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1 Introduction

A run of a reactive system produces an infinite sequence of events. A prop-
erty of a reactive system, then, is an w-language containing the infinite
event sequences that satisfy the property. There is a very pleasant expres-
sive equivalence between modal logics, classical logics, and finite automata
for defining w-languages [Biic62, Kam68, GPSS80, Wol82]. Let LTL stand
for the propositional linear temporal logic with next and until operators,
and let Q-TL and E-TL stand for the extensions of LTL with propositional
quantifiers and grammar (or automata) connectives, respectively. Let MLy
and MLy stand for the first-order and second-order monadic theories of the
natural numbers with successor and comparison (also called S1S or the Se-
quential Calculus). Let BA stand for Biichi automata. Then we obtain the
following two levels of expressiveness:

| | Languages | Temporal logics | Monadic theories | Finite automata
1 counter-free w-reqular LTL ML,
2 w-reqular Q-TL = E-TL MLy BA

For example, the LTL formula O(p — {g), which specifies that every p event
is followed by a ¢ event, is equivalent to the ML; formula (V7)(p(i) — (35 >
i)q(j)) and to a Biichi automaton with two states. The difference between
the first and second levels of expressiveness is the ability of automata to
count. A counting requirement, for example, may assert that all even events
are p events, which can be specified by the Q-TL formula (3¢)(¢ A O(q <
O=q) A O(g — p)).

We say that a formalism is positively decidable if it is constructively
closed under positive boolean operations, and satisfiability (emptiness) is
decidable. A formalism is fully decidable if it is positively decidable and also
constructively closed under negation (complement). All of the formalisms in
the above table are fully decidable. The temporal logics and Biichi automata
are less succinct formalisms than the monadic theories, because only the
former satisfiability problems are elementarily decidable.

A run of a real-time system produces an infinite sequence of time-stamped
events. A property of a real-time system, then, is a set of infinite time-
stamped event sequences. We call such sets timed w-languages. If all
time stamps are natural numbers, then there is again a very pleasant ex-
pressive equivalence between modal logics, classical logics, and finite au-
tomata [AH93]. Specifically, there are two natural ways of extending tem-
poral logics with timing constraints. The Metric Temporal Logic MetricTL
(also called MTL [AH93]) adds time bounds to temporal operators; for ex-
ample, the MetricTL formula O(p — (—j5q) specifies that every p event is

followed by a g event such that the difference between the two time stamps
is exactly 5. The Clock Temporal Logic ClockTL (also called TPTL [AH94])



adds clock variables to LTL; for example, the time-bounded response re-
quirement from above can be specified by the ClockTL formula O(p — (z :=
0)0(¢ A = = 5)), where = is a variable representing a clock that is started
by the quantifier (z := 0). Interestingly, over natural-numbered time, both
ways of expressing timing constraints are equally expressive. Moreover, by
adding the ability to count, we obtain again a canonical second level of ex-
pressiveness. Let TimeFunctionMLR stand for the monadic theory of the
natural numbers extended with a unary function symbol that maps event
numbers to time stamps, and let TA (Timed Automata) be finite automata
with clock variables. In the following table, the formalisms are annotated
with the superscript N to emphasize the fact that all time stamps are natural
numbers:

| | Languages || Temporal logics | Monadic theories | Finite automata
N-timed
1 counter-free MetricTLY = ClockTLY TimeFunctionMLRll\I
w-reqular
2 N-timed Q-MetricTLY = Q-ClockTLY = | TimeFunctionMLR} TAY
w-reqular E-MetricTLY = E-ClockTLY

Once again, all these formalisms are fully decidable, and the temporal logics
and finite automata with timing constraints are elementarily decidable.

If time stamps are real instead of natural numbers, then the situation
seems much less satisfactory. Several positively and fully decidable for-
malisms have been proposed, but no expressive equivalence results were
known for fully decidable formalisms [AH92]. The previously known results
are listed in the following table, where the omission of superscripts indicates
that time stamps are real numbers:

| Temporal logics | Monadic theories | Finite automata
Fully decidable

MetricInterval TL [AFH96]
EventClockTL [RS97]

REventClockTA [AFH94]

Positively decidable
LTLT + TA [Wil94] | L4 [Wil94] | TA [ADY4]
Fully undecidable

MetricTL [AH93]
ClockTL [AHO4]

TimeFunctionMLR; [AH93]
TimeFunctionMLR,

On one hand, the class of Timed Automata is unsatisfactory, because over
real-numbered time it is only positively decidable: R-timed automata are
not closed under complement, and the corresponding temporal and monadic
logics (and regular expressions [?]) have no negation operator. On the other
hand, the classes of Metric and Clock Temporal Logics (as well as monadic



logic with a time function), which include negation, are unsatisfactory, be-
cause over real-numbered time their satisfiability problems are undecidable.
Hence several restrictions of these classes have been studied.

1. The first restriction concerns the style of specifying timing constraints
using time-bounded temporal operators. The Metric-Interval Logic
Metriclnterval TL (also called MITL [AFH96]) is obtained from MetricTL
by restricting the time bounds on temporal operators to nonsingular
intervals. For example, the MetricInterval TL formula O(p — Q46 9)
specifies that every p event is followed by a ¢ event such that the
difference between the two time stamps is at least 4 and at most 6.
The restriction to nonsingularity prevents the specification of the exact
real-numbered time difference 5 between events.

2. The second restriction concerns the style of specifying timing con-
straints using clock variables. The Event-Clock Logic EventClockTL
(also called SCL [RS97]) and Event-Clock Automata REventClockTA
are obtained from ClockTL and TA, respectively, by restricting the
use of clocks to refer to the times of previous and next occurrences of
events only. For example, if y, is a clock that always refers to the time
difference between now and the next ¢ event, then the EventClockTL
formula O(p — y, = 5) specifies that every p event is followed by a ¢
event such that the difference between time stamps of the p event and
the first subsequent ¢ event is exactly 5. A clock such as y,, which is
permanently linked to the next ¢ event, does not need to be started
explicitly, and is called an event clock. The restriction to event clocks
prevents the specification of time differences between a p event and
any subsequent (rather than the first subsequent) ¢ event.

Both restrictions lead to pleasing formalisms that are fully (elementarily) de-
cidable and have been shown sufficient in practical applications. However,
nothing was known about the relative expressive powers of these two inde-
pendent approaches, and so the question which sets of timed w-languages
deserve the labels “R-timed counter-free w-regular” and “R-timed w-regular”
remained open.

In this paper, we show that Metriclnterval TL and EventClockTL are equally
expressive, and by adding the ability to count, as expressive as REventClock TA.
This result is quite surprising, because (1) over real-numbered time, unre-
stricted MetricTL is known to be strictly less expressive than unrestricted
ClockTL [AH93], and (2) the nonsingularity restriction (which prohibits ex-
act time differences but allows the comparison of unrelated events) is very
different in flavor from the event-clock restriction (which allows exact time
differences but prohibits the comparison of unrelated events). Moreover,
the expressive equivalence of Metric-Interval and Event-Clock logics reveals
a robust picture of canonical specification formalisms for real-numbered time
that parallels the untimed case and the case of natural-numbered time.



We complete this picture by characterizing both the counter-free and the
counting levels of expressiveness also by fully decidable monadic theories,
called MinMaxML; and MinMaxML,. These are first-order and second-order
monadic theories of the real numbers with integer addition, comparison, and
(besides universal and existential quantification) two first-order quantifiers
that determine the first time and the last time at which a formula is true.
Our results, which are summarized in the following table, suggest that we
have identified two classes of w-languages with real-numbered time stamps
that may justly be called “R-timed counter-free w-regular” and “R-timed
w-regular”:

| | Languages || Temporal logics | Monadic theories | Finite automata
Fully decidable
R-timed
1 counter-free Metriclnterval TL = EventClockTL MinMaxML;
w-regular
2 R-timed Q-Metriclnterval TL = Q-EventClockTL = MinMaxMLs REventClockTA
w-reqular E-MetricInterval TL = E-EventClockTL

Finally, we explain the gap between the R-timed w-regular languages and
the languages definable by positively decidable formalisms such as timed au-
tomata. We show that the richer class of languages is obtained by closing the
R-timed w-regular languages under projection. (It is unfortunate, but well-
known [AFH94] that we cannot nontrivially have both full decidability and
closure under projection in the case of real-numbered time.) The complete
picture, then, results from adding the following line to the previous table
(projection, or outermost existential quantification, is indicated by P-):

Positively decidable
3 projection-closed P-EventClockTL P-MinMaxMLy = Ld* P-REventClockTA = TA
R-timed w-reqular

The rest of this paper is organized as follows. The real-time models
that we are considering in this papers are presented in section 2. Two
real-time logics and a classical theories are introduced in section 3. Their
relative expressive power is studied in details: those logics are shown to be
expressively equivalent and they identify the “counter-free regular realt-ime
languages”. Section 4 contains the definition and a study of the properties
of the recursive event clock automata. It is shown that the class of lan-
guages recognized by recursive event-clock automata strictly subsumes the
class of “counter-free regular realt-ime languages” and we call this class the
“(full) regular real-time languages”. Section 5 studies the relation that ex-
ists between the logical and automata theoretic formalisms. Furthermore,
we show how to bridge the gap that exists between “counter-free regular
realt-ime languages” and “(full) regular real-time languages”. Finally some
conclusions are drawn in a last section.



2 The Continuous Real-Time Models

In this paper, we consider real-time behaviors that are modeled by a function
k that assign to each point of the real line a state description. Thus the
function s at each ¢t € R™ indicates the state (¢) in which the system is at
that time ¢. We make two assumptions about the function k:

Finite Variability (also called Non Zenoness) The function  has the finite
variability property: during each finite interval of time I, the value of
% only changes a finite number of time. This assumption avoids the
so-called zeno paradox: the system does an infinite number of actions
into a finite amount of time.

Finite State Systems The number of different discrete states, i.e. the
size of the set of possible states that the system can reach is finite.

The finite state assumption allows us to use a finite set of propositions to
describe those states. The codomain of the function s is then the powerset
of P, noted 2F. The finite variability assumption allows us to represent the
function k using two infinite sequences: one infinite sequence of subsets of P
to represent the discrete part of the behavior of the system, and an infinite
sequence of intervals of time indicating for each state when the system was
in that state. We call those pairs of sequences, timed state sequences and
define them formally in the sequel. Later, we use also the notion of finite
variable formula, it simply means that the truth value of the formula change
only a finite number of times in every bounded interval of time.

Definition 2.1 (Intervals of Time) An interval (of time) I C R* is a
convex nonempty subset of the nonnegative reals. And interval I is bounded
(above) by b € RT if for all t € I, t < b. Due to our definition, every
interval is bounded below by 0. By completeness of the real numbers, every
bounded interval has a least upper bound, that we call its right bound. If
the interval is unbounded, we conventionally define its least upper bound
as oo. Symmetrically, each interval has a greatest lower bound, that we also
call its left bound. In each case, the bound can be either included in I, this
is noted by a square bracket, or excluded from I, this is noted by a round
parenthesis. We have thus the six following possibilities:

1. closed finite: [I,7] with [,r € RT and [ < r. Specially, when [ = r, the
interval is called singular;

2. left open, right closed: (I,r] with [,7 € Rt and [ < r;
3. left closed, right open: [[,r) with [,7 € Rt and [ < r;

4. open: (I,7) with [,r € R and | < r;



5. left closed, infinite: [I,00) with [ € RY;
6. left open, infinite: (I,00) with [ € R*.

Two intervals I and J are adjacent if the right bound of I is equal to
the left bound of J, and either I is right-open and J is left-closed or I is
right-closed and J is left-open. Thus two adjacent intervals are disjoint. O

Notation 2.2 (Intervals) The left bound of interval I is noted I(I), the
right end bound of interval I is noted r(I). Given t € R*, we freely use
notation such as t + I for the interval {t' | exists t’ € I with ' =t + t"},
and ¢t > I for the constraint “¢ > ¢’ for all ' € I.” O

Definition 2.3 (Interval Sequence) An interval sequence I = Iy, I1,. ..
is a finite or infinite sequence of bounded intervals so that for all ¢ > 0, the
intervals I; and I, are adjacent. We say that the interval sequence I covers
the interval {J;5 ;. If T covers [0,00), then I partitions the nonnegative
real line so that every bounded subset of RT is contained within a finite
union of elements from the partition. O

We are now in position to define our notion of continuous models called
timed state sequence and noted TSS.

Definition 2.4 (Timed State Sequence) The set of states is called ¥.
A timed state sequence k = (@, 1) over ¥ is a pair that consists of an trace
T = 0901 ...0p ... over ¥ and an infinite interval sequence I = IoI; ... I, ...
that covers [0,00). O

Equivalently, the timed state sequence k can be viewed as a function
from R™ to ¥, indicating for each time t € R a state k().

We now introduce two different type of real-time languages: the anchored
and floating real-time languages. The notion of anchored languages is the
classical one, the notion floating languages is not classical and is needed for
technical reasons in the sequel of this paper.

Definition 2.5 (Pointwise Real-Time w-Languages) A pointwise an-
chored real-time w-language is a set of timed traces. A pointwise floating
real-time w-language is a set of pairs (6,4) where 6 is a timed trace and ¢ > 0
is a position. O

In the sequel we consider that ¥ = 27 and we need notion related to
the addition and suppression of propositions in the set on which a timed
state sequences is defined. It is why we introduce the notion the notion of
P’-extension and P’-projection of a TSS.



Definition 2.6 (P’-Extension of a TSS) Given a TSS k = (7, 1) defined
on the set of propositions P, a set of propositions P’, such that PNP" = (),
k' = (¢’ ,T’) is a P’-extension of k if k' is defined on the set of propositions
P UP" and for all position ¢ > 0: (i) o} NP = o, that is, state description
o} and o; agree on the set of propositions P, and (ii) I = I;, the real-time
information attached to the state descriptions is similar in the two TSS. We
note x 1 P’ the set of P'-extension of .

Definition 2.7 (P’-Projection of a TSS) Givena TSS k = (7, I) defined
on the set of propositions P, a set of propositions P’ C P, «’ is the P’-
projection of k, if k' is defined on the set of propositions P’ and for every
positions i > 0: (i) o} = o; NP’ that is o and o; agree on the value of
propositions in P’, and (ii) I] = I;, the real-time information attached to
the state descriptions is similar in the two TSS. In the sequel, we note x | P’
the P’-projection of k.

As we consider continuous models, it will turn out, in section 4.4.2, that
the notion of limit closure is useful:

Definition 2.8 (Limit Closure - Literal) Given a set of propositions P,
we define its limit closure, noted Limit(P), as the following set {p, 7, |
p € PU{T}}, P is called the future limit of p and % is called the past
limit of p. In what follows, we call the elements of Limit(P) literals. In what
follows, we use L, L1, Lo, ..., to denote limit closure sets. O

Later, we will generalize the use of limit. We will apply the limit not
only to propositions but also to atomic clock constraints.

Definition 2.9 (Satisfaction Relation) We write (k,t) = ¢, where ¢
is a proposition, an literal, an atomic clock constraint or more generally a
formula, read “¢ is satisfied at time ¢ of the TSS k7. We define the semantics
for propositions p € P and for the special symbol T (true):

o (1,t) Epiff p € k(t);

e (k,t) E T for all time t € RT.

The rules for more general formulas will be given later, we now give the
semantics for the limit literals:

Definition 2.10 (Future and Past Limits Semantics) The truth value
of the future limit of p € PU{T} along a TSS &« is defined by the following
clause:

(k,t) | 7 iff for all time #; > t there exists a time ¢o, such that
t <ty <t and (k,t2) = p;



The truth value of the past limit of p € P U{T} along a TSS k is defined
by the following clause:

(k,t) |= %p iff for all time #; < ¢ there exists a time t5 > 0, such
that ¢, <ty <t and (k,t2) = p.

Note that T is always equivalent to T. In time 0, Tis equivalent to L and
equivalent to T elsewhere. O

Intuitively, the future (resp. past) limit of p at time ¢ allows us to access
the truth value of p just after (resp. before) time t.
We now define a serie a useful properties of TSS:

Definition 2.11 (¥ — Fine TSS) Given a set of finite variable formulas W,
we say that a TSS k = (09, ly)(01,11) ... is U —Fine iff for all positions ¢ > 0,
for all formula ¢ € U, for any time t1,to € I;, we have that (k,t1) = ¢ iff
(k,t2) = 1, that is, the truth value of the formula 1) does not change inside
the intervals of k. O

Definition 2.12 (Alternating-TSS) We say that a TSS k = (so, [o)(s1,11) ...

is alternating iff
1. Iy is the singular interval [0, 0];
2. for all even positions 4, I; is a singular interval, and

3. for all odd positions 7, I; is a open interval.

a

Definition 2.13 (Hintikka Property) Given a set of formulas ¥, a timed
state sequence k has the Hintikka property for U, iff

1. k is defined on a set of propositions that contains the set P of proposi-
tions appearing in the formulas of ¥ and the following set of hintikka
propositions PY = {py | ¢ € U}, that is, a hintikka proposition for
each formula of the set W,

2. for every time ¢t € R, (k,t) = py iff (k,t) |= 4, that is, a hintikka
proposition is true along a Hintikka sequence at time ¢ if and only if
its associated formula is true at time £.

When manipulating a Hintikka TSS s = (7,I), we sometimes write
¢ € o; instead of pg € 0; in order to simplify the notations.

Definition 2.14 (Equivalent TSS) Two TSS x!, k2 are equivalent iff ! (#)
k2(t) for all time ¢ € R*, that is, if the two TSS define the same function
from the positive real numbers to state descriptions. O



So two TSS are equivalent if they only differ by the way they split the
real line is into intervals.

Definition 2.15 (Refinement of TSS) A TSS x! = (61,71) is a refine-

ment of a TSS k? = (62,72), noted k! < k? iff there exists a surjective
function f : N — N such that:

e for all positions 5 > 0, 032- = a}(j);

e for all positions i > 0, I} = U{I7 | f(j) = i}
In what follows, we also say that 2 is coarser than x'. O

Note that TSS k! is a refinement of the TSS k2 then x' and k2 are
equivalent.

Lemma 2.16 (Refinability of TSS) For every TSS k and every set of
formula U with the finite variability property, there exists a TSS k' such
that (i) k' < k, that is, k' is a refinement of k and (ii) k' is ¥ — Fine.

Note also that:

Lemma 2.17 (Refinement and Fine-TSS) For every set of formulas ¥,
every refinement k' of a ¥ — Fine TSS & is ¥ — Fine.

And thus this refinement can be alternating:

Lemma 2.18 For every TSS &, there exists a refinement k' of k, i.e. k' <k
that s alternating.

In the sequel we use sets of literals to label locations of automata. We
will need the notion of singular and open set of literals. Intuitively, a singular
literal describes an instantaneous, unstable situation and thus cannot hold
during an open interval of time. Here are their definitions:

Definition 2.19 (Singular-Open Set of Literals) A set of literals = C
L is said singular iff one of the two following properties of = is verified

e there exist literals a, @ € £ such that « € Zand @ € E, or, a € £
and @ € Z;

e there exist literals a, ‘@ € £ such that a € Z iff ‘@ ¢ E, or, a ¢ E iff
@ € Z. An set of literals Z C £ is said open iff it is not singular.

a

Lemma 2.20 Let I be a non singular interval. If 2 is singular, then for all
Kk, there exists t € I such that (k,t) = E. O

10



3 The Counter-Free Regular Real-Time w-Languages

3.1 Introduction

In this section, we introduce two real-time logics and a classical theory for
defining real-time properties. We study their expressive power in details and
show that they all identify the same class of real-time languages that we call
the counter-free reqular real-time languages. Before, we recall the definition
of two qualitative time formalisms and review a theorem about their relative
expressive power introduced by Kamp.

3.2 Qualitative Formalisms
3.2.1 The Temporal Logic of the Reals

We review in this section a temporal logic that is evaluated over continuous
models. That temporal logic is called the temporal logic of the reals, noted
LTR, and has been proposed by Pnueli et al in [BKP86]. We recall its syntax
and semantics.

Definition 3.1 (LTR-Syntax) The formulas of LTR are built from propo-
sitional symbols, boolean connectives, and the temporal “until” and “since”
operators:

¢ = p| o1 Ada| | prlUea | p1S1do

where p is a proposition, ¢, ¢1 and ¢, are well-formed LTR formulas. O

Definition 3.2 (LTR-Semantics) The LTR formula ¢ holds at time t € R
of the timed state sequence «, denoted (k,t) = ¢, according to the following
definition:

(k,t) = piff p € k(2);

(K, t) = 1 A o iff (k,t) = 1 and (k,t) = o

(h:at) ): —¢ iff not (K/,t) |: ®;

(k,t) = p1U s iff exists a real t' > t with (k,t') E ¢o, and for
all reals ¢ € (t,t"), we have (k,t") E ¢1 V ¢o;

(k,t) E $1Sepo iff exists a real t' € [0,t) with (k,t') = ¢2, and
for all reals t" € (¢, t), we have (k,t") = ¢1 V ¢a.

K,y

K,y

a

Definition 3.3 (LTR-Languages) The anchored language defined by an
LTR formula ¢ is the set of TSS x € TSS(2%%), such that (k,0) |= ¢, this set
is noted AncLang(¢). The floating language defined by an LTR formula ¢ is
the set of pairs (k,t) with k € TSS(2%¢) and t € RT such that (k,t) & &,
this set is noted FloatLang(¢). O

11



3.2.2 The First Order Monadic Logic over the Reals

We now review the definition of the first-order monadic logic of the reals.
We recall its syntax and semantics.

Definition 3.4 (MLR;-Syntax) The formulas of the first- order monadic
logic over the reals MLRy are generated by the following grammar:

Ou=px)|zi=22 |21 <22 | 7P| D1V Dy | Tz- D

where z,z1,29 € X are position variables (first-order variable), p € P is
an unary predicate and ®, ®{, &y are well-formed MLR; formulas. We say
that a formula ® of MLR; is closed if it does not contain any free position
variable. O

Definition 3.5 (Valuation) A valuation for the set of first-order variables
X is a mapping o : X — R* assigning a nonnegative real number value to
each variable z € X. We note aly — t] the mapping that extend the
mapping « for the variable y and maps y on the value t € R*. O

Definition 3.6 (MLR;-Semantics) The semantics of an MLR; formula &
is evaluated in pair (k,a) where k is a TSS and « is a valuation for the free
variables appearing in ¢ according to the following rules:

(5,0) = qs) iff g € nla(2));

(K, ) F z1 =22 iff a(z1) = a(22);

(k, ) Ex1 < mo iff ax1) < az2);

(k, ) = P iff (k,a) FE ®;

(K, @) = @1V Pq iff (k,a) = Py or (K, @) = Po;

(k, @) = Jz- @ iff there exists a value t € RT such that (k, o[z —
0k o.

|

Definition 3.7 (MLR;-language) The anchored language defined by a closed
MLR; formula ® is the set of TSS k € TSS(27#), such that x = @, this set
is noted AncLang(®). The floating language defined by an MLR; formula
®(x), with one free variable z is the set of pairs (k,t) with x € TSS(27#)
and ¢t € R such that (k, [z — t]) = @, this set is noted FloatLang(®). O

3.2.3 Expressiveness Equivalence Result

Kamp has proved, see [Kam68], that the expressiveness equivalence result
between temporal logic and the first-order monadic logic is also valid in the
case of continuous interpretations:
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Theorem 3.8 (LTR = MLR;) The logics LTR and MLRy are equally ex-
pressive:  given an LTR formula ¢, there always exists a closed formula
® of MLR;y such that AnclLang(¢) = AnclLang(®), and conversely: given
an MLRy formula ®, there always exists a formula ¢ of LTR such that
AncLang(®) = Anclang(¢). Furthermore, given an LTR formula ¢, there
always exists a formula ®(x) with one free variable x of MLRy such that
FloatLang(¢) = FloatLang(®(x)), and conversely: given an MLRy formula
®(x) with one free variable x, there always exists a formula ¢ of LTR such
that FloatLang(®) = FloatLang(¢). O

3.3 Two Real-Time Temporal Logics
3.3.1 The Metric Interval Temporal Logic

Here, we recall the definition of the logic MetricInterval TL [AFH91, AFH96].
This logic is a syntactical restriction of the undecidable real-time logic
MetricTL [AH90]. The logic Metriclnterval TL prohibits the specification of
punctuality constraints by allowing only subscripts in real-time operators

that are non-singular intervals. This restriction makes the formalism decid-
able.

