
'$�

�

'$

Æ

��

I N F O R M A T I K

 	

� �

The Logi
 of Event Clo
ks

Jean-Fran�
ois Raskin

Pierre-Yves S
hobbens

MPI{I{99{3{002 August 1999

FORSCHUNGSBERICHT RESEARCH REPORT

M A X - P L A N C K - I N S T I T U T

F

�

UR

I N F O R M A T I K

Im Stadtwald 66123 Saarbr�u
ken Germany

Authors' Addresses

Jean-Fran�
ois Raskin

Max-Plan
k-Institut f�ur Informatik

Im Stadtwald

66123 Saarbr�u
ken

jfr�mpi-sb.mpg.de

Pierre-Yves S
hobbens

Computer S
ien
e Department

University of Namur

Namur

Begium pys�info.fundp.a
.be

Publi
ation Notes

A revised version of this report will be published in the journal of Automata,

Languages and Combinatori
s.

A
knowledgements

The authors would like to thank Thomas Henzinger for helpfull
omments

and insightfull dis
ussions on the subje
t of real-time logi
s. This work was

supported by the Belgian National Fund for S
ienti�
 Resear
h (FNRS).

Keywords

Temporal Logi
, Real-Time Logi
, De
idability, Complexity, Expressiveness.

1 Introdu
tion

It is now widely re
ognized that the use of formal methods is useful and of-

ten ne
essary for developing
orre
t
on
urrent and rea
tive systems. This

observation is even
learer when dealing with real-time [AH92b℄ and hybrid

systems [Hen96℄. Among the favorite formalisms to spe
ify and verify
on-

urrent systems are temporal logi
s. Temporal logi
s [Eme90, MP92℄ are

modal logi
s that enable the expression of properties about the ordering

of events in exe
utions of
on
urrent programs [Pnu77℄. For example, the

linear temporal logi
 (LTL) formula �(p! ♦q) expresses the property that

every p-event is always followed by some q-event. In that
ontext, rea
tive

systems are usually modeled by a produ
t of �nite state ma
hines and prop-

erties of these systems are spe
i�ed by temporal logi
 formulas. In the linear

time framework

1

, the veri�
ation problem, also
alled the model-
he
king

problem,
an be stated as follows: \Are all the possible exe
utions of the re-

a
tive system modeled by the produ
t of �nite state ma
hines, models of the

temporal logi
 formula that spe
i�es the property to verify?" or equivalently

\is the !-regular language de�ned by the produ
t of automata in
luded in

the !-regular language de�ned by the temporal formula?". Beside their

ni
e expressive power (most important properties of rea
tive systems
an be

naturally expressed in temporal logi
), the propositional fragments of those

logi
s are de
idable and are used in tools where the veri�
ation problem is

automated [GPVW95, BCM

+

90℄.

The properties that
an be expressed in propositional temporal logi
s are

qualitative
onstraints about the ordering of events along a tra
e (in�nite

sequen
e of events that models an exe
ution of a rea
tive system); quantita-

tive timing
onstraints
annot be expressed. Logi
s that are able to express

quantitative timing requirements are
alled real-time logi
s [AH94, AH93℄.

Real-time logi
s have re
eived a lot of attention from the resear
h
ommu-

nity [Koy92, AH93, AH94, ACD90, AH92b℄. The results about de
idability

of the real-time logi
s depends
ru
ially on how the time is added to the

tra
es that model rea
tive systems.

Semanti
ally, there are two radi
ally di�erent ways to model time:

1. The �rst is to
onsider a dis
rete time domain, the natural numbers

for example.

2. The other possibility is to use a dense time domain, as the real numbers

or the rational numbers, for time stamps. Both are equivalent for our

purpose. Choosing a dense time domain is more natural and presents

advantages,
ompositionality for example; the interested reader is in-

vited to
onsult [AH92b, HMP92, RS97a, BKP86℄ for a study and

1

A framework where time is modeled by a bran
hing stru
ture
an also be
onsid-

ered, see [BCM

+

90℄ for example and [Sti87℄ for a systemati

omparison between the two

approa
hes.

1

omparison of the two approa
hes. Unfortunately, when modeling time

with a dense time domain, a lot of problems related to real-time logi
s

be
ome unde
idable.

Having
hosen the time domain, there are still two
ommon ways to intro-

du
e real-time information into tra
es:

1. The pointwise way, that we adopt for the main part of the paper,

onsists in asso
iating a time stamp (from the
hosen time domain)

with ea
h observation of the tra
e. The intuitive meaning is that the

observation of an event o

urred at the time indi
ated by the time

stamp. Those tra
es are
alled timed tra
es.

2. The
ontinuous way
onsists in asso
iating an interval with ea
h ob-

servation of the tra
e. Intuitively, this interval indi
ates the interval

of time during whi
h the system is in the state des
ribed by the ob-

servation. Those tra
es are
alled timed state sequen
es.

Synta
ti
ally, there are two natural ways of extending temporal logi
s

with timing
onstraints. The Metri
 Temporal Logi
 Metri
TL (also
alled

MTL [AH93℄) adds time bounds to temporal operators; for example, the

Metri
TL formula �(p! ♦
=1

q) spe
i�es that every p event is followed by a

q event su
h that the di�eren
e between the two time stamps is exa
tly 1.

The Clo
k Temporal Logi
 Clo
kTL (also
alled TPTL [AH94℄) adds
lo
k

variables to LTL; for example, the time-bounded response requirement from

above
an be spe
i�ed by the Clo
kTL formula �(p! (x := 0)♦(q ^ x = 1)),

where x is a variable representing a
lo
k that is started by the quanti�er

(x := 0). Interestingly, over natural-numbered time, both ways of expressing

timing
onstraints are equally expressive. Furthermore, the satis�ability

problems of the two logi
s are de
idable.

If time stamps are real instead of natural numbers, then the situation

seems mu
h less satisfa
tory. In fa
t, the logi
 Metri
TL asso
iated with a

dense time domain allows the en
oding of Turing ma
hines
omputations

and the halting problem of Turing ma
hines
an be redu
ed to the satis�-

ability of a Metri
TL formula. The ex
essive expressive power of Metri
TL

omes from formulas su
h as �(p ! ♦
=1

q) that allow us to relate two ar-

bitrary events that are separated by exa
tly one time unit. This ability

oupled with the density of the time domain, permits us to relate
onse
-

utive
ontents of the memory of a Turing ma
hine,
ontents that
an be

en
oded using an interval of one time unit. The problem is the same with

the logi
 Clo
kTL, as the formula �(p ! (x := 0)♦(x = 1 ^ q)) expresses

the same property. Hen
e the sear
h for de
idable subsets of Metri
TL and

Clo
kTL is an interesting and important issue.

A �rst restri
tion to obtain a de
idable logi

on
erns the style of spe
ify-

ing timing
onstraints using time-bounded temporal operators. The Metri
-

Interval Logi
 Metri
IntervalTL (also
alled MITL [AFH96℄) is obtained from

2

Metri
TL by restri
ting the time bounds on temporal operators to nonsingu-

lar intervals. For example, the Metri
IntervalTL formula �(p ! ♦
[0:9;1:1℄

q)

spe
i�es that every p event is followed by a q event su
h that the di�eren
e

between the two time stamps is at least 0.9 and at most 1.1. The restri
tion

to non-singularity prevents spe
ifying exa
t real time di�eren
es between

events.

In this paper, we propose an alternative restri
tion, quite di�erent in

avour, that
on
erns the style of spe
ifying timing
onstraints using
lo
k

variables. The Event-Clo
k Logi
 rEventClo
kTL (also
alled SCL [RS97b℄)

is obtained from Clo
kTL by restri
ting the use of
lo
ks to refer to the

times of previous and next o

urren
es of events only. For example, if y

q

is

a
lo
k that always refers to the time di�eren
e between now and the next q

event, then the rEventClo
kTL formula �(p! y

q

= 1) spe
i�es that every p

event is followed by a q event su
h that the di�eren
e between time stamps

of the p event and the �rst subsequent q event is exa
tly 1. A
lo
k su
h

as y

q

, whi
h is permanently linked to the next q event, does not need to

be started expli
itly, and is
alled an event
lo
k. The restri
tion to event

lo
ks prevents the spe
i�
ation of time di�eren
es between a p event and

any subsequent (rather than the �rst subsequent) q event.

The idea to asso
iate
lo
ks with events has �rst been introdu
ed in the

ontext of timed automata in [AFH94℄ where they propose a determinizable

lass of timed automata
alled Event Clo
k Automata (EventClo
kTA). As

we will see later, in those automata, ea
h
lo
k is asso
iated with an atomi

event (a proposition for example). The main
ontribution of this paper is

to show how this
on
ept of event
lo
ks
an be generalized: we show that

lo
ks
an not only be asso
iated with atomi
 propositions but re
ursively

with temporal formulas. By de�ning rEventClo
kTL, we introdu
e the ni
e

on
ept of event
lo
k in the domain of real-time logi
s. Furthermore, we

show that the logi
 of event
lo
ks is quite expressive, in fa
t, most important

real-time properties have a ni
e and dire
t formulation in rEventClo
kTL. Fi-

nally we show that the satis�ability problem for rEventClo
kTL is de
idable,

we
hara
terize its
omplexity and present a de
ision pro
edure. This pro
e-

dure
an also be used to solve the real-time model
he
king problem: \Is the

timed !-regular language de�ned by a produ
t of timed automata
ontained

in the timed !-regular language de�ned by an rEventClo
kTL formula?".

The rest of this paper is organized as follows. Real-time models are

formally de�ned in se
tion 2. In se
tion 3 we re
all EventClo
kTA. The

logi
 rEventClo
kTL is de�ned in se
tion 4 and its expressive power is il-

lustrated by showing how to spe
ify most important real-time requirements

with rEventClo
kTL formulas. Se
tion 5 proposes a de
ision pro
edure for

the satis�ability problem of rEventClo
kTL formulas and proves its
orre
t-

ness. The de
ision pro
edure relies on the
onstru
tion, for ea
h formula of

rEventClo
kTL, of a suitable EventClo
kTA whose language is empty if and

only if the asso
iated formula is not satis�able. This EventClo
kTA needs

3

auxiliary symbols when the formula is re
ursive. The
omplexity of the sat-

is�ability problem is also studied there. Se
tion 6 deals with expressiveness:

rEventClo
kTL as expressive as Metri
IntervalTL

0;1

, but less expressive than

Metri
IntervalTLin dense pointwise models. This
ontrasts with
ontinuous

models, where Metri
IntervalTL is as expressive as Metri
IntervalTL

0;1

as

shown in [HRS98, RSH98℄. The same property holds for the future frag-

ments, whi
h are ea
h less expressive than their logi
s with past. We also

ompare the expressive power of rEventClo
kTL and EventClo
kTA. They

turn out to be in
omparable, sin
e rEventClo
kTL allows re
ursion, while

EventClo
kTA allow
ounting.

2 Real-Time Models

The exe
ution of a rea
tive system
an be modeled by an in�nite sequen
e of

observations �� = �

0

�

1

: : : �

n

: : : , where ea
h �

i

� P (a subset of propositions

that des
ribes the observed state of the system). Su
h a sequen
e is
alled

a tra
e. When
onsidering exe
utions of real-time rea
tive systems, timing

information about the o

urren
e of the observations must be added to

tra
es. As mentioned in the introdu
tion, we
onsider a dense time domain:

the nonnegative real numbers. We present the details in the
ontext of

timed tra
es sin
e it will slightly fa
ilitate the presentation of the region

onstru
tion in se
tion 5. For the interested reader, we give in annex the

de�nition of the logi
 rEventClo
kTL in the
ontext of timed state sequen
es.

There, we re
all the de
idability and
omplexity results for the logi
 that

are the same for the two models.

