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1 Introdution

It is now widely reognized that the use of formal methods is useful and of-

ten neessary for developing orret onurrent and reative systems. This

observation is even learer when dealing with real-time [AH92b℄ and hybrid

systems [Hen96℄. Among the favorite formalisms to speify and verify on-

urrent systems are temporal logis. Temporal logis [Eme90, MP92℄ are

modal logis that enable the expression of properties about the ordering

of events in exeutions of onurrent programs [Pnu77℄. For example, the

linear temporal logi (LTL) formula �(p! ♦q) expresses the property that

every p-event is always followed by some q-event. In that ontext, reative

systems are usually modeled by a produt of �nite state mahines and prop-

erties of these systems are spei�ed by temporal logi formulas. In the linear

time framework

1

, the veri�ation problem, also alled the model-heking

problem, an be stated as follows: \Are all the possible exeutions of the re-

ative system modeled by the produt of �nite state mahines, models of the

temporal logi formula that spei�es the property to verify?" or equivalently

\is the !-regular language de�ned by the produt of automata inluded in

the !-regular language de�ned by the temporal formula?". Beside their

nie expressive power (most important properties of reative systems an be

naturally expressed in temporal logi), the propositional fragments of those

logis are deidable and are used in tools where the veri�ation problem is

automated [GPVW95, BCM

+

90℄.

The properties that an be expressed in propositional temporal logis are

qualitative onstraints about the ordering of events along a trae (in�nite

sequene of events that models an exeution of a reative system); quantita-

tive timing onstraints annot be expressed. Logis that are able to express

quantitative timing requirements are alled real-time logis [AH94, AH93℄.

Real-time logis have reeived a lot of attention from the researh ommu-

nity [Koy92, AH93, AH94, ACD90, AH92b℄. The results about deidability

of the real-time logis depends ruially on how the time is added to the

traes that model reative systems.

Semantially, there are two radially di�erent ways to model time:

1. The �rst is to onsider a disrete time domain, the natural numbers

for example.

2. The other possibility is to use a dense time domain, as the real numbers

or the rational numbers, for time stamps. Both are equivalent for our

purpose. Choosing a dense time domain is more natural and presents

advantages, ompositionality for example; the interested reader is in-

vited to onsult [AH92b, HMP92, RS97a, BKP86℄ for a study and

1

A framework where time is modeled by a branhing struture an also be onsid-

ered, see [BCM

+

90℄ for example and [Sti87℄ for a systemati omparison between the two

approahes.
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omparison of the two approahes. Unfortunately, when modeling time

with a dense time domain, a lot of problems related to real-time logis

beome undeidable.

Having hosen the time domain, there are still two ommon ways to intro-

due real-time information into traes:

1. The pointwise way, that we adopt for the main part of the paper,

onsists in assoiating a time stamp (from the hosen time domain)

with eah observation of the trae. The intuitive meaning is that the

observation of an event ourred at the time indiated by the time

stamp. Those traes are alled timed traes.

2. The ontinuous way onsists in assoiating an interval with eah ob-

servation of the trae. Intuitively, this interval indiates the interval

of time during whih the system is in the state desribed by the ob-

servation. Those traes are alled timed state sequenes.

Syntatially, there are two natural ways of extending temporal logis

with timing onstraints. The Metri Temporal Logi MetriTL (also alled

MTL [AH93℄) adds time bounds to temporal operators; for example, the

MetriTL formula �(p! ♦
=1

q) spei�es that every p event is followed by a

q event suh that the di�erene between the two time stamps is exatly 1.

The Clok Temporal Logi ClokTL (also alled TPTL [AH94℄) adds lok

variables to LTL; for example, the time-bounded response requirement from

above an be spei�ed by the ClokTL formula �(p! (x := 0)♦(q ^ x = 1)),

where x is a variable representing a lok that is started by the quanti�er

(x := 0). Interestingly, over natural-numbered time, both ways of expressing

timing onstraints are equally expressive. Furthermore, the satis�ability

problems of the two logis are deidable.

If time stamps are real instead of natural numbers, then the situation

seems muh less satisfatory. In fat, the logi MetriTL assoiated with a

dense time domain allows the enoding of Turing mahines omputations

and the halting problem of Turing mahines an be redued to the satis�-

ability of a MetriTL formula. The exessive expressive power of MetriTL

omes from formulas suh as �(p ! ♦
=1

q) that allow us to relate two ar-

bitrary events that are separated by exatly one time unit. This ability

oupled with the density of the time domain, permits us to relate onse-

utive ontents of the memory of a Turing mahine, ontents that an be

enoded using an interval of one time unit. The problem is the same with

the logi ClokTL, as the formula �(p ! (x := 0)♦(x = 1 ^ q)) expresses

the same property. Hene the searh for deidable subsets of MetriTL and

ClokTL is an interesting and important issue.

A �rst restrition to obtain a deidable logi onerns the style of speify-

ing timing onstraints using time-bounded temporal operators. The Metri-

Interval Logi MetriIntervalTL (also alled MITL [AFH96℄) is obtained from
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MetriTL by restriting the time bounds on temporal operators to nonsingu-

lar intervals. For example, the MetriIntervalTL formula �(p ! ♦
[0:9;1:1℄

q)

spei�es that every p event is followed by a q event suh that the di�erene

between the two time stamps is at least 0.9 and at most 1.1. The restrition

to non-singularity prevents speifying exat real time di�erenes between

events.

In this paper, we propose an alternative restrition, quite di�erent in

avour, that onerns the style of speifying timing onstraints using lok

variables. The Event-Clok Logi rEventClokTL (also alled SCL [RS97b℄)

is obtained from ClokTL by restriting the use of loks to refer to the

times of previous and next ourrenes of events only. For example, if y

q

is

a lok that always refers to the time di�erene between now and the next q

event, then the rEventClokTL formula �(p! y

q

= 1) spei�es that every p

event is followed by a q event suh that the di�erene between time stamps

of the p event and the �rst subsequent q event is exatly 1. A lok suh

as y

q

, whih is permanently linked to the next q event, does not need to

be started expliitly, and is alled an event lok. The restrition to event

loks prevents the spei�ation of time di�erenes between a p event and

any subsequent (rather than the �rst subsequent) q event.

The idea to assoiate loks with events has �rst been introdued in the

ontext of timed automata in [AFH94℄ where they propose a determinizable

lass of timed automata alled Event Clok Automata (EventClokTA). As

we will see later, in those automata, eah lok is assoiated with an atomi

event (a proposition for example). The main ontribution of this paper is

to show how this onept of event loks an be generalized: we show that

loks an not only be assoiated with atomi propositions but reursively

with temporal formulas. By de�ning rEventClokTL, we introdue the nie

onept of event lok in the domain of real-time logis. Furthermore, we

show that the logi of event loks is quite expressive, in fat, most important

real-time properties have a nie and diret formulation in rEventClokTL. Fi-

nally we show that the satis�ability problem for rEventClokTL is deidable,

we haraterize its omplexity and present a deision proedure. This proe-

dure an also be used to solve the real-time model heking problem: \Is the

timed !-regular language de�ned by a produt of timed automata ontained

in the timed !-regular language de�ned by an rEventClokTL formula?".

The rest of this paper is organized as follows. Real-time models are

formally de�ned in setion 2. In setion 3 we reall EventClokTA. The

logi rEventClokTL is de�ned in setion 4 and its expressive power is il-

lustrated by showing how to speify most important real-time requirements

with rEventClokTL formulas. Setion 5 proposes a deision proedure for

the satis�ability problem of rEventClokTL formulas and proves its orret-

ness. The deision proedure relies on the onstrution, for eah formula of

rEventClokTL, of a suitable EventClokTA whose language is empty if and

only if the assoiated formula is not satis�able. This EventClokTA needs
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auxiliary symbols when the formula is reursive. The omplexity of the sat-

is�ability problem is also studied there. Setion 6 deals with expressiveness:

rEventClokTL as expressive as MetriIntervalTL

0;1

, but less expressive than

MetriIntervalTLin dense pointwise models. This ontrasts with ontinuous

models, where MetriIntervalTL is as expressive as MetriIntervalTL

0;1

as

shown in [HRS98, RSH98℄. The same property holds for the future frag-

ments, whih are eah less expressive than their logis with past. We also

ompare the expressive power of rEventClokTL and EventClokTA. They

turn out to be inomparable, sine rEventClokTL allows reursion, while

EventClokTA allow ounting.

2 Real-Time Models

The exeution of a reative system an be modeled by an in�nite sequene of

observations �� = �

0

�

1

: : : �

n

: : : , where eah �

i

� P (a subset of propositions

that desribes the observed state of the system). Suh a sequene is alled

a trae. When onsidering exeutions of real-time reative systems, timing

information about the ourrene of the observations must be added to

traes. As mentioned in the introdution, we onsider a dense time domain:

the nonnegative real numbers. We present the details in the ontext of

timed traes sine it will slightly failitate the presentation of the region

onstrution in setion 5. For the interested reader, we give in annex the

de�nition of the logi rEventClokTL in the ontext of timed state sequenes.

There, we reall the deidability and omplexity results for the logi that

are the same for the two models.

De�nition 1 A timed trae is a pair � = (��; �� ) where �� is a trae and �� =

�

1

�

2

: : : �

n

: : : is an in�nite sequene of positive real numbers, alled a timing,

representing the time at whih eah observation ourred. Furthermore the

timing �� = �

0

�

1

: : : �

n

: : : respets (i) monotoniity: for all i � 0, �

i

< �

i+1

,

(ii) divergene: for all t 2 R
+

, there exists i suh that �

i

> t.

3 Event Clok Automata

Timed automata [AD94℄ are �nite state mahines extended with loks.

Clok an be reset and ompared to integer onstants. Unfortunately, the

formalism of timed automata is not losed under omplement. This is due to

the fat that, in timed automata, loks an be reset nondeterministially.

This feature allows the spei�er to de�ne the timed language of the negation

of the formula that allows the enoding of Turing mahine omputations in

MetriTL, see [AD94℄ for details and examples.

In [AFH94℄, Alur et al. present a determinizable lass of timed automata

alled event lok automata. This lass of automata is losed under union,
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intersetion and omplement. Consequently the language inlusion problem

is deidable for this lass of automata. For event lok automata, the om-

plement losure property is obtained by restriting the use of loks: the

loks have a prede�ned assoiation with symbols of the input alphabet.

Cloks are reset impliitly whenever their event ours. This resetting is

thus determined by the timed trae the automaton is reading, whih is key

to their determinization. The event-history lok of the input symbol a 2 �,

denoted x

a

, is a history variable whose value is the time elapsed sine the

last ourrene of a relative to the urrent time. Symmetrially, the event-

prophey lok of a 2 �, denoted y

a

is a prophey variable whose value is

the time to wait for the next ourrene of a relative to the urrent time.

Example 1 Let us onsider the automaton of �gure 1. This event-lok

automaton ontains 3 loations, l

0

is the start loation. The onstraint

x

a

= 5 deorating the edge starting from l

1

with the harater b imposes

that a previous a harater must have been read exatly 5 time units before

the edge is rossed. On the other hand the onstraint y

a

< 2 deorating

the edge from l

1

to l

2

requires that eah time this edge is rossed, the next

a-edge must be rossed within 2 time units.

��

��

-

��

��

��

��

- -

I

?

��

��

a

y

a

< 2

b

b

l

0

l

1

l

2

?

b

x

a

= 5

Figure 1: Event-Clok automaton A

1

.

Let us onsider the exeution of the automaton on the timed trae

(��; �� ) = (a; 1); (b; 6); (; 7); (b; 7:3); (b; 7:5); (a; 8); (; 11); : : : . The automa-

ton starts at loation l

0

. At time t = 1, the automaton reads a and goes to

l

2

. At time t = 6 it reads b and heks that the previous a in �� is distant of

exatly 5 time units, and so on. Thus (��; ��) is a possible pre�x of a timed

trae aepted by the automaton.

As we an see in example 1, the values of the loks are solely determined

by the input word, not by the automaton. Thanks to this important feature

EventClokTA are determinizable and an be omplemented.