Definition 3.9 (MetricInterval TL-Syntax) The formulas of MetricInterval TL [AFH96]
are built from propositional symbols, boolean connectives, and time-bounded
“until” and “since” operators:

¢ u=p| i Ada| = | dillr o | $181 o

where p is a proposition and I is a nonsingular interval whose finite end-
points are nonnegative integers. O

Note that we use hats in the syntax of the temporal operators above in
order to deferentiate them from the operator of LTR that have a slightly
different semantics in the qualitative case. We also define an interesting
subset of MetriclntervalTL, called MetriclntervalTLg o:

Definition 3.10 (MetricIntervalTLy -Syntax) The formulas of the frag-
ment MetriclntervalTLgy o, are defined as for MetricIntervalTL, except that
the interval I must either have the left endpoint 0, or be unbounded; in
these cases I can be replaced by an expression of the form ~ ¢, for a non-
negative integer constant ¢ and ~ € {<,<,>,>}. O

Definition 3.11 (Metriclnterval TL Continuous Semantics) The MetricIntervalTL
formula ¢ holds at time t € RT of the timed state sequence x, denoted
(k,t) E ¢, according to the following definition

13



k,t) Epiff p € k(t)

K, t) E 1 Ao iff (k1) | ¢1 and (k,t) | é2

k,t) E ¢ iff not (k,t) E ¢

K, 1) = gbﬂjl ¢o iff exists a real t' € (t+1) with (k,t') E ¢2, and
for all reals t” € (t,t'), we have (k,t") = ¢4

(K, t) = ¢1 Sy ¢ iff exists a real t/ € (t—I) with (k,t') = ¢s, and

for all reals t” € (¢, t), we have (k,t") E ¢1

(
(
(
(

We now introduce some useful abbreviations:

Definition 3.12 (Metriclnterval TL-Abbreviations) For the future:
° 6 9= TZ:I}¢, “eventually in the future within interval I”;
o O; =0 ¢, “always in the future within interval I7.
Symetrically, for the past:
° @ 9= T§[¢, “eventually in the past within interval I”;
° él; = —@[—ugb, “always in the past within interval I”.

Definition 3.13 (MetriclntervalTLContinuous Languages) The MetricInterval TL
formula ¢ defines the anchored language that contains all timed state se-
quences k£ with (k,0) = ¢. As usual, we note this language AncLang(¢).

The Metriclnterval TL formula ¢ defines the floating language that contains

all pairs (k,t) with (k,t) = ¢. As usual, we note this language FloatLang(¢).

O

Example 3.14 The MetricIntervalTL formula O 1y(p — 6[1’2] q) asserts
when evaluated in time ¢, that every p-state, in the interval ¢ 4 (0, 1), is
followed by a g¢-state at a time difference of at least 1 and at most 2 time
units. O

The complexity of the satisfiability and validity problems for Metricnterval TL
and its fragments MetriclntervalTLy o, are given in the next theorem.

Theorem 3.15 [AFH96] The satisfiability and validity problems for Metriclnterval TL
are EXPSPACE-COMPLETE. The satisfiability and validity problems for MetriclntervalTLg o
are PSPACE-COMPLETE. O

Interestingly, the complexity of the satisfiability and validity problems
for MetriclntervalTLg o, are easier that for the full logic.

14



3.3.2 The Logic of Event Clocks

The formulas of EventClockTL are built from propositional symbols, boolean
connectives, the temporal “until” and “since” operators, and two real-time
operators: at any time ¢, the history operator <y ¢ asserts that ¢ was true
last time in the interval ¢ — I, and the prophecy operator >; ¢ asserts that
¢ will be true next time in the interval ¢ + I.

Definition 3.16 (Continuous-EventClockTL-Syntax) The formulas of (con-
tinuous) EventClockTL for timed state sequences are generated by the fol-
lowing grammar:

=pldVa| | pilUds | $1S¢2 | s >rd

where p is a proposition and I is an interval whose finite endpoints are
nonnegative integers. O

We can now define how to evaluate the truth value of an EventClockTL
formula along timed state sequences.

Definition 3.17 (Continuous-EventClockTL-Semantics) Let ¢ be an (con-
tinuous) EventClockTL formula and let 7 be a timed state sequence whose
propositional symbols contain all propositions that occur in ¢. The formula

¢ holds at time t € R of 7, denoted (7,t) | ¢, according to the following
definition:

Fpiffp € 7(t)

=V o I (1,) b= o (1) =

E ¢ iff not (7,t) = ¢

E ¢1Upo iff exists a real ¢ > t with (7,¢') |= ¢9, and for
all reals ¢ € (t,1"), we have (7,t") = ¢1 V ¢

(1,t) = ¢1S¢s iff exists a real ¢ < t with (7,t') = ¢2, and for all
reals t" € (', t), we have (7,1") |= ¢1 V ¢

(1,t) E <y ¢ iffexistsareal t’ <t witht' € (t—1I) and (7,¢') = ¢,
and for all reals t" < ¢ with ¢’ > (¢t — I), not (7,t") = ¢

(1,t) E >y iffexistsareal t’ >t witht' € (t+1) and (7,¢) = ¢,
and for all reals t" > ¢ with ¢’ < (t 4+ I), not (7,t") = ¢

T,
T,
T,

(1,1)
(7,%)
(1,1)
(7,%)

T,

Note that the temporal and real-time operators are defined in a strict
manner; that is, they do not constrain the current state. Non strict operators
are easily defined from their strict counterparts.

Example 3.18 O(p — ><5q): a p position is always followed by a ¢ po-
sition within 5 time units. Such a formula specifies a maximal distance
between a request p and its response ¢q. Such a property is called a bounded
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time response. Here, it assumes that only one request can be outstanding.
pAO(p — >_1p): this formula asserts that p is true every integer time unit.
Such a formula allows the specifier to define periodicity of events. Here p can
model the tick of an ideal clock, that ticks every time unit. O((<1=3q) — p).
This formula asserts that if the last ¢ position is exactly distant of 3 time
units then p must be true now. It is a typical {ime-out requirement.

O

We now give a definition of the real-time languages that a EventClockTL
formula is defining.

Definition 3.19 (Continuous-EventClockTL-Languages) The (continu-
ous) EventClockTL formula ¢ defines the anchored language AnclLang(¢) =
{k | (k,0) = ¢}, that is the set of timed state sequences that satisfy ¢ at
their initial position. The (continuous) EventClockTL formula ¢ defines the
floating language FloatLang(¢) = {(k,t) | (k,t) = ¢}, that is the set of pairs
(timed state sequence, time) where ¢ is verified. O

3.4 A First-Order Classical Theory

In the sequel, we use p, ¢, and r for (finite variable) monadic predicates over
the nonnegative reals, and ¢, ¢1, and ¢ for first-order variables over RY.

Definition 3.20 (MinMaxML,-Syntax) The formulas of the First-Order
Real-Time Sequential Calculus, noted MinMaxMLy, are generated by the
following grammar:

o u= p(t) [t~ 12
(Min tl)(tl > 1o A ‘I/(tl)) ~ (tQ +C) |
(Max tl)(tl <to A \I/(tl)) ~ (t2 — C) |
D1 A Dy | -® | (E‘t)q)

where U(t1) is a MinMaxML; formula that contains no free occurrences of
first-order variables other than ¢1, where ¢ is a nonnegative integer constant,
and ~€ {<, <, =,>,>}. O

The truth value of a MinMaxML; formula ® is evaluated over a pair
(k, ) that consists of a timed state sequence xk whose propositional sym-
bols contain all monadic predicates of ®, and a valuation o that maps
each free first-order variable of ® to a nonnegative real. By oy, we de-
note the valuation that agrees with a on all variables except #, which is
mapped to the value v. We first define for each MinMaxML; term ¢ a value
Valy (<), which is either a nonstandard real or undefined. Intuitively, the
term (Min t1)(¢; > t2AW(¢1)) denotes the smallest value greater than ¢o that
satisfies the formula W. If there is no value greater than ¢y that satisfies W,
then the term (Min ¢1)(¢; > ta A ¥(t1)) denotes the undefined value L. If
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U is satisfied throughout a left-open interval with left endpoint v > ¢35, then
the term (Min t1)(t; > t2 A¥(#;)) denotes the nonstandard real number v.
Similarly, the term (Max ¢1)(t1 < ta A ¥(#1)) denotes the greatest value
smaller than ¢, that satisfies ¥. 2 Formally:

Definition 3.21 (MinMaxML;-Term Values) The value of a term ¢ in the
TSS k and valuation «, denoted Valy (<), is defined by the following rules:

Val,i,a(t) = t)
Val, ot +¢) = alt) + ¢

v _Jal)—c ifa(t)>c
Valealt =) = 1 otherwise
Valgo((Min t1)(t1 > o A W(t1)) =

(v i (K, ) |— (t1 > ta AN T(t1)),
and for all v' < v, not (k, Oétl,_)vl ) E (t1 > ta ANT(t))

vt if for all v' > w, exists v" < v’ with (k, ap, . em) F (01 > t2 AT(t1)),
and for all v < v, not (K, o, 1) = (1 > t2 AU (t))

[ L ifforallv >0, not (k,ap, ) F (t1 >ty A U(t))

Val,i,a((l\/lax t1)(t1 <ty A ‘I/(tl))

(v i (K, appy) |— (t1 <ta AT(t1)),
and for all v' > v, not (k, Oétl,_)vl ) E (t1 <ta ANT(t1))

v~ if for all o' < v, exists v" > o' with (k, ap,0) F (0 < t2 A T(t1)),
and for all v > v, not (K, o, vw]) F (t1 <ty ANU(t1))

L iffor all v > 0, not (k, g, ) = (t1 <ty ANU(t1))

\

Now we can define the satisfaction relation for MinMaxML; formulas:

Definition 3.22 (MinMaxML;-semantics) The following rules define when
a formula is satisfied by a TSS k and a valuation a:

(k, ) = p(t) iff p € r(a(t))

(Ii, ) |= 1~ 19 iff Va|,i,a(t1) ~ Va|,€,a(t2), with ~€ {<, <,=>
>}

(K, @) = @1V §q iff (k,a) = Py or (K, @) = Do

(k, ) E —® iff not (k,a) = @

(K, @) = (3t) @ iff exists v > 0 with (k, apyy)) P

A MinMaxML; formula is closed iff it contains no free occurrences of
first-order variables. Every closed MinMaxML; formula defines an anchored
real-time language:

*Note that although the terms take their value in non standard real numbers plus
undefined, quantifiers only range over the real numbers.
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Definition 3.23 (MinMaxML;-Anchored Language) Every closed MinMaxML;
formula ® defines an anchored real-time w-language, namely, the set of real-
time state sequences k such that (x,0) E ®.

And every MinMaxML; formula with one free variable defines a floating
real-time language:

Definition 3.24 (MinMaxML;-Floating Language) Every MinMaxML; for-
mula ® with one free first-order variable t1 defines a floating real-time w-
language, namely, the set of pairs (k,t) such that (k,[t; — t]) E ®

Example 3.25 (MinMaxML; formula)
(Vt1)(p(t1) = (Fta)(ta > t1 A q(ta) A (Min t3)(t3 > to A r(t3)) =t +5))

asserts that every p-state is followed by a ¢-state that is followed by an
r-state after, but no sooner than, 5 time units.

We will show in the next section that the formalism that we have defined
in this section is decidable.

3.5 Expressiveness Results

Remember that in section 3.2.3, we have recalled a result proved by Kamp
that states the expressive equivalence between the temporal logic of the reals,
LTR, and the first-order monadic logic over the reals, MLR{, see theorem 3.8.
We will use this result in the sequel to establish the same theorem about
the relative expressive power of MinMaxML; and EventClockTL.

3.5.1 EventClockTL versus MinMaxML;

We first prove that EventClockTL is at least as expressive as MinMaxML;. To
prove that result, we use theorem 3.8 and reason on the level of MinMaxML;
formulas. The level of a MinMaxML; formula is defined as follows:

Definition 3.26 (level of MinMaxML; Formulas) The level of a MinMaxML;
formula ¢, noted level(¢), is defined as follows:

e level(g(t)) = 0, where ¢ is a monadic predicate;
e level(ty ~ to) = 0, where 1,y are first order variables;
o level(®y vV #2) = Maximum(level(®y), level(P2));
o level(—®) = level(D);
(
(

level (3t - ®(t)) = level(D(t));

o level(Maxy, - to < t1 A ®(t2) ~t1 —c) = 1 + level(P(t2));
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o level(Miny, - to > t1 A ®(t2) ~ t1 +¢) = 1 + level(P(t2));

So the level of a MinMaxML; formula is the number of imbrications of Min —
Max quantifiers in the formula. O

We now prove the following lemma:

Lemma 3.27 (MinMaxML; C EventClockTL) For every formula ®(t1) of
MinMaxMLy with one free variable ty, there exists a congruent formula
®T of EventClockTL, that is for every TSS k and every time t € RT:
(o[t = £]) = W(k1) iff (,8) = 0T

Proof. We reason by induction on the level of formula.

e Base case. Let ®(t1) be such that level(®(¢;)) = 0. In that case, the
formula ®(¢;) does not contains any Min — Max quantifier and thus
®(t1) is a ML; formula. By theorem 3.8, there exists an congruent
LTR formula ®7. As LTR is a subset of EventClockTL, ®7 is an Event-
ClockTL formula.

e Induction case. Let ®(t1) be such that level(®(¢1)) = 4. By induction
hypothesis, we are able to construct for every level;, with j < 7, formula
U of MinMaxML, a congruent EventClockTL formula U7. We now
show that we can also do it for level; formulas. By definition of the
level of a MinMaxML; formula, we know that for every subformula of
the form:

- Maxt2 . [tg <t A \I/(tQ)] ~t —c
- |\/|il‘lt2 . [t2 >t A \I/(tg)] ~t+c

U(ty) is at most of level;_; and by induction hypothesis, can be ex-
pressed in EventClockTL by a congruent formula ¥7. Also, by defini-
tion of the semantics of Min—Max and > ..., <., we have the following:

C.1 (k,t) | e UT M (K, [t = t]) = Ming, -t >t AT(ty) ~ t +c
C.2 (k,t) = <o eUT i (K, [t = t]) |E Maxy, -ta < t; AU(t) ~t) — ¢

It remains us to show that the entire formula MinMaxML; formula ®(t)
can be expressed in EventClockTL. We do this by first transforming
() as follows: every formula of the form Ming, -ty > t1 AU (t2) ~ t1+c,
Maxy, -to < t1 AU(ta) ~ t1 —c is replaced by a fresh monadic predicate
p¥, we note this formula ®(¢) and PY the set of fresh monadic predi-

cates that we have used to obtain ®(¢). We know that ®(¢) is a ML,
formula over the monadic predicates of P U PY. By theorem 3.8, we
can compute a congruent formula ®7 of LTR. To obtain the desired
EventClockTL formula, it remains us to replace every fresh proposi-
tions of p¥ in T by ¥T (as given by the clauses C1 and C2 above) to
obtain the desired formula &7
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We now show that the reverse also holds.

Lemma 3.28 (EventClockTL C MinMaxML,) For every formula ¢ of EventClockTL,
there exists a congruent formula ¢* with one free variable t; of MinMaxML;,
that is for every TSS k and every time t € RY: (k,[t1 = t]) &= ¢T (t1) iff

(k1) = ¢
Proof. We do a classical reasoning on the structure of formulas.
e Base case. ¢ is the proposition p. Then ¢7 is simply p(t;).

e Induction case. By induction hypothesis, we can construct for each
subformula ¢1, ¢ of EventClockTL, the congruent formulas ¢? and
$3 of MinMaxML;. We show that for each construct of EventClockTL
that are applied to ¢; and ¢2, we are able to construct the desired
formula of MinMaxML;:

— for ¢ = =1, we take ¢7 = =] (£1);

— for ¢ = ¢ V o, we take ¢T = ¢T (t1) V 2 (t1);

— for ¢ = Py, we take Ity > t1 - (Ppd (ta) AViz -t < t3 <
to - p1 (t3) V 65 (t3))

— for ¢ = p1Sha, we take Tty -0 <ty <ty - (P2 (t2) AViz-ta < t3 <
ty- B (t3) V ¢35 (t3))

— for ¢ = >cp1, we take Ming, [ty < to A @1 (t2)] ~ 11 + ¢;

— for ¢ = e, we take Maxy, [ty < t1 A ¢l ()] ~ 11 — c.

The two previous lemma allow us to derive the following theorem that
states the equivalent expressive power of the logics EventClockTL and MinMaxML;:

Theorem 3.29 The floating and anchored real-time w-reqular languages de-
finable by the logic EventClockTL and MinMaxML; are identical.

The lemma 3.27 allows us to derive the following decidability results for
MinMaxML;:

Theorem 3.30 (MinMaxML;-Decidability) The satisfiability and validity
problems of the logic MinMaxML; are decidable and in NONELEM.
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3.5.2 EventClockTL versus Metriclnterval TL

We now turn to the relation that exists between the logic EventClockTL and
the logic MetriclntervalTL.

We first define the fragment EventClockTL o of EventClockTL. We will
use it in the following proofs.

Definition 3.31 (EventClockTLg ) The formulas of the fragment EventClockTLg o
of EventClockTL are the formulas that only use real-time operators >y, <
where: either [(I) =0 or r(I) =oco0. O

The semantics of EventClockTLg o, formulas is as for full EventClockTL.
The following lemma expresses that EventClockTLg o is expressively com-
plete:

Lemma 3.32 (EventClockTL = EventClockTLg ) For every formula of ¢ €
EventClockTL we can construct a congruent formula ¢T of the fragment
EventClockTLy oo, that is for every TSS k, for every time t € RT, (k,t) = ¢

iff (k,t) = ¢
Proof. We reason by induction on the structure of formulas:
e Base case. Let ¢ = p. Then ¢ € EventClockTL .

e Induction case. The boolean cases and temporal cases are trivial.
Let us consider the formula >y, with [(I) # 0 and r(I) # oo. By
induction hypothesis, we have 9T € EventClockTLg .. We note I; the
interval {¢t > 0| 3¢’ € I and t < #'}, and I» the interval {t > 0 | V#' €
I,t < t'}. By definition of ¢, we know that those two intervals are
non-empty, as [(I) > 0 and r(I) < oo and their bounds are integer
numbers, and further that [(I;) = I(Iy) = 0. It is easy to see that
the formula >7, 4" A>7,97 is congruent to ¢ and in EventClockTLp .
The case for the operator < is similar and left to the reader.

We now prove that the fragment MetriclntervalTLy o is at least as ex-
pressive as the logic EventClockTL.

Lemma 3.33 (EventClockTL C MetricIntervalTLy o) For every formula ¢
of EventClockTL, there exists a congruent formula ¢* of MetriclntervalTLg o,
that is for every TSS & and every time t € RY: (k,t) | ¢7 iff (k,t) = ¢.

Proof. By lemma 3.32, we know that EventClockTLg o is equally expressive

to EventClockTL. Thus it is sufficient to show that EventClockTLg C
Metriclnterval TLy,o.. We reason by induction on the structure of formulas.
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In the sequel, ¢ belongs to EventClockTLg o, and #T denotes the congruent
MetriclntervalTLg o formula.

e Base case. The formula ¢ is the proposition p then ¢* = p;

e Induction cases: by induction hypothesis, ¢1 and ¢- are translated by
¢T and ¢3. Here are the different cases:

— for ¢ = ¢ V o, we take ¢T = ¢T V ¢l
— for ¢ = ¢, we take ¢T = —|¢
— for ¢ = ¢ilUpa, we take ¢T = ($T V ¢)U(o,00)#F

 for 6 = 1Sy we take 87 = (67 V #)G 0,01

— ¢ =Dy ¢y with [(J) = 0. Note that the operator > is irreflexive
so we can make the hypothesis that 0 € J. We distinguish the
case where the first ¢;-interval in the future is left closed from the
case where it is left open. The two situations can be distinguished
by the following MetriclntervalTLg o, formula: —|¢1TZ:{\(O’OO)¢1T.

* In the case that the former formula is verified then the fol-
lowing ¢;-interval is left closed and we can check that > ;¢
is verified by checking the following MetricIntervalTL , for-
mula: —mb{lfl 79T

x In the second case, the first ¢;-interval is left open and then
we check that O¢T v ﬁgb{ljl(o,l( J))O(ﬁ{ where O¢!  denotes
J_LAI(O,OO)(ﬁ{ and means that ¢7 is true just after the present
time. Let us note that [(.J) is excluded as we check the event
O¢T" and not the event ¢I.

This gives the following translation rule:

D>ypr = A TLA{(U o) Pl
N Uo7 = ~dTUr T
ﬁ(ﬁ¢1 (0,00081) = Od] V =¢T U 11y O
— ¢ =01y¢1 with[(J) # 0. And thus r(J) = oo as ¢ € EventClockTLg .
Here also, we distinguish the case where the first ¢;-interval in
the future is left closed from the case where it is left open. We
obtain the following translation rule:

>yé1 = A TLA{(O o) P
_'¢1 (0,00) ¢T — ¢y Z/{J¢T
_‘(_‘¢1 (0,00) ¢1 ) — _‘¢1 ,oo)(_‘qs{ ANOPT)
— ¢ = <y¢1 with [(j) = 0. By a similar reasoning we obtain:
<gpr=A TS(o oo)¢
A=¢i'S (0,00) ¢1 — = 5J¢1 R
ﬁ(ﬁ¢1 (0,001 ) = OP1 V =T S(o.0(s)) © DT
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— ¢ = <y¢1 withi(j) # 0. And thusr(J) = oo as ¢ € EventClockTLg .
By a similar reasoning we obtain:
<Ly = A Tg'(oﬁo)%T R
A 6T 81000087 = ~#TSr0T
A == S(0,00) 8T ) = b1 Sii(1),00) (7T A OBT)

We now prove that the reverse property also holds:

Lemma 3.34 (MetricIntervalTLg o, C EventClockTL) For every formula ¢
of MetricInterval TLo o, there exists a congruent formula " of EventClockTL,
that is for every TSS k and every time t € RT: (k,t) = ¢T (t) iff (k,t) = ¢.

Proof. We reason by induction on the structure of formulas. The interesting
formulas are the U; and S; ones. In the sequel of the proof, we use the
following usual abbreviations:

o Orp =Tl ;
o O = =0

With the abbreviations given in definition 3.12, we can rewrite any Z:[}—
formulas as:

o if I(T) = 0 then ¢illidhs = $rld(o .00 b2 A Oreho ;
o if I = (c,00) then ¢l )2 = Do (1 A p1lo o) $2);

e if [ =[c,00) then ¢1Z;I\[c,oo)qz52 = A Oyt :
A B0, ((0184(0,00)P2) V ¢2)
Let us also note that :

o Oleno)® = 010,000,008 ;

o Do) = D0, (@V 00,008 3

So the only formula that we have to be able to treat are gbll:l\(o’oo)(ﬁg, 6J¢1
and Ojy¢; with I(J) = 0, and these are translated into EventClockTL as
follows:

° ¢1LAI(0,OO)¢2 = ¢TU(PL A 0¢T), where O¢! is the abbreviation for
1.8¢T, see definition ?7;

o Ospy =gl ;

® DJQSI :—|[>J—|¢,{,
The past temporal and real-time operators are treated symmetrically. This
concludes our proof for MetriclntervalTLg o, C EventClockTL. O
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A direct consequence of the two previous lemmas is the following theo-
rem:

Theorem 3.35 (EventClockTL = EventClockTLg o = MetricIntervalTLg )
The logics EventClockTL, EventClockTLg o, and MetricIntervalTLg ~, are equally
expressive.

We now turn to the comparison of the expressive power of EventClockTL
with regard to the expressive power of (full) MetriclntervalTL. A corol-
lary of lemma 3.33 is that MetriclntervalTL is at least as expressive as
EventClockTL. It could be thought that MetriclntervalTL has a strictly more
expressive power than EventClockTL, but the following lemma and its proof,
surprisingly, establishes that every MetricIntervalTL-formula is expressible in
EventClockTL:

Lemma 3.36 (MetricintervalTL C EventClockTL) For every formula ¢ of
Metriclnterval TL, there exists a congruent formula ¢ of EventClockTL, that
is for every TSS k and every time t € RY: (k,t) = @7 iff (k,t) = ¢.

Proof. As we have proved in lemma 3.34 that MetricIntervalTLg , C EventClockTL,
we are allowed to show that Metriclnterval TL C (EventClockTLUMetricInterval TLg )
and we have only to consider formulas that are not in MetriclntervalTLg .