De�nition 1 A timed tra
e is a pair � = (��; ��) where �� is a tra
e and �� =

�

1

�

2

: : : �

n

: : : is an in�nite sequen
e of positive real numbers,
alled a timing,

representing the time at whi
h ea
h observation o

urred. Furthermore the

timing �� = �

0

�

1

: : : �

n

: : : respe
ts (i) monotoni
ity: for all i � 0, �

i

< �

i+1

,

(ii) divergen
e: for all t 2 R
+

, there exists i su
h that �

i

> t.

3 Event Clo
k Automata

Timed automata [AD94℄ are �nite state ma
hines extended with
lo
ks.

Clo
k
an be reset and
ompared to integer
onstants. Unfortunately, the

formalism of timed automata is not
losed under
omplement. This is due to

the fa
t that, in timed automata,
lo
ks
an be reset nondeterministi
ally.

This feature allows the spe
i�er to de�ne the timed language of the negation

of the formula that allows the en
oding of Turing ma
hine
omputations in

Metri
TL, see [AD94℄ for details and examples.

In [AFH94℄, Alur et al. present a determinizable
lass of timed automata

alled event
lo
k automata. This
lass of automata is
losed under union,

4

interse
tion and
omplement. Consequently the language in
lusion problem

is de
idable for this
lass of automata. For event
lo
k automata, the
om-

plement
losure property is obtained by restri
ting the use of
lo
ks: the

lo
ks have a prede�ned asso
iation with symbols of the input alphabet.

Clo
ks are reset impli
itly whenever their event o

urs. This resetting is

thus determined by the timed tra
e the automaton is reading, whi
h is key

to their determinization. The event-history
lo
k of the input symbol a 2 �,

denoted x

a

, is a history variable whose value is the time elapsed sin
e the

last o

urren
e of a relative to the
urrent time. Symmetri
ally, the event-

prophe
y
lo
k of a 2 �, denoted y

a

is a prophe
y variable whose value is

the time to wait for the next o

urren
e of a relative to the
urrent time.

Example 1 Let us
onsider the automaton of �gure 1. This event-
lo
k

automaton
ontains 3 lo
ations, l

0

is the start lo
ation. The
onstraint

x

a

= 5 de
orating the edge starting from l

1

with the
hara
ter b imposes

that a previous a
hara
ter must have been read exa
tly 5 time units before

the edge is
rossed. On the other hand the
onstraint y

a

< 2 de
orating

the edge from l

1

to l

2

requires that ea
h time this edge is
rossed, the next

a-edge must be
rossed within 2 time units.

��

��

-

��

��

��

��

- -

I

?

��

��

a

y

a

< 2

b

b

l

0

l

1

l

2

?

b

x

a

= 5

Figure 1: Event-Clo
k automaton A

1

.

Let us
onsider the exe
ution of the automaton on the timed tra
e

(��; ��) = (a; 1); (b; 6); (
; 7); (b; 7:3); (b; 7:5); (a; 8); (
; 11); : : : . The automa-

ton starts at lo
ation l

0

. At time t = 1, the automaton reads a and goes to

l

2

. At time t = 6 it reads b and
he
ks that the previous a in �� is distant of

exa
tly 5 time units, and so on. Thus (��; ��) is a possible pre�x of a timed

tra
e a

epted by the automaton.

As we
an see in example 1, the values of the
lo
ks are solely determined

by the input word, not by the automaton. Thanks to this important feature

EventClo
kTA are determinizable and
an be
omplemented.

De�nition 2 (Event Clo
ks) Given a set of proposition P, the set of

event
lo
ks asso
iated to P is the set C = H [P where H = fx

p

j p 2 Pg

is the set of history
lo
ks, i.e. an history
lo
k x

p

is asso
iated to ea
h

proposition p 2 P, and where P = fy

p

j p 2 Pg is the set of prophe
y
lo
ks,

i.e. a prophe
y
lo
k is asso
iated to ea
h proposition of P. In what follows,

5

we note x 2 H any history
lo
k of C, y any prophe
y
lo
k of C, z
p

the

history
lo
k or the prophe
y
lo
k asso
iated to p and z any
lo
k of C. �

We now de�ne formally the value of history and prophe
y
lo
ks along

a timed tra
e. We use R
+

[f?g to denote the nonnegative real numbers

together with the spe
ial value ? (unde�ned).

De�nition 3 The value of the history
lo
k x

p

2 H asso
iated with the

proposition p at position i of the timed tra
e (��; ��), denoted Val

x

p

(��; �� ; i),

is de�ned as follows:

Val

x

p

(��; �� ; i) =

8

<

:

�

i

� �

j

if there exists j su
h that 0 � j < i, p 2 �

j

and for all k su
h that j < k < i, p 62 �

k

? if for all j, 0 � j < i, p 62 �

j

The value of the prophe
y
lo
k y

p

2 P asso
iated with the proposition p

at position i of the timed tra
e (��; ��), denoted Val

y

p

(��; �� ; i), is de�ned as

follows:

Val

y

p

(��; �� ; i) =

8

<

:

�

j

� �

i

if there exists j su
h that i < j, p 2 �

j

and for all k su
h that i < k < j, p 62 �

k

? if for all j, i < j, p 62 �

j

Constraints about the value of
lo
ks are used to express real-time re-

quirements on the o

urren
es of events.

De�nition 4 A
lo
k
onstraint is a boolean
ombination of formulas of the

form z �
 where z 2 C is a history or a prophe
y
lo
k, �2 f<;�;=;�; >g

and
 is an integer
onstant.

Clo
k
onstraints are evaluated in positions of timed tra
es. Here are

the rules of evaluation:

De�nition 5 A timed tra
e � satis�es a
lo
k
onstraint at a position i

a

ording to the following usual rules:

� (�; i) j= z �
 i� Val

z

(��; �� ; i) �
;

� (�; i) j= : i� not (�; i) j= ;

� (�; i) j=

1

_

2

i� (�; i) j=

1

or (�; i) j=

2

.

where � are evaluated as usual in nonnegative real numbers and ? �

always evaluates to false.

De�nition 6 An EventClo
kTA is 6-tuple A = (L;L

0

;P;C; E;F) where:

� L is a �nite set of lo
ations;

6

� L

0

� L is the subset of start lo
ations;

� P is a �nite set of propositions;

� C is a set of
lo
ks partitioned into a set H of history
lo
ks and a set

P of prophe
y
lo
ks;

� E is a �nite set of edges; ea
h edge is a quadruple (l

1

; l

2

; s;) where

l

1

2 L is the sour
e lo
ation, l

2

2 L is the target lo
ation, s � P is a

state des
ription and is a
lo
k
onstraint;

� F = fF

1

; : : : ; F

n

g with ea
h F

i

� L, is a set of sets of a

epting

lo
ations. (generalized B�u
hi a

eptan
e
ondition).

As �nite state automata de�ne set of tra
es, that are
alled languages,

EventClo
kTA de�ne set of timed tra
es, that are
alled timed languages.

To de�ne formally the timed language de�ned by an EventClo
kTA, we �rst

introdu
e the notion of
omputation of an EventClo
kTA:

De�nition 7 An a

epted
omputation of an EventClo
kTA A on a timed

tra
e � is an in�nite sequen
e

 = l

0

e

0

�! l

1

e

1

�! � � � l

n

e

n

�! � � �

where ea
h l

i

2 L, and:

(C1) l

0

2 L

0

(initiality);

(C2) e

i

= (l

i

; l

i+1

; s

i

;

i

) 2 E (
onse
ution), and:

(C3) (��; �� ; i) j=

i

(timing);

(C4) s

i

= �

i

(adequa
y);

(C5) for every F

i

2 F , there exists in�nitely many positions j su
h that

l

j

2 F

i

(generalized B�u
hi a

eptan
e).

De�nition 8 The timed language of an EventClo
kTA A, denoted L(A), is

the set of timed tra
es for whi
h A has an a

epted
omputation.

The formalism of EventClo
kTA is
losed under all boolean operations:

Theorem 1 [AFH94℄ For every EventClo
kTA A

1

and A

2

, we
an
on-

stru
t an EventClo
kTA A

1

+ A

2

that a

epts the union of the languages

of A

1

and A

2

, i.e. L(A

1

+ A

2

) = L(A

1

) [L(A

2

), an EventClo
kTA

A

1

� A

2

that a

epts the interse
tion of the languages of A

1

and A

2

, i.e.

L(A

1

�A

2

) = L(A

1

) \ L(A

2

), for every EventClo
kTA A, we
an
onstru
t

an an EventClo
kTA

�

A that a

epts the
omplement of the language of A,

i.e. L(

�

A) = L(A).

7

4 The Event Clo
k Logi

In this se
tion, we introdu
e event
lo
ks in temporal logi

all this rEvent-

Clo
kTL. This logi
 is a real-time extension of the usual temporal logi
. We

extend LTL (with past operators) by two indexed modal operators ⊲ and ⊳

whi
h express real-time
onstraints. The semanti
s of those two operators

is
losely related to the notions of prophe
y and history
lo
k variables. The

formula ⊲
�

� expresses that the delay before the next observation of �

satis�es
onstraint �
; symmetri
ally, the formula ⊳
�

�
onstrains the

previous observation of �. The modal operators ⊲ and ⊳ generalize the

semanti
s of history/prophe
y variables of [AFH94℄: They are more general

in that they allow re
ursion, i.e. the operators
an
onstrain any formula

� rather than proposition symbols. As we show later, all interesting prop-

erties of EventClo
kTA are preserved in our logi
, even though it is more

expressive. We now present formally the rEventClo
kTL logi
. Examples of

spe
i�
ations written in rEventClo
kTL are given at the end of this se
tion.

De�nition 9 A formula of rEventClo
kTL is
omposed of proposition sym-

bols p; p

1

; p

2

; ::; q; :::, usual boolean
onne
tives _ and :, qualitative tempo-

ral operators: Until (U) and Sin
e (S), real-time operators: prophe
y op-

erator (⊲), history operator (⊳). A well-formed formula of rEventClo
kTL

satis�es the following synta
ti
al rule:

� ::= p j �

1

_ �

2

j :� j

e

� j ⊖ � j �

1

U�

2

j �

1

S�

2

j ⊲
�

� j ⊳
�

�

where �2 f<;�;=;�; >g, p 2 P and �; �

1

; �

2

are well formed formulas

and
 is an integer
onstant

We use the usual pre
eden
e of operators: modal operators are more binding

than boolean ones, and their s
ope is as small as possible. A formula is non-

re
ursive if the real-time operators only
ontain proposition symbols: the

lauses ⊲
�

p j ⊳
�

p repla
e ⊲
�

� j ⊳
�

� in the syntax.

De�nition 10 A timed tra
e � = (��; ��) satis�es at position i an rEvent-

Clo
kTL formula � when:

(�; i) j= p i� p 2 �

i

;

(�; i) j= :� i� not (�; i) j= �;

(�; i) j= �

1

_ �

2

i� (�; i) j= �

1

or (�; i) j= �

2

;

(�; i) j=

e

� i� (�; i+ 1) j= �;

(�; i) j= ⊖� i� i > 0 and (�; i� 1) j= �;

(�; i) j= �

1

U�

2

i� there exists j � i su
h that (�; j) j= �

2

and for

all k, i � k < j, (�; k) j= �

1

;

(�; i) j= �

1

S�

2

i� there exists j, 0 � j � i su
h that (�; j) j= �

2

and for all k, j < k � i, (�; k) j= �

1

;

(�; i) j=⊲
�

� i� there exists j > i, su
h that (�; j) j= �, for all

k, i < k < j, (�; k) 6j= � and �

j

� �

i

�
;

8

(�; i) j=⊳
�

� i� there exists j, 0 � j < i, su
h that (�; j) j= �,

for all k, j < k < i, (�; k) 6j= � and �

i

� �

j

�
.

