokTA. But this method does not math the optimal om-

plexity sine after omplementation, whih osts an exponential, we

should still onstrut the deterministi struture (�

1

) and the tuple-

struture (�

2

) whih also osts one exponential. Applying this simple

idea would result in a doubly exponential blow-up in the number of

loations of the onstruted automaton giving an Ex-Pspae proe-

dure. It is possible to solve the problem with only one exponential,

yielding a Pspae proedure, with the following idea (again, adapted

from [SVW85℄): for eah automaton C, we onstrut an automaton

B

3;C

that enfores exatly the negation of H5 for eah C, that is \there

exists a time t 2 R+

suh that p

C

62 b�(t) and C has a t-monitored and

aepted run on b�". After, we take the union of all those automata and

omplement this union, we obtain a single automaton B

3

that heks

H5 for eah automaton C 2 fA[SUB(A)g. The onstrution is singly

exponential (the one that ours during the omplementation). Let

us now show how to onstrut the automaton B

3;C

. The idea behind
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the onstrution is the following: we onstrut an automaton whih

is essentially the produt of C with a simple transition struture �

that ensures, when we take the produt between C and �, that p

C

is

eventually false and at the same time C is in a monitored loation.

The struture � is de�ned as follows:

� States.The set of states S is the set of 3-tuples (i; �

1

; �

2

) suh that

i 2 f1; 2; 3g, �

1

2 fM;

�

Mg, �

2

2 fp

C

; �p

C

g, with the restrition

that if i = 2 then �

1

= M and �

2

= �p

C

. The intuition is that

when the struture � is in a state tagged by 2 then C is in a

monitored loation and the proposition p

C

is false. We will use

the initial ondition, transition relation and aeptane ondition

to ensure that eah run of � eventually passes through a state

tagged with 2.

� Initial states are S

0

= f(i; �

1

; �

2

) 2 Qji 2 f1; 2gg. Initially, the

ontrol an only be into part 1 or part 2 of the struture.

� Transitions: ((i

1

; �

1

1

; �

1

2

); (i

2

; �

2

1

; �

2

2

)) 2 R i� either i

2

= i

1

or i

2

=

i

1

+ 1. The ontrol of the automaton an only go from part 1

to part 2 and then to part 3. Consequently, when in part 1, the

ontrol must ross part 2 to attain the aepting loations.

� Aeptane: F = f(i; �

1

; �

2

)ji 2 f2; 3gg, the aepting states are

those tagged with 2 or 3.

We now onstrut B

3;C

from C and � = (S; S

0

; R; F ) as follows:

� Loations. Q

B

3;C

is the set of 3-tuples (s; q; �) suh that:

{ s 2 S;

{ q 2 Q

C

;

{ � 2 2

Limit(P

B

[A

B

)

;

{ if s = (i; �

1

; �

2

) then �

1

=M i� q

2

2 Q

C

M

, that is the ontrol

is in a M -state of � i� the ontrol is in a monitored loation

in Q

C

.

� Initial loations. The set of initial loations Q

B

3;C

0

= f(s; q; �) j

s 2 S

0

and q 2 Q

C

0

g, that is, we hek that the struture � and

the automaton C respets their initial requirement;

� Transition relation. We have [(s

1

; q

1

; �

1

); (s

2

; q

2

; �

2

)℄ 2 Æ

B

3;C

i�

1. (s

1

; s

2

) 2 R;

2. (q

1

; q

2

) 2 Æ

B

3;C

or q

1

= q

2

;

So, we hek the transition relation of both � and C (stuttering

steps are allowed in C).

� Propositions and atomi lok onstraints. The propositions and

atomi lok onstraints are as in automaton B: P

B

3;C

= P

B

,

A

B

3;C

= A

B

;
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� Labeling funtion. The labeling funtion is de�ned as follows:

�

B

3;C

((s; q; �)) = �.

� Aepting loations. The aepting ondition is de�ned as follows:

to be aepted, a run must respet the onjuntion of the aept-

ing onditions for C and the transition struture �. Therefore,

we de�ne the following aeptane ondition: Q

B

3;C

= fF

1

; F

2

g

with F

1

= f(s; q; �) j s 2 �:Fg and F

2

= f(s; q; �) j q 2 Q

C

F

g.

To obtain the automaton B

2

, we just omplement the union of the set

of automata fB

3;C

j C 2 A [ SUB(A)g.

We �nally obtain the non reursive event-lok automaton B by taking

the produt of the automata B

1

; B

2

; B

3

.

The following theorem follows from the previous onstrution.

Theorem 4.57 (REventClokTA-Emptiness) The emptiness problem for

reursive event-lok automata is PSpae-Complete.

To hek the universality problem, we use the same onstrution with

H1 replaed by:

H1' p

A

62 b�(0)

and hek that the language of the onstruted propositional event-lok

automaton is empty, so we have:

Theorem 4.58 (REventClokTA-Universality) The universality problem

for reursive event-lok automata is PSpae-Complete.

4.6 Expressiveness: REventClokTA vs EventClokTL

In setion 3.3.2, we have shown that propositional (non reursive) event-

lok automata are not suÆiently expressive to de�ne all EventClokTL-

properties. In this setion, we show that, on the ontrary, REventClokTA

are suÆiently expressive to de�ne all EventClokTL-properties. We �rst

introdue some new notions.

De�nition 4.59 (level of EventClokTL formulas) The level of an Event-

ClokTL formula � is omputed by the following reursive funtion level:

� level(p) = 0;

� level(�

1

_ �

2

) =Maximum(level(�

1

); level(�

2

));

� level(:�

1

) = level(�

1

);

� level(�

1

U�

2

) = Maximum(level(�

1

); level(�

2

));
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� level(�

1

S�

2

) = Maximum(level(�

1

); level(�

2

));

� level(�

I

�

1

) = 1 + level(�

1

);

� level(�

I

�

1

) = 1 + level(�

1

);

That is the level of a formula � is the number of imbriations of real-time

operators in �. 2

We say that \� is a level

i

formula" if level(�) = i. In the following proofs,

we will reason by indution on the struture of level

i

formulas, we de�ne the

grammar orresponding to those formulas:

De�nition 4.60 (Grammar of level

i

-formulas) The following grammar

rule de�ne the level

0

EventClokTL formulas:

� ::= p j �

1

_ �

2

j :�

1

j �

1

U�

2

j �

1

S�

2

where �

1

and �

2

are level

0

formulas.

Note that level

0

formulas are LTR formulas. Reursively, the following gram-

mar rule de�ne the level

i

EventClokTL formulas:

� ::= p j �

I

�

3

j �

I

�

3

j �

1

_ �

2

j :�

1

j �

1

U�

2

j �

1

S�

2

where �

1

and �

2

are level

j

formulas where 0 � j � i and �

3

is a level

k

formula where 0 � k < i.

2

For example, �

=1

�

=1

p is a level

2

formula.

We de�ne the following slightly non-lassial notion of losure of a for-

mula:

De�nition 4.61 (Closure Set) Let � be an EventClokTL formula, we

de�ne the losure of �, with the help of the reursive funtion Cl:

� Cl(p) = fpg;

� Cl(�

1

_ �

2

) = Cl(�

1

) [ Cl(�

2

) [ f�

1

_ �

2

g;

� Cl(:�

1

) = Cl(�

1

);

� Cl(�

1

U�

2

) = Cl(�

1

) [ Cl(�

2

) [ f�

1

U�

2

g;

� Cl(�

1

S�

2

) = Cl(�

1

) [ Cl(�

2

) [ f�

1

S�

2

g;

� Cl(�

I

�

1

) = f�

I

�

1

g;

� Cl(�

I

�

1

) = f�

I

�

1

g;

The losure of the formula �, denoted Cl(�), is the set Cl(�) losed by

negation, that is Cl(�) = f ;: j  2 Cl(�)g. 2
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In that non-lassial notion of losure, the real-time subformulas �

I

�

3

and �

I

�

3

are onsidered as atomi formulas. Let us now onsider the fol-

lowing lemma:

Lemma 4.62 (EventClokTL� Fine TSS) For every set of propositions P,

for every TSS �, if � is Limit(P) � Fine and alternating, then � is also

�� Fine for every level

0

-EventClokTL formula � whose propositions are in

P.