De�nition 2 (Event Cloks) Given a set of proposition P, the set of

event loks assoiated to P is the set C = H [ P where H = fx

p

j p 2 Pg

is the set of history loks, i.e. an history lok x

p

is assoiated to eah

proposition p 2 P, and where P = fy

p

j p 2 Pg is the set of prophey loks,

i.e. a prophey lok is assoiated to eah proposition of P. In what follows,
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we note x 2 H any history lok of C, y any prophey lok of C, z
p

the

history lok or the prophey lok assoiated to p and z any lok of C. �

We now de�ne formally the value of history and prophey loks along

a timed trae. We use R
+

[ f?g to denote the nonnegative real numbers

together with the speial value ? (unde�ned).

De�nition 3 The value of the history lok x

p

2 H assoiated with the

proposition p at position i of the timed trae (��; �� ), denoted Val

x

p

(��; �� ; i),

is de�ned as follows:

Val

x

p

(��; �� ; i) =

8

<

:

�

i

� �

j

if there exists j suh that 0 � j < i, p 2 �

j

and for all k suh that j < k < i, p 62 �

k

? if for all j, 0 � j < i, p 62 �

j

The value of the prophey lok y

p

2 P assoiated with the proposition p

at position i of the timed trae (��; �� ), denoted Val

y

p

(��; �� ; i), is de�ned as

follows:

Val

y

p

(��; �� ; i) =

8

<

:

�

j

� �

i

if there exists j suh that i < j, p 2 �

j

and for all k suh that i < k < j, p 62 �

k

? if for all j, i < j, p 62 �

j

Constraints about the value of loks are used to express real-time re-

quirements on the ourrenes of events.

De�nition 4 A lok onstraint is a boolean ombination of formulas of the

form z �  where z 2 C is a history or a prophey lok, �2 f<;�;=;�; >g

and  is an integer onstant.

Clok onstraints are evaluated in positions of timed traes. Here are

the rules of evaluation:

De�nition 5 A timed trae � satis�es a lok onstraint  at a position i

aording to the following usual rules:

� (�; i) j= z �  i� Val

z

(��; �� ; i) � ;

� (�; i) j= : i� not (�; i) j=  ;

� (�; i) j=  

1

_  

2

i� (�; i) j=  

1

or (�; i) j=  

2

.

where � are evaluated as usual in nonnegative real numbers and ? � 

always evaluates to false.

De�nition 6 An EventClokTA is 6-tuple A = (L;L

0

;P;C; E;F) where:

� L is a �nite set of loations;
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� L

0

� L is the subset of start loations;

� P is a �nite set of propositions;

� C is a set of loks partitioned into a set H of history loks and a set

P of prophey loks;

� E is a �nite set of edges; eah edge is a quadruple (l

1

; l

2

; s;  ) where

l

1

2 L is the soure loation, l

2

2 L is the target loation, s � P is a

state desription and  is a lok onstraint;

� F = fF

1

; : : : ; F

n

g with eah F

i

� L, is a set of sets of aepting

loations. (generalized B�uhi aeptane ondition).

As �nite state automata de�ne set of traes, that are alled languages,

EventClokTA de�ne set of timed traes, that are alled timed languages.

To de�ne formally the timed language de�ned by an EventClokTA, we �rst

introdue the notion of omputation of an EventClokTA:

De�nition 7 An aepted omputation of an EventClokTA A on a timed

trae � is an in�nite sequene

 = l

0

e

0

�! l

1

e

1

�! � � � l

n

e

n

�! � � �

where eah l

i

2 L, and:

(C1) l

0

2 L

0

(initiality);

(C2) e

i

= (l

i

; l

i+1

; s

i

;  

i

) 2 E (onseution), and:

(C3) (��; �� ; i) j=  

i

(timing);

(C4) s

i

= �

i

(adequay);

(C5) for every F

i

2 F , there exists in�nitely many positions j suh that

l

j

2 F

i

(generalized B�uhi aeptane).

De�nition 8 The timed language of an EventClokTA A, denoted L(A), is

the set of timed traes for whih A has an aepted omputation.

The formalism of EventClokTA is losed under all boolean operations:

Theorem 1 [AFH94℄ For every EventClokTA A

1

and A

2

, we an on-

strut an EventClokTA A

1

+ A

2

that aepts the union of the languages

of A

1

and A

2

, i.e. L(A

1

+ A

2

) = L(A

1

) [ L(A

2

), an EventClokTA

A

1

� A

2

that aepts the intersetion of the languages of A

1

and A

2

, i.e.

L(A

1

�A

2

) = L(A

1

) \ L(A

2

), for every EventClokTA A, we an onstrut

an an EventClokTA

�

A that aepts the omplement of the language of A,

i.e. L(

�

A) = L(A).
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4 The Event Clok Logi

In this setion, we introdue event loks in temporal logi all this rEvent-

ClokTL. This logi is a real-time extension of the usual temporal logi. We

extend LTL (with past operators) by two indexed modal operators ⊲ and ⊳

whih express real-time onstraints. The semantis of those two operators

is losely related to the notions of prophey and history lok variables. The

formula ⊲
�

� expresses that the delay before the next observation of �

satis�es onstraint � ; symmetrially, the formula ⊳
�

� onstrains the

previous observation of �. The modal operators ⊲ and ⊳ generalize the

semantis of history/prophey variables of [AFH94℄: They are more general

in that they allow reursion, i.e. the operators an onstrain any formula

� rather than proposition symbols. As we show later, all interesting prop-

erties of EventClokTA are preserved in our logi, even though it is more

expressive. We now present formally the rEventClokTL logi. Examples of

spei�ations written in rEventClokTL are given at the end of this setion.

De�nition 9 A formula of rEventClokTL is omposed of proposition sym-

bols p; p

1

; p

2

; ::; q; :::, usual boolean onnetives _ and :, qualitative tempo-

ral operators: Until (U) and Sine (S), real-time operators: prophey op-

erator (⊲), history operator (⊳). A well-formed formula of rEventClokTL

satis�es the following syntatial rule:

� ::= p j �

1

_ �

2

j :� j

e

� j ⊖ � j �

1

U�

2

j �

1

S�

2

j ⊲
�

� j ⊳
�

�

where �2 f<;�;=;�; >g, p 2 P and �; �

1

; �

2

are well formed formulas

and  is an integer onstant

We use the usual preedene of operators: modal operators are more binding

than boolean ones, and their sope is as small as possible. A formula is non-

reursive if the real-time operators only ontain proposition symbols: the

lauses ⊲
�

p j ⊳
�

p replae ⊲
�

� j ⊳
�

� in the syntax.

De�nition 10 A timed trae � = (��; ��) satis�es at position i an rEvent-

ClokTL formula � when:

(�; i) j= p i� p 2 �

i

;

(�; i) j= :� i� not (�; i) j= �;

(�; i) j= �

1

_ �

2

i� (�; i) j= �

1

or (�; i) j= �

2

;

(�; i) j=

e

� i� (�; i+ 1) j= �;

(�; i) j= ⊖� i� i > 0 and (�; i� 1) j= �;

(�; i) j= �

1

U�

2

i� there exists j � i suh that (�; j) j= �

2

and for

all k, i � k < j, (�; k) j= �

1

;

(�; i) j= �

1

S�

2

i� there exists j, 0 � j � i suh that (�; j) j= �

2

and for all k, j < k � i, (�; k) j= �

1

;

(�; i) j=⊲
�

� i� there exists j > i, suh that (�; j) j= �, for all

k, i < k < j, (�; k) 6j= � and �

j

� �

i

� ;

8



(�; i) j=⊳
�

� i� there exists j, 0 � j < i, suh that (�; j) j= �,

for all k, j < k < i, (�; k) 6j= � and �

i

� �

j

� .

As usual, we an de�ne other boolean and temporal operators as syntatial

abbreviations:

� boolean: > � :�

1

_�

1

, ? � :>, �

1

^�

2

� :(:�

1

_:�

2

), �

1

! �

2

�

:�

1

_ �

2

, �

1

$ �

2

� �

1

! �

2

^ �

2

! �

1

;

� for the future:

{ ♦�
1

� >U�

1

, meaning \eventually in the present or future";

{ ��
1

� :♦:�
1

\always in the present and future";

{ ⊲
[l;u℄

� �⊲
�l

�^ ⊲
�u

, \next � ours between l and u from

now";

{ similarly, ⊲
I

� �⊲
�l

�^ ⊲
�u

, \next � ours within I from

now", where I is an interval with bounds l; u and � is the ade-

quate onstraint;

{ �

1

U

�

�

2

� �

1

U�

2

^ (⊲
�

�

2

_ �

2

), with �2 f<;�g, meaning

\Until within  next";

2

{ �
�

�

1

� : ⊲
�

:�

1

, with �2 f<;�g, meaning \always for the

following  time units";

� for the past:

{ ♦��
1

� >S�

1

, meaning \eventually in the past or present";

{ ⊟�
1

� :♦�:�
1

, meaning \always in the past and present";

{ ⊳
[l;u℄

� �⊳
�l

�^ ⊳
�u

, \last � ourred between l and u ago";

{ similarly, ⊳
I

� �⊳
�l

�^ ⊳
�u

, \last � ourred within I ago",

where I is an interval with bounds l; u and � is the adequate

onstraint;

{ �

1

S

�

�

2

� �

1

S�

2

^ (⊳
�

�

2

_ �

2

), with �2 f<;�g, meaning

\sine within ";

{ ⊟
�

�

1

� : ⊳
�

:�

1

, with �2 f<;�g, meaning \always in the

past and present within ";

De�nition 11 A rEventClokTL formula � de�nes a timed language L(�):

the set of timed traes � suh that (�; 0) j= �.

2

If this de�nition is used with >;� or =, it has a di�erent meaning than the until of

MetriIntervalTL.
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Example 2 Here are some examples of rEventClokTL formulas with their

verbal meaning. These examples over all typial real-time requirements

lassi�ed in [Koy92℄. In these examples, we mainly use atomi events p, q,

... for readability but they an be replaed by more ompliated rEvent-

ClokTL formulas. The verbal interpretation haraterizes intuitively the

in�nite timed traes � that the formula � de�nes.

� �q: q is always true. Suh a formula asserts invariane properties of

a system.

� �(p !⊲
�5

q): a p position is always followed by a q position within

5 time units. Suh a formula spei�es a maximal distane between a

request p and its response q. Suh a property is alled a bounded time

response. Here, it assumes that only one request an be outstanding.

� �(p !⊲
=3

q): when a p position is enountered, the �rst following q

position is at exatly 3 time units. Suh a formula allows the assertion

of exat response time (assuming no intervening request p).

� p ^ �(p !⊲
=1

p): this formula asserts that p is true every integer

time unit. Suh a formula allows the spei�er to de�ne periodiity of

events. Here p an model the tik of an ideal lok, that tiks every

time unit.

� �(p! (⊲
>5

p)_ (

e�:p)): every p event is either followed by another

p event distant of more than 5 time units or never followed by another

p event. This formula expresses a minimal distane between events, for

example the rate of input from the environment.

� ♦�q: q will eventually hold permanently.

� �((⊳
=3

q) ! p). This formula asserts that if the last q position is

exatly distant of 3 time units then p must be true now. It is a typial

time-out requirement.

� �(q ! (pS

�3

r)). When a q position is enountered then the last r po-

sition is distant at most of 3 time units and all intermediary positions

were p positions.

� �((⊟
<3

:p)! q). If p is onstantly false during the last 3 time units

then q is true now. This is a typial example of the spei�ation of an

alarm q if a monitored event p does not our within a �xed delay.

As we an see, the rEventClokTL logi is quite expressive. Most of the

properties that are enountered when dealing with real-time systems, e.g.

bounded response time, bounded invariane, time-out,..., an be easily and

elegantly spei�ed. In pratie, the use of the MetriTL operator ♦
�

an

10



often be replaed by the stronger but less expressive operator ⊲
�

. The

presene of the past operators is also a faility for the spei�er. However,

there are properties that annot be expressed using rEventClokTL logi:

Example 3 Every p state is followed by a q state exatly 1 time unit later.

Suh a property an be expressed in MetriTL [AH93℄ as follows:

�(p! ♦
=1

q)

This property is not expressed by the rEventClokTL formula:

�(p!⊲
=1

q)

whih is stronger sine it requires that the �rst q is at exatly 1 time unit.

In fat, as already mentioned in the introdution, if rEventClokTL ould

express this MetriTL property, the logi would be undeidable. In the next

setion, we show that it is not the ase by de�ning a deision proedure for

the satis�ability problem of rEventClokTL. The expressive power of rEvent-

ClokTL is onsidered in setion 6.