The interesting formulas of this fragment are of the form:

1. 1l
2. $1S1n.

with I(I) # 0, r(I) # oo and I non-singular. In the following, we only
consider the future formulas, past formulas are treated symmetrically. We
first make a rewriting of those formulas to facilitate the rest of the proof:

° ¢1LA{1¢2 with [(I) & I can be rewritten as the following conjunction:

LA By (1 A $1U(0,00)P2)
2N Q1o

[ ¢1LA11¢2 with [(I) € I can be rewritten as the following conjunction:

LA B
2.A O (1 ((¢1u0,oo)¢2) V ¢2)
3.A <>I¢2
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And as each O;¢ formula can be rewritten as -0 ¢ formula, we have only
to consider ¢ ¢ formulas. R

Let us now show that every formula (r¢ can be expressed in EventClockTLU
MetriclntervalTLg o. We first rewrite those formulas as a disjunction of for-
mulas where [(I) = a and r(I) = a + 1. In fact, we have the following
equivalence:

6(a,b]¢ =\t 6(i,i+1]¢

This equivalence can be extended for all sorts of non-singular intervals
(open-closed). We show in the sequel that each formula of the form ¢,
with [(I) = ¢ and r(I) = ¢ + 1, can be expressed by an EventClockTL U
MetricIntervalTLg o formula and thus, by lemma 3.34 by an EventClockTL
formula. The proof is by induction on the size of the constant ¢ that appear
in the constraining interval.

e Base case. When ¢ = 0, the formula is in MetriclntervalTLg o, and thus
the base case is trivially verified.

e Induction case. We now treat the case for an arbitrary ¢ € N. By
induction hypothesis every formula of the form 0 1¢, with [(I) < c¢—1
and r(I) < ¢ can be translated into EventClockTL. We treat the case
5(c,c+1)¢ in details, the other cases, i.e. [¢,c+1],[c,c+ 1), (c,c+ 1] are
treated in the same way. Here is the translation:

6(c,c+1)¢ = a.V §[Cf1,c) >_10¢
b.V <>(c—1,c)A[>:1 ¢
¢V Ore—1,q%0,1)9

We first prove that the implication from left to right is valid. There
are two mutually exclusive situations to discriminate:

(1) In the first case, either the distance between the last ¢-interval
int+ (c—1,c] and the first ¢-interval in t + (c,c + 1) is greater
or equal to 1 or there is no ¢-interval in ¢ + [c — 1, ¢). We further
distinguish two subcases:

(1a) the first ¢ interval is left closed;
(1b) the first ¢, interval is left open;

(2) In the second case, the distance between the last ¢-interval in
t+ (¢ —1,c] and the first ¢-interval in ¢ + (¢, ¢ + 1) is strictly less
then 1.

In case 1: by the hypothesis that the distance between the first ¢-
interval in ¢4 (c,c+1), noted Fy, and the last ¢-interval in t+(c—1, ],
noted Ly is greater than 1, we infer that there exists ¢, € t + (¢ — 1, ¢]
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such that (k,t1) = >=i¢ if the interval Iy is left-closed (la) and
that (k,t1) E >=10¢ if Iy is left open (1b). Using the induction
hypothesis, we express this property with the ¢(._; ) operator in the

first case and with the 6[0_1’0) operator in the second case.

In case 2: the distance between the last ¢-interval in ¢ + (¢ — 1,]
noted Ly and the first ¢-interval in ¢ 4 (c,c + 1), noted Fj, is strictly

less than one. For all time ¢ € (c —1,7(Lgy)), O(o,1)¢ is verified thanks
to ¢-positions in Ly and for all time ¢t € [r(Lg), c], 6(0’1”15 is verified
thanks to ¢-positions in Fy, (as the distance is less than 1).

The other direction is immediate. We must show that the three parts
of the disjunction implies the MetricInterval TL formula Q. .41)¢:

1. 6[071’0) >—1O¢. Clearly this formula asserts that there is a time
t1 € t + [c,c + 1) such that at a distance of 1 time unit O¢ is
verified, let us note this position t5 = t; 4+ ¢. So there is a left-
open ¢-interval at a distance of 1 4+ [¢ — 1, ¢) from ¢ and thus as
this ¢-interval is left-open, we have that 6(c,c+1)¢ is verified in
time t.

~

2. O(c—1,0)>=1¢. By the same reasoning but for a left-closed interval,
we establish that 5(c,c+1)¢ is verified in time t;

3. D(c_l,d@(o,l)(/). This formula directly implies that 6(0,1)¢ is veri-
fied in time ¢ + c. So there is a time #; € £ +c+ (0,1) where ¢ is

verified as 1 € t + (¢,c + 1) we have that Q. .41)¢ is verified at
time t.

The equivalence between the two formula is proved. As the formula
D(c—1,c}¢ is equivalent to the formula _'6(0—1,0}_@5 and that the constant
appearing in the left-end bound of the constraining interval is strictly
less than ¢, by induction hypothesis, the formula _'6(0—1,0]_@5 can be
expressed in EventClockTL.

The last lemma together with the lemma 3.33 gives:

Theorem 3.37 (EventClockTL = MetriclntervalTL) The logics EventClockTL
and MetriclntervalTL are equally expressive.

Corollary 3.38 (All Equally Expressive) The logics EventClockTL, EventClockTLg s,
MetriclntervalTLo o, MetricintervalTL and MinMaxML; are equally expres-
sive.

26



That is, all the logics define the same class of real-time w-languages. We
call this class the counter-free w-regular real-time languages.

Definition 3.39 (Class of w-Regular Real-Time Languages) The sets
of timed state sequences definable by the logics EventClockTL, EventClockTL, o,
Metriclnterval TLg o, MetricInterval TL and MinMaxML; form the class of counter-
free w-reqular real-time languages.

3.5.3 Minimal Expressively Complete Fragments

In this section, we identify minimal fragments that are fully expressive. We
show that in each of the previously defined logics, we can restrict the use of
constants to be only 0 or 1.

Definition 3.40 (MetricIntervalTLy ;-Fragment) MetricIntervalTLg; is the
fragment of MetricInterval TL that consists of all formulas ¢ such that for each
interval I appearing in ¢, we have [(I) =0 and r(I) = 1. O

Similarly,

Definition 3.41 (EventClockTLg ;-Fragment) EventClockTLg is the frag-
ment of EventClockTL that consists of all formulas ¢ such that for each
interval I appearing in ¢, we have [(I) =0 and r(I) = 1. O

We have the following lemma:

Lemma 3.42 (MetriclntervalTLg o, C MetricIntervalTLg 1) For every formula
¢ of MetricInterval TLy o, there ezists a congruent formula ¢* of MetricInterval TLg 1,
that is for every TSS k and every time t € RY: (k,t) = ¢7 iff (k,t) = ¢.

Proof. In the proof of lemma 3.34, we have shown that every MetriclntervalTL
formula can be rewritten using only the following real-time formulas: gbll;{\(o’oo)qbg
and O ¢ with I(J) = 0. So all we need to consider is formulas of the form
O<cr, O<cpr. We treat the case O .¢1, the other cases are treated similarly
and left to the reader. We reason by induction on the size of the constant ¢
and make the hypothesis that we can effectively construct the formula ¢? .

e Base case: ¢ = 1. Then O-1¢! is already in MetricIntervalTLg ;.

e Induction case: ¢ > 1 and by induction hypothesis we can handle
formulas ¢ g¢!, with 0 < d < c. For O.¢1, we take: O-1(Oc101)7,
which by induction hypothesis, is in MetriclntervalTLg ;.
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As a consequence of this lemma and corollary 3.38, we have the following
corollary:

Corollary 3.43 The logics Metriclnterval TL and MetriclntervalTLg 1 are equally
expressive.

Lemma 3.44 (EventClockTL C EventClockTLg 1) For every formula ¢ of
EventClockTL, there exists a congruent formula ¢! of EventClockTLy,;, that
is for every TSS k and every time t € RY: (k,t) = ¢T iff (k,t) = .

Proof. Inlemma 3.32, we have shown that EventClockTL C EventClockTLg .
Thus, we must show that >..¢; with ~€ {<,<,>,>} can be translated
into EventClockTLg,1. We treat I><.¢1 and I>>.¢1, the other cases are similar
and left to the reader.

® ¢ = D><.0p1. We reason by induction on the size of c.

— ¢ =1. In that case ><1¢ is an EventClockTLg ; formula.

— ¢ > 1. By induction hypothesis, we can treat every formula of
EventClockTLg o with a constant d < c. Then we take ><.¢; =

><i(><e—191)T.

® ¢ = D>>.¢pi. Note that we can rewrite this formula as follows: —=(><c¢1)A
Q¢1. By the previous case, we know that we can transform > .¢; into
an EventClockTLy ; formula.

A direct consequent of the previous lemma and corollary 3.38, we have
the following corollary:

Corollary 3.45 The logics Metriclnterval TL, MetriclntervalTLg o, MetricIntervalTL i,
EventClockTL, EventClockTLg 1 and MinMaxML; are equally expressive.

4 The Regular Real-Time w-Languages

4.1 Introduction

In this section, we will study automata that are closely related to the logic
of event clocks. This class of automata, called the recursive event-clock
automata is study in details: we study its closure properties, decidability
results as well as expressiveness results. It will turn out that the class
of language accepted by the recursive event-clock automata is exactly the
languages accepted by the logics of the previous section when ability to count
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is added. For this reason, we call the languages accepted by the recursive
event-clock automata the “(full) regular real-time languages”. This class of
languages is closed under all boolean operations.

4.2 Propositional Event-Clock Automata

An event-clock automaton is a special case of a timed automaton [AD94],
where the starting of clocks is determined by the input instead of by the
transition relation. We first recall the original definition with event clocks
associated to proposition [AFH94].

The value of propositional event clocks in the continuous semantics will
be non standard reals, which are defined as follows:

Definition 4.1 (Non-Standard Reals) The set of non-standard (posi-
tive) reals, noted R}, is the set {v,v™ | v € RT}, ordered by <, as follows:

ns’
1 <nps v; iff v; < vy where < is the usual order on real-numbers. O

We are now equipped to define the value of propositional event clocks
along timed state sequences.

Definition 4.2 (Value of Event Clocks-Continuous Semantics) The
value of an propositional event clock z € C along a TSS k, at time %, noted
Val,(z,t) is defined by the following clauses:

(v ifper(t—wv), v>0,

and for all v/, 0 < v’ < v, not p € k(t — )

Valg(zp, t) = ot if for all v’ > v, exists v, v < v <o with p € k(t — "),
and for all v/, 0 < v’ < w, not p € k(t — )

1L ifforallv, 0 <v <t not p€r(t—uv)

(v ifpe€k(t+v), v>0,

and for all v/, 0 < v' < v, not p € k(t + ')

Valy(yp,t) =< ot if for all v’ > v, exists v”, v < v" < o' with p € k(t + v"),
and for all v/, 0 < v' <w, not p € (t + ')

1 iffor all v > 0, not p € k(t +v)

a

Definition 4.3 (Atomic Event Clock Constraints) Given a set of (propo-
sitional) event clocks C, the set of atomic clock constraints is {z ~ ¢ | z €
Cand ce N}. O

Let us now show how the truth value of atomic event clock constraints
is evaluated along a TSS:
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Definition 4.4 (Clock Constraints Semantics) A atomic event clock
constraints z ~ c is true at time ¢ € R* of the TSS &, noted (x,t) E 2z ~ ¢,
iff Val,(z,t) ~c. O

Definition 4.5 (Propositional Event-Clock Automata) A propositional
event-clock automaton, in the continuous semantics, is a tuple A = (Q, Qo, 9, P, A, \, QF)
where:

Q is a finite set of locations,

Qo C Q is the set of starting locations,

0 C Q x @ is the transition relation,

P is a finite set of propositional symbols,

A is a finite set of atomic real-time constraints over propositional
clocks,

A Q — 2Hmit(PUA) iq o function that labels each location with a
set of literals;

Qr C (@ is a set of accepting locations.

Let us note that we label here the locations with set of literals. We could
have decided to label locations with boolean combinations of literals instead.
We just adopt this convention because it will slightly simplify some proofs
later but the expressive power would have been the same if we had chosen to
label with boolean combinations of literals instead. We now define formally
the notion of accepted timed run of a EventClockTA on a TSS k. Let x be a
timed state sequence whose propositional symbols contain all propositions

in P.

Definition 4.6 (Accepted Timed Run) The propositional event-clock au-
tomaton A accepts k, denoted Accept 4(k), iff there exist an accepted infinite

timed run p = (g, I) such that the following conditions are met.

Covering The run p consists of an infinite sequence q of locations from @,
and an infinite interval sequence I that covers [0, co).

Starting The run starts in a starting location, i.e. ¢y € Q.

Consecution The run respects the transition relation; that is, (g;, gi+1) € 0
for all 7 > 0.

Constraints The timed state sequence respects the constraints that are
induced by the run p; that is, k(t) = A(p(t)) for all real times ¢t €
[0, 00).

Accepting The run is Biichi accepting, that is, there exist infinitely many
i > 0 such that ¢; € Qp.
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Each EventClockTA defines a real-time w-regular language:

Definition 4.7 (Continuous Anchored Real-Time Language) The con-
tinuous anchored real-time language defined by an propositional event-clock
automaton A, noted AncLang(A) is the set of TSS on which it has an ac-
cepted run, that is AncLang(A) = {x | Accept,(k)}.

Theorem 4.8 (Closure Properties) The formalism of propositional event-
clock automaton is (constructively) closed, in the continuous semantics, un-
der all boolean operations. O

By slightly adapting the region construction presented in section ?7?,
we can also construct, for each EventClockTAA, a BA R* that accepts the
untimed A:

Theorem 4.9 (Region Automaton) For every (continuous) propositional
event clock A, we can construct a Biichi automaton B with AncLang(B) =

{7 | (7,1) € AncLang(A)}. Further the number of locations in B is linear

in the number of locations used in A, singly exponential in the number of
clocks used in A and singly exponential in the size of the mazimal constant

used in A. O

The last theorem and the closure properties of continuous propositional
event clock automata allow us to derive:

Theorem 4.10 (Emptiness and Universality of EventClockTA) The empti-
ness and universality problems for (propositional) event clock automata in
continuous semantics are decidable and PSPACE-COMPLETE. O

Unfortunately, the propositional version of event-clock automata does
not subsume the logic EventClockTL.

Theorem 4.11 (EventClockTL Z EventClockTA, EventClockTA & EventClockTL)
The expressive power of continuous EventClockTL and continuous Event-
ClockTA are incomparable.

Proof. The non inclusion of the EventClock TA-languages in the EventClockTL-
languages is as for the pointwise case: the logic EventClockTL is not able
to express counting properties. For the non inclusion of the EventClockTL-
languages in the EventClockTA-languages, we consider the two TSS k! =
(7, Tl) and k2 = (7, 72) defined on the singleton {p}:

e the two TSS share the same qualitative information which is as follows:
g ={HHpHHprHp}Hp}..., that is p is false in the two first observa-
tions, becomes true in the third observation, becomes false again in the
fourth observation and then true for ever from the fifth observation.
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e let us now consider the two following sequences of intervals:

1. T' = [0,0](0.5;0.5)[0.5;0.5](0.5; 1)[1; 1](1; 1.5)[L.5; 1.5] ... , that is
every interval Il with i even is singular and equal to [(i — 1) x
0.5; (i — 1) x 0.5];

2. T = [0, 0](0.4;0.4)[0.4; 0.4](0.4; 0.8)[0.8; 0.8](0.8; 1.2)[1.2; 1.2] ...,
that is every interval IZ.2 with ¢ even is singular and equal to
[(i—1) x 0.4; (1 — 1) x 0.4];

It is easy to show that for every clock constraint z ~ ¢ that we can
build from the propositional prophecy clocks z, and y,, that we have
the following property: for every positions i > 0, for every ti,t} € I},
for every 2,13 € I}, we have that: (k',t}) Ez ~ciff (s, t)) E2z~¢c
iff (k2,12) = 2z ~ ciff (k%,#2) E 2 ~ c. As the two timed state
sequences are alternating, we have the same property for every atom
build from propositions and atomic clock constraints. And thus every
EventClockTA either accepts or rejects the two TSS. On the order
hand, the EventClockTL formula ¢ = >_1Op is true in time ¢ = 0 of
the first TSS but false in ¢ = 0 of the second. As a consequence, no
EventClockTA can express the property expressed by the EventClockTL
formula ¢.

This result motivates the following extension. We extend the use of event
clocks: propositional event clocks are clocks that can only be associated to
propositional symbols, here we show that we can associate event clocks with
automata recursively. The formalism that we obtain is called the recursive
event-clock automata. Those recursive automata keep all nice properties of
their propositional version: closure under all boolean operations and both
emptiness and universality problems are decidable. Further, we will show
that contrary to propositional event-clock automata, recursive event-clock
automata are able to express all EventClockTL-expressible properties.

4.3 Recursive Event-Clock Automata

We now generalize the use of clocks to define our recursive event-clock au-
tomata, noted REventClockTA. An automaton A accepts (or rejects) a given
pair (k,t) that consists of a timed state sequence x and a time ¢t € R™.
The automaton is started at time ¢ and views the “past” of the input se-
quence k by executing a backward transition relation, and the “future” by
executing to a forward transition relation. If A accepts the pair (k,t), we
say that A accepts k at time ¢. This allows us to associate a history clock
and a prophecy clock with each automaton. The history clock =4 always
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shows the amount of time that has expired since the last time at which A
accepted k, and the prophecy clock y4 always shows the amount of time
that will expire until the next time at which A will accept k. This definition
of event-clock automata is recursive. The base automata, whose transition
relations are not constrained by clocks, are called floating automata, FloatA
for short. Formally,

Definition 4.12 (FloatA) A floating automaton is a tuple A = (Q, Qo, 5,0, P, A, QF;, QF,)
such that

Q is a finite set of locations,

Qo C Q is the set of starting locations,

dr C Q x Q is the forward transition relation,

0p C Q x @ is the backward transition relation,

P is a finite set of propositional symbols,

A Q — 21mit(P) jg a function that labels each location with a
set of literals over the set of propositions P;

Qr; C @ is a set of forward accepting locations, and

Qr, C Q is a set of backward accepting locations.

Note that we have chosen to label locations with the set of literals that
are true when the control reside in the location. We have done this choice
because it will slightly simplify some proofs later. But for specification
convenience, we could have chosen, with no effect on the property of our
recursive event-clock automata, to label locations with boolean formulas
built from those literals. We will use those boolean formulas when illus-
trating the use of recursive event-clock automata for specifying real-time
properties. Examples will be more readable with this convention.

We now define the notion of accepted timed run for floating automata
on a pair (k,t).

Definition 4.13 (FloatA-Accepted Run) Let « be a timed state sequence
whose propositional symbols contain all propositions in P. The floating au-
tomaton A accepts k at time t € RT, denoted Accept 4(k,t), iff there exist

an infinite forward timed run p/ = (g/ ,Tf) and a finite backward timed run

P’ = (ﬁbjb) such that the following conditions are met. We note p(t) the
location in which the run resides at time ¢t € R™.

Covering The forward run p/ consists of an infinite sequence g/ of locations
from @, and an infinite interval sequence I that covers [t,00). The
backward run p® consists of a finite sequence g@° of locations and a

finite interval sequence Tb, of the same length as g°, which covers [0, #].
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Starting The forward and backward runs start in the same starting loca-
tion; that is, p/ (t) = p®(t) and p/ () € Qo.

Consecution The forward and backward runs respect the corresponding
transition relations; that is, (qlf,quﬂ) € 05 or qlf = qlfJrl (stuttering)
for all i > 0, and (¢?,¢? ;) € & or ¢ = ¢* | (stuttering) for all

0<i<Ig

Constraints The timed state sequence respects the constraints that are
induced by the forward and backward runs; that is, (k,%') = M(p/ (')
for all real times ' € [t,00), and (k,#) = A(p"(t')) for all real times
t' € [0,1].

Accepting The forward run is Biichi accepting and the backward run ends
in an backward accepting location; that is, there exist infinitely many
7 > 0 such that qu € Qry, and Q€ QF,-

a

Example 4.14 (A Floating Automaton) The simple floating automa-
ton A of figure 2 has the following elements:

e location ¢ is the starting location of A;

e its forward transition relation (plain arrows) allows the control to
evolve from location ¢; to location g and to loop in location go;

e its backward transition relation (dashed arrows) allows the control to
reach location gy from location ¢; and afterwards to loop in location

q0;

e location ¢y is backward accepting (double circle dashed) and location
qo is forward accepting (double circle);

e its labels are as follows: in location ¢, the literal 7 must hold, it
means that p must be true just after the time at which the automaton
is started (but not necessary at the time the automaton is started);
when the control resides in location ¢o, the proposition p must be
true; when the control is in location ¢;, no constraint are imposed
(the location is labeled with the literal T).

Following the rules given in definition 4.13, it is not difficult to see the float-
ing automaton A accepts exactly the pairs (k,t) such that p is always true
just after ¢, that is the pairs where the EventClockTL formula Op evaluates
positively, i.e. (k,t) = Op.

We are now in position to define the notion of recursive automaton of
level i:
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Figure 1: Floating Automaton A.

Definition 4.15 (REventClockTA) A recursive event-clock automaton of level
i € Nisa tuple A = (Q, Qo, dy,, P, A, X, Qr,, Qr,) that has the same com-
ponents as a floating automaton plus a set of atomic clock constraints A4 over
the set of level; clocks, noted I';, that can be used by the labeling function A:
Q — 2Umit(PUA) that labels each location with a set of literals over propo-
sitions and level; clock constraints. The set I'; of level-i clock constraints
contains all atomic formulas of the form xp ~ ¢ and yg ~ ¢, where B is
a recursive event-clock automaton of level less than ¢ whose propositions
are contained in P, where ¢ is a nonnegative integer constant, and where
~e {<,<,=,>,>}. The clock zp is called the history clock of automaton
B, and the clock yp, the prophecy clock of automaton B. O

In particular, the set of levely clock constraints is empty, and thus the
levelyp event-clock automata are the floating automata. The level; clock con-
straints are the clock constraints built using event clocks associated with
floating automata...

Definition 4.16 (Subautomata) If A contains a constraint on zp or yp,
we say that B is a subautomaton of A. We use the notation SUB(A) to
denote the set of subautomata used in A or recursively, in a subautomaton
of A.

The definition of when the recursive event-clock automaton A of level i
accepts a timed state sequence « at time ¢ is as for floating automata, only
that we need to define the satisfaction relation (k,t) = (z ~ c) for every
time t € R* and every level; clock constraint (z ~ ¢) € I';. The rules for
evaluating the truth value of a clock constraint are as in the propositional
case. We only need to define the value of recursive event clocks. This is
done as follows.

Definition 4.17 (Recursive Event-Clock Value) The value of a recur-
sive event-clock zp € C with level(z4) = 1 along a TSS x, at time ¢, noted
Val,(z4,t) is defined by the following clauses:

Val,(zp,t) =
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v if Acceptp(k,t —v), v >0,
and for all v/, 0 < v' < v, not Acceptp(k,t — ')

if for all v > v, exists v", v < 0" < v with Acceptg(k,t —v"),
and for all v/, 0 < v' < wv, not Accepty(k,t — ')

1 ifforall v, 0 < v <t, not Acceptp(k,t —v)

Valli(yBat) =
v if Acceptp(k,t +v), v >0,
and for all v/, 0 < v' < v, not Acceptp(k,t + v')
if for all v > v, exists v”, v < v < v with Acceptg(k,t +v"),
and for all v/, 0 < v' < v, not Accepty(k,t + v')
L if for all v > 0, not Acceptp(k,t + v)

where Acceptg(k,t) is as in definition 4.13. The recursive case is treated
as follows. By induction hypothesis, Acceptg(k,t) is defined for every au-
tomaton B of level;, with 0 < j <4, the value of recursive clock of level i is
simply:

VaIK(xB,t) =
v if Acceptp(k,t —v), v >0,
and for all v/, 0 < v’ < v, not Acceptg(k,t —v')
if for all v > v, exists 0", v < 0" < v with Acceptg(k,t —v"),
and for all v/, 0 < v' < v, not Accepty(k,t — ')
| L ifforall v, 0 < v <t not Acceptp(k,t — v)

Valli(yBat) =
v if Acceptp(k,t +v), v >0,
and for all v/, 0 < v’ < v, not Acceptg(k,t +v')
if for all v’ > v, exists 0", v < 0" < v with Acceptg(k,t+v"),
and for all v/, 0 < v' < wv, not Accepty(k,t + v')
| L if for all v > 0, not Acceptp(k,t+ v)

Figure 2: Recursive Event-Clock Automaton B.

Example 4.18 (A Recursive Event-Clock Automaton) Let us consider
MEventClockTA of figure 2. As gy is the starting location of B, if B accepts
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(k,t) then the first following time that A is accepting  after time ¢ is at time
t 4+ 3. So the automaton B expresses exactly the semantics of the formula
>_3 Dp

For our recursive event-clock automata, we define two notions of timed
languages: the anchored language and the floating language. The anchored
real-time language is the traditional notion when the floating real-time lan-
guage capture the notion of floating acceptance. The two types of real-time
languages are defined formally as follows:

Definition 4.19 (REventClockTA-Languages) A recursive event-clock au-
tomaton A defines the floating timed language {(k,t) | Accepty(k,t)}, that
is, the floating language of A is the set of pairs (k,t) that it accepts; we note
FloatLang(A) the floating real-time language defined by A. Furthermore, A
defines the anchored language {r | Accept 4(k,0)} that is the set of TSS that
A accepts at time 0; we note AncLang(A) the anchored language defined by
A O

The expressive power of recursive event-clock automata will be measured
in term of its ability to define anchored real-time languages but the floating
real-time languages are important in the proofs.