Proof. We prove this lemma by indution of the struture of level

0

-formulas.

� Base ase. If � = p with p 2 P then the lemma is trivially veri�ed as

p 2 Limit(P).

� Indution ase. The indution hypothesis tell us that for �

1

and �

2

whih are level

0

formulas, we know that � is �

1

� Fine as well as

�

2

� Fine. Let us also observe that a singular interval an not be

re�ned. So we only have to show that level

0

formulas have a onstant

truth value in all open intervals of �. Now let us treat eah onstrution

of the grammar:

{ let  = �

1

_ �

2

. Let us onsider the open interval I

i

. There

are four possible ases: �

1

and �

2

are onstantly true during I

i

,

�

1

is onstantly true during I

i

and �

2

is onstantly false, ... Let

us treat the �rst ase as an example, the other ases are treated

similarly. If �

1

and �

2

are onstantly true during I

i

then by the

semantis of the _-operator, �

1

_ �

2

is onstantly true during I

i

.

Thus the sequene of intervals does not need to be re�ned.

{ let  = :�

1

. In that ase, if �

1

is onstantly true during I

i

then

 is onstantly during this interval, and onversely. Again, the

sequene of intervals does not need to be re�ned.

{ let  = �

1

U�

2

. To treat that ase, let us make the hypothesis

that (�; t) j= �

1

U�

2

for some t 2 I

i

. We will show that this

implies that for all time t

1

2 I

i

, (�; t

1

) j= �

1

U�

2

. We will treat

the negation after. By the semantis of the U-operator, we know

that: there exists a time t

0

> t suh that (�; t) j= �

2

and for all

time t

00

2 (t; t

0

), (�; t

00

) j= �

1

_�

2

. Let us �rst make the hypothesis

that t

0

belongs to the interval I

i

. By indution hypothesis, we

know that for all time t

1

2 I

i

, (�; t

1

) j= �

2

. As I

i

is open, it is

easy to see that (�; t

1

) j= �

1

U�

2

for all t

1

2 I

i

. Now let us make

the onserve hypothesis, the �rst time where �

2

holds is not in

I

i

but after. By indution hypothesis, this implies that for all

time t

1

2 I

i

, (�; t

1

) 6j= �

2

. By semantis of the U-operator, we

know that �

1

must be true just after t within I

i

. By indution

hypothesis �

1

is then onstantly true within I

i

and thus also
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�

1

U�

2

. Let us now turn to the ase where there is a time t 2 I

i

where (�; t) 6j= �

1

U�

2

. We already prove that if there exists a

time t

0

2 I

i

suh that (�; t

0

) j= �

1

U�

2

, there does not exists a

time t

00

2 I

i

suh (�; t

00

) 6j= �

1

U�

2

. Thus as (�; t) 6j= �

1

U�

2

holds,

we know that there an not exists suh a t

0

.

{ let  = �

1

S�

2

. This ase is treated in the same way that the

U-ase and is left to the reader.

2

This lemma will allow us, in the next proof, to tag loations of monitored

event-lok automata with formulas of the logi and still keep the property

that the ontrol an only resides in a loation for a singular interval of time

only if the label of that loation is singular.

Lemma 4.63 (EventClokTL � MEventClokTA) For every EventClokTL for-

mula � we an onstrut a MEventClokTA A

�

that aepts exatly the pairs

(�; t), where � is de�ned on the set of propositions P appearing in � and

t 2 R+

, suh that (�; t) j= �.

Proof. To establish this result, we reason by indution on the level of for-

mulas.

� Base ase. Let onsider � a level

0

-formula. We �rst de�ne a tran-

sition struture � = (S; S

0

; R; F ) that heks the semantis of the

propositional and temporal operators of level

0

-formula. After, we will

transform this struture into an monitored oating automaton. We

de�ne the elements of � as follows:

{ States. S is the set of pairs (a; &) where a 2 2

Cl(�)

with > 2 a,

& 2 fopen; singg (indiating if the ontrol an stay in the state for

an open interval of time or just a singular interval of time) and

the following properties are veri�ed:

1. for all �

1

2 Cl(�): �

1

2 a i� :�

1

62 a;

2. for all (�

1

_ �

2

) 2 Cl(�): �

1

_ �

2

2 a i� �

1

2 a or �

2

2 a;

3. for all (�

1

U�

2

) 2 Cl(�):

3.a if �

2

2 a and & = open then �

1

U�

2

2 a;

3.b if �

1

U�

2

2 a and & = open then �

1

2 a or �

2

2 a;

4. for all (�

1

S�

2

) 2 Cl(�):

a if �

2

2 a and & = open then �

1

S�

2

2 a;

b if �

1

S�

2

2 a and & = open then �

1

2 a or �

2

2 a;
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(1) and (2) enfores the semantis of propositional operators;

(3.a) and (3.b) enfores loal onsisteny for the until oper-

ator; (4.a) and (4.b) are the loal onsisteny rules for the

sine operator.

{ Initial states. The set of initial states is the subset of pairs (a; &) 2

S suh that & = sing and there does not exist �

1

S�

2

2

�

Cl(�) and

�

1

S�

2

2 a. That is an initial state is singular and it does not

ontains a sine formula in positive form.

{ Transition relation. The transition relationR is the subset [(a

1

; &

1

); (a

2

; &

2

)℄

of S � S that respets the following restritions:

1. &

1

= open and &

2

= sing, or, &

1

= sing and &

2

= open;

2. The following rules express how until formulas are transfered

from one state to the next of the transition struture:

2.a �

1

U�

2

2 a

1

^ &

1

= sing i� �

1

U�

2

2 a

2

;

2.b �

1

U�

2

2 a

1

^ & = open ^ �

2

62 a

1

, implies (�

1

U�

2

2

a

2

^ �

1

2 a

2

) _ �

2

2 a

2

;

2. �

1

2 a

1

^ &

1

= open ^ (�

1

2 a

2

_ (�

2

2 a

2

^ �

1

U�

2

2 a

2

))

implies �

1

U�

2

2 a

1

.

3. The following are for the sine formulas:

3.a �

1

S�

2

2 a

2

^ & = sing i� �

1

S�

2

2 a

1

;

3.b �

1

S�

2

2 a

2

^ &

2

= open^�

2

62 a

2

implies �

2

2 a

1

_ (�

1

2

a

1

^ (�

1

S�

2

) 2 a

1

);

3. �

1

2 a

2

^ &

2

= open ^ (�

2

2 a

1

_ �

1

S�

2

2 a

1

) implies

�

1

S�

2

2 a

2

{ Aepting states. As usual, we use a generalized B�uhi aep-

tane ondition. For eah formula �

1

U�

2

2 Cl(�), there is a set

�:F:F

�

1

U�

2

= f(a; &) j �

1

U�

2

62 a _ �

2

2 ag.

We are now equipped to de�ne the monitored oating automaton A

�

.

We onstrut A

�

= (Q

A

�

; Q

A

�

0

; Q

A

�

M

; Æ

A

�

;P

A

�

; �

A

�

; Q

A

�

F

) as follows:

{ Loations. The set of loations Q

A

�

is the set of pairs ((a; &); �)

suh that:

1. (a; &) 2 S;

2. � is a label that is open if and only if & = open;

3. the labeling is propositionally onsistent with the formula in

a: for all proposition p 2 P: p 2 � i� p 2 a.

