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6 Con
lusion 99

1 Introdu
tion

A run of a rea
tive system produ
es an in�nite sequen
e of events. A prop-

erty of a rea
tive system, then, is an !-language 
ontaining the in�nite

event sequen
es that satisfy the property. There is a very pleasant expres-

sive equivalen
e between modal logi
s, 
lassi
al logi
s, and �nite automata

for de�ning !-languages [B�u
62, Kam68, GPSS80, Wol82℄. Let LTL stand

for the propositional linear temporal logi
 with next and until operators,

and let Q-TL and E-TL stand for the extensions of LTL with propositional

quanti�ers and grammar (or automata) 
onne
tives, respe
tively. Let ML

1

and ML

2

stand for the �rst-order and se
ond-order monadi
 theories of the

natural numbers with su

essor and 
omparison (also 
alled S1S or the Se-

quential Cal
ulus). Let BA stand for B�u
hi automata. Then we obtain the

following two levels of expressiveness:

Languages Temporal logi
s Monadi
 theories Finite automata

1 
ounter-free !-regular LTL ML

1

2 !-regular Q-TL = E-TL ML

2

BA

For example, the LTL formula 2(p! ♦q), whi
h spe
i�es that every p event

is followed by a q event, is equivalent to the ML

1

formula (8i)(p(i)! (9j �

i)q(j)) and to a B�u
hi automaton with two states. The di�eren
e between

the �rst and se
ond levels of expressiveness is the ability of automata to


ount. A 
ounting requirement, for example, may assert that all even events

are p events, whi
h 
an be spe
i�ed by the Q-TL formula (9q)(q ^ 2(q $

:q) ^ 2(q ! p)).

We say that a formalism is positively de
idable if it is 
onstru
tively


losed under positive boolean operations, and satis�ability (emptiness) is

de
idable. A formalism is fully de
idable if it is positively de
idable and also


onstru
tively 
losed under negation (
omplement). All of the formalisms in

the above table are fully de
idable. The temporal logi
s and B�u
hi automata

are less su

in
t formalisms than the monadi
 theories, be
ause only the

former satis�ability problems are elementarily de
idable.

A run of a real-time system produ
es an in�nite sequen
e of time-stamped

events. A property of a real-time system, then, is a set of in�nite time-

stamped event sequen
es. We 
all su
h sets timed !-languages. If all

time stamps are natural numbers, then there is again a very pleasant ex-

pressive equivalen
e between modal logi
s, 
lassi
al logi
s, and �nite au-

tomata [AH93℄. Spe
i�
ally, there are two natural ways of extending tem-

poral logi
s with timing 
onstraints. The Metri
 Temporal Logi
 Metri
TL

(also 
alled MTL [AH93℄) adds time bounds to temporal operators; for ex-

ample, the Metri
TL formula 2(p ! ♦
=5

q) spe
i�es that every p event is

followed by a q event su
h that the di�eren
e between the two time stamps

is exa
tly 5. The Clo
k Temporal Logi
 Clo
kTL (also 
alled TPTL [AH94℄)

2



adds 
lo
k variables to LTL; for example, the time-bounded response re-

quirement from above 
an be spe
i�ed by the Clo
kTL formula 2(p! (x :=

0)♦(q ^ x = 5)), where x is a variable representing a 
lo
k that is started

by the quanti�er (x := 0). Interestingly, over natural-numbered time, both

ways of expressing timing 
onstraints are equally expressive. Moreover, by

adding the ability to 
ount, we obtain again a 
anoni
al se
ond level of ex-

pressiveness. Let TimeFun
tionMLR stand for the monadi
 theory of the

natural numbers extended with a unary fun
tion symbol that maps event

numbers to time stamps, and let TA (Timed Automata) be �nite automata

with 
lo
k variables. In the following table, the formalisms are annotated

with the supers
ript N to emphasize the fa
t that all time stamps are natural

numbers:

Languages Temporal logi
s Monadi
 theories Finite automata

N-timed

1 
ounter-free Metri
TL

N
= Clo
kTL

N
TimeFun
tionMLR

N

1

!-regular

2 N-timed Q-Metri
TL

N
= Q-Clo
kTL

N
= TimeFun
tionMLR

N

2

TA

N

!-regular E-Metri
TL

N
= E-Clo
kTL

N

On
e again, all these formalisms are fully de
idable, and the temporal logi
s

and �nite automata with timing 
onstraints are elementarily de
idable.

If time stamps are real instead of natural numbers, then the situation

seems mu
h less satisfa
tory. Several positively and fully de
idable for-

malisms have been proposed, but no expressive equivalen
e results were

known for fully de
idable formalisms [AH92℄. The previously known results

are listed in the following table, where the omission of supers
ripts indi
ates

that time stamps are real numbers:

Temporal logi
s Monadi
 theories Finite automata

Fully de
idable

Metri
IntervalTL [AFH96℄

EventClo
kTL [RS97℄

REventClo
kTA [AFH94℄

Positively de
idable

LTL

+

+ TA [Wil94℄ Ld

$

[Wil94℄ TA [AD94℄

Fully unde
idable

Metri
TL [AH93℄

Clo
kTL [AH94℄

TimeFun
tionMLR

1

[AH93℄

TimeFun
tionMLR

2

On one hand, the 
lass of Timed Automata is unsatisfa
tory, be
ause over

real-numbered time it is only positively de
idable: R-timed automata are

not 
losed under 
omplement, and the 
orresponding temporal and monadi


logi
s (and regular expressions [?℄) have no negation operator. On the other

hand, the 
lasses of Metri
 and Clo
k Temporal Logi
s (as well as monadi
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logi
 with a time fun
tion), whi
h in
lude negation, are unsatisfa
tory, be-


ause over real-numbered time their satis�ability problems are unde
idable.

Hen
e several restri
tions of these 
lasses have been studied.

1. The �rst restri
tion 
on
erns the style of spe
ifying timing 
onstraints

using time-bounded temporal operators. The Metri
-Interval Logi


Metri
IntervalTL (also 
alledMITL [AFH96℄) is obtained fromMetri
TL

by restri
ting the time bounds on temporal operators to nonsingular

intervals. For example, the Metri
IntervalTL formula 2(p ! ♦
[4;6℄

q)

spe
i�es that every p event is followed by a q event su
h that the

di�eren
e between the two time stamps is at least 4 and at most 6.

The restri
tion to nonsingularity prevents the spe
i�
ation of the exa
t

real-numbered time di�eren
e 5 between events.

2. The se
ond restri
tion 
on
erns the style of spe
ifying timing 
on-

straints using 
lo
k variables. The Event-Clo
k Logi
 EventClo
kTL

(also 
alled SCL [RS97℄) and Event-Clo
k Automata REventClo
kTA

are obtained from Clo
kTL and TA, respe
tively, by restri
ting the

use of 
lo
ks to refer to the times of previous and next o

urren
es of

events only. For example, if y

q

is a 
lo
k that always refers to the time

di�eren
e between now and the next q event, then the EventClo
kTL

formula 2(p ! y

q

= 5) spe
i�es that every p event is followed by a q

event su
h that the di�eren
e between time stamps of the p event and

the �rst subsequent q event is exa
tly 5. A 
lo
k su
h as y

q

, whi
h is

permanently linked to the next q event, does not need to be started

expli
itly, and is 
alled an event 
lo
k. The restri
tion to event 
lo
ks

prevents the spe
i�
ation of time di�eren
es between a p event and

any subsequent (rather than the �rst subsequent) q event.

Both restri
tions lead to pleasing formalisms that are fully (elementarily) de-


idable and have been shown suÆ
ient in pra
ti
al appli
ations. However,

nothing was known about the relative expressive powers of these two inde-

pendent approa
hes, and so the question whi
h sets of timed !-languages

deserve the labels \R-timed 
ounter-free !-regular" and \R-timed !-regular"
remained open.

In this paper, we show thatMetri
IntervalTL and EventClo
kTL are equally

expressive, and by adding the ability to 
ount, as expressive as REventClo
kTA.

This result is quite surprising, be
ause (1) over real-numbered time, unre-

stri
ted Metri
TL is known to be stri
tly less expressive than unrestri
ted

Clo
kTL [AH93℄, and (2) the nonsingularity restri
tion (whi
h prohibits ex-

a
t time di�eren
es but allows the 
omparison of unrelated events) is very

di�erent in 
avor from the event-
lo
k restri
tion (whi
h allows exa
t time

di�eren
es but prohibits the 
omparison of unrelated events). Moreover,

the expressive equivalen
e of Metri
-Interval and Event-Clo
k logi
s reveals

a robust pi
ture of 
anoni
al spe
i�
ation formalisms for real-numbered time

that parallels the untimed 
ase and the 
ase of natural-numbered time.
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We 
omplete this pi
ture by 
hara
terizing both the 
ounter-free and the


ounting levels of expressiveness also by fully de
idable monadi
 theories,


alled MinMaxML

1

and MinMaxML

2

. These are �rst-order and se
ond-order

monadi
 theories of the real numbers with integer addition, 
omparison, and

(besides universal and existential quanti�
ation) two �rst-order quanti�ers

that determine the �rst time and the last time at whi
h a formula is true.

Our results, whi
h are summarized in the following table, suggest that we

have identi�ed two 
lasses of !-languages with real-numbered time stamps

that may justly be 
alled \R-timed 
ounter-free !-regular" and \R-timed
!-regular":

Languages Temporal logi
s Monadi
 theories Finite automata

Fully de
idable

R-timed

1 
ounter-free Metri
IntervalTL = EventClo
kTL MinMaxML

1

!-regular

2 R-timed Q-Metri
IntervalTL = Q-EventClo
kTL = MinMaxML

2

REventClo
kTA

!-regular E-Metri
IntervalTL = E-EventClo
kTL

Finally, we explain the gap between the R-timed !-regular languages and
the languages de�nable by positively de
idable formalisms su
h as timed au-

tomata. We show that the ri
her 
lass of languages is obtained by 
losing the

R-timed !-regular languages under proje
tion. (It is unfortunate, but well-
known [AFH94℄ that we 
annot nontrivially have both full de
idability and


losure under proje
tion in the 
ase of real-numbered time.) The 
omplete

pi
ture, then, results from adding the following line to the previous table

(proje
tion, or outermost existential quanti�
ation, is indi
ated by P-):

Positively de
idable

3 proje
tion-
losed P-EventClo
kTL P-MinMaxML

2

= Ld

$

P-REventClo
kTA = TA

R-timed !-regular

The rest of this paper is organized as follows. The real-time models

that we are 
onsidering in this papers are presented in se
tion 2. Two

real-time logi
s and a 
lassi
al theories are introdu
ed in se
tion 3. Their

relative expressive power is studied in details: those logi
s are shown to be

expressively equivalent and they identify the \
ounter-free regular realt-ime

languages". Se
tion 4 
ontains the de�nition and a study of the properties

of the re
ursive event 
lo
k automata. It is shown that the 
lass of lan-

guages re
ognized by re
ursive event-
lo
k automata stri
tly subsumes the


lass of \
ounter-free regular realt-ime languages" and we 
all this 
lass the

\(full) regular real-time languages". Se
tion 5 studies the relation that ex-

ists between the logi
al and automata theoreti
 formalisms. Furthermore,

we show how to bridge the gap that exists between \
ounter-free regular

realt-ime languages" and \(full) regular real-time languages". Finally some


on
lusions are drawn in a last se
tion.
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2 The Continuous Real-Time Models

In this paper, we 
onsider real-time behaviors that are modeled by a fun
tion

� that assign to ea
h point of the real line a state des
ription. Thus the

fun
tion � at ea
h t 2 R+

indi
ates the state �(t) in whi
h the system is at

that time t. We make two assumptions about the fun
tion �:

Finite Variability (also 
alled Non Zenoness) The fun
tion � has the �nite

variability property: during ea
h �nite interval of time I, the value of

� only 
hanges a �nite number of time. This assumption avoids the

so-
alled zeno paradox: the system does an in�nite number of a
tions

into a �nite amount of time.

Finite State Systems The number of di�erent dis
rete states, i.e. the

size of the set of possible states that the system 
an rea
h is �nite.

The �nite state assumption allows us to use a �nite set of propositions to

des
ribe those states. The 
odomain of the fun
tion � is then the powerset

of P, noted 2

P

. The �nite variability assumption allows us to represent the

fun
tion � using two in�nite sequen
es: one in�nite sequen
e of subsets of P

to represent the dis
rete part of the behavior of the system, and an in�nite

sequen
e of intervals of time indi
ating for ea
h state when the system was

in that state. We 
all those pairs of sequen
es, timed state sequen
es and

de�ne them formally in the sequel. Later, we use also the notion of �nite

variable formula, it simply means that the truth value of the formula 
hange

only a �nite number of times in every bounded interval of time.

De�nition 2.1 (Intervals of Time) An interval (of time) I � R+

is a


onvex nonempty subset of the nonnegative reals. And interval I is bounded

(above) by b 2 R+

if for all t 2 I, t � b. Due to our de�nition, every

interval is bounded below by 0. By 
ompleteness of the real numbers, every

bounded interval has a least upper bound, that we 
all its right bound. If

the interval is unbounded, we 
onventionally de�ne its least upper bound

as 1. Symmetri
ally, ea
h interval has a greatest lower bound, that we also


all its left bound. In ea
h 
ase, the bound 
an be either in
luded in I, this

is noted by a square bra
ket, or ex
luded from I, this is noted by a round

parenthesis. We have thus the six following possibilities:

1. 
losed �nite: [l; r℄ with l; r 2 R+

and l � r. Spe
ially, when l = r, the

interval is 
alled singular;

2. left open, right 
losed: (l; r℄ with l; r 2 R+

and l < r;

3. left 
losed, right open: [l; r) with l; r 2 R+

and l < r;

4. open: (l; r) with l; r 2 R+

and l < r;

6



5. left 
losed, in�nite: [l;1) with l 2 R+

;

6. left open, in�nite: (l;1) with l 2 R+

.

Two intervals I and J are adja
ent if the right bound of I is equal to

the left bound of J , and either I is right-open and J is left-
losed or I is

right-
losed and J is left-open. Thus two adja
ent intervals are disjoint. 2

Notation 2.2 (Intervals) The left bound of interval I is noted l(I), the

right end bound of interval I is noted r(I). Given t 2 R+

, we freely use

notation su
h as t + I for the interval ft

0

j exists t

00

2 I with t

0

= t + t

00

g,

and t > I for the 
onstraint \t > t

0

for all t

0

2 I." 2

De�nition 2.3 (Interval Sequen
e) An interval sequen
e I = I

0

; I

1

; : : :

is a �nite or in�nite sequen
e of bounded intervals so that for all i � 0, the

intervals I

i

and I

i+1

are adja
ent. We say that the interval sequen
e I 
overs

the interval

S

i�0

I

i

. If I 
overs [0;1), then I partitions the nonnegative

real line so that every bounded subset of R+

is 
ontained within a �nite

union of elements from the partition. 2

We are now in position to de�ne our notion of 
ontinuous models 
alled

timed state sequen
e and noted TSS.

De�nition 2.4 (Timed State Sequen
e) The set of states is 
alled �.

A timed state sequen
e � = (�; I) over � is a pair that 
onsists of an tra
e

� = �

0

�

1

: : : �

n

: : : over � and an in�nite interval sequen
e I = I

0

I

1

: : : I

n

: : :

that 
overs [0;1). 2

Equivalently, the timed state sequen
e � 
an be viewed as a fun
tion

from R+

to �, indi
ating for ea
h time t 2 R+

a state �(t).

We now introdu
e two di�erent type of real-time languages: the an
hored

and 
oating real-time languages. The notion of an
hored languages is the


lassi
al one, the notion 
oating languages is not 
lassi
al and is needed for

te
hni
al reasons in the sequel of this paper.

De�nition 2.5 (Pointwise Real-Time !-Languages) A pointwise an-


hored real-time !-language is a set of timed tra
es. A pointwise 
oating

real-time !-language is a set of pairs (�; i) where � is a timed tra
e and i � 0

is a position. 2

In the sequel we 
onsider that � = 2

P

and we need notion related to

the addition and suppression of propositions in the set on whi
h a timed

state sequen
es is de�ned. It is why we introdu
e the notion the notion of

P

0

-extension and P

0

-proje
tion of a TSS.

7



De�nition 2.6 (P

0

-Extension of a TSS) Given a TSS � = (�; I) de�ned

on the set of propositions P, a set of propositions P

0

, su
h that P \P

0

= ;,

�

0

= (�

0

; I

0

) is a P

0

-extension of � if �

0

is de�ned on the set of propositions

P [ P

0

and for all position i � 0: (i) �

0

i

\ P = �

i

, that is, state des
ription

�

0

i

and �

i

agree on the set of propositions P, and (ii) I

0

i

= I

i

, the real-time

information atta
hed to the state des
riptions is similar in the two TSS. We

note � " P

0

the set of P

0

-extension of �.

De�nition 2.7 (P

0

-Proje
tion of a TSS) Given a TSS � = (�; I) de�ned

on the set of propositions P, a set of propositions P

0

� P, �

0

is the P

0

-

proje
tion of �, if �

0

is de�ned on the set of propositions P

0

and for every

positions i � 0: (i) �

0

i

= �

i

\ P

0

that is �

0

i

and �

i

agree on the value of

propositions in P

0

, and (ii) I

0

i

= I

i

, the real-time information atta
hed to

the state des
riptions is similar in the two TSS. In the sequel, we note � # P

0

the P

0

-proje
tion of �.

As we 
onsider 
ontinuous models, it will turn out, in se
tion 4.4.2, that

the notion of limit 
losure is useful:

De�nition 2.8 (Limit Closure - Literal) Given a set of propositions P,

we de�ne its limit 
losure, noted Limit(P), as the following set fp;

�!

p ;

 �

p j

p 2 P [ f>gg,

�!

p is 
alled the future limit of p and

 �

p is 
alled the past

limit of p. In what follows, we 
all the elements of Limit(P) literals. In what

follows, we use L, L

1

, L

2

, ..., to denote limit 
losure sets. 2

Later, we will generalize the use of limit. We will apply the limit not

only to propositions but also to atomi
 
lo
k 
onstraints.

De�nition 2.9 (Satisfa
tion Relation) We write (�; t) j= �, where �

is a proposition, an literal, an atomi
 
lo
k 
onstraint or more generally a

formula, read \� is satis�ed at time t of the TSS �". We de�ne the semanti
s

for propositions p 2 P and for the spe
ial symbol > (true):

� (�; t) j= p i� p 2 �(t);

� (�; t) j= > for all time t 2 R+

.

2

The rules for more general formulas will be given later, we now give the

semanti
s for the limit literals:

De�nition 2.10 (Future and Past Limits Semanti
s) The truth value

of the future limit of p 2 P [ f>g along a TSS � is de�ned by the following


lause:

(�; t) j=

�!

p i� for all time t

1

> t there exists a time t

2

, su
h that

t < t

2

< t

1

and (�; t

2

) j= p;

8



The truth value of the past limit of p 2 P [ f>g along a TSS � is de�ned

by the following 
lause:

(�; t) j=

 �

p i� for all time t

1

< t there exists a time t

2

� 0, su
h

that t

1

< t

2

< t and (�; t

2

) j= p.

Note that

�!

> is always equivalent to >. In time 0,

 �

> is equivalent to ? and

equivalent to > elsewhere. 2

Intuitively, the future (resp. past) limit of p at time t allows us to a

ess

the truth value of p just after (resp. before) time t.

We now de�ne a serie a useful properties of TSS:

De�nition 2.11 (	� Fine TSS) Given a set of �nite variable formulas 	,

we say that a TSS � = (�

0

; I

0

)(�

1

; I

1

) : : : is 	�Fine i� for all positions i � 0,

for all formula  2 	, for any time t

1

; t

2

2 I

i

, we have that (�; t

1

) j=  i�

(�; t

2

) j=  , that is, the truth value of the formula  does not 
hange inside

the intervals of �. 2

De�nition 2.12 (Alternating-TSS) We say that a TSS � = (s

0

; I

0

)(s

1

; I

1

) : : :

is alternating i�

1. I

0

is the singular interval [0; 0℄;

2. for all even positions i, I

i

is a singular interval, and

3. for all odd positions i, I

i

is a open interval.

2

De�nition 2.13 (Hintikka Property) Given a set of formulas 	, a timed

state sequen
e � has the Hintikka property for 	, i�

1. � is de�ned on a set of propositions that 
ontains the set P of proposi-

tions appearing in the formulas of 	 and the following set of hintikka

propositions P

	

= fp

 

j  2 	g, that is, a hintikka proposition for

ea
h formula of the set 	,

2. for every time t 2 R+

, (�; t) j= p

 

i� (�; t) j=  , that is, a hintikka

proposition is true along a Hintikka sequen
e at time t if and only if

its asso
iated formula is true at time t.

2

When manipulating a Hintikka TSS � = (�; I), we sometimes write

� 2 �

i

instead of p

�

2 �

i

in order to simplify the notations.

De�nition 2.14 (Equivalent TSS) Two TSS �

1

, �

2

are equivalent i� �

1

(t) =

�

2

(t) for all time t 2 R+

, that is, if the two TSS de�ne the same fun
tion

from the positive real numbers to state des
riptions. 2

9



So two TSS are equivalent if they only di�er by the way they split the

real line is into intervals.

De�nition 2.15 (Re�nement of TSS) A TSS �

1

= (�

1

; I

1

) is a re�ne-

ment of a TSS �

2

= (�

2

; I

2

), noted �

1

� �

2

i� there exists a surje
tive

fun
tion f : N! N su
h that:

� for all positions j � 0, �

2

j

= �

1

f(j)

;

� for all positions i � 0, I

1

i

=

S

fI

2

j

j f(j) = ig

In what follows, we also say that �

2

is 
oarser than �

1

. 2

Note that TSS �

1

is a re�nement of the TSS �

2

then �

1

and �

2

are

equivalent.

Lemma 2.16 (Re�nability of TSS) For every TSS � and every set of

formula 	 with the �nite variability property, there exists a TSS �

0

su
h

that (i) �

0

� �, that is, �

0

is a re�nement of � and (ii) �

0

is 	� Fine.

Note also that:

Lemma 2.17 (Re�nement and Fine-TSS) For every set of formulas 	,

every re�nement �

0

of a 	� Fine TSS � is 	� Fine.

And thus this re�nement 
an be alternating:

Lemma 2.18 For every TSS �, there exists a re�nement �

0

of �, i.e. �

0

� �

that is alternating.

In the sequel we use sets of literals to label lo
ations of automata. We

will need the notion of singular and open set of literals. Intuitively, a singular

literal des
ribes an instantaneous, unstable situation and thus 
annot hold

during an open interval of time. Here are their de�nitions:

De�nition 2.19 (Singular-Open Set of Literals) A set of literals � �

L is said singular i� one of the two following properties of � is veri�ed

� there exist literals a;

�!

a 2 L su
h that a 2 � and

�!

a 62 �, or, a 62 �

and

�!

a 2 �;

� there exist literals a;

 �

a 2 L su
h that a 2 � i�

 �

a 62 �, or, a 62 � i�

 �

a 2 �. An set of literals � � L is said open i� it is not singular.

2

Lemma 2.20 Let I be a non singular interval. If � is singular, then for all

�, there exists t 2 I su
h that (�; t) 6j= �. 2
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3 The Counter-Free Regular Real-Time !-Languages

3.1 Introdu
tion

In this se
tion, we introdu
e two real-time logi
s and a 
lassi
al theory for

de�ning real-time properties. We study their expressive power in details and

show that they all identify the same 
lass of real-time languages that we 
all

the 
ounter-free regular real-time languages. Before, we re
all the de�nition

of two qualitative time formalisms and review a theorem about their relative

expressive power introdu
ed by Kamp.

3.2 Qualitative Formalisms

3.2.1 The Temporal Logi
 of the Reals

We review in this se
tion a temporal logi
 that is evaluated over 
ontinuous

models. That temporal logi
 is 
alled the temporal logi
 of the reals, noted

LTR, and has been proposed by Pnueli et al in [BKP86℄. We re
all its syntax

and semanti
s.

De�nition 3.1 (LTR-Syntax) The formulas of LTR are built from propo-

sitional symbols, boolean 
onne
tives, and the temporal \until" and \sin
e"

operators:

� ::= p j �

1

^ �

2

j :� j �

1

U�

2

j �

1

S

I

�

2

where p is a proposition, �, �

1

and �

2

are well-formed LTR formulas. 2

De�nition 3.2 (LTR-Semanti
s) The LTR formula � holds at time t 2 R+

of the timed state sequen
e �, denoted (�; t) j= �, a

ording to the following

de�nition:

(�; t) j= p i� p 2 �(t);

(�; t) j= �

1

^ �

2

i� (�; t) j= �

1

and (�; t) j= �

2

;

(�; t) j= :� i� not (�; t) j= �;

(�; t) j= �

1

U�

2

i� exists a real t

0

> t with (�; t

0

) j= �

2

, and for

all reals t

00

2 (t; t

0

), we have (�; t

00

) j= �

1

_ �

2

;

(�; t) j= �

1

S�

2

i� exists a real t

0

2 [0; t) with (�; t

0

) j= �

2

, and

for all reals t

00

2 (t

0

; t), we have (�; t

00

) j= �

1

_ �

2

.

2

De�nition 3.3 (LTR-Languages) The an
hored language de�ned by an

LTR formula � is the set of TSS � 2 TSS(2

P

�

), su
h that (�; 0) j= �, this set

is noted An
Lang(�). The 
oating language de�ned by an LTR formula � is

the set of pairs (�; t) with � 2 TSS(2

P

�

) and t 2 R+

su
h that (�; t) j= �,

this set is noted FloatLang(�). 2
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3.2.2 The First Order Monadi
 Logi
 over the Reals

We now review the de�nition of the �rst-order monadi
 logi
 of the reals.

We re
all its syntax and semanti
s.

De�nition 3.4 (MLR

1

-Syntax) The formulas of the �rst- order monadi


logi
 over the reals MLR

1

are generated by the following grammar:

� ::= p(x) j x

1

= x

2

j x

1

< x

2

j :� j �

1

_ �

2

j 9x � �

where x; x

1

; x

2

2 X are position variables (�rst-order variable), p 2 P is

an unary predi
ate and �;�

1

;�

2

are well-formed MLR

1

formulas. We say

that a formula � of MLR

1

is 
losed if it does not 
ontain any free position

variable. 2

De�nition 3.5 (Valuation) A valuation for the set of �rst-order variables

X is a mapping � : X ! R+

assigning a nonnegative real number value to

ea
h variable x 2 X. We note �[y 7! t℄ the mapping that extend the

mapping � for the variable y and maps y on the value t 2 R+

. 2

De�nition 3.6 (MLR

1

-Semanti
s) The semanti
s of an MLR

1

formula �

is evaluated in pair (�; �) where � is a TSS and � is a valuation for the free

variables appearing in � a

ording to the following rules:

(�; �) j= q(x) i� q 2 �(�(x));

(�; �) j= x

1

= x

2

i� �(x

1

) = �(x

2

);

(�; �) j= x

1

< x

2

i� �(x

1

) < �(x

2

);

(�; �) j= :� i� (�; �) 6j= �;

(�; �) j= �

1

_ �

2

i� (�; �) j= �

1

or (�; �) j= �

2

;

(�; �) j= 9x �� i� there exists a value t 2 R+

su
h that (�; �[x 7!

t℄) j= �.

2

De�nition 3.7 (MLR

1

-language) The an
hored language de�ned by a 
losed

MLR

1

formula � is the set of TSS � 2 TSS(2

P

�

), su
h that � j= �, this set

is noted An
Lang(�). The 
oating language de�ned by an MLR

1

formula

�(x), with one free variable x is the set of pairs (�; t) with � 2 TSS(2

P

�

)

and t 2 R+

su
h that (�; [x 7! t℄) j= �, this set is noted FloatLang(�). 2

3.2.3 Expressiveness Equivalen
e Result

Kamp has proved, see [Kam68℄, that the expressiveness equivalen
e result

between temporal logi
 and the �rst-order monadi
 logi
 is also valid in the


ase of 
ontinuous interpretations:

12



Theorem 3.8 (LTR = MLR

1

) The logi
s LTR and MLR

1

are equally ex-

pressive: given an LTR formula �, there always exists a 
losed formula

� of MLR

1

su
h that An
Lang(�) = An
Lang(�), and 
onversely: given

an MLR

1

formula �, there always exists a formula � of LTR su
h that

An
Lang(�) = An
Lang(�). Furthermore, given an LTR formula �, there

always exists a formula �(x) with one free variable x of MLR

1

su
h that

FloatLang(�) = FloatLang(�(x)), and 
onversely: given an MLR

1

formula

�(x) with one free variable x, there always exists a formula � of LTR su
h

that FloatLang(�) = FloatLang(�). 2

3.3 Two Real-Time Temporal Logi
s

3.3.1 The Metri
 Interval Temporal Logi


Here, we re
all the de�nition of the logi
 Metri
IntervalTL [AFH91, AFH96℄.

This logi
 is a synta
ti
al restri
tion of the unde
idable real-time logi


Metri
TL [AH90℄. The logi
 Metri
IntervalTL prohibits the spe
i�
ation of

pun
tuality 
onstraints by allowing only subs
ripts in real-time operators

that are non-singular intervals. This restri
tion makes the formalism de
id-

able.

De�nition 3.9 (Metri
IntervalTL-Syntax) The formulas ofMetri
IntervalTL [AFH96℄

are built from propositional symbols, boolean 
onne
tives, and time-bounded

\until" and \sin
e" operators:

� ::= p j �

1

^ �

2

j :� j �

1

b

U

I

�

2

j �

1

b

S

I

�

2

where p is a proposition and I is a nonsingular interval whose �nite end-

points are nonnegative integers. 2

Note that we use hats in the syntax of the temporal operators above in

order to deferentiate them from the operator of LTR that have a slightly

di�erent semanti
s in the qualitative 
ase. We also de�ne an interesting

subset of Metri
IntervalTL, 
alled Metri
IntervalTL

0;1

:

De�nition 3.10 (Metri
IntervalTL

0;1

-Syntax) The formulas of the frag-

ment Metri
IntervalTL

0;1

are de�ned as for Metri
IntervalTL, ex
ept that

the interval I must either have the left endpoint 0, or be unbounded; in

these 
ases I 
an be repla
ed by an expression of the form � 
, for a non-

negative integer 
onstant 
 and �2 f<;�;�; >g. 2

De�nition 3.11 (Metri
IntervalTL Continuous Semanti
s) TheMetri
IntervalTL

formula � holds at time t 2 R+

of the timed state sequen
e �, denoted

(�; t) j= �, a

ording to the following de�nition

13



(�; t) j= p i� p 2 �(t)

(�; t) j= �

1

^ �

2

i� (�; t) j= �

1

and (�; t) j= �

2

(�; t) j= :� i� not (�; t) j= �

(�; t) j= �

1

b

U

I

�

2

i� exists a real t

0

2 (t+ I) with (�; t

0

) j= �

2

, and

for all reals t

00

2 (t; t

0

), we have (�; t

00

) j= �

1

(�; t) j= �

1

b

S

I

�

2

i� exists a real t

0

2 (t� I) with (�; t

0

) j= �

2

, and

for all reals t

00

2 (t

0

; t), we have (�; t

00

) j= �

1

2

We now introdu
e some useful abbreviations:

De�nition 3.12 (Metri
IntervalTL-Abbreviations) For the future:

�

b♦
I

� = >

b

U

I

�, \eventually in the future within interval I";

�
b
2

I

= :

b♦
I

:�, \always in the future within interval I".