As usual, we
an de�ne other boolean and temporal operators as synta
ti
al

abbreviations:

� boolean: > � :�

1

_�

1

, ? � :>, �

1

^�

2

� :(:�

1

_:�

2

), �

1

! �

2

�

:�

1

_ �

2

, �

1

$ �

2

� �

1

! �

2

^ �

2

! �

1

;

� for the future:

{ ♦�
1

� >U�

1

, meaning \eventually in the present or future";

{ ��
1

� :♦:�
1

\always in the present and future";

{ ⊲
[l;u℄

� �⊲
�l

�^ ⊲
�u

, \next � o

urs between l and u from

now";

{ similarly, ⊲
I

� �⊲
�l

�^ ⊲
�u

, \next � o

urs within I from

now", where I is an interval with bounds l; u and � is the ade-

quate
onstraint;

{ �

1

U

�

�

2

� �

1

U�

2

^ (⊲
�

�

2

_ �

2

), with �2 f<;�g, meaning

\Until within
 next";

2

{ �
�

�

1

� : ⊲
�

:�

1

, with �2 f<;�g, meaning \always for the

following
 time units";

� for the past:

{ ♦��
1

� >S�

1

, meaning \eventually in the past or present";

{ ⊟�
1

� :♦�:�
1

, meaning \always in the past and present";

{ ⊳
[l;u℄

� �⊳
�l

�^ ⊳
�u

, \last � o

urred between l and u ago";

{ similarly, ⊳
I

� �⊳
�l

�^ ⊳
�u

, \last � o

urred within I ago",

where I is an interval with bounds l; u and � is the adequate

onstraint;

{ �

1

S

�

�

2

� �

1

S�

2

^ (⊳
�

�

2

_ �

2

), with �2 f<;�g, meaning

\sin
e within
";

{ ⊟
�

�

1

� : ⊳
�

:�

1

, with �2 f<;�g, meaning \always in the

past and present within
";

De�nition 11 A rEventClo
kTL formula � de�nes a timed language L(�):

the set of timed tra
es � su
h that (�; 0) j= �.

2

If this de�nition is used with >;� or =, it has a di�erent meaning than the until of

Metri
IntervalTL.

9

Example 2 Here are some examples of rEventClo
kTL formulas with their

verbal meaning. These examples
over all typi
al real-time requirements

lassi�ed in [Koy92℄. In these examples, we mainly use atomi
 events p, q,

... for readability but they
an be repla
ed by more
ompli
ated rEvent-

Clo
kTL formulas. The verbal interpretation
hara
terizes intuitively the

in�nite timed tra
es � that the formula � de�nes.

� �q: q is always true. Su
h a formula asserts invarian
e properties of

a system.

� �(p !⊲
�5

q): a p position is always followed by a q position within

5 time units. Su
h a formula spe
i�es a maximal distan
e between a

request p and its response q. Su
h a property is
alled a bounded time

response. Here, it assumes that only one request
an be outstanding.

� �(p !⊲
=3

q): when a p position is en
ountered, the �rst following q

position is at exa
tly 3 time units. Su
h a formula allows the assertion

of exa
t response time (assuming no intervening request p).

� p ^ �(p !⊲
=1

p): this formula asserts that p is true every integer

time unit. Su
h a formula allows the spe
i�er to de�ne periodi
ity of

events. Here p
an model the ti
k of an ideal
lo
k, that ti
ks every

time unit.

� �(p! (⊲
>5

p)_ (

e�:p)): every p event is either followed by another

p event distant of more than 5 time units or never followed by another

p event. This formula expresses a minimal distan
e between events, for

example the rate of input from the environment.

� ♦�q: q will eventually hold permanently.

� �((⊳
=3

q) ! p). This formula asserts that if the last q position is

exa
tly distant of 3 time units then p must be true now. It is a typi
al

time-out requirement.

� �(q ! (pS

�3

r)). When a q position is en
ountered then the last r po-

sition is distant at most of 3 time units and all intermediary positions

were p positions.

� �((⊟
<3

:p)! q). If p is
onstantly false during the last 3 time units

then q is true now. This is a typi
al example of the spe
i�
ation of an

alarm q if a monitored event p does not o

ur within a �xed delay.

As we
an see, the rEventClo
kTL logi
 is quite expressive. Most of the

properties that are en
ountered when dealing with real-time systems, e.g.

bounded response time, bounded invarian
e, time-out,...,
an be easily and

elegantly spe
i�ed. In pra
ti
e, the use of the Metri
TL operator ♦
�

an

10

often be repla
ed by the stronger but less expressive operator ⊲
�

. The

presen
e of the past operators is also a fa
ility for the spe
i�er. However,

there are properties that
annot be expressed using rEventClo
kTL logi
:

Example 3 Every p state is followed by a q state exa
tly 1 time unit later.

Su
h a property
an be expressed in Metri
TL [AH93℄ as follows:

�(p! ♦
=1

q)

This property is not expressed by the rEventClo
kTL formula:

�(p!⊲
=1

q)

whi
h is stronger sin
e it requires that the �rst q is at exa
tly 1 time unit.

In fa
t, as already mentioned in the introdu
tion, if rEventClo
kTL
ould

express this Metri
TL property, the logi
 would be unde
idable. In the next

se
tion, we show that it is not the
ase by de�ning a de
ision pro
edure for

the satis�ability problem of rEventClo
kTL. The expressive power of rEvent-

Clo
kTL is
onsidered in se
tion 6.

5 A De
ision Pro
edure for rEventClo
kTL

The prin
iple of the de
ision pro
edure for LTL is to
onstru
t a B�u
hi

automaton that a

epts exa
tly the tra
es that are models of the formula

and then to test the automaton for emptiness, see [Wol85, MP95℄ for details.

Here we propose a similar approa
h: for every rEventClo
kTL formula

�, we
onstru
t an EventClo
kTA A

�

whose timed language is empty if and

only if the formula � is not satis�able. The pro
edure that we propose relies

on a
onstru
tion that uses the subformulas of �.

De�nition 12 The
losure set of an rEventClo
kTL formula �, denoted

Cl(�), is de�ned with the help of the re
ursive fun
tion Cl:

� Cl(p) = fpg;

� Cl(�

1

_ �

2

) = f�

1

_ �

2

g [Cl(�

1

) [Cl(�

2

);

� Cl(:�

1

) = Cl(�

1

);

� Cl(

e

�

1

) = f

e

�

1

g [Cl(�

1

);

� Cl(⊖�
1

) = f⊖�
1

g [Cl(�

1

);

� Cl(�

1

U�

2

) = f�

1

U�

2

g [f

e

(�

1

U�

2

)g [Cl(�

1

) [Cl(�

2

);

� Cl(�

1

S�

2

) = f�

1

S�

2

g [f⊖(�

1

S�

2

)g [Cl(�

1

) [Cl(�

2

);

11

� Cl(⊲
�

�

1

) = f⊲
�

�

1

g [Cl(�

1

);

� Cl(⊳
�

�

1

) = f⊳
�

�

1

g [Cl(�

1

);

To obtain Cl(�), we
lose Cl(�) by negation and identify ::�

1

with �

1

in

any
ontext to keep Cl(�) �nite. The set of atomi
 propositions appearing

in � is denoted P

�

. Note that P

�

� Cl(�).

In our
ase, the EventClo
kTA A

�

does not a

ept the models of the

formula � but its timed Hintikka sequen
es. EventClo
kTA as de�ned

in [AFH94℄ and re
alled in se
tion 3 are not expressive enough to de�ne all

rEventClo
kTL-timed languages, as shown in se
tion 6. Nevertheless Event-

Clo
kTA
an be used to de�ne a de
ision pro
edure for rEventClo
kTL as we

show in this se
tion.

De�nition 13 The timed Hintikka sequen
es of � are the timed tra
es �

de�ned on the set of propositions fp

�

j� 2 Cl(�)g (i.e. a proposition is asso-

iated with ea
h formula of Cl(�)) that satisfy the following requirements,

for all i � 0:

(H1) p

�

2 �

0

;

(H2) p

�

2 �

i

i� p

:�

62 �

i

;

(H3) p

�

1

_�

2

2 �

i

i� p

�

1

2 �

i

or p

�

2

2 �

i

;

(H4) p

e

�

2 �

i

i� p

�

2 �

i+1

;

(H5) p

��

2 �

i

i� i > 0 and p

�

2 �

i�1

;

(H6) p

�

1

U�

2

2 �

i

i� there exists j � i su
h that p

�

2

2 �

j

and for all k,

i � k < j, p

�

1

2 �

k

;

(H7) p

�

1

S�

2

2 �

i

i� there exists j, 0 � j � i, su
h that p

�

2

2 �

j

and for all

k, j < k � i, p

�

1

2 �

k

;

(H8) p

B

�

�

2 �

i

i� there exists j > i su
h that p

�

2 �

j

, for all k, i < k < j,

p

�

62 �

k

and �

j

� �

i

�
;

(H9) p

C

�

�

2 �

i

i� there exists j, 0 � j < i su
h that p

�

2 �

j

, for all k,

j < k < i, p

�

62 �

k

and �

i

� �

j

�
;

Requirements H2 and H3 ensure propositional
onsisten
y of timed Hin-

tikka sequen
es, H4, H5, H6 and H7 ensure
onsisten
y with the semanti
s of

temporal operators, and, H8 and H9 ensure
onsisten
y with the semanti
s

of real-time operators. H1 is related to the following theorem:

Proposition 1 A rEventClo
kTL formula � is satis�able i� it has a timed

Hintikka sequen
e.

12

Proof. Let us prove that given an Hintikka sequen
e (��; ��) for �, the timed

tra
e (��

0

; ��), where �

0

i

= fqjp

q

2 �

i

^q 2 P

�

g, has the Hintikka property: for

all formula � 2 Cl(�), (��

0

; �� ; i) j= � i� p

�

2 �

i

. We reason by indu
tion on

the stru
ture of formulas. Base
ase. � = q, a proposition. By de�nition of

(��

0

; ��), q 2 �

0

i

i� p

q

2 �

i

. Thus by the de�nition of j=, we have (��

0

; �� ; i) j= q

i� p

q

2 �

i

. Indu
tion
ase. We treat two
ases: � = �

1

U�

2

and � =⊲
�

�

1

,

the other
ases are treated similarly and left to the
areful reader. By

indu
tion hypothesis, we know that: for all i � 0, (��

0

; �� ; i) j= �

j

i� p

�

j

2 �

i

,

for j 2 f1; 2g. We now treat the two
ases:

� � = �

1

U�

2

. (��

0

; �� ; i) j= �

1

U�

2

is de�ned as \there exists j � i su
h

that (��

0

; �� ; i) j= �

2

and for all k, i � k < j, (��

0

; �� ; i) j= �

1

". By

indu
tion hypothesis, there exists j � i su
h that p

�

2

2 �

j

and for

all k, i � k < j, p

�

1

2 �

k

. By rule (H6) of the de�nition of timed

Hintikka sequen
es, this is equivalent to p

�

1

U�

2

2 �

i

.

� � =⊲
�

�

1

. (��

0

; �� ; i) j=⊲
�

�

1

is de�ned as \there exists j > i su
h

that (��

0

; �� ; j) j= �

2

, �

j

��

i

�
 and for all k, i < k < j, (��

0

; �� ; j) j= �

1

".

By indu
tion hypothesis, this is also: \there exists j > i su
h that

p

�

2

2 �

j

, �

j

� �

i

�
 and for all k, i < k < j, p

�

1

2 �

k

". By rule (H8),

this is the same as p

B

�

�

1

2 �

i

.

As we have that for all �

1

2 Cl(�) and for all i � 0, (��

0

; �� ; i) j= �

1

i�

p

�

1

2 �

i

, by rule (H1), we have that p

�

2 �

0

and thus (��

0

; �� ; 0) j= �. As a

onsequen
e, (��

0

; ��) is a model of �.