In what follows, we use two notions of equivalence for automata:

Definition 4.20 (Equivalent and Congruent Automata) Two recur-
sive event-clock automata are equivalent if they define the same anchored
language and they are congruent if they define the same floating language.
a

Let us note that the notion of congruence is stronger than the notion
of equivalence, that is: two congruent automata are equivalent but two
equivalent automata are not necessarily congruent.

In the proofs of the following section, we will need the following notion.
As for timed state sequences, we define a notion of refinement for forward
and backward timed runs:

Definition 4.21 (Run Refinement) A forward (resp. backward) timed
run p? = (62,72) is a refinement of a forward (resp. backward) timed run
pl = (61,71) iff there exists a surjective function f : N — N such that:

e for all positions j with 0 < j < |p?], ¢f = q}(j);
e for all positions 0 <i < |p!|, I} = U{I]2 | f(5) =i}

where |p| denotes the length of p, which is a finite natural number in the
case of a backward timed run and oo in the case of a forward timed run. O
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In what follows, we need the following lemma, which is a direct conse-
quence of the possibility to take stuttering steps in timed runs:

Lemma 4.22 (Run Refinable) If p/t and p*' are accepted forward and
backward timed runs of A on the TSS k at time t € R™ then all forward and
backward timed runs pf2, p®2 such that p2 refines p’t and p** refines pbt,
are timed accepted runs of A on the TSS k at time t € RT. O

4.4 Closure Properties of Recursive Event-Clock Automata

We now analyze the properties of our recursive event-clock automata. In
order to enhance the readability of the proofs, we first define a variant of
the definition of recursive event-clock automata given above. We call this
variant “monitored recursive event-clock automata”, noted MEventClockTA.
In those automata, the forward and backward transition relations are re-
placed by a unique transition relation and the notion of floating acceptance
is handled with a set of locations that we call monitored. We define formally
the monitored event-clock automata and prove that their expressive power
in term of anchored as well as floating languages, is equal to the expressive
power of recursive event-clock automata. Again, we first define the base
case.

Definition 4.23 (Monitored Floating Automata) A monitored float-
ing automaton is a tuple A = (Q, Qo, Qnr, 0, P, \, Q) where:

Q is a finite set of locations,

Qo C Q is the set of starting locations,

Qum C @ is the set of monitored locations,

0 C @ x @ is the transition relation,

P is a finite set of propositional symbols,

A Q — 21mit(P) jg a function that labels each location with a
set of literals over propositions;

Qr C Q is a set of accepting locations (Biichi condition).

We now define when an monitored floating automaton accepts a timed
state sequence k at time t.

Definition 4.24 (Monitored Timed Run) A monitored floating automa-
ton A =(Q,Qo,Qnr, 05, P, N\, QF) accepts the the timed state sequence x at
time ¢, noted Accept 4 (k, t) iff there exists a timed run p = (qo, ), (¢1,[1), - - -, (Gn, In), - - -
such that:

Covering The run p cover the entire real time line, i.e. U;I; = [0, 00);
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Starting The run p starts in a starting location of A, that is gy € Qo;
Monitoring The run p is in a monitored location at time ¢, i.e. p(t) € Qr;

Consecution The run p respects the transition relation of A, i.e. for all 4
such that 1 <4, we have (¢;,q;11) € 0 or ¢; = j11;

Constraints The TSS k respects the constraints induced by the timed run;
that is for all time ¢ € [0,00) we have that (k,t) = A(p(t));

Accepting The run p has infinitely many positions in the set of accepting
locations, that is there exists infinitely many ¢ > 0 such that ¢; € Qp
(Biichi acceptance condition).

We call such run p an t-monitored and accepted run of A on k, noted
Accept 4(k,t). O

We call the monitored floating automata, levely monitored recursive
event-clock automata. A recursive monitored event-clock automaton of level;
has the ability to use clock associated recursively to automata of level;, with
0 < j < 1. Formally,

Definition 4.25 (Monitored Recursive Automata) A monitored recur-
sive event-clock automaton of level i is a tuple A = (Q, Qo, Qar, 3, P, A, X, QF)
such that

Q is a finite set of locations,

Qo C Q is the set of starting locations,

Qum C @ is the set of monitored locations,

0 C @ x Q is the transition relation,

P is a finite set of propositional symbols,

A is a finite set of atomic clock constraints over clocks of at most
level 4,

A Q — 2HmMit(PUA) is o function that labels each location with a
set of literals over propositions and level-i clock constraints;

Qr C Q is a set of accepting locations (Biichi condition).

The definition of when a recursive monitored automata accepts a TSS &
at a given time ¢t € R™ is as expected. We now show that the variant that we
have defined is exactly as expressive as the recursive event-clock automata
for defining floating languages (and thus also anchored languages):

Lemma 4.26 (REventClockTA C MEventClockTA) For every recursive event-
clock automata A, we can construct a monitored recursive event-clock au-
tomata B that accepts exactly the same floating language.
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Proof. Our proof is constructive. We define a function 7' : REventClockTA —
MEventClockTA that given a recursive event-clock automaton A returns a
monitored event-clock automaton B that accepts the same floating lan-
guage. In the following, we apply T to a recursive event-clock automaton
A= (Q4, QS‘, 64, 654,73‘4, A, Ql@f, Qlﬁb), it returns a monitored event-clock
automaton B.

e Base case. Let us first treat the basic case where A is a floating
automaton. Then B = (QB,QF,Q%,, 68, PP AP, QB) is a monitored
floating automaton with the following elements:

Locations. The set of locations QF = Q4 x {b, f,bf}, i.e. we
take three copies of each locations of A and tag the first with b,
the second with f and the third with bf. The locations tagged
with b will be used to mimic the backwards runs, the locations
tagged with f will be used to mimic the forward runs and, finally,
the locations tagged with bf will be used to make the interface
between forward and backward runs.

Starting locations. The set QF = {(q,b),(q,bf)lq € Qlflb}, of
starting locations of the monitored automaton B are the final
locations for the backward runs of the automaton A tagged with
either b or bf.

Monitored locations. The set of monitored locations Qs = {(q,bf) |
q € QS‘}, that is the set of monitored locations are locations that
are the interface between backward and forward runs;

Transition relation. The transition relation 6% of B is the union
of the four following sets:

L. {[(q1,b),(q2,0)] | (g2,q1) € 6;)4}, i.,e. two locations tagged
with b are linked by the transition relation in B if they are
linked by the backward transition relation in A; we reverse
the direction of the transition as we are working with a for-
ward transition relation in B;

2. {l{q1, )y (g2, )] | (q1,92) € 6}4}, i.e. two locations tagged
with f are linked by the transition relation in B if they are
linked by the forward transition relation in A;

3. {[(q1,0f), (g2, /)] | (q1,q2) € 5;‘ or ¢ = g2}, i.e. if the control
of B is in a location tagged with bf, it can only evolve to
locations tagged with f using the forward transition relation
of A or evolve to the same location but tagged with f;

4. {l(q1,b), (g2,b1)] | (g2, q1) € 0;* or q1 = g2}, i.e. if the control
of B is in a location tagged with b, it can only evolve to
locations tagged with bf by using the inverse of the backward
transition relation of A or it can evolve to the same location
but tagged with bf;
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— Propositions. The set of propositions used by B is the same set
of propositions used by A4, i.e. PP = P4;

— Labeling function. The labeling of location (¢, —) in B is the same
as the labeling of ¢ in A, that is for all (¢, —) € QZ, \B((¢,—)) =
2(q);

— Acceptance condition. The acceptance condition of B is defined
by the following set of accepting locations: {(q,f) | ¢ € Qf}f},
that is the same acceptance condition that the one for forward
run in A.

Now let us prove that the floating language defined by the monitored
floating automaton B is equal to the floating language defined by the
floating automaton A.

— First, let us prove that if (x,f) € FloatLang(A) then (k,t) €
FloatLang(B).
If (k,t) € FloatLang(A) then we know that there exists an ac-
cepted backward run p® = (g8, 12)(¢?, 1?) ... (¢%,I%) and an ac-
cepted forward run p/ = (qg,I({)(q{,I{) - (qf:,L{) ..., further-
more we know that the backward run ends at time ¢ while the
forward run begins at time ¢ and that ¢} = q(}; . Without loss
of generality, see lemma 4.22, we can make the hypothesis that
I’ and I} are equal to [t,t]. Now, we define the run 7 as the
concatenation of the three following sequences:

* M = ((qgv b), Ib,O)((qll)a b), I{)) e ((Qsz—h b), Ig—l)- Intuitively,
71 is the translation of the backward run in the b-tagged
locations of B;

* 1y = ((q(};,bf), [t,t]). m2 is just the location that makes the
link between the part corresponding to the backward run at
time %;

w05 = ((al. NI, ). 1)) - ((@h ), 1) ... Intuitively,
713 is the translation of the forward run in the f-tagged loca-
tions of B.

We now have to prove that the run n = ny - 1o - n3 is effectively
an t-monitored accepted run for x on B. For that, we check that
1 has the property of such a run:

* Monitoring. By construction of 1, we have 7(t) = (qg,bf).
As q{; is the first location of the forward run p;, we know that
gl € Q2 which implies, by definition of Q5 that (q,bf) €
Qf;[ and thus 7 is monitored at time ¢;

x Consecution. We show that the consecution rule is verified
for the 3 constituting part ny,n2,n3 of n:
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- within 7;: let us consider the locations (¢?,b), (qlbﬂ,b).
By the consecution condition for A, we know that either
(g%, 1,4?) € 6i' or 2, = 0. The second case is trivial. In
the first case, by construction of B, we obtain by point
1 of the definition of the transition relation of B that
(g%, b), (qf_H, b)] € 6% and thus the consecution condition
is verified for 7;

- between n; and 77: we must show that [(¢% |, b), (q(};, bf) €

§B. We know that either ¢4 = qg (in the case of a stut-

tering step) or (q(’;,qu) € 0. In the two cases, we know

that [(¢®_,,b), (q(};, bf)] € 6% by point 4 of the definition
of §B.

- We leave the two last cases, i.e. between 7y and 73 and
within 73, for the reader, there are treated in the same
way as the two first cases.

« Constraints. By the definition of A? and the construction
of our run, it is easy to show that the constraints induced
by n at each time ¢ are exactly the same as the constraints
induced by the backward and forward runs p, and py. Thus
the constraint condition is satisfied along « as the constraint
is satisfied for the backward and the forward runs.

* Accepting. We know that the forward run p; = (qg, I({), ( {, I{), ...
respects the accepting condition imposed by A, that is there
exists infinitely many positions ¢ > 0 such that qlf € Qﬁ.

By construction 7 contains for each of those qlf
(qlf , f), which belongs to Q2 by construction. And thus 7 is
accepting.

a position

— Second, let us prove that if (k,t) € FloatLang(B) then (k,t) €
FloatLang(A). We know that there exists a t-monitored accepting
run for k on B. If we inspect the transition structure of automa-
ton B, it is not difficult to see that the following property holds: a
t monitored and accepted run must first traverse location tagged
with b, reaches at time ¢ a location tagged with bf and after this
time ¢ stays within locations tagged with f. We note such a run
n = ((q0,0), 1o)((q1,6), I1) - .. ((gn-1,0), In—1)((qn, b )s In) ((@n+1, ) Int1) - - -
with ¢ € I,,. Without lose of generality, we can impose that
I, = [t, 1], since our automata are closed under stuttering refine-
ment. Now, let us show how to construct a backward run p, and
a forward run py from this run »:

* we take pb = ((q07b)710)((q1ab)711) s ((Qnab)a[n);
* and pf = ((qn, 0f), In) ((n+1, £y Ing1) ((@ns2s £y Ing2) - -
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It is routine to show that the constructed runs respect the con-
ditions that allows us to conclude that (k,t) € FloatLang(A).

Inductive case. By induction hypothesis, we know that for every
REventClockTA C' of level;, with 0 < j < 4, we can construct a MEvent-
ClockTA D that accepts exactly the same floating language. In the se-
quel, we use the notation T'(C') to represent that congruent automaton.
Let us show that we can construct an congruent MEventClockTA B for
every REventClockTA A of level;. The construction is similar to the
one for the base case, except that we must handle properly real-time
constraints and the labeling function. We detail those points:

— Atomic real-time constraints. The set of atomic real-time con-
straints used in B is as follows: {zr(c) ~ ¢ | zc ~ ¢ € A%},

— Labeling function. The labeling function of B is as for A ex-
cept that each atomic real-time constraint z¢c ~ ¢ is replaced by

2r(C) ~ C-

The proof for the equivalence of floating languages is similar to the
one for the base case.

We also have the reverse lemma:

Lemma 4.27 (MEventClockTA C REventClockTA) For every monitored re-
cursive event-clock automata A, we can construct a recursive event-clock
automata B that accepts exactly the same floating language.

Proof. This direction is simpler. We only treat the base case. The induction
case is left to the reader. Let us consider a monitored floating automa-
ton A = (QA,QE?, ]“\‘4,6A,73A,)\A, Ql“;), we construct a congruent floating
automaton B = (QP,QF, 67, 6P, PB AP, ng, ng) as follows:

Locations. The set of locations QP is the same as in 4, i.e. QF = Q*;

Starting locations. The set of starting location in B are the monitored
locations of A, i.e. Qo = Qur;

Forward and backward transition relations. The forward transition re-
lation of B is the transition relation of A, and the backward transition
relation of B is the inverse of the tramsition relation of A, that is

Propositions. The set of propositions used by B is similar to the set
of propositions used by A, i.e. PP = P4;
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e Labeling function. The labeling function of B is as for A, that is for
all locations ¢ € QP, AP(q) = M (¢);

e Forward and backward accepting locations. The forward accepting lo-
cations of B are the accepting locations of A, that is Qg = Qlfl, and
the backward accepting locations of B are the initial locations of A,

ie. ng = Qg‘.

It is routine to prove that the constructed automaton B accepts the same
floating language as A. O

This two last lemmas allow us to derive the theorem:

Theorem 4.28 (REventClockTA = MEventClockTA) The class of recursive
event-clock automata and monitored recursive event-clock automata are equally
expressive.

Now, we will concentrate on properties of monitored recursive event-
clock automata. We will simply derive the appropriate corollaries for recur-
sive event-clock automata.

4.4.1 Closure under Positive Boolean Operations

Let us now prove two first result about the closure property of monitored
recursive event-clock automata: they are closed under positive boolean op-
erations, i.e. closed under union and intersection.

Theorem 4.29 (MEventClockTA-Union) Given two monitored recursive
event-clock automata A and B defined on the same set of propositions, there
always exists a third monitored recursive event-clock automaton C that ac-
cepts exactly the union of the timed floating languages of A and B, i.e.
FloatLang(C') = FloatLang(A) U FloatLang(B).

Proof. The proof is constructive. Let A and B be MEventClockTA, we con-
struct the MEventClockTAC' that accepts the union of the floating languages
of A and B as follows:

e Locations. The set of locations of C' are the tuples (¢, Z) such that

1. either ¢ € Q*, E € Limit(PCUAY) and for all ¢ € Limit(PAUA):
¢ € 2 iff ¢ € A (q), which will ensure the coherence of the
labeling of (g, E) with the labeling of ¢ in A,

2. or ¢ € QP, E € Limit(P¢ U A%) and for all ¢ € Limit(P? U AP):

¢ € E iff $ € AB(g), which will ensure the coherence of the
labeling of (g, E) with the labeling of ¢ in B.
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e Starting locations. The subset of starting locations of C' is the following
set QF = {(¢,E) € Q| g€ Qg or ¢ € QF'}-

e Monitored locations. The subset of monitored locations of C is the
following set: Qf, = {(¢,Z) € Q¥ | ¢ € Q4 or ¢ € QF};

o Transition relation. The transition relation of C' is the following subset
of QY x Q%: 6 = {[(q1,21), (g2, E2)] | (q1,42) € 6 or (q1,2) € 65};

e Propositions and atomic clock constraints. The propositions in C'
are as in A, the atomic clock constraints used in C is the union of
the atomic clock constraints used in A and B, that is P¢ = PA =
PBAC = A4 U AP,

e Labeling function. The label of the location (¢, E) is simply the set of
literals E: A\“((¢,E)) = E, for every (¢,E) € QC.

e Accepting locations. The accepting condition for C' is the union of the
accepting condition for A and B, that is Q% = {(¢,Z) | ¢ € Q7 or ¢ €
QF};
It is direct to show that the constructed automaton accepts the desired
floating language. O

By the equivalence between monitored and non monitored recursive
event clock automata, see theorem 4.28, we have the following corollary:

Corollary 4.30 (REventClockTA-union) Given two recursive event-clock
automata A and B defined on the same set of propositions, there always
erists a third recursive event-clock automaton C' that accepts exactly the
union of the floating real-time languages of A and B, i.e. FloatLang(C) =
FloatLang(A) U FloatLang(B).

We now turn to the closure of MEventClockTA to intersection. The
following theorem states that MEventClockTA are closed under intersection:

Theorem 4.31 (MEventClockTA-Intersection) Given two monitored re-
cursive event-clock automata A and B defined on the same set of proposi-
tions, there always exists a third monitored recursive event-clock automaton
C that accepts exactly the intersection of the floating real-time languages of
A and B, i.e. FloatLang(C) = FloatLang(A) N FloatLang(B).

Proof. Let A and B, we construct C that accepts the intersection of the
timed floating languages of A and B as follows:
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e Locations. The set of locations of C are the tuples (¢%,¢") such that
q® € Q4 ¢® € QP and for all literals ¢ € Limit(P* U A%) N Limit(PP U
AB), ¢ € M (q%) iff ¢ € AB(¢). So the set of locations of C' is the set
of pairs of locations of A and B that have compatible labels.

e Starting locations. The set of starting locations of C' is the following
set QF = {(¢*,¢") € Q7 | ¢* € Qg and ¢’ € QF'};

o Monitored locations. The set of monitored locations of C is the follow-
ing subset Of QC: Q% = {(qa’qb) I QC | qa c Q]/\‘J and qb c Qﬁ},

o Transition relation. The transition relation of C is the following sub-
set of Q7 x Q% 0% = {[(af. 1) (a5, 48)] | (af,a8) € 0"V (¢f =
¢3) and (¢}, 43) € 6" V (¢} = ad)};

e Propositions and Atomic real-time constraints. The set of propositions
used in C is the set of propositions used in A and B, the set of atomic
real-time constraints is the union of the sets used in A and B, that is

PC=PA=PB A = AU AP,

e Labeling function The atom that labels a location (g%, q%) of C is the
union (giving the conjunction of constraints) of the label of ¢% in A
and the label of ¢® in B (remember that by definition (¢%,q%) have
compatible labels), that is \“((¢%,¢%)) = A (¢%) U AB(¢"), for every
(4°,¢") € Q;

e Accepting locations. For the accepting condition, we define a general-
ized Biichi condition: Q% = {Fy4, Fg}, with Fa = {(¢% ¢") | ¢® € Q7}
and Fp = {(¢°,¢") | ¢ € QB}. This generalized Biichi acceptance
condition can be converted into a Biichi acceptance condition using
the usual technique. This costs only a doubling of the number of
locations.

It is direct to show that the constructed automaton accepts the desired
floating language. O

Again, by theorem 4.28, we obtain the following corollary:

Corollary 4.32 (REventClockTA-Intersection) Given two recursive event-
clock automaton A and B defined on the same set of propositions, there al-
ways exists a third recursive event-clock automaton C that accepts exactly the
intersection of the floating timed languages of A and B, i.e. FloatLang(C) =
FloatLang(A) N FloatLang(B).
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4.4.2 Closure under Negation

Let us now turn to the problem of complementing monitored recursive event-
clock automata. The problem is more complicated. By inspecting the defi-
nition of run for our MEventClockTA, we can see that the problem of floating
acceptance can be decomposed into two usual forward acceptances. In fact,
a MEventClockTA accepts (k,t) if it has a finite run on the prefix (, [0, ¢])
that ends in a monitored location ¢y, and a run on the suffix (k, [t..00)) that
is accepting and starts in g,.

To formalize this intuition, we define two new types of languages for
MEventClockTA. First, prefiz acceptance allows us to define the prefiz real-
time language of a MEventClockTA A, noted PreLang(A). This language,
again, is a set of pairs (k,t) where k is a TSS and ¢+ € RT. The intuition
behind this language is that if (k,t) € PreLang(A) then there exists a finite
run p of length ¢ of A such that the run begins at time 0 in a starting location,
ends at time ¢ in a monitored location and the constraints that are induced
by the run are verified by the TSS k. Second, suffiz acceptance allows us to
define the suffiz real-time language of a MEventClockTA, noted SufLang(A).
This language is also a set of pairs (k,t) where k is a TSS and t € R*. Here,
the intuition is that if (x,%) € SufLang(A) then there exists a infinite run
p of A on k, such that the run begins at time ¢ in a monitored location,
goes through accepting locations infinitely often and the constraints that
are induced by the run are verified by the TSS k. The PreLang and SuflLang
will be assembled in lemma 4.46. Let us now define formally PreLang and
SufLang:

Definition 4.33 (Prefix Language) Given a monitored recursive event-
clock automaton A = (Q, Qo, Qnr, 9, P, A, X\, Qr), a pair (k,t) belongs to the
PreLang(A) iff there exists a finite timed run p = (qo, lo), (g1, I1),- - -, (qn, In)
such that:

Covering The run p covers time up to ¢, i.e. Uiﬁ I, =[0,t];
Starting The run p starts in a starting location of A, that is gy € Qo;

Consecution The run p respects the transition relation of A, i.e. for all
positions 4 such that 1 <4 < n, we have that (¢;,q;+1) € d or ¢; = ;11
(stuttering steps are allowed);

Constraints The TSS « respects the constraints induced by p, that is for
all time t' € [0,%]: (k,t') E A(p(t));

Further, the run p is accepting if it ends in a monitored location of A, i.e.
an € QM O

Definition 4.34 (Suffix Language) Given a monitored recursive event-
clock automaton 4 = (Qa QUa QMaéapaAa)‘a QF)a a pair (’ivt) belongs to
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SufLang(A) iff there exists an infinite timed run p = (qo, Io), (q1, [1), -, (Gns In), - - -

such that:
Covering The run p covers time from ¢, i.e. Ui%’ I; = [t,00);
Starting The run p starts in a monitored location of A, that is ¢y € Qar;

Consecution The run p respects the transition relation of A, i.e. for all
positions 7 > 0 we have that (¢;,gi+1) € d or ¢; = ¢;+1 (stuttering steps
are allowed);

Constraints The TSS « respects the constraints induced by p, that is for
all time t' € [t,00) : (T'ss,t’) = A(p(t))).

The run p is accepting if it intersects infinitely often with the set of accepting
locations, i.e. there exists infinitely many positions ¢ such that ¢; € Q. O

Next we show that MEventClockTA are determinizable and keep, in their
deterministic version, their expressive power for defining prefix languages.
First, let us define formally the notion of deterministic and total monitored
recursive event-clock automata.

Definition 4.35 (Deterministic and Total MEventClockTA) A monitored
recursive event-clock automaton A = (Q, Qo,Qar, 0, P, A, N\, Qr) is deter-
ministic iff the following conditions are satisfied:

Unique initial locations All pairs of initial locations have different (and
thus mutually non satisfiable labels), that is, for all ¢1,¢2 € Qp, with

a1 # g2, Mq1) # Maz).

Unique next location Given a location g1, all successor locations of ¢
have different labels, i.e. for all g2,q¢3 such that (q1,¢2) € ¢ and
(q1,q3) € 0 then if ¢o # q3 then A(g2) # A(g3). As labels are set
of literals that are true when the control resides in the location, as
all successor locations of a location ¢; have different labels and thus
mutually non satisfiable labels, the possible successor location in a run
is unique;

Non repeating For every location ¢, the labels of its next locations are all
different from the one of ¢, i.e. for every q € @, for every ¢’ such that

q' # q and (q,q') € 0, Aq) # \¢').

Furthermore, we say that A is total iff the following condition is satisfied:

Totality The two following points must be verified:

1. For every E € 2Hmit(PUA) ' there exists an initial location ¢ whose
label is =, that is ¢ € Qp and A\(q) = =;
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2. For every location ¢ € @, for every E € oLimit(PUA) there exists a

location go such that either g1 = g2 or (q1,¢2) € 0, and A(¢q2) = =.

“Unique initial location” and “unique next location” conditions ensure
that there exists at most one, up to stuttering, prefix run (maybe non accept-
ing) for every pair (k, t) on a deterministic monitored event-clock automaton.
The condition “non repeating” imposes that two consecutive locations in a
deterministic automaton can not be labeled with the same literals. This is
important and necessary because we are considering automata that evolves
along (continuous) timed state sequences and if two consecutive locations
are labeled with the same (open) label, the automaton can change from one
location to the next nondeterministically at any time of an open interval that
agrees with the label, making the automaton non deterministic. “Totality”
imposes that every pair (k,t) has one prefix (not necessarily accepting) run
on the monitored event-clock automaton.