Symetri
ally, for the past:

�

b♦�
I

� = >

b

S

I

�, \eventually in the past within interval I";

�

b⊟
I

= :

b♦�
I

:�, \always in the past within interval I".

De�nition 3.13 (Metri
IntervalTLContinuous Languages) TheMetri
IntervalTL

formula � de�nes the an
hored language that 
ontains all timed state se-

quen
es � with (�; 0) j= �. As usual, we note this language An
Lang(�).

The Metri
IntervalTL formula � de�nes the 
oating language that 
ontains

all pairs (�; t) with (�; t) j= �. As usual, we note this language FloatLang(�).

2

Example 3.14 The Metri
IntervalTL formula
b
2

(0;1)

(p !

b♦
[1;2℄

q) asserts

when evaluated in time t, that every p-state, in the interval t + (0; 1), is

followed by a q-state at a time di�eren
e of at least 1 and at most 2 time

units. 2

The 
omplexity of the satis�ability and validity problems forMetri
IntervalTL

and its fragments Metri
IntervalTL

0;1

are given in the next theorem.

Theorem 3.15 [AFH96℄ The satis�ability and validity problems forMetri
IntervalTL

are ExpSpa
e-Complete. The satis�ability and validity problems forMetri
IntervalTL

0;1

are PSpa
e-Complete. 2

Interestingly, the 
omplexity of the satis�ability and validity problems

for Metri
IntervalTL

0;1

are easier that for the full logi
.
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3.3.2 The Logi
 of Event Clo
ks

The formulas of EventClo
kTL are built from propositional symbols, boolean


onne
tives, the temporal \until" and \sin
e" operators, and two real-time

operators: at any time t, the history operator �

I

� asserts that � was true

last time in the interval t� I, and the prophe
y operator �

I

� asserts that

� will be true next time in the interval t+ I.

De�nition 3.16 (Continuous-EventClo
kTL-Syntax) The formulas of (
on-

tinuous) EventClo
kTL for timed state sequen
es are generated by the fol-

lowing grammar:

� ::= p j �

1

_ �

2

j :� j �

1

U�

2

j �

1

S�

2

j �

I

� j �

I

�

where p is a proposition and I is an interval whose �nite endpoints are

nonnegative integers. 2

We 
an now de�ne how to evaluate the truth value of an EventClo
kTL

formula along timed state sequen
es.

De�nition 3.17 (Continuous-EventClo
kTL-Semanti
s) Let � be an (
on-

tinuous) EventClo
kTL formula and let � be a timed state sequen
e whose

propositional symbols 
ontain all propositions that o

ur in �. The formula

� holds at time t 2 R+

of � , denoted (�; t) j= �, a

ording to the following

de�nition:

(�; t) j= p i� p 2 �(t)

(�; t) j= �

1

_ �

2

i� (�; t) j= �

1

or (�; t) j= �

2

(�; t) j= :� i� not (�; t) j= �

(�; t) j= �

1

U�

2

i� exists a real t

0

> t with (�; t

0

) j= �

2

, and for

all reals t

00

2 (t; t

0

), we have (�; t

00

) j= �

1

_ �

2

(�; t) j= �

1

S�

2

i� exists a real t

0

< t with (�; t

0

) j= �

2

, and for all

reals t

00

2 (t

0

; t), we have (�; t

00

) j= �

1

_ �

2

(�; t) j= �

I

� i� exists a real t

0

< t with t

0

2 (t�I) and (�; t

0

) j= �,

and for all reals t

00

< t with t

00

> (t� I), not (�; t

00

) j= �

(�; t) j= �

I

� i� exists a real t

0

> t with t

0

2 (t+I) and (�; t

0

) j= �,

and for all reals t

00

> t with t

00

< (t+ I), not (�; t

00

) j= �

2

Note that the temporal and real-time operators are de�ned in a stri
t

manner; that is, they do not 
onstrain the 
urrent state. Non stri
t operators

are easily de�ned from their stri
t 
ounterparts.

Example 3.18 2(p ! �

�5

q): a p position is always followed by a q po-

sition within 5 time units. Su
h a formula spe
i�es a maximal distan
e

between a request p and its response q. Su
h a property is 
alled a bounded
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time response. Here, it assumes that only one request 
an be outstanding.

p^2(p! �

=1

p): this formula asserts that p is true every integer time unit.

Su
h a formula allows the spe
i�er to de�ne periodi
ity of events. Here p 
an

model the ti
k of an ideal 
lo
k, that ti
ks every time unit. 2((�

=3

q)! p).

This formula asserts that if the last q position is exa
tly distant of 3 time

units then p must be true now. It is a typi
al time-out requirement.

2

We now give a de�nition of the real-time languages that a EventClo
kTL

formula is de�ning.

De�nition 3.19 (Continuous-EventClo
kTL-Languages) The (
ontinu-

ous) EventClo
kTL formula � de�nes the an
hored language An
Lang(�) =

f� j (�; 0) j= �g, that is the set of timed state sequen
es that satisfy � at

their initial position. The (
ontinuous) EventClo
kTL formula � de�nes the


oating language FloatLang(�) = f(�; t) j (�; t) j= �g, that is the set of pairs

(timed state sequen
e, time) where � is veri�ed. 2

3.4 A First-Order Classi
al Theory

In the sequel, we use p, q, and r for (�nite variable) monadi
 predi
ates over

the nonnegative reals, and t, t

1

, and t

2

for �rst-order variables over R+

.

De�nition 3.20 (MinMaxML

1

-Syntax) The formulas of the First-Order

Real-Time Sequential Cal
ulus, noted MinMaxML

1

, are generated by the

following grammar:

� ::= p(t) j t

1

� t

2

j

(Min t

1

)(t

1

> t

2

^	(t

1

)) � (t

2

+ 
) j

(Max t

1

)(t

1

< t

2

^	(t

1

)) � (t

2

� 
) j

�

1

^�

2

j :� j (9t)�

where 	(t

1

) is a MinMaxML

1

formula that 
ontains no free o

urren
es of

�rst-order variables other than t

1

, where 
 is a nonnegative integer 
onstant,

and �2 f<;�;=;�; >g. 2

The truth value of a MinMaxML

1

formula � is evaluated over a pair

(�; �) that 
onsists of a timed state sequen
e � whose propositional sym-

bols 
ontain all monadi
 predi
ates of �, and a valuation � that maps

ea
h free �rst-order variable of � to a nonnegative real. By �

[t7!v℄

we de-

note the valuation that agrees with � on all variables ex
ept t, whi
h is

mapped to the value v. We �rst de�ne for ea
h MinMaxML

1

term & a value

Val

�;�

(&), whi
h is either a nonstandard real or unde�ned. Intuitively, the

term (Min t

1

)(t

1

> t

2

^	(t

1

)) denotes the smallest value greater than t

2

that

satis�es the formula 	. If there is no value greater than t

2

that satis�es 	,

then the term (Min t

1

)(t

1

> t

2

^ 	(t

1

)) denotes the unde�ned value ?. If
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	 is satis�ed throughout a left-open interval with left endpoint v > t

2

, then

the term (Min t

1

)(t

1

> t

2

^	(t

1

)) denotes the nonstandard real number v

+

.

Similarly, the term (Max t

1

)(t

1

< t

2

^ 	(t

1

)) denotes the greatest value

smaller than t

2

that satis�es 	.

2

Formally:

De�nition 3.21 (MinMaxML

1

-Term Values) The value of a term & in the

TSS � and valuation �, denoted Val

�;�

(&), is de�ned by the following rules:

Val

�;�

(t) = �(t)

Val

�;�

(t+ 
) = �(t) + 


Val

�;�

(t� 
) =

�

�(t) � 
 if �(t) � 


? otherwise

Val

�;�

((Min t

1

)(t

1

> t

2

^	(t

1

)) =

8

>

>

>

>

<

>

>

>

>

:

v if (�; �

[t

1

7!v℄

) j= (t

1

> t

2

^	(t

1

));

and for all v

0

< v, not (�; �

[t

1

7!v

0

℄

) j= (t

1

> t

2

^	(t

1

))

v

+

if for all v

0

> v, exists v

00

< v

0

with (�; �

[t

1

7!v

00

℄

) j= (t

1

> t

2

^	(t

1

));

and for all v

0

� v, not (�; �

[t

1

7!v

0

℄

) j= (t

1

> t

2

^	(t

1

))

? if for all v � 0, not (�; �

[t

1

7!v℄

) j= (t

1

> t

2

^	(t

1

))

Val

�;�

((Max t

1

)(t

1

< t

2

^	(t

1

)) =

8

>

>

>

>

<

>

>

>

>

:

v if (�; �

[t

1

7!v℄

) j= (t

1

< t

2

^	(t

1

));

and for all v

0

> v, not (�; �

[t

1

7!v

0

℄

) j= (t

1

< t

2

^	(t

1

))

v

�

if for all v

0

< v, exists v

00

> v

0

with (�; �

[t

1

7!v

00

℄

) j= (t

1

< t

2

^	(t

1

));

and for all v

0

� v, not (�; �

[t

1

7!v

0

℄

) j= (t

1

< t

2

^	(t

1

))

? if for all v � 0, not (�; �

[t

1

7!v℄

) j= (t

1

< t

2

^	(t

1

))

2

Now we 
an de�ne the satisfa
tion relation for MinMaxML

1

formulas:

De�nition 3.22 (MinMaxML

1

-semanti
s) The following rules de�ne when

a formula is satis�ed by a TSS � and a valuation �:

(�; �) j= p(t) i� p 2 �(�(t))

(�; �) j= t

1

� t

2

i� Val

�;�

(t

1

) � Val

�;�

(t

2

), with �2 f<;�;=;�

; >g

(�; �) j= �

1

_ �

2

i� (�; �) j= �

1

or (�; �) j= �

2

(�; �) j= :� i� not (�; �) j= �

(�; �) j= (9t)� i� exists v � 0 with (�; �

[t7!v℄

)�

2

A MinMaxML

1

formula is 
losed i� it 
ontains no free o

urren
es of

�rst-order variables. Every 
losed MinMaxML

1

formula de�nes an an
hored

real-time language:

2

Note that although the terms take their value in non standard real numbers plus

unde�ned, quanti�ers only range over the real numbers.
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De�nition 3.23 (MinMaxML

1

-An
hored Language) Every 
losedMinMaxML

1

formula � de�nes an an
hored real-time !-language, namely, the set of real-

time state sequen
es � su
h that (�; ;) j= �.

And every MinMaxML

1

formula with one free variable de�nes a 
oating

real-time language:

De�nition 3.24 (MinMaxML

1

-Floating Language) EveryMinMaxML

1

for-

mula � with one free �rst-order variable t

1

de�nes a 
oating real-time !-

language, namely, the set of pairs (�; t) su
h that (�; [t

1

7! t℄) j= �.

Example 3.25 (MinMaxML

1

formula)

(8t

1

)(p(t

1

)! (9t

2

)(t

2

> t

1

^ q(t

2

) ^ (Min t

3

)(t

3

> t

2

^ r(t

3

)) = t

2

+ 5))

asserts that every p-state is followed by a q-state that is followed by an

r-state after, but no sooner than, 5 time units.

We will show in the next se
tion that the formalism that we have de�ned

in this se
tion is de
idable.

3.5 Expressiveness Results

Remember that in se
tion 3.2.3, we have re
alled a result proved by Kamp

that states the expressive equivalen
e between the temporal logi
 of the reals,

LTR, and the �rst-order monadi
 logi
 over the reals, MLR

1

, see theorem 3.8.

We will use this result in the sequel to establish the same theorem about

the relative expressive power of MinMaxML

1

and EventClo
kTL.

3.5.1 EventClo
kTL versus MinMaxML

1

We �rst prove that EventClo
kTL is at least as expressive asMinMaxML

1

. To

prove that result, we use theorem 3.8 and reason on the level of MinMaxML

1

formulas. The level of a MinMaxML

1

formula is de�ned as follows:

De�nition 3.26 (level of MinMaxML

1

Formulas) The level of aMinMaxML

1

formula �, noted level(�), is de�ned as follows:

� level(q(t)) = 0, where q is a monadi
 predi
ate;

� level(t

1

� t

2

) = 0, where t

1

; t

2

are �rst order variables;

� level(�

1

_ �2) =Maximum(level(�

1

); level(�

2

));

� level(:�) = level(�);

� level(9t � �(t)) = level(�(t));

� level(Max

t

2

� t

2

< t

1

^�(t

2

) � t

1

� 
) = 1 + level(�(t

2

));
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� level(Min

t

2

� t

2

> t

1

^ �(t

2

) � t

1

+ 
) = 1 + level(�(t

2

));

So the level of a MinMaxML

1

formula is the number of imbri
ations of Min�

Max quanti�ers in the formula. 2

We now prove the following lemma:

Lemma 3.27 (MinMaxML

1

� EventClo
kTL) For every formula �(t

1

) of

MinMaxML

1

with one free variable t

1

, there exists a 
ongruent formula

�

T

of EventClo
kTL, that is for every TSS � and every time t 2 R+

:

(�; [t

1

7! t℄) j= 	(t

1

) i� (�; t) j= 	

T

.

Proof. We reason by indu
tion on the level of formula.

� Base 
ase. Let �(t

1

) be su
h that level(�(t

1

)) = 0. In that 
ase, the

formula �(t

1

) does not 
ontains any Min � Max quanti�er and thus

�(t

1

) is a ML

1

formula. By theorem 3.8, there exists an 
ongruent

LTR formula �

T

. As LTR is a subset of EventClo
kTL, �

T

is an Event-

Clo
kTL formula.

� Indu
tion 
ase. Let �(t

1

) be su
h that level(�(t

1

)) = i. By indu
tion

hypothesis, we are able to 
onstru
t for every level

j

, with j < i, formula

	 of MinMaxML

1

, a 
ongruent EventClo
kTL formula 	

T

. We now

show that we 
an also do it for level

i

formulas. By de�nition of the

level of a MinMaxML

1

formula, we know that for every subformula of

the form:

{ Max

t

2

� [t

2

< t

1

^	(t

2

)℄ � t

1

� 


{ Min

t

2

� [t

2

> t

1

^	(t

2

)℄ � t

1

+ 


	(t

2

) is at most of level

i�1

and by indu
tion hypothesis, 
an be ex-

pressed in EventClo
kTL by a 
ongruent formula 	

T

. Also, by de�ni-

tion of the semanti
s ofMin�Max and�

�


;�

�


, we have the following:

C.1 (�; t) j= �

�


	

T

i� (�; [t

1

7! t℄) j= Min

t

2

� t

2

> t

1

^	(t

2

) � t

1

+ 


C.2 (�; t) j= �

�


	

T

i� (�; [t

1

7! t℄) j= Max

t

2

� t

2

< t

1

^	(t

2

) � t

1

� 


It remains us to show that the entire formulaMinMaxML

1

formula �(t)


an be expressed in EventClo
kTL. We do this by �rst transforming

�(t) as follows: every formula of the formMin

t

2

�t

2

> t

1

^	(t

2

) � t

1

+
,

Max

t

2

� t

2

< t

1

^	(t

2

) � t

1

�
 is repla
ed by a fresh monadi
 predi
ate

p

	

, we note this formula

g

�(t) and P

	

the set of fresh monadi
 predi-


ates that we have used to obtain

g

�(t). We know that

g

�(t) is a ML

1

formula over the monadi
 predi
ates of P [ P

	

. By theorem 3.8, we


an 
ompute a 
ongruent formula

e

�

T

of LTR. To obtain the desired

EventClo
kTL formula, it remains us to repla
e every fresh proposi-

tions of p

	

in

e

�

T

by 	

T

(as given by the 
lauses C1 and C2 above) to

obtain the desired formula �

T

.
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2

We now show that the reverse also holds.

Lemma 3.28 (EventClo
kTL � MinMaxML

1

) For every formula � of EventClo
kTL,

there exists a 
ongruent formula �

T

with one free variable t

1

of MinMaxML

1

,

that is for every TSS � and every time t 2 R+

: (�; [t

1

7! t℄) j= �

T

(t

1

) i�

(�; t) j= �.

Proof. We do a 
lassi
al reasoning on the stru
ture of formulas.

� Base 
ase. � is the proposition p. Then �

T

is simply p(t

1

).

� Indu
tion 
ase. By indu
tion hypothesis, we 
an 
onstru
t for ea
h

subformula �

1

, �

2

of EventClo
kTL, the 
ongruent formulas �

T

1

and

�

T

2

of MinMaxML

1

. We show that for ea
h 
onstru
t of EventClo
kTL

that are applied to �

1

and �

2

, we are able to 
onstru
t the desired

formula of MinMaxML

1

:

{ for � = :�

1

, we take �

T

= :�

T

1

(t

1

);

{ for � = �

1

_ �

2

, we take �

T

= �

T

1

(t

1

) _ �

T

2

(t

1

);

{ for � = �

1

U�

2

, we take 9t

2

> t

1

� (�

T

2

(t

2

) ^ 8t

3

� t

1

< t

3

<

t

2

� �

T

1

(t

3

) _ �

T

2

(t

3

))

{ for � = �

1

S�

2

, we take 9t

2

� 0 � t

2

< t

1

� (�

T

2

(t

2

) ^ 8t

3

� t

2

< t

3

<

t

1

� �

T

1

(t

3

) _ �

T

2

(t

3

))

{ for � = �

�


�

1

, we take Min

t

2

[t

1

< t

2

^ �

T

1

(t

2

)℄ � t

1

+ 
;

{ for � = �

�


�

1

, we take Max

t

2

[t

2

< t

1

^ �

T

1

(t

2

)℄ � t

1

� 
.

2

The two previous lemma allow us to derive the following theorem that

states the equivalent expressive power of the logi
s EventClo
kTL andMinMaxML

1

:

Theorem 3.29 The 
oating and an
hored real-time !-regular languages de-

�nable by the logi
 EventClo
kTL and MinMaxML

1

are identi
al.

The lemma 3.27 allows us to derive the following de
idability results for

MinMaxML

1

:

Theorem 3.30 (MinMaxML

1

-De
idability) The satis�ability and validity

problems of the logi
 MinMaxML

1

are de
idable and in NonElem.
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3.5.2 EventClo
kTL versus Metri
IntervalTL

We now turn to the relation that exists between the logi
 EventClo
kTL and

the logi
 Metri
IntervalTL.

We �rst de�ne the fragment EventClo
kTL

0;1

of EventClo
kTL. We will

use it in the following proofs.

De�nition 3.31 (EventClo
kTL

0;1

) The formulas of the fragment EventClo
kTL

0;1

of EventClo
kTL are the formulas that only use real-time operators �

I

, �

I

where: either l(I) = 0 or r(I) =1. 2

The semanti
s of EventClo
kTL

0;1

formulas is as for full EventClo
kTL.

The following lemma expresses that EventClo
kTL

0;1

is expressively 
om-

plete:

Lemma 3.32 (EventClo
kTL = EventClo
kTL

0;1

) For every formula of � 2

EventClo
kTL we 
an 
onstru
t a 
ongruent formula �

T

of the fragment

EventClo
kTL

0;1

, that is for every TSS �, for every time t 2 R+

, (�; t) j= �

i� (�; t) j= �

T

.

Proof. We reason by indu
tion on the stru
ture of formulas:

� Base 
ase. Let � = p. Then � 2 EventClo
kTL

0;1

.

� Indu
tion 
ase. The boolean 
ases and temporal 
ases are trivial.

Let us 
onsider the formula �

I

 , with l(I) 6= 0 and r(I) 6= 1. By

indu
tion hypothesis, we have  

T

2 EventClo
kTL

0;1

. We note I

1

the

interval ft > 0 j 9t

0

2 I and t � t

0

g, and I

2

the interval ft > 0 j 8t

0

2

I, t < t

0

g. By de�nition of �, we know that those two intervals are

non-empty, as l(I) > 0 and r(I) < 1 and their bounds are integer

numbers, and further that l(I

1

) = l(I

2

) = 0. It is easy to see that

the formula �

I

1

 

T

^�

I

2

 

T

is 
ongruent to � and in EventClo
kTL

0;1

.

The 
ase for the operator � is similar and left to the reader.

2

We now prove that the fragment Metri
IntervalTL

0;1

is at least as ex-

pressive as the logi
 EventClo
kTL.

Lemma 3.33 (EventClo
kTL � Metri
IntervalTL

0;1

) For every formula �

of EventClo
kTL, there exists a 
ongruent formula �

T

of Metri
IntervalTL

0;1

,

that is for every TSS � and every time t 2 R+

: (�; t) j= �

T

i� (�; t) j= �.

Proof. By lemma 3.32, we know that EventClo
kTL

0;1

is equally expressive

to EventClo
kTL. Thus it is suÆ
ient to show that EventClo
kTL

0;1

�

Metri
IntervalTL

0;1

. We reason by indu
tion on the stru
ture of formulas.
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In the sequel, � belongs to EventClo
kTL

0;1

and �

T

denotes the 
ongruent

Metri
IntervalTL

0;1

formula.

� Base 
ase. The formula � is the proposition p then �

T

= p;

� Indu
tion 
ases: by indu
tion hypothesis, �

1

and �

2

are translated by

�

T

1

and �

T

2

. Here are the di�erent 
ases:

{ for � = �

1

_ �

2

, we take �

T

= �

T

1

_ �

T

2

;

{ for � = :�

1

, we take �

T

= :�

T

1

;

{ for � = �

1

U�

2

, we take �

T

= (�

T

1

_ �

T

2

)

b

U

(0;1)

�

T

2

;

{ for � = �

1

S�

2

, we take �

T

= (�

T

1

_ �

T

2

)

b

S

(0;1)

�

T

2

;

{ � = �

J

�

1

with l(J) = 0. Note that the operator � is irre
exive

so we 
an make the hypothesis that 0 62 J . We distinguish the


ase where the �rst �

1

-interval in the future is left 
losed from the


ase where it is left open. The two situations 
an be distinguished

by the following Metri
IntervalTL

0;1

formula: :�

T

1

b

U

(0;1)

�

T

1

.

� In the 
ase that the former formula is veri�ed then the fol-

lowing �

1

-interval is left 
losed and we 
an 
he
k that �

J

�

1

is veri�ed by 
he
king the following Metri
IntervalTL

0;1

for-

mula: :�

T

1

b

U

J

�

T

1

.

� In the se
ond 
ase, the �rst �

1

-interval is left open and then

we 
he
k that �

T

1

_ :�

T

1

b

U

(0;l(J))

�

T

1

where �

T

1

denotes

?

b

U

(0;1)

�

T

1

and means that �

T

1

is true just after the present

time. Let us note that l(J) is ex
luded as we 
he
k the event

�

T

1

and not the event �

T

1

.

This gives the following translation rule:

�

J

�

1

= ^ >

b

U

(0;1)

�

T

1

^ :�

T

1

b

U

(0;1)

�

T

1

! :�

T

1

b

U

J

�

T

1

^ :(:�

T

1

b

U

(0;1)

�

T

1

)! �

T

1

_ :�

T

1

b

U

(0;r(J))

�

T

1

{ � = �

J

�

1

with l(J) 6= 0. And thus r(J) =1 as � 2 EventClo
kTL

0;1

.

Here also, we distinguish the 
ase where the �rst �

1

-interval in

the future is left 
losed from the 
ase where it is left open. We

obtain the following translation rule:

�

J

�

1

= ^ >

b

U

(0;1)

�

T

1

^ :�

T

1

b

U

(0;1)

�

T

1

! :�

T

1

b

U

J

�

T

1

^ :(:�

T

1

b

U

(0;1)

�

T

1

)! :�

T

1

b

U

[l(J);1)

(:�

T

1

^ �

T

1

)

{ � = �

J

�

1

with l(j) = 0. By a similar reasoning we obtain:

�

J

�

1

= ^ >

b

S

(0;1)

�

T

1

^ :�

T

1

b

S

(0;1)

�

T

1

! :�

T

1

b

S

J

�

T

1

^ :(:�

T

1

b

S

(0;1)

�

T

1

)! ⊖�T
1

_ :�

T

1

b

S

(0;r(J))

⊖ �

T

1
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{ � = �

J

�

1

with l(j) 6= 0. And thus r(J) =1 as � 2 EventClo
kTL

0;1

.

By a similar reasoning we obtain:

�

J

�

1

= ^ >

b

S

(0;1)

�

T

1

^ :�

T

1

b

S

(0;1)

�

T

1

! :�

T

1

b

S

J

�

T

1

^ :(:�

T

1

b

S

(0;1)

�

T

1

)! :�

T

1

b

S

[l(J);1)

(:�

T

1

^⊖�T
1

)

2

We now prove that the reverse property also holds:

Lemma 3.34 (Metri
IntervalTL

0;1

� EventClo
kTL) For every formula �

of Metri
IntervalTL

0;1

, there exists a 
ongruent formula �

T

of EventClo
kTL,

that is for every TSS � and every time t 2 R+

: (�; t) j= �

T

(t) i� (�; t) j= �.

Proof. We reason by indu
tion on the stru
ture of formulas. The interesting

formulas are the

b

U

I

and

b

S

I

ones. In the sequel of the proof, we use the

following usual abbreviations:

�

b♦
I

� = >

b

U

I

� ;

�
b
2

I

= :

b♦
I

:�.

With the abbreviations given in de�nition 3.12, we 
an rewrite any

b

U

I

-

formulas as:

� if l(I) = 0 then �

1

b

U

I

�

2

= �

1

b

U

(0;1)

�

2

^

b♦
I

�

2

;

� if I = (
;1) then �

1

b

U

(
;1)

�

2

=
b
2

(0;
℄

(�

1

^ �

1

b

U

(0;1)

�

2

);

� if I = [
;1) then �

1

b

U

[
;1)

�

2

= ^
b
2

(0;
)

�

1

^
b
2

(0;
℄

((�

1

b

U

(0;1)

�

2

) _ �

2

)

;

Let us also note that :

�

b♦
(
;1)

� =
b
2

(0;
℄

b♦
(0;1)

� ;

�

b♦
[
;1)

� =
b
2

(0;
℄

(� _

b♦
(0;1)

�) ;

So the only formula that we have to be able to treat are �

1

b

U

(0;1)

�

2

,

b♦
J

�

1

and
b
2

J

�

1

with l(J) = 0, and these are translated into EventClo
kTL as

follows:

� �

1

b

U

(0;1)

�

2

= �

T

1

U(�

T

2

^ ⊖�T
1

), where ⊖�T
1

is the abbreviation for

?S�

T

1

, see de�nition ??;

�

b♦
J

�

1

= �

J

�

T

1

;

�
b
2

J

�

1

= :�

J

:�

T

1

.

The past temporal and real-time operators are treated symmetri
ally. This


on
ludes our proof for Metri
IntervalTL

0;1

� EventClo
kTL. 2
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A dire
t 
onsequen
e of the two previous lemmas is the following theo-

rem:

Theorem 3.35 (EventClo
kTL = EventClo
kTL

0;1

= Metri
IntervalTL

0;1

)

The logi
s EventClo
kTL, EventClo
kTL

0;1

andMetri
IntervalTL

0;1

are equally

expressive.

We now turn to the 
omparison of the expressive power of EventClo
kTL

with regard to the expressive power of (full) Metri
IntervalTL. A 
orol-

lary of lemma 3.33 is that Metri
IntervalTL is at least as expressive as

EventClo
kTL. It 
ould be thought that Metri
IntervalTL has a stri
tly more

expressive power than EventClo
kTL, but the following lemma and its proof,

surprisingly, establishes that every Metri
IntervalTL-formula is expressible in

EventClo
kTL:

Lemma 3.36 (Metri
IntervalTL � EventClo
kTL) For every formula � of

Metri
IntervalTL, there exists a 
ongruent formula �

T

of EventClo
kTL, that

is for every TSS � and every time t 2 R+

: (�; t) j= �

T

i� (�; t) j= �.

Proof. As we have proved in lemma 3.34 thatMetri
IntervalTL

0;1

� EventClo
kTL,

we are allowed to show thatMetri
IntervalTL � (EventClo
kTL[Metri
IntervalTL

0;1

)

and we have only to 
onsider formulas that are not in Metri
IntervalTL

0;1

.

The interesting formulas of this fragment are of the form:

1. �

1

b

U

I

�

2

;

2. �

1

b

S

I

�

2

.

with l(I) 6= 0, r(I) 6= 1 and I non-singular. In the following, we only


onsider the future formulas, past formulas are treated symmetri
ally. We

�rst make a rewriting of those formulas to fa
ilitate the rest of the proof:

� �

1

b

U

I

�

2

with l(I) 62 I 
an be rewritten as the following 
onjun
tion:

1.^
b
2

(0;l(I)℄

(�

1

^ �

1

b

U

(0;1)

�

2

)

2.^

b♦
I

�

2

� �

1

b

U

I

�

2

with l(I) 2 I 
an be rewritten as the following 
onjun
tion:

1.^
b
2

I\(0;l(I))

�

1

2.^
b
2

(0;l(I)℄

((�

1

b

U

(0;1)

�

2

) _ �

2

)

3.^

b♦
I

�

2
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And as ea
h
b
2

I

� formula 
an be rewritten as :

b♦
I

:� formula, we have only

to 
onsider

b♦
I

� formulas.

Let us now show that every formula

b♦
I

� 
an be expressed in EventClo
kTL[

Metri
IntervalTL

0;1

. We �rst rewrite those formulas as a disjun
tion of for-

mulas where l(I) = a and r(I) = a + 1. In fa
t, we have the following

equivalen
e:

b♦
(a;b℄

� =

W

i=b�1

i=a

b♦
(i;i+1℄

�

This equivalen
e 
an be extended for all sorts of non-singular intervals

(open-
losed). We show in the sequel that ea
h formula of the form

b♦
I

�,

with l(I) = 
 and r(I) = 
 + 1, 
an be expressed by an EventClo
kTL [

Metri
IntervalTL

0;1

formula and thus, by lemma 3.34 by an EventClo
kTL

formula. The proof is by indu
tion on the size of the 
onstant 
 that appear

in the 
onstraining interval.

� Base 
ase. When 
 = 0, the formula is inMetri
IntervalTL

0;1

and thus

the base 
ase is trivially veri�ed.

� Indu
tion 
ase. We now treat the 
ase for an arbitrary 
 2 N. By

indu
tion hypothesis every formula of the form

b♦
I

�, with l(I) � 
� 1

and r(I) � 
 
an be translated into EventClo
kTL. We treat the 
ase

b♦
(
;
+1)

� in details, the other 
ases, i.e. [
; 
+1℄; [
; 
+1); (
; 
+1℄ are

treated in the same way. Here is the translation:

b♦
(
;
+1)

� = a._

b♦
[
�1;
)

�

=1

�

b._

b♦
(
�1;
)

�

=1

�


._
b
2

(
�1;
℄

b♦
(0;1)

�

We �rst prove that the impli
ation from left to right is valid. There

are two mutually ex
lusive situations to dis
riminate:

(1) In the �rst 
ase, either the distan
e between the last �-interval

in t+ (
� 1; 
℄ and the �rst �-interval in t+ (
; 
 + 1) is greater

or equal to 1 or there is no �-interval in t+ [
� 1; 
). We further

distinguish two sub
ases:

(1a) the �rst �

1

interval is left 
losed;

(1b) the �rst �

1

interval is left open;

(2) In the se
ond 
ase, the distan
e between the last �-interval in

t+ (
� 1; 
℄ and the �rst �-interval in t+ (
; 
+1) is stri
tly less

then 1.