5 A Deision Proedure for rEventClokTL

The priniple of the deision proedure for LTL is to onstrut a B�uhi

automaton that aepts exatly the traes that are models of the formula

and then to test the automaton for emptiness, see [Wol85, MP95℄ for details.

Here we propose a similar approah: for every rEventClokTL formula

�, we onstrut an EventClokTA A

�

whose timed language is empty if and

only if the formula � is not satis�able. The proedure that we propose relies

on a onstrution that uses the subformulas of �.

De�nition 12 The losure set of an rEventClokTL formula �, denoted

Cl(�), is de�ned with the help of the reursive funtion Cl:

� Cl(p) = fpg;

� Cl(�

1

_ �

2

) = f�

1

_ �

2

g [ Cl(�

1

) [ Cl(�

2

);

� Cl(:�

1

) = Cl(�

1

);

� Cl(

e

�

1

) = f

e

�

1

g [ Cl(�

1

);

� Cl(⊖�
1

) = f⊖�
1

g [ Cl(�

1

);

� Cl(�

1

U�

2

) = f�

1

U�

2

g [ f

e

(�

1

U�

2

)g [ Cl(�

1

) [ Cl(�

2

);

� Cl(�

1

S�

2

) = f�

1

S�

2

g [ f⊖(�

1

S�

2

)g [ Cl(�

1

) [ Cl(�

2

);

11



� Cl(⊲
�

�

1

) = f⊲
�

�

1

g [ Cl(�

1

);

� Cl(⊳
�

�

1

) = f⊳
�

�

1

g [ Cl(�

1

);

To obtain Cl(�), we lose Cl(�) by negation and identify ::�

1

with �

1

in

any ontext to keep Cl(�) �nite. The set of atomi propositions appearing

in � is denoted P

�

. Note that P

�

� Cl(�).

In our ase, the EventClokTA A

�

does not aept the models of the

formula � but its timed Hintikka sequenes. EventClokTA as de�ned

in [AFH94℄ and realled in setion 3 are not expressive enough to de�ne all

rEventClokTL-timed languages, as shown in setion 6. Nevertheless Event-

ClokTA an be used to de�ne a deision proedure for rEventClokTL as we

show in this setion.

De�nition 13 The timed Hintikka sequenes of � are the timed traes �

de�ned on the set of propositions fp

�

j� 2 Cl(�)g (i.e. a proposition is asso-

iated with eah formula of Cl(�)) that satisfy the following requirements,

for all i � 0:

(H1) p

�

2 �

0

;

(H2) p

�

2 �

i

i� p

:�

62 �

i

;

(H3) p

�

1

_�

2

2 �

i

i� p

�

1

2 �

i

or p

�

2

2 �

i

;

(H4) p

e

�

2 �

i

i� p

�

2 �

i+1

;

(H5) p

��

2 �

i

i� i > 0 and p

�

2 �

i�1

;

(H6) p

�

1

U�

2

2 �

i

i� there exists j � i suh that p

�

2

2 �

j

and for all k,

i � k < j, p

�

1

2 �

k

;

(H7) p

�

1

S�

2

2 �

i

i� there exists j, 0 � j � i, suh that p

�

2

2 �

j

and for all

k, j < k � i, p

�

1

2 �

k

;

(H8) p

B

�

�

2 �

i

i� there exists j > i suh that p

�

2 �

j

, for all k, i < k < j,

p

�

62 �

k

and �

j

� �

i

� ;

(H9) p

C

�

�

2 �

i

i� there exists j, 0 � j < i suh that p

�

2 �

j

, for all k,

j < k < i, p

�

62 �

k

and �

i

� �

j

� ;

Requirements H2 and H3 ensure propositional onsisteny of timed Hin-

tikka sequenes, H4, H5, H6 and H7 ensure onsisteny with the semantis of

temporal operators, and, H8 and H9 ensure onsisteny with the semantis

of real-time operators. H1 is related to the following theorem:

Proposition 1 A rEventClokTL formula � is satis�able i� it has a timed

Hintikka sequene.
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Proof. Let us prove that given an Hintikka sequene (��; �� ) for �, the timed

trae (��

0

; �� ), where �

0

i

= fqjp

q

2 �

i

^q 2 P

�

g, has the Hintikka property: for

all formula � 2 Cl(�), (��

0

; �� ; i) j= � i� p

�

2 �

i

. We reason by indution on

the struture of formulas. Base ase. � = q, a proposition. By de�nition of

(��

0

; ��), q 2 �

0

i

i� p

q

2 �

i

. Thus by the de�nition of j=, we have (��

0

; �� ; i) j= q

i� p

q

2 �

i

. Indution ase. We treat two ases: � = �

1

U�

2

and � =⊲
�

�

1

,

the other ases are treated similarly and left to the areful reader. By

indution hypothesis, we know that: for all i � 0, (��

0

; �� ; i) j= �

j

i� p

�

j

2 �

i

,

for j 2 f1; 2g. We now treat the two ases:

� � = �

1

U�

2

. (��

0

; �� ; i) j= �

1

U�

2

is de�ned as \there exists j � i suh

that (��

0

; �� ; i) j= �

2

and for all k, i � k < j, (��

0

; �� ; i) j= �

1

". By

indution hypothesis, there exists j � i suh that p

�

2

2 �

j

and for

all k, i � k < j, p

�

1

2 �

k

. By rule (H6) of the de�nition of timed

Hintikka sequenes, this is equivalent to p

�

1

U�

2

2 �

i

.

� � =⊲
�

�

1

. (��

0

; �� ; i) j=⊲
�

�

1

is de�ned as \there exists j > i suh

that (��

0

; �� ; j) j= �

2

, �

j

��

i

�  and for all k, i < k < j, (��

0

; �� ; j) j= �

1

".

By indution hypothesis, this is also: \there exists j > i suh that

p

�

2

2 �

j

, �

j

� �

i

�  and for all k, i < k < j, p

�

1

2 �

k

". By rule (H8),

this is the same as p

B

�

�

1

2 �

i

.

As we have that for all �

1

2 Cl(�) and for all i � 0, (��

0

; �� ; i) j= �

1

i�

p

�

1

2 �

i

, by rule (H1), we have that p

�

2 �

0

and thus (��

0

; �� ; 0) j= �. As a

onsequene, (��

0

; �� ) is a model of �.

Now, let us onsider the other diretion. If (��; ��) is a model of � we

prove that the timed trae (��

0

; �� ), with �

0

i

= fp

�

j� 2 Cl(�) ^ (��; �� ; i) j= �g,

has the timed Hintikka property for �. Again, the proof is by indution on

the struture of formulas. The proof is easy sine the Hintikka properties

(H1-H8) express the semantis of the operators. �

Constrution of A

�

The loations of the EventClokTA A

�

will be subsets of Cl(�). If a formula �

belongs to a loation l of A

�

, the intuitive meaning is that when the automa-

ton A

�

is in loation l then all the aepted timed traes passing through

l are timed Hintikka sequenes underlying the models of �. Obviously, all

possible subsets of the losure set are not andidate for representing a posi-

tion in a model. For example, a subset of Cl(�) whih ontains both � and

:� annot be a andidate for a position in a model as the onjuntion of

this set of formulas is not satis�able. To make the notion of andidate for a

model position learer, we de�ne the notion of atom.

De�nition 14 An atom over � is a subset � � Cl(�) satisfying the following

requirements:
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� � is propositionally onsistent and omplete. More formally:

(A1) For every �

1

2 Cl(�), �

1

2 � i� :�

1

62 �;

(A2) For every �

1

_ �

2

2 Cl(�), �

1

_ �

2

2 � i� �

1

2 � or �

2

2 �.

� � respets loal onstraints of the U and the S operators:

(A3) For every �

1

U�

2

2 Cl(�), �

1

U�

2

2 � i� either:

� �

2

2 �;

� �

1

;

e

(�

1

U�

2

) 2 �.

(A4) For every �

1

S�

2

2 Cl(�), �

1

S�

2

2 � i� either:

� �

2

2 �;

� �

1

;⊖(�

1

S�

2

) 2 �.

We build the omponents of A

�

:

Propositions: It will aept timed traes de�ned on the set P = fp

�

j � 2

Cl(�)g.

Cloks: It uses the loks C = fx

p

�

j⊳
�

� 2 Cl(�)g [ fy

p

�

j⊲
�

� 2

Cl(�)g.

Loations: The loations L of A

�

are the atoms of Cl(�), requirement

denoted (L) in what follows.

Start loations: The start loations L

0

are the atoms � suh that: (S1)

� 2 � and (S2) for all formula ⊖� 2 Cl(�), :⊖ � 2 �.

Let us now see how to de�ne the edges of the automaton A

�

. First we

examine when two loations must be linked by an edge. After we onsider

the labels that deorate edges. The formulas

e

� and ⊖� of Cl(�) are used to

formulate the onnetion requirement of the automaton A

�

.

e

� 2 l

1

means

that from the loation l

1

all suÆxes respet p

�

in their seond observation, or

equivalently that from all loations l

2

that are onneted to l

1

, the aepted

suÆxes are suÆxes where p

�

is true at the �rst observation. Symmetrially

for ⊖-formulas. As the suÆxes starting from a loation l

1

must satisfy the

propositions assoiated with the set of formulas that belong to atom l

1

then

the propositional labels are simply the propositions that are related to the

formulas of l

1

. To ensure the semantis of real-time formula, we simply use

the history and prophey loks. If ⊲
�

� 2 l then all edges that start from

l are labelled by the onstraint y

p

�

�  that ensures the real-time rule (H8)

of timed Hintikka sequenes. The situation is similar for history formulas.

We an now formulate more rigorously the edges of the automaton.
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Edges: in A

�

, the loation l

1

2 L is onneted by an edge to the loation

l

2

2 L, i.e. (l

1

; l

2

; s;  ) 2 E i� the following requirements are satis�ed:

(E1) For every

e

� 2 Cl(�):

e

� 2 l

1

i� � 2 l

2

;

(E2) For every ⊖� 2 Cl(�): � 2 l

1

i� ⊖� 2 l
2

;

(E3) s = fp

�

j � 2 l

1

g (propositional edge labelling funtion);

(E4)  =

V

fx

p

�

� j ⊳
�

� 2 l

1

g

V

fy

p

�

� j ⊲
�

� 2 l

1

g

V

f:(x

p

�

�

)j:(⊳
�

�) 2 l

1

g

V

f:(y

p

�

� )j:(⊲
�

�) 2 l

1

g (real-time edge la-

belling funtion).

At this stage we have only de�ned neessary onditions for the formula

automaton A

�

to aept timed traes that are timed Hintikka sequenes �.

We still have to ensure the ful�llment of fatalities. Let us examine how to

ope with the ful�llment of fatalities indued by a formula of the form �

1

U�

2

.

The semantis of the formula �

1

U�

2

expresses that the formula �

1

must stay

true until a �

2

state is eventually reahed. In our ase, p

�

2

is a fatality

in the sense that in all timed Hintikka sequenes, a p

�

1

U�

2

observation is

always followed by some p

�

2

observation. The ful�llment of fatalities an be

ensured by the mehanism of aeptane of B�uhi automata and relies on

the following lemma adapted from [MP95℄:

Lemma 1 Let � be a timed Hintikka sequene of the EventClokTA formula

� and p

�

1

U�

2

a proposition promising p

�

2

. Then, � ontains in�nitely many

positions j � 0 suh that:

p

:(�

1

U�

2

)

2 �

j

or p

�

2

2 �

j

Proof. Let us �rst make the hypothesis that � ontains in�nitely many

p

�

1

U�

2

-positions. By requirement (H6) of timed Hintikka sequenes, eah of

those positions is followed by a p

�

2

-position and thus there also exists an

in�nite number of p

�

2

-positions.

If we make the hypothesis that � ontains only �nitely many p

�

1

U�

2

-

positions then by requirement (H2) there are in�nitely many positions j

s.t. p

:(�

1

U�

2

)

2 �

j

and thus the theorem is veri�ed. �

We say that a omputation of A

�

ful�lls the fatalities of a formula � i� for

every formula � 2 Cl(�) promising a formula �

2

, the omputation ontains

in�nitely many :� loations or �

2

loations. To restrit the aepted om-

putation of A

�

to omputations that ful�ll the fatalities of �, we use the

mehanism of aepting sets.

Aepting sets: F = fflj:(�

1

U�

2

) 2 l or �

2

2 lg j�

1

U�

2

2 Cl(�)g. The

aepting sets are hosen to ensure the fatalities.
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This de�nition ompletes the proedure for onstruting the automaton A

�

.