{ Initial loations. The set of initial loations Q

A

�

0

is the subset of

loations ((a; &); �) 2 Q

A

�

suh that (a; &) 2 S

0

;

{ Monitored loations. The set Q

A

�

M

of monitored loations is the

subset of loations ((a; &); �) 2 Q

A

�

suh that � 2 a, that is the

subset of loations where the formula � is true;
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{ Transition relation. The transition relation is the set of pairs

[((a

1

; &

1

); �

1

); ((a

2

; &

2

); �

2

)℄ with ((a

i

; &

i

); �

i

) 2 Q

A

�

for i 2 f1; 2g,

suh that: [(a

1

; &

1

); (a

2

; &

2

)℄ 2 R;

{ Propositions. The set of propositions used by A

�

is the set of

propositions that appear in the formula �, i.e. P

A

�

= fp j p 2

Cl(�)g;

{ Labeling funtion. The labeling funtion �

A

�

is de�ned as follows:

�

A

�

(((a; &); �)) = �;

{ Aepting loations. We transfer in A

�

the generalized B�uhi a-

eptane ondition of the transition struture � : Q

A

�

F

is the

set of sets of aepting loations fF

1

; : : : ; F

n

g where eah F

i

orresponds to a set of aepting states in S as follows: F

i

=

f((a; &); �) j (a; &) 2 �:F:F

i

g.

It is routine to prove that the onstruted automaton A

�

aepts the

right oating language.

� Indution ase. By indution hypothesis, we know that for eah for-

mula  of level

j

with j < i, we are able to onstrut a ongruent

monitored reursive event-lok automaton A

 

. Let us show that we

an onstrut a automaton for eah formula of level

i

. By inspeting

the grammar rules for level

i

-formulas, it is not diÆult to see that if

we onsider real-time formulas as atomi, the level

i

-formulas are on-

struted in the same way as level

0

-formulas. The onstrution of A

�

will be exatly as for the base ase with the exeption that we must

treat the real-time formulas. We treat them as follows: for eah for-

mula �

I

�

3

, we use the (history) atomi real-time onstraint x

A

�

3

2 I,

and for eah formula �

I

�

3

, we use the (prediting) atomi real-time

onstraint y

A

�

3

2 I. Those onstraints have the property, by indution

hypothesis, that: for every TSS �, every time t 2 R+

: (�; t) j= �

I

�

3

i� (�; t) j= x

A

�

3

2 I and (�; t) j= �

I

�

3

i� (�; t) j= y

A

�

3

2 I. Finally,

when onstruting the automaton A

�

, we use as set of propositions

P

A

�

the set of propositions that appears into formula � and we hek

that the following additional rule for loations: if ((a; &); �) 2 Q

A

�

then for eah real-time onstraints �

I

�

1

, �

I

�

1

2 a i� (x

A

�

1

2 I) 2 �,

and similarly for the future real-time operators: for eah real-time

onstraints �

I

�

1

, �

I

�

1

2 a i� (y

A

�

1

2 I) 2 �. Again, it is routine

to prove that the onstruted automaton A

�

aepts the right oating

language.

2
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As the reursive event-lok automata subsume the formalisms that de-

�ne the ounter-free real-time !-regular languages, we propose to all the

languages identi�ed by reursive event-lok automata as follows:

De�nition 4.64 The sets of timed state sequenes de�nable by the for-

malisms of reursive event-lok automata form the lass of real-time !-

regular languages.

Note that the last theorem and theorem 4.11, allow us to derive the

following orollary:

Corollary 4.65 (EventClokTA � REventClokTA) The lass of reursive

event-lok automata is stritly more expressive that the lass of proposi-

tional event-lok automata. 2

From the base ase of the last proof, we an see that if p in not real-time

onstrained in � then p does not appear in the subautomata of A

�

.

Lemma 4.66 (Not Real-Time Constrained Propositions) Let � be an

EventClokTL formula and p a proposition of � that does not appear in

the sope of a real-time operator (�;�) then we an onstrut an MEvent-

ClokTA A

�

suh that (i) FloatLang(A

�

) = FloatLang(�) and (ii) p does not

appear in the proposition used by subautomata of A

�

.

We will use this property to determine how to introdue seond-order

quanti�ation within real-time logis in the following setion.

5 Adding Counting and Beyond

In this setion, we show how to lose the gap between the ounter-free real-

time regular languages identi�ed in setion 3, and the (ounter) real-time

regular languages identi�ed in the setion 4. We will show that there are

two ways to bridge this expressiveness gap.

The �rst way, is to add automaton operators to the real-time logis

EventClokTL andMetriIntervalTL, giving respetively, E-EventClokTL and

E-MetriIntervalTL. This is very similar to the situation in the temporal for-

malisms where it has been shown in [Wol83℄ that LTL an be extended with

B�uhi automata operators giving the logi E-TL whih is able to express,

in ontrast with LTL, all regular languages. The only di�erene is that we

need oating automata here beause we must be able to look in the past.

So E-EventClokTL and E-MetriIntervalTL de�ne exatly the same lass of

real-time languages than the reursive event-lok automata.

The seond way onsists of adding seond-order quanti�ation to Event-

ClokTL, MetriIntervalTL and MinMaxML

1

. But here the situation, surpris-

ingly, is very di�erent from the situation in untimed languages. In untimed
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languages, seond-order quanti�ation an be added without restrition and

lose the gap between ounter-free and ounter regular languages. In real-

time, we will see that adding unrestrited seond-order quanti�ation leads

to a fully undeidable formalism: neither satis�ability, nor validity are de-

idable, and the resulting formalisms are stritly more expressive than timed

automata. But we will show that if we slightly restrit the use of seond-order

quanti�ation, we obtain fully deidable formalisms alled Q-EventClokTL,

Q-MetriIntervalTL and MinMaxML

2

. Interestingly, those three formalisms

de�ne exatly the lass of ounter real-time regular languages as reursive

event-lok automata.

We will show that the results that we have obtained are sharp in the sense

that small relaxations of the syntatial restritions that we have imposed to

our formalisms either lead to formalisms that are as expressive as timed au-

tomata, or to fully undeidable formalisms. In partiular, we will show that

only adding outermost seond-order quanti�ation, alled here projetion, to

all the fully deidable formalisms previously de�ned, leads to formalisms as

expressive as timed automata and have thus a non deidable validity prob-

lem. As all those formalisms de�ne the same lass of real-time languages,

we all this lass \projeted real-time languages regular languages". We also

study two other relaxations that lead to fully undeidable formalisms.

5.1 Adding Ability to Count

5.1.1 Adding Automata Operators

In this setion, we give the de�nition of the syntax and semantis of the

real-time logis EventClokTL andMetriIntervalTL extended with monitored

oating automata operators (or equivalently add oating automata instead

of their monitored version).

De�nition 5.1 (E-EventClokTL-Syntax) The formulas of the extended

event lok temporal logi E-EventClokTL are de�ned as for EventClokTL,

see de�nition 3.16, with the following additional lause:

� ::= A(�

1

; : : : ; �

n

)

where A = (Q;Q

0

; Q

M

; Æ;�; �;Q

F

) is a monitored oating automaton with

� = f�

1

; �

2

; : : : ; �

n

g is the alphabet of A, � : Q! � is the labeling funtion

that labels eah loation of A with a E-EventClokTL formula, other elements

are as for monitored oating automata, see de�nition 4.23. 2

We de�ne the semantis of the automata operators as follows:

De�nition 5.2 (E-EventClokTL-Semantis) Let � be an E-EventClokTL

formula and let � be a timed state sequene whose propositional symbols

ontain all propositions that our in �. The formula � holds at time t 2 R+

of �, denoted (�; t) j= �, aording to the following de�nition:
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For the operators of the logi EventClokTL, see de�nition 3.17;

(�; t) j= A(�

1

; �

2

; : : : ; �

n

) i� there is an in�nite t-monitored run

� of A on � that respets:

(1) Covering, Start, Conseution, Monitoring and

Aeptane are as for monitored oating au-

tomata, see de�nition 4.24;

(2) Constraint: for all t 2 R+

, (�; t) j= �(�(t));

2

Let us now turn to the extension of MetriIntervalTL.