Now, let us
onsider the other dire
tion. If (��; ��) is a model of � we

prove that the timed tra
e (��

0

; ��), with �

0

i

= fp

�

j� 2 Cl(�) ^ (��; �� ; i) j= �g,

has the timed Hintikka property for �. Again, the proof is by indu
tion on

the stru
ture of formulas. The proof is easy sin
e the Hintikka properties

(H1-H8) express the semanti
s of the operators. �

Constru
tion of A

�

The lo
ations of the EventClo
kTA A

�

will be subsets of Cl(�). If a formula �

belongs to a lo
ation l of A

�

, the intuitive meaning is that when the automa-

ton A

�

is in lo
ation l then all the a

epted timed tra
es passing through

l are timed Hintikka sequen
es underlying the models of �. Obviously, all

possible subsets of the
losure set are not
andidate for representing a posi-

tion in a model. For example, a subset of Cl(�) whi
h
ontains both � and

:�
annot be a
andidate for a position in a model as the
onjun
tion of

this set of formulas is not satis�able. To make the notion of
andidate for a

model position
learer, we de�ne the notion of atom.

De�nition 14 An atom over � is a subset � � Cl(�) satisfying the following

requirements:

13

� � is propositionally
onsistent and
omplete. More formally:

(A1) For every �

1

2 Cl(�), �

1

2 � i� :�

1

62 �;

(A2) For every �

1

_ �

2

2 Cl(�), �

1

_ �

2

2 � i� �

1

2 � or �

2

2 �.

� � respe
ts lo
al
onstraints of the U and the S operators:

(A3) For every �

1

U�

2

2 Cl(�), �

1

U�

2

2 � i� either:

� �

2

2 �;

� �

1

;

e

(�

1

U�

2

) 2 �.

(A4) For every �

1

S�

2

2 Cl(�), �

1

S�

2

2 � i� either:

� �

2

2 �;

� �

1

;⊖(�

1

S�

2

) 2 �.

We build the
omponents of A

�

:

Propositions: It will a

ept timed tra
es de�ned on the set P = fp

�

j � 2

Cl(�)g.

Clo
ks: It uses the
lo
ks C = fx

p

�

j⊳
�

� 2 Cl(�)g [fy

p

�

j⊲
�

� 2

Cl(�)g.

Lo
ations: The lo
ations L of A

�

are the atoms of Cl(�), requirement

denoted (L) in what follows.

Start lo
ations: The start lo
ations L

0

are the atoms � su
h that: (S1)

� 2 � and (S2) for all formula ⊖� 2 Cl(�), :⊖ � 2 �.

Let us now see how to de�ne the edges of the automaton A

�

. First we

examine when two lo
ations must be linked by an edge. After we
onsider

the labels that de
orate edges. The formulas

e

� and ⊖� of Cl(�) are used to

formulate the
onne
tion requirement of the automaton A

�

.

e

� 2 l

1

means

that from the lo
ation l

1

all suÆxes respe
t p

�

in their se
ond observation, or

equivalently that from all lo
ations l

2

that are
onne
ted to l

1

, the a

epted

suÆxes are suÆxes where p

�

is true at the �rst observation. Symmetri
ally

for ⊖-formulas. As the suÆxes starting from a lo
ation l

1

must satisfy the

propositions asso
iated with the set of formulas that belong to atom l

1

then

the propositional labels are simply the propositions that are related to the

formulas of l

1

. To ensure the semanti
s of real-time formula, we simply use

the history and prophe
y
lo
ks. If ⊲
�

� 2 l then all edges that start from

l are labelled by the
onstraint y

p

�

�
 that ensures the real-time rule (H8)

of timed Hintikka sequen
es. The situation is similar for history formulas.

We
an now formulate more rigorously the edges of the automaton.

14

Edges: in A

�

, the lo
ation l

1

2 L is
onne
ted by an edge to the lo
ation

l

2

2 L, i.e. (l

1

; l

2

; s;) 2 E i� the following requirements are satis�ed:

(E1) For every

e

� 2 Cl(�):

e

� 2 l

1

i� � 2 l

2

;

(E2) For every ⊖� 2 Cl(�): � 2 l

1

i� ⊖� 2 l
2

;

(E3) s = fp

�

j � 2 l

1

g (propositional edge labelling fun
tion);

(E4) =

V

fx

p

�

�
j ⊳
�

� 2 l

1

g

V

fy

p

�

�
j ⊲
�

� 2 l

1

g

V

f:(x

p

�

�

)j:(⊳
�

�) 2 l

1

g

V

f:(y

p

�

�
)j:(⊲
�

�) 2 l

1

g (real-time edge la-

belling fun
tion).

At this stage we have only de�ned ne
essary
onditions for the formula

automaton A

�

to a

ept timed tra
es that are timed Hintikka sequen
es �.

We still have to ensure the ful�llment of fatalities. Let us examine how to

ope with the ful�llment of fatalities indu
ed by a formula of the form �

1

U�

2

.

The semanti
s of the formula �

1

U�

2

expresses that the formula �

1

must stay

true until a �

2

state is eventually rea
hed. In our
ase, p

�

2

is a fatality

in the sense that in all timed Hintikka sequen
es, a p

�

1

U�

2

observation is

always followed by some p

�

2

observation. The ful�llment of fatalities
an be

ensured by the me
hanism of a

eptan
e of B�u
hi automata and relies on

the following lemma adapted from [MP95℄:

Lemma 1 Let � be a timed Hintikka sequen
e of the EventClo
kTA formula

� and p

�

1

U�

2

a proposition promising p

�

2

. Then, �
ontains in�nitely many

positions j � 0 su
h that:

p

:(�

1

U�

2

)

2 �

j

or p

�

2

2 �

j

Proof. Let us �rst make the hypothesis that �
ontains in�nitely many

p

�

1

U�

2

-positions. By requirement (H6) of timed Hintikka sequen
es, ea
h of

those positions is followed by a p

�

2

-position and thus there also exists an

in�nite number of p

�

2

-positions.

If we make the hypothesis that �
ontains only �nitely many p

�

1

U�

2

-

positions then by requirement (H2) there are in�nitely many positions j

s.t. p

:(�

1

U�

2

)

2 �

j

and thus the theorem is veri�ed. �

We say that a
omputation of A

�

ful�lls the fatalities of a formula � i� for

every formula � 2 Cl(�) promising a formula �

2

, the
omputation
ontains

in�nitely many :� lo
ations or �

2

lo
ations. To restri
t the a

epted
om-

putation of A

�

to
omputations that ful�ll the fatalities of �, we use the

me
hanism of a

epting sets.

A

epting sets: F = fflj:(�

1

U�

2

) 2 l or �

2

2 lg j�

1

U�

2

2 Cl(�)g. The

a

epting sets are
hosen to ensure the fatalities.

15

This de�nition
ompletes the pro
edure for
onstru
ting the automaton A

�

.

Now, let us prove that our
onstru
tion is
orre
t:

Theorem 2 The set of timed tra
es a

epted by the EventClo
kTA A

�

is

exa
tly the set of timed Hintikka sequen
es of formula �.

Proof. First, let us show that if � is a timed Hintikka sequen
e of the

rEventClo
kTL formula � then � 2 L(A

�

). Let us
onstru
t a
omputation

 = l

0

e

0

�! l

1

e

1

�! : : : of A

�

on �. Take l

i

= f�jp

�

2 �

i

g for ea
h i � 0. Let

us �rst note that by requirement (H2) and (H3) of the de�nition of timed

Hintikka sequen
es, ea
h l

i

is propositionally
onsistent and
omplete. Thus

ea
h l

i

is an atom and by (L) a lo
ation of A

�

;

(C1)
 respe
ts the initiality requirement of
omputation: by requirement

(H1) of the de�nition of timed Hintikka sequen
e, p

�

2 �

0

and thus

� 2 l

0

, further, by (H5), we know that for all ⊖� 2 Cl(�), p

��

62 �

0

and thus : ⊖ � 2 l

0

. Thus the
onditions (S1) and (S2) are veri�ed

and l

0

2 L

0

;

(C2)
 respe
ts the
onse
ution requirement: by points (H4) and (H5) of the

de�nition of timed Hintikka sequen
es, we know that p

e

�

2 �

i

i� p

�

2

�

i+1

whi
h transposes to
 as

e

� 2 l

i

i� � 2 l

i+1

. A similar reasoning

an be applied to the past (⊖-operators) and thus the
onse
ution

requirement is respe
ted;

(C3)
 respe
ts the timing requirement: if the
onstraint y

p

�

�
 ap-

pears in the
onjun
tion

i

at position i of
, we must show that

Val

y

p

�

(��; �� ; i) �
. If y

p

�

�
 appears on

i

then ⊲
�

� 2 l

i

and by

de�nition of the labelling fun
tion, we have p

B

�

�

2 �

i

. By (H8), we

have that there exists a position j > i in �� su
h that p

�

2 �

j

, �

j

��

i

�

and for all k, i < k < j, p

�

62 �

k

. This is exa
tly what we wanted. A

similar reasoning apply to other
ases.

(C4)
 is adequate: dire
t
onsequen
e of the de�nition of the labelling

fun
tion (E3);

(C5)
 respe
ts the a

eptan
e
ondition: by (H4), every observation �

i

s.t.

p

�

1

U�

2

2 �

i

, is followed by an observation �

j

(j � i) s.t. p

�

2

2 �

j

.

By
onstru
tion of
 and the edge labelling fun
tion, we have that

every lo
ation l

i

s.t. �

1

U�

2

2 l

i

is followed by a lo
ation l

j

(j � i) s.t.

�

2

2 l

j

. Thus for every formula �

1

U�

2

2 Cl(�),

ontains in�nitely

many lo
ations that either
ontain �

2

(if there are in�nitely many

lo
ations that
ontain �

1

U�

2

) or there are in�nitely many lo
ations

that do not
ontain �

1

U�

2

and thus the generalized B�u
hi
ondition

is veri�ed by
.

16

Se
ond, we show that if � 2 L(A

�

) then � is a timed Hintikka sequen
e

of �. To prove that dire
tion, we show that for all positions i in � every

ondition of the de�nition of timed Hintikka sequen
es is veri�ed. We assume

 = l

0

e

0

�! l

1

e

1

�! : : : of A

�

on � as above.

(H1) As
 is a
omputation of A

�

,
 respe
ts the initiality requirement (C1),

i.e. l

0

2 L

0

, and thus by (S1), � 2 l

0

. The propositional labelling

fun
tion of A

�

is adequate (C4), so that p

�

2 �

0

and thus requirement

(H1) is veri�ed.

(H2) Let us �rst show that if p

�

2 �

i

where � = :�

1

, then p

�

1

62 �

i

. By the

de�nition of the edge labelling fun
tion (E3), adequa
y requirement

of
omputation (C4), we know that :�

1

2 l

i

. By requirement (A1)

of atoms, �

1

62 l

i

whi
h implies by de�nition of the propositional edge

labelling fun
tion of A

�

(E3) and by the adequa
y requirement of

omputation (C4) that p

�

1

62 �

i

. If p

�

2 �

i

where � = �

1

, then

p

:�

1

62 �

i

is established by a similar reasoning. Requirement (H2) is

thus veri�ed.

(H3) Let p

�

2 �

i

where � = �

1

_ �

2

. By
onstru
tion of
, this means

�

1

_ �

2

2 l

i

. By requirement (A2) of atoms, this means either �

1

2 l

i

or �

2

2 l

i

. By de�nition of the propositional labelling fun
tion (E3),

this means either p

�

1

2 s

i

or p

�

2

2 s

i

where s

i

is the propositional

labelling of edge e

i

. Thus p

�

1

2 �

i

or p

�

2

2 �

i

.

(H4) We have to show that p

e

�

1

2 �

i

i� p

�

1

2 �

i+1

. p

e

�

1

2 �

i

, by (E3) and

(C4), means that

e

�

1

2 l

i

. By the
onse
ution requirement (C2) and

(E1), this is �

1

2 l

i+1

. Finally, by (E3) and (C4), we obtain p

�

1

2 �

i+1

.

The other dire
tion is similar.

(H5) This
ase is similar to the previous one and is left to the reader.