Now, let us prove that our onstrution is orret:

Theorem 2 The set of timed traes aepted by the EventClokTA A

�

is

exatly the set of timed Hintikka sequenes of formula �.

Proof. First, let us show that if � is a timed Hintikka sequene of the

rEventClokTL formula � then � 2 L(A

�

). Let us onstrut a omputation

 = l

0

e

0

�! l

1

e

1

�! : : : of A

�

on �. Take l

i

= f�jp

�

2 �

i

g for eah i � 0. Let

us �rst note that by requirement (H2) and (H3) of the de�nition of timed

Hintikka sequenes, eah l

i

is propositionally onsistent and omplete. Thus

eah l

i

is an atom and by (L) a loation of A

�

;

(C1)  respets the initiality requirement of omputation: by requirement

(H1) of the de�nition of timed Hintikka sequene, p

�

2 �

0

and thus

� 2 l

0

, further, by (H5), we know that for all ⊖� 2 Cl(�), p

��

62 �

0

and thus : ⊖ � 2 l

0

. Thus the onditions (S1) and (S2) are veri�ed

and l

0

2 L

0

;

(C2)  respets the onseution requirement: by points (H4) and (H5) of the

de�nition of timed Hintikka sequenes, we know that p

e

�

2 �

i

i� p

�

2

�

i+1

whih transposes to  as

e

� 2 l

i

i� � 2 l

i+1

. A similar reasoning

an be applied to the past (⊖-operators) and thus the onseution

requirement is respeted;

(C3)  respets the timing requirement: if the onstraint y

p

�

�  ap-

pears in the onjuntion  

i

at position i of , we must show that

Val

y

p

�

(��; �� ; i) � . If y

p

�

�  appears on  

i

then ⊲
�

� 2 l

i

and by

de�nition of the labelling funtion, we have p

B

�

�

2 �

i

. By (H8), we

have that there exists a position j > i in �� suh that p

�

2 �

j

, �

j

��

i

� 

and for all k, i < k < j, p

�

62 �

k

. This is exatly what we wanted. A

similar reasoning apply to other ases.

(C4)  is adequate: diret onsequene of the de�nition of the labelling

funtion (E3);

(C5)  respets the aeptane ondition: by (H4), every observation �

i

s.t.

p

�

1

U�

2

2 �

i

, is followed by an observation �

j

(j � i) s.t. p

�

2

2 �

j

.

By onstrution of  and the edge labelling funtion, we have that

every loation l

i

s.t. �

1

U�

2

2 l

i

is followed by a loation l

j

(j � i) s.t.

�

2

2 l

j

. Thus for every formula �

1

U�

2

2 Cl(�),  ontains in�nitely

many loations that either ontain �

2

(if there are in�nitely many

loations that ontain �

1

U�

2

) or there are in�nitely many loations

that do not ontain �

1

U�

2

and thus the generalized B�uhi ondition

is veri�ed by .
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Seond, we show that if � 2 L(A

�

) then � is a timed Hintikka sequene

of �. To prove that diretion, we show that for all positions i in � every

ondition of the de�nition of timed Hintikka sequenes is veri�ed. We assume

 = l

0

e

0

�! l

1

e

1

�! : : : of A

�

on � as above.

(H1) As  is a omputation of A

�

,  respets the initiality requirement (C1),

i.e. l

0

2 L

0

, and thus by (S1), � 2 l

0

. The propositional labelling

funtion of A

�

is adequate (C4), so that p

�

2 �

0

and thus requirement

(H1) is veri�ed.

(H2) Let us �rst show that if p

�

2 �

i

where � = :�

1

, then p

�

1

62 �

i

. By the

de�nition of the edge labelling funtion (E3), adequay requirement

of omputation (C4), we know that :�

1

2 l

i

. By requirement (A1)

of atoms, �

1

62 l

i

whih implies by de�nition of the propositional edge

labelling funtion of A

�

(E3) and by the adequay requirement of

omputation (C4) that p

�

1

62 �

i

. If p

�

2 �

i

where � = �

1

, then

p

:�

1

62 �

i

is established by a similar reasoning. Requirement (H2) is

thus veri�ed.

(H3) Let p

�

2 �

i

where � = �

1

_ �

2

. By onstrution of , this means

�

1

_ �

2

2 l

i

. By requirement (A2) of atoms, this means either �

1

2 l

i

or �

2

2 l

i

. By de�nition of the propositional labelling funtion (E3),

this means either p

�

1

2 s

i

or p

�

2

2 s

i

where s

i

is the propositional

labelling of edge e

i

. Thus p

�

1

2 �

i

or p

�

2

2 �

i

.

(H4) We have to show that p

e

�

1

2 �

i

i� p

�

1

2 �

i+1

. p

e

�

1

2 �

i

, by (E3) and

(C4), means that

e

�

1

2 l

i

. By the onseution requirement (C2) and

(E1), this is �

1

2 l

i+1

. Finally, by (E3) and (C4), we obtain p

�

1

2 �

i+1

.

The other diretion is similar.

(H5) This ase is similar to the previous one and is left to the reader.

(H6) We �rst show that if p

�

2 �

i

where � = �

1

U�

2

then there exists a

position j, j � i s.t. p

�

2

2 �

j

and for all positions k, i � k < j,

p

�

1

2 �

k

. First, we show that j exists. By ontradition, onsider the

hypothesis that there does not exists a �rst l

j

s.t. �

2

2 l

j

with i � j.

But in that ase, we have :�

2

2 l

k

for all i � k. As �

1

U�

2

2 l

i

, a

indutive reasoning similar to the next one allows us to onlude that

�

1

U�

2

2 l

k

for all i � k. Thus,  would not be aepting, ontraditing

the de�nition of . So we an take the �rst suh j. By de�nition of

, (E3) and (C4), �

1

U�

2

2 l

i

. We note l

j

with j � i, the �rst loation

after l

i

in  suh that �

2

2 l

j

. Sine we have taken the �rst j, for all

k, i � k < j, �

2

62 l

k

. Let us show that �

1

2 l

k

and �

1

U�

2

2 l

k+1

for

eah of those k. We reason by indution:

{ Base ase: k = i < j, as �

1

U�

2

2 l

i

and �

2

62 l

i

, the requirement

(A3) of atoms allow us to onlude that �

1

2 l

i

and �

1

U�

2

2 l

i+1

.
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{ Indution ase: by indutive hypothesis we have �

1

2 l

l

and

�

1

U�

2

2 l

l+1

, for all l s.t. i � l < k < j, let us show that we

have that �

1

2 l

k

and �

1

U�

2

2 l

k+1

. As �

1

U�

2

2 l

k

and �

2

62 �

k

as k < j, the onnetion requirement (E1) and the requirement

(A3) of atoms allow us to onlude �

1

2 l

k

and �

1

U�

2

2 l

k+1

.

So we have shown that �

1

2 l

k

for all k s.t. i � k < j and by hypothesis

�

2

2 l

j

. By the de�nition of the propositional edge labelling funtion

(E3) and adequay (C4), p

�

1

2 �

k

for all k s.t. i � k < j and p

�

2

2 �

j

.

We onsider now the other diretion: let us make the hypothesis that

there exists j � i s.t. p

�

2

2 �

j

and for all k, i � k < j, p

�

1

2 �

k

then

we must establish that p

�

1

U�

2

2 �

i

. Again, we an use the �rst suh

j. From that, let us show that for all k, i � k � j, p

�

1

U�

2

2 �

k

. We

reason by indution.

{ Base ase: k = j. As �

2

2 l

j

, we have, by (E3), (C4) and

requirement (A3) of atoms, we have �

1

U�

2

2 l

j

and thus p

�

1

U�

2

2

�

j

.

{ Indution ase: by indution hypothesis, we have that for all m,

i < k � m � j, p

�

1

U�

2

2 �

m

. Let us show that p

�

1

U�

2

2 �

k�1

.

We know that p

�

1

U�

2

2 �

k

, p

�

1

2 �

k�1

and p

�

2

62 �

k

. By (E3)

and (C4), we have

e

(�

1

U�

2

); �

1

2 l

k�1

. By requirement (A3) of

atoms, we obtain �

1

U�

2

2 l

k�1

and thus p

�

1

U�

2

2 �

k�1

by (E3)

and (C4).

(H7) This ase is similar to the previous one and is left to the reader.

(H8) First let us prove that if p

�

2 �

i

where � =⊲
�

�

1

then there exists

a position j suh that j > i and p

�

1

2 �

j

, �

j

� �

i

�  and for all

k, i < k < j, p

�

1

62 �

k

. By de�nition of  and (E3), we know that

⊲
�

�

1

2 l

i

. By de�nition of the real-time edge labelling funtion,

we know that  

i

is of the form y

p

�

1

�  ^  

0

i

and thus by the timing

requirement of omputation (C3): (�; i) j= y

p

�

1

�  whih implies

exatly what we had to prove.

Now let us show that if there exists a position j suh that j > i

and p

�

1

2 �

j

, �

j

� �

i

�  and for all k, i < k < j, p

�

1

62 �

k

then

p

B

�

�

1

2 �

i

. Let us make the hypothesis that p

B

�

�

1

62 �

i

. Then

⊲
�

�

1

62 l

i

and thus, by atom propositional ompleteness (A1), : ⊲
�

�

1

2 l

i

. By the real-time labelling funtion,  

i

=  

0

i

^:(y

p

�

1

� ) whih

by the semantis of prophey lok onstraint ontradits that  is a

omputation of A

�

. Thus p

B

�

�

1

2 �

i

.

(H9) This ase is similar to the previous one and is left to the reader.

�
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Corollary 1 The rEventClokTL formula � is satis�able i� the language

aepted by the EventClokTA A

�

is not empty.

Proof. Diret onsequene of proposition 1 and theorem 2. �

The usual next step is to show that we an restrit the symbols on edges

of A

�

to propositions. However, for EventClokTA, this works only for non-

reursive formulas. Let A

�

\ P be as A

�

, but with edges labelled with

proposition symbols only: s = fp

�

j� 2 l

1

^ � 2 Pg.

Corollary 2 The models of a non-reursive rEventClokTL formula � form

the language aepted by the EventClokTA A

�

\ P.

To have a deision proedure for our rEventClokTL logi, it remains us to

show how the emptiness of EventClokTA an be deided. The priniples of

the region onstrution [AD94℄ whih transforms a timed automaton into an

untimed �nite state mahine an be applied to EventClokTA automata. The

idea is to onstrut a �nite state mahine that aepts Untimed(L(A

�

)), i.e.

f��j(��; �� ) 2 L(A

�

)g. The results presented here are adapted from [AD94,

AFH94℄ and are realled to allow the reader, not familiar with real-time

automata, to fully understand the deision proedure.

De�nition 15 An extended state of an EventClokTA A =

(L;L

0

;P;C; E;F) is a pair (l; �) where l 2 L is a loation and

� : C ! R
+

[ f?g, is a lok valuation whih assoiates a value of

R
+

[ f?g to eah lok z 2 C of the automaton.

The following de�nition formalizes the e�et of time passing on valua-

tions of loks:

De�nition 16 (� + t) The lok valuation �

0

obtained from the lok val-

uation � by letting time elapse during t, denoted �+ t, is de�ned as follows:

� For all prophey loks y 2 P: (� + t)(y) = �(y) � t if �(y) � t � 0;

otherwise � + t is not de�ned.

� For all history loks x 2 H : (� + t)(x) = �(x) + t

with the addition + and subtration � interpreted as usual in the real

numbers and as follows for the speial value ?: ?+ t = ?,?� t = ?.

The number of extended states is unountable, as we model time by

the nonnegative real numbers (R
+

). But to evaluate real-time onstraints

labelling edges of EventClokTA, only the integer value of loks and whether

their frational part is zero is needed. Also, to know whih loks will

�rst hange their integer value, we only need to know the order between

the frational parts of the lok values. Next we reall the de�nition of
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an equivalene relation between valuations based on those two remarks.

This equivalene relation partitions the valuations into a �nite number of

equivalene lasses alled regions. Two states in the same region will behave

similarly.

De�nition 17 [AD94, AFH94℄ Two lok valuations �

1

; �

2

are in the same

region, denoted �

1

� �

2

, for an automaton A = (L;L

0

;P;C; E;F) i� the

following onditions are respeted:

� �

1

and �

2

agree on whih loks have the unde�ned value ?. Those

loks are alled unde�ned. The set of loks unde�ned in valuation �

is denoted Unde�ned(�). The other loks are alled ative. The set

of loks ative in valuation � is denoted Ative(�).