The usual subset construction does not work when directly applied to
MEventClockTA. If the usual subset construction is applied without care, the
automaton obtained could contain two consecutive locations with the same
label and, thus, would violate the “non repeating condition” and thus not
be deterministic. Before applying the subset construction, we apply to the
automaton a transformation that is exposed in the following lemma and its
proof.

Lemma 4.36 (Non Repeating MEventClockTA) For every monitored re-
cursive event-clock automata A, there exists an equivalent monitored event-
clock automata B that accepts the same anchored, floating, prefix and suffix
languages and that have the property that it does not have any two consec-
utive locations labeled identically, that is, there does not exists qi,qo € QP
with q1 # q2 such that (q1,q2) € 6% and \P(q1) = AP (q).

Proof. First note that if two locations ¢, g2 are labeled by singular sets of
literals (see definition 2.19), and linked by an edge, i.e. (qi,q2) € 6, then
we can suppress this edge without changing the languages (anchored and
floating) defined by the automaton A. In fact, this edge can not be used
by any run. As ¢, g2 are labeled with a singular literals, the control can
only stay there during a singular interval of time. But two singular interval
of time can not follow each other in a sequence of intervals. We can also
suppress edges between two locations that are labeled by two different open
sets of literals. Suppose that we have a portion of a TSS where an open
label is true. From the definition of open label, it is direct to prove that this
portion of the TSS must be an open interval of time. So let us consider that
the open label X is true during the open interval of time (a, b). If the control
in time ¢ € (a,b) is in a location with label A then the control can take any
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amount of transitions to reach other locations labeled with A before leaving
the interval (a,b). This intuition is formalized by the following functions:

o SReachy : Q4 — 2QA, this function, when applied to a location ¢
returns all the locations that can be reached from ¢ in the transition
structure of A only by using locations labeled as ¢. Formally, the func-
tion is defined as follows: ¢’ € SReach4(q) iff there exists a sequence

of locations ¢y, q1, ..., g, such that
1. n>0;
2. qo = ¢q;
3. gn =4’
4. for all positions i, 0 < i < n, either ¢; = gj+1 or (¢;,gi+1) € 64,

and A(q;) = A (q);

e SReachMoniy : Q4 — ZQA, this function, when applied to a location ¢
returns all the locations that can be reached from ¢ in the transition
structure of A by using only locations labeled as ¢ and by passing at
least by a monitored location. Formally, the function is defined as
follows: ¢’ € SReachMoni4(q) iff there exists a sequence of locations
q0,q1, - - -, qyn such that

1. n>0;

2. qo = q;

3. an =4’

4. for all positions i, 0 < i < n, either ¢; = g;j+1 or (g;, gi41) € 6%,
and A\ (g;) = M (q); and

5. there exists a position ¢, 0 < 7 < n such that ¢; € Qf/[;

e SReachAccy : Q4 — ZQA, this function, when applied to a location ¢
returns all the locations that can be reached from ¢ in the transition
structure of A by using only locations labeled as ¢ and by passing at
least by an accepting location. Formally, the function is defined as
follows: ¢’ € SReachAcc(q) iff there exists a sequence of locations
q0,q1, - - -, qyn such that

1. n>0;

2. 90 =q;

3. qn = q;

4. for all positions i, 0 < i < n, either ¢; = g;j41 or (g, gi41) € 6%,
and A\ (g;) = M (q); and

5. there exists a position 4, 0 < ¢ < n such that ¢; € Qlfl;
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We construct the MEventClockTA B = (QF,QF,Q%,, 68, PB, AP AP QF)
as follows:

e Locations. The locations of B will the set of 3-tuples (¢,n,&) such
that:

—q€ Q™

— n € {M,M} and if kK = M then SReachMoni4(q) # 0, that is ¢
can access a monitored location by staying on locations that are
labeled with the same open label;

— ¢ € {F,F} and if ¢ = F then SReachAcc(q) # 0, that is ¢
can access an accepting location by staying on locations that are
labeled with the same open label.

e Initial locations. The set of initial locations QF is the set of locations
(q,1,€) € QP with ¢ € Qf', that is the tuples whose location ¢ is an
initial location of A;

e Monitored locations. The set of monitored locations Qﬁ is the set
of locations (¢,n,¢) € QP with n = M, that is the tuples whose
locations ¢ can access, by staying on locations with the same label as
q, a monitored location.

e Transition relation. A pair [(q1,m1,&1), (g2, 72, &2)] belongs to the tran-
sition relation 67 iff the four following rules are verified:

1. if gy = M and ¢ = F then ¢y € SReachy(q1) and A\ (q) #

AA(Q1)§

2. if g = M and &; = F then g, € SReachMoni4(¢1) and A\ (go) #
M(q);

3. ifAm = M and ¢ = F then ¢ € SReachAcca(q1) and A (gqo) #
A q1);

4. ifny = M and & = F then ¢o € SReachMoni 4(q1)NSReachAcc4(q1)
and A\ (q2) # M (q1);

e Propositions and atomic real-time constraints. The set of propositions
and of atomic real-time constraints used in B is the same as the ones
used in A, that is PP = P4 and A4 = AP;

e Labeling function. The labeling function of B is derived from the
labeling function of A as follows: for all (¢,n,¢) € Q%, AB((¢,n,¢)) =

2 (q);

e Accepting locations. The set of accepting locations Qg is the subset of
locations (q,7,¢) € QP such that ¢ = F.
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It is routine to establish that the floating language of B is exactly the
same as the floating language of A. O

The next theorem states that every monitored event-clock automaton
with the non-repeating property, can be determinised.

Lemma 4.37 (MEventClockTA-Determinization) For every monitored event-
clock automaton A with the non repeating property, one can construct a de-
terministic and total monitored event-clock automaton C that accepts the
same prefiz language, i.e. PreLang(A) = PreLang(C).

Proof. Our proof is constructive. Let us consider A and construct the
deterministic forward event-clock automaton B as follows:

e Locations. The set of locations of B is the set of non-empty subsets of
locations of A that share the same label, that is: {qi,...,q,} € QP iff

1. foralli, 1 <i < n: ¢ € Q" (subset of Q).
2. n > 1 (non-empty subset);

3. for all 4,5 such that 1 <4 < j < n, we have that A\ (q;) = A\ (g;)
(same label).

e Propositions and atomic real-time constraints. The set of propositions
used in B is the same as the set of propositions used in A4, i.e. PP =
PA, the set of atomic real-time constraints used in B is the same as
the set of real-time constraints used in A4, i.e. AP = A4;

e Labeling function. The labeling function is defined as follows: AP (1) =
M(q) with g € I, for all I € QP. Recall that the locations appearing

in [ are all labeled with the same label in A, we just take this label for
l.

o Starting locations. The set of starting locations of B is the subset of
locations that contains only initial locations of A, expressed by point
1 below, and that are maximal for their label, expressed by point 2,
that is [ € QF iff

1. forallgel, ge QS‘, and

2. there does not exists a location I’ with
(a) AP(I") = XP (1),
(b) forallgel', ¢ € Q4 and
(c)ylcly
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o Monitored locations. A location [ € QF belongs to the set Qﬁ of mon-
itored locations iff there exists a location of A in [ that is monitored,
ie. l € Qﬁ iff there exists ¢ € [ such that ¢ € Q]“\‘I.

e Transition relation. We have that (I1,ls) € 6% C QB x QP iff

1. for all g, € Iy, there exists q; € I; such that (g1, q2) € 04;

2. for all g2 € Q* such that A (q2) = AP(I3) and such that there
exists ¢ € I, with (¢1,¢2) € 6%, we have ¢ € lo;

In words, the point (1) says that locations in I, are d“-successors of
locations in /; and (2) says that [ is the maximal set of locations that
share the label of [5 and are §“-successors of a location of /.

e Accepting locations. As we are only interested in the prefix language
of B, we take arbitrarily Qg =QP.

It is not difficult to show that (k,t) € PreLang(B) iff (k,t) € PreLang(A).
Now, let us see how we can transform B into a deterministic automaton C
that has the totality property. We construct C as follows:

o Locations. We take Q¢ = QPUD, where D is a set of dummy locations.
We take one dummy locations for each possible label in B, that is
D = {l | | € 2tmit(PPUAP)Y " The Jocations of D, will be used to
handle the pairs (k,t) that does not belong to the prefix language of
B.

e Starting locations. We take QS = QF U Djniy, where Dy = {q €
DI}q € QF : \B(¢') = q}. So D' contains locations that correspond
to labels for which there does not exists an initial location in B;

e Monitored locations. QAC/[ = Qﬁ, the monitored locations are the mon-
itored locations of B, no dummy locations is monitored.

o Transition relation. The transition relation §¢ C Q¢ x Q¢ is the set
of pairs that respects the following conditions:

1. for all q1,q2 € QP: (q1,¢2) € 6C iff (q1,q2) € 67;

2. for all q1,q2 € D with q1 # q2: (q1,q2) € 0

3. for all g € QP, ¢ € D: (q1,q2) € 6 iff \P(q1) # ¢o and there
does not exist g3 € QF such that A(¢3) = g2 and (g1, ¢3) € 05;

4. for all ¢; € D, ¢» € QF: (q1,02) & <.

Condition 1 ensures that the transitions possible in B are possible in
C and vice versa; Condition 2 guarantees that when in a location of
D the transition does no more constraint the possible runs; Condition
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3 says that we can go from a location of B to a dummy location if and
only if the transition is not possible in B for a given label; Condition
4 ensures that when in a dummy location it is not possible to return
into the locations of B.

e Propositions and atomic constraints. P¢ = PB and AY = AP, the
propositions and atomic clock constraints used in C are similar to the
ones used in B;

o Labeling function. \© is defined as follows:

— for g € Q%, \°(q) = A (q);
— for ¢ € D, \%(q) = q.

Thus the labels of locations of B are conserved and the labels of dummy
locations are simply the set of literals that constitutes the locations.

e Accepting locations. As for B, we take arbitrarily Ql(;: =Q°.

Again, it is easy to show that the prefix language of B is preserved by C. O

Corollary 4.38 Let A, B and C as in the last lemma For every TSS k €
TSS(PA), there exists one run p (up to stuttering) > of C on &, and the
following property is verified: if p(t) € QP then there exists, for each q €
p(t), a prefix run p? on k in A that covers [0,t] and ends-up in location q,
that is p(t) = q. O

We will use this last corollary in the construct for the emptiness of mon-
itored recursive event-clock automata.

Complement of the Prefix Language We are now able to prove that
monitored event-clock automata are closed under negation for their prefix
languages.

Lemma 4.39 (Prefix Complement) For every monitored recursive event-
clock automaton A, we can construct another monitored recursive event-
clock automaton B that accepts exactly the complement of the prefix language
of A, i.e. PreLang(B) = PreLang(A).

Proof. As noted in corollary 4.38, a pair (k,t) has always one and only
one prefix run on C, the deterministic and total version of A. In that case
only the monitoring condition determines if a pair (x, t) belongs to the prefix

®Note that here we identify two runs if they only differ by stuttering steps, we are only
interested in the function p : R* — Q°.
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language of C. Thus to complement the prefix language of A, we just have to
complement the monitoring condition of C'. So we construct B as follows.
First compute C as in lemma 4.37. Second, we take B as C' except for
the monitored locations where we take Qﬁ =Q\ Qf/f. The constructed
automaton B accepts PreLang(A), the desired language. O

Complement of the Suffix Language Complement the suffix language
of a MEventClockTA is more difficult. The difficulty has nothing to do with
the fact that we are working with real-time automata because we are con-
sidering a Buchi acceptance condition. For such acceptance condition, it
is well known that the usual subset construction does not work []. Instead
of “re-doing” all the proofs for the complementation of Biichi automata,
we show how to reduce our problem of complementation to the problem of
complementation of usual Buchi automata on w-sequences.

To relate a pair (k,t) to a w-sequence ¥ = y172...%, ..., We use a
function, called o and defined as follows:

Definition 4.40 (Function o) Given a TSS &, a time t € RT, the set of
propositions P on which k = (7,I) is defined and a set of atomic clock
constraints A, a(k,t,P, A) returns the infinite sequence 7 defined on the
set of proposition P’ = {py | ¢ € Limit(P U .A)} such that: if &’ = @@, T) is
the coarsest Limit(P U.A) — Fine TSS that refines «, and ¢ € I:

v =A{pp € P'| (&, 1) = ¢, for all ' € [} ;}

That is, y; contains all propositions associated with literals of Limit(P U A)
that are true during the interval I} ; of '. D

Note that for every TSS &, there exists only one coarsest Limit(P4 U
A#) — Fine TSS and thus 7 is unique for every pair (k,t).

The idea of the reduction is depicted in figure 4.4.2 and is decomposed
in three steps:

(1) Given an MEventClockTA A, defined on the set of propositions P and
atomic clock constraints A, we construct a Biichi automaton B that
accepts a language that respects the following property:

for all kK € TSS(P), for all time t € RT,
(k,t) € SufLang(A) iff a(k,t,P,.A) € AncLang(B)

(2) As the formalism of Biichi automata is closed under negation [SVW85],
see theorem ?7, we can construct C such that:
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(3)

Figure 3: Complement of the suffix language

for all kK € TSS(P), for all time t € R™,
(k,t) € SufLang(A) iff a(k,t,P, A) € AncLang(B) iff a(k,t,P, A) &
Anclang(C)

(3) From C, it remains to construct a MEventClockTA D such that:

for all kK € TSS(P), for all time t € RT,
(k,t) € SufLang(D) iff a(k,t,P,.A) € AncLang(C)

This automaton D accepts exactly the desired language, that is, SufLang(D) =
SufLang(A).

The following two lemmas expressed that the transformation (1) and (3)
are indeed possible:

Lemma 4.41 (From MEventClockTA to BA) Given an MEventClockTA A
that uses the set of propositions PA and atomic clock constraints A%, we can

construct a Biichi automaton B on the set of propositions PP = {ps | @ €
Limit(P4 U A%)} such that:

for all k € TSS(PA), for all time t € R,
(k,t) € SufLang(A) iff a(k,t, P4, A?) € AncLang(B)

Proof.(sketch) By lemma 4.36, we can make the hypothesis that A has the
non-repeating property. In that case, the Biichi automaton B can simply
be obtain from A by:

e taking the same set of locations;
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e adding to the transition relation all pairs (q,q), for all locations g,
this is because, the notion of run in MEventClockTA allows stuttering
steps;

e the initial locations of B are the monitored locations of A;

e adapting the labels are as follows: p, € A\P(q) iff ¢ € M(q), for all
¢ € Limit(P4 U A4) and for all locations g;

It is not difficult to prove that the constructed Biichi automaton B accepts
precisely the desired language. O

Conversely, we have

Lemma 4.42 (From BA to MEventClockTA) Given a Biichi automaton C
on the set of propositions P¢ = {ps | ¢ € Limit(PPUAP)}, we can construct
an MEventClockTA D that uses the set of propositions PP and atomic clock
constraints AP such that:

for all k € TSS(PP), for all time t € RT,
(k,t) € SufLang(D) iff a(k,t, PP, AP) € AncLang(C)

Proof.(sketch) Again, the transformation is very simple. The MEventClockTA
D is constructed from the BA C' by:

e taking the same set of locations and the same transition relation;
e taking the initial locations of C as the monitored locations of D;

e adapting the labels as follows: ¢ € A" (q) iff p, € A (q), for all ¢ €
Limit(PP U AP), for all locations ¢;

Tt is not difficult to prove that the constructed automaton accepts the right
suffix language. O

The construction that we have presented above allows us to derive the
following lemma:

Lemma 4.43 (Suffix Complement) For every monitored recursive event-
clock automaton A, we can construct another monitored recursive event-
clock automaton B that accepts exactly the complement of the suffiz language

of A, i.e. SufLang(B) = SufLang(A4). O

It is important to note that the proposed construction only works because
to every tuple (k,t, P, A) corresponds exactly one w-sequence 7. This is
because the value of each event-clock is determined by & at all time ¢t € R
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and consequently, the truth value of the atomic clock constraints of A is
also determined by & at all time t+ € R™ and not by a particular run of the
automaton on x. Thus the proposed construction does not work for timed
automaton (and it is not a surprise, for timed automata are not closed under
negation). In a timed automaton, the value of a clock along a TSS k does
not only depend on the TSS & but also on the particular run that is chosen
to read k. So to each tuple (k,t, P, A) corresponds a set of w-sequence 7,
one for each possible run.

Complement of the Floating Language So far, we have shown how
we can complement the prefix et suffix languages accepted by an MEvent-
ClockTA. Let us now turn to the problem of complementing the floating
language accepted by a MEventClockTA. First, let us consider the following
lemma:

Lemma 4.44 (Decomposition Monitored Condition) The floating lan-
guage accepted by a MEventClockTA A = (Q4,Q4, Q4,04 P4, A4 A4, Q)
with Qf/[ = {q1,92,-..,qm} can be expressed by the union of the floating
languages of a collection Ay, As,..., A, of m MEventClockTA that have an
unique monitored location.

Proof. We take each A; identical to A except for the monitored locations:
for Q]‘?/}', we take the singleton {g;}. If (k,t) € FloatLang(A) then A has
a gj-t-monitored and accepted run p on (k,t), for some j, 1 < j < m. By
construction of each A;, p is also a monitored and accepted run of A; on (k, t)
implying that (k,t) € FloatLang(A;) and thus (k,t) € |JZ|" FloatLang(4;).
Conversely if A; has a monitored and accepted run p on (k,t) then p is an g;-
t-monitored and accepted run of A on (k,t) and thus (k,t) € FloatLang(A).
O

Note that if A has only one monitored location, we have the following
interesting property:

Lemma 4.45 (Unique Monitored Location) Let A be an monitored re-

cursive event-clock automaton with only one monitored location, that is
|Qnr| =1 then FloatLang(A) = PreLang(A) N SufLang(A).

Proof. Let us assume that Qyr = {gn}. We first prove that if (k,t) €
(PreLang(A)NSufLang(A)) then (k,t) € FloatLang(A). As (k,t) € PreLang(A),
we know that there exists a finite prefix run pP of A on x that ends at
time ¢ in location g,,, the unique monitored location of A. Similarly, as
(k,t) € SufLang(A), we know that there exists an infinite suffix run p® of A
on x that starts, at time ¢, in location ¢,,, the unique monitored location of
A. The concatenation of pP and p® is a t-monitored and accepted run of A
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on (k,t) and thus (k,t) € FloatLang(A). We now turn to the other direction.
If (k,t) € FloatLang(A) then we know that there exists a #-monitored and
accepted run on k and thus p(t) = ¢,,. We simply decompose p into pl0:t]
and plt®] where pl® is the prefix of p up to time ¢ and p> is the suffix
of p that starts at time ¢. Tt is easy to show that p[® is an accepted prefix
run of A on (k,t) and thus (x,¢) € PreLang(A) and plt°° is a suffix run of
A on (k,t) and thus (k,t) € SufLang(4). O

Thus for an MEventClockTA with only one location, the problem is nearly
solved. In fact, last lemma tells us that if A has only one monitored loca-
tion, FloatLang(A) = PreLang(A) N SufLang(A) and thus FloatLang(A) =
PreLang(A) U SufLang(A). We already know how to obtain PreLang(A) and
SufLang(A). Tt just remains us to show how given an MEventClockTA that
accepts PreLang(A) how to construct a automaton B such that FloatLang(B) =
PreLang(A) and similarly for the automaton accepting SufLang(A).

Lemma 4.46 (Complement Unique Monitored Location) For every
monitored event-clock automaton A, = (Q4m, Q™ Q]‘?/Im, §Am PAm  JAm \Am Qﬁm)
with a single monitored location q,,, we can compute a monitored event-clock
automaton B that accepts the complement of the floating language of Ay,.

Proof. From lemma 4.45, we know that FloatLang(A) = PrelLang(A) N
SufLang(A) and by lemma 4.39, we can construct a MEventClockTA B such
that PreLang(B) = PreLang(A) and by lemma 4.43 a MEventClockTA C such
that SufLang(C) = SufLang(A). As MEventClockTA are closed under inter-
section, see lemma 4.31, it remains to construct from B a MEventClockTA
E such that FloatLang(E) = PreLang(B) and a MEventClockTA F such that
FloatLang(F') = SufLang(B).

e Construction of E. All we need to do, is to transform B in such a
way that when in a monitored location at time ¢ reading a TSS &,
it is always possible to continue a run on the suffix [¢, 00] of x from
the monitored location. To achieve that specification, we construct F
from B as follows:

— Locations. We take Q¥ = QP UD, where D is the following set of
“dummy” locations: D = {q | ¢ € 25™tP UA")} " Thus D con-
tains one element for each possible label. We will use the dummy
locations to make possible the prolongation of every prefix of run
that can reach a monitored location of B.

— Initial locations. We take QY = QF, that is, the set of initial
locations of E are the initial locations of B.

— Monitored locations. We take Q;\E/[ = Qﬁ, that is, the set of
monitored locations of E are the monitored locations of B.
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— Transition relation. The transition relation 6% C QF x QF is the
union of the three following sets:

1. {(q1,42) | g1, 92 € QP and (q1,q2) € 6%}. The moves possible
in B are possible in E.

2. {(q1,02) | &1 € Q% g2 € D}. Tt is possible to move from a
monitored location of B to all dummy locations.

3. {(q1,92) | q1,92 € D}. Within the dummy locations, the
transition relation is not constraining. Note that it is not
possible from a dummy location to get back to a location of
B.

— Propositions and atomic clock constraints. The propositions and
atomic clock constraints used in E are the ones used in B: PF =
PB AP = AB.

— Labelling function. The labeling function is defined as follows:

« if g € Q% XP(q) = X (q);
x if g € D: A\P(q) = q.

— Accepting locations. The set of accepting locations of E is simply

the set of dummy locations: Q% =D.

E accepts as floating language all pairs (k, t) such that x allows a run to
reach a monitored location of B at time ¢, that is (k,t) € PreLang(B).

e Construction of F. The construction also uses “dummy” locations and
is very similar to the one for E, we leave it to the reader.

We are now equipped to prove the closure to complementation of MEvent-
ClockTA:

Theorem 4.47 (MEventClockTA-Complement) For every monitored event-
clock automaton A, we can compute a monitored event-clock automaton
B that accepts exactly the complement of the floating language of A, i.e.
FloatLang(B) = FloatLang(A).

Proof. By lemma 4.44, the floating language of A, where in ={q1,92,...,qn}
can be expressed as the union of the floating language of n single mon-
itored location event-clock automata Aq, As,...,A,, i.e. FloatLang(A) =
U'Z" FloatLang(A;). Also, note that FloatLang(4) = (.=} FloatLang(4;)
and thus FloatLang(A4) = ﬂi’f FloatLang(4;). By lemma 4.46, we can com-
pute Ay, As, ... A,, and by lemma 4.31, we can compute B = ®;jle that
accepts the desired language. O
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A direct corollary of the last theorem and the lemma about the equiva-
lence between recursive event-clock automata and monitored recursive event-
clock automatas:

Corollary 4.48 (REventClockTA-Complement) For every recursive event-
clock automaton A, we can compute another recursive automaton B that

accepts exactly the complement of the floating language of A, i.e. the pairs

(k,t) that are not accepted by A. O

We now take a look at the complexity of this complementation procedure.
This information will be used later in this section when we will characterize
the complexity of decision problems for (monitored) recursive event-clock
automata. We first define a notion of size for the (monitored) recursive
event-clock automata.

Definition 4.49 (Size of a MEventClockTA) We first define the notion of
size for the base case, that is when the considered automaton A is a (moni-
tored) floating automaton, we define the recursive case after.

e Base case: the size of a (monitored) floating automaton is character-
ized by:
1. its number of locations |Q*|, noted NumLocs(A);
2. its number of possible labels |2Limit(PA) |, noted NumAtomsSets(A).
e Recursive case: the size of a (monitored) recursive event-clock automa-
ton is characterized by:
1. its number of locations |Q*|, noted NumLocs(A);
2. its number of possible labels |2Limit(PA) |, noted NumAtomsSets(A).

3. the number of clock used by A, that is |{zp | 3(zp ~ ¢) € A"},
this is noted NumClocks(A);

4. the maximal constant that A use in its clock constraints, that is
Max({c | 3(zp ~ c) € A*}|, this is noted MaxConst(A);

5. recursively, the size of its subautomata.