In 
ase 1: by the hypothesis that the distan
e between the �rst �-

interval in t+(
; 
+1), noted F

�

, and the last �-interval in t+(
�1; 
℄,

noted L

�

is greater than 1, we infer that there exists t

1

2 t+ (
� 1; 
℄
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su
h that (�; t

1

) j= �

=1

� if the interval I

�

is left-
losed (1a) and

that (�; t

1

) j= �

=1

� if I

�

is left open (1b). Using the indu
tion

hypothesis, we express this property with the

b♦
(
�1;
)

operator in the

�rst 
ase and with the

b♦
[
�1;
)

operator in the se
ond 
ase.

In 
ase 2: the distan
e between the last �-interval in t + (
 � 1; 
℄

noted L

�

and the �rst �-interval in t+ (
; 
 + 1), noted F

�

is stri
tly

less than one. For all time t 2 (
� 1; r(L

�

)),

b♦
(0;1)

� is veri�ed thanks

to �-positions in L

�

and for all time t 2 [r(L

�

); 
℄,

b♦
(0;1)

� is veri�ed

thanks to �-positions in F

�

(as the distan
e is less than 1).

The other dire
tion is immediate. We must show that the three parts

of the disjun
tion implies the Metri
IntervalTL formula

b♦
(
;
+1)

�:

1.

b♦
[
�1;
)

�

=1

�. Clearly this formula asserts that there is a time

t

1

2 t + [
; 
 + 1) su
h that at a distan
e of 1 time unit � is

veri�ed, let us note this position t

2

= t

1

+ 
. So there is a left-

open �-interval at a distan
e of 1 + [
 � 1; 
) from t and thus as

this �-interval is left-open, we have that

b♦
(
;
+1)

� is veri�ed in

time t.

2.

b♦
(
�1;
)

�

=1

�. By the same reasoning but for a left-
losed interval,

we establish that

b♦
(
;
+1)

� is veri�ed in time t;

3.
b
2

(
�1;
℄

b♦
(0;1)

�. This formula dire
tly implies that

b♦
(0;1)

� is veri-

�ed in time t+ 
. So there is a time t

1

2 t+ 
+ (0; 1) where � is

veri�ed as t

1

2 t+ (
; 
 + 1) we have that

b♦
(
;
+1)

� is veri�ed at

time t.

The equivalen
e between the two formula is proved. As the formula

b
2

(
�1;
℄

� is equivalent to the formula :

b♦
(
�1;
℄

:� and that the 
onstant

appearing in the left-end bound of the 
onstraining interval is stri
tly

less than 
, by indu
tion hypothesis, the formula :

b♦
(
�1;
℄

:� 
an be

expressed in EventClo
kTL.

2

The last lemma together with the lemma 3.33 gives:

Theorem 3.37 (EventClo
kTL = Metri
IntervalTL) The logi
s EventClo
kTL

and Metri
IntervalTL are equally expressive.

Corollary 3.38 (All Equally Expressive) The logi
s EventClo
kTL, EventClo
kTL

0;1

,

Metri
IntervalTL

0;1

, Metri
IntervalTL and MinMaxML

1

are equally expres-

sive.
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That is, all the logi
s de�ne the same 
lass of real-time !-languages. We


all this 
lass the 
ounter-free !-regular real-time languages.

De�nition 3.39 (Class of !-Regular Real-Time Languages) The sets

of timed state sequen
es de�nable by the logi
s EventClo
kTL, EventClo
kTL

0;1

,

Metri
IntervalTL

0;1

,Metri
IntervalTL andMinMaxML

1

form the 
lass of 
ounter-

free !-regular real-time languages.

3.5.3 Minimal Expressively Complete Fragments

In this se
tion, we identify minimal fragments that are fully expressive. We

show that in ea
h of the previously de�ned logi
s, we 
an restri
t the use of


onstants to be only 0 or 1.

De�nition 3.40 (Metri
IntervalTL

0;1

-Fragment) Metri
IntervalTL

0;1

is the

fragment ofMetri
IntervalTL that 
onsists of all formulas � su
h that for ea
h

interval I appearing in �, we have l(I) = 0 and r(I) = 1. 2

Similarly,

De�nition 3.41 (EventClo
kTL

0;1

-Fragment) EventClo
kTL

0;1

is the frag-

ment of EventClo
kTL that 
onsists of all formulas � su
h that for ea
h

interval I appearing in �, we have l(I) = 0 and r(I) = 1. 2

We have the following lemma:

Lemma 3.42 (Metri
IntervalTL

0;1

� Metri
IntervalTL

0;1

) For every formula

� of Metri
IntervalTL

0;1

, there exists a 
ongruent formula �

T

of Metri
IntervalTL

0;1

,

that is for every TSS � and every time t 2 R+

: (�; t) j= �

T

i� (�; t) j= �.

Proof. In the proof of lemma 3.34, we have shown that everyMetri
IntervalTL

0;1

formula 
an be rewritten using only the following real-time formulas: �

1

b

U

(0;1)

�

2

and

b♦
J

�

1

with l(J) = 0. So all we need to 
onsider is formulas of the form

♦
<


�

1

, ♦
�


�

1

. We treat the 
ase ♦
<


�

1

, the other 
ases are treated similarly

and left to the reader. We reason by indu
tion on the size of the 
onstant 


and make the hypothesis that we 
an e�e
tively 
onstru
t the formula �

T

1

.

� Base 
ase: 
 = 1. Then ♦
<1

�

T

1

is already in Metri
IntervalTL

0;1

.

� Indu
tion 
ase: 
 > 1 and by indu
tion hypothesis we 
an handle

formulas ♦
<d

�

T

1

, with 0 � d < 
. For ♦
<


�

1

, we take: ♦
<1

(♦

�1

�

1

)

T

,

whi
h by indu
tion hypothesis, is in Metri
IntervalTL

0;1

.

2
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As a 
onsequen
e of this lemma and 
orollary 3.38, we have the following


orollary:

Corollary 3.43 The logi
s Metri
IntervalTL andMetri
IntervalTL

0;1

are equally

expressive.

Lemma 3.44 (EventClo
kTL � EventClo
kTL

0;1

) For every formula � of

EventClo
kTL, there exists a 
ongruent formula �

T

of EventClo
kTL

0;1

, that

is for every TSS � and every time t 2 R+

: (�; t) j= �

T

i� (�; t) j= �.

Proof. In lemma 3.32, we have shown that EventClo
kTL � EventClo
kTL

0;1

.

Thus, we must show that �

�


�

1

with �2 f<;�;�; >g 
an be translated

into EventClo
kTL

0;1

. We treat �

�


�

1

and�

�


�

1

, the other 
ases are similar

and left to the reader.

� � = �

�


�

1

. We reason by indu
tion on the size of 
.

{ 
 = 1. In that 
ase �

�1

�

1

is an EventClo
kTL

0;1

formula.

{ 
 > 1. By indu
tion hypothesis, we 
an treat every formula of

EventClo
kTL

0;1

with a 
onstant d < 
. Then we take �

�


�

1

=

�

�1

(�

�
�1

�

1

)

T

.

� � = �

�


�

1

. Note that we 
an rewrite this formula as follows: :(�

<


�

1

)^

♦�
1

. By the previous 
ase, we know that we 
an transform �

<


�

1

into

an EventClo
kTL

0;1

formula.

2

A dire
t 
onsequent of the previous lemma and 
orollary 3.38, we have

the following 
orollary:

Corollary 3.45 The logi
s Metri
IntervalTL, Metri
IntervalTL

0;1

, Metri
IntervalTL

0;1

,

EventClo
kTL, EventClo
kTL

0;1

and MinMaxML

1

are equally expressive.

4 The Regular Real-Time !-Languages

4.1 Introdu
tion

In this se
tion, we will study automata that are 
losely related to the logi


of event 
lo
ks. This 
lass of automata, 
alled the re
ursive event-
lo
k

automata is study in details: we study its 
losure properties, de
idability

results as well as expressiveness results. It will turn out that the 
lass

of language a

epted by the re
ursive event-
lo
k automata is exa
tly the

languages a

epted by the logi
s of the previous se
tion when ability to 
ount
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is added. For this reason, we 
all the languages a

epted by the re
ursive

event-
lo
k automata the \(full) regular real-time languages". This 
lass of

languages is 
losed under all boolean operations.

4.2 Propositional Event-Clo
k Automata

An event-
lo
k automaton is a spe
ial 
ase of a timed automaton [AD94℄,

where the starting of 
lo
ks is determined by the input instead of by the

transition relation. We �rst re
all the original de�nition with event 
lo
ks

asso
iated to proposition [AFH94℄.

The value of propositional event 
lo
ks in the 
ontinuous semanti
s will

be non standard reals, whi
h are de�ned as follows:

De�nition 4.1 (Non-Standard Reals) The set of non-standard (posi-

tive) reals, noted R+

ns

, is the set fv; v

+

j v 2 R+

g, ordered by <

ns

as follows:

v

1

<

ns

v

+

2

i� v

1

� v

2

where � is the usual order on real-numbers. 2

We are now equipped to de�ne the value of propositional event 
lo
ks

along timed state sequen
es.

De�nition 4.2 (Value of Event Clo
ks-Continuous Semanti
s) The

value of an propositional event 
lo
k z 2 C along a TSS �, at time t, noted

Val

�

(z; t) is de�ned by the following 
lauses:

Val

�

(x

p

; t) =

8

>

>

>

>

<

>

>

>

>

:

v if p 2 �(t� v); v > 0;

and for all v

0

, 0 < v

0

< v, not p 2 �(t� v

0

)

v

+

if for all v

0

> v, exists v

00

, v < v

00

< v

0

with p 2 �(t� v

00

);

and for all v

0

, 0 < v

0

� v, not p 2 �(t� v

0

)

? if for all v, 0 < v � t, not p 2 �(t� v)

Val

�

(y

p

; t) =

8

>

>

>

>

<

>

>

>

>

:

v if p 2 �(t+ v); v > 0,

and for all v

0

, 0 < v

0

< v, not p 2 �(t+ v

0

)

v

+

if for all v

0

> v, exists v

00

, v < v

00

< v

0

with p 2 �(t+ v

00

);

and for all v

0

, 0 < v

0

� v, not p 2 (t+ v

0

)

? if for all v > 0, not p 2 �(t+ v)

2

De�nition 4.3 (Atomi
 Event Clo
k Constraints) Given a set of (propo-

sitional) event 
lo
ks C, the set of atomi
 
lo
k 
onstraints is fz � 
 j z 2

C and 
 2 Ng. 2

Let us now show how the truth value of atomi
 event 
lo
k 
onstraints

is evaluated along a TSS:
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De�nition 4.4 (Clo
k Constraints Semanti
s) A atomi
 event 
lo
k


onstraints z � 
 is true at time t 2 R+

of the TSS �, noted (�; t) j= z � 
,

i� Val

�

(z; t) � 
. 2

De�nition 4.5 (Propositional Event-Clo
k Automata) A propositional

event-
lo
k automaton, in the 
ontinuous semanti
s, is a tupleA = (Q;Q

0

; Æ;P;A; �;Q

F

)

where:

Q is a �nite set of lo
ations,

Q

0

� Q is the set of starting lo
ations,

Æ � Q�Q is the transition relation,

P is a �nite set of propositional symbols,

A is a �nite set of atomi
 real-time 
onstraints over propositional


lo
ks,

�: Q! 2

Limit(P[A)

is a fun
tion that labels ea
h lo
ation with a

set of literals;

Q

F

� Q is a set of a

epting lo
ations.

2

Let us note that we label here the lo
ations with set of literals. We 
ould

have de
ided to label lo
ations with boolean 
ombinations of literals instead.

We just adopt this 
onvention be
ause it will slightly simplify some proofs

later but the expressive power would have been the same if we had 
hosen to

label with boolean 
ombinations of literals instead. We now de�ne formally

the notion of a

epted timed run of a EventClo
kTA on a TSS �. Let � be a

timed state sequen
e whose propositional symbols 
ontain all propositions

in P.

De�nition 4.6 (A

epted Timed Run) The propositional event-
lo
k au-

tomaton A a

epts �, denoted A

ept

A

(�), i� there exist an a

epted in�nite

timed run � = (q; I) su
h that the following 
onditions are met.

Covering The run � 
onsists of an in�nite sequen
e q of lo
ations from Q,

and an in�nite interval sequen
e I that 
overs [0;1).

Starting The run starts in a starting lo
ation, i.e. q

0

2 Q

0

.

Conse
ution The run respe
ts the transition relation; that is, (q

i

; q

i+1

) 2 Æ

for all i � 0.

Constraints The timed state sequen
e respe
ts the 
onstraints that are

indu
ed by the run �; that is, �(t) j= �(�(t)) for all real times t 2

[0;1).

A

epting The run is B�u
hi a

epting, that is, there exist in�nitely many

i � 0 su
h that q

i

2 Q

F

.
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2

Ea
h EventClo
kTA de�nes a real-time !-regular language:

De�nition 4.7 (Continuous An
hored Real-Time Language) The 
on-

tinuous an
hored real-time language de�ned by an propositional event-
lo
k

automaton A, noted An
Lang(A) is the set of TSS on whi
h it has an a
-


epted run, that is An
Lang(A) = f� j A

ept

A

(�)g.

Theorem 4.8 (Closure Properties) The formalism of propositional event-


lo
k automaton is (
onstru
tively) 
losed, in the 
ontinuous semanti
s, un-

der all boolean operations. 2

By slightly adapting the region 
onstru
tion presented in se
tion ??,

we 
an also 
onstru
t, for ea
h EventClo
kTAA, a BA R

A

that a

epts the

untimed A:

Theorem 4.9 (Region Automaton) For every (
ontinuous) propositional

event 
lo
k A, we 
an 
onstru
t a B�u
hi automaton B with An
Lang(B) =

f� j (�; I) 2 An
Lang(A)g. Further the number of lo
ations in B is linear

in the number of lo
ations used in A, singly exponential in the number of


lo
ks used in A and singly exponential in the size of the maximal 
onstant

used in A. 2

The last theorem and the 
losure properties of 
ontinuous propositional

event 
lo
k automata allow us to derive:

Theorem 4.10 (Emptiness and Universality of EventClo
kTA) The empti-

ness and universality problems for (propositional) event 
lo
k automata in


ontinuous semanti
s are de
idable and PSpa
e-Complete. 2

Unfortunately, the propositional version of event-
lo
k automata does

not subsume the logi
 EventClo
kTL.

Theorem 4.11 (EventClo
kTL 6� EventClo
kTA, EventClo
kTA 6� EventClo
kTL)

The expressive power of 
ontinuous EventClo
kTL and 
ontinuous Event-

Clo
kTA are in
omparable.

Proof. The non in
lusion of the EventClo
kTA-languages in the EventClo
kTL-

languages is as for the pointwise 
ase: the logi
 EventClo
kTL is not able

to express 
ounting properties. For the non in
lusion of the EventClo
kTL-

languages in the EventClo
kTA-languages, we 
onsider the two TSS �

1

=

(�; I

1

) and �

2

= (�; I

2

) de�ned on the singleton fpg:

� the two TSS share the same qualitative information whi
h is as follows:

� = fgfgfpgfgfpgfpgfpg : : : , that is p is false in the two �rst observa-

tions, be
omes true in the third observation, be
omes false again in the

fourth observation and then true for ever from the �fth observation.
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� let us now 
onsider the two following sequen
es of intervals:

1. I

1

= [0; 0℄(0:5; 0:5)[0:5; 0:5℄(0:5; 1)[1; 1℄(1; 1:5)[1:5; 1:5℄ : : : , that is

every interval I

1

i

with i even is singular and equal to [(i � 1) �

0:5; (i � 1)� 0:5℄;

2. I

2

= [0; 0℄(0:4; 0:4)[0:4; 0:4℄(0:4; 0:8)[0:8; 0:8℄(0:8; 1:2)[1:2; 1:2℄ : : : ,

that is every interval I

2

i

with i even is singular and equal to

[(i� 1)� 0:4; (i � 1)� 0:4℄;

It is easy to show that for every 
lo
k 
onstraint z � 
 that we 
an

build from the propositional prophe
y 
lo
ks x

p

and y

p

, that we have

the following property: for every positions i � 0, for every t

1

1

; t

1

2

2 I

1

1

,

for every t

2

1

; t

2

2

2 I

1

1

, we have that: (�

1

; t

1

1

) j= z � 
 i� (�

1

; t

1

2

) j= z � 


i� (�

2

; t

2

1

) j= z � 
 i� (�

2

; t

2

2

) j= z � 
. As the two timed state

sequen
es are alternating, we have the same property for every atom

build from propositions and atomi
 
lo
k 
onstraints. And thus every

EventClo
kTA either a

epts or reje
ts the two TSS. On the order

hand, the EventClo
kTL formula � = �

=1

2p is true in time t = 0 of

the �rst TSS but false in t = 0 of the se
ond. As a 
onsequen
e, no

EventClo
kTA 
an express the property expressed by the EventClo
kTL

formula �.

2

This result motivates the following extension. We extend the use of event


lo
ks: propositional event 
lo
ks are 
lo
ks that 
an only be asso
iated to

propositional symbols, here we show that we 
an asso
iate event 
lo
ks with

automata re
ursively. The formalism that we obtain is 
alled the re
ursive

event-
lo
k automata. Those re
ursive automata keep all ni
e properties of

their propositional version: 
losure under all boolean operations and both

emptiness and universality problems are de
idable. Further, we will show

that 
ontrary to propositional event-
lo
k automata, re
ursive event-
lo
k

automata are able to express all EventClo
kTL-expressible properties.

4.3 Re
ursive Event-Clo
k Automata

We now generalize the use of 
lo
ks to de�ne our re
ursive event-
lo
k au-

tomata, noted REventClo
kTA. An automaton A a

epts (or reje
ts) a given

pair (�; t) that 
onsists of a timed state sequen
e � and a time t 2 R+

.

The automaton is started at time t and views the \past" of the input se-

quen
e � by exe
uting a ba
kward transition relation, and the \future" by

exe
uting to a forward transition relation. If A a

epts the pair (�; t), we

say that A a

epts � at time t. This allows us to asso
iate a history 
lo
k

and a prophe
y 
lo
k with ea
h automaton. The history 
lo
k x

A

always
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shows the amount of time that has expired sin
e the last time at whi
h A

a

epted �, and the prophe
y 
lo
k y

A

always shows the amount of time

that will expire until the next time at whi
h A will a

ept �. This de�nition

of event-
lo
k automata is re
ursive. The base automata, whose transition

relations are not 
onstrained by 
lo
ks, are 
alled 
oating automata, FloatA

for short. Formally,

De�nition 4.12 (FloatA) A 
oating automaton is a tupleA = (Q;Q

0

; Æ

f

; Æ

b

;P; �;Q

F

f

; Q

F

b

)

su
h that

Q is a �nite set of lo
ations,

Q

0

� Q is the set of starting lo
ations,

Æ

f

� Q�Q is the forward transition relation,

Æ

b

� Q�Q is the ba
kward transition relation,

P is a �nite set of propositional symbols,

�: Q ! 2

Limit(P)

is a fun
tion that labels ea
h lo
ation with a

set of literals over the set of propositions P;

Q

F

f

� Q is a set of forward a

epting lo
ations, and

Q

F

b

� Q is a set of ba
kward a

epting lo
ations.

2

Note that we have 
hosen to label lo
ations with the set of literals that

are true when the 
ontrol reside in the lo
ation. We have done this 
hoi
e

be
ause it will slightly simplify some proofs later. But for spe
i�
ation


onvenien
e, we 
ould have 
hosen, with no e�e
t on the property of our

re
ursive event-
lo
k automata, to label lo
ations with boolean formulas

built from those literals. We will use those boolean formulas when illus-

trating the use of re
ursive event-
lo
k automata for spe
ifying real-time

properties. Examples will be more readable with this 
onvention.

We now de�ne the notion of a

epted timed run for 
oating automata

on a pair (�; t).

De�nition 4.13 (FloatA-A

epted Run) Let � be a timed state sequen
e

whose propositional symbols 
ontain all propositions in P. The 
oating au-

tomaton A a

epts � at time t 2 R+

, denoted A

ept

A

(�; t), i� there exist

an in�nite forward timed run �

f

= (q

f

; I

f

) and a �nite ba
kward timed run

�

b

= (q

b

; I

b

) su
h that the following 
onditions are met. We note �(t) the

lo
ation in whi
h the run resides at time t 2 R+

.

Covering The forward run �

f


onsists of an in�nite sequen
e q

f

of lo
ations

from Q, and an in�nite interval sequen
e I that 
overs [t;1). The

ba
kward run �

b


onsists of a �nite sequen
e q

b

of lo
ations and a

�nite interval sequen
e I

b

, of the same length as q

b

, whi
h 
overs [0; t℄.
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Starting The forward and ba
kward runs start in the same starting lo
a-

tion; that is, �

f

(t) = �

b

(t) and �

f

(t) 2 Q

0

.

Conse
ution The forward and ba
kward runs respe
t the 
orresponding

transition relations; that is, (q

f

i

; q

f

i+1

) 2 Æ

f

or q

f

i

= q

f

i+1

(stuttering)

for all i � 0, and (q

b

i

; q

b

i�1

) 2 Æ

b

or q

b

i

= q

b

i�1

(stuttering) for all

0 < i < jq

b

j.

Constraints The timed state sequen
e respe
ts the 
onstraints that are

indu
ed by the forward and ba
kward runs; that is, (�; t

0

) j= �(�

f

(t

0

))

for all real times t

0

2 [t;1), and (�; t

0

) j= �(�

b

(t

0

)) for all real times

t

0

2 [0; t℄.

A

epting The forward run is B�u
hi a

epting and the ba
kward run ends

in an ba
kward a

epting lo
ation; that is, there exist in�nitely many

i � 0 su
h that q

f

i

2 Q

F

f

, and q

b

0

2 Q

F

b

.

2

Example 4.14 (A Floating Automaton) The simple 
oating automa-

ton A of �gure 2 has the following elements:

� lo
ation q

1

is the starting lo
ation of A;

� its forward transition relation (plain arrows) allows the 
ontrol to

evolve from lo
ation q

1

to lo
ation q

2

and to loop in lo
ation q

2

;

� its ba
kward transition relation (dashed arrows) allows the 
ontrol to

rea
h lo
ation q

0

from lo
ation q

1

and afterwards to loop in lo
ation

q

0

;

� lo
ation q

0

is ba
kward a

epting (double 
ir
le dashed) and lo
ation

q

2

is forward a

epting (double 
ir
le);

� its labels are as follows: in lo
ation q

1

, the literal

�!

p must hold, it

means that p must be true just after the time at whi
h the automaton

is started (but not ne
essary at the time the automaton is started);

when the 
ontrol resides in lo
ation q

2

, the proposition p must be

true; when the 
ontrol is in lo
ation q

1

, no 
onstraint are imposed

(the lo
ation is labeled with the literal >).

Following the rules given in de�nition 4.13, it is not diÆ
ult to see the 
oat-

ing automaton A a

epts exa
tly the pairs (�; t) su
h that p is always true

just after t, that is the pairs where the EventClo
kTL formula 2p evaluates

positively, i.e. (�; t) j= 2p.

We are now in position to de�ne the notion of re
ursive automaton of

level i:
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q

1

q

2

>

�!

p p

q

0

Figure 1: Floating Automaton A.

De�nition 4.15 (REventClo
kTA) A re
ursive event-
lo
k automaton of level

i 2 N is a tuple A = (Q;Q

0

; Æ

f

; Æ

b

;P;A; �;Q

F

f

; Q

F

b

) that has the same 
om-

ponents as a 
oating automaton plus a set of atomi
 
lo
k 
onstraints A over

the set of level

i


lo
ks, noted �

i

, that 
an be used by the labeling fun
tion �:

Q ! 2

Limit(P[A)

that labels ea
h lo
ation with a set of literals over propo-

sitions and level

i


lo
k 
onstraints. The set �

i

of level-i 
lo
k 
onstraints


ontains all atomi
 formulas of the form x

B

� 
 and y

B

� 
, where B is

a re
ursive event-
lo
k automaton of level less than i whose propositions

are 
ontained in P, where 
 is a nonnegative integer 
onstant, and where

�2 f<;�;=;�; >g. The 
lo
k x

B

is 
alled the history 
lo
k of automaton

B, and the 
lo
k y

B

, the prophe
y 
lo
k of automaton B. 2

In parti
ular, the set of level

0


lo
k 
onstraints is empty, and thus the

level

0

event-
lo
k automata are the 
oating automata. The level

1


lo
k 
on-

straints are the 
lo
k 
onstraints built using event 
lo
ks asso
iated with


oating automata...

De�nition 4.16 (Subautomata) If A 
ontains a 
onstraint on x

B

or y

B

,

we say that B is a subautomaton of A. We use the notation SUB(A) to

denote the set of subautomata used in A or re
ursively, in a subautomaton

of A.

The de�nition of when the re
ursive event-
lo
k automaton A of level i

a

epts a timed state sequen
e � at time t is as for 
oating automata, only

that we need to de�ne the satisfa
tion relation (�; t) j= (z � 
) for every

time t 2 R+

and every level

i


lo
k 
onstraint (z � 
) 2 �

i

. The rules for

evaluating the truth value of a 
lo
k 
onstraint are as in the propositional


ase. We only need to de�ne the value of re
ursive event 
lo
ks. This is

done as follows.

De�nition 4.17 (Re
ursive Event-Clo
k Value) The value of a re
ur-

sive event-
lo
k z

B

2 C with level(z

A

) = 1 along a TSS �, at time t, noted

Val

�

(z

A

; t) is de�ned by the following 
lauses:

Val

�

(x

B

; t) =
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8

>

>

>

>

<

>

>

>

>

:

v if A

ept

B

(�; t� v); v > 0;

and for all v

0

, 0 < v

0

< v, not A

ept

B

(�; t� v

0

)

v

+

if for all v

0

> v, exists v

00

, v < v

00

< v

0

with A

ept

B

(�; t� v

00

);

and for all v

0

, 0 < v

0

� v, not A

ept

B

(�; t� v

0

)

? if for all v, 0 < v � t, not A

ept

B

(�; t� v)

Val

�

(y

B

; t) =

8

>

>

>

>

<

>

>

>

>

:

v if A

ept

B

(�; t+ v); v > 0,

and for all v

0

, 0 < v

0

< v, not A

ept

B

(�; t+ v

0

)

v

+

if for all v

0

> v, exists v

00

, v < v

00

< v

0

with A

ept

B

(�; t+ v

00

);

and for all v

0

, 0 < v

0

� v, not A

ept

B

(�; t+ v

0

)

? if for all v > 0, not A

ept

B

(�; t+ v)

where A

ept

B

(�; t) is as in de�nition 4.13. The re
ursive 
ase is treated

as follows. By indu
tion hypothesis, A

ept

B

(�; t) is de�ned for every au-

tomaton B of level

j

, with 0 � j < i, the value of re
ursive 
lo
k of level i is

simply:

Val

�

(x

B

; t) =

8

>

>

>

>

<

>

>

>

>

:

v if A

ept

B

(�; t� v); v > 0;

and for all v

0

, 0 < v

0

< v, not A

ept

B

(�; t� v

0

)

v

+

if for all v

0

> v, exists v

00

, v < v

00

< v

0

with A

ept

B

(�; t� v

00

);

and for all v

0

, 0 < v

0

� v, not A

ept

B

(�; t� v

0

)

? if for all v, 0 < v � t, not A

ept

B

(�; t� v)

Val

�

(y

B

; t) =

8

>

>

>

>

<

>

>

>

>

:

v if A

ept

B

(�; t+ v); v > 0,

and for all v

0

, 0 < v

0

< v, not A

ept

B

(�; t+ v

0

)

v

+

if for all v

0

> v, exists v

00

, v < v

00

< v

0

with A

ept

B

(�; t+ v

00

);

and for all v

0

, 0 < v

0

� v, not A

ept

B

(�; t+ v

0

)

? if for all v > 0, not A

ept

B

(�; t+ v)

2

>

q

2

q

0

q

1

>y

A

= 3

Figure 2: Re
ursive Event-Clo
k Automaton B.

Example 4.18 (A Re
ursive Event-Clo
k Automaton) Let us 
onsider

MEventClo
kTA of �gure 2. As q

0

is the starting lo
ation of B, if B a

epts
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(�; t) then the �rst following time that A is a

epting � after time t is at time

t + 3. So the automaton B expresses exa
tly the semanti
s of the formula

�

=3

2p.

For our re
ursive event-
lo
k automata, we de�ne two notions of timed

languages: the an
hored language and the 
oating language. The an
hored

real-time language is the traditional notion when the 
oating real-time lan-

guage 
apture the notion of 
oating a

eptan
e. The two types of real-time

languages are de�ned formally as follows:

De�nition 4.19 (REventClo
kTA-Languages) A re
ursive event-
lo
k au-

tomaton A de�nes the 
oating timed language f(�; t) j A

ept

A

(�; t)g, that

is, the 
oating language of A is the set of pairs (�; t) that it a

epts; we note

FloatLang(A) the 
oating real-time language de�ned by A. Furthermore, A

de�nes the an
hored language f� j A

ept

A

(�; 0)g that is the set of TSS that

A a

epts at time 0; we note An
Lang(A) the an
hored language de�ned by

A. 2

The expressive power of re
ursive event-
lo
k automata will be measured

in term of its ability to de�ne an
hored real-time languages but the 
oating

real-time languages are important in the proofs.

In what follows, we use two notions of equivalen
e for automata:

De�nition 4.20 (Equivalent and Congruent Automata) Two re
ur-

sive event-
lo
k automata are equivalent if they de�ne the same an
hored

language and they are 
ongruent if they de�ne the same 
oating language.

2

Let us note that the notion of 
ongruen
e is stronger than the notion

of equivalen
e, that is: two 
ongruent automata are equivalent but two

equivalent automata are not ne
essarily 
ongruent.

In the proofs of the following se
tion, we will need the following notion.

As for timed state sequen
es, we de�ne a notion of re�nement for forward

and ba
kward timed runs:

De�nition 4.21 (Run Re�nement) A forward (resp. ba
kward) timed

run �

2

= (q

2

; I

2

) is a re�nement of a forward (resp. ba
kward) timed run

�

1

= (q

1

; I

1

) i� there exists a surje
tive fun
tion f : N! N su
h that:

� for all positions j with 0 � j < j�

2

j, q

2

j

= q

1

f(j)

;

� for all positions 0 � i < j�

1

j, I

1

i

=

S

fI

2

j

j f(j) = ig

where j�j denotes the length of �, whi
h is a �nite natural number in the


ase of a ba
kward timed run and 1 in the 
ase of a forward timed run. 2
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In what follows, we need the following lemma, whi
h is a dire
t 
onse-

quen
e of the possibility to take stuttering steps in timed runs:

Lemma 4.22 (Run Re�nable) If �

f

1

and �

b

1

are a

epted forward and

ba
kward timed runs of A on the TSS � at time t 2 R+

then all forward and

ba
kward timed runs �

f

2

, �

b

2

su
h that �

f

2

re�nes �

f

1

and �

b

2

re�nes �

b

1

,

are timed a

epted runs of A on the TSS � at time t 2 R+

. 2

4.4 Closure Properties of Re
ursive Event-Clo
k Automata

We now analyze the properties of our re
ursive event-
lo
k automata. In

order to enhan
e the readability of the proofs, we �rst de�ne a variant of

the de�nition of re
ursive event-
lo
k automata given above. We 
all this

variant \monitored re
ursive event-
lo
k automata", noted MEventClo
kTA.