� �

1

and �

2

agree on the integral part of all ative loks that are at

most , where  is the biggest onstant appearing in the the real-time

onstraints deorating the edges of A:

{ 8z 2 Ative(�

1

), if �

1

(z) �  or �

2

(z) �  then b�

1

(z) = b�

2

(z)

� �

1

and �

2

agree on the ordering of the frational part of all ative

loks that are at most :

{ for a prophey lok y, let h�

1

(y)i be �

1

(y) � b�

1

(y) and for a

history variable x let h�

1

(x)i be d�

1

(x)e � �

1

(x). For all z

1

; z

2

2

Ative(�

1

) with �

1

(z

1

) �  and �

1

(z

2

) �  :

� h�

1

(z

1

)i = 0 i� h�

2

(z

1

)i = 0

� h�

1

(z

1

)i � h�

1

(z

2

)i i� h�

2

(z

1

)i � h�

2

(z

2

)i

A lok region is an equivalene lass of �. Two extended states

(l

1

; �

1

); (l

2

; �

2

) are region-equivalent if l

1

= l

2

and �

1

� �

2

. Note that �

is of �nite index.

Let us now de�ne when a lok region �

2

is the time suessor of another

lok region �

1

.

De�nition 18 A lok region �

2

is a time suessor of a lok region �

1

,

denoted �

2

2 TS(�

1

), i� 8�

1

2 �

1

, 9t 2 R
+

suh that �

1

+ t 2 �

2

.

Next, we de�ne a B�uhi automaton with �-moves, alled the region au-

tomaton of A, denoted R(A) that aepts exatly Untimed(L(A)). The

�-moves will be used to model time passing, i.e. transitions between lok

regions.

De�nition 19 The region automaton of A = (L;L

0

;P;C; E;F) is the

B�uhi automaton R(A) = (L

r

; L

r

0

;�

r

; E

r

;F

r

) where:
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� L

r

is the set of regions, i.e. 3-tuple (l; �; �) with l 2 L, � an equivalene

lass of lok interpretations and � 2 ft; dg. With �, loations are

partitioned

3

;

� L

r

0

is the subset of loations (l; �; �) 2 L where l 2 L

0

, 8x 2 H; �(x) =

?, � = t. Initially all history loks are unde�ned.

� �

r

= 2

P

[ f�g;

� E

r

is the set of triples ((l

1

; �

1

; �

1

); (l

2

; �

2

; �

2

); s) suh that

{ if s 2 2

P

, �

1

= t and �

2

= d meaning that the last transition

of the automaton was a time transition and now the automaton

takes a disrete transition, and there is an edge (l

1

; l

2

; s;  ) in

automaton A and a lok region �

3

suh that:

� �

1

= �

3

[y

p

:= 0jp 2 s℄ (�

1

agrees with �

3

on all loks exept

prophey loks assoiated with propositions that appear in

s; those loks have the value 0 in �

1

);

� �

2

= �

3

[x

p

:= 0jp 2 s℄ (�

2

agrees with �

3

on all loks exept

history loks assoiated with propositions that appear in s;

those loks have the value 0 in �

2

);

� 8� 2 �

3

; � j=  : the value of loks when rossing the edge

are onsistent with the real-time onstraint  .

{ if s = �, �

1

= d and �

2

= t meaning that the last transition of

the automaton was a disrete transition, and now the move is a

time move: �

2

2 TS(�

1

) (the region �

2

is a time suessor of the

region �

1

) and l

1

= l

2

;

� F

r

= fF

0

1

; : : : ; F

0

n

g [ fF

x

p

�

j ⊳
�

� 2 Cl(�)g [ fF

y

p

�

j ⊲
�

� 2 Cl(�)g;

where:

{ for all i, F

0

i

= f(l; �; �)jl 2 F

i

g. So eah F

0

i

is a set of regions

omposed of an aepting loation for F

i

of A and a lok region

�;

{ F

x

p

�

= f(l; �; �)j�(x

p

�

) = 0 _ �(x

p

�

) >  _ �(x

p

�

) = ?;8� 2 �g

is the set of regions where the history lok x

p

�

is greater than

the maximal onstant , equal to zero or unde�ned. This ensures

that either x

p

�

is reset in�nitely often, always unde�ned or its

value goes beyond any bounds. This is imposed by the progress

of time requirement of timed traes and the semantis of history

loks.

3

This partition of the loations allows us to fore the region automaton to take in�nitely

many disrete jumps orresponding to the in�nitely many observations of a trae.
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{ F

y

p

�

= f(l; �; �)j�(y

p

�

) = 0 _ �(y

p

�

) = ?;8� 2 �g is the set

of regions where the prophey lok y

p

�

has the value 0 or is

unde�ned. These sets are neessary to ensure the progress of

time. In fat, if a prophey lok is not unde�ned, as time always

progresses, the lok must inevitably attain the value 0.

The language of R(A) is the set of in�nite traes orresponding to aepted

runs of R(A). The following theorem states the orretness of the region

automaton.

Theorem 3 [AFH94℄ The language of R(A) is Untimed(L(A)).

Corollary 3 The timed language of A is empty i� the language of R(A) is

empty.

The theorem 2 and orollary 3 give us the possibility to deide the model-

heking as well as the satis�ability/validity problems for rEventClokTL.

Theorem 4 The satis�ability and validity problems for rEventClokTL are

deidable.

Proof. The satis�ability of an rEventClokTL formula � an be deided by

onstruting A

�

, the automaton for � and testing if L(A

�

) 6= ;. Similarly

the validity of an an rEventClokTL formula � an be deided by onstruting

A

:�

, the automaton for the negation of � and testing if L(A

:�

) = ;. �

The model-heking problem for real-time reative systems onsists in veri-

fying that the timed traes de�ned by a produt of timed automata respet

a property expressed in a real-time logi, i.e. L(A

1

� � � � � A

n

) � L(�).

Note that L(A

1

� � � � � A

n

) � L(�) i� L(A

1

� � � � � A

n

) \ L(:�) = ; i�

L(A

1

� � � � � A

n

� A

:�

) = ;. This gives us a deision proedure for the

model-heking problem: ompute A

:�

, the automaton for the negation of

�, test if the produt of this automaton with the timed automata has a

empty timed language. This gives the following theorem.

Theorem 5 The real-time model heking problem for rEventClokTL is de-

idable.

The proedure that we propose for deiding rEventClokTL onstruts

�rst an EventClokTA whih is transformed into an untimed automaton, the

region automaton, for heking emptiness. The following lemma and the-

orem haraterize the size of the onstruted automata for a given rEvent-

ClokTL formula �:

Theorem 6 [AFH94℄ The region equivalene � de�ned on the extended

states of an EventClokTA A is of �nite index. The number of loations in
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region automaton of an EventClokTA A is O(l � 2

m�log �m

), where l is the

number of loations in A, m is the number of loks in A and  is the largest

onstant appearing in A.

The emptiness of the region automaton an be tested without onstrut-

ing it ompletely:

Lemma 2 [SVW85℄ The nonemptiness problem for B�uhi automata is

NLogSpae-Complete.

>From theorem 6 and lemma 2 we obtain:

Lemma 3 (PSpae-Easiness) The satis�ability and validity problem for

rEventClokTL in pointwise semantis are PSpae-Easy.

Proof. First, the size for eah formula � 2 rEventClokTL is de�ned by the

three following elements:

1. the number of subformulas in � (bounded by j�j);

2. the maximal integer onstant K used in a real-time operator within �

(bounded by 2

j�j

);

3. the number of real-time subformulas in � (bounded by j�j).

By observing how A

�

is onstruted, it is diret to show that its size is as

follows:

� the number of loations in A

�

is exponential in the number of subfor-

mulas in �;

� the maximal integer onstant used by A

�

in lok onstraints is equal

to the maximal integer onstant K used by � within real-time opera-

tors;

� the number of loks used by A

�

is bounded by the number of real-time

subformulas in �.

By lemma 6, we an onstrut the region automaton R

A

�

whih is a B�uhi

automaton with a number of loations:

� linear in the number of loations of A

�

, and thus singly exponential in

the number of subformulas of �;

� singly exponential in the number of loks used by A

�

and thus singly

exponential in the number of real-time operators of �;

� singly exponential in the maximal onstant used by A

�

and thus singly

exponential in the maximal onstant K used in �.
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Using a nondeterministi version for the emptiness of R

A

�

, this exponential

automaton needs not be onstruted expliitly and we obtain a PSpae

proedure for the satis�ability and validity problems of rEventClokTL. �

Lemma 4 (PSpae-Hardness) The satis�ability and validity problems

for rEventClokTL in pointwise semantis are PSpae-Hard.

Proof. The hardness follows diretly from the fat that the logi LTL is

ontained in rEventClokTL and has been shown Pspae-hard in [CES86℄.

�

As a onsequene, the omplexity of the satis�ability problem and the

validity problem of rEventClokTL are in Pspae.

Theorem 7 The satis�ability and validity problems for rEventClokTL are

Pspae-omplete.

6 Expressiveness

In this setion, we study the expressive power of rEventClokTL in pointwise

timed traes. The results di�er when the logi is evaluated in ontinuous

timed traes (i.e. timed state sequenes), see Appendix. First, we ompare

its expressive power with respet to MetriIntervalTL; then, with respet to

EventClokTA.

6.1 rEventClokTL vs MetriIntervalTL

In this subsetion, we ompare the expressiveness of the logi rEventClokTL

with the expressiveness of the logi MetriIntervalTL. We �rst reall the def-

inition of the syntax and the semantis of the logi MetriIntervalTL.

De�nition 20 (MetriIntervalTL-syntax) A formula of MetriIntervalTL is

built from proposition symbols, boolean onnetives, and time-bounded \un-

til" and \sine" operators:

� ::= p j �

1

^ �

2

j :� j �

1

b

U

I

�

2

j �

1

b

S

I

�

2

where p is a proposition and I is a nonsingular interval whose �nite end-

points are nonnegative integers, and that does not ontain 0. �

In the sequel, we will be interested in fragments of MetriIntervalTL:

De�nition 21 (MetriIntervalTL

0;1

-fragment) The formulas of the frag-

ment MetriIntervalTL

0;1

are de�ned as above, exept that the interval I

must either have the left endpoint 0, or be unbounded; in these ases I

an be replaed by an expression of the form � , for a nonnegative integer

onstant  and �2 f<;�;�; >g. �
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De�nition 22 (MetriIntervalTL

F

-fragment) The formulas of the frag-

ment MetriIntervalTL

F

are de�ned as for MetriIntervalTL, exept that

b

U

I

is the only real-time operator.

We now de�ne the semantis of those logis.

De�nition 23 The MetriIntervalTL formula � holds in position i 2 N of

the timed trae � = (��; �� ), denoted (�; i) j= �, aording to the following

de�nition:

(�; i) j= p i� p 2 �

i

;

(�; i) j= :� i� (�; i) 6j= �;

(�; i) j= �

1

^ �

2

i� (�; i) j= �

1

and (�; i) j= �

2

;

(�; i) j= �

1

b

U

I

�

2

i� there exists j > i suh that (�; j) j= �

2

,

�

j

��

i

2 I and for all k with i < k < j, we have (�; k) j= �

1

4

;

(�; i) j= �

1

b

S

I

�

2

i� there exists j, 0 � j < i, suh that (�; j) j= �

2

,

�

j

� �

i

2 I and for all k with j < k < i, we have (�; k) j= �

1

;

TheMetriIntervalTL formula � de�nes the timed !-language L(�) that on-

tains all timed state sequenes � with (�; 0) j= �.

We also use the following lassial abbreviations:

� When the real-time onstraint is omitted, it is the most permissive:

�

b

U �  _ �

b

U

(0;1)

 ;

� We an use onstraints instead of intervals:

�

b

U

�

 �  _ �

b

U

I

 , where I = fr 2 Rjr > 0 ^ r � g;

� We an extend intervals to inlude 0, by making

b

U reexive:

�

b

U

f0g[I

 �  _ �

b

U

I

 ;

�

b♦
I

� � >

b

U

I

�, meaning \eventually within I";

�

b�
I

� � :

b♦
I

:�, meaning \always during I";

� and their past ounterparts:

b♦�
I

� � >

b

S

I

�,

b⊟
I

� � :

b♦�
I

:�;

� In lemma 7 we will see that all rEventClokTL operators an be de�ned

as abbreviations.