De�nition 5.3 (E-MetriIntervalTL-Syntax) The formulas of the extended

metri interval temporal logi E-EventClokTL are de�ned as forMetriIntervalTL,

see de�nition 3.9, with the following additional lause:

� ::= A(�

1

; : : : ; �

n

)

where A = (Q;Q

0

; Q

M

; Æ;�; �;Q

F

) is a monitored oating automaton where

� = f�

1

; �

2

; : : : ; �

n

g is the alphabet of A, � : Q ! � is the labeling fun-

tion that labels eah loation of A with a E-MetriIntervalTL formula, other

elements are as for monitored oating automata, see de�nition 4.23. 2

We de�ne the semantis of the automata operators as follows:

De�nition 5.4 (E-MetriIntervalTL-semantis) Let � be an E-MetriIntervalTL

formula and let � be a timed state sequene whose propositional symbols

ontain all propositions that our in �. The formula � holds at time t 2 R+

of �, denoted (�; t) j= �, aording to the following de�nition:

For the operators of the logiMetriIntervalTL, see de�nition 3.11;

(�; t) j= A(�

1

; �

2

; : : : ; �

n

) i� there is an in�nite t-monitored run

� of A on � that respets:

(1) Covering, Start, Conseution, Monitoring, A-

eptane are as for monitored oating automata,

see de�nition 4.24;

(2) Constraint: for all t 2 R+

, (�; t) j= �(�(t));

2

We will study the expressiveness and deidability results of those logis

in the following setions.
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5.1.2 Adding Seond Order Quanti�ation

The quanti�ed temporal logis Q-EventClokTL and Q-MetriIntervalTL are

de�ned by adding seond order quanti�ation to EventClokTL andMetriIn-

tervalTL in a restrited way.

De�nition 5.5 (Q-EventClokTL-Syntax) The formulas of the quanti�ed

event lok temporal logi Q-EventClokTL are de�ned as for EventClokTL,

see de�nition 3.16, with the following additional lause:

� ::= 9p �  

where p is a proposition whih, inside the formula  , does not our within

the sope of a history or prophey operator. 2

We now de�ne the semantis of the additional lause:

De�nition 5.6 (Q-EventClokTL-Semantis) Let � be an Q-EventClokTL

formula and let � be a timed state sequene whose propositional symbols

ontain all propositions that our freely in �. The formula � holds at time

t 2 R+

of �, denoted (�; t) j= �, aording to the following de�nition:

For the operators of the logi EventClokTL, see de�nition 3.17;

(�; t) j= 9p � � i� there is a fpg-extension of �, noted �

p

, suh

that (�

p

; t) j= �;

2

Similarly, we de�ne the seond order quanti�ation extension ofMetriIn-

tervalTL as follows:

De�nition 5.7 (Q-MetriIntervalTL-Syntax) The formulas of the quan-

ti�ed metri interval temporal logi E-MetriIntervalTL are de�ned as for

MetriIntervalTL, see de�nition 3.9, with the following additional lause:

� ::= 9p �  

where p is a proposition whih, inside the formula  , does not our within

the sope of a real-time operator with interval di�erent from (0;1). 2

We now de�ne the semantis of the additional lause:

De�nition 5.8 (Q-MetriIntervalTL-Semantis) Let � be anQ-MetriIntervalTL

formula and let � be a timed state sequene whose propositional symbols

ontain all propositions that our freely in �. The formula � holds at time

t 2 R+

of �, denoted (�; t) j= �, aording to the following de�nition:

For the operators of the logiMetriIntervalTL, see de�nition 3.11;

(�; t) j= 9p � � i� there is a fpg-extension of �, noted �

p

, suh

that (�

p

; t) j= �;
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2

Similarly, we introdue seond-order quanti�ation in the real-time monadi

theory that we have de�ned in setion 3.4.

De�nition 5.9 (MinMaxML

2

-Syntax) The formulas of the Seond-Order

Real-Time Monadi Logi over the Reals MinMaxML

2

are de�ned as for

MinMaxML

1

, de�nition 3.20, with the following additional lause:

� ::= 9p �	

where p is a monadi prediate whih, inside the formula 	, does not our

within the sope of a real-time quanti�er Min;Max. 2

The semantis of the additional lause is as usual:

De�nition 5.10 (MinMaxML

2

-Semantis) Let � be an MinMaxML

2

for-

mula and let � be a timed state sequene whose propositional symbols on-

tain all propositions that our freely in �. The formula � holds in the pair

(�; �), denoted (�; �) j= �, aording to the following de�nition:

For the operators and terms of the logi MinMaxML

1

, see de�ni-

tion 3.21 and de�nition 3.22;

(�; �) j= 9p � � i� there is a fpg-extension of �, noted �

p

, suh

that (�

p

; �) j= �;

2

5.1.3 Expressiveness: Equivalene Results

From the theorem 3.38 and the way we have de�ned E-EventClokTL and

E-MetriIntervalTL, we have the following orollary:

Corollary 5.11 (E-EventClokTL = E-MetriIntervalTL) The logis E-EventClokTL

and E-MetriIntervalTL are equivalently expressive.

Similarly, we obtain the following orollary forQ-EventClokTL, Q-MetriIntervalTL

and MinMaxML

2

:

Corollary 5.12 (Q-EventClokTL = Q-MetriIntervalTL = MinMaxML

2

) The

logis Q-EventClokTL, Q-MetriIntervalTL and MinMaxML

2

are equivalently

expressive.

So, what will be proved forQ-EventClokTL, an be derived forQ-MetriIntervalTL

and for MinMaxML

2

.

Let us now study the relation that exists between our quanti�ed logis

and the formalisms of reursive event-lok automata:
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Lemma 5.13 (REventClokTA � Q-EventClokTL) For every REventClokTA

A, we an onstrut a ongruent Q-EventClokTL formula �

A

, that is for ev-

ery TSS �, every time t 2 R+

: Aept

A

(�; t) i� (�; t) j= �

A

.

Proof. Using the equivalene result for REventClokTA and MEventClokTA

given by theorem 4.28, we an show that for everyMEventClokTA A, we an

onstrut a ongruent Q-EventClokTL formula �

A

. We reason by indution

on the level of the MEventClokTA A.

Base ase. The automaton A = (Q;Q

0

; Q

M

; Æ;P; �;Q

F

) is a monitored

oating automata, i.e. level(A) = 0. In that ase, the formula �

A

is on-

struted from the following formulas:

� let Controle be the following propositional formula:

W

q2Q

at

q

, where _

denotes an exlusive or and the proposition at

q

intuitively means that

the ontrol resides in loation q. Controle means that at eah time

during a run, the ontrol of the automaton resides in one and only one

loation.

� let Init be the following formula:

:⊖> !
W

q2Q

0

at

q

that expresses the initially (:⊖>) the ontrol of the automaton must

reside in an initial loation;

� let Transition be the following formula:

V

q2Q

at

q

! 1.^ at

q

W

W

(q;q

2

)2Æ

at

q

2

2.^ at

q

Z

W

(q

2

;q)2Æ

at

q

2

that expresses the transition relation.

� let Monitoring be the following formula:

W

q2Q

M

at

q

that is true when the ontrol of the automaton is in a monitored loa-

tion;

� let Labelling be the following formula:

V

q2q

at

q

! (�(q))

T

where (�(q))

T

is as follows:

V

 2�(q)

 

T

^

V

 2Limit(P)n�(q)

: 

T

85



and:

{ (p)

T

= p for p 2 P;

{ (

�!

p )

T

= p;

{ (

 �

p )

T

= ⊖p;

{ (>)

T

= >;

{ (

�!