In those automata, the forward and ba
kward transition relations are re-

pla
ed by a unique transition relation and the notion of 
oating a

eptan
e

is handled with a set of lo
ations that we 
all monitored. We de�ne formally

the monitored event-
lo
k automata and prove that their expressive power

in term of an
hored as well as 
oating languages, is equal to the expressive

power of re
ursive event-
lo
k automata. Again, we �rst de�ne the base


ase.

De�nition 4.23 (Monitored Floating Automata) A monitored 
oat-

ing automaton is a tuple A = (Q;Q

0

; Q

M

; Æ;P; �;Q

F

) where:

Q is a �nite set of lo
ations,

Q

0

� Q is the set of starting lo
ations,

Q

M

� Q is the set of monitored lo
ations,

Æ � Q�Q is the transition relation,

P is a �nite set of propositional symbols,

�: Q ! 2

Limit(P)

is a fun
tion that labels ea
h lo
ation with a

set of literals over propositions;

Q

F

� Q is a set of a

epting lo
ations (B�u
hi 
ondition).

2

We now de�ne when an monitored 
oating automaton a

epts a timed

state sequen
e � at time t.

De�nition 4.24 (Monitored Timed Run) Amonitored 
oating automa-

ton A = (Q;Q

0

; Q

M

; Æ;P; �;Q

F

) a

epts the the timed state sequen
e � at

time t, noted A

ept

A

(�; t) i� there exists a timed run � = (q

0

; I

0

); (q

1

; I

1

); : : : ; (q

n

; I

n

); : : :

su
h that:

Covering The run � 
over the entire real time line, i.e. [

i

I

i

= [0;1);
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Starting The run � starts in a starting lo
ation of A, that is q

0

2 Q

0

;

Monitoring The run � is in a monitored lo
ation at time t, i.e. �(t) 2 Q

M

;

Conse
ution The run � respe
ts the transition relation of A, i.e. for all i

su
h that 1 � i, we have (q

i

; q

i+1

) 2 Æ or q

i

= q

i+1

;

Constraints The TSS � respe
ts the 
onstraints indu
ed by the timed run;

that is for all time t 2 [0;1) we have that (�; t) j= �(�(t));

A

epting The run � has in�nitely many positions in the set of a

epting

lo
ations, that is there exists in�nitely many i � 0 su
h that q

i

2 Q

F

(B�u
hi a

eptan
e 
ondition).

We 
all su
h run � an t-monitored and a

epted run of A on �, noted

A

ept

A

(�; t). 2

We 
all the monitored 
oating automata, level

0

monitored re
ursive

event-
lo
k automata. A re
ursive monitored event-
lo
k automaton of level

i

has the ability to use 
lo
k asso
iated re
ursively to automata of level

j

, with

0 � j < i. Formally,

De�nition 4.25 (Monitored Re
ursive Automata) Amonitored re
ur-

sive event-
lo
k automaton of level i is a tupleA = (Q;Q

0

; Q

M

; Æ;P;A; �;Q

F

)

su
h that

Q is a �nite set of lo
ations,

Q

0

� Q is the set of starting lo
ations,

Q

M

� Q is the set of monitored lo
ations,

Æ � Q�Q is the transition relation,

P is a �nite set of propositional symbols,

A is a �nite set of atomi
 
lo
k 
onstraints over 
lo
ks of at most

level i,

�: Q! 2

Limit(P[A)

is a fun
tion that labels ea
h lo
ation with a

set of literals over propositions and level-i 
lo
k 
onstraints;

Q

F

� Q is a set of a

epting lo
ations (B�u
hi 
ondition).

2

The de�nition of when a re
ursive monitored automata a

epts a TSS �

at a given time t 2 R+

is as expe
ted. We now show that the variant that we

have de�ned is exa
tly as expressive as the re
ursive event-
lo
k automata

for de�ning 
oating languages (and thus also an
hored languages):

Lemma 4.26 (REventClo
kTA � MEventClo
kTA) For every re
ursive event-


lo
k automata A, we 
an 
onstru
t a monitored re
ursive event-
lo
k au-

tomata B that a

epts exa
tly the same 
oating language.

39



Proof. Our proof is 
onstru
tive. We de�ne a fun
tion T : REventClo
kTA!

MEventClo
kTA that given a re
ursive event-
lo
k automaton A returns a

monitored event-
lo
k automaton B that a

epts the same 
oating lan-

guage. In the following, we apply T to a re
ursive event-
lo
k automaton

A = (Q

A

; Q

A

0

; Æ

A

f

; Æ

A

b

;P

A

; �

A

; Q

A

F

f

; Q

A

F

b

), it returns a monitored event-
lo
k

automaton B.

� Base 
ase. Let us �rst treat the basi
 
ase where A is a 
oating

automaton. Then B = (Q

B

; Q

B

0

; Q

B

M

; Æ

B

;P

B

; �

B

; Q

B

F

) is a monitored


oating automaton with the following elements:

{ Lo
ations. The set of lo
ations Q

B

= Q

A

� fb; f; bfg, i.e. we

take three 
opies of ea
h lo
ations of A and tag the �rst with b,

the se
ond with f and the third with bf . The lo
ations tagged

with b will be used to mimi
 the ba
kwards runs, the lo
ations

tagged with f will be used to mimi
 the forward runs and, �nally,

the lo
ations tagged with bf will be used to make the interfa
e

between forward and ba
kward runs.

{ Starting lo
ations. The set Q

B

0

= f(q; b); (q; bf)jq 2 Q

A

F

b

g, of

starting lo
ations of the monitored automaton B are the �nal

lo
ations for the ba
kward runs of the automaton A tagged with

either b or bf .

{ Monitored lo
ations. The set of monitored lo
ationsQ

M

= f(q; bf) j

q 2 Q

A

0

g, that is the set of monitored lo
ations are lo
ations that

are the interfa
e between ba
kward and forward runs;

{ Transition relation. The transition relation Æ

B

of B is the union

of the four following sets:

1. f[(q

1

; b); (q

2

; b)℄ j (q

2

; q

1

) 2 Æ

A

b

g, i.e. two lo
ations tagged

with b are linked by the transition relation in B if they are

linked by the ba
kward transition relation in A; we reverse

the dire
tion of the transition as we are working with a for-

ward transition relation in B;

2. f[(q

1

; f); (q

2

; f)℄ j (q

1

; q

2

) 2 Æ

A

f

g, i.e. two lo
ations tagged

with f are linked by the transition relation in B if they are

linked by the forward transition relation in A;

3. f[(q

1

; bf); (q

2

; f)℄ j (q

1

; q

2

) 2 Æ

A

f

or q

1

= q

2

g, i.e. if the 
ontrol

of B is in a lo
ation tagged with bf , it 
an only evolve to

lo
ations tagged with f using the forward transition relation

of A or evolve to the same lo
ation but tagged with f ;

4. f[(q

1

; b); (q

2

; bf)℄ j (q

2

; q

1

) 2 Æ

A

b

or q

1

= q

2

g, i.e. if the 
ontrol

of B is in a lo
ation tagged with b, it 
an only evolve to

lo
ations tagged with bf by using the inverse of the ba
kward

transition relation of A or it 
an evolve to the same lo
ation

but tagged with bf ;

40



{ Propositions. The set of propositions used by B is the same set

of propositions used by A, i.e. P

B

= P

A

;

{ Labeling fun
tion. The labeling of lo
ation (q;�) in B is the same

as the labeling of q in A, that is for all (q;�) 2 Q

B

, �

B

((q;�)) =

�

A

(q);

{ A

eptan
e 
ondition. The a

eptan
e 
ondition of B is de�ned

by the following set of a

epting lo
ations: f(q; f) j q 2 Q

A

F

f

g,

that is the same a

eptan
e 
ondition that the one for forward

run in A.

Now let us prove that the 
oating language de�ned by the monitored


oating automaton B is equal to the 
oating language de�ned by the


oating automaton A.

{ First, let us prove that if (�; t) 2 FloatLang(A) then (�; t) 2

FloatLang(B).

If (�; t) 2 FloatLang(A) then we know that there exists an a
-


epted ba
kward run �

b

= (q

b

0

; I

b

0

)(q

b

1

; I

b

1

) : : : (q

b

n

; I

b

n

) and an a
-


epted forward run �

f

= (q

f

0

; I

f

0

)(q

f

1

; I

f

1

) : : : (q

f

n

; I

f

n

) : : : , further-

more we know that the ba
kward run ends at time t while the

forward run begins at time t and that q

b

n

= q

f

0

. Without loss

of generality, see lemma 4.22, we 
an make the hypothesis that

I

b

n

and I

f

n

are equal to [t; t℄. Now, we de�ne the run � as the


on
atenation of the three following sequen
es:

� �

1

= ((q

b

0

; b); I

b;0

)((q

b

1

; b); I

b

1

) : : : ((q

b

n�1

; b); I

b

n�1

). Intuitively,

�

1

is the translation of the ba
kward run in the b-tagged

lo
ations of B;

� �

2

= ((q

f

0

; bf); [t; t℄). �

2

is just the lo
ation that makes the

link between the part 
orresponding to the ba
kward run at

time t;

� �

3

= ((q

f

1

; f); I

f

1

)((q

f

2

; f); I

f

1

) : : : ((q

f

n

; f); I

f

n

) : : : . Intuitively,

�

3

is the translation of the forward run in the f -tagged lo
a-

tions of B.

We now have to prove that the run � = �

1

� �

2

� �

3

is e�e
tively

an t-monitored a

epted run for � on B. For that, we 
he
k that

� has the property of su
h a run:

� Monitoring. By 
onstru
tion of �, we have �(t) = (q

f

0

; bf).

As q

f

0

is the �rst lo
ation of the forward run �

f

, we know that

q

f

0

2 Q

A

0

whi
h implies, by de�nition of Q

B

M

that (q

f

0

; bf) 2

Q

B

M

and thus � is monitored at time t;

� Conse
ution. We show that the 
onse
ution rule is veri�ed

for the 3 
onstituting part �

1

; �

2

; �

3

of �:
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� within �

1

: let us 
onsider the lo
ations (q

b

i

; b); (q

b

i+1

; b).

By the 
onse
ution 
ondition for A, we know that either

(q

b

i+1

; q

b

i

) 2 Æ

A

b

or q

b

i+1

= q

b

i

. The se
ond 
ase is trivial. In

the �rst 
ase, by 
onstru
tion of B, we obtain by point

1 of the de�nition of the transition relation of B that

[(q

b

i

; b); (q

b

i+1

; b)℄ 2 Æ

B

and thus the 
onse
ution 
ondition

is veri�ed for �

1

;

� between �

1

and �

2

: we must show that [(q

b

n�1

; b); (q

f

0

; bf)℄ 2

Æ

B

. We know that either q

b

n

= q

f

0

(in the 
ase of a stut-

tering step) or (q

f

0

; q

b

n

) 2 Æ

A

B

. In the two 
ases, we know

that [(q

b

n�1

; b); (q

f

0

; bf)℄ 2 Æ

B

by point 4 of the de�nition

of Æ

B

.

� We leave the two last 
ases, i.e. between �

2

and �

3

and

within �

3

, for the reader, there are treated in the same

way as the two �rst 
ases.

� Constraints. By the de�nition of �

B

and the 
onstru
tion

of our run, it is easy to show that the 
onstraints indu
ed

by � at ea
h time t are exa
tly the same as the 
onstraints

indu
ed by the ba
kward and forward runs �

b

and �

f

. Thus

the 
onstraint 
ondition is satis�ed along � as the 
onstraint

is satis�ed for the ba
kward and the forward runs.

� A

epting. We know that the forward run �

f

= (q

f

0

; I

f

0

); (q

f

1

; I

f

1

); : : :

respe
ts the a

epting 
ondition imposed by A, that is there

exists in�nitely many positions i � 0 su
h that q

f

i

2 Q

A

F

.

By 
onstru
tion � 
ontains for ea
h of those q

f

i

a position

(q

f

i

; f), whi
h belongs to Q

B

F

by 
onstru
tion. And thus � is

a

epting.

{ Se
ond, let us prove that if (�; t) 2 FloatLang(B) then (�; t) 2

FloatLang(A). We know that there exists a t-monitored a

epting

run for � on B. If we inspe
t the transition stru
ture of automa-

ton B, it is not diÆ
ult to see that the following property holds: a

t monitored and a

epted run must �rst traverse lo
ation tagged

with b, rea
hes at time t a lo
ation tagged with bf and after this

time t stays within lo
ations tagged with f . We note su
h a run

� = ((q

0

; b); I

0

)((q

1

; b); I

1

) : : : ((q

n�1

; b); I

n�1

)((q

n

; bf); I

n

)((q

n+1

; f); I

n+1

) : : : ,

with t 2 I

n

. Without lose of generality, we 
an impose that

I

n

= [t; t℄, sin
e our automata are 
losed under stuttering re�ne-

ment. Now, let us show how to 
onstru
t a ba
kward run �

b

and

a forward run �

f

from this run �:

� we take �

b

= ((q

0

; b); I

0

)((q

1

; b); I

1

) : : : ((q

n

; b); I

n

);

� and �

f

= ((q

n

; bf); I

n

)((q

n+1

; f); I

n+1

)((q

n+2

; f); I

n+2

) : : :
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It is routine to show that the 
onstru
ted runs respe
t the 
on-

ditions that allows us to 
on
lude that (�; t) 2 FloatLang(A).

� Indu
tive 
ase. By indu
tion hypothesis, we know that for every

REventClo
kTA C of level

j

, with 0 � j < i, we 
an 
onstru
t a MEvent-

Clo
kTA D that a

epts exa
tly the same 
oating language. In the se-

quel, we use the notation T (C) to represent that 
ongruent automaton.

Let us show that we 
an 
onstru
t an 
ongruent MEventClo
kTA B for

every REventClo
kTA A of level

i

. The 
onstru
tion is similar to the

one for the base 
ase, ex
ept that we must handle properly real-time


onstraints and the labeling fun
tion. We detail those points:

{ Atomi
 real-time 
onstraints. The set of atomi
 real-time 
on-

straints used in B is as follows: fz

T (C)

� 
 j z

C

� 
 2 A

A

g.

{ Labeling fun
tion. The labeling fun
tion of B is as for A ex-


ept that ea
h atomi
 real-time 
onstraint z

C

� 
 is repla
ed by

z

T (C)

� 
.

The proof for the equivalen
e of 
oating languages is similar to the

one for the base 
ase.

2

We also have the reverse lemma:

Lemma 4.27 (MEventClo
kTA � REventClo
kTA) For every monitored re-


ursive event-
lo
k automata A, we 
an 
onstru
t a re
ursive event-
lo
k

automata B that a

epts exa
tly the same 
oating language.

Proof. This dire
tion is simpler. We only treat the base 
ase. The indu
tion


ase is left to the reader. Let us 
onsider a monitored 
oating automa-

ton A = (Q

A

; Q

A

0

; Q

A

M

; Æ

A

;P

A

; �

A

; Q

A

F

), we 
onstru
t a 
ongruent 
oating

automaton B = (Q

B

; Q

B

0

; Æ

B

f

; Æ

B

b

;P

B

; �

B

; Q

B

F

f

; Q

B

F

b

) as follows:

� Lo
ations. The set of lo
ations Q

B

is the same as in A, i.e. Q

B

= Q

A

;

� Starting lo
ations. The set of starting lo
ation in B are the monitored

lo
ations of A, i.e. Q

0

= Q

M

;

� Forward and ba
kward transition relations. The forward transition re-

lation of B is the transition relation of A, and the ba
kward transition

relation of B is the inverse of the transition relation of A, that is

Æ

B

f

= f(q

1

; q

2

) j (q

1

; q

2

) 2 Æ

A

g and Æ

A

b

= f(q

2

; q

1

) j (q

1

; q

2

) 2 Æ

A

g;

� Propositions. The set of propositions used by B is similar to the set

of propositions used by A, i.e. P

B

= P

A

;
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� Labeling fun
tion. The labeling fun
tion of B is as for A, that is for

all lo
ations q 2 Q

B

, �

B

(q) = �

A

(q);

� Forward and ba
kward a

epting lo
ations. The forward a

epting lo-


ations of B are the a

epting lo
ations of A, that is Q

B

F

f

= Q

A

F

, and

the ba
kward a

epting lo
ations of B are the initial lo
ations of A,

i.e. Q

B

F

b

= Q

A

0

.

It is routine to prove that the 
onstru
ted automaton B a

epts the same


oating language as A. 2

This two last lemmas allow us to derive the theorem:

Theorem 4.28 (REventClo
kTA = MEventClo
kTA) The 
lass of re
ursive

event-
lo
k automata and monitored re
ursive event-
lo
k automata are equally

expressive.

Now, we will 
on
entrate on properties of monitored re
ursive event-


lo
k automata. We will simply derive the appropriate 
orollaries for re
ur-

sive event-
lo
k automata.

4.4.1 Closure under Positive Boolean Operations

Let us now prove two �rst result about the 
losure property of monitored

re
ursive event-
lo
k automata: they are 
losed under positive boolean op-

erations, i.e. 
losed under union and interse
tion.

Theorem 4.29 (MEventClo
kTA-Union) Given two monitored re
ursive

event-
lo
k automata A and B de�ned on the same set of propositions, there

always exists a third monitored re
ursive event-
lo
k automaton C that a
-


epts exa
tly the union of the timed 
oating languages of A and B, i.e.

FloatLang(C) = FloatLang(A) [ FloatLang(B).

Proof. The proof is 
onstru
tive. Let A and B be MEventClo
kTA, we 
on-

stru
t the MEventClo
kTAC that a

epts the union of the 
oating languages

of A and B as follows:

� Lo
ations. The set of lo
ations of C are the tuples (q;�) su
h that

1. either q 2 Q

A

, � 2 Limit(P

C

[A

C

) and for all � 2 Limit(P

A

[A

A

):

� 2 � i� � 2 �

A

(q), whi
h will ensure the 
oheren
e of the

labeling of (q;�) with the labeling of q in A,

2. or q 2 Q

B

, � 2 Limit(P

C

[A

C

) and for all � 2 Limit(P

B

[A

B

):

� 2 � i� � 2 �

B

(q), whi
h will ensure the 
oheren
e of the

labeling of (q;�) with the labeling of q in B.
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� Starting lo
ations. The subset of starting lo
ations of C is the following

set Q

C

0

= f(q;�) 2 Q

C

j q 2 Q

A

0

or q 2 Q

B

0

g.

� Monitored lo
ations. The subset of monitored lo
ations of C is the

following set: Q

C

M

= f(q;�) 2 Q

C

j q 2 Q

A

M

or q 2 Q

B

M

g;

� Transition relation. The transition relation of C is the following subset

of Q

C

�Q

C

: Æ

C

= f[(q

1

;�

1

); (q

2

;�

2

)℄ j (q

1

; q

2

) 2 Æ

A

or (q

1

; q

2

) 2 Æ

B

g;

� Propositions and atomi
 
lo
k 
onstraints. The propositions in C

are as in A, the atomi
 
lo
k 
onstraints used in C is the union of

the atomi
 
lo
k 
onstraints used in A and B, that is P

C

= P

A

=

P

B

,A

C

= A

A

[A

B

;

� Labeling fun
tion. The label of the lo
ation (q;�) is simply the set of

literals �: �

C

((q;�)) = �, for every (q;�) 2 Q

C

.

� A

epting lo
ations. The a

epting 
ondition for C is the union of the

a

epting 
ondition for A and B, that is Q

C

F

= f(q;�) j q 2 Q

A

F

or q 2

Q

B

F

g;

It is dire
t to show that the 
onstru
ted automaton a

epts the desired


oating language. 2

By the equivalen
e between monitored and non monitored re
ursive

event 
lo
k automata, see theorem 4.28, we have the following 
orollary:

Corollary 4.30 (REventClo
kTA-union) Given two re
ursive event-
lo
k

automata A and B de�ned on the same set of propositions, there always

exists a third re
ursive event-
lo
k automaton C that a

epts exa
tly the

union of the 
oating real-time languages of A and B, i.e. FloatLang(C) =

FloatLang(A) [ FloatLang(B).

We now turn to the 
losure of MEventClo
kTA to interse
tion. The

following theorem states that MEventClo
kTA are 
losed under interse
tion:

Theorem 4.31 (MEventClo
kTA-Interse
tion) Given two monitored re-


ursive event-
lo
k automata A and B de�ned on the same set of proposi-

tions, there always exists a third monitored re
ursive event-
lo
k automaton

C that a

epts exa
tly the interse
tion of the 
oating real-time languages of

A and B, i.e. FloatLang(C) = FloatLang(A) \ FloatLang(B).

Proof. Let A and B, we 
onstru
t C that a

epts the interse
tion of the

timed 
oating languages of A and B as follows:
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� Lo
ations. The set of lo
ations of C are the tuples (q

a

; q

b

) su
h that

q

a

2 Q

A

, q

b

2 Q

B

and for all literals � 2 Limit(P

A

[A

A

)\Limit(P

B

[

A

B

), � 2 �

A

(q

a

) i� � 2 �

B

(q

b

). So the set of lo
ations of C is the set

of pairs of lo
ations of A and B that have 
ompatible labels.

� Starting lo
ations. The set of starting lo
ations of C is the following

set Q

C

0

= f(q

a

; q

b

) 2 Q

C

j q

a

2 Q

A

0

and q

b

2 Q

B

0

g;

� Monitored lo
ations. The set of monitored lo
ations of C is the follow-

ing subset of Q

C

: Q

C

M

= f(q

a

; q

b

) 2 Q

C

j q

a

2 Q

A

M

and q

b

2 Q

B

M

g;

� Transition relation. The transition relation of C is the following sub-

set of Q

C

� Q

C

: Æ

C

= f[(q

a

1

; q

b

1

); (q

a

2

; q

b

2

)℄ j (q

a

1

; q

a

2

) 2 Æ

A

_ (q

a

1

=

q

a

2

) and (q

b

1

; q

b

2

) 2 Æ

B

_ (q

b

1

= q

b

2

)g;

� Propositions and Atomi
 real-time 
onstraints. The set of propositions

used in C is the set of propositions used in A and B, the set of atomi


real-time 
onstraints is the union of the sets used in A and B, that is

P

C

= P

A

= P

B

,A

C

= A

A

[A

B

;

� Labeling fun
tion The atom that labels a lo
ation (q

a

; q

b

) of C is the

union (giving the 
onjun
tion of 
onstraints) of the label of q

a

in A

and the label of q

b

in B (remember that by de�nition (q

a

; q

b

) have


ompatible labels), that is �

C

((q

a

; q

b

)) = �

A

(q

a

) [ �

B

(q

b

), for every

(q

a

; q

b

) 2 Q

C

;

� A

epting lo
ations. For the a

epting 
ondition, we de�ne a general-

ized B�u
hi 
ondition: Q

C

F

= fF

A

; F

B

g, with F

A

= f(q

a

; q

b

) j q

a

2 Q

A

F

g

and F

B

= f(q

a

; q

b

) j q

b

2 Q

B

F

g. This generalized B�u
hi a

eptan
e


ondition 
an be 
onverted into a B�u
hi a

eptan
e 
ondition using

the usual te
hnique. This 
osts only a doubling of the number of

lo
ations.

It is dire
t to show that the 
onstru
ted automaton a

epts the desired


oating language. 2

Again, by theorem 4.28, we obtain the following 
orollary:

Corollary 4.32 (REventClo
kTA-Interse
tion) Given two re
ursive event-


lo
k automaton A and B de�ned on the same set of propositions, there al-

ways exists a third re
ursive event-
lo
k automaton C that a

epts exa
tly the

interse
tion of the 
oating timed languages of A and B, i.e. FloatLang(C) =

FloatLang(A) \ FloatLang(B).
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4.4.2 Closure under Negation

Let us now turn to the problem of 
omplementing monitored re
ursive event-


lo
k automata. The problem is more 
ompli
ated. By inspe
ting the de�-

nition of run for ourMEventClo
kTA, we 
an see that the problem of 
oating

a

eptan
e 
an be de
omposed into two usual forward a

eptan
es. In fa
t,

a MEventClo
kTA a

epts (�; t) if it has a �nite run on the pre�x (�; [0; t℄)

that ends in a monitored lo
ation q

m

and a run on the suÆx (�; [t::1)) that

is a

epting and starts in q

m

.

To formalize this intuition, we de�ne two new types of languages for

MEventClo
kTA. First, pre�x a

eptan
e allows us to de�ne the pre�x real-

time language of a MEventClo
kTA A, noted PreLang(A). This language,

again, is a set of pairs (�; t) where � is a TSS and t 2 R+

. The intuition

behind this language is that if (�; t) 2 PreLang(A) then there exists a �nite

run � of length t of A su
h that the run begins at time 0 in a starting lo
ation,

ends at time t in a monitored lo
ation and the 
onstraints that are indu
ed

by the run are veri�ed by the TSS �. Se
ond, suÆx a

eptan
e allows us to

de�ne the suÆx real-time language of a MEventClo
kTA, noted SufLang(A).

This language is also a set of pairs (�; t) where � is a TSS and t 2 R+

. Here,

the intuition is that if (�; t) 2 SufLang(A) then there exists a in�nite run

� of A on �, su
h that the run begins at time t in a monitored lo
ation,

goes through a

epting lo
ations in�nitely often and the 
onstraints that

are indu
ed by the run are veri�ed by the TSS �. The PreLang and SufLang

will be assembled in lemma 4.46. Let us now de�ne formally PreLang and

SufLang:

De�nition 4.33 (Pre�x Language) Given a monitored re
ursive event-


lo
k automaton A = (Q;Q

0

; Q

M

; Æ;P;A; �;Q

F

), a pair (�; t) belongs to the

PreLang(A) i� there exists a �nite timed run � = (q

0

; I

0

); (q

1

; I

1

); : : : ; (q

n

; I

n

)

su
h that:

Covering The run � 
overs time up to t, i.e.

S

i=n

i=0

I

i

= [0; t℄;

Starting The run � starts in a starting lo
ation of A, that is q

0

2 Q

0

;

Conse
ution The run � respe
ts the transition relation of A, i.e. for all

positions i su
h that 1 � i < n, we have that (q

i

; q

i+1

) 2 Æ or q

i

= q

i+1

(stuttering steps are allowed);

Constraints The TSS � respe
ts the 
onstraints indu
ed by �, that is for

all time t

0

2 [0; t℄: (�; t

0

) j= �(�(t

0

));

Further, the run � is a

epting if it ends in a monitored lo
ation of A, i.e.

q

n

2 Q

M

. 2

De�nition 4.34 (SuÆx Language) Given a monitored re
ursive event-


lo
k automaton A = (Q;Q

0

; Q

M

; Æ;P;A; �;Q

F

), a pair (�; t) belongs to
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SufLang(A) i� there exists an in�nite timed run � = (q

0

; I

0

); (q

1

; I

1

); : : : ; (q

n

; I

n

); : : :

su
h that:

Covering The run � 
overs time from t, i.e.

S

i=!

i=0

I

i

= [t;1);

Starting The run � starts in a monitored lo
ation of A, that is q

0

2 Q

M

;

Conse
ution The run � respe
ts the transition relation of A, i.e. for all

positions i � 0 we have that (q

i

; q

i+1

) 2 Æ or q

i

= q

i+1

(stuttering steps

are allowed);

Constraints The TSS � respe
ts the 
onstraints indu
ed by �, that is for

all time t

0

2 [t;1) : (Tss; t

0

) j= �(�(t

0

)).

The run � is a

epting if it interse
ts in�nitely often with the set of a

epting

lo
ations, i.e. there exists in�nitely many positions i su
h that q

i

2 Q

F

. 2

Next we show that MEventClo
kTA are determinizable and keep, in their

deterministi
 version, their expressive power for de�ning pre�x languages.

First, let us de�ne formally the notion of deterministi
 and total monitored

re
ursive event-
lo
k automata.

De�nition 4.35 (Deterministi
 and Total MEventClo
kTA) Amonitored

re
ursive event-
lo
k automaton A = (Q;Q

0

; Q

M

; Æ;P;A; �;Q

F

) is deter-

ministi
 i� the following 
onditions are satis�ed:

Unique initial lo
ations All pairs of initial lo
ations have di�erent (and

thus mutually non satis�able labels), that is, for all q

1

; q

2

2 Q

0

, with

q

1

6= q

2

, �(q

1

) 6= �(q

2

).

Unique next lo
ation Given a lo
ation q

1

, all su

essor lo
ations of q

1

have di�erent labels, i.e. for all q

2

; q

3

su
h that (q

1

; q

2

) 2 Æ and

(q

1

; q

3

) 2 Æ then if q

2

6= q

3

then �(q

2

) 6= �(q

3

). As labels are set

of literals that are true when the 
ontrol resides in the lo
ation, as

all su

essor lo
ations of a lo
ation q

1

have di�erent labels and thus

mutually non satis�able labels, the possible su

essor lo
ation in a run

is unique;

Non repeating For every lo
ation q, the labels of its next lo
ations are all

di�erent from the one of q, i.e. for every q 2 Q, for every q

0

su
h that

q

0

6= q and (q; q

0

) 2 Æ, �(q) 6= �(q

0

).

Furthermore, we say that A is total i� the following 
ondition is satis�ed:

Totality The two following points must be veri�ed:

1. For every � 2 2

Limit(P[A)

, there exists an initial lo
ation q whose

label is �, that is q 2 Q

0

and �(q) = �;
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2. For every lo
ation q

1

2 Q, for every � 2 2

Limit(P[A)

there exists a

lo
ation q

2

su
h that either q

1

= q

2

or (q

1

; q

2

) 2 Æ, and �(q

2

) = �.

2

\Unique initial lo
ation" and \unique next lo
ation" 
onditions ensure

that there exists at most one, up to stuttering, pre�x run (maybe non a

ept-

ing) for every pair (�; t) on a deterministi
 monitored event-
lo
k automaton.

The 
ondition \non repeating" imposes that two 
onse
utive lo
ations in a

deterministi
 automaton 
an not be labeled with the same literals. This is

important and ne
essary be
ause we are 
onsidering automata that evolves

along (
ontinuous) timed state sequen
es and if two 
onse
utive lo
ations

are labeled with the same (open) label, the automaton 
an 
hange from one

lo
ation to the next nondeterministi
ally at any time of an open interval that

agrees with the label, making the automaton non deterministi
. \Totality"

imposes that every pair (�; t) has one pre�x (not ne
essarily a

epting) run

on the monitored event-
lo
k automaton.

The usual subset 
onstru
tion does not work when dire
tly applied to

MEventClo
kTA. If the usual subset 
onstru
tion is applied without 
are, the

automaton obtained 
ould 
ontain two 
onse
utive lo
ations with the same

label and, thus, would violate the \non repeating 
ondition" and thus not

be deterministi
. Before applying the subset 
onstru
tion, we apply to the

automaton a transformation that is exposed in the following lemma and its

proof.