We now ompare the expressive power of the two logis. We will show

that they di�er on the in�nite set of timed traes �:

De�nition 24 The (in�nite) set of timed traes � =

f�

1

; �

1

; �

2

; : : : ; �

n

; : : : g ontains the following traes de�ned on the

set of propositions P = fpg:

4

Note that the operator

b

U

I

is irreexive.
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1. eah �

k

2 � ontains the same qualitative information: �

k

= (��; ��

k

)

is suh that for all position i 2 N, �
i

= fpg; that is, p is true in every

position of every timed trae of �.

2. the timed traes of � have the following timing information:

(a) for �

1

, the timing information ��

1

= �

1

0

�

1

1

: : : �

1

n

: : : is �

1

i

=

i� 1:5; that is, an observation eah 1:5 time units;

(b) for �

k

, with k 2 f1; 2; : : : ; n; : : : g, the timing information ��

k

=

�

k

0

�

k

1

: : : �

k

n

: : : is

�

k

i

=

�

i� 1:5 if i 6= k

i� 1:5� 0:1 if i = k

that is, in �

k

, there is an irregular k

th

observation whih is sepa-

rated from the k � 1

th

by 1.4 time units and from the k + 1

th

by

1.6 time units.

Let us note that for every position i 2 N, in a timed trae � = (��; ��) 2

�, �

i+1

� �

i

2 (1; 2). That is, the time di�erene between two onse-

utive observations is between 1 and 2 time units, in fat it is either

equal to 1.4, 1.5 or 1.6.

�

Example 4 Here are two examples of pre�xes of traes from the set �:

� a pre�x of �

1

:

(fpg; 0)(fpg; 1:5)(fpg; 3)(fpg; 4:5)(fpg; 6)(fpg; 7:5) : : :

� a pre�x of �

3

:

(fpg; 0)(fpg; 1:5)(fpg; 3)(fpg; 4:4)(fpg; 6)(fpg; 7:5) : : :

so the observation number 3 is at 4.4 instead of 4.5 as it is in �

1

.

In the next lemma, we show that the future fragment of MetriIntervalTL

an distinguish �

1

from the other timed traes of �. The idea is that the

position i is always separated for the position i + 2 by 3 time units in �

1

while it is not the ase in �

k

, where the k

th

position is separated by 3.1 time

units from the position k+2. We now show that a simple MetriIntervalTL

F

formula an detet this fat.

Lemma 5  �

b�
(0;1)

(p !

b♦
[2;3℄

p) 2 MetriIntervalTL

F

is suh that

(�

1

; 0) j=  and for all k � 1, (�

k

; 0) 6j=  .
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Proof. Every position i in �

1

is separated by exatly 3 time units from the

position i + 2. As p is true everywhere, p !

b♦
[2;3℄

p holds in every position

of �

1

and thus by the semantis of the

b�
(0;1)

-operator, (�

1

; 0) j=  . On

the other hand, the k

th

position of �

k

is not followed by any position in

�

k

k

+ [2; 3℄ as the (k + 1)

th

position is at time �

k

k

+ 1:6 and the (k + 2)

th

position is at time �

k

k

+3:1. Thus p!

b♦
[2;3℄

p is false in position k of �

k

and

thus (�

k

; 0) 6j=  . �

We now show that the future fragment of rEventClokTL annot distin-

guish between timed traes of �. This is a onsequene of the following

stronger lemma:

Lemma 6 For every formula � 2 rEventClokTL

F

, for every two timed

traes �

1

; �

2

2 �, for every two positions i; j suh that 0 � i < j: (�

1

; i) j= �

i� (�

2

; i) j= � i� (�

1

; j) j= � i� (�

2

; j) j= �. That is, every formula of

rEventClokTL is either onstantly true in all timed traes of � or onstantly

false in all timed traes of �.

Proof. The proof is by indution on the struture of formula.

� � = p: as p is true in every position of every timed trae of �, the

base ase is veri�ed.

� � =⊲
�

�

1

: By indution hypothesis, we know that either:

1. �

1

is true in all positions of all timed traes of �: Thus for every

position i, the �rst following �

1

is in i + 1 and by de�nition of

�, �

i+1

� �

i

2 (1; 2) in the two timed traes. Thus ⊲
�

�

1

is

onstantly true if (1; 2) � fv 2 R
+

j v � g, and onstantly false

otherwise.

2. �

1

is false in all positions of all timed traes of �: So there does

not exists a (�rst) following �

1

position, and ⊲
�

�

1

is onstantly

false.

� The other ases are left to the reader.

�

A diret onsequene of the lemma 6 is that rEventClokTL

F

annot

distinguish �

1

from other models of �:

Corollary 4 For every formula  2 rEventClokTL

F

, for every k � 1,

�

1

2 L( ) i� �

k

2 L( ).

And rEventClokTL

F

is less expressive than MetriIntervalTL

F

:

Theorem 8 MetriIntervalTL

F

6� rEventClokTL

F

.
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Proof. By orollary 4, we know that for every formula � 2 rEventClokTL

F

,

L(�) ontains � or has an empty intersetion with �. On the other hand,

the formula  �

b�(p ! b♦
[2;3℄

p) of MetriIntervalTL

F

is satis�ed by �

1

but

by none of the timed traes �

k

2 �. It means that L( ) \ � 6= ; but

� 6� L( ). Thus rEventClokTL

F

annot express the property expressed by

 . �

Let us now take a look at the other diretion of the inlusion: \is every

rEventClokTL

F

-expressible property also expressible inMetriIntervalTL

F

?"

To answer this question, we provide a translation �

T

, de�ned by indution:

� � = p: �

T

= p.

� � = �

1

_ �

2

: �

T

= �

T

1

_ �

T

2

.

� � = :�

1

: �

T

= :�

T

1

.

� � =

e

�

1

: �

T

= ?

b

U

(0;1)

�

T

1

.

� � = ⊖�
1

: �

T

= ?

b

S

(0;1)

�

T

1

.

� � = �

1

U�

2

: �

T

= �

T

2

_ (�

T

1

^ (�

T

1

b

U

(0;1)

�

T

2

)).

� � = �

1

S�

2

: Symmetrially, �

T

= �

T

2

_ (�

T

1

^ (�

T

1

b

S

(0;1)

�

T

2

)).

� � =⊲
I

�

1

: �

T

= >

b

U

# I

�

T

1

^:(>

b

U

<I

�

T

1

), where # I is the real interval

ft > 0 j 9t

0

2 I : t � t

0

g and < I is the real interval ft > 0 j 8t

0

2 I :

t < t

0

g.

� � =⊳
I

�

1

: Symmetrially, �

T

= >

b

S

# I

�

T

1

^ :(>

b

S

<I

�

T

1

).

Lemma 7 For every formula � of rEventClokTL, �

T

2 MetriIntervalTL

0;1

has the same meaning: for every timed trae �, for every position i: (�; i) j=

� i� (�; i) j= �

T

. Furthermore, this translation respets future fragments: if

� 2 rEventClokTL

F

; �

T

2 MetriIntervalTL

F

0;1

.

As a onsequene we have the following theorem:

Theorem 9 The logi MetriIntervalTL

0;1

is at least as expressive

as rEventClokTL, rEventClokTL � MetriIntervalTL

0;1

and thus

rEventClokTL � MetriIntervalTL.

In the theorem 8, we have shown that the inlusion rEventClokTL

F

�

MetriIntervalTL

F

is strit. Is this inlusion also strit for the full

rEventClokTL logi? Before answering this question, let us �rst note that

adding past operators to rEventClokTL

F

adds expressive power. In fat,

let us onsider the timed trae �

k

, with k even (so that k � 1:5 is a natural

number), and the rEventClokTL formula
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k

�

e

: : :

e

| {z }

k

⊳
=k�1:5

:⊖>

where :⊖> is only true at the initial position of �

k

and thus  

k

expresses,

in this initial position, that \the k

th

position of �

k

has the timing k � 1:5".

Whih is false by de�nition of �

k

. On the other hand, this property is true in

the initial position of �

1

and thus the formula  

k

an distinguish between

�

k

and �

1

. Thus, adding past operators to rEventClokTL

F

inreases the

expressive power of the logi:

Theorem 10 The logi rEventClokTL is stritly more expressive than its

future fragment rEventClokTL

F

: rEventClokTL

F

� rEventClokTL.

Note that this phenomenon is not observed in the temporal logi LTL:

adding past operators to LTL only adds onveniene but no real expres-

sive power [GPSS80℄. For real-time logis, in ontrast, past operators add

expressive power, for instane [AH92a℄ proved that MetriIntervalTL

F

�

MetriIntervalTL, noted there MITL �MITL

P

.

The formula  

k

above explains why our simple proof that

MetriIntervalTL

F

is more expressive than rEventClokTL

F

will not work to

show that MetriIntervalTL is more expressive than rEventClokTL. But this

formula does not distinguish �

1

from �

l

with l > k. For suh a l, intuitively,

we need a bigger rEventClokTL formula, suh as  

l

. In the next lemma, we

prove that for any given formula � of rEventClokTL, there exists a bound

size(�) suh that the formula � annot distinguish between �

1

and �

k

for

k > size(�). This size, intuitively, measures how far � an look into the past

of �

1

. Formally:

De�nition 25 (Size of an rEventClokTL-formula) The size of a for-

mula � 2 rEventClokTL, denoted size(�), is de�ned reursively as follows:

� size(p) = 0;

� size(:�

1

) = size(�

1

);

� size(�

1

_ �

2

) = max(size(�

1

); size(�

2

));

� size(

e

�

1

) = size(�

1

);

� size(⊖�
1

) = 1 + size(�

1

);

� size(�

1

U�

2

) = max(size(�

1

); size(�

2

));

� size(�

1

S�

2

) = max(size(�

1

); size(�

2

));

� ⊲
�

�

1

= size(�

1

);

� ⊳
�

�

1

= d



1:5

e+ size(�

1

);

29



For the real-time operator ⊳, we use the onstant  and divide it by

1:5, beause our notion of size is designed for the timed traes of �, where

observations are separated by 1:5.

For example size(

e

:⊖>) = 1, size(⊲
=6

p) = 0 and size(⊳
=14

:⊖>) =

d

14

1:5

e+ 1 = 11, size(⊖ ⊖ ⊖p) = 3.

Lemma 8 For every formula � 2 rEventClokTL, for every model �

k

2 �

with k > size(�) then:

� P

1

(�; �

k

) = 8i

1

; i

2

� 0 � size(�) � i

1

< i

2

: (�

k

; i

1

) j= � i� (�

k

; i

2

) j= �

i� (�

1

; i

1

) j= � i� (�

1

; i

2

) j= �;

� P

2

(�; �

k

) = 8i � 0 � i < size(�): (�

k

; i) j= � i� (�

1

; i) j= �;

P

1

(�; �

k

) expresses that: for every position i

1

; i

2

after size(�), the formula �

is either onstantly true in �

k

and �

1

or onstantly false. P

2

(�; �

k

) expresses

that: for every position i before size(�), the formula � is evaluated similarly

in �

k

and �

1

(but its truth value may hange from position to position). We

note P

3

(�; �

k

) the formula 8i � 0, (�

k

; i) j= � i� (�

1

; i) j= �. Note that

P

3

(�; �

k

) is a onsequene of the onjuntion of P

1

and P

2

.

Proof. The proof is by indution on the struture of formulas.

� � = p: as p is onstantly true in all timed traes of �, then P

1

and P

2

are veri�ed for the base ase.

� The boolean ases are trivial.

� � =

e

�

1

. Note that size(�) = size(�

1

). By indution hypothesis, for

all k > size(�), P

1

(�

1

; �

k

) and P

2

(�

1

; �

k

) holds and thus P

3

(�

1

; �

k

).

1. As, by semantis of the

e

-operator, the truth value of

e

�

1

in

position i only depends on the truth value of �

1

in i + 1 and

P

1

(�

1

; �

k

) holds, we know that

e

�

1

is onstantly either true (if

�

1

is onstantly true, by P

1

and indution hypothesis) in positions

i � size(�) or onstantly false (if �

1

is onstantly false by P

1

and

indution hypothesis) in positions i � size(�), in both �

k

and �

1

and thus P

1

(�; �

k

) is veri�ed.