To ease the characterization of the size of the automaton obtained af-
ter applying the complementation procedure presented above, we use the
figure 4.4.2. This figures schematizes the different step used in the com-
plementation procedure. The following lemma characterizes the size of the
automaton obtained after complementation:
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Figure 4: Complementation procedure for MEventClockTA.
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Lemma 4.50 For every monitored event-clock automaton A, we can com-
pute a monitored event-clock automaton H that accepts exactly the com-
plement of the floating language of A, i.e. FloatLang(H) = FloatLang(A).
Further the size of H is defined in function of the size of A as follows:

e the number of locations of H is singly exponential in the number of
locations of A, that is NumLocs(H) = O(2Numbocs(4)) -

e the number of possible labels of H is equal to the number of possible
labels of A, that is NumAtomsSets(H) = NumAtomsSets(A);

e the mazimal constant used by H in clock constraints is the same as the
mazimal constant used by A, that is MaxConst(H) = MaxConst(A);

e the sizes of the subautomata of H are the same that sizes of the sub-
automata of A;

Proof. We prove this lemma by inspecting the complexity of each transfor-
mations involved in the procedure for complementing the floating language
of A, those transformations are depicted in figure 4.4.2.

e Transformation (1). The transformation simply change the set of mon-
itored locations. The size of each A; is equal to the size A;

e Transformation (2a). Each B; is obtained from A; by determinization.
So we examine the determinization procedure, see proof of lemma 4.37.
We first note that the step needed to obtain the non-repeating property
can be neglected as its only effect is to multiply by 3 the number of
locations, the other elements of the automaton remain unchanged. The
subsets construction uses pairs composed of a set of locations of the
non-repeating automaton as locations and labels of A. The labels part
has no influence as the labels are the ones used by A. So the number
of locations of each B; is singly exponential in the number of locations
of each A; and thus singly exponential in the number of locations of
A plus a dummy location is added for each label (to obtain a total
automaton), so NumLocs(B;) = O(2Numtocs(4)) 1 NumAtomsSets(A),
the other elements of the automaton remains unchanged;

e Transformation (2b). Each C; is obtained form A; using the comple-
mentation procedure for Biichi automata which by theorem ?? leads
to an exponential blow-up of the locations, that is NumLocs(C;) =
O(2NumLocs(4i)) The other elements have the same size as in A.

e Transformation (3a). The transformation is described in the proof of
lemma 4.39. Each automata FE; is obtained from B; by adding a set
of dummy locations. The number of such dummy locations is linear
in the size of the number of possible labels for B; which is equal to
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the number of possible labels for A. So the number of locations in
each E; is characterize as follows: NumLocs(E;) = @(2Numbocs(4) 1
NumAtomsSets(A)). The other elements of the size of E; are as for A.

Transformation (3b). This transformation is similar to the transforma-
tion (3a) and thus NumLocs(F}) = O(2NumLocs(4) { NumAtomsSets(A)).

Transformation (4). The transformation consists in taking the union
of the automata E; and F;. By theorem 4.29, as the two automaton
FE; and F; share the same set of possible labels, the number of loca-
tions of G; is just the sum of the number of locations of F; and Fj.
So we have that NumLocs(G;) = O(2NumLocs(4) + NumAtomsSets(A))+
O(2Numbocs(4) t NumAtomsSets(A)) and thus NumLocs(G;) = O(2Numbocs( 4) 4
NumAtomsSets(A)). The other elements of the size of G; are as for A.

Transformation (5). The transformation consists in taking the inter-
section of the m automaton G; with 0 < ¢ < m, where m is the
number of monitored locations in A and thus m = O(NumLocs(A)).
By slightly generalizing the algorithm for intersection, which is de-
fined for two MEventClockTA in the proof of theorem 4.31, and as
G; are defined on the same set of possible labels, we obtain that
NumLocs(H) = O(m x (2Numbtocs(4) 1 NumAtomsSets(A4))) and thus
NumLocs(H) = @ (2NumLocs(4) L O (NumLocs(A)) x NumAtomsSets(A)).
The other elements of the size of H are as for A.

4.4.3 Closure under Partial Projection

Another important property of (monitored) recursive event-clock automaton
is that they are partially closed under projection. Before proving this result,
we need to introduce a new notion.

Definition 4.51 (FreeOfRTC) A proposition p is not real-time constrained
into an monitored recursive event clock automaton A if this proposition does
not appear in the set of propositions used by the subautomata of A. We note
FreeOfRTC(A) the subset of propositions that are not real-time constrained
by A. We define them formally as follows: FreeOfRTC(A) = {q € P4 |
for all B € SUB(A): q¢ PP}. O

We can now state and prove the following theorem:

Theorem 4.52 (Partial Projection Closure) For every monitored re-
cursive event-clock automaton A defined on the set of propositions P, for
every subset of propositions P' C P such that P\ P’ C FreeOfRTC(A), we
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can construct a recursive event-clock automaton B that accepts the language
FloatLang(B) = {(x | P',t) | (k,t) € FloatLang(A)}.

Proof. We take B as A but change the labels as follows: for every locations g,
AB(q) = M (q) N Limit(PB U AB), that is, as AP = A4, we simply suppress
the literals related to projected propositions. It is direct to show that B
accepts the desired floating language. O

The constraint that imposes that projected propositions are only propo-
sitions that are not real-time constrained is essential. In fact, we will show
later, that allowing projection of real-time constrained propositions strictly
extends the expressive power of our recursive event-clock automata and
would destroy their closure under negation. Again, we can derive the corre-
sponding corollary for recursive event-clock automata.

4.5 Emptiness and Universality for REventClockTA

We now show that the emptiness problem for a monitored recursive event
clock automaton A, i.e. is the anchored language defined by the MEvent-
ClockTA A is empty or not, is decidable and we characterize the complexity
of deciding this problem. We show that it is possible to reduce the empti-
ness problem for monitored recursive event-clock automata to the emptiness
problem of non recursive automata for which a solution exists see [AFH94].
Again, the results for recursive event-clock automata are obtained as direct
corollaries of the lemma 4.28 that states the equivalence between recursive
event-clock automata and their monitored versions.

In the sequel, we show how to construct a propositional event-clock au-
tomaton that accepts TSS that are closely related to the TSS accepted by
the recursive event-clock automaton. To define those TSS, we need some
more ingredients.

For a MEventClockTA A with set of propositions P4, we construct a
(non-recursive) EventClockTA B on the set of propositions

pB _pA
U{pc|C € SUB(A) or C = A}
U{pzp~e | 3C € {A} USUB(A) : (2p ~ ¢) € A°}
, i.e. we associate a new proposition to A and to each of its subautomata,
moreover we associate a new proposition with each atomic real-time con-

straint appearing in A or in one of its subautomata.
In the sequel, we note

o PA% the set {pc|C € SUB(A) or C = A}
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e and PE the set {p,,~c | IC € {A}USUB(A) : (zp ~ ¢) € A°}.

Further, the automaton B will use the following set of atomic clock con-
straints AP = {2,, ~ ¢ | Ip,p~e € PE"5T}. That is, we use a constraint
Zpp, ~ c over the proposition associated to the automaton D if there is a
clock constraint zp ~ ¢ over D in A or in one of its subautomata.

Definition 4.53 (Hintikka Property) Given a TSS &, defined on P4,
the P8\ P4 extension of k, noted & defined on the set of propositions P,
has the timed Hintikka property for the MEventClockTA A if the following
conditions are verified:

H1 p4 € %(0), and for all time ¢ € RT:
H2 py,~c € k(t) iff there exists a time #; > ¢ such that:

e cither: pp € k(t1) and for all time t5 € (t,¢1): pp & K(t2), and
ti —t~cg

e or: for all time 9 > t;, there exists a time t3 € (t1,%2) such
that pp € K(t3) and for all time ¢4 € (¢,t1]: pp & K(t3), and
(ty — )T ~c.

H3 p,,~c € k(t) iff there exists a time t; € [0,¢) such that:

e cither: pp € k(t1) and for all time ¢ty € (t1,t): pp & K(t2), and
t—1t1 ~c

e or: for all time 0 < ¢y < #1, there exists a time t3 € (2,%1) such
that pp € K(t3) and for all time ¢4 € [t1,t): pp & K(t3), and
(t—t)" ~ec

H4 if pc € &(t) then C has a t-monitored and accepted run on & *;

HS5 if po € k(t) then C has no t-monitored and accepted run on k.

Conditions H4 and H5 ensure that the proposition pc associated to the
automaton C, is true along & at time ¢ iff C has a t-monitored and accepted
timed run on k. As a consequence, H1 imposes that A accepts k at time 0
and thus % | P* € AncLang(A), where # | P4 denotes the TSS obtained
from % by projecting propositions that are not in P4. H2 and H3 relates
propositions p,,~. to the semantics of the associated constraint zp ~ c. In
the sequel, we say that a TSS K that has the Hintikka property for A, is a
timed Hintikka sequence for A, THS for short. O

The following lemma states how THS of an MEventClockTA A can help
us to solve the emptiness problem of A:

“Note that as & is an extension of &, Accept,(k,t) iff Accepty (R, t).
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Lemma 4.54 (Emptiness-Hintikka) The anchored language of a mon-
itored event-clock automaton A is non empty iff A has at least one timed
Hintikka sequence.

Proof. Tt is direct to show that if ¥ is a Hintikka sequence for A then
% | PA € Anclang(A). In fact, if & has the Hintikka sequence for A then
pa € k(0) by condition H1 and then by H4, we know that A has a 0-
monitored and accepted run on x and thus x € AnclLang(A). Now the
extension k of x € AncLang(A) defined as follows:

K (t) =r(t)
U{pc | pc € P4 and Acceptq(r,t)}
U{pzpmc | Papme € PE and (k,t) b= 2p ~ ¢}

has the timed Hintikka property for A and is the unique extension of k with
this property. O

In the sequel, we will show that the following lemma holds:

Lemma 4.55 (EventClockTA for Hintikka Sequences) For every moni-
tored recursive event-clock automaton A, we can construct a propositional
event-clock automaton B that accepts exactly the timed Hintikka sequences

of A, that is, AncLang(B) = {k | k is a THS of A}.

Now we show that for each condition H1 to H5, we can construct a non
recursive event-clock automaton that checks the condition. The final propo-
sitional event-clock automaton will simply be the product of the automata
for each conditions, i.e. the automaton that accepts the intersection of the
TSS accepted by each automaton. The construction that we will present
is inspirated from the construction, proposed by Wolper et al to solve the
satisfiability problem of the logic E-TL, see [WVS83, Wol83]. We now con-
struct systematically an non recursive event-clock automaton for each timed
Hintikka condition:

Automaton for condition H1,H2 and H3. We construct the EventClockTA
By = (QP, QP , 651, PP B AP QB as follows:

e Propositions and atomic clock constraints PP = PP and AP =
{2pp ~ ¢ | pzp~ec € PP}, a clock is associated to each proposition
associated to an automaton that appears in a clock constraint in
A or one of its subautomata, those clocks will be used to enforce
the right timing of those propositions;

e Locations. QP = {q € oLimit(PPUAP) | Vpope € pConstr .
Pep~e € q iff 2, ~ ¢ € ¢}. So By contains a location for each pos-
sible label that respects the property that the proposition p,, .
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is in the label iff the corresponding constraint is also present.
Intuitively, when p,,~. is true along % at time ¢, it means that
the constraint zp ~ ¢ must be verified in (k,t). As pp € & iff
(k,t) € FloatLang(D) (by H4 and H5), we simply use the con-
straint z,, ~ c to enforce the semantics of zp ~ c. For example,
if yp = 1 is true in (K, t), it means that the following time t; > ¢
such that D accepts k must be t; =t + 1. We know by H4 and
H5 that for all time ¢t € R*, Acceptp(k,t) iff pp € K, so we sim-
ply use the propositional clock y,, to enforce the semantics of
yp = 1: we check that y,, = 1 is verified.

e Labeling function. \P1(q) = ¢, the labeling of location ¢ is simply
the literals that constitute the location;

e Initial locations. UBl = {q € QP'|pa € ¢}, the initial condition
impose that p4 is true initially;

e Transition relation. 6% = {(q1,¢2)|q1,q2 € QP'}, i.e. there is no
restriction on the transition relation;

e Acceptance condition. 11_31 = QP1, the accepting condition is
trivial and thus does not impose any constraint on the accepted

TSS.

The automaton By ensures that p4 is true initially (by the definition
of the initial locations and the definition of the labeling function) as
we have defined the initial location as the locations labeled by p4.
Further, each time that the proposition p;,~c (Py,~c, respectively) is
true in a location, we decorate this location with the real-time con-
straint z,, ~ ¢ (yp, ~ ¢, respectively) which, by the semantics of
clocks of EventClockTA, imposes the right timing on the last (first fol-
lowing, respectively) occurrence of pp and by H4 and H5, ensures the
verification of real-time constraints zp ~ ¢ (resp.yp ~ ¢) associated
to the MEventClockTA D.

Automaton for condition H4 We construct an automaton By ¢ for each
C € AUSUB(A). Basically, to enforce the property H4 for C, the
automaton By ¢ must, each time that it encounters a state in k¥ where
the proposition p¢ is true, check that: “there exists a t-monitored run
of C on k7. That can be done by checking the two following properties:

1. there exists a finite run of C that cover K for the interval [0,¢]
and ends in a monitored location, say in ¢,;

2. and that we can extend this run from ¢,, to cover the reminder
of K, i.e. the interval [t,00), still respect the accepting condition
of C.
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The difficulty arises from the fact that we must check the existence of
such runs each time that the proposition p¢ is true, and the proposition
pc is potentially true in an infinite (and uncountable) numbers of
time ¢ € RT. But fortunately, runs that are in the same location of
C at a given time t € R* can be merged. In fact, as the value of
clocks does not depend on the history of the run but only on the TSS
the automaton is reading, two runs that reside in the same location

have the same possible futures. More precisely, if p[lo’ﬂ and p[20’t] are

two prefixes of runs on TSS &, such that p[lo’ﬂ (t) = p[20’t] (t) then if

p[lo’ﬂ . p(t’oo) is a accepted run of A on k then so is p[20’t] . pgt’oo). Note
that this property is not true for timed automata in general. In fact,
in a timed automaton run the value of clocks at a given time ¢ depends
on the history of the run up to that time t. So two prefixes of runs
that at time ¢ end up in the same location do not necessarily have the
same futures, as their clock values can be different. This technique is

again inspirated by the decision procedure for E-TL.

Let us now show in details how we can solve the problem. To simplify
the presentation, we first define two transition structures.

Definition 4.56 (Transition Structure) A transition structure is
a four-tuple A = (S, Sy, R, F') where:

e S is a set of states;
e Sy C S is a set of initial states;
e RC S x S is the transition relation;

o and either F' C S is a set of accepting states, or F C 29 is a set of
sets of accepting states. We will use set of accepting states when
we will need to define a Biichi acceptance condition and we will
use set of sets of accepting states when we will need to define a
generalized Biichi condition.

We will use transition structure as intermediate objects.

We construct one transition structure for the two properties above and
define how to take their product in order to obtain the automaton Bs
that checks condition H4.

o Transition structure A'.  To check that there exists a run on
the prefix of ¥ up to time ¢ with pc € K(t), we simply maintain
a deterministic version of C, see definition 4.35 and lemma. 4.37.
We note this deterministic version D and the structure A' =
(S, S§, R, F') is defined from D as follows:
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— 81 = QP, that is, the states of the transition structure A!
is the set of locations of the deterministic version of C, and
thus a state of Al is a set of locations of C

— S} = QP, the initial states of A are the initial locations of
D;
— R = 6", the transition relation is as in D;
— F = S', each state is accepting and thus the accepting con-
dition is trivial.
This deterministic structure tells us at each moment, when read-
ing ®, in which locations of C' the control can reside. As a con-
sequence, the automaton tells us in which locations all possible
runs can be. We will use this information in order to start runs
for suffixes only from monitored locations where the control can
reside.

Transition structure A?. To check the existence of runs on the
suffixes of % from time ¢, we consider a transition structure A% =
(S%, 52, R?, F?), where:

— the states of A% are n-tuples of locations (I1,ls,...,l,) of
C, thus n = |QY|. n-tuples are sufficient because, at each
moment, the control of the automaton C can be, at most, in
n different locations and we do not need more because we are
allowed to merge runs that are in the same location. Each [;
belongs to Q¢ U { L}, the special value L is used for I; when
there is no active i’ run. We further impose the following
properties to the tuples: (I1,...,I,) € S? iff there exists a j,
1 <7 <n+1, such that:

1. forallk, j <k <n:lp=1;

2. forall k, 1 <k < j: I € Q°;

3. for all k1,ko, 1 < k1 < ko < gt Uiy 7 Uiy

4. for all ky, ko, 1 < ky < ko < §: AC(Ig,) = A (I1,)-
The conjunction of condition (1) and (2) ensures that “real”
locations occupy the first places in the tuple. Condition (3)
imposes that all locations are different in the tuple. This
is necessary as we have only n places and we must check
potentially infinitely many runs, therefore, we must merge
runs that reach the same location. Finally, in (4) we require
that locations in the tuples have the same label. In fact, at
each time ¢ of a TSS, only one label is true so, at each time ¢,
the control of C' can only be in locations that share the same
label. In the sequel, we use the notation A\ ((I1,la,...,1,))
to refer to that label.

— As initial states of A%, we take S2 = S2.
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— Let us now define the transition relation of the structure A?:
we have ((I1,03,...,1L),(12,12,...,12)) € R? iff for all k, 1 <
k <n: if [ # L then there exists j, 1 < j <k and (l,lc,l]z) €
6¢. That is each (non dummy) location of the first tuple has
a. 09-successor location in the second tuple, merging runs is

allowed as j can be strictly less than k.

— Let us now expose how we can check that each run simulated
in the structure A? respects the acceptance condition of C.
To solve this problem we use a generalized Biichi acceptance
condition: we define n sets of accepting locations, a run will
be accepting if it has, for each n sets infinitely many positions
in the set. The sets are defined as follows:

F; = {{lo,l1,...,lp)| either I; = L or [; € Qg}
In the sequel, we note A2.F}, the i*" set of accepting states
of the transition structure A?. Let us show that this choice
for the accepting condition is correct. Consider a run that
starts in the ¥ coordinate of the tuples. Either this run is
merged with another run 7 < ¢. In that case I; = L until
we start another run, or I; = L for ever, in the last case,
the run is accepted. Now, if the run continues for ever in
a coordinate k£ < j, which must arrive sooner or later, then
we must check that the run goes infinitely often through an
accepting location of C' which is checked by the set A?.F.F},.

We are now in position to define the non recursive automaton By ¢ =
Bac B¢ sBye pBac \Bac ABac B0,
(Q 2’07Q0 75 2’07P 2’07>‘ 2’07“4 2’07QF )

e Locations. QP> is the set of tuples (), s, s2) where:

— ) € 2timit(PPUAR) "y ¢ 5 label;

— 51 € S, this part will be used to check the constraints over
prefixes as explained above;

— 59 € 82, this part will be used to check the constraints over
suffixes as explained above;

that respect the following restrictions (with so = (I1,...,1,)):

1. (a) forallp € PC: p e Xiffp € A9 (s1) iff p € A ((I1,...,1n));

(b) for all zp ~c € AY: p,pe € N iff (2p ~ ¢) € A(51) iff
(zp ~¢) € AX({(l1,...,1n)).

2. if pc € A and sg = (I4,...,[,) then there exists j, 1 < j <mn,
such that [; € Qf/[; that is, if po is true then it is necessary to
check that there exists a run of C on the rest of the TSS that

starts in a monitored location, the structure A? will check for
the existence of such a run;
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3. if s9 = (I1,1lo,...,1,) then for all j such that 1 < j < n and
l; # 1, we have [; € s;; this constraint imposes that the
locations active in runs are a subset of the locations where
the control of the automaton can reside (information given
by the structure A').

. . B
e Initial locations. Q> = {(\,s1,82)s1 € S}}, recall that S}
contains all the sets of locations where the automaton C' can
start a run;

e Transition Relation. [(\',s],s3), (A2, s2,53)] € 6B2¢ iff (s],52) €
R' and (s}, s3) € R?, thus there is a transition in By if the
transition is possible in both A and AZ;

e Propositions and atomic clock constraints. The propositions and
the clocks constraints are as for B: PP2.¢ = PP and AP20 = AB,

e Labeling function. For all (X, s1,s2) € QP2, AB2((\, s1,52)) = \.

e Accepting condition. For the acceptance condition, we transpose
into By ¢ the constraints of A%. So we use the following general-

ized Biichi acceptance condition: Q?’O ={F,Fy,...,F,} where
each F; is defined by {(\, s1, (L, -, Liy .-, 1n)) | li € Q¥VI; = L}

Now, B, is obtained by taking the product of each By for C' €
{A} USUB(A).

Automaton for condition H5 One way to solve this problem would be
to consider for each automaton C' € {A USUB(A)}, its complement
C and check condition H4 for that automaton. As we have proved
that MEventClockTA are closed under complementation, this strat-
egy works to complete our construction for the emptiness problem of
MEventClockTA. But this method does not match the optimal com-
plexity since after complementation, which costs an exponential, we
should still construct the deterministic structure (A') and the tuple-
structure (A?) which also costs one exponential. Applying this simple
idea would result in a doubly exponential blow-up in the number of
locations of the constructed automaton giving an EX-PSPACE proce-
dure. It is possible to solve the problem with only one exponential,
yielding a PSPACE procedure, with the following idea (again, adapted
from [SVW85]): for each automaton C, we construct an automaton
Bs ¢ that enforces exactly the negation of H5 for each C, that is “there
exists a time ¢ € RT such that pc ¢ %(t) and C has a t-monitored and
accepted run on &”. After, we take the union of all those automata and
complement this union, we obtain a single automaton B3 that checks
H5 for each automaton C' € {AUSUB(A)}. The construction is singly
exponential (the one that occurs during the complementation). Let
us now show how to construct the automaton B3 . The idea behind
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the construction is the following: we construct an automaton which
is essentially the product of C' with a simple transition structure A
that ensures, when we take the product between C and A, that pc is
eventually false and at the same time C is in a monitored location.
The structure A is defined as follows:

e States.The set of states S is the set of 3-tuples (i, &1, &2) such that
i € {1,2,3}, & € {M,M}, & € {pc,pc}, with the restriction
that if i = 2 then & = M and & = pe. The intuition is that
when the structure A is in a state tagged by 2 then C is in a
monitored location and the proposition p¢ is false. We will use
the initial condition, transition relation and acceptance condition
to ensure that each run of A eventually passes through a state
tagged with 2.

o Initial states are Sy = {(4,&1,&2) € Qi € {1,2}}. Initially, the
control can only be into part 1 or part 2 of the structure.

o Transitions: ((i',&1,€3),(i2,€2,€2)) € R iff either i2 = i! or i? =
i' +1. The control of the automaton can only go from part 1
to part 2 and then to part 3. Consequently, when in part 1, the
control must cross part 2 to attain the accepting locations.

o Acceptance: F = {(i,&1,&2)|i € {2,3}}, the accepting states are
those tagged with 2 or 3.

We now construct Bz ¢ from C' and A = (S, .Sy, R, F) as follows:

e Locations. QP3¢ is the set of 3-tuples (s,q, ) such that:

- s €S,

- q€ QY

_ ) e gLimit(PPUAP).

)

— if s = (4,&1,&) then & = M iff g5 € Qg/[, that is the control
is in a M-state of A iff the control is in a monitored location
in Q€.

e Initial locations. The set of initial locations Q§3’C = {(s,q, ) |
s € Spand q € QOC}, that is, we check that the structure A and
the automaton C respects their initial requirement;

e Transition relation. We have [(s1,q1, \1), (52, qa, A2)] € 653, iff

L. (s1,s2) € R;

2. (q1,q2) € 053¢ or q1 = qo;

So, we check the transition relation of both A and C' (stuttering
steps are allowed in ().

e Propositions and atomic clock constraints. The propositions and
atomic clock constraints are as in automaton B: PBsc = PB,

B _ gAB.
ABac = AB;
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e Labeling function. The labeling function is defined as follows:
NP5 (3,9, X)) = \

e Accepting locations. The accepting condition is defined as follows:
to be accepted, a run must respect the conjunction of the accept-
ing conditions for C' and the transition structure A. Therefore,

we define the following acceptance condition: QP3¢ = {Fy, Fy}
with Fy = {(s,q,A) | s € A.F} and F5 = {(s,¢,\) | ¢ € Q%}.

To obtain the automaton Bs, we just complement the union of the set

of automata {B3 ¢ | C' € AUSUB(A)}.

We finally obtain the non recursive event-clock automaton B by taking
the product of the automata By, By, Bs.
The following theorem follows from the previous construction.

Theorem 4.57 (REventClockTA-Emptiness) The emptiness problem for
recursive event-clock automata is PSPACE-COMPLETE.

To check the universality problem, we use the same construction with
H1 replaced by:

H1’ py & %(0)

and check that the language of the constructed propositional event-clock
automaton is empty, so we have:

Theorem 4.58 (REventClockTA-Universality) The universality problem
for recursive event-clock automata is PSPACE-COMPLETE.

4.6 Expressiveness: REventClockTA vs EventClockTL

In section 3.3.2, we have shown that propositional (non recursive) event-
clock automata are not sufficiently expressive to define all EventClockTL-
properties. In this section, we show that, on the contrary, REventClockTA
are sufficiently expressive to define all EventClockTL-properties. We first
introduce some new notions.