Lemma 4.36 (Non Repeating MEventClo
kTA) For every monitored re-


ursive event-
lo
k automata A, there exists an equivalent monitored event-


lo
k automata B that a

epts the same an
hored, 
oating, pre�x and suÆx

languages and that have the property that it does not have any two 
onse
-

utive lo
ations labeled identi
ally, that is, there does not exists q

1

; q

2

2 Q

B

with q

1

6= q

2

su
h that (q

1

; q

2

) 2 Æ

B

and �

B

(q

1

) = �

B

(q

2

).

Proof. First note that if two lo
ations q

1

, q

2

are labeled by singular sets of

literals (see de�nition 2.19), and linked by an edge, i.e. (q

1

; q

2

) 2 Æ

A

, then

we 
an suppress this edge without 
hanging the languages (an
hored and


oating) de�ned by the automaton A. In fa
t, this edge 
an not be used

by any run. As q

1

, q

2

are labeled with a singular literals, the 
ontrol 
an

only stay there during a singular interval of time. But two singular interval

of time 
an not follow ea
h other in a sequen
e of intervals. We 
an also

suppress edges between two lo
ations that are labeled by two di�erent open

sets of literals. Suppose that we have a portion of a TSS where an open

label is true. From the de�nition of open label, it is dire
t to prove that this

portion of the TSS must be an open interval of time. So let us 
onsider that

the open label � is true during the open interval of time (a; b). If the 
ontrol

in time t 2 (a; b) is in a lo
ation with label � then the 
ontrol 
an take any
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amount of transitions to rea
h other lo
ations labeled with � before leaving

the interval (a; b). This intuition is formalized by the following fun
tions:

� SRea
h

A

: Q

A

! 2

Q

A

, this fun
tion, when applied to a lo
ation q

returns all the lo
ations that 
an be rea
hed from q in the transition

stru
ture of A only by using lo
ations labeled as q. Formally, the fun
-

tion is de�ned as follows: q

0

2 SRea
h

A

(q) i� there exists a sequen
e

of lo
ations q

0

; q

1

; : : : ; q

n

su
h that

1. n � 0;

2. q

0

= q;

3. q

n

= q

0

;

4. for all positions i, 0 � i < n, either q

i

= q

i+1

or (q

i

; q

i+1

) 2 Æ

A

,

and �

A

(q

i

) = �

A

(q);

� SRea
hMoni

A

: Q

A

! 2

Q

A

, this fun
tion, when applied to a lo
ation q

returns all the lo
ations that 
an be rea
hed from q in the transition

stru
ture of A by using only lo
ations labeled as q and by passing at

least by a monitored lo
ation. Formally, the fun
tion is de�ned as

follows: q

0

2 SRea
hMoni

A

(q) i� there exists a sequen
e of lo
ations

q

0

; q

1

; : : : ; q

n

su
h that

1. n � 0;

2. q

0

= q;

3. q

n

= q

0

;

4. for all positions i, 0 � i < n, either q

i

= q

i+1

or (q

i

; q

i+1

) 2 Æ

A

,

and �

A

(q

i

) = �

A

(q); and

5. there exists a position i, 0 � i < n su
h that q

i

2 Q

A

M

;

� SRea
hA



A

: Q

A

! 2

Q

A

, this fun
tion, when applied to a lo
ation q

returns all the lo
ations that 
an be rea
hed from q in the transition

stru
ture of A by using only lo
ations labeled as q and by passing at

least by an a

epting lo
ation. Formally, the fun
tion is de�ned as

follows: q

0

2 SRea
hA



A

(q) i� there exists a sequen
e of lo
ations

q

0

; q

1

; : : : ; q

n

su
h that

1. n � 0;

2. q

0

= q;

3. q

n

= q

0

;

4. for all positions i, 0 � i < n, either q

i

= q

i+1

or (q

i

; q

i+1

) 2 Æ

A

,

and �

A

(q

i

) = �

A

(q); and

5. there exists a position i, 0 � i < n su
h that q

i

2 Q

A

F

;
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We 
onstru
t the MEventClo
kTA B = (Q

B

; Q

B

0

; Q

B

M

; Æ

B

;P

B

;A

B

; �

B

; Q

B

F

)

as follows:

� Lo
ations. The lo
ations of B will the set of 3-tuples (q; �; �) su
h

that:

{ q 2 Q

A

;

{ � 2 fM;Mg and if � = M then SRea
hMoni

A

(q) 6= ;, that is q


an a

ess a monitored lo
ation by staying on lo
ations that are

labeled with the same open label;

{ � 2 fF; F g and if � = F then SRea
hA



A

(q) 6= ;, that is q


an a

ess an a

epting lo
ation by staying on lo
ations that are

labeled with the same open label.

� Initial lo
ations. The set of initial lo
ations Q

B

0

is the set of lo
ations

(q; �; �) 2 Q

B

with q 2 Q

A

0

, that is the tuples whose lo
ation q is an

initial lo
ation of A;

� Monitored lo
ations. The set of monitored lo
ations Q

B

M

is the set

of lo
ations (q; �; �) 2 Q

B

with � = M , that is the tuples whose

lo
ations q 
an a

ess, by staying on lo
ations with the same label as

q, a monitored lo
ation.

� Transition relation. A pair [(q

1

; �

1

; �

1

); (q

2

; �

2

; �

2

)℄ belongs to the tran-

sition relation Æ

B

i� the four following rules are veri�ed:

1. if �

1

= M and �

1

= F then q

2

2 SRea
h

A

(q

1

) and �

A

(q

2

) 6=

�

A

(q

1

);

2. if �

1

= M and �

1

= F then q

2

2 SRea
hMoni

A

(q

1

) and �

A

(q

2

) 6=

�

A

(q

1

);

3. if �

1

= M and �

1

= F then q

2

2 SRea
hA



A

(q

1

) and �

A

(q

2

) 6=

�

A

(q

1

);

4. if �

1

=M and �

1

= F then q

2

2 SRea
hMoni

A

(q

1

)\SRea
hA



A

(q

1

)

and �

A

(q

2

) 6= �

A

(q

1

);

� Propositions and atomi
 real-time 
onstraints. The set of propositions

and of atomi
 real-time 
onstraints used in B is the same as the ones

used in A, that is P

B

= P

A

and A

A

= A

B

;

� Labeling fun
tion. The labeling fun
tion of B is derived from the

labeling fun
tion of A as follows: for all (q; �; �) 2 Q

B

, �

B

((q; �; �)) =

�

A

(q);

� A

epting lo
ations. The set of a

epting lo
ations Q

B

F

is the subset of

lo
ations (q; �; �) 2 Q

B

su
h that � = F .
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It is routine to establish that the 
oating language of B is exa
tly the

same as the 
oating language of A. 2

The next theorem states that every monitored event-
lo
k automaton

with the non-repeating property, 
an be determinised.

Lemma 4.37 (MEventClo
kTA-Determinization) For every monitored event-


lo
k automaton A with the non repeating property, one 
an 
onstru
t a de-

terministi
 and total monitored event-
lo
k automaton C that a

epts the

same pre�x language, i.e. PreLang(A) = PreLang(C).

Proof. Our proof is 
onstru
tive. Let us 
onsider A and 
onstru
t the

deterministi
 forward event-
lo
k automaton B as follows:

� Lo
ations. The set of lo
ations of B is the set of non-empty subsets of

lo
ations of A that share the same label, that is: fq

1

; : : : ; q

n

g 2 Q

B

i�

1. for all i, 1 � i � n: q

i

2 Q

A

(subset of Q

A

).

2. n � 1 (non-empty subset);

3. for all i; j su
h that 1 � i < j � n, we have that �

A

(q

i

) = �

A

(q

j

)

(same label).

� Propositions and atomi
 real-time 
onstraints. The set of propositions

used in B is the same as the set of propositions used in A, i.e. P

B

=

P

A

, the set of atomi
 real-time 
onstraints used in B is the same as

the set of real-time 
onstraints used in A, i.e. A

B

= A

A

;

� Labeling fun
tion. The labeling fun
tion is de�ned as follows: �

B

(l) =

�

A

(q) with q 2 l, for all l 2 Q

B

. Re
all that the lo
ations appearing

in l are all labeled with the same label in A, we just take this label for

l.

� Starting lo
ations. The set of starting lo
ations of B is the subset of

lo
ations that 
ontains only initial lo
ations of A, expressed by point

1 below, and that are maximal for their label, expressed by point 2,

that is l 2 Q

B

0

i�

1. for all q 2 l, q 2 Q

A

0

, and

2. there does not exists a lo
ation l

0

with

(a) �

B

(l

0

) = �

B

(l),

(b) for all q 2 l

0

, q 2 Q

A

0

and

(
) l � l

0

;
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� Monitored lo
ations. A lo
ation l 2 Q

B

belongs to the set Q

B

M

of mon-

itored lo
ations i� there exists a lo
ation of A in l that is monitored,

i.e. l 2 Q

B

M

i� there exists q 2 l su
h that q 2 Q

A

M

.

� Transition relation. We have that (l

1

; l

2

) 2 Æ

B

� Q

B

�Q

B

i�

1. for all q

2

2 l

2

, there exists q

1

2 l

1

su
h that (q

1

; q

2

) 2 Æ

A

;

2. for all q

2

2 Q

A

su
h that �

A

(q

2

) = �

B

(l

2

) and su
h that there

exists q

1

2 l

1

with (q

1

; q

2

) 2 Æ

A

, we have q

2

2 l

2

;

In words, the point (1) says that lo
ations in l

2

are Æ

A

-su

essors of

lo
ations in l

1

and (2) says that l

2

is the maximal set of lo
ations that

share the label of l

2

and are Æ

A

-su

essors of a lo
ation of l

1

.

� A

epting lo
ations. As we are only interested in the pre�x language

of B, we take arbitrarily Q

B

F

= Q

B

.

It is not diÆ
ult to show that (�; t) 2 PreLang(B) i� (�; t) 2 PreLang(A).

Now, let us see how we 
an transform B into a deterministi
 automaton C

that has the totality property. We 
onstru
t C as follows:

� Lo
ations. We take Q

C

= Q

B

[D, whereD is a set of dummy lo
ations.

We take one dummy lo
ations for ea
h possible label in B, that is

D = fl j l 2 2

Limit(P

B

[A

B

)

g. The lo
ations of D, will be used to

handle the pairs (�; t) that does not belong to the pre�x language of

B.

� Starting lo
ations. We take Q

C

0

= Q

B

0

[ D

init

, where D

init

= fq 2

Dj∄q0 2 QB
0

: �

B

(q

0

) = qg. So D

0


ontains lo
ations that 
orrespond

to labels for whi
h there does not exists an initial lo
ation in B;

� Monitored lo
ations. Q

C

M

= Q

B

M

, the monitored lo
ations are the mon-

itored lo
ations of B, no dummy lo
ations is monitored.

� Transition relation. The transition relation Æ

C

� Q

C

�Q

C

is the set

of pairs that respe
ts the following 
onditions:

1. for all q

1

; q

2

2 Q

B

: (q

1

; q

2

) 2 Æ

C

i� (q

1

; q

2

) 2 Æ

B

;

2. for all q

1

; q

2

2 D with q

1

6= q

2

: (q

1

; q

2

) 2 Æ

C

;

3. for all q

1

2 Q

B

, q

2

2 D: (q

1

; q

2

) 2 Æ

C

i� �

B

(q

1

) 6= q

2

and there

does not exist q

3

2 Q

B

su
h that �(q

3

) = q

2

and (q

1

; q

3

) 2 Æ

B

;

4. for all q

1

2 D, q

2

2 Q

B

: (q

1

; q

2

) 62 Æ

C

.

Condition 1 ensures that the transitions possible in B are possible in

C and vi
e versa; Condition 2 guarantees that when in a lo
ation of

D the transition does no more 
onstraint the possible runs; Condition
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3 says that we 
an go from a lo
ation of B to a dummy lo
ation if and

only if the transition is not possible in B for a given label; Condition

4 ensures that when in a dummy lo
ation it is not possible to return

into the lo
ations of B.

� Propositions and atomi
 
onstraints. P

C

= P

B

and A

C

= A

B

, the

propositions and atomi
 
lo
k 
onstraints used in C are similar to the

ones used in B;

� Labeling fun
tion. �

C

is de�ned as follows:

{ for q 2 Q

B

, �

C

(q) = �

B

(q);

{ for q 2 D, �

C

(q) = q.

Thus the labels of lo
ations ofB are 
onserved and the labels of dummy

lo
ations are simply the set of literals that 
onstitutes the lo
ations.

� A

epting lo
ations. As for B, we take arbitrarily Q

C

F

= Q

C

.

Again, it is easy to show that the pre�x language of B is preserved by C. 2

Corollary 4.38 Let A, B and C as in the last lemma For every TSS � 2

TSS(P

A

), there exists one run � (up to stuttering)

3

of C on �, and the

following property is veri�ed: if �(t) 2 Q

B

then there exists, for ea
h q 2

�(t), a pre�x run �

q

on � in A that 
overs [0; t℄ and ends-up in lo
ation q,

that is �

q

(t) = q. 2

We will use this last 
orollary in the 
onstru
t for the emptiness of mon-

itored re
ursive event-
lo
k automata.

Complement of the Pre�x Language We are now able to prove that

monitored event-
lo
k automata are 
losed under negation for their pre�x

languages.

Lemma 4.39 (Pre�x Complement) For every monitored re
ursive event-


lo
k automaton A, we 
an 
onstru
t another monitored re
ursive event-


lo
k automaton B that a

epts exa
tly the 
omplement of the pre�x language

of A, i.e. PreLang(B) = PreLang(A).

Proof. As noted in 
orollary 4.38, a pair (�; t) has always one and only

one pre�x run on C, the deterministi
 and total version of A. In that 
ase

only the monitoring 
ondition determines if a pair (�; t) belongs to the pre�x

3

Note that here we identify two runs if they only di�er by stuttering steps, we are only

interested in the fun
tion � : R

+

! Q

C

.
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language of C. Thus to 
omplement the pre�x language of A, we just have to


omplement the monitoring 
ondition of C. So we 
onstru
t B as follows.

First 
ompute C as in lemma 4.37. Se
ond, we take B as C ex
ept for

the monitored lo
ations where we take Q

B

M

= Q

C

n Q

C

M

. The 
onstru
ted

automaton B a

epts PreLang(A), the desired language. 2

Complement of the SuÆx Language Complement the suÆx language

of a MEventClo
kTA is more diÆ
ult. The diÆ
ulty has nothing to do with

the fa
t that we are working with real-time automata be
ause we are 
on-

sidering a B�u
hi a

eptan
e 
ondition. For su
h a

eptan
e 
ondition, it

is well known that the usual subset 
onstru
tion does not work [℄. Instead

of \re-doing" all the proofs for the 
omplementation of B�u
hi automata,

we show how to redu
e our problem of 
omplementation to the problem of


omplementation of usual B�u
hi automata on !-sequen
es.

To relate a pair (�; t) to a !-sequen
e 
 = 


1




2

: : : 


n

: : : , we use a

fun
tion, 
alled � and de�ned as follows:

De�nition 4.40 (Fun
tion �) Given a TSS �, a time t 2 R+

, the set of

propositions P on whi
h � = (�; I) is de�ned and a set of atomi
 
lo
k


onstraints A, �(�; t;P;A) returns the in�nite sequen
e 
 de�ned on the

set of proposition P

0

= fp

�

j � 2 Limit(P [A)g su
h that: if �

0

= (�

0

; I

0

) is

the 
oarsest Limit(P [A)� Fine TSS that re�nes �, and t 2 I

0

i

:




j

= fp

�

2 P

0

j (�

0

; t

0

) j= �, for all t

0

2 I

0

i+j

g

That is, 


j


ontains all propositions asso
iated with literals of Limit(P [A)

that are true during the interval I

0

i+j

of �

0

. 2

Note that for every TSS �, there exists only one 
oarsest Limit(P

A

[

A

A

)� Fine TSS and thus 
 is unique for every pair (�; t).

The idea of the redu
tion is depi
ted in �gure 4.4.2 and is de
omposed

in three steps:

(1) Given an MEventClo
kTA A, de�ned on the set of propositions P and

atomi
 
lo
k 
onstraints A, we 
onstru
t a B�u
hi automaton B that

a

epts a language that respe
ts the following property:

for all � 2 TSS(P), for all time t 2 R+

,

(�; t) 2 SufLang(A) i� �(�; t;P;A) 2 An
Lang(B)

(2) As the formalism of B�u
hi automata is 
losed under negation [SVW85℄,

see theorem ??, we 
an 
onstru
t C su
h that:
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�
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D

(1)
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(3)

Figure 3: Complement of the suÆx language

for all � 2 TSS(P), for all time t 2 R+

,

(�; t) 2 SufLang(A) i� �(�; t;P;A) 2 An
Lang(B) i� �(�; t;P;A) 62

An
Lang(C)

(3) From C, it remains to 
onstru
t a MEventClo
kTA D su
h that:

for all � 2 TSS(P), for all time t 2 R+

,

(�; t) 2 SufLang(D) i� �(�; t;P;A) 2 An
Lang(C)

This automatonD a

epts exa
tly the desired language, that is, SufLang(D) =

SufLang(A).

The following two lemmas expressed that the transformation (1) and (3)

are indeed possible:

Lemma 4.41 (From MEventClo
kTA to BA) Given anMEventClo
kTA A

that uses the set of propositions P

A

and atomi
 
lo
k 
onstraints A

A

, we 
an


onstru
t a B�u
hi automaton B on the set of propositions P

B

= fp

�

j � 2

Limit(P

A

[A

A

)g su
h that:

for all � 2 TSS(P

A

), for all time t 2 R+

,

(�; t) 2 SufLang(A) i� �(�; t;P

A

;A

A

) 2 An
Lang(B)

Proof.(sket
h) By lemma 4.36, we 
an make the hypothesis that A has the

non-repeating property. In that 
ase, the B�u
hi automaton B 
an simply

be obtain from A by:

� taking the same set of lo
ations;
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� adding to the transition relation all pairs (q; q), for all lo
ations q,

this is be
ause, the notion of run in MEventClo
kTA allows stuttering

steps;

� the initial lo
ations of B are the monitored lo
ations of A;

� adapting the labels are as follows: p

�

2 �

B

(q) i� � 2 �

A

(q), for all

� 2 Limit(P

A

[A

A

) and for all lo
ations q;

It is not diÆ
ult to prove that the 
onstru
ted B�u
hi automaton B a

epts

pre
isely the desired language. 2

Conversely, we have

Lemma 4.42 (From BA to MEventClo
kTA) Given a B�u
hi automaton C

on the set of propositions P

C

= fp

�

j � 2 Limit(P

D

[A

D

)g, we 
an 
onstru
t

an MEventClo
kTA D that uses the set of propositions P

D

and atomi
 
lo
k


onstraints A

D

,su
h that:

for all � 2 TSS(P

D

), for all time t 2 R+

,

(�; t) 2 SufLang(D) i� �(�; t;P

D

;A

D

) 2 An
Lang(C)

Proof.(sket
h) Again, the transformation is very simple. TheMEventClo
kTA

D is 
onstru
ted from the BA C by:

� taking the same set of lo
ations and the same transition relation;

� taking the initial lo
ations of C as the monitored lo
ations of D;

� adapting the labels as follows: � 2 �

D

(q) i� p

�

2 �

C

(q), for all � 2

Limit(P

D

[A

D

), for all lo
ations q;

It is not diÆ
ult to prove that the 
onstru
ted automaton a

epts the right

suÆx language. 2

The 
onstru
tion that we have presented above allows us to derive the

following lemma:

Lemma 4.43 (SuÆx Complement) For every monitored re
ursive event-


lo
k automaton A, we 
an 
onstru
t another monitored re
ursive event-


lo
k automaton B that a

epts exa
tly the 
omplement of the suÆx language

of A, i.e. SufLang(B) = SufLang(A). 2

It is important to note that the proposed 
onstru
tion only works be
ause

to every tuple (�; t;P;A) 
orresponds exa
tly one !-sequen
e 
. This is

be
ause the value of ea
h event-
lo
k is determined by � at all time t 2 R+
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and 
onsequently, the truth value of the atomi
 
lo
k 
onstraints of A is

also determined by � at all time t 2 R+

and not by a parti
ular run of the

automaton on �. Thus the proposed 
onstru
tion does not work for timed

automaton (and it is not a surprise, for timed automata are not 
losed under

negation). In a timed automaton, the value of a 
lo
k along a TSS � does

not only depend on the TSS � but also on the parti
ular run that is 
hosen

to read �. So to ea
h tuple (�; t;P;A) 
orresponds a set of !-sequen
e 
,

one for ea
h possible run.

Complement of the Floating Language So far, we have shown how

we 
an 
omplement the pre�x et suÆx languages a

epted by an MEvent-

Clo
kTA. Let us now turn to the problem of 
omplementing the 
oating

language a

epted by a MEventClo
kTA. First, let us 
onsider the following

lemma:

Lemma 4.44 (De
omposition Monitored Condition) The 
oating lan-

guage a

epted by a MEventClo
kTA A = (Q

A

; Q

A

0

; Q

A

M

; Æ

A

;P

A

;A

A

; �

A

; Q

A

F

)

with Q

A

M

= fq

1

; q

2

; : : : ; q

m

g 
an be expressed by the union of the 
oating

languages of a 
olle
tion A

1

; A

2

; : : : ; A

m

of m MEventClo
kTA that have an

unique monitored lo
ation.

Proof. We take ea
h A

i

identi
al to A ex
ept for the monitored lo
ations:

for Q

A

i

M

, we take the singleton fq

i

g. If (�; t) 2 FloatLang(A) then A has

a q

j

-t-monitored and a

epted run � on (�; t), for some j, 1 � j � m. By


onstru
tion of ea
h A

i

, � is also a monitored and a

epted run of A

j

on (�; t)

implying that (�; t) 2 FloatLang(A

j

) and thus (�; t) 2

S

i=m

i=1

FloatLang(A

i

).

Conversely if A

j

has a monitored and a

epted run � on (�; t) then � is an q

j

-

t-monitored and a

epted run of A on (�; t) and thus (�; t) 2 FloatLang(A).

2

Note that if A has only one monitored lo
ation, we have the following

interesting property:

Lemma 4.45 (Unique Monitored Lo
ation) Let A be an monitored re-


ursive event-
lo
k automaton with only one monitored lo
ation, that is

jQ

M

j = 1 then FloatLang(A) = PreLang(A) \ SufLang(A).

Proof. Let us assume that Q

M

= fq

m

g. We �rst prove that if (�; t) 2

(PreLang(A)\SufLang(A)) then (�; t) 2 FloatLang(A). As (�; t) 2 PreLang(A),

we know that there exists a �nite pre�x run �

p

of A on � that ends at

time t in lo
ation q

m

, the unique monitored lo
ation of A. Similarly, as

(�; t) 2 SufLang(A), we know that there exists an in�nite suÆx run �

s

of A

on � that starts, at time t, in lo
ation q

m

, the unique monitored lo
ation of

A. The 
on
atenation of �

p

and �

s

is a t-monitored and a

epted run of A
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on (�; t) and thus (�; t) 2 FloatLang(A). We now turn to the other dire
tion.

If (�; t) 2 FloatLang(A) then we know that there exists a t-monitored and

a

epted run on � and thus �(t) = q

m

. We simply de
ompose � into �

[0;t℄

and �

[t;1℄

, where �

[0;t℄

is the pre�x of � up to time t and �

[t;1℄

is the suÆx

of � that starts at time t. It is easy to show that �

[0;t℄

is an a

epted pre�x

run of A on (�; t) and thus (�; t) 2 PreLang(A) and �

[t;1℄

is a suÆx run of

A on (�; t) and thus (�; t) 2 SufLang(A). 2

Thus for anMEventClo
kTA with only one lo
ation, the problem is nearly

solved. In fa
t, last lemma tells us that if A has only one monitored lo
a-

tion, FloatLang(A) = PreLang(A) \ SufLang(A) and thus FloatLang(A) =

PreLang(A) [ SufLang(A). We already know how to obtain PreLang(A) and

SufLang(A). It just remains us to show how given an MEventClo
kTA that

a

epts PreLang(A) how to 
onstru
t a automaton B su
h that FloatLang(B) =

PreLang(A) and similarly for the automaton a

epting SufLang(A).

Lemma 4.46 (Complement Unique Monitored Lo
ation) For every

monitored event-
lo
k automaton A

m

= (Q

A

m

; Q

A

m

0

; Q

A

m

M

; Æ

A

m

;P

A

m

;A

A

m

; �

A

m

; Q

A

m

F

)

with a single monitored lo
ation q

m

, we 
an 
ompute a monitored event-
lo
k

automaton B that a

epts the 
omplement of the 
oating language of A

m

.

Proof. From lemma 4.45, we know that FloatLang(A) = PreLang(A) \

SufLang(A) and by lemma 4.39, we 
an 
onstru
t a MEventClo
kTA B su
h

that PreLang(B) = PreLang(A) and by lemma 4.43 aMEventClo
kTA C su
h

that SufLang(C) = SufLang(A). As MEventClo
kTA are 
losed under inter-

se
tion, see lemma 4.31, it remains to 
onstru
t from B a MEventClo
kTA

E su
h that FloatLang(E) = PreLang(B) and a MEventClo
kTA F su
h that

FloatLang(F ) = SufLang(B).

� Constru
tion of E. All we need to do, is to transform B in su
h a

way that when in a monitored lo
ation at time t reading a TSS �,

it is always possible to 
ontinue a run on the suÆx [t;1℄ of � from

the monitored lo
ation. To a
hieve that spe
i�
ation, we 
onstru
t E

from B as follows:

{ Lo
ations. We take Q

E

= Q

B

[D, where D is the following set of

\dummy" lo
ations: D = fq j q 2 2

Limit(P

B

[A

B

)

g. Thus D 
on-

tains one element for ea
h possible label. We will use the dummy

lo
ations to make possible the prolongation of every pre�x of run

that 
an rea
h a monitored lo
ation of B.

{ Initial lo
ations. We take Q

E

0

= Q

B

0

, that is, the set of initial

lo
ations of E are the initial lo
ations of B.

{ Monitored lo
ations. We take Q

E

M

= Q

B

M

, that is, the set of

monitored lo
ations of E are the monitored lo
ations of B.
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{ Transition relation. The transition relation Æ

E

� Q

E

�Q

E

is the

union of the three following sets:

1. f(q

1

; q

2

) j q

1

; q

2

2 Q

B

and (q

1

; q

2

) 2 Æ

B

g. The moves possible

in B are possible in E.

2. f(q

1

; q

2

) j q

1

2 Q

B

M

; q

2

2 Dg. It is possible to move from a

monitored lo
ation of B to all dummy lo
ations.

3. f(q

1

; q

2

) j q

1

; q

2

2 Dg. Within the dummy lo
ations, the

transition relation is not 
onstraining. Note that it is not

possible from a dummy lo
ation to get ba
k to a lo
ation of

B.

{ Propositions and atomi
 
lo
k 
onstraints. The propositions and

atomi
 
lo
k 
onstraints used in E are the ones used in B: P

E

=

P

B

, A

E

= A

B

.

{ Labelling fun
tion. The labeling fun
tion is de�ned as follows:

� if q 2 Q

B

: �

E

(q) = �

B

(q);

� if q 2 D: �

E

(q) = q.

{ A

epting lo
ations. The set of a

epting lo
ations of E is simply

the set of dummy lo
ations: Q

E

F

= D.

E a

epts as 
oating language all pairs (�; t) su
h that � allows a run to

rea
h a monitored lo
ation of B at time t, that is (�; t) 2 PreLang(B).

� Constru
tion of F . The 
onstru
tion also uses \dummy" lo
ations and

is very similar to the one for E, we leave it to the reader.

2

We are now equipped to prove the 
losure to 
omplementation ofMEvent-

Clo
kTA:

Theorem 4.47 (MEventClo
kTA-Complement) For every monitored event-


lo
k automaton A, we 
an 
ompute a monitored event-
lo
k automaton

B that a

epts exa
tly the 
omplement of the 
oating language of A, i.e.

FloatLang(B) = FloatLang(A).

Proof. By lemma 4.44, the 
oating language of A, whereQ

A

M

= fq

1

; q

2

; : : : ; q

n

g


an be expressed as the union of the 
oating language of n single mon-

itored lo
ation event-
lo
k automata A

1

; A

2

; : : : ; A

n

, i.e. FloatLang(A) =

S

i=n

i=1

FloatLang(A

i

). Also, note that FloatLang(A) =

S

i=n

i=1

FloatLang(A

i

)

and thus FloatLang(A) =

T

i=n

i=1

FloatLang(A

i

). By lemma 4.46, we 
an 
om-

pute A

1

; A

2

; : : : A

n

, and by lemma 4.31, we 
an 
ompute B =

N

i=n

i=1

A

i

that

a

epts the desired language. 2
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A dire
t 
orollary of the last theorem and the lemma about the equiva-

len
e between re
ursive event-
lo
k automata and monitored re
ursive event-


lo
k automata:

Corollary 4.48 (REventClo
kTA-Complement) For every re
ursive event-


lo
k automaton A, we 
an 
ompute another re
ursive automaton B that

a

epts exa
tly the 
omplement of the 
oating language of A, i.e. the pairs

(�; t) that are not a

epted by A. 2

We now take a look at the 
omplexity of this 
omplementation pro
edure.

This information will be used later in this se
tion when we will 
hara
terize

the 
omplexity of de
ision problems for (monitored) re
ursive event-
lo
k

automata. We �rst de�ne a notion of size for the (monitored) re
ursive

event-
lo
k automata.

De�nition 4.49 (Size of a MEventClo
kTA) We �rst de�ne the notion of

size for the base 
ase, that is when the 
onsidered automaton A is a (moni-

tored) 
oating automaton, we de�ne the re
ursive 
ase after.

� Base 
ase: the size of a (monitored) 
oating automaton is 
hara
ter-

ized by:

1. its number of lo
ations jQ

A

j, noted NumLo
s(A);

2. its number of possible labels j2

Limit(P

A

)

j, noted NumAtomsSets(A).

� Re
ursive 
ase: the size of a (monitored) re
ursive event-
lo
k automa-

ton is 
hara
terized by:

1. its number of lo
ations jQ

A

j, noted NumLo
s(A);

2. its number of possible labels j2

Limit(P

A

)

j, noted NumAtomsSets(A).

3. the number of 
lo
k used by A, that is jfz

B

j 9(z

B

� 
) 2 A

A

gj,

this is noted NumClo
ks(A);

4. the maximal 
onstant that A use in its 
lo
k 
onstraints, that is

Max(f
 j 9(z

B

� 
) 2 A

A

gj, this is noted MaxConst(A);

5. re
ursively, the size of its subautomata.

2

To ease the 
hara
terization of the size of the automaton obtained af-

ter applying the 
omplementation pro
edure presented above, we use the

�gure 4.4.2. This �gures s
hematizes the di�erent step used in the 
om-

plementation pro
edure. The following lemma 
hara
terizes the size of the

automaton obtained after 
omplementation:
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Figure 4: Complementation pro
edure for MEventClo
kTA.

62



Lemma 4.50 For every monitored event-
lo
k automaton A, we 
an 
om-

pute a monitored event-
lo
k automaton H that a

epts exa
tly the 
om-

plement of the 
oating language of A, i.e. FloatLang(H) = FloatLang(A).