2. Let us now try to establish P

2

(�; �

k

). Again, we know that

P

3

(�

1

; �

k

) is a onsequene of the indution hypothesis. That is,

�

1

evaluates in the same way in every position of the two timed

traes �

k

and �

1

. By the semantis of the

e

-operator P

3

(�; �

k

)

holds and thus P

2

(�; �

k

).

� The U and S operators are treated in the same way.

� � = ⊖�
1

. Note that size(�) = 1 + size(�

1

).

30



1. Let us �rst establish P

1

(�; �

k

) for k > size(�). By indution

hypothesis, we know that P

1

(�

1

; �

k

) holds. As a onsequene, for

all positions i � size(�) � 1, �

1

has the same onstant value in

�

k

and �

1

. Thus in all positions i � size(�), ⊖�
1

has the same

onstant value in �

k

and �

1

. And thus P

1

(�; �

k

) is established.

2. Let us now turn to P

2

(�; �

k

). By indution hypothesis P

3

(�

1

; �

k

)

holds. That is, �

1

has the same truth value in �

k

and �

1

, for

every position i. As the truth value of ⊖�
1

in all positions i � 1

only depends on the truth value of �

1

and a ⊖-formula is always

false in i = 0, P

3

(�; �

k

) holds and thus P

2

(�; �

k

) holds.

� � =⊲
�

�

1

. We know that size(�) = size(�

1

).

1. We �rst establish P

1

(�; �

k

) for k > size(�). By indution hypoth-

esis, we know that either:

(a) for all position i � size(�) that (�

k

; i) j= �

1

and (�

1

; i) j=

�

1

: In this ase, for all i � size(�), the following �

1

is at a

distane of d 2 (1; 2) and thus ⊲
�

�

1

is onstantly true if

(1; 2) � fvjv � g and onstantly false otherwise, in both

timed traes �

k

and �

1

.

(b) for all position i � size(�) that (�

k

; i) 6j= �

1

and (�

1

; i) 6j= �

1

:

In that ase, for all i � size(�), there is no following �

1

position and thus ⊲
�

�

1

is onstantly false in both timed

traes �

k

and �

1

.

This establishes P

1

(�; �

k

).

2. Let us now turn to P

2

(�; �

k

). First we know that for all positions

0 � i < k, �

k

i

= �

1

i

, that is, the timing of the two timed traes

agree. We also now that �

1

has the same onstant value in the

two traes after position i = size(�) < k. Let us onsider any

position l suh that 0 � l < size(�) < k, the following �

1

must

be true in a loation m, l < m � size(�) or it will be false for

ever. In the last ase ⊲
�

�

1

is false in the two timed traes. In

the ase that �

1

is true in a position m, l < m � size(�) < k,

the formula ⊲
�

�

1

evaluates similarly in the two timed traes as

their timing information is the same for all positions i, 0 � i < k.

And thus property P

2

(�; �

k

) holds.

� � =⊳
�

�

1

. First, note that if  = 0 then ⊳
�

� is equivalent to false

as the ⊳ operator is irreexive and time is stritly monotone. Let us

onsider the ase where  > 0. Let d = d



1:5

e. Note that d � 1. We

know that size(�) = d+ size(�

1

).

1. We �rst establish P

1

. By indution hypothesis, we know that

either:
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(a) 8i : size(�) � d � i: (�

k

; i) j= �

1

and (�

1

; i) j= �

1

. For

every position j suh that size(�) � j, the last �

1

position is

j � 1 at a distane d

a

2 (1; 2). As a onsequene, for all j

suh that size(�) � j, (�

k

; j) j=⊲
�

�

1

i� (�

1

; j) j=⊲
�

�

1

i�

(1; 2) � fvjv � g; and thus � is either true in all j � size(�)

in both �

k

and �

1

or it is false in all j � size(�) in both �

k

and �

1

.

(b) 8i : size(�) � d � i: (�

k

; i) 6j= �

1

and (�

1

; i) 6j= �

1

. For every

position j suh that j � size(�), the last �

1

observation is,

if it exists, in a position i with 0 � i < size(�) � d. Thus at

a distane d

b

> d � 1:5 �  and thus ⊳
�

�

1

is veri�ed in

all positions j � size(�), both in �

k

and �

1

if \�" = \>" or

\�" and the �

1

-position exists. In all other ases, ⊳
�

�

1

is

false in all positions j � size(�), both in �

k

and �

1

.

And thus P

1

(�; �

k

) holds.

2. Let us now turn to the property P

2

. So, we want to establish

that 8i � 0 � i < size(�): (�

k

; i) j= � i� (�

1

; i) j= �. Let us �rst

note that the value of ⊳
�

�

1

in the positions i, 0 � i < size(�),

only depends on the truth value of �

1

in 0 � i < size(�) and the

timing information for �

k

and �

1

. The value of �

1

is similar in

those positions for the two models by indution hypothesis. Also

the timing information in that interval of positions is idential as

k > size(�) and thus the value of ⊳
�

�

1

is exatly the same for

eah position i, 0 � i < size(�) < k, in both �

k

and �

1

. And

thus P

2

(�; �

k

) holds.

�

Theorem 11 MetriIntervalTL is stritly more expressive than rEvent-

ClokTL: MetriIntervalTL � rEventClokTL.

Proof. By lemma 8, we know that for every formula � 2 rEventClokTL,

there exists a bound l suh that for all �

k

with k > l, �

k

2 L(�) i�

�

1

2 L(�). On the other hand, the formula  �

b�
(0;1)

(p !

b♦
[2;3℄

p) of

MetriIntervalTL is satis�ed by �

1

but by none of the timed traes �

k

2 �.

Thus rEventClokTL annot express the property expressed by  . �

Let us now show that every MetriIntervalTL

0;1

-property an be ex-

pressed by an rEventClokTL-formula. This is a onsequene of the following

stronger lemma:

Lemma 9 For every formula � 2 MetriIntervalTL

0;1

, there exists a for-

mula �

T

2 rEventClokTL suh that, for every timed trae �, for every posi-

tion i: (�; i) j= � i� (�; i) j= �

T

.
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Proof. We reason by indution on the struture of formulas. The boolean

ases are trivial. We only treat the

b

U

I

: the similar

b

S

I

is left to the reader.

First note that the following rewritings withinMetriIntervalTL

0;1

are valid:

� �

1

b

U

<

�

2

= (�

1

b

U

(0;1)

�

2

) ^

b♦
<

�

2

;

� �

1

b

U

�

�

2

= (�

1

b

U

(0;1)

�

2

) ^

b♦
�

�

2

;

Now it is easy to show that:

b♦
<

� =⊲
<

�

T

and

b♦
�

� =⊲
�

�

T

. By

de�nition of the

b�-operator, we also have:

b�
<

� = : ⊲
<

:�

T

and

b�
�

� = : ⊲
�

:�

T

. Also, we have that �

1

b

U

(0;1)

�

2

=

e

(�

T

1

U�

T

2

) and

thus every

b

U

<;�

formula an be expressed in rEventClokTL. Let us now

turn to the

b

U

>;�

ases. Here are the translations (we use

b�
<;�

in rEvent-

ClokTL formulas, sine we have shown just above that it an be translated

in \plain" rEventClokTL):

� �

1

b

U

>

�

2

=

b�
�

(�

T

1

^

e

(�

T

1

U�

T

2

)) ^

e

(�

T

1

U�

T

2

);

� �

1

b

U

�

�

2

=

b�
<

(�

T

1

^

e

(�

T

1

U�

T

2

)) ^

e

(�

T

1

U�

T

2

);

We justify the right to left impliation for

b

U

>

. Thus we must show that

if (�; i) j=

b�
�

(�

T

1

^

e

(�

T

1

U�

T

2

)) ^

e

(�

T

1

U�

T

2

) then (�; i) j= �

1

b

U

>

�

2

. Let

J = fjj�

i

< �

j

� �

i

+ g, that is, J is the set of positions after position i

that are at a time distane less or equal to  from i. We onsider two disjoint

situations:

� (a) J = ;. There is no position J > i suh that �

j

� �

i

+  then

verifying (�; i) j=

e

(�

T

1

U�

T

2

) is suÆient beause the �rst �

2

-position

will be at a distane d >  from i and between this �

2

position and

after i, �

1

is veri�ed;

� (b) J 6= ;. There is some position in the interval (�

i

; �

i

+℄, the formula

b�
�

(�

T

1

^

e

(�

T

1

U�

T

2

)) imposes that �

1

is onstantly true in the interval

(�

i

; �

i

+ ℄ and also that in the last position of that interval, let say k,

that

e

(�

T

1

U�

T

2

) is true and thus �

T

1

U�

T

2

is true in position k + 1 and

ensures that �

1

will stay true until a �

2

position is enountered at a

distane d >  from position i.

�

The lemma 9 and theorem 9 together give:

Theorem 12 The logis MetriIntervalTL

0;1

and rEventClokTL are equally

expressive, i.e. MetriIntervalTL

0;1

= rEventClokTL.

Note that the translation between formulas of one logi to the other does

not hange the size of the maximal onstant used, generates only a linear

33



number of subformulas and thus the number of real-time operators stays also

linear. Note also that the last theorem also apply for the future fragment of

the two logis as future formulas of one logi are always translated by future

formula of the other logi.

Theorem 13 The two logis MetriIntervalTL

F

0;1

and rEventClokTL

F

are

equally expressive, i.e. MetriIntervalTL

F

0;1

= rEventClokTL

F

.

Corollary 5 MetriIntervalTL is more expressive than MetriIntervalTL

0;1

:

MetriIntervalTL � MetriIntervalTL

0;1

.

Remark. In [HRS98℄, it is proved that the expressive powers of MetriInter-

valTL and rEventClokTL agree when evaluated ontinuously, i.e. on timed

state sequenes, see appendix for the de�nition of rEventClokTL in ontin-

uous models. We refer the interested reader to [HRS98℄ for details about

this interesting phenomenon.

6.2 rEventClokTL vs EventClokTA

It is well known that LTL annot express some ounting properties that are

expressible by B�uhi automata. For example, there does not exist any LTL

formula that expresses the even�p property: \p is true in all even positions

of the trae", while this property is easily expressed by an automaton. Sim-

ilarly, rEventClokTL annot express ounting properties. As EventClokTA

are an extension of B�uhi automata, and thus more expressive, we have the

following theorem:

Lemma 10 There exist EventClokTA-properties that are not expressible

into rEventClokTL, i.e. EventClokTA 6� rEventClokTL.

Let us take a look at the other diretion. Without real-time, we know

that every LTL property is expressible by B�uhi automaton. Similarly, is ev-

ery rEventClokTL-property expressible by an event lok automaton? Sur-

prisingly, the answer is negative:

Lemma 11 There exist rEventClokTL-properties that are not expressible

into EventClokTA, i.e. rEventClokTL 6� EventClokTA.

Proof. To show that not all rEventClokTL-properties are expressible with

EventClokTA, we onsider the two timed traes �

1

= (��; ��

1

) and �

2

= (��; ��

2

)

on the set of propositions P = fpg. �

1

and �

2

share the same qualita-

tive information �� = fgfpgfgfpgfpg:::fpg::: that is, p is true everywhere

exept in position 0 and 2. The timing information ��

1

of �

1

is as fol-

lows: �

1

i

= i � 1:4, i.e. all positions are separated by 1:4 time units:

��

1

= 0; 1:4; 2:8; 4:2; 5:6; 7; : : : . On the other hand the timing information

��

2

of �

2

is de�ned by:
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�

2

i

=

�

i� 1:4 if i 6= 3

i� 1:4� 0:3 if i = 3

Thus, ��

2

= 0; 1:4; 2:8; 3:9; 5:6; 7; : : : . It is easy to show that for every position

i � 0, for every onstraint x

p

� , (�

1

; i) j= x

p

�  i� (�

2

; i) j= x

p

� .

Similarly, it is easy to show that for every position i � 0, for every onstraint

y

p

� , (�

1

; i) j= y

p

�  i� (�

2

; i) j= y

p

� . That is, the onstraints about

history and prophey loks assoiated with p evaluate similarly in both

models, in all positions. This is beause lok onstraints an only use

integer onstants and, for the prophey lok y

p

:

� in position 0, the distane to the following p-position, and thus the

value of y

p

, is, in the two models, equal to 1:4 2 (1; 2);

� in position 1, this distane is equal to 2:8 2 (2; 3) in �

1

and to 2:5 2

(2; 3) in �

2

. Even if the distanes are di�erent, it annot be seen using

integer onstants;

� in position 2, this distane is equal to 1:4 2 (1; 2) in �

1

and is equal to

1:1 2 (1; 2) in �

2

. Again even if the distanes are di�erent, it annot

be seen using integer onstants;

� in position 3, this distane is equal to 1:4 2 (1; 2) in �

1

and is equal to

1:9 2 (1; 2) in �

2

. Again even if the distanes are di�erent, it annot

be seen using integer onstants;

� after position 3, the distane to the following p position is always, in

both �

1

; �

2

, equal to 1:4 2 (1; 2).