(H6) We �rst show that if p

�

2 �

i

where � = �

1

U�

2

then there exists a

position j, j � i s.t. p

�

2

2 �

j

and for all positions k, i � k < j,

p

�

1

2 �

k

. First, we show that j exists. By
ontradi
tion,
onsider the

hypothesis that there does not exists a �rst l

j

s.t. �

2

2 l

j

with i � j.

But in that
ase, we have :�

2

2 l

k

for all i � k. As �

1

U�

2

2 l

i

, a

indu
tive reasoning similar to the next one allows us to
on
lude that

�

1

U�

2

2 l

k

for all i � k. Thus,
 would not be a

epting,
ontradi
ting

the de�nition of
. So we
an take the �rst su
h j. By de�nition of

, (E3) and (C4), �

1

U�

2

2 l

i

. We note l

j

with j � i, the �rst lo
ation

after l

i

in
 su
h that �

2

2 l

j

. Sin
e we have taken the �rst j, for all

k, i � k < j, �

2

62 l

k

. Let us show that �

1

2 l

k

and �

1

U�

2

2 l

k+1

for

ea
h of those k. We reason by indu
tion:

{ Base
ase: k = i < j, as �

1

U�

2

2 l

i

and �

2

62 l

i

, the requirement

(A3) of atoms allow us to
on
lude that �

1

2 l

i

and �

1

U�

2

2 l

i+1

.

17

{ Indu
tion
ase: by indu
tive hypothesis we have �

1

2 l

l

and

�

1

U�

2

2 l

l+1

, for all l s.t. i � l < k < j, let us show that we

have that �

1

2 l

k

and �

1

U�

2

2 l

k+1

. As �

1

U�

2

2 l

k

and �

2

62 �

k

as k < j, the
onne
tion requirement (E1) and the requirement

(A3) of atoms allow us to
on
lude �

1

2 l

k

and �

1

U�

2

2 l

k+1

.

So we have shown that �

1

2 l

k

for all k s.t. i � k < j and by hypothesis

�

2

2 l

j

. By the de�nition of the propositional edge labelling fun
tion

(E3) and adequa
y (C4), p

�

1

2 �

k

for all k s.t. i � k < j and p

�

2

2 �

j

.

We
onsider now the other dire
tion: let us make the hypothesis that

there exists j � i s.t. p

�

2

2 �

j

and for all k, i � k < j, p

�

1

2 �

k

then

we must establish that p

�

1

U�

2

2 �

i

. Again, we
an use the �rst su
h

j. From that, let us show that for all k, i � k � j, p

�

1

U�

2

2 �

k

. We

reason by indu
tion.

{ Base
ase: k = j. As �

2

2 l

j

, we have, by (E3), (C4) and

requirement (A3) of atoms, we have �

1

U�

2

2 l

j

and thus p

�

1

U�

2

2

�

j

.

{ Indu
tion
ase: by indu
tion hypothesis, we have that for all m,

i < k � m � j, p

�

1

U�

2

2 �

m

. Let us show that p

�

1

U�

2

2 �

k�1

.

We know that p

�

1

U�

2

2 �

k

, p

�

1

2 �

k�1

and p

�

2

62 �

k

. By (E3)

and (C4), we have

e

(�

1

U�

2

); �

1

2 l

k�1

. By requirement (A3) of

atoms, we obtain �

1

U�

2

2 l

k�1

and thus p

�

1

U�

2

2 �

k�1

by (E3)

and (C4).

(H7) This
ase is similar to the previous one and is left to the reader.

(H8) First let us prove that if p

�

2 �

i

where � =⊲
�

�

1

then there exists

a position j su
h that j > i and p

�

1

2 �

j

, �

j

� �

i

�
 and for all

k, i < k < j, p

�

1

62 �

k

. By de�nition of
 and (E3), we know that

⊲
�

�

1

2 l

i

. By de�nition of the real-time edge labelling fun
tion,

we know that

i

is of the form y

p

�

1

�
 ^

0

i

and thus by the timing

requirement of
omputation (C3): (�; i) j= y

p

�

1

�
 whi
h implies

exa
tly what we had to prove.

Now let us show that if there exists a position j su
h that j > i

and p

�

1

2 �

j

, �

j

� �

i

�
 and for all k, i < k < j, p

�

1

62 �

k

then

p

B

�

�

1

2 �

i

. Let us make the hypothesis that p

B

�

�

1

62 �

i

. Then

⊲
�

�

1

62 l

i

and thus, by atom propositional
ompleteness (A1), : ⊲
�

�

1

2 l

i

. By the real-time labelling fun
tion,

i

=

0

i

^:(y

p

�

1

�
) whi
h

by the semanti
s of prophe
y
lo
k
onstraint
ontradi
ts that
 is a

omputation of A

�

. Thus p

B

�

�

1

2 �

i

.

(H9) This
ase is similar to the previous one and is left to the reader.

�

18

Corollary 1 The rEventClo
kTL formula � is satis�able i� the language

a

epted by the EventClo
kTA A

�

is not empty.

Proof. Dire
t
onsequen
e of proposition 1 and theorem 2. �

The usual next step is to show that we
an restri
t the symbols on edges

of A

�

to propositions. However, for EventClo
kTA, this works only for non-

re
ursive formulas. Let A

�

\ P be as A

�

, but with edges labelled with

proposition symbols only: s = fp

�

j� 2 l

1

^ � 2 Pg.

Corollary 2 The models of a non-re
ursive rEventClo
kTL formula � form

the language a

epted by the EventClo
kTA A

�

\ P.

To have a de
ision pro
edure for our rEventClo
kTL logi
, it remains us to

show how the emptiness of EventClo
kTA
an be de
ided. The prin
iples of

the region
onstru
tion [AD94℄ whi
h transforms a timed automaton into an

untimed �nite state ma
hine
an be applied to EventClo
kTA automata. The

idea is to
onstru
t a �nite state ma
hine that a

epts Untimed(L(A

�

)), i.e.

f��j(��; ��) 2 L(A

�

)g. The results presented here are adapted from [AD94,

AFH94℄ and are re
alled to allow the reader, not familiar with real-time

automata, to fully understand the de
ision pro
edure.

De�nition 15 An extended state of an EventClo
kTA A =

(L;L

0

;P;C; E;F) is a pair (l; �) where l 2 L is a lo
ation and

� : C ! R
+

[f?g, is a
lo
k valuation whi
h asso
iates a value of

R
+

[f?g to ea
h
lo
k z 2 C of the automaton.

The following de�nition formalizes the e�e
t of time passing on valua-

tions of
lo
ks:

De�nition 16 (� + t) The
lo
k valuation �

0

obtained from the
lo
k val-

uation � by letting time elapse during t, denoted �+ t, is de�ned as follows:

� For all prophe
y
lo
ks y 2 P: (� + t)(y) = �(y) � t if �(y) � t � 0;

otherwise � + t is not de�ned.

� For all history
lo
ks x 2 H : (� + t)(x) = �(x) + t

with the addition + and subtra
tion � interpreted as usual in the real

numbers and as follows for the spe
ial value ?: ?+ t = ?,?� t = ?.

The number of extended states is un
ountable, as we model time by

the nonnegative real numbers (R
+

). But to evaluate real-time
onstraints

labelling edges of EventClo
kTA, only the integer value of
lo
ks and whether

their fra
tional part is zero is needed. Also, to know whi
h
lo
ks will

�rst
hange their integer value, we only need to know the order between

the fra
tional parts of the
lo
k values. Next we re
all the de�nition of

19

an equivalen
e relation between valuations based on those two remarks.

This equivalen
e relation partitions the valuations into a �nite number of

equivalen
e
lasses
alled regions. Two states in the same region will behave

similarly.

De�nition 17 [AD94, AFH94℄ Two
lo
k valuations �

1

; �

2

are in the same

region, denoted �

1

� �

2

, for an automaton A = (L;L

0

;P;C; E;F) i� the

following
onditions are respe
ted:

� �

1

and �

2

agree on whi
h
lo
ks have the unde�ned value ?. Those

lo
ks are
alled unde�ned. The set of
lo
ks unde�ned in valuation �

is denoted Unde�ned(�). The other
lo
ks are
alled a
tive. The set

of
lo
ks a
tive in valuation � is denoted A
tive(�).

� �

1

and �

2

agree on the integral part of all a
tive
lo
ks that are at

most
, where
 is the biggest
onstant appearing in the the real-time

onstraints de
orating the edges of A:

{ 8z 2 A
tive(�

1

), if �

1

(z) �
 or �

2

(z) �
 then b�

1

(z)
 = b�

2

(z)

� �

1

and �

2

agree on the ordering of the fra
tional part of all a
tive

lo
ks that are at most
:

{ for a prophe
y
lo
k y, let h�

1

(y)i be �

1

(y) � b�

1

(y)
 and for a

history variable x let h�

1

(x)i be d�

1

(x)e � �

1

(x). For all z

1

; z

2

2

A
tive(�

1

) with �

1

(z

1

) �
 and �

1

(z

2

) �
 :

� h�

1

(z

1

)i = 0 i� h�

2

(z

1

)i = 0

� h�

1

(z

1

)i � h�

1

(z

2

)i i� h�

2

(z

1

)i � h�

2

(z

2

)i

A
lo
k region is an equivalen
e
lass of �. Two extended states

(l

1

; �

1

); (l

2

; �

2

) are region-equivalent if l

1

= l

2

and �

1

� �

2

. Note that �

is of �nite index.

Let us now de�ne when a
lo
k region �

2

is the time su

essor of another

lo
k region �

1

.

De�nition 18 A
lo
k region �

2

is a time su

essor of a
lo
k region �

1

,

denoted �

2

2 TS(�

1

), i� 8�

1

2 �

1

, 9t 2 R
+

su
h that �

1

+ t 2 �

2

.

Next, we de�ne a B�u
hi automaton with �-moves,
alled the region au-

tomaton of A, denoted R(A) that a

epts exa
tly Untimed(L(A)). The

�-moves will be used to model time passing, i.e. transitions between
lo
k

regions.

De�nition 19 The region automaton of A = (L;L

0

;P;C; E;F) is the

B�u
hi automaton R(A) = (L

r

; L

r

0

;�

r

; E

r

;F

r

) where:

20

� L

r

is the set of regions, i.e. 3-tuple (l; �; �) with l 2 L, � an equivalen
e

lass of
lo
k interpretations and � 2 ft; dg. With �, lo
ations are

partitioned

3

;

� L

r

0

is the subset of lo
ations (l; �; �) 2 L where l 2 L

0

, 8x 2 H; �(x) =

?, � = t. Initially all history
lo
ks are unde�ned.

� �

r

= 2

P

[f�g;

� E

r

is the set of triples ((l

1

; �

1

; �

1

); (l

2

; �

2

; �

2

); s) su
h that

{ if s 2 2

P

, �

1

= t and �

2

= d meaning that the last transition

of the automaton was a time transition and now the automaton

takes a dis
rete transition, and there is an edge (l

1

; l

2

; s;) in

automaton A and a
lo
k region �

3

su
h that:

� �

1

= �

3

[y

p

:= 0jp 2 s℄ (�

1

agrees with �

3

on all
lo
ks ex
ept

prophe
y
lo
ks asso
iated with propositions that appear in

s; those
lo
ks have the value 0 in �

1

);

� �

2

= �

3

[x

p

:= 0jp 2 s℄ (�

2

agrees with �

3

on all
lo
ks ex
ept

history
lo
ks asso
iated with propositions that appear in s;

those
lo
ks have the value 0 in �

2

);

� 8� 2 �

3

; � j= : the value of
lo
ks when
rossing the edge

are
onsistent with the real-time
onstraint .