Further the size of H is de�ned in fun
tion of the size of A as follows:

� the number of lo
ations of H is singly exponential in the number of

lo
ations of A, that is NumLo
s(H) = O(2

NumLo
s(A)

);

� the number of possible labels of H is equal to the number of possible

labels of A, that is NumAtomsSets(H) = NumAtomsSets(A);

� the maximal 
onstant used by H in 
lo
k 
onstraints is the same as the

maximal 
onstant used by A, that is MaxConst(H) = MaxConst(A);

� the sizes of the subautomata of H are the same that sizes of the sub-

automata of A;

Proof. We prove this lemma by inspe
ting the 
omplexity of ea
h transfor-

mations involved in the pro
edure for 
omplementing the 
oating language

of A, those transformations are depi
ted in �gure 4.4.2.

� Transformation (1). The transformation simply 
hange the set of mon-

itored lo
ations. The size of ea
h A

i

is equal to the size A;

� Transformation (2a). Ea
h B

i

is obtained from A

i

by determinization.

So we examine the determinization pro
edure, see proof of lemma 4.37.

We �rst note that the step needed to obtain the non-repeating property


an be negle
ted as its only e�e
t is to multiply by 3 the number of

lo
ations, the other elements of the automaton remain un
hanged. The

subsets 
onstru
tion uses pairs 
omposed of a set of lo
ations of the

non-repeating automaton as lo
ations and labels of A. The labels part

has no in
uen
e as the labels are the ones used by A. So the number

of lo
ations of ea
h B

i

is singly exponential in the number of lo
ations

of ea
h A

i

and thus singly exponential in the number of lo
ations of

A plus a dummy lo
ation is added for ea
h label (to obtain a total

automaton), so NumLo
s(B

i

) = O(2

NumLo
s(A)

) + NumAtomsSets(A),

the other elements of the automaton remains un
hanged;

� Transformation (2b). Ea
h C

i

is obtained form A

i

using the 
omple-

mentation pro
edure for B�u
hi automata whi
h by theorem ?? leads

to an exponential blow-up of the lo
ations, that is NumLo
s(C

i

) =

O(2

NumLo
s(A

i

)

) The other elements have the same size as in A.

� Transformation (3a). The transformation is des
ribed in the proof of

lemma 4.39. Ea
h automata E

i

is obtained from B

i

by adding a set

of dummy lo
ations. The number of su
h dummy lo
ations is linear

in the size of the number of possible labels for B

i

whi
h is equal to
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the number of possible labels for A. So the number of lo
ations in

ea
h E

i

is 
hara
terize as follows: NumLo
s(E

i

) = O(2

NumLo
s(A)

+

NumAtomsSets(A)). The other elements of the size of E

i

are as for A.

� Transformation (3b). This transformation is similar to the transforma-

tion (3a) and thus NumLo
s(F

i

) = O(2

NumLo
s(A)

+NumAtomsSets(A)).

� Transformation (4). The transformation 
onsists in taking the union

of the automata E

i

and F

i

. By theorem 4.29, as the two automaton

E

i

and F

i

share the same set of possible labels, the number of lo
a-

tions of G

i

is just the sum of the number of lo
ations of E

i

and F

i

.

So we have that NumLo
s(G

i

) = O(2

NumLo
s

(A)+NumAtomsSets(A))+

O(2

NumLo
s(A)

+NumAtomsSets(A)) and thusNumLo
s(G

i

) = O(2

NumLo
s

(A)+

NumAtomsSets(A)). The other elements of the size of G

i

are as for A.

� Transformation (5). The transformation 
onsists in taking the inter-

se
tion of the m automaton G

i

with 0 � i � m, where m is the

number of monitored lo
ations in A and thus m = O(NumLo
s(A)).

By slightly generalizing the algorithm for interse
tion, whi
h is de-

�ned for two MEventClo
kTA in the proof of theorem 4.31, and as

G

i

are de�ned on the same set of possible labels, we obtain that

NumLo
s(H) = O(m � (2

NumLo
s(A)

+ NumAtomsSets(A))) and thus

NumLo
s(H) = O(2

NumLo
s(A)

+O(NumLo
s(A))�NumAtomsSets(A)).

The other elements of the size of H are as for A.

2

4.4.3 Closure under Partial Proje
tion

Another important property of (monitored) re
ursive event-
lo
k automaton

is that they are partially 
losed under proje
tion. Before proving this result,

we need to introdu
e a new notion.

De�nition 4.51 (FreeOfRTC) A proposition p is not real-time 
onstrained

into an monitored re
ursive event 
lo
k automaton A if this proposition does

not appear in the set of propositions used by the subautomata of A. We note

FreeOfRTC(A) the subset of propositions that are not real-time 
onstrained

by A. We de�ne them formally as follows: FreeOfRTC(A) = fq 2 P

A

j

for all B 2 SUB(A) : q 62 P

B

g. 2

We 
an now state and prove the following theorem:

Theorem 4.52 (Partial Proje
tion Closure) For every monitored re-


ursive event-
lo
k automaton A de�ned on the set of propositions P, for

every subset of propositions P

0

� P su
h that P n P

0

� FreeOfRTC(A), we
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an 
onstru
t a re
ursive event-
lo
k automaton B that a

epts the language

FloatLang(B) = f(� # P

0

; t) j (�; t) 2 FloatLang(A)g.

Proof. We take B as A but 
hange the labels as follows: for every lo
ations q,

�

B

(q) = �

A

(q) \ Limit(P

B

[A

B

), that is, as A

B

= A

A

, we simply suppress

the literals related to proje
ted propositions. It is dire
t to show that B

a

epts the desired 
oating language. 2

The 
onstraint that imposes that proje
ted propositions are only propo-

sitions that are not real-time 
onstrained is essential. In fa
t, we will show

later, that allowing proje
tion of real-time 
onstrained propositions stri
tly

extends the expressive power of our re
ursive event-
lo
k automata and

would destroy their 
losure under negation. Again, we 
an derive the 
orre-

sponding 
orollary for re
ursive event-
lo
k automata.

4.5 Emptiness and Universality for REventClo
kTA

We now show that the emptiness problem for a monitored re
ursive event


lo
k automaton A, i.e. is the an
hored language de�ned by the MEvent-

Clo
kTA A is empty or not, is de
idable and we 
hara
terize the 
omplexity

of de
iding this problem. We show that it is possible to redu
e the empti-

ness problem for monitored re
ursive event-
lo
k automata to the emptiness

problem of non re
ursive automata for whi
h a solution exists see [AFH94℄.

Again, the results for re
ursive event-
lo
k automata are obtained as dire
t


orollaries of the lemma 4.28 that states the equivalen
e between re
ursive

event-
lo
k automata and their monitored versions.

In the sequel, we show how to 
onstru
t a propositional event-
lo
k au-

tomaton that a

epts TSS that are 
losely related to the TSS a

epted by

the re
ursive event-
lo
k automaton. To de�ne those TSS, we need some

more ingredients.

For a MEventClo
kTA A with set of propositions P

A

, we 
onstru
t a

(non-re
ursive) EventClo
kTA B on the set of propositions

P

B

=P

A

[ fp

C

jC 2 SUB(A) or C = Ag

[ fp

z

D

�


j 9C 2 fAg [ SUB(A) : (z

D

� 
) 2 A

C

g

, i.e. we asso
iate a new proposition to A and to ea
h of its subautomata,

moreover we asso
iate a new proposition with ea
h atomi
 real-time 
on-

straint appearing in A or in one of its subautomata.

In the sequel, we note

� P

Aut

the set fp

C

jC 2 SUB(A) or C = Ag
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� and P

Constr

the set fp

z

D

�


j 9C 2 fAg [ SUB(A) : (z

D

� 
) 2 A

C

g.

Further, the automaton B will use the following set of atomi
 
lo
k 
on-

straints A

B

= fz

p

D

� 
 j 9p

z

D

�


2 P

Constr

g. That is, we use a 
onstraint

z

p

D

� 
 over the proposition asso
iated to the automaton D if there is a


lo
k 
onstraint z

D

� 
 over D in A or in one of its subautomata.

De�nition 4.53 (Hintikka Property) Given a TSS �, de�ned on P

A

,

the P

B

n P

A

extension of �, noted b� de�ned on the set of propositions P

B

,

has the timed Hintikka property for the MEventClo
kTA A if the following


onditions are veri�ed:

H1 p

A

2 b�(0), and for all time t 2 R+

:

H2 p

y

D

�


2 b�(t) i� there exists a time t

1

> t su
h that:

� either: p

D

2 b�(t

1

) and for all time t

2

2 (t; t

1

): p

D

62 b�(t

2

), and

t

1

� t � 
;

� or: for all time t

2

> t

1

, there exists a time t

3

2 (t

1

; t

2

) su
h

that p

D

2 b�(t

3

) and for all time t

4

2 (t; t

1

℄: p

D

62 b�(t

3

), and

(t

1

� t)

+

� 
.

H3 p

x

D

�


2 b�(t) i� there exists a time t

1

2 [0; t) su
h that:

� either: p

D

2 b�(t

1

) and for all time t

2

2 (t

1

; t): p

D

62 b�(t

2

), and

t� t

1

� 
;

� or: for all time 0 � t

2

< t

1

, there exists a time t

3

2 (t

2

; t

1

) su
h

that p

D

2 b�(t

3

) and for all time t

4

2 [t

1

; t): p

D

62 b�(t

3

), and

(t� t

1

)

+

� 
.

H4 if p

C

2 b�(t) then C has a t-monitored and a

epted run on �

4

;

H5 if p

C

62 b�(t) then C has no t-monitored and a

epted run on �.

Conditions H4 and H5 ensure that the proposition p

C

asso
iated to the

automaton C, is true along b� at time t i� C has a t-monitored and a

epted

timed run on b�. As a 
onsequen
e, H1 imposes that A a

epts b� at time 0

and thus b� # P

A

2 An
Lang(A), where b� # P

A

denotes the TSS obtained

from b� by proje
ting propositions that are not in P

A

. H2 and H3 relates

propositions p

z

D

�


to the semanti
s of the asso
iated 
onstraint z

D

� 
. In

the sequel, we say that a TSS b� that has the Hintikka property for A, is a

timed Hintikka sequen
e for A, THS for short. 2

The following lemma states how THS of an MEventClo
kTA A 
an help

us to solve the emptiness problem of A:

4

Note that as b� is an extension of �, A

ept

C

(�; t) i� A

ept

C

(b�; t).

66



Lemma 4.54 (Emptiness-Hintikka) The an
hored language of a mon-

itored event-
lo
k automaton A is non empty i� A has at least one timed

Hintikka sequen
e.

Proof. It is dire
t to show that if b� is a Hintikka sequen
e for A then

b� # P

A

2 An
Lang(A). In fa
t, if b� has the Hintikka sequen
e for A then

p

A

2 b�(0) by 
ondition H1 and then by H4, we know that A has a 0-

monitored and a

epted run on � and thus � 2 An
Lang(A). Now the

extension b� of � 2 An
Lang(A) de�ned as follows:

b�(t) =�(t)

[ fp

C

j p

C

2 P

Aut

and A

ept

C

(�; t)g

[ fp

z

D

�


j p

z

D

�


2 P

Constr

and (�; t) j= z

D

� 
g

has the timed Hintikka property for A and is the unique extension of � with

this property. 2

In the sequel, we will show that the following lemma holds:

Lemma 4.55 (EventClo
kTA for Hintikka Sequen
es) For every moni-

tored re
ursive event-
lo
k automaton A, we 
an 
onstru
t a propositional

event-
lo
k automaton B that a

epts exa
tly the timed Hintikka sequen
es

of A, that is, An
Lang(B) = f� j � is a THS of Ag.

Now we show that for ea
h 
ondition H1 to H5, we 
an 
onstru
t a non

re
ursive event-
lo
k automaton that 
he
ks the 
ondition. The �nal propo-

sitional event-
lo
k automaton will simply be the produ
t of the automata

for ea
h 
onditions, i.e. the automaton that a

epts the interse
tion of the

TSS a

epted by ea
h automaton. The 
onstru
tion that we will present

is inspirated from the 
onstru
tion, proposed by Wolper et al to solve the

satis�ability problem of the logi
 E-TL, see [WVS83, Wol83℄. We now 
on-

stru
t systemati
ally an non re
ursive event-
lo
k automaton for ea
h timed

Hintikka 
ondition:

Automaton for 
ondition H1,H2 and H3. We 
onstru
t the EventClo
kTA

B

1

= (Q

B

1

; Q

B

1

0

; Æ

B

1

;P

B

1

; �

B

1

;A

B

1

; Q

B

1

F

), as follows:

� Propositions and atomi
 
lo
k 
onstraints P

B

1

= P

B

and A

B

1

=

fz

p

D

� 
 j p

z

D

�


2 P

B

g, a 
lo
k is asso
iated to ea
h proposition

asso
iated to an automaton that appears in a 
lo
k 
onstraint in

A or one of its subautomata, those 
lo
ks will be used to enfor
e

the right timing of those propositions;

� Lo
ations. Q

B

1

= fq 2 2

Limit(P

B

[A

B

)

j 8p

z

D

�


2 P

Constr

:

p

z

D

�


2 q i� z

p

D

� 
 2 qg. So B

1


ontains a lo
ation for ea
h pos-

sible label that respe
ts the property that the proposition p

z

D

�
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is in the label i� the 
orresponding 
onstraint is also present.

Intuitively, when p

z

D

�


is true along b� at time t, it means that

the 
onstraint z

D

� 
 must be veri�ed in (�; t). As p

D

2 b� i�

(�; t) 2 FloatLang(D) (by H4 and H5), we simply use the 
on-

straint z

p

D

� 
 to enfor
e the semanti
s of z

D

� 
. For example,

if y

D

= 1 is true in (b�; t), it means that the following time t

1

> t

su
h that D a

epts b� must be t

1

= t + 1. We know by H4 and

H5 that for all time t 2 R+

, A

ept

D

(�; t) i� p

D

2 b�, so we sim-

ply use the propositional 
lo
k y

p

D

to enfor
e the semanti
s of

y

D

= 1: we 
he
k that y

p

D

= 1 is veri�ed.

� Labeling fun
tion. �

B

1

(q) = q, the labeling of lo
ation q is simply

the literals that 
onstitute the lo
ation;

� Initial lo
ations. Q

B

1

0

= fq 2 Q

B

1

jp

A

2 qg, the initial 
ondition

impose that p

A

is true initially;

� Transition relation. Æ

B

1

= f(q

1

; q

2

)jq

1

; q

2

2 Q

B

1

g, i.e. there is no

restri
tion on the transition relation;

� A

eptan
e 
ondition. Q

B

1

F

= Q

B

1

, the a

epting 
ondition is

trivial and thus does not impose any 
onstraint on the a

epted

TSS.

The automaton B

1

ensures that p

A

is true initially (by the de�nition

of the initial lo
ations and the de�nition of the labeling fun
tion) as

we have de�ned the initial lo
ation as the lo
ations labeled by p

A

.

Further, ea
h time that the proposition p

x

D

�


(p

y

D

�


, respe
tively) is

true in a lo
ation, we de
orate this lo
ation with the real-time 
on-

straint x

p

D

� 
 (y

p

D

� 
, respe
tively) whi
h, by the semanti
s of


lo
ks of EventClo
kTA, imposes the right timing on the last (�rst fol-

lowing, respe
tively) o

urren
e of p

D

and by H4 and H5, ensures the

veri�
ation of real-time 
onstraints x

D

� 
 (resp.y

D

� 
) asso
iated

to the MEventClo
kTA D.

Automaton for 
ondition H4 We 
onstru
t an automaton B

2;C

for ea
h

C 2 A [ SUB(A). Basi
ally, to enfor
e the property H4 for C, the

automaton B

2;C

must, ea
h time that it en
ounters a state in b� where

the proposition p

C

is true, 
he
k that: \there exists a t-monitored run

of C on b�". That 
an be done by 
he
king the two following properties:

1. there exists a �nite run of C that 
over b� for the interval [0; t℄

and ends in a monitored lo
ation, say in q

m

;

2. and that we 
an extend this run from q

m

to 
over the reminder

of b�, i.e. the interval [t;1), still respe
t the a

epting 
ondition

of C.
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The diÆ
ulty arises from the fa
t that we must 
he
k the existen
e of

su
h runs ea
h time that the proposition p

C

is true, and the proposition

p

C

is potentially true in an in�nite (and un
ountable) numbers of

time t 2 R+

. But fortunately, runs that are in the same lo
ation of

C at a given time t 2 R+


an be merged. In fa
t, as the value of


lo
ks does not depend on the history of the run but only on the TSS

the automaton is reading, two runs that reside in the same lo
ation

have the same possible futures. More pre
isely, if �

[0;t℄

1

and �

[0;t℄

2

are

two pre�xes of runs on TSS b�, su
h that �

[0;t℄

1

(t) = �

[0;t℄

2

(t) then if

�

[0;t℄

1

� �

(t;1)

3

is a a

epted run of A on � then so is �

[0;t℄

2

� �

(t;1)

3

. Note

that this property is not true for timed automata in general. In fa
t,

in a timed automaton run the value of 
lo
ks at a given time t depends

on the history of the run up to that time t. So two pre�xes of runs

that at time t end up in the same lo
ation do not ne
essarily have the

same futures, as their 
lo
k values 
an be di�erent. This te
hnique is

again inspirated by the de
ision pro
edure for E-TL.

Let us now show in details how we 
an solve the problem. To simplify

the presentation, we �rst de�ne two transition stru
tures.

De�nition 4.56 (Transition Stru
ture) A transition stru
ture is

a four-tuple � = (S; S

0

; R; F ) where:

� S is a set of states;

� S

0

� S is a set of initial states;

� R � S � S is the transition relation;

� and either F � S is a set of a

epting states, or F � 2

S

is a set of

sets of a

epting states. We will use set of a

epting states when

we will need to de�ne a B�u
hi a

eptan
e 
ondition and we will

use set of sets of a

epting states when we will need to de�ne a

generalized B�u
hi 
ondition.

We will use transition stru
ture as intermediate obje
ts.

We 
onstru
t one transition stru
ture for the two properties above and

de�ne how to take their produ
t in order to obtain the automaton B

2

that 
he
ks 
ondition H4.

� Transition stru
ture �

1

. To 
he
k that there exists a run on

the pre�x of b� up to time t with p

C

2 b�(t), we simply maintain

a deterministi
 version of C, see de�nition 4.35 and lemma 4.37.

We note this deterministi
 version D and the stru
ture �

1

=

(S

1

; S

1

0

; R

1

; F

1

) is de�ned from D as follows:
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{ S

1

= Q

D

, that is, the states of the transition stru
ture �

1

is the set of lo
ations of the deterministi
 version of C, and

thus a state of �

1

is a set of lo
ations of C;

{ S

1

0

= Q

D

0

, the initial states of �

1

are the initial lo
ations of

D;

{ R = Æ

D

, the transition relation is as in D;

{ F = S

1

, ea
h state is a

epting and thus the a

epting 
on-

dition is trivial.

This deterministi
 stru
ture tells us at ea
h moment, when read-

ing b�, in whi
h lo
ations of C the 
ontrol 
an reside. As a 
on-

sequen
e, the automaton tells us in whi
h lo
ations all possible

runs 
an be. We will use this information in order to start runs

for suÆxes only from monitored lo
ations where the 
ontrol 
an

reside.

� Transition stru
ture �

2

. To 
he
k the existen
e of runs on the

suÆxes of b� from time t, we 
onsider a transition stru
ture �

2

=

(S

2

; S

2

0

; R

2

; F

2

), where:

{ the states of �

2

are n-tuples of lo
ations hl

1

; l

2

; : : : ; l

n

i of

C, thus n = jQ

C

j. n-tuples are suÆ
ient be
ause, at ea
h

moment, the 
ontrol of the automaton C 
an be, at most, in

n di�erent lo
ations and we do not need more be
ause we are

allowed to merge runs that are in the same lo
ation. Ea
h l

i

belongs to Q

C

[ f?g, the spe
ial value ? is used for l

i

when

there is no a
tive i

th

run. We further impose the following

properties to the tuples: hl

1

; : : : ; l

n

i 2 S

2

i� there exists a j,

1 � j � n+ 1, su
h that:

1. for all k, j � k � n: l

k

= ?;

2. for all k, 1 � k < j: l

k

2 Q

C

;

3. for all k

1

; k

2

, 1 � k

1

< k

2

< j: l

k

1

6= l

k

2

;

4. for all k

1

; k

2

, 1 � k

1

< k

2

< j: �

C

(l

k

1

) = �

C

(l

k

2

).

The 
onjun
tion of 
ondition (1) and (2) ensures that \real"

lo
ations o

upy the �rst pla
es in the tuple. Condition (3)

imposes that all lo
ations are di�erent in the tuple. This

is ne
essary as we have only n pla
es and we must 
he
k

potentially in�nitely many runs, therefore, we must merge

runs that rea
h the same lo
ation. Finally, in (4) we require

that lo
ations in the tuples have the same label. In fa
t, at

ea
h time t of a TSS, only one label is true so, at ea
h time t,

the 
ontrol of C 
an only be in lo
ations that share the same

label. In the sequel, we use the notation �

C

(hl

1

; l

2

; : : : ; l

n

i)

to refer to that label.

{ As initial states of �

2

, we take S

2

0

= S

2

.
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{ Let us now de�ne the transition relation of the stru
ture �

2

:

we have (hl

1

1

; l

1

2

; : : : ; l

1

n

i; hl

2

1

; l

2

2

; : : : ; l

2

n

i) 2 R

2

i� for all k, 1 �

k � n: if l

1

k

6= ? then there exists j, 1 � j � k and (l

1

k

; l

2

j

) 2

Æ

C

. That is ea
h (non dummy) lo
ation of the �rst tuple has

a Æ

C

-su

essor lo
ation in the se
ond tuple, merging runs is

allowed as j 
an be stri
tly less than k.

{ Let us now expose how we 
an 
he
k that ea
h run simulated

in the stru
ture �

2

respe
ts the a

eptan
e 
ondition of C.

To solve this problem we use a generalized B�u
hi a

eptan
e


ondition: we de�ne n sets of a

epting lo
ations, a run will

be a

epting if it has, for ea
h n sets in�nitely many positions

in the set. The sets are de�ned as follows:

F

i

= fhl

0

; l

1

; : : : ; l

n

ij either l

i

= ? or l

i

2 Q

C

F

g

In the sequel, we note �

2

:F

i

, the i

th

set of a

epting states

of the transition stru
ture �

2

. Let us show that this 
hoi
e

for the a

epting 
ondition is 
orre
t. Consider a run that

starts in the i

th


oordinate of the tuples. Either this run is

merged with another run j < i. In that 
ase l

i

= ? until

we start another run, or l

i

= ? for ever, in the last 
ase,

the run is a

epted. Now, if the run 
ontinues for ever in

a 
oordinate k � j, whi
h must arrive sooner or later, then

we must 
he
k that the run goes in�nitely often through an

a

epting lo
ation of C whi
h is 
he
ked by the set �

2

:F:F

k

.

We are now in position to de�ne the non re
ursive automaton B

2;C

=

(Q

B

2;C

; Q

B

2;C

0

; Æ

B

2;C

;P

B

2;C

; �

B

2;C

;A

B

2;C

; Q

B

2;C

F

):

� Lo
ations. Q

B

2;C

is the set of tuples h�; s

1

; s

2

i where:

{ � 2 2

Limit(P

B

[A

B

)

, � is a label;

{ s

1

2 S

1

, this part will be used to 
he
k the 
onstraints over

pre�xes as explained above;

{ s

2

2 S

2

, this part will be used to 
he
k the 
onstraints over

suÆxes as explained above;

that respe
t the following restri
tions (with s

2

= hl

1

; : : : ; l

n

i):

1. (a) for all p 2 P

C

: p 2 � i� p 2 �

C

(s

1

) i� p 2 �

C

(hl

1

; : : : ; l

n

i);

(b) for all z

D

� 
 2 A

C

: p

z

D

�


2 � i� (z

D

� 
) 2 �

C

(s

1

) i�

(z

D

� 
) 2 �(hl

1

; : : : ; l

n

i).

2. if p

C

2 � and s

2

= hl

1

; : : : ; l

n

i then there exists j, 1 � j � n,

su
h that l

j

2 Q

C

M

; that is, if p

C

is true then it is ne
essary to


he
k that there exists a run of C on the rest of the TSS that

starts in a monitored lo
ation, the stru
ture �

2

will 
he
k for

the existen
e of su
h a run;
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3. if s

2

= hl

1

; l

2

; : : : ; l

n

i then for all j su
h that 1 � j � n and

l

j

6= ?, we have l

j

2 s

1

; this 
onstraint imposes that the

lo
ations a
tive in runs are a subset of the lo
ations where

the 
ontrol of the automaton 
an reside (information given

by the stru
ture �

1

).

� Initial lo
ations. Q

B

2;C

0

= f(�; s

1

; s

2

)js

1

2 S

1

0

g, re
all that S

1

0


ontains all the sets of lo
ations where the automaton C 
an

start a run;

� Transition Relation. [(�

1

; s

1

1

; s

1

2

); (�

2

; s

2

1

; s

2

2

)℄ 2 Æ

B

2;C

i� (s

1

1

; s

2

1

) 2

R

1

and (s

1

2

; s

2

2

) 2 R

2

, thus there is a transition in B

2;C

if the

transition is possible in both �

1

and �

2

;

� Propositions and atomi
 
lo
k 
onstraints. The propositions and

the 
lo
ks 
onstraints are as for B: P

B

2;C

= P

B

and A

B

2;C

= A

B

.

� Labeling fun
tion. For all (�; s

1

; s

2

) 2 Q

B

2

, �

B

2

((�; s

1

; s

2

)) = �.

� A

epting 
ondition. For the a

eptan
e 
ondition, we transpose

into B

2;C

the 
onstraints of �

2

. So we use the following general-

ized B�u
hi a

eptan
e 
ondition: Q

B

2;C

F

= fF

1

; F

2

; : : : ; F

n

g where

ea
h F

i

is de�ned by f(�; s

1

; hl

0

; : : : ; l

i

; : : : ; l

n

i) j l

i

2 Q

C

F

_l

i

= ?g.

Now, B

2

is obtained by taking the produ
t of ea
h B

2;C

for C 2

fAg [ SUB(A).

Automaton for 
ondition H5 One way to solve this problem would be

to 
onsider for ea
h automaton C 2 fA [ SUB(A)g, its 
omplement

C and 
he
k 
ondition H4 for that automaton. As we have proved

that MEventClo
kTA are 
losed under 
omplementation, this strat-

egy works to 
omplete our 
onstru
tion for the emptiness problem of

MEventClo
kTA. But this method does not mat
h the optimal 
om-

plexity sin
e after 
omplementation, whi
h 
osts an exponential, we

should still 
onstru
t the deterministi
 stru
ture (�

1

) and the tuple-

stru
ture (�

2

) whi
h also 
osts one exponential. Applying this simple

idea would result in a doubly exponential blow-up in the number of

lo
ations of the 
onstru
ted automaton giving an Ex-Pspa
e pro
e-

dure. It is possible to solve the problem with only one exponential,

yielding a Pspa
e pro
edure, with the following idea (again, adapted

from [SVW85℄): for ea
h automaton C, we 
onstru
t an automaton

B

3;C

that enfor
es exa
tly the negation of H5 for ea
h C, that is \there

exists a time t 2 R+

su
h that p

C

62 b�(t) and C has a t-monitored and

a

epted run on b�". After, we take the union of all those automata and


omplement this union, we obtain a single automaton B

3

that 
he
ks

H5 for ea
h automaton C 2 fA[SUB(A)g. The 
onstru
tion is singly

exponential (the one that o

urs during the 
omplementation). Let

us now show how to 
onstru
t the automaton B

3;C

. The idea behind
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the 
onstru
tion is the following: we 
onstru
t an automaton whi
h

is essentially the produ
t of C with a simple transition stru
ture �

that ensures, when we take the produ
t between C and �, that p

C

is

eventually false and at the same time C is in a monitored lo
ation.

The stru
ture � is de�ned as follows:

� States.The set of states S is the set of 3-tuples (i; �

1

; �

2

) su
h that

i 2 f1; 2; 3g, �

1

2 fM;

�

Mg, �

2

2 fp

C

; �p

C

g, with the restri
tion

that if i = 2 then �

1

= M and �

2

= �p

C

. The intuition is that

when the stru
ture � is in a state tagged by 2 then C is in a

monitored lo
ation and the proposition p

C

is false. We will use

the initial 
ondition, transition relation and a

eptan
e 
ondition

to ensure that ea
h run of � eventually passes through a state

tagged with 2.

� Initial states are S

0

= f(i; �

1

; �

2

) 2 Qji 2 f1; 2gg. Initially, the


ontrol 
an only be into part 1 or part 2 of the stru
ture.

� Transitions: ((i

1

; �

1

1

; �

1

2

); (i

2

; �

2

1

; �

2

2

)) 2 R i� either i

2

= i

1

or i

2

=

i

1

+ 1. The 
ontrol of the automaton 
an only go from part 1

to part 2 and then to part 3. Consequently, when in part 1, the


ontrol must 
ross part 2 to attain the a

epting lo
ations.

� A

eptan
e: F = f(i; �

1

; �

2

)ji 2 f2; 3gg, the a

epting states are

those tagged with 2 or 3.

We now 
onstru
t B

3;C

from C and � = (S; S

0

; R; F ) as follows:

� Lo
ations. Q

B

3;C

is the set of 3-tuples (s; q; �) su
h that:

{ s 2 S;

{ q 2 Q

C

;

{ � 2 2

Limit(P

B

[A

B

)

;

{ if s = (i; �

1

; �

2

) then �

1

=M i� q

2

2 Q

C

M

, that is the 
ontrol

is in a M -state of � i� the 
ontrol is in a monitored lo
ation

in Q

C

.

� Initial lo
ations. The set of initial lo
ations Q

B

3;C

0

= f(s; q; �) j

s 2 S

0

and q 2 Q

C

0

g, that is, we 
he
k that the stru
ture � and

the automaton C respe
ts their initial requirement;

� Transition relation. We have [(s

1

; q

1

; �

1

); (s

2

; q

2

; �

2

)℄ 2 Æ

B

3;C

i�

1. (s

1

; s

2

) 2 R;

2. (q

1

; q

2

) 2 Æ

B

3;C

or q

1

= q

2

;

So, we 
he
k the transition relation of both � and C (stuttering

steps are allowed in C).

� Propositions and atomi
 
lo
k 
onstraints. The propositions and

atomi
 
lo
k 
onstraints are as in automaton B: P

B

3;C

= P

B

,

A

B

3;C

= A

B

;
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� Labeling fun
tion. The labeling fun
tion is de�ned as follows:

�

B

3;C

((s; q; �)) = �.

� A

epting lo
ations. The a

epting 
ondition is de�ned as follows:

to be a

epted, a run must respe
t the 
onjun
tion of the a

ept-

ing 
onditions for C and the transition stru
ture �. Therefore,

we de�ne the following a

eptan
e 
ondition: Q

B

3;C

= fF

1

; F

2

g

with F

1

= f(s; q; �) j s 2 �:Fg and F

2

= f(s; q; �) j q 2 Q

C

F

g.

To obtain the automaton B

2

, we just 
omplement the union of the set

of automata fB

3;C

j C 2 A [ SUB(A)g.

We �nally obtain the non re
ursive event-
lo
k automaton B by taking

the produ
t of the automata B

1

; B

2

; B

3

.

The following theorem follows from the previous 
onstru
tion.