Definition 4.59 (level of EventClockTL formulas) The level of an Event-
ClockTL formula ¢ is computed by the following recursive function level:

(p) =

e level(¢1 V ¢p2) = Maximum(level(¢1), level(¢2));
o level(—g1) = level(¢);

(

o level(p1Uep2) = Maximum(level (1), level(¢p2));
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o level(¢p1Spo) = Maximum(level(¢py), level(¢2));
o level(>7¢1) = 1+ level(¢y);
o level(<i7py) = 1 + level(¢y);

That is the level of a formula ¢ is the number of imbrications of real-time
operators in ¢. O

We say that “¢ is a level; formula” if level(¢) = i. In the following proofs,
we will reason by induction on the structure of level; formulas, we define the
grammar corresponding to those formulas:

Definition 4.60 (Grammar of level;-formulas) The following grammar
rule define the levely EventClockTL formulas:

pu=p| o1V o | ad1 | p1lUpz | p1SP2

where ¢; and ¢9 are levely formulas.

Note that levelg formulas are LTR formulas. Recursively, the following gram-
mar rule define the level; EventClockTL formulas:

Gu=p|D>ros | <uds | o1V da | 1 | d1ilUds | p1Sho
where ¢ and ¢o are level; formulas where 0 < 5 < and ¢3 is a levely,
formula where 0 < k < 1.

For example, >_1 > p is a levely formula.
We define the following slightly non-classical notion of closure of a for-
mula:

Definition 4.61 (Closure Set) Let ¢ be an EventClockTL formula, we
define the closure of ¢, with the help of the recursive function Cl:

e Cl(p) = {p}

Cl(¢1 V ¢2) = Cl(d1) U Cl(2) U {1 V 2}
Cl(=¢1) = Cl(¢);

Cl(¢1U ) = Cl(¢p1) U Cl(p2) U {1l po};
Ci(

Ci(

(

.
_I

$1S8h2) = Cl(¢1) U Cl(p2) U {1 Sa};
1) = {>ré1 };
o Cl(<r¢1) = {<rd1 };

The closure of the formula ¢, denoted Cl(¢), is the set Cl(¢) closed by
negation, that is Cl(¢) = {4, ¢ | ¢ € Cl(¢)}. O
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In that non-classical notion of closure, the real-time subformulas >;¢3
and <7¢3 are considered as atomic formulas. Let us now consider the fol-
lowing lemma:

Lemma 4.62 (EventClockTL — Fine TSS) For every set of propositions P,
for every TSS k, if k is Limit(P) — Fine and alternating, then k is also
¢ — Fine for every levely-EventClockTL formula ¢ whose propositions are in

P.

Proof. We prove this lemma by induction of the structure of levelp-formulas.

e Base case. If ¢ = p with p € P then the lemma is trivially verified as
p € Limit(P).

e Induction case. The induction hypothesis tell us that for ¢; and ¢o
which are levely formulas, we know that x is ¢; — Fine as well as
¢2 — Fine. Let us also observe that a singular interval can not be
refined. So we only have to show that levely formulas have a constant
truth value in all open intervals of k. Now let us treat each construction
of the grammar:

— let ¥» = ¢1 V ¢po. Let us consider the open interval I;. There
are four possible cases: ¢1 and ¢y are constantly true during I;,
¢1 is constantly true during I; and ¢9 is constantly false, ... Let
us treat the first case as an example, the other cases are treated
similarly. If ¢; and ¢o are constantly true during I; then by the
semantics of the V-operator, ¢; V ¢ is constantly true during ;.
Thus the sequence of intervals does not need to be refined.

— let ¢ = —¢1. In that case, if ¢; is constantly true during I; then
1 is constantly during this interval, and conversely. Again, the
sequence of intervals does not need to be refined.

— let ¢ = p1UUps. To treat that case, let us make the hypothesis
that (k,t) = 1o for some t € I;. We will show that this
implies that for all time #; € I;, (k,t1) E d1ldpo. We will treat
the negation after. By the semantics of the U/-operator, we know
that: there exists a time ¢ > ¢ such that (k,t) = ¢2 and for all
time ¢ € (t,t'), (k,t") |E ¢1Va. Let us first make the hypothesis
that ¢’ belongs to the interval I;. By induction hypothesis, we
know that for all time t; € I;, (k,t1) = ¢2. As I; is open, it is
easy to see that (k,t1) |E 1o for all t1 € I;. Now let us make
the conserve hypothesis, the first time where ¢o holds is not in
I; but after. By induction hypothesis, this implies that for all
time t; € I;, (k,t1) & ¢2. By semantics of the U-operator, we
know that ¢ must be true just after ¢ within I;. By induction
hypothesis ¢ is then constantly true within I; and thus also
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Pp1UUpo. Let us now turn to the case where there is a time ¢ € I;
where (k,t) & p1Ups. We already prove that if there exists a
time ¢ € I; such that (k,t') E ¢1Uepe, there does not exists a
time t” € I; such (k,t") £ p1Uo. Thus as (k,t) £ d1Ups holds,
we know that there can not exists such a ¢'.

— let ¥ = ¢p1Sp2. This case is treated in the same way that the
U-case and is left to the reader.

This lemma will allow us, in the next proof, to tag locations of monitored
event-clock automata with formulas of the logic and still keep the property
that the control can only resides in a location for a singular interval of time
only if the label of that location is singular.

Lemma 4.63 (EventClockTL C MEventClockTA) For every EventClockTL for-
mula ¢ we can construct a MEventClockTA Ay that accepts exactly the pairs
(k,t), where k is defined on the set of propositions P appearing in ¢ and

t € RT, such that (k,t) E ¢.

Proof. To establish this result, we reason by induction on the level of for-
mulas.

e Base case. Let consider ¢ a levelp-formula. We first define a tran-
sition structure A = (5, Sy, R, F) that checks the semantics of the
propositional and temporal operators of levely-formula. After, we will
transform this structure into an monitored floating automaton. We
define the elements of A as follows:

— States. S is the set of pairs (a,¢) where a € 201(#) with T € a,
¢ € {open,sing} (indicating if the control can stay in the state for
an open interval of time or just a singular interval of time) and
the following properties are verified:

1. for all ¢; € Cl(¢): ¢1 € a iff 1 & a;
2. for all (¢ V o) € Cl(P): ¢1 V ¢ho € a iff 1 € a or ¢ € a;
3. for all (¢p1U¢s) € Cl(¢):
3.a if ¢9 € a and ¢ = open then ¢p1UPs € a;
3.b if p1lps € a and ¢ = open then ¢y € a or ¢ € a;
4. for all (¢p1S¢o) € Cl(¢h):
a if ¢o € a and ¢ = open then ¢1S5¢s € a;
b if $1S¢9 € a and ¢ = open then ¢; € a or ¢ € a;
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(1) and (2) enforces the semantics of propositional operators;
(3.a) and (3.b) enforces local consistency for the until oper-
ator; (4.a) and (4.b) are the local consistency rules for the
since operator.

— Initial states. The set of initial states is the subset of pairs (a, <) €
S such that ¢ = sing and there does not exist ¢;S¢o € Cl(¢) and
P1SPy € a. That is an initial state is singular and it does not
contains a since formula in positive form.

— Transition relation. The transition relation R is the subset [(a1,1), (a2, s2)]
of S x S that respects the following restrictions:

1. ¢ = open and ¢y = sing, or, ¢; = sing and ¢ = open;
2. The following rules express how until formulas are transfered
from one state to the next of the transition structure:
2.a ¢1UUPs € a1 Ay = sing iff p1lUpo € ag;
2b ¢p1Ups € a1 AN = open A ¢y & ay, implies (p1Ugpy €
as N\ ¢1 Eag)\/(ﬁg € a2;
2.c ¢1 €ar A =openA (1 €azV (2 € az A g1y € az))
implies g1l ¢z € ay.
3. The following are for the since formulas:
3.a ¢18¢Ps € as A ¢ = sing iff ¢1Sps € aq;
3.b p1SPa € az Ay = open A ¢y & ao implies Py € a1 V (¢ €
a1 A (¢18¢2) € a1);
3.c ¢1 € ag N\ ¢ = open A (¢2 € a V ¢18¢2 € a1) implies
4182 € ap

— Accepting states. As usual, we use a generalized Biichi accep-

tance condition. For each formula ¢1U¢s € Cl(¢), there is a set

AF.Fyup, = {(a,q) | p1lp2 & aV ¢ € a}.

We are now equipped to define the monitored floating automaton A.
We construct Ay = (Q4e, éd’, ij’, 640 PAs \As Q;‘d’) as follows:

— Locations. The set of locations Q¢ is the set of pairs ((a,<), x)
such that:
L. (a,5) €S;
2. x is a label that is open if and only if ¢ = open;
3. the labeling is propositionally consistent with the formula in
a: for all propositionp € P: p € x iff p € a.
— Initial locations. The set of initial locations Q64¢ is the subset of
locations ((a,<),x) € Q¢ such that (a,s) € Sp;
— Monitored locations. The set ij’ of monitored locations is the
subset of locations ((a,<),x) € Q4¢ such that ¢ € a, that is the
subset of locations where the formula ¢ is true;
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— Transition relation. The transition relation is the set of pairs

[((a1,61), x1), ((a2,2), x2)] with ((ai, ), xi) € Q¢ for i € {1,2},
such that: [(a1,¢1), (a2, )] € R;

— Propositions. The set of propositions used by Ay is the set of
propositions that appear in the formula ¢, i.e. P4 = {p|p €

Cl()};

— Labeling function. The labeling function A\*¢ is defined as follows:
Me(((a,6),x)) = x;

— Accepting locations. We transfer in Ay the generalized Biichi ac-

o . .- Ay .
ceptance condition of the transition structure A : QF¢ is the
set of sets of accepting locations {Fi,...,F,} where each F;
corresponds to a set of accepting states in S as follows: F; =

{((a;6),2) | (a,<) € A.F.F;}.

It is routine to prove that the constructed automaton A, accepts the
right floating language.

Induction case. By induction hypothesis, we know that for each for-
mula 1) of level; with j < 4, we are able to construct a congruent
monitored recursive event-clock automaton Ay. Let us show that we
can construct a automaton for each formula of level;. By inspecting
the grammar rules for level;-formulas, it is not difficult to see that if
we consider real-time formulas as atomic, the level;-formulas are con-
structed in the same way as levelp-formulas. The construction of A
will be exactly as for the base case with the exception that we must
treat the real-time formulas. We treat them as follows: for each for-
mula <I7¢3, we use the (history) atomic real-time constraint z 4 o3 €1,
and for each formula >;¢3, we use the (predicting) atomic real-time
constraint y 4 65 € I. Those constraints have the property, by induction
hypothesis, that: for every TSS &, every time t € R*: (k,t) | <rés3
iff (k,1) = 2a,, € I and (k,t) | >1¢3 iff (k,1) = ya,, € 1. Finally,
when constructing the automaton Ay, we use as set of propositions
PA¢ the set of propositions that appears into formula ¢ and we check
that the following additional rule for locations: if ((a,<),x) € Q%
then for each real-time constraints <1;¢, <r¢1 € a iff (IAm el) ey,
and similarly for the future real-time operators: for each real-time
constraints >;¢1, >y € a iff (?JA¢1 € I) € x. Again, it is routine
to prove that the constructed automaton A, accepts the right floating
language.
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As the recursive event-clock automata subsume the formalisms that de-
fine the counter-free real-time w-regular languages, we propose to call the
languages identified by recursive event-clock automata as follows:

Definition 4.64 The sets of timed state sequences definable by the for-
malisms of recursive event-clock automata form the class of real-time w-
reqular languages.

Note that the last theorem and theorem 4.11, allow us to derive the
following corollary:

Corollary 4.65 (EventClockTA C REventClockTA) The class of recursive
event-clock automata is strictly more expressive that the class of proposi-
tional event-clock automata. O

From the base case of the last proof, we can see that if p in not real-time
constrained in ¢ then p does not appear in the subautomata of Ag.

Lemma 4.66 (Not Real-Time Constrained Propositions) Let ¢ be an
EventClockTL formula and p a proposition of ¢ that does not appear in

the scope of a real-time operator (>,<1) then we can construct an MEvent-

ClockTA Ay such that (i) FloatLang(Ag) = FloatLang(¢) and (ii) p does not

appear in the proposition used by subautomata of Ay.

We will use this property to determine how to introduce second-order
quantification within real-time logics in the following section.

5 Adding Counting and Beyond

In this section, we show how to close the gap between the counter-free real-
time regular languages identified in section 3, and the (counter) real-time
regular languages identified in the section 4. We will show that there are
two ways to bridge this expressiveness gap.

The first way, is to add automaton operators to the real-time logics
EventClockTL and MetricInterval TL, giving respectively, E-EventClockTL and
E-Metriclnterval TL. This is very similar to the situation in the temporal for-
malisms where it has been shown in [Wol83] that LTL can be extended with
Biichi automata operators giving the logic E-TL which is able to express,
in contrast with LTL, all regular languages. The only difference is that we
need floating automata here because we must be able to look in the past.
So E-EventClockTL and E-Metriclnterval TL define exactly the same class of
real-time languages than the recursive event-clock automata.

The second way consists of adding second-order quantification to Event-
ClockTL, MetricInterval TL and MinMaxML;. But here the situation, surpris-
ingly, is very different from the situation in untimed languages. In untimed
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languages, second-order quantification can be added without restriction and
close the gap between counter-free and counter regular languages. In real-
time, we will see that adding unrestricted second-order quantification leads
to a fully undecidable formalism: neither satisfiability, nor validity are de-
cidable, and the resulting formalisms are strictly more expressive than timed
automata. But we will show that if we slightly restrict the use of second-order
quantification, we obtain fully decidable formalisms called Q-EventClockTL,
Q-Metriclnterval TL and MinMaxMLs. Interestingly, those three formalisms
define exactly the class of counter real-time regular languages as recursive
event-clock automata.

We will show that the results that we have obtained are sharp in the sense
that small relaxations of the syntactical restrictions that we have imposed to
our formalisms either lead to formalisms that are as expressive as timed au-
tomata, or to fully undecidable formalisms. In particular, we will show that
only adding outermost second-order quantification, called here projection, to
all the fully decidable formalisms previously defined, leads to formalisms as
expressive as timed automata and have thus a non decidable validity prob-
lem. As all those formalisms define the same class of real-time languages,
we call this class “projected real-time languages reqular languages”. We also
study two other relaxations that lead to fully undecidable formalisms.

5.1 Adding Ability to Count
5.1.1 Adding Automata Operators

In this section, we give the definition of the syntax and semantics of the
real-time logics EventClockTL and MetricInterval TL extended with monitored
floating automata operators (or equivalently add floating automata instead
of their monitored version).

Definition 5.1 (E-EventClockTL-Syntax) The formulas of the extended
event clock temporal logic E-EventClockTL are defined as for EventClockTL,
see definition 3.16, with the following additional clause:

¢ = Alpr, ... ,bn)

where A = (Q, Qo, Qnr, 0,2, A\, QF) is a monitored floating automaton with
Y ={¢1,02,...,¢n} is the alphabet of A, X : Q — ¥ is the labeling function
that labels each location of A with a E-EventClockTL formula, other elements
are as for monitored floating automata, see definition 4.23. O

We define the semantics of the automata operators as follows:

Definition 5.2 (E-EventClockTL-Semantics) Let ¢ be an E-EventClockTL
formula and let x be a timed state sequence whose propositional symbols
contain all propositions that occur in ¢. The formula ¢ holds at time t € R
of k, denoted (k,t) = ¢, according to the following definition:
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For the operators of the logic EventClockTL, see definition 3.17;
(k,t) = A(¢p1, b2, ..., ¢yn) iff there is an infinite t-monitored run
p of A on k that respects:

(1) Covering, Start, Consecution, Monitoring and
Acceptance are as for monitored floating au-
tomata, see definition 4.24;

(2) Constraint: for all t € RY, (k,t) = A(p(t));

Let us now turn to the extension of MetricIntervalTL.

Definition 5.3 (E-Metriclnterval TL-Syntax) The formulas of the extended
metric interval temporal logic E-EventClockTL are defined as for Metriclnterval TL,
see definition 3.9, with the following additional clause:

¢ = Alpr, ... ,bn)

where A = (Q, Qo, Qar, 0, 2, A, QF) is a monitored floating automaton where
Y ={d1,¢2,...,¢n} is the alphabet of A, A : @ — ¥ is the labeling func-
tion that labels each location of A with a E-Metriclnterval TL formula, other
elements are as for monitored floating automata, see definition 4.23. O

We define the semantics of the automata operators as follows:

Definition 5.4 (E-MetriclntervalTL-semantics) Let ¢ be an E-MetricInterval TL
formula and let £ be a timed state sequence whose propositional symbols
contain all propositions that occur in ¢. The formula ¢ holds at time ¢t € RT

of k, denoted (k,t) = ¢, according to the following definition:

For the operators of the logic MetricInterval TL, see definition 3.11;
(k,t) = A(¢p1, b2, ..., ¢yn) iff there is an infinite t-monitored run
p of A on k that respects:

(1) Covering, Start, Consecution, Monitoring, Ac-
ceptance are as for monitored floating automata,
see definition 4.24;

(2) Constraint: for all t € RY, (k,t) = A(p(t));

We will study the expressiveness and decidability results of those logics
in the following sections.
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5.1.2 Adding Second Order Quantification

The quantified temporal logics Q-EventClockTL and Q-Metriclnterval TL are
defined by adding second order quantification to EventClockTL and Metricln-
tervalTL in a restricted way.

Definition 5.5 (Q-EventClockTL-Syntax) The formulas of the quantified
event clock temporal logic Q-EventClockTL are defined as for EventClockTL,
see definition 3.16, with the following additional clause:

b = Tp- ¢

where p is a proposition which, inside the formula 1, does not occur within
the scope of a history or prophecy operator. O

We now define the semantics of the additional clause:

Definition 5.6 (Q-EventClockTL-Semantics) Let ¢ be an Q-EventClockTL
formula and let x be a timed state sequence whose propositional symbols
contain all propositions that occur freely in ¢. The formula ¢ holds at time
t € R of k, denoted (k,t) = ¢, according to the following definition:

For the operators of the logic EventClockTL, see definition 3.17;
(k,t) = Jp- ¢ iff there is a {p}-extension of k, noted kP, such
that (?,1) = ¢

Similarly, we define the second order quantification extension of Metricln-
terval TL as follows:

Definition 5.7 (Q-MetricIntervalTL-Syntax) The formulas of the quan-
tified metric interval temporal logic E-MetriclntervalTL are defined as for
Metriclnterval TL, see definition 3.9, with the following additional clause:

¢ = 3p-9

where p is a proposition which, inside the formula 1, does not occur within
the scope of a real-time operator with interval different from (0,00). O

We now define the semantics of the additional clause:

Definition 5.8 (Q-MetricIntervalTL-Semantics) Let ¢ be an Q-MetricInterval TL

formula and let £ be a timed state sequence whose propositional symbols
contain all propositions that occur freely in ¢. The formula ¢ holds at time
t € R of k, denoted (k,t) = ¢, according to the following definition:

For the operators of the logic MetricInterval TL, see definition 3.11;
(k,t) = Jp- ¢ iff there is a {p}-extension of k, noted kP, such
that (w,4) |=
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Similarly, we introduce second-order quantification in the real-time monadic
theory that we have defined in section 3.4.

Definition 5.9 (MinMaxMLy-Syntax) The formulas of the Second-Order
Real-Time Monadic Logic over the Reals MinMaxMLy are defined as for
MinMaxML;, definition 3.20, with the following additional clause:

d = dp- T

where p is a monadic predicate which, inside the formula ¥, does not occur
within the scope of a real-time quantifier Min, Max. O

The semantics of the additional clause is as usual:

Definition 5.10 (MinMaxMLy-Semantics) Let ® be an MinMaxML, for-
mula and let x be a timed state sequence whose propositional symbols con-
tain all propositions that occur freely in ®. The formula ® holds in the pair
(k, @), denoted (k,a) |= @, according to the following definition:

For the operators and terms of the logic MinMaxML, see defini-
tion 3.21 and definition 3.22;

(k,a) = dp - @ iff there is a {p}-extension of x, noted xP, such
that (k?, a) = @;

a

5.1.3 Expressiveness: Equivalence Results

From the theorem 3.38 and the way we have defined E-EventClockTL and
E-Metriclnterval TL, we have the following corollary:

Corollary 5.11 (E-EventClockTL = E-MetriclntervalTL) The logics E-EventClockTL
and E-MetricInterval TL are equivalently expressive.

Similarly, we obtain the following corollary for Q-EventClockTL, Q-MetriclntervalTL
and MinMaxML,:

Corollary 5.12 (Q-EventClockTL = Q-MetriclntervalTL = MinMaxMLy) The
logics Q-EventClockTL, Q-Metriclnterval TL and MinMaxMLsy are equivalently
expressive.

So, what will be proved for Q-EventClockTL, can be derived for Q-Metriclnterval TL
and for MinMaxMLs.

Let us now study the relation that exists between our quantified logics
and the formalisms of recursive event-clock automata:
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Lemma 5.13 (REventClockTA C Q-EventClockTL) For every REventClockTA
A, we can construct a congruent Q-EventClockTL formula ¢4, that is for ev-
ery TSS k, every time t € RT: Accept 4 (k,t) iff (k,t) = ¢pa.

Proof. Using the equivalence result for REventClockTA and MEventClockTA
given by theorem 4.28, we can show that for every MEventClockTA A, we can
construct a congruent Q-EventClockTL formula ¢ 4. We reason by induction
on the level of the MEventClockTA A.

Base case. The automaton A = (Q,Qo,Qn,d, P, A\, QF) is a monitored
floating automata, i.e. level(A) = 0. In that case, the formula ¢4 is con-
structed from the following formulas:

e let Controle be the following propositional formula: qu atq, where V

denotes an exclusive or and the proposition at, intuitively means that
the control resides in location ¢q. Controle means that at each time
during a run, the control of the automaton resides in one and only one
location.

e let Init be the following formula:
0T — quQoatq

that expresses the initially (=© T) the control of the automaton must
reside in an initial location;

e let Transition be the following formula:

Ngeg atq = LA atqW V(g 1yes algs
2.\ atqz \/(Q2,q)€5 atq2

that expresses the transition relation.

e let Monitoring be the following formula:

VQEQM atq

that is true when the control of the automaton is in a monitored loca-
tion;

e let Labelling be the following formula:
Aqeq ata = (M@)T
where (A(¢))T is as follows:
Nvex ¥" A Noetimiepyang ™%
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and:

- (p)T =pforpeP;
- (P)" =Op;

- (P)T =op;

- (M'=T;

- (T)"=0T;

- (T)T=oT

e let Acceptance be the following formula: for the generalized Biichi
acceptance Qp = {F1,...,Fn}t Npcr OO0V ep, atq

The formula ¢4 that corresponds to the monitored floating automaton A is:

datgg, . .., atg, : 1.A BControl A OControl A Control
2.A Olnit
3.A HTransition A OTransition A Transition
4.A Monitoring H Labeling A OLabeling A Labeling
5.\ Acceptance

Induction case. By induction hypothesis, for every sub-automaton B €
SUB(A), we are able to construct a congruent formula ¢p. Let us show that
we can do it for A too. The only difference between an MEventClockTA and
a monitored floating automata is the ability of MEventClockTA to use clock
constraints in their labeling function. We define the function 7" that given a
label x of A, return the right EventClockTL formula. The label x is a set of
literals, more precisely, x C Limit(P* U A4). The construction is as for the
base case, we only have to show how to deal with atomic clock constraints.
We treat atomic real-time constraints as follows:

° f(j] =yp ~CcC then 'I,ZJT — I>NC¢B;
° f(j] =zIrp~C then wT = <INC¢B;

By examining the construction above, it is easy to see that the existentially
quantified proposition, i.e. atyy,...,at,, do not appear in the scope of a
real-time operator, so the formula ¢4 is in Q-EventClockTL. O

We now prove the reverse lemma:

Lemma 5.14 (Q-EventClockTL C REventClockTA) For every Q-EventClockTL
formula ¢, we can construct a congruent REventClockTA automaton Ay, that
is for every TSS k, every time t € R*: Accept y, (k,1) iff (k,t) = ¢.
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Proof. By theorem 4.28, we can consider monitored recursive event clock
automata in the proof. In the proof of lemma 4.63, we have shown that for
every EventClockTL formula ¢, we can construct a congruent MEventClockTA
Ay, from that proof, it can easily be shown that MEventClockTA are closed
under all EventClockTL operators. Further, in lemma, 4.52 it has been shown
that MEventClockTA are partially closed under projection: a proposition
that does not appear in a sub-automaton can be projected. So as quantified
propositions do not appear, by definition, in the scope of real-time operators,
they do not appear into a sub-automaton, see lemma 4.63, and thus can be
projected. O

From the two previous lemmas and corollary 5.12, we obtain the following
theorem:

Theorem 5.15 The logics Q-EventClockTL, Q-Metriclnterval TL and MinMaxML,
have the same expressive power as REventClockTA automata. O

And thus, as we have translation procedures between those formalisms,
we have:

Theorem 5.16 The satisfiability problems for Q-EventClockTL, Q-Metriclnterval TL
and MinMaxMLy are decidable. O

Since already the untimed quantified temporal logic Q-TL is non-elementary [Sis83],
so are the satisfiability problems for Q-EventClockTL and Q-MetriclntervalTL.