{ if s = �, �

1

= d and �

2

= t meaning that the last transition of

the automaton was a dis
rete transition, and now the move is a

time move: �

2

2 TS(�

1

) (the region �

2

is a time su

essor of the

region �

1

) and l

1

= l

2

;

� F

r

= fF

0

1

; : : : ; F

0

n

g [fF

x

p

�

j ⊳
�

� 2 Cl(�)g [fF

y

p

�

j ⊲
�

� 2 Cl(�)g;

where:

{ for all i, F

0

i

= f(l; �; �)jl 2 F

i

g. So ea
h F

0

i

is a set of regions

omposed of an a

epting lo
ation for F

i

of A and a
lo
k region

�;

{ F

x

p

�

= f(l; �; �)j�(x

p

�

) = 0 _ �(x

p

�

) >
 _ �(x

p

�

) = ?;8� 2 �g

is the set of regions where the history
lo
k x

p

�

is greater than

the maximal
onstant
, equal to zero or unde�ned. This ensures

that either x

p

�

is reset in�nitely often, always unde�ned or its

value goes beyond any bounds. This is imposed by the progress

of time requirement of timed tra
es and the semanti
s of history

lo
ks.

3

This partition of the lo
ations allows us to for
e the region automaton to take in�nitely

many dis
rete jumps
orresponding to the in�nitely many observations of a tra
e.

21

{ F

y

p

�

= f(l; �; �)j�(y

p

�

) = 0 _ �(y

p

�

) = ?;8� 2 �g is the set

of regions where the prophe
y
lo
k y

p

�

has the value 0 or is

unde�ned. These sets are ne
essary to ensure the progress of

time. In fa
t, if a prophe
y
lo
k is not unde�ned, as time always

progresses, the
lo
k must inevitably attain the value 0.

The language of R(A) is the set of in�nite tra
es
orresponding to a

epted

runs of R(A). The following theorem states the
orre
tness of the region

automaton.

Theorem 3 [AFH94℄ The language of R(A) is Untimed(L(A)).

Corollary 3 The timed language of A is empty i� the language of R(A) is

empty.

The theorem 2 and
orollary 3 give us the possibility to de
ide the model-

he
king as well as the satis�ability/validity problems for rEventClo
kTL.

Theorem 4 The satis�ability and validity problems for rEventClo
kTL are

de
idable.

Proof. The satis�ability of an rEventClo
kTL formula �
an be de
ided by

onstru
ting A

�

, the automaton for � and testing if L(A

�

) 6= ;. Similarly

the validity of an an rEventClo
kTL formula �
an be de
ided by
onstru
ting

A

:�

, the automaton for the negation of � and testing if L(A

:�

) = ;. �

The model-
he
king problem for real-time rea
tive systems
onsists in veri-

fying that the timed tra
es de�ned by a produ
t of timed automata respe
t

a property expressed in a real-time logi
, i.e. L(A

1

� � � � � A

n

) � L(�).

Note that L(A

1

� � � � � A

n

) � L(�) i� L(A

1

� � � � � A

n

) \ L(:�) = ; i�

L(A

1

� � � � � A

n

� A

:�

) = ;. This gives us a de
ision pro
edure for the

model-
he
king problem:
ompute A

:�

, the automaton for the negation of

�, test if the produ
t of this automaton with the timed automata has a

empty timed language. This gives the following theorem.

Theorem 5 The real-time model
he
king problem for rEventClo
kTL is de-

idable.

The pro
edure that we propose for de
iding rEventClo
kTL
onstru
ts

�rst an EventClo
kTA whi
h is transformed into an untimed automaton, the

region automaton, for
he
king emptiness. The following lemma and the-

orem
hara
terize the size of the
onstru
ted automata for a given rEvent-

Clo
kTL formula �:

Theorem 6 [AFH94℄ The region equivalen
e � de�ned on the extended

states of an EventClo
kTA A is of �nite index. The number of lo
ations in

22

region automaton of an EventClo
kTA A is O(l � 2

m�log
�m

), where l is the

number of lo
ations in A, m is the number of
lo
ks in A and
 is the largest

onstant appearing in A.

The emptiness of the region automaton
an be tested without
onstru
t-

ing it
ompletely:

Lemma 2 [SVW85℄ The nonemptiness problem for B�u
hi automata is

NLogSpa
e-Complete.

>From theorem 6 and lemma 2 we obtain:

Lemma 3 (PSpa
e-Easiness) The satis�ability and validity problem for

rEventClo
kTL in pointwise semanti
s are PSpa
e-Easy.

Proof. First, the size for ea
h formula � 2 rEventClo
kTL is de�ned by the

three following elements:

1. the number of subformulas in � (bounded by j�j);

2. the maximal integer
onstant K used in a real-time operator within �

(bounded by 2

j�j

);

3. the number of real-time subformulas in � (bounded by j�j).

By observing how A

�

is
onstru
ted, it is dire
t to show that its size is as

follows:

� the number of lo
ations in A

�

is exponential in the number of subfor-

mulas in �;

� the maximal integer
onstant used by A

�

in
lo
k
onstraints is equal

to the maximal integer
onstant K used by � within real-time opera-

tors;

� the number of
lo
ks used by A

�

is bounded by the number of real-time

subformulas in �.

By lemma 6, we
an
onstru
t the region automaton R

A

�

whi
h is a B�u
hi

automaton with a number of lo
ations:

� linear in the number of lo
ations of A

�

, and thus singly exponential in

the number of subformulas of �;

� singly exponential in the number of
lo
ks used by A

�

and thus singly

exponential in the number of real-time operators of �;

� singly exponential in the maximal
onstant used by A

�

and thus singly

exponential in the maximal
onstant K used in �.

23

Using a nondeterministi
 version for the emptiness of R

A

�

, this exponential

automaton needs not be
onstru
ted expli
itly and we obtain a PSpa
e

pro
edure for the satis�ability and validity problems of rEventClo
kTL. �

Lemma 4 (PSpa
e-Hardness) The satis�ability and validity problems

for rEventClo
kTL in pointwise semanti
s are PSpa
e-Hard.

Proof. The hardness follows dire
tly from the fa
t that the logi
 LTL is

ontained in rEventClo
kTL and has been shown Pspa
e-hard in [CES86℄.

�

As a
onsequen
e, the
omplexity of the satis�ability problem and the

validity problem of rEventClo
kTL are in Pspa
e.

Theorem 7 The satis�ability and validity problems for rEventClo
kTL are

Pspa
e-
omplete.

6 Expressiveness

In this se
tion, we study the expressive power of rEventClo
kTL in pointwise

timed tra
es. The results di�er when the logi
 is evaluated in
ontinuous

timed tra
es (i.e. timed state sequen
es), see Appendix. First, we
ompare

its expressive power with respe
t to Metri
IntervalTL; then, with respe
t to

EventClo
kTA.

6.1 rEventClo
kTL vs Metri
IntervalTL

In this subse
tion, we
ompare the expressiveness of the logi
 rEventClo
kTL

with the expressiveness of the logi
 Metri
IntervalTL. We �rst re
all the def-

inition of the syntax and the semanti
s of the logi
 Metri
IntervalTL.

De�nition 20 (Metri
IntervalTL-syntax) A formula of Metri
IntervalTL is

built from proposition symbols, boolean
onne
tives, and time-bounded \un-

til" and \sin
e" operators:

� ::= p j �

1

^ �

2

j :� j �

1

b

U

I

�

2

j �

1

b

S

I

�

2

where p is a proposition and I is a nonsingular interval whose �nite end-

points are nonnegative integers, and that does not
ontain 0. �

In the sequel, we will be interested in fragments of Metri
IntervalTL:

De�nition 21 (Metri
IntervalTL

0;1

-fragment) The formulas of the frag-

ment Metri
IntervalTL

0;1

are de�ned as above, ex
ept that the interval I

must either have the left endpoint 0, or be unbounded; in these
ases I

an be repla
ed by an expression of the form �
, for a nonnegative integer

onstant
 and �2 f<;�;�; >g. �

24

De�nition 22 (Metri
IntervalTL

F

-fragment) The formulas of the frag-

ment Metri
IntervalTL

F

are de�ned as for Metri
IntervalTL, ex
ept that

b

U

I

is the only real-time operator.

We now de�ne the semanti
s of those logi
s.

De�nition 23 The Metri
IntervalTL formula � holds in position i 2 N of

the timed tra
e � = (��; ��), denoted (�; i) j= �, a

ording to the following

de�nition:

(�; i) j= p i� p 2 �

i

;

(�; i) j= :� i� (�; i) 6j= �;

(�; i) j= �

1

^ �

2

i� (�; i) j= �

1

and (�; i) j= �

2

;

(�; i) j= �

1

b

U

I

�

2

i� there exists j > i su
h that (�; j) j= �

2

,

�

j

��

i

2 I and for all k with i < k < j, we have (�; k) j= �

1

4

;

(�; i) j= �

1

b

S

I

�

2

i� there exists j, 0 � j < i, su
h that (�; j) j= �

2

,

�

j

� �

i

2 I and for all k with j < k < i, we have (�; k) j= �

1

;

TheMetri
IntervalTL formula � de�nes the timed !-language L(�) that
on-

tains all timed state sequen
es � with (�; 0) j= �.

We also use the following
lassi
al abbreviations:

� When the real-time
onstraint is omitted, it is the most permissive:

�

b

U � _ �

b

U

(0;1)

 ;

� We
an use
onstraints instead of intervals:

�

b

U

�

 � _ �

b

U

I

 , where I = fr 2 Rjr > 0 ^ r �
g;

� We
an extend intervals to in
lude 0, by making

b

U re
exive:

�

b

U

f0g[I

 � _ �

b

U

I

 ;

�

b♦
I

� � >

b

U

I

�, meaning \eventually within I";

�

b�
I

� � :

b♦
I

:�, meaning \always during I";

� and their past
ounterparts:

b♦�
I

� � >

b

S

I

�,

b⊟
I

� � :

b♦�
I

:�;

� In lemma 7 we will see that all rEventClo
kTL operators
an be de�ned

as abbreviations.

We now
ompare the expressive power of the two logi
s. We will show

that they di�er on the in�nite set of timed tra
es �:

De�nition 24 The (in�nite) set of timed tra
es � =

f�

1

; �

1

; �

2

; : : : ; �

n

; : : : g
ontains the following tra
es de�ned on the

set of propositions P = fpg:

4

Note that the operator

b

U

I

is irre
exive.

25

1. ea
h �

k

2 �
ontains the same qualitative information: �

k

= (��; ��

k

)

is su
h that for all position i 2 N, �
i

= fpg; that is, p is true in every

position of every timed tra
e of �.

2. the timed tra
es of � have the following timing information:

(a) for �

1

, the timing information ��

1

= �

1

0

�

1

1

: : : �

1

n

: : : is �

1

i

=

i� 1:5; that is, an observation ea
h 1:5 time units;

(b) for �

k

, with k 2 f1; 2; : : : ; n; : : : g, the timing information ��

k

=

�

k

0

�

k

1

: : : �

k

n

: : : is

�

k

i

=

�

i� 1:5 if i 6= k

i� 1:5� 0:1 if i = k

that is, in �

k

, there is an irregular k

th

observation whi
h is sepa-

rated from the k � 1

th

by 1.4 time units and from the k + 1

th

by

1.6 time units.

Let us note that for every position i 2 N, in a timed tra
e � = (��; ��) 2

�, �

i+1

� �

i

2 (1; 2). That is, the time di�eren
e between two
onse
-

utive observations is between 1 and 2 time units, in fa
t it is either

equal to 1.4, 1.5 or 1.6.

�

Example 4 Here are two examples of pre�xes of tra
es from the set �:

� a pre�x of �

1

:

(fpg; 0)(fpg; 1:5)(fpg; 3)(fpg; 4:5)(fpg; 6)(fpg; 7:5) : : :

� a pre�x of �

3

:

(fpg; 0)(fpg; 1:5)(fpg; 3)(fpg; 4:4)(fpg; 6)(fpg; 7:5) : : :

so the observation number 3 is at 4.4 instead of 4.5 as it is in �

1

.

In the next lemma, we show that the future fragment of Metri
IntervalTL

an distinguish �

1

from the other timed tra
es of �. The idea is that the

position i is always separated for the position i + 2 by 3 time units in �

1

while it is not the
ase in �

k

, where the k

th

position is separated by 3.1 time

units from the position k+2. We now show that a simple Metri
IntervalTL

F

formula
an dete
t this fa
t.