Theorem 4.57 (REventClo
kTA-Emptiness) The emptiness problem for

re
ursive event-
lo
k automata is PSpa
e-Complete.

To 
he
k the universality problem, we use the same 
onstru
tion with

H1 repla
ed by:

H1' p

A

62 b�(0)

and 
he
k that the language of the 
onstru
ted propositional event-
lo
k

automaton is empty, so we have:

Theorem 4.58 (REventClo
kTA-Universality) The universality problem

for re
ursive event-
lo
k automata is PSpa
e-Complete.

4.6 Expressiveness: REventClo
kTA vs EventClo
kTL

In se
tion 3.3.2, we have shown that propositional (non re
ursive) event-


lo
k automata are not suÆ
iently expressive to de�ne all EventClo
kTL-

properties. In this se
tion, we show that, on the 
ontrary, REventClo
kTA

are suÆ
iently expressive to de�ne all EventClo
kTL-properties. We �rst

introdu
e some new notions.

De�nition 4.59 (level of EventClo
kTL formulas) The level of an Event-

Clo
kTL formula � is 
omputed by the following re
ursive fun
tion level:

� level(p) = 0;

� level(�

1

_ �

2

) =Maximum(level(�

1

); level(�

2

));

� level(:�

1

) = level(�

1

);

� level(�

1

U�

2

) = Maximum(level(�

1

); level(�

2

));
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� level(�

1

S�

2

) = Maximum(level(�

1

); level(�

2

));

� level(�

I

�

1

) = 1 + level(�

1

);

� level(�

I

�

1

) = 1 + level(�

1

);

That is the level of a formula � is the number of imbri
ations of real-time

operators in �. 2

We say that \� is a level

i

formula" if level(�) = i. In the following proofs,

we will reason by indu
tion on the stru
ture of level

i

formulas, we de�ne the

grammar 
orresponding to those formulas:

De�nition 4.60 (Grammar of level

i

-formulas) The following grammar

rule de�ne the level

0

EventClo
kTL formulas:

� ::= p j �

1

_ �

2

j :�

1

j �

1

U�

2

j �

1

S�

2

where �

1

and �

2

are level

0

formulas.

Note that level

0

formulas are LTR formulas. Re
ursively, the following gram-

mar rule de�ne the level

i

EventClo
kTL formulas:

� ::= p j �

I

�

3

j �

I

�

3

j �

1

_ �

2

j :�

1

j �

1

U�

2

j �

1

S�

2

where �

1

and �

2

are level

j

formulas where 0 � j � i and �

3

is a level

k

formula where 0 � k < i.

2

For example, �

=1

�

=1

p is a level

2

formula.

We de�ne the following slightly non-
lassi
al notion of 
losure of a for-

mula:

De�nition 4.61 (Closure Set) Let � be an EventClo
kTL formula, we

de�ne the 
losure of �, with the help of the re
ursive fun
tion Cl:

� Cl(p) = fpg;

� Cl(�

1

_ �

2

) = Cl(�

1

) [ Cl(�

2

) [ f�

1

_ �

2

g;

� Cl(:�

1

) = Cl(�

1

);

� Cl(�

1

U�

2

) = Cl(�

1

) [ Cl(�

2

) [ f�

1

U�

2

g;

� Cl(�

1

S�

2

) = Cl(�

1

) [ Cl(�

2

) [ f�

1

S�

2

g;

� Cl(�

I

�

1

) = f�

I

�

1

g;

� Cl(�

I

�

1

) = f�

I

�

1

g;

The 
losure of the formula �, denoted Cl(�), is the set Cl(�) 
losed by

negation, that is Cl(�) = f ;: j  2 Cl(�)g. 2
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In that non-
lassi
al notion of 
losure, the real-time subformulas �

I

�

3

and �

I

�

3

are 
onsidered as atomi
 formulas. Let us now 
onsider the fol-

lowing lemma:

Lemma 4.62 (EventClo
kTL� Fine TSS) For every set of propositions P,

for every TSS �, if � is Limit(P) � Fine and alternating, then � is also

�� Fine for every level

0

-EventClo
kTL formula � whose propositions are in

P.

Proof. We prove this lemma by indu
tion of the stru
ture of level

0

-formulas.

� Base 
ase. If � = p with p 2 P then the lemma is trivially veri�ed as

p 2 Limit(P).

� Indu
tion 
ase. The indu
tion hypothesis tell us that for �

1

and �

2

whi
h are level

0

formulas, we know that � is �

1

� Fine as well as

�

2

� Fine. Let us also observe that a singular interval 
an not be

re�ned. So we only have to show that level

0

formulas have a 
onstant

truth value in all open intervals of �. Now let us treat ea
h 
onstru
tion

of the grammar:

{ let  = �

1

_ �

2

. Let us 
onsider the open interval I

i

. There

are four possible 
ases: �

1

and �

2

are 
onstantly true during I

i

,

�

1

is 
onstantly true during I

i

and �

2

is 
onstantly false, ... Let

us treat the �rst 
ase as an example, the other 
ases are treated

similarly. If �

1

and �

2

are 
onstantly true during I

i

then by the

semanti
s of the _-operator, �

1

_ �

2

is 
onstantly true during I

i

.

Thus the sequen
e of intervals does not need to be re�ned.

{ let  = :�

1

. In that 
ase, if �

1

is 
onstantly true during I

i

then

 is 
onstantly during this interval, and 
onversely. Again, the

sequen
e of intervals does not need to be re�ned.

{ let  = �

1

U�

2

. To treat that 
ase, let us make the hypothesis

that (�; t) j= �

1

U�

2

for some t 2 I

i

. We will show that this

implies that for all time t

1

2 I

i

, (�; t

1

) j= �

1

U�

2

. We will treat

the negation after. By the semanti
s of the U-operator, we know

that: there exists a time t

0

> t su
h that (�; t) j= �

2

and for all

time t

00

2 (t; t

0

), (�; t

00

) j= �

1

_�

2

. Let us �rst make the hypothesis

that t

0

belongs to the interval I

i

. By indu
tion hypothesis, we

know that for all time t

1

2 I

i

, (�; t

1

) j= �

2

. As I

i

is open, it is

easy to see that (�; t

1

) j= �

1

U�

2

for all t

1

2 I

i

. Now let us make

the 
onserve hypothesis, the �rst time where �

2

holds is not in

I

i

but after. By indu
tion hypothesis, this implies that for all

time t

1

2 I

i

, (�; t

1

) 6j= �

2

. By semanti
s of the U-operator, we

know that �

1

must be true just after t within I

i

. By indu
tion

hypothesis �

1

is then 
onstantly true within I

i

and thus also
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�

1

U�

2

. Let us now turn to the 
ase where there is a time t 2 I

i

where (�; t) 6j= �

1

U�

2

. We already prove that if there exists a

time t

0

2 I

i

su
h that (�; t

0

) j= �

1

U�

2

, there does not exists a

time t

00

2 I

i

su
h (�; t

00

) 6j= �

1

U�

2

. Thus as (�; t) 6j= �

1

U�

2

holds,

we know that there 
an not exists su
h a t

0

.

{ let  = �

1

S�

2

. This 
ase is treated in the same way that the

U-
ase and is left to the reader.

2

This lemma will allow us, in the next proof, to tag lo
ations of monitored

event-
lo
k automata with formulas of the logi
 and still keep the property

that the 
ontrol 
an only resides in a lo
ation for a singular interval of time

only if the label of that lo
ation is singular.

Lemma 4.63 (EventClo
kTL � MEventClo
kTA) For every EventClo
kTL for-

mula � we 
an 
onstru
t a MEventClo
kTA A

�

that a

epts exa
tly the pairs

(�; t), where � is de�ned on the set of propositions P appearing in � and

t 2 R+

, su
h that (�; t) j= �.

Proof. To establish this result, we reason by indu
tion on the level of for-

mulas.

� Base 
ase. Let 
onsider � a level

0

-formula. We �rst de�ne a tran-

sition stru
ture � = (S; S

0

; R; F ) that 
he
ks the semanti
s of the

propositional and temporal operators of level

0

-formula. After, we will

transform this stru
ture into an monitored 
oating automaton. We

de�ne the elements of � as follows:

{ States. S is the set of pairs (a; &) where a 2 2

Cl(�)

with > 2 a,

& 2 fopen; singg (indi
ating if the 
ontrol 
an stay in the state for

an open interval of time or just a singular interval of time) and

the following properties are veri�ed:

1. for all �

1

2 Cl(�): �

1

2 a i� :�

1

62 a;

2. for all (�

1

_ �

2

) 2 Cl(�): �

1

_ �

2

2 a i� �

1

2 a or �

2

2 a;

3. for all (�

1

U�

2

) 2 Cl(�):

3.a if �

2

2 a and & = open then �

1

U�

2

2 a;

3.b if �

1

U�

2

2 a and & = open then �

1

2 a or �

2

2 a;

4. for all (�

1

S�

2

) 2 Cl(�):

a if �

2

2 a and & = open then �

1

S�

2

2 a;

b if �

1

S�

2

2 a and & = open then �

1

2 a or �

2

2 a;
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(1) and (2) enfor
es the semanti
s of propositional operators;

(3.a) and (3.b) enfor
es lo
al 
onsisten
y for the until oper-

ator; (4.a) and (4.b) are the lo
al 
onsisten
y rules for the

sin
e operator.

{ Initial states. The set of initial states is the subset of pairs (a; &) 2

S su
h that & = sing and there does not exist �

1

S�

2

2

�

Cl(�) and

�

1

S�

2

2 a. That is an initial state is singular and it does not


ontains a sin
e formula in positive form.

{ Transition relation. The transition relationR is the subset [(a

1

; &

1

); (a

2

; &

2

)℄

of S � S that respe
ts the following restri
tions:

1. &

1

= open and &

2

= sing, or, &

1

= sing and &

2

= open;

2. The following rules express how until formulas are transfered

from one state to the next of the transition stru
ture:

2.a �

1

U�

2

2 a

1

^ &

1

= sing i� �

1

U�

2

2 a

2

;

2.b �

1

U�

2

2 a

1

^ & = open ^ �

2

62 a

1

, implies (�

1

U�

2

2

a

2

^ �

1

2 a

2

) _ �

2

2 a

2

;

2.
 �

1

2 a

1

^ &

1

= open ^ (�

1

2 a

2

_ (�

2

2 a

2

^ �

1

U�

2

2 a

2

))

implies �

1

U�

2

2 a

1

.

3. The following are for the sin
e formulas:

3.a �

1

S�

2

2 a

2

^ & = sing i� �

1

S�

2

2 a

1

;

3.b �

1

S�

2

2 a

2

^ &

2

= open^�

2

62 a

2

implies �

2

2 a

1

_ (�

1

2

a

1

^ (�

1

S�

2

) 2 a

1

);

3.
 �

1

2 a

2

^ &

2

= open ^ (�

2

2 a

1

_ �

1

S�

2

2 a

1

) implies

�

1

S�

2

2 a

2

{ A

epting states. As usual, we use a generalized B�u
hi a

ep-

tan
e 
ondition. For ea
h formula �

1

U�

2

2 Cl(�), there is a set

�:F:F

�

1

U�

2

= f(a; &) j �

1

U�

2

62 a _ �

2

2 ag.

We are now equipped to de�ne the monitored 
oating automaton A

�

.

We 
onstru
t A

�

= (Q

A

�

; Q

A

�

0

; Q

A

�

M

; Æ

A

�

;P

A

�

; �

A

�

; Q

A

�

F

) as follows:

{ Lo
ations. The set of lo
ations Q

A

�

is the set of pairs ((a; &); �)

su
h that:

1. (a; &) 2 S;

2. � is a label that is open if and only if & = open;

3. the labeling is propositionally 
onsistent with the formula in

a: for all proposition p 2 P: p 2 � i� p 2 a.

{ Initial lo
ations. The set of initial lo
ations Q

A

�

0

is the subset of

lo
ations ((a; &); �) 2 Q

A

�

su
h that (a; &) 2 S

0

;

{ Monitored lo
ations. The set Q

A

�

M

of monitored lo
ations is the

subset of lo
ations ((a; &); �) 2 Q

A

�

su
h that � 2 a, that is the

subset of lo
ations where the formula � is true;
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{ Transition relation. The transition relation is the set of pairs

[((a

1

; &

1

); �

1

); ((a

2

; &

2

); �

2

)℄ with ((a

i

; &

i

); �

i

) 2 Q

A

�

for i 2 f1; 2g,

su
h that: [(a

1

; &

1

); (a

2

; &

2

)℄ 2 R;

{ Propositions. The set of propositions used by A

�

is the set of

propositions that appear in the formula �, i.e. P

A

�

= fp j p 2

Cl(�)g;

{ Labeling fun
tion. The labeling fun
tion �

A

�

is de�ned as follows:

�

A

�

(((a; &); �)) = �;

{ A

epting lo
ations. We transfer in A

�

the generalized B�u
hi a
-


eptan
e 
ondition of the transition stru
ture � : Q

A

�

F

is the

set of sets of a

epting lo
ations fF

1

; : : : ; F

n

g where ea
h F

i


orresponds to a set of a

epting states in S as follows: F

i

=

f((a; &); �) j (a; &) 2 �:F:F

i

g.

It is routine to prove that the 
onstru
ted automaton A

�

a

epts the

right 
oating language.

� Indu
tion 
ase. By indu
tion hypothesis, we know that for ea
h for-

mula  of level

j

with j < i, we are able to 
onstru
t a 
ongruent

monitored re
ursive event-
lo
k automaton A

 

. Let us show that we


an 
onstru
t a automaton for ea
h formula of level

i

. By inspe
ting

the grammar rules for level

i

-formulas, it is not diÆ
ult to see that if

we 
onsider real-time formulas as atomi
, the level

i

-formulas are 
on-

stru
ted in the same way as level

0

-formulas. The 
onstru
tion of A

�

will be exa
tly as for the base 
ase with the ex
eption that we must

treat the real-time formulas. We treat them as follows: for ea
h for-

mula �

I

�

3

, we use the (history) atomi
 real-time 
onstraint x

A

�

3

2 I,

and for ea
h formula �

I

�

3

, we use the (predi
ting) atomi
 real-time


onstraint y

A

�

3

2 I. Those 
onstraints have the property, by indu
tion

hypothesis, that: for every TSS �, every time t 2 R+

: (�; t) j= �

I

�

3

i� (�; t) j= x

A

�

3

2 I and (�; t) j= �

I

�

3

i� (�; t) j= y

A

�

3

2 I. Finally,

when 
onstru
ting the automaton A

�

, we use as set of propositions

P

A

�

the set of propositions that appears into formula � and we 
he
k

that the following additional rule for lo
ations: if ((a; &); �) 2 Q

A

�

then for ea
h real-time 
onstraints �

I

�

1

, �

I

�

1

2 a i� (x

A

�

1

2 I) 2 �,

and similarly for the future real-time operators: for ea
h real-time


onstraints �

I

�

1

, �

I

�

1

2 a i� (y

A

�

1

2 I) 2 �. Again, it is routine

to prove that the 
onstru
ted automaton A

�

a

epts the right 
oating

language.

2
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As the re
ursive event-
lo
k automata subsume the formalisms that de-

�ne the 
ounter-free real-time !-regular languages, we propose to 
all the

languages identi�ed by re
ursive event-
lo
k automata as follows:

De�nition 4.64 The sets of timed state sequen
es de�nable by the for-

malisms of re
ursive event-
lo
k automata form the 
lass of real-time !-

regular languages.

Note that the last theorem and theorem 4.11, allow us to derive the

following 
orollary:

Corollary 4.65 (EventClo
kTA � REventClo
kTA) The 
lass of re
ursive

event-
lo
k automata is stri
tly more expressive that the 
lass of proposi-

tional event-
lo
k automata. 2

From the base 
ase of the last proof, we 
an see that if p in not real-time


onstrained in � then p does not appear in the subautomata of A

�

.

Lemma 4.66 (Not Real-Time Constrained Propositions) Let � be an

EventClo
kTL formula and p a proposition of � that does not appear in

the s
ope of a real-time operator (�;�) then we 
an 
onstru
t an MEvent-

Clo
kTA A

�

su
h that (i) FloatLang(A

�

) = FloatLang(�) and (ii) p does not

appear in the proposition used by subautomata of A

�

.

We will use this property to determine how to introdu
e se
ond-order

quanti�
ation within real-time logi
s in the following se
tion.

5 Adding Counting and Beyond

In this se
tion, we show how to 
lose the gap between the 
ounter-free real-

time regular languages identi�ed in se
tion 3, and the (
ounter) real-time

regular languages identi�ed in the se
tion 4. We will show that there are

two ways to bridge this expressiveness gap.

The �rst way, is to add automaton operators to the real-time logi
s

EventClo
kTL andMetri
IntervalTL, giving respe
tively, E-EventClo
kTL and

E-Metri
IntervalTL. This is very similar to the situation in the temporal for-

malisms where it has been shown in [Wol83℄ that LTL 
an be extended with

B�u
hi automata operators giving the logi
 E-TL whi
h is able to express,

in 
ontrast with LTL, all regular languages. The only di�eren
e is that we

need 
oating automata here be
ause we must be able to look in the past.

So E-EventClo
kTL and E-Metri
IntervalTL de�ne exa
tly the same 
lass of

real-time languages than the re
ursive event-
lo
k automata.

The se
ond way 
onsists of adding se
ond-order quanti�
ation to Event-

Clo
kTL, Metri
IntervalTL and MinMaxML

1

. But here the situation, surpris-

ingly, is very di�erent from the situation in untimed languages. In untimed
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languages, se
ond-order quanti�
ation 
an be added without restri
tion and


lose the gap between 
ounter-free and 
ounter regular languages. In real-

time, we will see that adding unrestri
ted se
ond-order quanti�
ation leads

to a fully unde
idable formalism: neither satis�ability, nor validity are de-


idable, and the resulting formalisms are stri
tly more expressive than timed

automata. But we will show that if we slightly restri
t the use of se
ond-order

quanti�
ation, we obtain fully de
idable formalisms 
alled Q-EventClo
kTL,

Q-Metri
IntervalTL and MinMaxML

2

. Interestingly, those three formalisms

de�ne exa
tly the 
lass of 
ounter real-time regular languages as re
ursive

event-
lo
k automata.

We will show that the results that we have obtained are sharp in the sense

that small relaxations of the synta
ti
al restri
tions that we have imposed to

our formalisms either lead to formalisms that are as expressive as timed au-

tomata, or to fully unde
idable formalisms. In parti
ular, we will show that

only adding outermost se
ond-order quanti�
ation, 
alled here proje
tion, to

all the fully de
idable formalisms previously de�ned, leads to formalisms as

expressive as timed automata and have thus a non de
idable validity prob-

lem. As all those formalisms de�ne the same 
lass of real-time languages,

we 
all this 
lass \proje
ted real-time languages regular languages". We also

study two other relaxations that lead to fully unde
idable formalisms.

5.1 Adding Ability to Count

5.1.1 Adding Automata Operators

In this se
tion, we give the de�nition of the syntax and semanti
s of the

real-time logi
s EventClo
kTL andMetri
IntervalTL extended with monitored


oating automata operators (or equivalently add 
oating automata instead

of their monitored version).

De�nition 5.1 (E-EventClo
kTL-Syntax) The formulas of the extended

event 
lo
k temporal logi
 E-EventClo
kTL are de�ned as for EventClo
kTL,

see de�nition 3.16, with the following additional 
lause:

� ::= A(�

1

; : : : ; �

n

)

where A = (Q;Q

0

; Q

M

; Æ;�; �;Q

F

) is a monitored 
oating automaton with

� = f�

1

; �

2

; : : : ; �

n

g is the alphabet of A, � : Q! � is the labeling fun
tion

that labels ea
h lo
ation of A with a E-EventClo
kTL formula, other elements

are as for monitored 
oating automata, see de�nition 4.23. 2

We de�ne the semanti
s of the automata operators as follows:

De�nition 5.2 (E-EventClo
kTL-Semanti
s) Let � be an E-EventClo
kTL

formula and let � be a timed state sequen
e whose propositional symbols


ontain all propositions that o

ur in �. The formula � holds at time t 2 R+

of �, denoted (�; t) j= �, a

ording to the following de�nition:
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For the operators of the logi
 EventClo
kTL, see de�nition 3.17;

(�; t) j= A(�

1

; �

2

; : : : ; �

n

) i� there is an in�nite t-monitored run

� of A on � that respe
ts:

(1) Covering, Start, Conse
ution, Monitoring and

A

eptan
e are as for monitored 
oating au-

tomata, see de�nition 4.24;

(2) Constraint: for all t 2 R+

, (�; t) j= �(�(t));

2

Let us now turn to the extension of Metri
IntervalTL.

De�nition 5.3 (E-Metri
IntervalTL-Syntax) The formulas of the extended

metri
 interval temporal logi
 E-EventClo
kTL are de�ned as forMetri
IntervalTL,

see de�nition 3.9, with the following additional 
lause:

� ::= A(�

1

; : : : ; �

n

)

where A = (Q;Q

0

; Q

M

; Æ;�; �;Q

F

) is a monitored 
oating automaton where

� = f�

1

; �

2

; : : : ; �

n

g is the alphabet of A, � : Q ! � is the labeling fun
-

tion that labels ea
h lo
ation of A with a E-Metri
IntervalTL formula, other

elements are as for monitored 
oating automata, see de�nition 4.23. 2

We de�ne the semanti
s of the automata operators as follows:

De�nition 5.4 (E-Metri
IntervalTL-semanti
s) Let � be an E-Metri
IntervalTL

formula and let � be a timed state sequen
e whose propositional symbols


ontain all propositions that o

ur in �. The formula � holds at time t 2 R+

of �, denoted (�; t) j= �, a

ording to the following de�nition:

For the operators of the logi
Metri
IntervalTL, see de�nition 3.11;

(�; t) j= A(�

1

; �

2

; : : : ; �

n

) i� there is an in�nite t-monitored run

� of A on � that respe
ts:

(1) Covering, Start, Conse
ution, Monitoring, A
-


eptan
e are as for monitored 
oating automata,

see de�nition 4.24;

(2) Constraint: for all t 2 R+

, (�; t) j= �(�(t));

2

We will study the expressiveness and de
idability results of those logi
s

in the following se
tions.
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5.1.2 Adding Se
ond Order Quanti�
ation

The quanti�ed temporal logi
s Q-EventClo
kTL and Q-Metri
IntervalTL are

de�ned by adding se
ond order quanti�
ation to EventClo
kTL andMetri
In-

tervalTL in a restri
ted way.

De�nition 5.5 (Q-EventClo
kTL-Syntax) The formulas of the quanti�ed

event 
lo
k temporal logi
 Q-EventClo
kTL are de�ned as for EventClo
kTL,

see de�nition 3.16, with the following additional 
lause:

� ::= 9p �  

where p is a proposition whi
h, inside the formula  , does not o

ur within

the s
ope of a history or prophe
y operator. 2

We now de�ne the semanti
s of the additional 
lause:

De�nition 5.6 (Q-EventClo
kTL-Semanti
s) Let � be an Q-EventClo
kTL

formula and let � be a timed state sequen
e whose propositional symbols


ontain all propositions that o

ur freely in �. The formula � holds at time

t 2 R+

of �, denoted (�; t) j= �, a

ording to the following de�nition:

For the operators of the logi
 EventClo
kTL, see de�nition 3.17;

(�; t) j= 9p � � i� there is a fpg-extension of �, noted �

p

, su
h

that (�

p

; t) j= �;

2

Similarly, we de�ne the se
ond order quanti�
ation extension ofMetri
In-

tervalTL as follows:

De�nition 5.7 (Q-Metri
IntervalTL-Syntax) The formulas of the quan-

ti�ed metri
 interval temporal logi
 E-Metri
IntervalTL are de�ned as for

Metri
IntervalTL, see de�nition 3.9, with the following additional 
lause:

� ::= 9p �  

where p is a proposition whi
h, inside the formula  , does not o

ur within

the s
ope of a real-time operator with interval di�erent from (0;1). 2

We now de�ne the semanti
s of the additional 
lause:

De�nition 5.8 (Q-Metri
IntervalTL-Semanti
s) Let � be anQ-Metri
IntervalTL

formula and let � be a timed state sequen
e whose propositional symbols


ontain all propositions that o

ur freely in �. The formula � holds at time

t 2 R+

of �, denoted (�; t) j= �, a

ording to the following de�nition:

For the operators of the logi
Metri
IntervalTL, see de�nition 3.11;

(�; t) j= 9p � � i� there is a fpg-extension of �, noted �

p

, su
h

that (�

p

; t) j= �;
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2

Similarly, we introdu
e se
ond-order quanti�
ation in the real-time monadi


theory that we have de�ned in se
tion 3.4.

De�nition 5.9 (MinMaxML

2

-Syntax) The formulas of the Se
ond-Order

Real-Time Monadi
 Logi
 over the Reals MinMaxML

2

are de�ned as for

MinMaxML

1

, de�nition 3.20, with the following additional 
lause:

� ::= 9p �	

where p is a monadi
 predi
ate whi
h, inside the formula 	, does not o

ur

within the s
ope of a real-time quanti�er Min;Max. 2

The semanti
s of the additional 
lause is as usual:

De�nition 5.10 (MinMaxML

2

-Semanti
s) Let � be an MinMaxML

2

for-

mula and let � be a timed state sequen
e whose propositional symbols 
on-

tain all propositions that o

ur freely in �. The formula � holds in the pair

(�; �), denoted (�; �) j= �, a

ording to the following de�nition:

For the operators and terms of the logi
 MinMaxML

1

, see de�ni-

tion 3.21 and de�nition 3.22;

(�; �) j= 9p � � i� there is a fpg-extension of �, noted �

p

, su
h

that (�

p

; �) j= �;

2

5.1.3 Expressiveness: Equivalen
e Results

From the theorem 3.38 and the way we have de�ned E-EventClo
kTL and

E-Metri
IntervalTL, we have the following 
orollary:

Corollary 5.11 (E-EventClo
kTL = E-Metri
IntervalTL) The logi
s E-EventClo
kTL

and E-Metri
IntervalTL are equivalently expressive.

Similarly, we obtain the following 
orollary forQ-EventClo
kTL, Q-Metri
IntervalTL

and MinMaxML

2

:

Corollary 5.12 (Q-EventClo
kTL = Q-Metri
IntervalTL = MinMaxML

2

) The

logi
s Q-EventClo
kTL, Q-Metri
IntervalTL and MinMaxML

2

are equivalently

expressive.

So, what will be proved forQ-EventClo
kTL, 
an be derived forQ-Metri
IntervalTL

and for MinMaxML

2

.

Let us now study the relation that exists between our quanti�ed logi
s

and the formalisms of re
ursive event-
lo
k automata:
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Lemma 5.13 (REventClo
kTA � Q-EventClo
kTL) For every REventClo
kTA

A, we 
an 
onstru
t a 
ongruent Q-EventClo
kTL formula �

A

, that is for ev-

ery TSS �, every time t 2 R+

: A

ept

A

(�; t) i� (�; t) j= �

A

.

Proof. Using the equivalen
e result for REventClo
kTA and MEventClo
kTA

given by theorem 4.28, we 
an show that for everyMEventClo
kTA A, we 
an


onstru
t a 
ongruent Q-EventClo
kTL formula �

A

. We reason by indu
tion

on the level of the MEventClo
kTA A.

Base 
ase. The automaton A = (Q;Q

0

; Q

M

; Æ;P; �;Q

F

) is a monitored


oating automata, i.e. level(A) = 0. In that 
ase, the formula �

A

is 
on-

stru
ted from the following formulas:

� let Controle be the following propositional formula:

W

q2Q

at

q

, where _

denotes an ex
lusive or and the proposition at

q

intuitively means that

the 
ontrol resides in lo
ation q. Controle means that at ea
h time

during a run, the 
ontrol of the automaton resides in one and only one

lo
ation.

� let Init be the following formula:

:⊖> !
W

q2Q

0

at

q

that expresses the initially (:⊖>) the 
ontrol of the automaton must

reside in an initial lo
ation;

� let Transition be the following formula:

V

q2Q

at

q

! 1.^ at

q

W

W

(q;q

2

)2Æ

at

q

2

2.^ at

q

Z

W

(q

2

;q)2Æ

at

q

2

that expresses the transition relation.

� let Monitoring be the following formula:

W

q2Q

M

at

q

that is true when the 
ontrol of the automaton is in a monitored lo
a-

tion;

� let Labelling be the following formula:

V

q2q

at

q

! (�(q))

T

where (�(q))

T

is as follows:

V

 2�(q)

 

T

^

V

 2Limit(P)n�(q)

: 

T
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and:

{ (p)

T

= p for p 2 P;

{ (

�!

p )

T

= p;

{ (

 �

p )

T

= ⊖p;

{ (>)

T

= >;

{ (

�!

> )

T

= >;

{ (

 �

> )

T

= ⊖>.

� let A

eptan
e be the following formula: for the generalized B�u
hi

a

eptan
e Q

F

= fF

1

; : : : ; F

n

g:

V

F

i

2F

2♦
W

q2F

i

at

q

The formula �

A

that 
orresponds to the monitored 
oating automaton A is:

9at

q

0

; : : : ; at

q

n

: 1.^ ⊟Control ^2Control ^ Control

2.^ ♦Init

3.^ ⊟Transition ^2Transition ^ Transition

4.^ Monitoring ⊟ Labeling ^2Labeling ^ Labeling

5.^ A

eptan
e

Indu
tion 
ase. By indu
tion hypothesis, for every sub-automaton B 2

SUB(A), we are able to 
onstru
t a 
ongruent formula �

B

. Let us show that

we 
an do it for A too. The only di�eren
e between an MEventClo
kTA and

a monitored 
oating automata is the ability of MEventClo
kTA to use 
lo
k


onstraints in their labeling fun
tion. We de�ne the fun
tion T that given a

label � of A, return the right EventClo
kTL formula. The label � is a set of

literals, more pre
isely, � � Limit(P

A

[A

A

). The 
onstru
tion is as for the

base 
ase, we only have to show how to deal with atomi
 
lo
k 
onstraints.

We treat atomi
 real-time 
onstraints as follows:

�  = y

B

� 
 then  

T

= �

�


�

B

;

�  = x

B

� 
 then  

T

= �

�


�

B

;

By examining the 
onstru
tion above, it is easy to see that the existentially

quanti�ed proposition, i.e. at

q

0

; : : : ; at

q

n

do not appear in the s
ope of a

real-time operator, so the formula �

A

is in Q-EventClo
kTL. 2

We now prove the reverse lemma:

Lemma 5.14 (Q-EventClo
kTL � REventClo
kTA) For every Q-EventClo
kTL

formula �, we 
an 
onstru
t a 
ongruent REventClo
kTA automaton A

�

, that

is for every TSS �, every time t 2 R+

: A

ept

A

�

(�; t) i� (�; t) j= �.
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Proof. By theorem 4.28, we 
an 
onsider monitored re
ursive event 
lo
k

automata in the proof. In the proof of lemma 4.63, we have shown that for

every EventClo
kTL formula �, we 
an 
onstru
t a 
ongruentMEventClo
kTA

A

�

, from that proof, it 
an easily be shown that MEventClo
kTA are 
losed

under all EventClo
kTL operators. Further, in lemma 4.52 it has been shown

that MEventClo
kTA are partially 
losed under proje
tion: a proposition

that does not appear in a sub-automaton 
an be proje
ted. So as quanti�ed

propositions do not appear, by de�nition, in the s
ope of real-time operators,

they do not appear into a sub-automaton, see lemma 4.63, and thus 
an be

proje
ted. 2

From the two previous lemmas and 
orollary 5.12, we obtain the following

theorem:

Theorem 5.15 The logi
s Q-EventClo
kTL, Q-Metri
IntervalTL andMinMaxML

2

have the same expressive power as REventClo
kTA automata. 2

And thus, as we have translation pro
edures between those formalisms,

we have:

Theorem 5.16 The satis�ability problems for Q-EventClo
kTL, Q-Metri
IntervalTL

and MinMaxML

2

are de
idable. 2

Sin
e already the untimed quanti�ed temporal logi
Q-TL is non-elementary [Sis83℄,

so are the satis�ability problems for Q-EventClo
kTL andQ-Metri
IntervalTL.