> )

T

= >;

{ (

 �

> )

T

= ⊖>.

� let Aeptane be the following formula: for the generalized B�uhi

aeptane Q

F

= fF

1

; : : : ; F

n

g:

V

F

i

2F

2♦
W

q2F

i

at

q

The formula �

A

that orresponds to the monitored oating automaton A is:

9at

q

0

; : : : ; at

q

n

: 1.^ ⊟Control ^2Control ^ Control

2.^ ♦Init

3.^ ⊟Transition ^2Transition ^ Transition

4.^ Monitoring ⊟ Labeling ^2Labeling ^ Labeling

5.^ Aeptane

Indution ase. By indution hypothesis, for every sub-automaton B 2

SUB(A), we are able to onstrut a ongruent formula �

B

. Let us show that

we an do it for A too. The only di�erene between an MEventClokTA and

a monitored oating automata is the ability of MEventClokTA to use lok

onstraints in their labeling funtion. We de�ne the funtion T that given a

label � of A, return the right EventClokTL formula. The label � is a set of

literals, more preisely, � � Limit(P

A

[A

A

). The onstrution is as for the

base ase, we only have to show how to deal with atomi lok onstraints.

We treat atomi real-time onstraints as follows:

�  = y

B

�  then  

T

= �

�

�

B

;

�  = x

B

�  then  

T

= �

�

�

B

;

By examining the onstrution above, it is easy to see that the existentially

quanti�ed proposition, i.e. at

q

0

; : : : ; at

q

n

do not appear in the sope of a

real-time operator, so the formula �

A

is in Q-EventClokTL. 2

We now prove the reverse lemma:

Lemma 5.14 (Q-EventClokTL � REventClokTA) For every Q-EventClokTL

formula �, we an onstrut a ongruent REventClokTA automaton A

�

, that

is for every TSS �, every time t 2 R+

: Aept

A

�

(�; t) i� (�; t) j= �.
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Proof. By theorem 4.28, we an onsider monitored reursive event lok

automata in the proof. In the proof of lemma 4.63, we have shown that for

every EventClokTL formula �, we an onstrut a ongruentMEventClokTA

A

�

, from that proof, it an easily be shown that MEventClokTA are losed

under all EventClokTL operators. Further, in lemma 4.52 it has been shown

that MEventClokTA are partially losed under projetion: a proposition

that does not appear in a sub-automaton an be projeted. So as quanti�ed

propositions do not appear, by de�nition, in the sope of real-time operators,

they do not appear into a sub-automaton, see lemma 4.63, and thus an be

projeted. 2

From the two previous lemmas and orollary 5.12, we obtain the following

theorem:

Theorem 5.15 The logis Q-EventClokTL, Q-MetriIntervalTL andMinMaxML

2

have the same expressive power as REventClokTA automata. 2

And thus, as we have translation proedures between those formalisms,

we have:

Theorem 5.16 The satis�ability problems for Q-EventClokTL, Q-MetriIntervalTL

and MinMaxML

2

are deidable. 2

Sine already the untimed quanti�ed temporal logiQ-TL is non-elementary [Sis83℄,

so are the satis�ability problems for Q-EventClokTL andQ-MetriIntervalTL.

Theorem 5.17 The satis�ability problems for Q-EventClokTL, Q-MetriIntervalTL

and MinMaxML

2

are NonElem. 2

Let us now turn to the logis E-EventClokTL and E-MetriIntervalTL.

Again, by theorem 3.37 and the de�nition of E-EventClokTL and E-MetriIntervalTL,

we have the following orollary:

Corollary 5.18 (E-EventClokTL = E-MetriIntervalTL) The logis E-EventClokTL

and E-MetriIntervalTL are equivalently expressive. 2

So, what will be proved for E-EventClokTL, an be derived for E-MetriIntervalTL.

Lemma 5.19 (E-EventClokTL � REventClokTA) For every E-EventClokTL

formula �, we an onstrut a ongruent REventClokTA automaton A

�

, that

is for every TSS �, every time t 2 R+

: Aept

A

�

(�; t) i� (�; t) j= �.

Proof. Again, thanks to the theorem 4.28 we an show that E-EventClokTL �

MEventClokTA. We already know that MEventClokTA are losed under all

EventClokTL operators. With an adaptation of the tehniques of [SVW85℄

(see also setion 4.5) it an be shown that MEventClokTA are losed under

monitored oating automata operators. 2

87



The other diretion is trivial:

Lemma 5.20 (REventClokTA � E-EventClokTL) For every REventClokTA

automaton A

�

, we an onstrut a ongruent E-EventClokTL formula �,

that is for every TSS �, every time t 2 R+

: (�; t) j= � i� Aept

A

�

(�; t).

Thus the two formalisms are equally expressive.

Theorem 5.21 The logi E-EventClokTL and automata REventClokTA

are equally expressive.

And thus,

Theorem 5.22 (All Equivalent) The logis E-EventClokTL, Q-EventClokTL,

E-MetriIntervalTL, Q-MetriIntervalTL and MinMaxML

2

are all equivalent in

expressive power to the formalisms of REventClokTA, and thus de�ne the

(ounter) real-time regular languages. 2

As we have translation proedure between those formalisms, we have

that:

Theorem 5.23 (E-EventClokTL and E-MetriIntervalTL-Deidability) The

logis E-EventClokTL and E-MetriIntervalTL are deidable. 2

Further, it an be shown that:

Theorem 5.24 (E-EventClokTL and E-MetriIntervalTL-Complexity) The

satis�ability problems for E-EventClokTL and E-MetriIntervalTL

0;1

are om-

plete for Pspae. The satis�ability problem for E-MetriIntervalTL is om-

plete for Expspae. 2

5.2 Projeted Regular Real-Time Languages

In this setion, we study the impat, in term of deidability and expressivity,

of adding projetion, i.e. outermost existential quanti�ation, to the fully

deidable that we have de�ned previously.

We will detail the introdution of projetion into the logi of event loks

giving its projeted version P-EventClokTL, the propositional (non reur-

sive) event-lok automaton giving P-EventClokTA and the reursive event-

lok automata giving P-REventClokTA. Using equivalene results that we

have presented above, we derive impliitly all the orollaries for the other

formalisms.
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5.2.1 Projeted Event Clok Temporal Logi

We de�ne the syntax and semantis of this logi as follows:

De�nition 5.25 (P-EventClokTL-Syntax) The formulas of the projeted

event lok temporal logi P-EventClokTL are de�ned by the following lause:

9p

1

; : : : ; p

n

� �

where � is an EventClokTL-formula, see de�nition 3.16, and p

1

; : : : ; p

n

are

propositional symbols. 2

Let us note that, in ontrast with the de�nition of Q-EventClokTL, we

allow in P-EventClokTL that quanti�ed propositions appear in the sope

of real-time operators. But on the other hand, quanti�ation is only al-

lowed as the outermost operator. The semantis of seond-order existential

quanti�ation is the expeted one:

De�nition 5.26 (P-EventClokTL-Semantis) Let � be an P-EventClokTL

formula and let � be a timed state sequene whose propositional symbols

ontain all propositions that our freely in �. The formula � holds at time

t 2 R+

of �, denoted (�; t) j= �, aording to the following de�nition:

For the operators of the logi EventClokTL, see de�nition 3.17;

(�; t) j= 9p

1

; : : : ; p

n

� � i� there is a fp

1

; : : : ; p

n

g-extension of �,

noted �

fp

1

;:::;p

n

g

, suh that (�

fp

1

;:::;p

n

g

; t) j= �;

2

The anhored language of the P-EventClokTL formula 9p

1

; : : : ; p

n

� �

has the following relation with the anhored language of the EventClokTL

formula �:

Lemma 5.27 If P is the set of propositions that appear in � 2 EventClokTL

and P

0

= P n fp

1

; : : : ; p

n

g then AnLang(9p

1

; : : : ; p

n

� �) = f� # P

0

j � 2

AnLang(�)g. 2

5.2.2 Projeted (Propositional) Event-Clok Automaton

The de�nitions for projeted (propositional) event-lok automata are ob-

tained in a similar way:

De�nition 5.28 (P-EventClokTA-Syntax) A projeted (propositional) event-

lok automaton is a pair (A; fp

1

: : : p

n

g) that onsists of a (propositional)

event-lok automaton A and a set of propositions fp

1

: : : p

n

g. 2
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De�nition 5.29 (P-EventClokTA-Semantis) The anhored language de-

�ned by a P-REventClokTA (A; fp

1

: : : p

n

g), with A de�ned on the set of

propositions P, is the (P n fp

1

: : : p

n

g)-projetions of TSS that belongs to

the anhored language of A, that is, if we note P

0

= P n fp

1

; : : : ; p

n

g, we

have AnLang((A; fp

1

: : : p

n

g)) = f� # P

0

j � 2 AnLang(A)g. 2

5.2.3 Projeted Reursive Event-Clok Automaton

We now turn to the de�nition of projetion into reursive event lok au-

tomata.

De�nition 5.30 (P-REventClokTA-Syntax) A projeted reursive event-

lok automaton is a pair (A; fp

1

: : : p

n

g) that onsists of a reursive event-

lok automaton A and a set of propositions fp

1

: : : p

n

g. 2

De�nition 5.31 (P-REventClokTA-Semantis) The anhored language de-

�ned by a P-REventClokTA (A; fp

1

: : : p

n

g), with A de�ned on the set of

propositions P, is the (P n fp

1

: : : p

n

g)-projetions of TSS that belongs to

the anhored language of A, that is, if we note P

0

= P n fp

1

; : : : ; p

n

g, we

have AnLang((A; fp

1

: : : p

n

g)) = f� # P

0

j � 2 AnLang(A)g. 2

5.2.4 Timed Automata

We briey reall here the de�nition of timed automata. See [AD94℄ for a

omplete study of this formalism.

De�nition 5.32 (Continuous Timed Automaton) A ontinuous timed

automaton is a tuple A = (Q;Q

0

; C;E;P; �

p

; �



; Q

F

) where:

� Q is a �nite set of loations;

� Q

0

� Q is the subset of starting loations;

� C is a �nite set of loks;

� E � Q�2

C

�Q a set of edges. An edge (q

1

; &; q

2

) represents a transition

from loation q

1

to loation q

2

, & is the subset of loks that are reset

when rossing the edge;

� P is a �nite set of propositions;

� �

p

: Q! 2

P

is a labeling funtion whih labels eah loation with the

set of atomi propositions that are true in that loation;

� �



: Q! �(C) is a labeling funtion whih assigns to eah loation a

onstraint of �(C) on the value of loks that should be veri�ed when

staying in that loation;
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� Q

F

is a set of aepting loations (B�uhi aeptane ondition).

2

De�nition 5.33 (TA-Timed Run) A ontinuous timed run of a ontinu-

ous timed automaton A is an in�nite sequene

� = (q

0

; I

0

)!

&

0

(q

1

; I

1

)!

&

1

: : : (q

n

; I

n

)!

&

n

: : :

� q

i

are loations;

� I

0

I

1

� � � I

n

� � � is a sequene of intervals that partitions R+

;

� &

i

� C are sets of loks (to reset).

2

De�nition 5.34 (TA-Clok Value) The value of a lok x 2 C along a

ontinuous timed run � = (q

0

; I

0

)!

&

0

(q

1

; I

1

)!

&

1

� � � , at time t 2 I

i

, noted

�(�; t)(x), is de�ned as follows:

�(�; t)(x) =

�

t� r(I

j

) if x 2 &

j

and 8k � j < k < i : x 62 &

k

t if 8j : 0 � j < i : x 62 &

j

We use �(�; t) to denote the lok valuation at time t along �. 2

De�nition 5.35 (Clok Constraints-Semantis) A lok onstraint  

is satis�ed by a lok valuation �, noted � j=  , aording to the following

rules:

� j= x �  i� �(x) � , with �2 f<;�;=;�; >g;

� j= : i� � 6j=  ;

� j=  

1

_  

2

i� � j=  

1

or � j=  

2

.

2

De�nition 5.36 (TA-Aepted Run) A ontinuous timed run � = (q

0

; I

0

)!

&

0

(q

1

; I

1

)!

&

1

: : : (q

n

; I

n

)!

&

n

: : : is aepted by the ontinuous timed automa-

ton A = (Q;Q

0

; C;E;P; �

p

; �



; Q

F

) when reading the TSS � = (s; I) i� �

respets the following requirements:

� Starting. The �rst loation in � is a starting loation of A, that is

q

0

2 Q

0

;

� Conseution. The ontinuous timed run � respets the transition rela-

tion of A, i.e. for all positions i � 0, we have that either (q

i

; &

i

; q

i+1

) 2

E, or q

i

= q

i+1

and &

i

= ; (stuttering steps are allowed);
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� Timing onstraints. The timing onstraints about loks are respeted

along �, that is, for every position i � 0, for all time t 2 I

i

: �(�; t) j=

�



(q

i

);

� Adequation. The labels along the ontinuous timed run � are in ade-

quation with the truth value of the propositions along the TSS �, that

is for all time t 2 R+

, (�; t) j= �

p

(�(t));

Further, we say that � is aepting if there exists in�nitely many positions

i � 0 suh that q

i

2 Q

F

. We note Aept

A

(�) the fat that A has an

aepted ontinuous timed run on �. 2

De�nition 5.37 The anhored language of a ontinuous TA A is the set of

TSS � on whih A has an aepted run, i.e. AnLang(A) = f� 2 TSS(2

P

A

) j

Aept

A

(�)g. 2

Timed automata are losed under positive boolean operation but not

under negation.

Theorem 5.38 (Closure under Union and Intersetion) [AD94℄ Timed

automata are losed under union and intersetion. 2

Theorem 5.39 (Non-Closure under Complement) The formalism of

timed automata is not losed under omplement. 2

The emptiness problem of timed automata is deidable, on the other

hand, its universality problem is undeidable.

Theorem 5.40 (TA-Emptiness) [AD94℄ The emptiness problem for timed

automata is PSpae-Complete. 2

But the universality problem, that is given a timed automaton, deter-

mine if it aepts all possible timed traes, is undeidable.

Theorem 5.41 (TA-Universality) [AD94℄ The problem of universality

for timed automaton is undeidable. 2

5.2.5 Expressiveness Equivalene Result

In this paragraph, we show that adding projetion to the fully deidable for-

malism is powerful. In fat, we will show that even if added to propositional

event-lok automata we obtain a formalism whih is expressively equivalent

to timed automata. The same ours with all the other formalisms that we

have de�ned.

We now prove that adding projetion to the logi EventClokTL extends

is expressive power in suh a way that P-EventClokTL at least as expressive

as TA:
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Lemma 5.42 (TA � P-EventClokTL) For every ontinuous timed automa-

ton A, we an ompute a projeted event lok temporal formula �

A

that de-

�nes exatly the anhored timed language de�ned by A, that is, AnLang(�) =

AnLang(A)

Proof. Let A = (Q;Q

0

; C;E;P; �

p

; �



; Q

F

) be the ontinuous timed au-

tomaton for whih we want to onstrut the P-EventClokTL formula �

A

.