Lemma 5 �

b�
(0;1)

(p !

b♦
[2;3℄

p) 2 Metri
IntervalTL

F

is su
h that

(�

1

; 0) j= and for all k � 1, (�

k

; 0) 6j= .

26

Proof. Every position i in �

1

is separated by exa
tly 3 time units from the

position i + 2. As p is true everywhere, p !

b♦
[2;3℄

p holds in every position

of �

1

and thus by the semanti
s of the

b�
(0;1)

-operator, (�

1

; 0) j= . On

the other hand, the k

th

position of �

k

is not followed by any position in

�

k

k

+ [2; 3℄ as the (k + 1)

th

position is at time �

k

k

+ 1:6 and the (k + 2)

th

position is at time �

k

k

+3:1. Thus p!

b♦
[2;3℄

p is false in position k of �

k

and

thus (�

k

; 0) 6j= . �

We now show that the future fragment of rEventClo
kTL
annot distin-

guish between timed tra
es of �. This is a
onsequen
e of the following

stronger lemma:

Lemma 6 For every formula � 2 rEventClo
kTL

F

, for every two timed

tra
es �

1

; �

2

2 �, for every two positions i; j su
h that 0 � i < j: (�

1

; i) j= �

i� (�

2

; i) j= � i� (�

1

; j) j= � i� (�

2

; j) j= �. That is, every formula of

rEventClo
kTL is either
onstantly true in all timed tra
es of � or
onstantly

false in all timed tra
es of �.

Proof. The proof is by indu
tion on the stru
ture of formula.

� � = p: as p is true in every position of every timed tra
e of �, the

base
ase is veri�ed.

� � =⊲
�

�

1

: By indu
tion hypothesis, we know that either:

1. �

1

is true in all positions of all timed tra
es of �: Thus for every

position i, the �rst following �

1

is in i + 1 and by de�nition of

�, �

i+1

� �

i

2 (1; 2) in the two timed tra
es. Thus ⊲
�

�

1

is

onstantly true if (1; 2) � fv 2 R
+

j v �
g, and
onstantly false

otherwise.

2. �

1

is false in all positions of all timed tra
es of �: So there does

not exists a (�rst) following �

1

position, and ⊲
�

�

1

is
onstantly

false.

� The other
ases are left to the reader.

�

A dire
t
onsequen
e of the lemma 6 is that rEventClo
kTL

F

annot

distinguish �

1

from other models of �:

Corollary 4 For every formula 2 rEventClo
kTL

F

, for every k � 1,

�

1

2 L() i� �

k

2 L().

And rEventClo
kTL

F

is less expressive than Metri
IntervalTL

F

:

Theorem 8 Metri
IntervalTL

F

6� rEventClo
kTL

F

.

27

Proof. By
orollary 4, we know that for every formula � 2 rEventClo
kTL

F

,

L(�)
ontains � or has an empty interse
tion with �. On the other hand,

the formula �

b�(p ! b♦
[2;3℄

p) of Metri
IntervalTL

F

is satis�ed by �

1

but

by none of the timed tra
es �

k

2 �. It means that L() \ � 6= ; but

� 6� L(). Thus rEventClo
kTL

F

annot express the property expressed by

 . �

Let us now take a look at the other dire
tion of the in
lusion: \is every

rEventClo
kTL

F

-expressible property also expressible inMetri
IntervalTL

F

?"

To answer this question, we provide a translation �

T

, de�ned by indu
tion:

� � = p: �

T

= p.

� � = �

1

_ �

2

: �

T

= �

T

1

_ �

T

2

.

� � = :�

1

: �

T

= :�

T

1

.

� � =

e

�

1

: �

T

= ?

b

U

(0;1)

�

T

1

.

� � = ⊖�
1

: �

T

= ?

b

S

(0;1)

�

T

1

.

� � = �

1

U�

2

: �

T

= �

T

2

_ (�

T

1

^ (�

T

1

b

U

(0;1)

�

T

2

)).

� � = �

1

S�

2

: Symmetri
ally, �

T

= �

T

2

_ (�

T

1

^ (�

T

1

b

S

(0;1)

�

T

2

)).

� � =⊲
I

�

1

: �

T

= >

b

U

I

�

T

1

^:(>

b

U

<I

�

T

1

), where # I is the real interval

ft > 0 j 9t

0

2 I : t � t

0

g and < I is the real interval ft > 0 j 8t

0

2 I :

t < t

0

g.

� � =⊳
I

�

1

: Symmetri
ally, �

T

= >

b

S

I

�

T

1

^ :(>

b

S

<I

�

T

1

).

Lemma 7 For every formula � of rEventClo
kTL, �

T

2 Metri
IntervalTL

0;1

has the same meaning: for every timed tra
e �, for every position i: (�; i) j=

� i� (�; i) j= �

T

. Furthermore, this translation respe
ts future fragments: if

� 2 rEventClo
kTL

F

; �

T

2 Metri
IntervalTL

F

0;1

.

As a
onsequen
e we have the following theorem:

Theorem 9 The logi
 Metri
IntervalTL

0;1

is at least as expressive

as rEventClo
kTL, rEventClo
kTL � Metri
IntervalTL

0;1

and thus

rEventClo
kTL � Metri
IntervalTL.

In the theorem 8, we have shown that the in
lusion rEventClo
kTL

F

�

Metri
IntervalTL

F

is stri
t. Is this in
lusion also stri
t for the full

rEventClo
kTL logi
? Before answering this question, let us �rst note that

adding past operators to rEventClo
kTL

F

adds expressive power. In fa
t,

let us
onsider the timed tra
e �

k

, with k even (so that k � 1:5 is a natural

number), and the rEventClo
kTL formula

28

k

�

e

: : :

e

| {z }

k

⊳
=k�1:5

:⊖>

where :⊖> is only true at the initial position of �

k

and thus

k

expresses,

in this initial position, that \the k

th

position of �

k

has the timing k � 1:5".

Whi
h is false by de�nition of �

k

. On the other hand, this property is true in

the initial position of �

1

and thus the formula

k

an distinguish between

�

k

and �

1

. Thus, adding past operators to rEventClo
kTL

F

in
reases the

expressive power of the logi
:

Theorem 10 The logi
 rEventClo
kTL is stri
tly more expressive than its

future fragment rEventClo
kTL

F

: rEventClo
kTL

F

� rEventClo
kTL.

Note that this phenomenon is not observed in the temporal logi
 LTL:

adding past operators to LTL only adds
onvenien
e but no real expres-

sive power [GPSS80℄. For real-time logi
s, in
ontrast, past operators add

expressive power, for instan
e [AH92a℄ proved that Metri
IntervalTL

F

�

Metri
IntervalTL, noted there MITL �MITL

P

.

The formula

k

above explains why our simple proof that

Metri
IntervalTL

F

is more expressive than rEventClo
kTL

F

will not work to

show that Metri
IntervalTL is more expressive than rEventClo
kTL. But this

formula does not distinguish �

1

from �

l

with l > k. For su
h a l, intuitively,

we need a bigger rEventClo
kTL formula, su
h as

l

. In the next lemma, we

prove that for any given formula � of rEventClo
kTL, there exists a bound

size(�) su
h that the formula �
annot distinguish between �

1

and �

k

for

k > size(�). This size, intuitively, measures how far �
an look into the past

of �

1

. Formally:

De�nition 25 (Size of an rEventClo
kTL-formula) The size of a for-

mula � 2 rEventClo
kTL, denoted size(�), is de�ned re
ursively as follows:

� size(p) = 0;

� size(:�

1

) = size(�

1

);

� size(�

1

_ �

2

) = max(size(�

1

); size(�

2

));

� size(

e

�

1

) = size(�

1

);

� size(⊖�
1

) = 1 + size(�

1

);

� size(�

1

U�

2

) = max(size(�

1

); size(�

2

));

� size(�

1

S�

2

) = max(size(�

1

); size(�

2

));

� ⊲
�

�

1

= size(�

1

);

� ⊳
�

�

1

= d

1:5

e+ size(�

1

);

29

For the real-time operator ⊳, we use the
onstant
 and divide it by

1:5, be
ause our notion of size is designed for the timed tra
es of �, where

observations are separated by 1:5.

For example size(

e

:⊖>) = 1, size(⊲
=6

p) = 0 and size(⊳
=14

:⊖>) =

d

14

1:5

e+ 1 = 11, size(⊖ ⊖ ⊖p) = 3.

Lemma 8 For every formula � 2 rEventClo
kTL, for every model �

k

2 �

with k > size(�) then:

� P

1

(�; �

k

) = 8i

1

; i

2

� 0 � size(�) � i

1

< i

2

: (�

k

; i

1

) j= � i� (�

k

; i

2

) j= �

i� (�

1

; i

1

) j= � i� (�

1

; i

2

) j= �;

� P

2

(�; �

k

) = 8i � 0 � i < size(�): (�

k

; i) j= � i� (�

1

; i) j= �;

P

1

(�; �

k

) expresses that: for every position i

1

; i

2

after size(�), the formula �

is either
onstantly true in �

k

and �

1

or
onstantly false. P

2

(�; �

k

) expresses

that: for every position i before size(�), the formula � is evaluated similarly

in �

k

and �

1

(but its truth value may
hange from position to position). We

note P

3

(�; �

k

) the formula 8i � 0, (�

k

; i) j= � i� (�

1

; i) j= �. Note that

P

3

(�; �

k

) is a
onsequen
e of the
onjun
tion of P

1

and P

2

.

Proof. The proof is by indu
tion on the stru
ture of formulas.

� � = p: as p is
onstantly true in all timed tra
es of �, then P

1

and P

2

are veri�ed for the base
ase.

� The boolean
ases are trivial.

� � =

e

�

1

. Note that size(�) = size(�

1

). By indu
tion hypothesis, for

all k > size(�), P

1

(�

1

; �

k

) and P

2

(�

1

; �

k

) holds and thus P

3

(�

1

; �

k

).

1. As, by semanti
s of the

e

-operator, the truth value of

e

�

1

in

position i only depends on the truth value of �

1

in i + 1 and

P

1

(�

1

; �

k

) holds, we know that

e

�

1

is
onstantly either true (if

�

1

is
onstantly true, by P

1

and indu
tion hypothesis) in positions

i � size(�) or
onstantly false (if �

1

is
onstantly false by P

1

and

indu
tion hypothesis) in positions i � size(�), in both �

k

and �

1

and thus P

1

(�; �

k

) is veri�ed.

2. Let us now try to establish P

2

(�; �

k

). Again, we know that

P

3

(�

1

; �

k

) is a
onsequen
e of the indu
tion hypothesis. That is,

�

1

evaluates in the same way in every position of the two timed

tra
es �

k

and �

1

. By the semanti
s of the

e

-operator P

3

(�; �

k

)

holds and thus P

2

(�; �

k

).

� The U and S operators are treated in the same way.

� � = ⊖�
1

. Note that size(�) = 1 + size(�

1

).

30

1. Let us �rst establish P

1

(�; �

k

) for k > size(�). By indu
tion

hypothesis, we know that P

1

(�

1

; �

k

) holds. As a
onsequen
e, for

all positions i � size(�) � 1, �

1

has the same
onstant value in

�

k

and �

1

. Thus in all positions i � size(�), ⊖�
1

has the same

onstant value in �

k

and �

1

. And thus P

1

(�; �

k

) is established.

2. Let us now turn to P

2

(�; �

k

). By indu
tion hypothesis P

3

(�

1

; �

k

)

holds. That is, �

1

has the same truth value in �

k

and �

1

, for

every position i. As the truth value of ⊖�
1

in all positions i � 1

only depends on the truth value of �

1

and a ⊖-formula is always

false in i = 0, P

3

(�; �

k

) holds and thus P

2

(�; �

k

) holds.

� � =⊲
�

�

1

. We know that size(�) = size(�

1

).