Theorem 5.17 The satis�ability problems for Q-EventClo
kTL, Q-Metri
IntervalTL

and MinMaxML

2

are NonElem. 2

Let us now turn to the logi
s E-EventClo
kTL and E-Metri
IntervalTL.

Again, by theorem 3.37 and the de�nition of E-EventClo
kTL and E-Metri
IntervalTL,

we have the following 
orollary:

Corollary 5.18 (E-EventClo
kTL = E-Metri
IntervalTL) The logi
s E-EventClo
kTL

and E-Metri
IntervalTL are equivalently expressive. 2

So, what will be proved for E-EventClo
kTL, 
an be derived for E-Metri
IntervalTL.

Lemma 5.19 (E-EventClo
kTL � REventClo
kTA) For every E-EventClo
kTL

formula �, we 
an 
onstru
t a 
ongruent REventClo
kTA automaton A

�

, that

is for every TSS �, every time t 2 R+

: A

ept

A

�

(�; t) i� (�; t) j= �.

Proof. Again, thanks to the theorem 4.28 we 
an show that E-EventClo
kTL �

MEventClo
kTA. We already know that MEventClo
kTA are 
losed under all

EventClo
kTL operators. With an adaptation of the te
hniques of [SVW85℄

(see also se
tion 4.5) it 
an be shown that MEventClo
kTA are 
losed under

monitored 
oating automata operators. 2
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The other dire
tion is trivial:

Lemma 5.20 (REventClo
kTA � E-EventClo
kTL) For every REventClo
kTA

automaton A

�

, we 
an 
onstru
t a 
ongruent E-EventClo
kTL formula �,

that is for every TSS �, every time t 2 R+

: (�; t) j= � i� A

ept

A

�

(�; t).

Thus the two formalisms are equally expressive.

Theorem 5.21 The logi
 E-EventClo
kTL and automata REventClo
kTA

are equally expressive.

And thus,

Theorem 5.22 (All Equivalent) The logi
s E-EventClo
kTL, Q-EventClo
kTL,

E-Metri
IntervalTL, Q-Metri
IntervalTL and MinMaxML

2

are all equivalent in

expressive power to the formalisms of REventClo
kTA, and thus de�ne the

(
ounter) real-time regular languages. 2

As we have translation pro
edure between those formalisms, we have

that:

Theorem 5.23 (E-EventClo
kTL and E-Metri
IntervalTL-De
idability) The

logi
s E-EventClo
kTL and E-Metri
IntervalTL are de
idable. 2

Further, it 
an be shown that:

Theorem 5.24 (E-EventClo
kTL and E-Metri
IntervalTL-Complexity) The

satis�ability problems for E-EventClo
kTL and E-Metri
IntervalTL

0;1

are 
om-

plete for Pspa
e. The satis�ability problem for E-Metri
IntervalTL is 
om-

plete for Expspa
e. 2

5.2 Proje
ted Regular Real-Time Languages

In this se
tion, we study the impa
t, in term of de
idability and expressivity,

of adding proje
tion, i.e. outermost existential quanti�
ation, to the fully

de
idable that we have de�ned previously.

We will detail the introdu
tion of proje
tion into the logi
 of event 
lo
ks

giving its proje
ted version P-EventClo
kTL, the propositional (non re
ur-

sive) event-
lo
k automaton giving P-EventClo
kTA and the re
ursive event-


lo
k automata giving P-REventClo
kTA. Using equivalen
e results that we

have presented above, we derive impli
itly all the 
orollaries for the other

formalisms.
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5.2.1 Proje
ted Event Clo
k Temporal Logi


We de�ne the syntax and semanti
s of this logi
 as follows:

De�nition 5.25 (P-EventClo
kTL-Syntax) The formulas of the proje
ted

event 
lo
k temporal logi
 P-EventClo
kTL are de�ned by the following 
lause:

9p

1

; : : : ; p

n

� �

where � is an EventClo
kTL-formula, see de�nition 3.16, and p

1

; : : : ; p

n

are

propositional symbols. 2

Let us note that, in 
ontrast with the de�nition of Q-EventClo
kTL, we

allow in P-EventClo
kTL that quanti�ed propositions appear in the s
ope

of real-time operators. But on the other hand, quanti�
ation is only al-

lowed as the outermost operator. The semanti
s of se
ond-order existential

quanti�
ation is the expe
ted one:

De�nition 5.26 (P-EventClo
kTL-Semanti
s) Let � be an P-EventClo
kTL

formula and let � be a timed state sequen
e whose propositional symbols


ontain all propositions that o

ur freely in �. The formula � holds at time

t 2 R+

of �, denoted (�; t) j= �, a

ording to the following de�nition:

For the operators of the logi
 EventClo
kTL, see de�nition 3.17;

(�; t) j= 9p

1

; : : : ; p

n

� � i� there is a fp

1

; : : : ; p

n

g-extension of �,

noted �

fp

1

;:::;p

n

g

, su
h that (�

fp

1

;:::;p

n

g

; t) j= �;

2

The an
hored language of the P-EventClo
kTL formula 9p

1

; : : : ; p

n

� �

has the following relation with the an
hored language of the EventClo
kTL

formula �:

Lemma 5.27 If P is the set of propositions that appear in � 2 EventClo
kTL

and P

0

= P n fp

1

; : : : ; p

n

g then An
Lang(9p

1

; : : : ; p

n

� �) = f� # P

0

j � 2

An
Lang(�)g. 2

5.2.2 Proje
ted (Propositional) Event-Clo
k Automaton

The de�nitions for proje
ted (propositional) event-
lo
k automata are ob-

tained in a similar way:

De�nition 5.28 (P-EventClo
kTA-Syntax) A proje
ted (propositional) event-


lo
k automaton is a pair (A; fp

1

: : : p

n

g) that 
onsists of a (propositional)

event-
lo
k automaton A and a set of propositions fp

1

: : : p

n

g. 2

89



De�nition 5.29 (P-EventClo
kTA-Semanti
s) The an
hored language de-

�ned by a P-REventClo
kTA (A; fp

1

: : : p

n

g), with A de�ned on the set of

propositions P, is the (P n fp

1

: : : p

n

g)-proje
tions of TSS that belongs to

the an
hored language of A, that is, if we note P

0

= P n fp

1

; : : : ; p

n

g, we

have An
Lang((A; fp

1

: : : p

n

g)) = f� # P

0

j � 2 An
Lang(A)g. 2

5.2.3 Proje
ted Re
ursive Event-Clo
k Automaton

We now turn to the de�nition of proje
tion into re
ursive event 
lo
k au-

tomata.

De�nition 5.30 (P-REventClo
kTA-Syntax) A proje
ted re
ursive event-


lo
k automaton is a pair (A; fp

1

: : : p

n

g) that 
onsists of a re
ursive event-


lo
k automaton A and a set of propositions fp

1

: : : p

n

g. 2

De�nition 5.31 (P-REventClo
kTA-Semanti
s) The an
hored language de-

�ned by a P-REventClo
kTA (A; fp

1

: : : p

n

g), with A de�ned on the set of

propositions P, is the (P n fp

1

: : : p

n

g)-proje
tions of TSS that belongs to

the an
hored language of A, that is, if we note P

0

= P n fp

1

; : : : ; p

n

g, we

have An
Lang((A; fp

1

: : : p

n

g)) = f� # P

0

j � 2 An
Lang(A)g. 2

5.2.4 Timed Automata

We brie
y re
all here the de�nition of timed automata. See [AD94℄ for a


omplete study of this formalism.

De�nition 5.32 (Continuous Timed Automaton) A 
ontinuous timed

automaton is a tuple A = (Q;Q

0

; C;E;P; �

p

; �




; Q

F

) where:

� Q is a �nite set of lo
ations;

� Q

0

� Q is the subset of starting lo
ations;

� C is a �nite set of 
lo
ks;

� E � Q�2

C

�Q a set of edges. An edge (q

1

; &; q

2

) represents a transition

from lo
ation q

1

to lo
ation q

2

, & is the subset of 
lo
ks that are reset

when 
rossing the edge;

� P is a �nite set of propositions;

� �

p

: Q! 2

P

is a labeling fun
tion whi
h labels ea
h lo
ation with the

set of atomi
 propositions that are true in that lo
ation;

� �




: Q! �(C) is a labeling fun
tion whi
h assigns to ea
h lo
ation a


onstraint of �(C) on the value of 
lo
ks that should be veri�ed when

staying in that lo
ation;
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� Q

F

is a set of a

epting lo
ations (B�u
hi a

eptan
e 
ondition).

2

De�nition 5.33 (TA-Timed Run) A 
ontinuous timed run of a 
ontinu-

ous timed automaton A is an in�nite sequen
e

� = (q

0

; I

0

)!

&

0

(q

1

; I

1

)!

&

1

: : : (q

n

; I

n

)!

&

n

: : :

� q

i

are lo
ations;

� I

0

I

1

� � � I

n

� � � is a sequen
e of intervals that partitions R+

;

� &

i

� C are sets of 
lo
ks (to reset).

2

De�nition 5.34 (TA-Clo
k Value) The value of a 
lo
k x 2 C along a


ontinuous timed run � = (q

0

; I

0

)!

&

0

(q

1

; I

1

)!

&

1

� � � , at time t 2 I

i

, noted

�(�; t)(x), is de�ned as follows:

�(�; t)(x) =

�

t� r(I

j

) if x 2 &

j

and 8k � j < k < i : x 62 &

k

t if 8j : 0 � j < i : x 62 &

j

We use �(�; t) to denote the 
lo
k valuation at time t along �. 2

De�nition 5.35 (Clo
k Constraints-Semanti
s) A 
lo
k 
onstraint  

is satis�ed by a 
lo
k valuation �, noted � j=  , a

ording to the following

rules:

� j= x � 
 i� �(x) � 
, with �2 f<;�;=;�; >g;

� j= : i� � 6j=  ;

� j=  

1

_  

2

i� � j=  

1

or � j=  

2

.

2

De�nition 5.36 (TA-A

epted Run) A 
ontinuous timed run � = (q

0

; I

0

)!

&

0

(q

1

; I

1

)!

&

1

: : : (q

n

; I

n

)!

&

n

: : : is a

epted by the 
ontinuous timed automa-

ton A = (Q;Q

0

; C;E;P; �

p

; �




; Q

F

) when reading the TSS � = (s; I) i� �

respe
ts the following requirements:

� Starting. The �rst lo
ation in � is a starting lo
ation of A, that is

q

0

2 Q

0

;

� Conse
ution. The 
ontinuous timed run � respe
ts the transition rela-

tion of A, i.e. for all positions i � 0, we have that either (q

i

; &

i

; q

i+1

) 2

E, or q

i

= q

i+1

and &

i

= ; (stuttering steps are allowed);
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� Timing 
onstraints. The timing 
onstraints about 
lo
ks are respe
ted

along �, that is, for every position i � 0, for all time t 2 I

i

: �(�; t) j=

�




(q

i

);

� Adequation. The labels along the 
ontinuous timed run � are in ade-

quation with the truth value of the propositions along the TSS �, that

is for all time t 2 R+

, (�; t) j= �

p

(�(t));

Further, we say that � is a

epting if there exists in�nitely many positions

i � 0 su
h that q

i

2 Q

F

. We note A

ept

A

(�) the fa
t that A has an

a

epted 
ontinuous timed run on �. 2

De�nition 5.37 The an
hored language of a 
ontinuous TA A is the set of

TSS � on whi
h A has an a

epted run, i.e. An
Lang(A) = f� 2 TSS(2

P

A

) j

A

ept

A

(�)g. 2

Timed automata are 
losed under positive boolean operation but not

under negation.

Theorem 5.38 (Closure under Union and Interse
tion) [AD94℄ Timed

automata are 
losed under union and interse
tion. 2

Theorem 5.39 (Non-Closure under Complement) The formalism of

timed automata is not 
losed under 
omplement. 2

The emptiness problem of timed automata is de
idable, on the other

hand, its universality problem is unde
idable.

Theorem 5.40 (TA-Emptiness) [AD94℄ The emptiness problem for timed

automata is PSpa
e-Complete. 2

But the universality problem, that is given a timed automaton, deter-

mine if it a

epts all possible timed tra
es, is unde
idable.

Theorem 5.41 (TA-Universality) [AD94℄ The problem of universality

for timed automaton is unde
idable. 2

5.2.5 Expressiveness Equivalen
e Result

In this paragraph, we show that adding proje
tion to the fully de
idable for-

malism is powerful. In fa
t, we will show that even if added to propositional

event-
lo
k automata we obtain a formalism whi
h is expressively equivalent

to timed automata. The same o

urs with all the other formalisms that we

have de�ned.

We now prove that adding proje
tion to the logi
 EventClo
kTL extends

is expressive power in su
h a way that P-EventClo
kTL at least as expressive

as TA:
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Lemma 5.42 (TA � P-EventClo
kTL) For every 
ontinuous timed automa-

ton A, we 
an 
ompute a proje
ted event 
lo
k temporal formula �

A

that de-

�nes exa
tly the an
hored timed language de�ned by A, that is, An
Lang(�) =

An
Lang(A)

Proof. Let A = (Q;Q

0

; C;E;P; �

p

; �




; Q

F

) be the 
ontinuous timed au-

tomaton for whi
h we want to 
onstru
t the P-EventClo
kTL formula �

A

.

We 
onstru
t �

A

as follows:

� For ea
h lo
ation q 2 Q we introdu
e the proposition at

q

to express

that the 
ontrol of automaton resides in lo
ation q. During a run the


ontrol of an timed automaton A resides in one and only one lo
ation

at a given time. This is expressed by the following formula:

F

Q

� 2

W

q2Q

at

q

with Q = fq

1

; q

2

; : : : ; q

n

g

� The initial 
ondition is expressed by the following formula:

F

Q

0

�

W

q2Q

0

at

q

� the propositional labeling fun
tion �

p

is translated as follows:

F

P

� 2

V

q2q

(at

q

!

V

p2�

p

(q)

p ^

V

p2Pn�

p

(q)

:p)

� The resetting of 
lo
ks 
an be expressed with the help of existentially

quanti�ed variables. For ea
h 
lo
k 


i

2 C, we asso
iate a proposition

that we note r




i

. This proposition r




i

will be true when and only

when the 
lo
k 


i

is reset. By de�nition of timed automata, 
lo
ks are

reset when 
rossing edges, and impli
itly at the initial moment. For

ea
h edge (q

i

; �

r

; q

j

) of the automaton, we introdu
e the proposition


ross

(q

i

;�

r

;q

j

)

that is true i� the automaton 
rosses the edge between

lo
ation q

i

and lo
ation q

j

.

F

R

1

� 2

V

(q

i

;�

r

;q

j

)2E


ross

(q

i

;�

r

;q

j

)

$ (at

q

i

^ al

q

j

) _ (at

q

j

^⊖al
q

i

)

F

R

2

� 2[

V

(q

i

;�

r

;q

j

)2E

(
ross

(q

i

;�

r

;q

j

)

!

V


2�

r

r




)℄ ^ :⊖> !
V


2C

r




when the edge (q

i

; �

r

; q

j

) is 
rossed, the 
lo
ks that de
orates the edge

are reset (
lo
ks are only reset when 
rossing edges that are labeled

by the 
lo
k and initially).

F

R

3

� 2[

V


2C

r




!

W

(q

i

;
;q

j

)2R(
)


ross

(q

i

;�

r

;q

j

)

_ :⊖>℄
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where R(
) is the set of edges where the 
lo
k 
 is reset, i.e. R(
) =

f(q

i

; �

r

; q

j

) j (q

i

; �

r

; q

j

) 2 E ^ 
 2 �

r

g.

F

R

� F

R

1

^ F

R

2

^ F

R

3

� The 
onse
ution rule is expressed by the following formula:

F

E

� 2

V

q2Q

(at

q

! at

q

W

W

q

0

2S

q

at

q

0

)

where S

q

is the set of lo
ations that are su

essors of q in A, i.e.

S

q

= fq

0

j(q; q

0

) 2 Eg;

� The semanti
s of the time 
onstraint labeling fun
tion �




is translated

as follows:

F

C

� 2

V

q2Q

(at

q

! T (�

C

(q)))

where T is de�ned as:

{ T ( 

1

_  

2

) = T ( 

1

) _ T ( 

2

)

{ T (: ) = :T ( )

{ T (x � 
) = �

�


r

x

� The a

eptan
e 
ondition 
onstraint is de�ned as follows:

F

Q

F

�

V

F

i

2Q

F

2♦
W

q2F

i

at

q

The P-EventClo
kTL formula whose an
hored language is exa
tly the

timed state sequen
es a

epted by A is:

9A;C;R(F

L

^ F

L

0

^ F

E

^ F

�

P

^ F

R

^ F

�

C

^ F

F

)

where :

� A = fat

q

jq 2 Qg;

� C = f
ross

(q

i

;�

r

;q

j

)

j(q

i

; �

r

; q

j

) 2 Eg;

� R = fr




j
 2 Cg.

2
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We now take a look at the other dire
tion:

Lemma 5.43 (P-EventClo
kTL � TA) For every proje
ted event 
lo
k tem-

poral formula  � 9p

1

; : : : ; p

n

��, we 
an 
ompute a timed automaton A

 

that

de�nes exa
tly the an
hored language de�ned by �, that is, An
Lang(A

 

) =

An
Lang( )

Proof. By theorem 3.33, we know that for every EventClo
kTL formula, we


an 
ompute an equivalent Metri
IntervalTL formula �

T

. By theorem ??,

we know that for this formula �

T

, we 
an 
onstru
t an equivalent timed

automaton A

�

T

whi
h is also equivalent to �. Finally, as timed automata are


losed under proje
tion, it follows that we 
an 
onstru
t a timed automata

for the P-EventClo
kTL formula 9p

1

; : : : ; p

n

�� simply by proje
ting p

1

; : : : ; p

n

in A

�

T

. 2

From the two previous lemmas, we derive the following theorem:

Theorem 5.44 (P-EventClo
kTL = TA) The formalisms of proje
ted event


lo
k temporal logi
 and timed automata are equally expressive to de�ne

an
hored languages.

Let us now turn to the 
hara
terization of the expressive power of the

proje
ted (propositional) event-
lo
k automata. First, we have the following

lemma:

Lemma 5.45 (P-EventClo
kTL � P-EventClo
kTA) For every proje
ted event


lo
k temporal formula 9p

1

; : : : ; p

n

� �, we 
an 
ompute a proje
ted proposi-

tional event-
lo
k automaton (A

�

; Q) that de�nes exa
tly the an
hored lan-

guage de�ned by �, that is, An
Lang((A

�

; Q)) = An
Lang(�).

Proof. In [RS97℄, it is shown that for every formula � 2 EventClo
kTL,

it is possible to 
onstru
t an propositional event-
lo
k automaton A

�

that

a

epts exa
tly the Hintikka sequen
es of �. Remember that Hintikka se-

quen
es are just H-extensions of TSS that belongs to the an
hored language

of � and the P-proje
tions of those TSS, where P is the set of proposi-

tions appearing in � are exa
tly the TSS that belongs to An
Lang(�). So

the following P-EventClo
kTA (A

�

;H[fp

1

; : : : ; p

n

g) is exa
tly the proje
ted

automaton we are looking for. 2

We now show that the formalism of proje
ted propositional event 
lo
k

automata de�nes an
hored languages that 
an be de�ned using timed au-

tomata:
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Lemma 5.46 (P-EventClo
kTA � TA) For every proje
ted propositional event-


lo
k automaton (A; fp

1

; : : : ; p

n

g), we 
an 
ompute a timed automaton B

that de�nes exa
tly the same an
hored language, that is, An
Lang((A; fp

1

; : : : ; p

n

g)) =

An
Lang(B).

Proof. In [AFH94℄, it is proved that for every propositional even-
lo
k au-

tomaton we 
an 
onstru
t a timed automaton that de�nes exa
tly the same

an
hored language. So for A, we 
an 
onstru
t an equivalent timed au-

tomaton C. By lemma ??, we know that we 
an 
onstru
t B form C by

proje
ting the set of propositions fp

1

; : : : ; p

n

g. 2

So we have the following 
orollary:

Corollary 5.47 The formalism of TA, P-EventClo
kTL, P-EventClo
kTA

are equally expressive to de�ne an
hored languages.

Finally, we turn to the expressiveness of proje
ted re
ursive event-
lo
k

automata:

Lemma 5.48 (P-REventClo
kTA � P-EventClo
kTA) For every proje
ted re-


ursive event-
lo
k automaton (A; fp

1

; : : : ; p

n

g), we 
an 
ompute a proje
ted

propositional event 
lo
k automaton (B;Q) that de�nes exa
tly the same

an
hored language, that is, An
Lang((A; fp

1

; : : : ; p

n

g)) = An
Lang((B;Q)).

Proof. First lemma 4.55 says that given an re
ursive event 
lo
k automa-

ton A, we 
an 
onstru
t a propositional event-
lo
k automaton C that a
-


epts exa
tly the timed Hintikka sequen
es of A. Let us note P

0

the set

of propositions used by B, we now that f� # P j � 2 An
Lang(B)g =

An
Lang(A), so the following proje
ted propositional event-
lo
k automa-

ton (B; (P

0

n P) [ fp

1

; : : : ; p

n

g) a

epts the desired an
hored language. 2

So, from the previous lemmas, we obtain the following lemma:

Theorem 5.49 All the formalisms TA, P-EventClo
kTA, P-REventClo
kTA

and P-EventClo
kTL de�ne the same 
lass of real-time languages.

As all those formalisms de�ne the same 
lass of languages, we give it a

name:

De�nition 5.50 The 
lass of real-time languages de�ned by TA, P-EventClo
kTA,

P-REventClo
kTA and P-EventClo
kTL are 
alled the proje
ted real-time reg-

ular languages.

The proof that the proje
ted formalisms are all equivalent to timed au-

tomata 
ontains an e�e
tive translation, giving their de
idability:
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Theorem 5.51 (Proje
tion and De
idability) The proje
ted formalisms

P-EventClo
kTA, P-REventClo
kTA and P-EventClo
kTL have de
idable de-


idable satis�ability (emptiness) problems and unde
idable validity (univer-

sality) problems.

Proof. The de
idability of satis�ability follows dire
tly, for ea
h proje
ted

formalisms, from the fa
t that existential quanti�
ation does not 
hange

satis�ability. The unde
idability of validity follows from the unde
idabil-

ity of the universality problem for timed automata, see theorem 5.41, and

the equivalen
e of expressive power of the proje
ted formalisms with timed

automata, see theorem 5.49. 2

5.3 Unde
idable Extensions

In this se
tion, we show that the result about de
idability and expressive-

ness that we have obtained in the previous se
tions are sharp in the sense

that if we liberalize the de�nitions of the previous formalisms we en
ounter

unde
idability problems.

First, in our se
ond-order formalismsMinMaxML

2

, respe
tively inQ-EventClo
kTL,

we have prohibited quanti�ed monadi
 predi
ates, respe
tively propositions,

from o

urring within the s
ope of Min or Max quanti�ers, respe
tively his-

tory or prophe
y operators. We de�ned the unrestri
ted MinMaxML

2

and

Q-EventClo
kTL as follows:

De�nition 5.52 (Unrestri
ted-Q-EventClo
kTL and MinMaxML

2

) The unrestri
ted-

Q-EventClo
kTL logi
 is obtained by adding (unrestri
ted) se
ond-order quan-

ti�
ation to EventClo
kTL and the unrestri
ted-MinMaxML

2

logi
 is obtained

by adding (unrestri
ted) se
ond-order quanti�
ation to MinMaxML

1

.

Obviously, we have the following lemma:

Lemma 5.53 The logi
 unrestri
ted-Q-EventClo
kTL 
ontains P-EventClo
kTL

and is 
losed under boolean operations. The logi
 unrestri
ted-MinMaxML

2


ontains P-MinMaxML

2

and is 
losed under boolean operations.

The restri
tion on the use of se
ond-order quanti�
ation is ne
essary for

de
idability. If, as seen above, we admit only outermost existential quanti�-


ation (proje
tion) over monadi
 predi
ates (propositions) that o

ur within

the s
ope of real-time operators, we obtain a positively de
idable formal-

ism (satis�ability is de
idable, but validity is not) whi
h is expressively

equivalent to timed automata. Consequently, if we admit full quanti�
a-

tion over monadi
 predi
ates (propositions) that o

ur within the s
ope of

real-time operators, then both satis�ability and validity are unde
idable, and
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the formalism is expressively equivalent to boolean 
ombinations of timed

automata.

Theorem 5.54 Formalisms that are able to express boolean 
ombinations

of proje
ted formalisms have unde
idable satis�ability and validity problems.

So, as unrestri
tedMinMaxML

2

andQ-EventClo
kTL allow the expression

of boolean 
ombinations of proje
ted timed regular languages, we have the

following theorem:

Theorem 5.55 The logi
s unrestri
ted-Q-EventClo
kTL and unrestri
ted-

MinMaxML

2

have unde
idable satis�ability and validity problems.

We now turn to the restri
tion that we impose on MinMaxML

1

formulas.

A fully unde
idable extension of MinMaxML

1

is obtained by relaxing the

restri
tion that in every formula of the form (Min t

1

)(t

1

> t

2

^ 	(t

1

)) �

(t

2

+ 
) or (Max t

1

)(t

1

< t

2

^ 	(t

1

)) � (t

2

� 
), the sub-formula 	(t

1

)


ontains no free o

urren
es of �rst-order variables other than t

1

. If we

suppress this restri
tion, it 
an be shown that the real-time temporal logi


Metri
TL 
an be embedded in MinMaxML

1

.

De�nition 5.56 (Unrestri
ted-MinMaxML

1

) The formulas of unrestri
ted-

MinMaxML

1

are obtained from relaxing the 
onstraints on the free variables

o

uring in the s
ope of Min�Max quanti�ers.

For this unrestri
ted version ofMinMaxML

1

, we have the following lemma:

Lemma 5.57 For every formula of Metri
TL there exists a 
ongruent for-

mula of MinMaxML

1

.

Proof. We simply show that we are able to express the ♦
=


operator of

Metri
TL (whi
h is suÆ
ient to obtain unde
idability), other 
onstru
ts of

the logi
 are easier. The formula ♦
=1

p of Metri
TL is expressed as follows

in unrestri
ted-MinMaxML

1

:

9t

2

� [Min

t

1

� (t

1

> t ^ t

1

= t

2

) = t+ 1℄ ^ p(t

2

)

In fa
t, 9t

2

�Min

t

1

� (t

1

> t^ t

1

= t

2

) = t+1 for
es t

2

to be equal to t+1. 2

Sin
e Metri
TL is unde
idable [AH93℄, so are the satis�ability and valid-

ity problems for unrestri
ted MinMaxML

1

.

Theorem 5.58 (Unde
idability) The satis�ability and validity problems

for unrestri
ted-MinMaxML

1

are unde
idable. 2
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6 Con
lusion

We have shown that EventClo
kTL, when evaluated in timed state sequen
es,

has exa
tly the same expressive power as Metri
IntervalTL. This ni
e result

is surprising be
ause EventClo
kTL and Metri
IntervalTL are rather di�erent

logi
s, that propose orthogonal restri
tions to rea
h de
idability: Event-

Clo
kTL allows pun
tuality 
onstraints but restri
ts real-time 
onstraints to

refer to the next (last) time a formula will be (was) true, whereas Metri
In-

tervalTL allows formulas to refer to any time where a formula will be true,

but disallows pun
tuality 
onstraints. In the pro
ess of proving the equiva-

len
e between the expressive powers of EventClo
kTL and Metri
IntervalTL,

we have also shown that the PSpa
e fragment of Metri
IntervalTL, that is

Metri
IntervalTL

0;1

, is expressively 
omplete. Those results have been re-

infor
ed by the de�nition of a real-time �rst-order monadi
 theory, 
alled

MinMaxML

1

, that identi�es exa
tly the same 
lass of real-time languages as

Metri
IntervalTL and EventClo
kTL. As two very di�erent logi
s and a 
las-

si
al theory identify the same 
lass of fully de
idable real-time languages,

we have proposed to 
all this 
lass of languages the \
ounter-free real-time

regular languages".

We have also shown that the expressive powers of EventClo
kTL and the

propositional event-
lo
k automata, as proposed in [AFH94℄, are in
ompa-

rable. To remedy this situation, we have proposed to generalize the 
on
ept

of event 
lo
k by allowing, re
ursively, automata as events. More pre
isely,

these automata reset a 
lo
k when they enter their monitored lo
ations. This

yields a formalism that we have 
alled the re
ursive event-
lo
k automata,

noted REventClo
kTA. These automata subsume the expressive power of the

logi
 EventClo
kTL, and keep all the ni
e properties of the propositional ver-

sion, namely: 
losure under all boolean operations and de
idability of both

the emptiness and universality problems. Further, we have shown that by

adding the ability to 
ount to the formalisms that identify the \
ounter-free

real-time regular languages", we obtain formalisms that re
ognize the same


lass of languages than our REventClo
kTA. So, we proposed to 
all this


lass of languages the \real-time regular languages". The introdu
tion of

se
ond-order quanti�
ation into real-time logi
s requires some 
are: se
ond-

order quanti�
ation 
an be used outside or inside real-time operators but

not through real-time operators. This is quite di�erent from the qualita-

tive 
ase, where no restri
tion on se
ond-order quanti�
ation is needed. We

have shown that this result is sharp in the sense that: �rst, it is exa
tly

what we need to bridge the gap between 
ounter-free and 
ounting real-time

regular languages, se
ond, even small relaxations of this restri
tion lead to

lose full de
idability and 
losure under negation. Finally, we have shown

that adding proje
tion, that is an outermost se
ond-order quanti�
ation, to


ounter-free or (
ounting) real-time regular languages, leads to formalisms

expressively equivalent to timed automata. Therefore, we proposed to 
all
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these languages, the \proje
ted real-time regular languages". This 
lass is

not 
losed under negation and the 
orresponding formalisms are only posi-

tively de
idable. All those results are summarized in the following tables:

Languages Temporal logi
s Monadi
 theories Finite automata

Fully de
idable

R-timed

1 
ounter-free Metri
IntervalTL =

!-regular EventClo
kTL MinMaxML

1

2 R-timed Q-Metri
IntervalTL =

!-regular Q-EventClo
kTL = MinMaxML

2

REventClo
kTA

E-Metri
IntervalTL =

E-EventClo
kTL

(proje
tion, or outermost existential quanti�
ation, is indi
ated by P-):

Positively de
idable

3 proje
tion-
losed P-EventClo
kTL P-MinMaxML

2

P-REventClo
kTA

R-timed !-regular = Ld

$

= TA
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