A same reasoning applies for the history lok x

p

. So every event lok

automaton A aepts �

1

if and only if it aepts �

2

. On the other hand the

reursive rEventClokTL-formula  =⊲
�4

�p is true in the initial position

of �

2

but false in the initial position of �

1

. And thus rEventClokTL an

di�erentiate between the two models. �

>From lemma 10 and lemma 11, we obtain the following theorem:

Theorem 14 The expressive power of rEventClokTL and EventClokTA are

inomparable.

This surprising theorem an be explained as follows: when moving from

EventClokTA to rEventClokTL, we have automatially added reursion, or

uniform substitution in logiian parlane: any formula an replae a propo-

sition symbol. If we remove this possibility, we obtain the expeted result

from orollary 2:
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Corollary 6 The models of a non-reursive formula is the language of an

EventClokTA: EventClokTL � EventClokTA

We an also obtain an inlusion by introduing reursion

5

in Event-

ClokTA, as desribed in [HRS98℄.

7 Conlusion

In this paper, we have presented a new real-time logi alled rEventClokTL.

This logi extends LTL with real-time operators ⊲
�

� read \the next � is

at a distane d that respets d � ", and symmetrially ⊳
�

� expressing

that \� was last true at a distane d suh that d � ". These two modal

operators introdue the lean and powerful onept of event lok, from

timed automata [AFH94℄, in the domain of real-time logis. The natural

expressive power of those two operators has been illustrated by showing that

most important real-time requirements [Koy92℄ an be straightforwardly and

naturally expressed in rEventClokTL.

We have shown that the problems of satis�ability, validity and model-

heking are deidable for this logi, more preisely Pspae-omplete, as

for LTL. We provided a simple deision proedure based on EventClokTA, a

determinizable lass of timed automata. Our deision proedure is far less

ompliated than the deision proedure of [AFH96℄ forMetriIntervalTL, the

only real-time logi that was previously known to be deidable. Our deision

proedure is obtained by extending the deision proedure for LTL in a nat-

ural way: we use the lose onnetion that exists between the two real-time

operators of rEventClokTL and the prophey and history loks of Event-

ClokTA. This naturalness helps in axiomatizing this logi, see [RSH98℄.

Corresponding monadi logis are built in [HRS98℄.

Referenes

[ACD90℄ R. Alur, C. Couroubetis, and D. Dill. Model-heking for real-

time systems. In Proeedings of the 5th Symposium on Logi in

Computer Siene, pages 414{425, Philadelphia, June 1990.

[AD94℄ R. Alur and D.L. Dill. A theory of timed automata. Theoreti-

al Computer Siene, 126:183{235, 1994. Preliminary version

appears in Pro. 17th ICALP, 1990, LNCS 443.

[AFH94℄ R. Alur, L. Fix, and T.A. Henzinger. A determinizable lass

of timed automata. In Proeedings of the Sixth Conferene on

5

Simple generalizations as the assoiation of boolean formulas with loks is not suÆ-

ient

36



Computer-Aided Veri�ation, Leture Notes in Computer Si-

ene 818, pages 1{13. Springer-Verlag, 1994.

[AFH96℄ R. Alur, T. Feder, and T.A. Henzinger. The bene�ts of relaxing

puntuality. Journal of the ACM, 43(1):116{146, 1996.

[AH92a℄ R. Alur and T.A. Henzinger. Bak to the future: towards a

theory of timed regular languages. In Proeedings of the 33rd

Annual Symposium on Foundations of Computer Siene, pages

177{186. IEEE Computer Soiety Press, 1992.

[AH92b℄ R. Alur and T.A. Henzinger. Logis and models of real time: a

survey. In J.W. de Bakker, K. Huizing, W.-P. de Roever, and

G. Rozenberg, editors, Real Time: Theory in Pratie, Leture

Notes in Computer Siene 600, pages 74{106. Springer-Verlag,

1992.

[AH93℄ R. Alur and T.A. Henzinger. Real-time logis: omplexity and

expressiveness. Information and Computation, 104(1):35{77,

1993. Preliminary version appears in the Pro. of 5th LICS,

1990.

[AH94℄ R. Alur and T.A. Henzinger. A really temporal logi. Journal

of the ACM, 41(1):181{204, 1994. Preliminary version appears

in Pro. 30th FOCS, 1989.

[BCM

+

90℄ J.R. Burh, E.M. Clarke, K.L. MMillan, D.L. Dill, and L.J.

Hwang. Symboli model heking: 10

20

states and beyond. In

Proeedings of the 5th Symposium on Logi in Computer Si-

ene, pages 428{439, Philadelphia, June 1990.

[BKP86℄ H. Barringer, R. Kuiper, and A. Pnueli. A really abstrat on-

urrent model and its temporal logi. In Proeedings of the 13th

Annual Symposium on Priniples of Programming Languages,

pages 173{183. ACM Press, 1986.

[CES86℄ E.M. Clarke, E.A. Emerson, and A.P. Sistla. Automati veri-

�ation of �nite-state onurrent systems using temporal logi

spei�ations. ACM Transations on Programming Languages

and Systems, 8(2):244{263, January 1986.

[Eme90℄ E.A. Emerson. Handbook in Theoretial Computer Siene, For-

mal Models and Semantis, hapter Temporal and Modal Logi,

pages 995{1072. Elsevier, 1990.

[GPSS80℄ Dov Gabbay, Amir Pnueli, Saharon Shelah, and J. Stavi. On the

temporal analysis of fairness. In Proeedings of the Seventh ACM

37



Symposium on Priniples of Programming Languages, pages

163{173. ACM, 1980.

[GPVW95℄ R. Gerth, D. Peled, M. Y. Vardi, and P. Wolper. Simple on-the-

y automati veri�ation of linear temporal logi. In Pro. 15th

Work. Protool Spei�ation, Testing, and Veri�ation, Warsaw,

June 1995. North-Holland.

[Hen96℄ T.A. Henzinger. The theory of hybrid automata. In Proeedings

of the 11th Annual Symposium on Logi in Computer Siene,

pages 278{292. IEEE Computer Soiety Press, 1996.

[HMP92℄ T.A. Henzinger, Z. Manna, and A. Pnueli. What good are dig-

ital loks? In W. Kuih, editor, ICALP 92: Automata, Lan-

guages, and Programming, Leture Notes in Computer Siene

623, pages 545{558. Springer-Verlag, 1992.

[HRS98℄ T.A. Henzinger, J.-F. Raskin, and P.-Y. Shobbens. The reg-

ular real-time languages. In K.G. Larsen, S. Skyum, and

G. Winskel, editors, ICALP'98: Automata, Languages, and

Programming, Leture Notes in Computer Siene 1443, pages

580{591. Springer-Verlag, 1998.

[Koy92℄ Ron Koymans. Speifying message passing and time-ritial sys-

tems with temporal logi. LNCS 651, Springer-Verlag, 1992.

[MP92℄ Z. Manna and A. Pnueli. The Temporal Logi of Reative

and Conurrent Systems: Spei�ation. Springer-Verlag, Berlin,

January 1992.

[MP95℄ Z. Manna and A. Pnueli. Temporal Veri�ation of Reative

Systems : Safety. Springer-Verlag, Berlin, January 1995.

[Pnu77℄ A. Pnueli. The temporal logi of programs. In Pro. 18th IEEE

Symposium on Foundation of Computer Siene, pages 46{57,

1977.

[RS97a℄ J.-F. Raskin and P.-Y. Shobbens. Real-time logis: Fititious

lok as an abstration of dense time. In Pro. Third Interna-

tional Workshop on Tools and Algorithms for the Constrution

and Analysis of Systems (TACAS97), volume 1217 of Leture

Notes in Computer Siene (LNCS), pages 165{182. Springer-

Verlag, 1997.

[RS97b℄ J.-F. Raskin and P.-Y. Shobbens. State lok logi: a deid-

able real-time logi. In Pro. Hart'97 : Hybrid and Real-Time

Systems, LNCSs 1201, pages 15{30, Grenoble, Frane, 1997.

Springer.

38



[RSH98℄ J.-F. Raskin, P.-Y. Shobbens, and T. Henzinger. Axioms for

real-time logis. In D. Sangiorgi and R. de Simone, editors,

Proeedings of CONCUR'98: 9th International Conferene on

Conurreny Theory, volume 1466 of Leture Notes in Computer

Siene (LNCS). Springer, 1998.

[Sti87℄ C. Stirling. Comparing linear and branhing time temporal log-

is. In B. Banieqbal, H. Barringer, and A. Pnueli, editors, Tem-

poral Logi in Spei�ation, volume 398, pages 1{20. Leture

Notes in Computer Siene, Springer-Verlag, 1987.

[SVW85℄ A.P. Sistla, M.Y. Vardi, and P. Wolper. The omplementa-

tion problem for B�uhi automata with appliations to temporal

logi. In Pro. 10th Int. Colloquium on Automata, Languages

and Programming, volume 194, pages 465{474, Nafplion, July

1985. LNCS, Springer-Verlag.

[Wol85℄ P. Wolper. The tableau method for temporal logi: An overview.

Logique et Analyse, (110{111):119{136, 1985.

39



A Continuous Interpretation

An interval I � R
+

is a onvex nonempty subset of the nonnegative reals.

Given t 2 R
+

, we freely use notation suh as t+ I for the interval ft

0

j exists

t

00

2 I with t

0

= t+ t

00

g, and t > I for the onstraint \t > t

0

for all t

0

2 I."

Two intervals I and J are adjaent if the right endpoint of I is equal to

the left endpoint of J , and either I is right-open and J is left-losed or I is

right-losed and J is left-open. An interval sequene

�

I = I

0

; I

1

; : : : is a �nite

or in�nite sequene of bounded intervals so that for all i � 0, the intervals

I

i

and I

i+1

are adjaent. We say that the interval sequene

�

I overs the

interval

S

i�0

I

i

. If

�

I overs [0;1), then

�

I partitions the nonnegative real

line so that every bounded subset of R
+

is ontained within a �nite union

of elements from the partition.

Let P be a �nite set of proposition symbols. A state s � P is a set of

propositions. A timed state sequene � = (�s;

�

I) is a pair that onsists of an

in�nite sequene �s of states and an in�nite interval sequene

�

I that overs

[0;1). Equivalently, the timed state sequene � an be viewed as a funtion

from R
+

to 2

P

, indiating for eah time t 2 R
+

a state �(t) � P.

The formulas of rEventClokTL [RS97b℄ are built from propositional sym-

bols, boolean onnetives, the temporal \until" and \sine" operators, and

two real-time operators: at any time t, the history operator ⊳
I

� asserts

that � was true last time in the interval t � I, and the prophey operator

⊲
I

� asserts that � will be true next time in the interval t+I. The formulas

of rEventClokTL are generated by the following grammar:

� ::= p j �

1

^ �

2

j :� j �

1

U�

2

j �

1

S�

2

j⊳
I

� j⊲
I

�

where p is a proposition and I is an interval whose �nite endpoints are

nonnegative integers. Let � be an rEventClokTL formula and let � be

a timed state sequene whose proposition symbols ontain all proposition

symbols that our in �. The formula � holds at time t 2 R
+

of �, denoted

(�; t) j= �, aording to the following de�nition:

(�; t) j= p i� p 2 �(t)

(�; t) j= �

1

^ �

2

i� (�; t) j= �

1

and (�; t) j= �

2

(�; t) j= :� i� not (�; t) j= �

(�; t) j= �

1

U�

2

i� exists a real t

0

> t with (�; t

0

) j= �

2

, and for

all reals t

00

2 (t; t

0

), we have (�; t
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Note that the temporal and real-time operators are de�ned in a strit man-

ner; that is, they do not onstrain the urrent state. Non-strit operators

are easily de�ned from their strit ounterparts.

Theorem 15 [RS97b℄ The satis�ability and validity problems for rEvent-

ClokTL in timed state sequenes (ontinuous interpretation) are deidable

in Pspae.
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