We onstrut �

A

as follows:

� For eah loation q 2 Q we introdue the proposition at

q

to express

that the ontrol of automaton resides in loation q. During a run the

ontrol of an timed automaton A resides in one and only one loation

at a given time. This is expressed by the following formula:

F

Q

� 2

W

q2Q

at

q

with Q = fq

1

; q

2

; : : : ; q

n

g

� The initial ondition is expressed by the following formula:

F

Q

0

�

W

q2Q

0

at

q

� the propositional labeling funtion �

p

is translated as follows:

F

P

� 2

V

q2q

(at

q

!

V

p2�

p

(q)

p ^

V

p2Pn�

p

(q)

:p)

� The resetting of loks an be expressed with the help of existentially

quanti�ed variables. For eah lok 

i

2 C, we assoiate a proposition

that we note r



i

. This proposition r



i

will be true when and only

when the lok 

i

is reset. By de�nition of timed automata, loks are

reset when rossing edges, and impliitly at the initial moment. For

eah edge (q

i

; �

r

; q

j

) of the automaton, we introdue the proposition

ross

(q

i

;�

r

;q

j

)

that is true i� the automaton rosses the edge between

loation q

i

and loation q

j

.

F

R

1

� 2

V

(q

i

;�

r

;q

j

)2E

ross

(q

i

;�

r

;q

j

)

$ (at

q

i

^ al

q

j

) _ (at

q

j

^⊖al
q

i

)

F

R

2

� 2[

V

(q

i

;�

r

;q

j

)2E

(ross

(q

i

;�

r

;q

j

)

!

V

2�

r

r



)℄ ^ :⊖> !
V

2C

r



when the edge (q

i

; �

r

; q

j

) is rossed, the loks that deorates the edge

are reset (loks are only reset when rossing edges that are labeled

by the lok and initially).

F

R

3

� 2[

V

2C

r



!

W

(q

i

;;q

j

)2R()

ross

(q

i

;�

r

;q

j

)

_ :⊖>℄
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where R() is the set of edges where the lok  is reset, i.e. R() =

f(q

i

; �

r

; q

j

) j (q

i

; �

r

; q

j

) 2 E ^  2 �

r

g.

F

R

� F

R

1

^ F

R

2

^ F

R

3

� The onseution rule is expressed by the following formula:

F

E

� 2

V

q2Q

(at

q

! at

q

W

W

q

0

2S

q

at

q

0

)

where S

q

is the set of loations that are suessors of q in A, i.e.

S

q

= fq

0

j(q; q

0

) 2 Eg;

� The semantis of the time onstraint labeling funtion �



is translated

as follows:

F

C

� 2

V

q2Q

(at

q

! T (�

C

(q)))

where T is de�ned as:

{ T ( 

1

_  

2

) = T ( 

1

) _ T ( 

2

)

{ T (: ) = :T ( )

{ T (x � ) = �

�

r

x

� The aeptane ondition onstraint is de�ned as follows:

F

Q

F

�

V

F

i

2Q

F

2♦
W

q2F

i

at

q

The P-EventClokTL formula whose anhored language is exatly the

timed state sequenes aepted by A is:

9A;C;R(F

L

^ F

L

0

^ F

E

^ F

�

P

^ F

R

^ F

�

C

^ F

F

)

where :

� A = fat

q

jq 2 Qg;

� C = fross

(q

i

;�

r

;q

j

)

j(q

i

; �

r

; q

j

) 2 Eg;

� R = fr



j 2 Cg.

2

94



We now take a look at the other diretion:

Lemma 5.43 (P-EventClokTL � TA) For every projeted event lok tem-

poral formula  � 9p

1

; : : : ; p

n

��, we an ompute a timed automaton A

 

that

de�nes exatly the anhored language de�ned by �, that is, AnLang(A

 

) =

AnLang( )

Proof. By theorem 3.33, we know that for every EventClokTL formula, we

an ompute an equivalent MetriIntervalTL formula �

T

. By theorem ??,

we know that for this formula �

T

, we an onstrut an equivalent timed

automaton A

�

T

whih is also equivalent to �. Finally, as timed automata are

losed under projetion, it follows that we an onstrut a timed automata

for the P-EventClokTL formula 9p

1

; : : : ; p

n

�� simply by projeting p

1

; : : : ; p

n

in A

�

T

. 2

From the two previous lemmas, we derive the following theorem:

Theorem 5.44 (P-EventClokTL = TA) The formalisms of projeted event

lok temporal logi and timed automata are equally expressive to de�ne

anhored languages.

Let us now turn to the haraterization of the expressive power of the

projeted (propositional) event-lok automata. First, we have the following

lemma:

Lemma 5.45 (P-EventClokTL � P-EventClokTA) For every projeted event

lok temporal formula 9p

1

; : : : ; p

n

� �, we an ompute a projeted proposi-

tional event-lok automaton (A

�

; Q) that de�nes exatly the anhored lan-

guage de�ned by �, that is, AnLang((A

�

; Q)) = AnLang(�).

Proof. In [RS97℄, it is shown that for every formula � 2 EventClokTL,

it is possible to onstrut an propositional event-lok automaton A

�

that

aepts exatly the Hintikka sequenes of �. Remember that Hintikka se-

quenes are just H-extensions of TSS that belongs to the anhored language

of � and the P-projetions of those TSS, where P is the set of proposi-

tions appearing in � are exatly the TSS that belongs to AnLang(�). So

the following P-EventClokTA (A

�

;H[fp

1

; : : : ; p

n

g) is exatly the projeted

automaton we are looking for. 2

We now show that the formalism of projeted propositional event lok

automata de�nes anhored languages that an be de�ned using timed au-

tomata:
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Lemma 5.46 (P-EventClokTA � TA) For every projeted propositional event-

lok automaton (A; fp

1

; : : : ; p

n

g), we an ompute a timed automaton B

that de�nes exatly the same anhored language, that is, AnLang((A; fp

1

; : : : ; p

n

g)) =

AnLang(B).

Proof. In [AFH94℄, it is proved that for every propositional even-lok au-

tomaton we an onstrut a timed automaton that de�nes exatly the same

anhored language. So for A, we an onstrut an equivalent timed au-

tomaton C. By lemma ??, we know that we an onstrut B form C by

projeting the set of propositions fp

1

; : : : ; p

n

g. 2

So we have the following orollary:

Corollary 5.47 The formalism of TA, P-EventClokTL, P-EventClokTA

are equally expressive to de�ne anhored languages.

Finally, we turn to the expressiveness of projeted reursive event-lok

automata:

Lemma 5.48 (P-REventClokTA � P-EventClokTA) For every projeted re-

ursive event-lok automaton (A; fp

1

; : : : ; p

n

g), we an ompute a projeted

propositional event lok automaton (B;Q) that de�nes exatly the same

anhored language, that is, AnLang((A; fp

1

; : : : ; p

n

g)) = AnLang((B;Q)).

Proof. First lemma 4.55 says that given an reursive event lok automa-

ton A, we an onstrut a propositional event-lok automaton C that a-

epts exatly the timed Hintikka sequenes of A. Let us note P

0

the set

of propositions used by B, we now that f� # P j � 2 AnLang(B)g =

AnLang(A), so the following projeted propositional event-lok automa-

ton (B; (P

0

n P) [ fp

1

; : : : ; p

n

g) aepts the desired anhored language. 2

So, from the previous lemmas, we obtain the following lemma:

Theorem 5.49 All the formalisms TA, P-EventClokTA, P-REventClokTA

and P-EventClokTL de�ne the same lass of real-time languages.

As all those formalisms de�ne the same lass of languages, we give it a

name:

De�nition 5.50 The lass of real-time languages de�ned by TA, P-EventClokTA,

P-REventClokTA and P-EventClokTL are alled the projeted real-time reg-

ular languages.

The proof that the projeted formalisms are all equivalent to timed au-

tomata ontains an e�etive translation, giving their deidability:
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Theorem 5.51 (Projetion and Deidability) The projeted formalisms

P-EventClokTA, P-REventClokTA and P-EventClokTL have deidable de-

idable satis�ability (emptiness) problems and undeidable validity (univer-

sality) problems.