Theorem 5.17 The satisfiability problems for Q-EventClockTL, Q-Metriclnterval TL
and MinMaxMLy are NONELEM. O

Let us now turn to the logics E-EventClockTL and E-MetriclntervalTL.
Again, by theorem 3.37 and the definition of E-EventClockTL and E-Metriclnterval TL,
we have the following corollary:

Corollary 5.18 (E-EventClockTL = E-MetriclntervalTL) The logics E-EventClockTL
and E-Metriclnterval TL are equivalently expressive. O

So, what will be proved for E-EventClockTL, can be derived for E-MetricInterval TL.

Lemma 5.19 (E-EventClockTL C REventClockTA) For every E-EventClockTL
formula ¢, we can construct a congruent REventClockTA automaton Ay, that
is for every TSS k, every time t € R*: AcceptAd)(/i,t) iff (k,t) E o.

Proof. Again, thanks to the theorem 4.28 we can show that E-EventClockTL C
MEventClockTA. We already know that MEventClockTA are closed under all
EventClockTL operators. With an adaptation of the techniques of [SVW85]
(see also section 4.5) it can be shown that MEventClockTA are closed under
monitored floating automata operators. O
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The other direction is trivial:

Lemma 5.20 (REventClockTA C E-EventClockTL) For every REventClockTA
automaton Ay, we can construct a congruent E-EventClockTL formula ¢,
that is for every TSS k, every time t € RY: (k,t) = ¢ iff AcceptAd)(/i,t).

Thus the two formalisms are equally expressive.

Theorem 5.21 The logic E-EventClockTL and automata REventClockTA
are equally expressive.

And thus,

Theorem 5.22 (All Equivalent) The logics E-EventClockTL, Q-EventClockTL,
E-MetricInterval TL, Q-Metricinterval TL and MinMaxMLs are all equivalent in
expressive power to the formalisms of REventClockTA, and thus define the
(counter) real-time reqular languages. O

As we have translation procedure between those formalisms, we have
that:

Theorem 5.23 (E-EventClockTL and E-Metriclnterval TL-Decidability) The
logics E-EventClockTL and E-Metriclnterval TL are decidable. O

Further, it can be shown that:

Theorem 5.24 (E-EventClockTL and E-Metriclnterval TL-Complexity) The
satisfiability problems for E-EventClockTL and E-MetricntervalTLg o are com-
plete for PSPACE. The satisfiability problem for E-MetriclntervalTL is com-
plete for EXPSPACE. O

5.2 Projected Regular Real-Time Languages

In this section, we study the impact, in term of decidability and expressivity,
of adding projection, i.e. outermost existential quantification, to the fully
decidable that we have defined previously.

We will detail the introduction of projection into the logic of event clocks
giving its projected version P-EventClockTL, the propositional (non recur-
sive) event-clock automaton giving P-EventClockTA and the recursive event-
clock automata giving P-REventClockTA. Using equivalence results that we
have presented above, we derive implicitly all the corollaries for the other
formalisms.
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5.2.1 Projected Event Clock Temporal Logic

We define the syntax and semantics of this logic as follows:

Definition 5.25 (P-EventClockTL-Syntax) The formulas of the projected
event clock temporal logic P-EventClockTL are defined by the following clause:

Elpla"'apn'gb

where ¢ is an EventClockTL-formula, see definition 3.16, and pq, ..., p, are
propositional symbols. O

Let us note that, in contrast with the definition of Q-EventClockTL, we
allow in P-EventClockTL that quantified propositions appear in the scope
of real-time operators. But on the other hand, quantification is only al-
lowed as the outermost operator. The semantics of second-order existential
quantification is the expected one:

Definition 5.26 (P-EventClockTL-Semantics) Let ¢ be an P-EventClockTL
formula and let £ be a timed state sequence whose propositional symbols
contain all propositions that occur freely in ¢. The formula ¢ holds at time
t € R of k, denoted (k,t) = ¢, according to the following definition:

For the operators of the logic EventClockTL, see definition 3.17;
(k,t) = 3Ip1,...,ppn - ¢ iff there is a {p1,...,p, }-extension of k,
noted k{PLPn} such that (k{PrP} 1) = ¢

The anchored language of the P-EventClockTL formula dpi,...,pp - ¢
has the following relation with the anchored language of the EventClockTL
formula ¢:

Lemma 5.27 If P is the set of propositions that appear in ¢ € EventClockTL
and P' = P\ {p1,...,pn} then Anclang(Ip1,...,pn-¢) ={s |l P | k €
AnclLang(¢)}. O

5.2.2 Projected (Propositional) Event-Clock Automaton

The definitions for projected (propositional) event-clock automata are ob-
tained in a similar way:

Definition 5.28 (P-EventClockTA-Syntax) A projected (propositional) event-
clock automaton is a pair (A, {pi1...pn}) that consists of a (propositional)
event-clock automaton A and a set of propositions {p;...p,}. O
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Definition 5.29 (P-EventClockTA-Semantics) The anchored language de-
fined by a P-REventClockTA (A,{pi...pn}), with A defined on the set of
propositions P, is the (P \ {p1...pn})-projections of TSS that belongs to
the anchored language of A, that is, if we note P’ = P\ {p1,...,pn}, we
have AncLang((A,{p1...pn})) ={k L P'| & € AncLang(A)}. O

5.2.3 Projected Recursive Event-Clock Automaton

We now turn to the definition of projection into recursive event clock au-
tomata.

Definition 5.30 (P-REventClockTA-Syntax) A projected recursive event-
clock automaton is a pair (A, {p1 ...pn}) that consists of a recursive event-
clock automaton A and a set of propositions {p; ...p,}. O

Definition 5.31 (P-REventClockTA-Semantics) The anchored language de-
fined by a P-REventClockTA (A, {pi...pn}), with A defined on the set of
propositions P, is the (P \ {p1...pn})-projections of TSS that belongs to
the anchored language of A, that is, if we note P’ = P\ {p1,...,pn}, we
have AncLang((A,{p1...pn})) ={k L P' | K € AncLang(A4)}. O

5.2.4 Timed Automata

We briefly recall here the definition of timed automata. See [AD94] for a
complete study of this formalism.

Definition 5.32 (Continuous Timed Automaton) A continuous timed
automaton is a tuple A = (Q, Qo, C, E, P, A\p, A¢, QF) where:

e () is a finite set of locations;
e (Qp C Q is the subset of starting locations;
e ( is a finite set of clocks;

E C Qx2°xQ aset of edges. An edge (q1,<, g2) represents a transition
from location ¢; to location ¢, ¢ is the subset of clocks that are reset
when crossing the edge;

e P is a finite set of propositions;

)\ :Q— 2% is a labeling function which labels each location with the
set of atomic propositions that are true in that location;

e \.:Q — A(C) is a labeling function which assigns to each location a
constraint of A(C') on the value of clocks that should be verified when
staying in that location;
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e Qr is a set of accepting locations (Biichi acceptance condition).

|

Definition 5.33 (TA-Timed Run) A continuous timed run of a continu-
ous timed automaton A is an infinite sequence

p= (qO, IU) —<0 (ql,Il) —S (qn, In) —n
e ¢; are locations;
e Iyl ---1I,--- is a sequence of intervals that partitions R*;

e ¢; C C are sets of clocks (to reset).
O

Definition 5.34 (TA-Clock Value) The value of a clock x € C along a
continuous timed run p = (qo, Iy) = (q1,11) = -+, at time ¢ € I;, noted
n(p,t)(x), is defined as follows:

[ t—r(;) fregandVk-j<k<i:z &g
”(p’t)(f”)_{t ifVj:0<j<i:zdq

We use n(p,t) to denote the clock valuation at time t along p. O

Definition 5.35 (Clock Constraints-Semantics) A clock constraint
is satisfied by a clock valuation 7, noted 1 = 1, according to the following
rules:

nEz~ciff n(z) ~ ¢, with ~€ {<, <, =,>,>};
n E — iff n ¢
nE Y1 Ve iff n =11 or n = 1o

|

Definition 5.36 (TA-Accepted Run) A continuous timed run p = (qq, ly) —<°
(g1, I1) = ... (qn, L) =" ... is accepted by the continuous timed automa-

ton A = (Q,Qo,C, E, P, \p, A\c, @r) when reading the TSS k = (5,1) iff p
respects the following requirements:

e Starting. The first location in p is a starting location of A, that is
90 € Qo;

e Consecution. The continuous timed run p respects the transition rela-
tion of A, i.e. for all positions 7 > 0, we have that either (g;, <, gi+1) €
E, or ¢; = ¢;11 and ¢; = () (stuttering steps are allowed);
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e Timing constraints. The timing constraints about clocks are respected
along p, that is, for every position 7 > 0, for all time ¢ € I; : n(p,t) =

Ac(‘]i);

e Adequation. The labels along the continuous timed run p are in ade-
quation with the truth value of the propositions along the TSS «, that
is for all time ¢ € R, (k,t) = A\p(p(t));

Further, we say that p is accepting if there exists infinitely many positions
i > 0 such that ¢; € Qr. We note Accepty(k) the fact that A has an
accepted continuous timed run on x. O

Definition 5.37 The anchored language of a continuous TA A is the set of
TSS k on which A has an accepted run, i.e. AncLang(A) = {k € TSS(2P%) |
Accept 4(k)}. O

Timed automata are closed under positive boolean operation but not
under negation.

Theorem 5.38 (Closure under Union and Intersection) [ADY9/] Timed
automata are closed under union and intersection. O

Theorem 5.39 (Non-Closure under Complement) The formalism of
timed automata is not closed under complement. O

The emptiness problem of timed automata is decidable, on the other
hand, its universality problem is undecidable.

Theorem 5.40 (TA-Emptiness) [AD94] The emptiness problem for timed
automata is PSPACE-COMPLETE. O

But the universality problem, that is given a timed automaton, deter-
mine if it accepts all possible timed traces, is undecidable.

Theorem 5.41 (TA-Universality) [ADY9)] The problem of universality
for timed automaton is undecidable. O

5.2.5 Expressiveness Equivalence Result

In this paragraph, we show that adding projection to the fully decidable for-
malism is powerful. In fact, we will show that even if added to propositional
event-clock automata we obtain a formalism which is expressively equivalent
to timed automata. The same occurs with all the other formalisms that we
have defined.

We now prove that adding projection to the logic EventClockTL extends
is expressive power in such a way that P-EventClockTL at least as expressive
as TA:
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Lemma 5.42 (TA C P-EventClockTL) For every continuous timed automa-
ton A, we can compute a projected event clock temporal formula ¢4 that de-
fines exactly the anchored timed language defined by A, that is, AncLang(¢) =
AnclLang(A)

Proof. Let A = (Q,Qo,C,E,P,\p, ¢, Qr) be the continuous timed au-
tomaton for which we want to construct the P-EventClockTL formula ¢ 4.
We construct ¢4 as follows:

e For each location ¢ € Q we introduce the proposition at, to express
that the control of automaton resides in location g. During a run the
control of an timed automaton A resides in one and only one location
at a given time. This is expressed by the following formula:

FQ = que Qatq
with Q = {q17q27 s 7qn}
e The initial condition is expressed by the following formula:
Fg, = \/qu0 at,
e the propositional labeling function A, is translated as follows:
Fp =0 Ageglats = Nper,@) P A Nper\ng(g) 7P)

e The resetting of clocks can be expressed with the help of existentially
quantified variables. For each clock ¢; € C', we associate a proposition
that we note r.,. This proposition r., will be true when and only
when the clock ¢; is reset. By definition of timed automata, clocks are
reset when crossing edges, and implicitly at the initial moment. For
each edge (¢;, Ay, q;) of the automaton, we introduce the proposition
Cross(q; a,q) that is true iff the automaton crosses the edge between
location g; and location g;.

Fr, =0 A(Qi,)\r,q]‘)EE Cross(g; Aq;) < (atg AOalg;) V (atg; A ©aly,)

Fry, = D[/\(Qiy)\rij)EE(CTOSS(Qiy)\Tij) = Neer, T)IA=7OT = Aeere
when the edge (g;, Ay, g;) is crossed, the clocks that decorates the edge
are reset (clocks are only reset when crossing edges that are labeled
by the clock and initially).

Fry = OlAcec e = Vg maperie) TO55@ng) V 7O Tl

93



where R(c) is the set of edges where the clock c is reset, i.e. R(c) =
{(qia)\ran) | (Qia)\ran) €EENce Ar}'

Fr=Fg, NFp, \ Fr,
e The consecution rule is expressed by the following formula:

Fp =0 eqlaty = atgWVyeg, aty)

where S, is the set of locations that are successors of ¢ in A, i.e.
Sq=1{d'l(¢,q") € E};

e The semantics of the time constraint labeling function A, is translated
as follows:

Fo=0NAcolaty = T(Ae(q))
where T is defined as:

— T(1 Vpo) = T(¢p1) V T (3h2)
- T(=¢) = =T (%)

— T(zx~c)=<els

e The acceptance condition constraint is defined as follows:

FQF = /\F,EQF D<> quFi atq

The P-EventClockTL formula whose anchored language is exactly the
timed state sequences accepted by A is:

JA,C,R(Fr, N Fry N Fg AN F\, N Fg A Fy\, N FF)
where :
o A={atglq € Q};
o C ={crossg; a.q)l(@, A q;) € B}
e R={r.ceC}.

94



We now take a look at the other direction:

Lemma 5.43 (P-EventClockTL C TA) For every projected event clock tem-
poral formula ¢ = Ipy, ..., pn-¢p, we can compute a timed automaton Ay, that
defines exactly the anchored language defined by ¢, that is, AncLang(Ay) =
AnclLang(v)

Proof. By theorem 3.33, we know that for every EventClockTL formula, we
can compute an equivalent Metriclnterval TL formula ¢”. By theorem ?7?,
we know that for this formula ¢’, we can construct an equivalent timed
automaton A,r which is also equivalent to ¢. Finally, as timed automata are
closed under projection, it follows that we can construct a timed automata
for the P-EventClockTL formula dpy, . .., py-¢ simply by projecting p1, ..., pn
in A¢T' O

From the two previous lemmas, we derive the following theorem:

Theorem 5.44 (P-EventClockTL = TA) The formalisms of projected event
clock temporal logic and timed automata are equally expressive to define
anchored languages.

Let us now turn to the characterization of the expressive power of the
projected (propositional) event-clock automata. First, we have the following
lemma;

Lemma 5.45 (P-EventClockTL C P-EventClockTA) For every projected event
clock temporal formula dp,...,py - ¢, we can compute a projected proposi-

tional event-clock automaton (Ag, Q) that defines exactly the anchored lan-
guage defined by ¢, that is, AncLang((Ay, Q)) = AncLang(¢).

Proof. In [RS97], it is shown that for every formula ¢ € EventClockTL,
it is possible to construct an propositional event-clock automaton A, that
accepts exactly the Hintikka sequences of ¢. Remember that Hintikka se-
quences are just H-extensions of TSS that belongs to the anchored language
of ¢ and the P-projections of those TSS, where P is the set of proposi-
tions appearing in ¢ are exactly the TSS that belongs to AncLang(¢). So
the following P-EventClockTA (Ag, HU{p1,...,pn}) is exactly the projected
automaton we are looking for. O

We now show that the formalism of projected propositional event clock
automata defines anchored languages that can be defined using timed au-
tomata:
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Lemma 5.46 (P-EventClockTA C TA) For every projected propositional event-
clock automaton (A,{p1,...,pn}), we can compute a timed automaton B

that defines exactly the same anchored language, that is, AncLang((A, {p1,...,pn})) =
AncLang(B).

Proof. In [AFH94], it is proved that for every propositional even-clock au-
tomaton we can construct a timed automaton that defines exactly the same
anchored language. So for A, we can construct an equivalent timed au-
tomaton C. By lemma ??, we know that we can construct B form C by
projecting the set of propositions {pi,...,pp}. O

So we have the following corollary:

Corollary 5.47 The formalism of TA, P-EventClockTL, P-EventClockTA
are equally expressive to define anchored languages.

Finally, we turn to the expressiveness of projected recursive event-clock
automata:

Lemma 5.48 (P-REventClockTA C P-EventClockTA) For every projected re-
cursive event-clock automaton (A, {p1,...,pn}), we can compute a projected
propositional event clock automaton (B,Q) that defines exactly the same
anchored language, that is, AncLang((A, {p1,...,pn})) = AncLang((B, Q)).

Proof. First lemma 4.55 says that given an recursive event clock automa-
ton A, we can construct a propositional event-clock automaton C that ac-
cepts exactly the timed Hintikka sequences of A. Let us note P’ the set
of propositions used by B, we now that {x | P | k € AncLang(B)} =
AncLang(A), so the following projected propositional event-clock automa-
ton (B,(P"\ P) U{p1,...,pn}) accepts the desired anchored language. O

So, from the previous lemmas, we obtain the following lemma;

Theorem 5.49 All the formalisms TA, P-EventClockTA, P-REventClockTA
and P-EventClockTL define the same class of real-time languages.

As all those formalisms define the same class of languages, we give it a
name:

Definition 5.50 The class of real-time languages defined by TA, P-EventClockTA,
P-REventClockTA and P-EventClockTL are called the projected real-time reg-
ular languages.

The proof that the projected formalisms are all equivalent to timed au-
tomata contains an effective translation, giving their decidability:
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Theorem 5.51 (Projection and Decidability) The projected formalisms
P-EventClockTA, P-REventClockTA and P-EventClockTL have decidable de-
cidable satisfiability (emptiness) problems and undecidable validity (univer-
sality) problems.

Proof. The decidability of satisfiability follows directly, for each projected
formalisms, from the fact that existential quantification does not change
satisfiability. The undecidability of validity follows from the undecidabil-
ity of the universality problem for timed automata, see theorem 5.41, and
the equivalence of expressive power of the projected formalisms with timed
automata, see theorem 5.49. O

5.3 Undecidable Extensions

In this section, we show that the result about decidability and expressive-

ness that we have obtained in the previous sections are sharp in the sense

that if we liberalize the definitions of the previous formalisms we encounter
undecidability problems.

First, in our second-order formalisms MinMaxMLs, respectively in Q-EventClockTL,

we have prohibited quantified monadic predicates, respectively propositions,

from occurring within the scope of Min or Max quantifiers, respectively his-

tory or prophecy operators. We defined the unrestricted MinMaxML, and
Q-EventClockTL as follows:

Definition 5.52 (Unrestricted-Q-EventClockTL and MinMaxMLsy) The unrestricted-
Q-EventClockTL logic is obtained by adding (unrestricted) second-order quan-

tification to EventClockTL and the unrestricted-MinMaxMLj logic is obtained

by adding (unrestricted) second-order quantification to MinMaxML;.

Obviously, we have the following lemma:

Lemma 5.53 The logic unrestricted-Q-EventClockTL contains P-EventClockTL
and is closed under boolean operations. The logic unrestricted-MinMaxML,
contains P-MinMaxMLs and is closed under boolean operations.

The restriction on the use of second-order quantification is necessary for
decidability. If, as seen above, we admit only outermost existential quantifi-
cation (projection) over monadic predicates (propositions) that occur within
the scope of real-time operators, we obtain a positively decidable formal-
ism (satisfiability is decidable, but validity is not) which is expressively
equivalent to timed automata. Consequently, if we admit full quantifica-
tion over monadic predicates (propositions) that occur within the scope of
real-time operators, then both satisfiability and validity are undecidable, and
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the formalism is expressively equivalent to boolean combinations of timed
automata.

Theorem 5.54 Formalisms that are able to express boolean combinations
of projected formalisms have undecidable satisfiability and validity problems.

So, as unrestricted MinMaxMLsy and Q-EventClockTL allow the expression
of boolean combinations of projected timed regular languages, we have the
following theorem:

Theorem 5.55 The logics unrestricted-Q-EventClockTL and unrestricted-
MinMaxMLs have undecidable satisfiability and validity problems.

We now turn to the restriction that we impose on MinMaxML; formulas.
A fully undecidable extension of MinMaxML; is obtained by relaxing the
restriction that in every formula of the form (Min t1)(t1 > to A U(ty)) ~
(t2 + ¢) or (Max t1)(t1 < t2 A ¥(t1)) ~ (t2 — ¢), the sub-formula U(#)
contains no free occurrences of first-order variables other than ¢;. If we
suppress this restriction, it can be shown that the real-time temporal logic
MetricTL can be embedded in MinMaxML;.

Definition 5.56 (Unrestricted-MinMaxML;) The formulas of unrestricted-
MinMaxML; are obtained from relaxing the constraints on the free variables
occuring in the scope of Min — Max quantifiers.

For this unrestricted version of MinMaxML;, we have the following lemma:

Lemma 5.57 For every formula of MetricTL there exists a congruent for-
mula of MinMaxML;.

Proof. We simply show that we are able to express the {_. operator of
MetricTL (which is sufficient to obtain undecidability), other constructs of
the logic are easier. The formula {_1p of MetricTL is expressed as follows
in unrestricted-MinMaxML; :

dts - [Mint1 . (t1 >tAT = tg) =t4+ 1] /\p(tg)

In fact, Ity - Miny, - (81 > t Aty = t3) =t + 1 forces t, to be equal to t+1. O

Since MetricTL is undecidable [AH93], so are the satisfiability and valid-
ity problems for unrestricted MinMaxML;.

Theorem 5.58 (Undecidability) The satisfiability and validity problems
for unrestricted-MinMaxMLy are undecidable. O
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6 Conclusion

We have shown that EventClockTL, when evaluated in timed state sequences,
has exactly the same expressive power as MetriclntervalTL. This nice result
is surprising because EventClockTL and Metriclnterval TL are rather different
logics, that propose orthogonal restrictions to reach decidability: Event-
ClockTL allows punctuality constraints but restricts real-time constraints to
refer to the next (last) time a formula will be (was) true, whereas Metricln-
terval TL allows formulas to refer to any time where a formula will be true,
but disallows punctuality constraints. In the process of proving the equiva-
lence between the expressive powers of EventClockTL and MetriclntervalTL,
we have also shown that the PSPACE fragment of MetriclntervalTL, that is
MetriclntervalTLg o, is expressively complete. Those results have been re-
inforced by the definition of a real-time first-order monadic theory, called
MinMaxMLy, that identifies exactly the same class of real-time languages as
Metriclnterval TL and EventClockTL. As two very different logics and a clas-
sical theory identify the same class of fully decidable real-time languages,
we have proposed to call this class of languages the “counter-free real-time
regular languages”.

We have also shown that the expressive powers of EventClockTL and the
propositional event-clock automata, as proposed in [AFH94]|, are incompa-
rable. To remedy this situation, we have proposed to generalize the concept
of event clock by allowing, recursively, automata as events. More precisely,
these automata reset a clock when they enter their monitored locations. This
yields a formalism that we have called the recursive event-clock automata,
noted REventClockTA. These automata subsume the expressive power of the
logic EventClockTL, and keep all the nice properties of the propositional ver-
sion, namely: closure under all boolean operations and decidability of both
the emptiness and universality problems. Further, we have shown that by
adding the ability to count to the formalisms that identify the “counter-free
real-time regular languages”, we obtain formalisms that recognize the same
class of languages than our REventClockTA. So, we proposed to call this
class of languages the “real-time regular languages”. The introduction of
second-order quantification into real-time logics requires some care: second-
order quantification can be used outside or inside real-time operators but
not through real-time operators. This is quite different from the qualita-
tive case, where no restriction on second-order quantification is needed. We
have shown that this result is sharp in the sense that: first, it is exactly
what we need to bridge the gap between counter-free and counting real-time
regular languages, second, even small relaxations of this restriction lead to
lose full decidability and closure under negation. Finally, we have shown
that adding projection, that is an outermost second-order quantification, to
counter-free or (counting) real-time regular languages, leads to formalisms
expressively equivalent to timed automata. Therefore, we proposed to call
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these languages, the “projected real-time regular languages”. This class is
not closed under negation and the corresponding formalisms are only posi-
tively decidable. All those results are summarized in the following tables:

‘ ‘ Languages H Temporal logics ‘ Monadic theories ‘ Finite automata
Fully decidable
R-timed
1 counter-free Metriclnterval TL =
w-reqular EventClockTL MinMaxML;
2 R-timed Q-Metriclnterval TL =
w-reqular Q-EventClockTL = MinMaxMLy REventClockTA
E-Metriclnterval TL =
E-EventClockTL

(projection, or outermost existential quantification, is indicated by P-):

Positively decidable

3 projection-closed P-EventClockTL P-MinMaxMLy P-REventClockTA
R-timed w-regular = Ld° =TA
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