Proof. The deidability of satis�ability follows diretly, for eah projeted

formalisms, from the fat that existential quanti�ation does not hange

satis�ability. The undeidability of validity follows from the undeidabil-

ity of the universality problem for timed automata, see theorem 5.41, and

the equivalene of expressive power of the projeted formalisms with timed

automata, see theorem 5.49. 2

5.3 Undeidable Extensions

In this setion, we show that the result about deidability and expressive-

ness that we have obtained in the previous setions are sharp in the sense

that if we liberalize the de�nitions of the previous formalisms we enounter

undeidability problems.

First, in our seond-order formalismsMinMaxML

2

, respetively inQ-EventClokTL,

we have prohibited quanti�ed monadi prediates, respetively propositions,

from ourring within the sope of Min or Max quanti�ers, respetively his-

tory or prophey operators. We de�ned the unrestrited MinMaxML

2

and

Q-EventClokTL as follows:

De�nition 5.52 (Unrestrited-Q-EventClokTL and MinMaxML

2

) The unrestrited-

Q-EventClokTL logi is obtained by adding (unrestrited) seond-order quan-

ti�ation to EventClokTL and the unrestrited-MinMaxML

2

logi is obtained

by adding (unrestrited) seond-order quanti�ation to MinMaxML

1

.

Obviously, we have the following lemma:

Lemma 5.53 The logi unrestrited-Q-EventClokTL ontains P-EventClokTL

and is losed under boolean operations. The logi unrestrited-MinMaxML

2

ontains P-MinMaxML

2

and is losed under boolean operations.

The restrition on the use of seond-order quanti�ation is neessary for

deidability. If, as seen above, we admit only outermost existential quanti�-

ation (projetion) over monadi prediates (propositions) that our within

the sope of real-time operators, we obtain a positively deidable formal-

ism (satis�ability is deidable, but validity is not) whih is expressively

equivalent to timed automata. Consequently, if we admit full quanti�a-

tion over monadi prediates (propositions) that our within the sope of

real-time operators, then both satis�ability and validity are undeidable, and
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the formalism is expressively equivalent to boolean ombinations of timed

automata.

Theorem 5.54 Formalisms that are able to express boolean ombinations

of projeted formalisms have undeidable satis�ability and validity problems.

So, as unrestritedMinMaxML

2

andQ-EventClokTL allow the expression

of boolean ombinations of projeted timed regular languages, we have the

following theorem:

Theorem 5.55 The logis unrestrited-Q-EventClokTL and unrestrited-

MinMaxML

2

have undeidable satis�ability and validity problems.

We now turn to the restrition that we impose on MinMaxML

1

formulas.

A fully undeidable extension of MinMaxML

1

is obtained by relaxing the

restrition that in every formula of the form (Min t

1

)(t

1

> t

2

^ 	(t

1

)) �

(t

2

+ ) or (Max t

1

)(t

1

< t

2

^ 	(t

1

)) � (t

2

� ), the sub-formula 	(t

1

)

ontains no free ourrenes of �rst-order variables other than t

1

. If we

suppress this restrition, it an be shown that the real-time temporal logi

MetriTL an be embedded in MinMaxML

1

.

De�nition 5.56 (Unrestrited-MinMaxML

1

) The formulas of unrestrited-

MinMaxML

1

are obtained from relaxing the onstraints on the free variables

ouring in the sope of Min�Max quanti�ers.

For this unrestrited version ofMinMaxML

1

, we have the following lemma:

Lemma 5.57 For every formula of MetriTL there exists a ongruent for-

mula of MinMaxML

1

.

Proof. We simply show that we are able to express the ♦
=

operator of

MetriTL (whih is suÆient to obtain undeidability), other onstruts of

the logi are easier. The formula ♦
=1

p of MetriTL is expressed as follows

in unrestrited-MinMaxML

1

:

9t

2

� [Min

t

1

� (t

1

> t ^ t

1

= t

2

) = t+ 1℄ ^ p(t

2

)

In fat, 9t

2

�Min

t

1

� (t

1

> t^ t

1

= t

2

) = t+1 fores t

2

to be equal to t+1. 2

Sine MetriTL is undeidable [AH93℄, so are the satis�ability and valid-

ity problems for unrestrited MinMaxML

1

.

Theorem 5.58 (Undeidability) The satis�ability and validity problems

for unrestrited-MinMaxML

1

are undeidable. 2

98



6 Conlusion

We have shown that EventClokTL, when evaluated in timed state sequenes,

has exatly the same expressive power as MetriIntervalTL. This nie result

is surprising beause EventClokTL and MetriIntervalTL are rather di�erent

logis, that propose orthogonal restritions to reah deidability: Event-

ClokTL allows puntuality onstraints but restrits real-time onstraints to

refer to the next (last) time a formula will be (was) true, whereas MetriIn-

tervalTL allows formulas to refer to any time where a formula will be true,

but disallows puntuality onstraints. In the proess of proving the equiva-

lene between the expressive powers of EventClokTL and MetriIntervalTL,

we have also shown that the PSpae fragment of MetriIntervalTL, that is

MetriIntervalTL

0;1

, is expressively omplete. Those results have been re-

infored by the de�nition of a real-time �rst-order monadi theory, alled

MinMaxML

1

, that identi�es exatly the same lass of real-time languages as

MetriIntervalTL and EventClokTL. As two very di�erent logis and a las-

sial theory identify the same lass of fully deidable real-time languages,

we have proposed to all this lass of languages the \ounter-free real-time

regular languages".

We have also shown that the expressive powers of EventClokTL and the

propositional event-lok automata, as proposed in [AFH94℄, are inompa-

rable. To remedy this situation, we have proposed to generalize the onept

of event lok by allowing, reursively, automata as events. More preisely,

these automata reset a lok when they enter their monitored loations. This

yields a formalism that we have alled the reursive event-lok automata,

noted REventClokTA. These automata subsume the expressive power of the

logi EventClokTL, and keep all the nie properties of the propositional ver-

sion, namely: losure under all boolean operations and deidability of both

the emptiness and universality problems. Further, we have shown that by

adding the ability to ount to the formalisms that identify the \ounter-free

real-time regular languages", we obtain formalisms that reognize the same

lass of languages than our REventClokTA. So, we proposed to all this

lass of languages the \real-time regular languages". The introdution of

seond-order quanti�ation into real-time logis requires some are: seond-

order quanti�ation an be used outside or inside real-time operators but

not through real-time operators. This is quite di�erent from the qualita-

tive ase, where no restrition on seond-order quanti�ation is needed. We

have shown that this result is sharp in the sense that: �rst, it is exatly

what we need to bridge the gap between ounter-free and ounting real-time

regular languages, seond, even small relaxations of this restrition lead to

lose full deidability and losure under negation. Finally, we have shown

that adding projetion, that is an outermost seond-order quanti�ation, to

ounter-free or (ounting) real-time regular languages, leads to formalisms

expressively equivalent to timed automata. Therefore, we proposed to all
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these languages, the \projeted real-time regular languages". This lass is

not losed under negation and the orresponding formalisms are only posi-

tively deidable. All those results are summarized in the following tables:

Languages Temporal logis Monadi theories Finite automata

Fully deidable

R-timed

1 ounter-free MetriIntervalTL =

!-regular EventClokTL MinMaxML

1

2 R-timed Q-MetriIntervalTL =

!-regular Q-EventClokTL = MinMaxML

2

REventClokTA

E-MetriIntervalTL =

E-EventClokTL

(projetion, or outermost existential quanti�ation, is indiated by P-):

Positively deidable

3 projetion-losed P-EventClokTL P-MinMaxML

2

P-REventClokTA

R-timed !-regular = Ld

$

= TA
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