1. We �rst establish P

1

(�; �

k

) for k > size(�). By indu
tion hypoth-

esis, we know that either:

(a) for all position i � size(�) that (�

k

; i) j= �

1

and (�

1

; i) j=

�

1

: In this
ase, for all i � size(�), the following �

1

is at a

distan
e of d 2 (1; 2) and thus ⊲
�

�

1

is
onstantly true if

(1; 2) � fvjv �
g and
onstantly false otherwise, in both

timed tra
es �

k

and �

1

.

(b) for all position i � size(�) that (�

k

; i) 6j= �

1

and (�

1

; i) 6j= �

1

:

In that
ase, for all i � size(�), there is no following �

1

position and thus ⊲
�

�

1

is
onstantly false in both timed

tra
es �

k

and �

1

.

This establishes P

1

(�; �

k

).

2. Let us now turn to P

2

(�; �

k

). First we know that for all positions

0 � i < k, �

k

i

= �

1

i

, that is, the timing of the two timed tra
es

agree. We also now that �

1

has the same
onstant value in the

two tra
es after position i = size(�) < k. Let us
onsider any

position l su
h that 0 � l < size(�) < k, the following �

1

must

be true in a lo
ation m, l < m � size(�) or it will be false for

ever. In the last
ase ⊲
�

�

1

is false in the two timed tra
es. In

the
ase that �

1

is true in a position m, l < m � size(�) < k,

the formula ⊲
�

�

1

evaluates similarly in the two timed tra
es as

their timing information is the same for all positions i, 0 � i < k.

And thus property P

2

(�; �

k

) holds.

� � =⊳
�

�

1

. First, note that if
 = 0 then ⊳
�

� is equivalent to false

as the ⊳ operator is irre
exive and time is stri
tly monotone. Let us

onsider the
ase where
 > 0. Let d = d

1:5

e. Note that d � 1. We

know that size(�) = d+ size(�

1

).

1. We �rst establish P

1

. By indu
tion hypothesis, we know that

either:

31

(a) 8i : size(�) � d � i: (�

k

; i) j= �

1

and (�

1

; i) j= �

1

. For

every position j su
h that size(�) � j, the last �

1

position is

j � 1 at a distan
e d

a

2 (1; 2). As a
onsequen
e, for all j

su
h that size(�) � j, (�

k

; j) j=⊲
�

�

1

i� (�

1

; j) j=⊲
�

�

1

i�

(1; 2) � fvjv �
g; and thus � is either true in all j � size(�)

in both �

k

and �

1

or it is false in all j � size(�) in both �

k

and �

1

.

(b) 8i : size(�) � d � i: (�

k

; i) 6j= �

1

and (�

1

; i) 6j= �

1

. For every

position j su
h that j � size(�), the last �

1

observation is,

if it exists, in a position i with 0 � i < size(�) � d. Thus at

a distan
e d

b

> d � 1:5 �
 and thus ⊳
�

�

1

is veri�ed in

all positions j � size(�), both in �

k

and �

1

if \�" = \>" or

\�" and the �

1

-position exists. In all other
ases, ⊳
�

�

1

is

false in all positions j � size(�), both in �

k

and �

1

.

And thus P

1

(�; �

k

) holds.

2. Let us now turn to the property P

2

. So, we want to establish

that 8i � 0 � i < size(�): (�

k

; i) j= � i� (�

1

; i) j= �. Let us �rst

note that the value of ⊳
�

�

1

in the positions i, 0 � i < size(�),

only depends on the truth value of �

1

in 0 � i < size(�) and the

timing information for �

k

and �

1

. The value of �

1

is similar in

those positions for the two models by indu
tion hypothesis. Also

the timing information in that interval of positions is identi
al as

k > size(�) and thus the value of ⊳
�

�

1

is exa
tly the same for

ea
h position i, 0 � i < size(�) < k, in both �

k

and �

1

. And

thus P

2

(�; �

k

) holds.

�

Theorem 11 Metri
IntervalTL is stri
tly more expressive than rEvent-

Clo
kTL: Metri
IntervalTL � rEventClo
kTL.

Proof. By lemma 8, we know that for every formula � 2 rEventClo
kTL,

there exists a bound l su
h that for all �

k

with k > l, �

k

2 L(�) i�

�

1

2 L(�). On the other hand, the formula �

b�
(0;1)

(p !

b♦
[2;3℄

p) of

Metri
IntervalTL is satis�ed by �

1

but by none of the timed tra
es �

k

2 �.

Thus rEventClo
kTL
annot express the property expressed by . �

Let us now show that every Metri
IntervalTL

0;1

-property
an be ex-

pressed by an rEventClo
kTL-formula. This is a
onsequen
e of the following

stronger lemma:

Lemma 9 For every formula � 2 Metri
IntervalTL

0;1

, there exists a for-

mula �

T

2 rEventClo
kTL su
h that, for every timed tra
e �, for every posi-

tion i: (�; i) j= � i� (�; i) j= �

T

.

32

Proof. We reason by indu
tion on the stru
ture of formulas. The boolean

ases are trivial. We only treat the

b

U

I

: the similar

b

S

I

is left to the reader.

First note that the following rewritings withinMetri
IntervalTL

0;1

are valid:

� �

1

b

U

<

�

2

= (�

1

b

U

(0;1)

�

2

) ^

b♦
<

�

2

;

� �

1

b

U

�

�

2

= (�

1

b

U

(0;1)

�

2

) ^

b♦
�

�

2

;

Now it is easy to show that:

b♦
<

� =⊲
<

�

T

and

b♦
�

� =⊲
�

�

T

. By

de�nition of the

b�-operator, we also have:

b�
<

� = : ⊲
<

:�

T

and

b�
�

� = : ⊲
�

:�

T

. Also, we have that �

1

b

U

(0;1)

�

2

=

e

(�

T

1

U�

T

2

) and

thus every

b

U

<;�

formula
an be expressed in rEventClo
kTL. Let us now

turn to the

b

U

>;�

ases. Here are the translations (we use

b�
<;�

in rEvent-

Clo
kTL formulas, sin
e we have shown just above that it
an be translated

in \plain" rEventClo
kTL):

� �

1

b

U

>

�

2

=

b�
�

(�

T

1

^

e

(�

T

1

U�

T

2

)) ^

e

(�

T

1

U�

T

2

);

� �

1

b

U

�

�

2

=

b�
<

(�

T

1

^

e

(�

T

1

U�

T

2

)) ^

e

(�

T

1

U�

T

2

);

We justify the right to left impli
ation for

b

U

>

. Thus we must show that

if (�; i) j=

b�
�

(�

T

1

^

e

(�

T

1

U�

T

2

)) ^

e

(�

T

1

U�

T

2

) then (�; i) j= �

1

b

U

>

�

2

. Let

J = fjj�

i

< �

j

� �

i

+
g, that is, J is the set of positions after position i

that are at a time distan
e less or equal to
 from i. We
onsider two disjoint

situations:

� (a) J = ;. There is no position J > i su
h that �

j

� �

i

+
 then

verifying (�; i) j=

e

(�

T

1

U�

T

2

) is suÆ
ient be
ause the �rst �

2

-position

will be at a distan
e d >
 from i and between this �

2

position and

after i, �

1

is veri�ed;

� (b) J 6= ;. There is some position in the interval (�

i

; �

i

+
℄, the formula

b�
�

(�

T

1

^

e

(�

T

1

U�

T

2

)) imposes that �

1

is
onstantly true in the interval

(�

i

; �

i

+
℄ and also that in the last position of that interval, let say k,

that

e

(�

T

1

U�

T

2

) is true and thus �

T

1

U�

T

2

is true in position k + 1 and

ensures that �

1

will stay true until a �

2

position is en
ountered at a

distan
e d >
 from position i.

�

The lemma 9 and theorem 9 together give:

Theorem 12 The logi
s Metri
IntervalTL

0;1

and rEventClo
kTL are equally

expressive, i.e. Metri
IntervalTL

0;1

= rEventClo
kTL.

Note that the translation between formulas of one logi
 to the other does

not
hange the size of the maximal
onstant used, generates only a linear

33

number of subformulas and thus the number of real-time operators stays also

linear. Note also that the last theorem also apply for the future fragment of

the two logi
s as future formulas of one logi
 are always translated by future

formula of the other logi
.

Theorem 13 The two logi
s Metri
IntervalTL

F

0;1

and rEventClo
kTL

F

are

equally expressive, i.e. Metri
IntervalTL

F

0;1

= rEventClo
kTL

F

.

Corollary 5 Metri
IntervalTL is more expressive than Metri
IntervalTL

0;1

:

Metri
IntervalTL � Metri
IntervalTL

0;1

.

Remark. In [HRS98℄, it is proved that the expressive powers of Metri
Inter-

valTL and rEventClo
kTL agree when evaluated
ontinuously, i.e. on timed

state sequen
es, see appendix for the de�nition of rEventClo
kTL in
ontin-

uous models. We refer the interested reader to [HRS98℄ for details about

this interesting phenomenon.

6.2 rEventClo
kTL vs EventClo
kTA

It is well known that LTL
annot express some
ounting properties that are

expressible by B�u
hi automata. For example, there does not exist any LTL

formula that expresses the even�p property: \p is true in all even positions

of the tra
e", while this property is easily expressed by an automaton. Sim-

ilarly, rEventClo
kTL
annot express
ounting properties. As EventClo
kTA

are an extension of B�u
hi automata, and thus more expressive, we have the

following theorem:

Lemma 10 There exist EventClo
kTA-properties that are not expressible

into rEventClo
kTL, i.e. EventClo
kTA 6� rEventClo
kTL.

Let us take a look at the other dire
tion. Without real-time, we know

that every LTL property is expressible by B�u
hi automaton. Similarly, is ev-

ery rEventClo
kTL-property expressible by an event
lo
k automaton? Sur-

prisingly, the answer is negative:

Lemma 11 There exist rEventClo
kTL-properties that are not expressible

into EventClo
kTA, i.e. rEventClo
kTL 6� EventClo
kTA.

Proof. To show that not all rEventClo
kTL-properties are expressible with

EventClo
kTA, we
onsider the two timed tra
es �

1

= (��; ��

1

) and �

2

= (��; ��

2

)

on the set of propositions P = fpg. �

1

and �

2

share the same qualita-

tive information �� = fgfpgfgfpgfpg:::fpg::: that is, p is true everywhere

ex
ept in position 0 and 2. The timing information ��

1

of �

1

is as fol-

lows: �

1

i

= i � 1:4, i.e. all positions are separated by 1:4 time units:

��

1

= 0; 1:4; 2:8; 4:2; 5:6; 7; : : : . On the other hand the timing information

��

2

of �

2

is de�ned by:

34

�

2

i

=

�

i� 1:4 if i 6= 3

i� 1:4� 0:3 if i = 3

Thus, ��

2

= 0; 1:4; 2:8; 3:9; 5:6; 7; : : : . It is easy to show that for every position

i � 0, for every
onstraint x

p

�
, (�

1

; i) j= x

p

�
 i� (�

2

; i) j= x

p

�
.

Similarly, it is easy to show that for every position i � 0, for every
onstraint

y

p

�
, (�

1

; i) j= y

p

�
 i� (�

2

; i) j= y

p

�
. That is, the
onstraints about

history and prophe
y
lo
ks asso
iated with p evaluate similarly in both

models, in all positions. This is be
ause
lo
k
onstraints
an only use

integer
onstants and, for the prophe
y
lo
k y

p

:

� in position 0, the distan
e to the following p-position, and thus the

value of y

p

, is, in the two models, equal to 1:4 2 (1; 2);

� in position 1, this distan
e is equal to 2:8 2 (2; 3) in �

1

and to 2:5 2

(2; 3) in �

2

. Even if the distan
es are di�erent, it
annot be seen using

integer
onstants;

� in position 2, this distan
e is equal to 1:4 2 (1; 2) in �

1

and is equal to

1:1 2 (1; 2) in �

2

. Again even if the distan
es are di�erent, it
annot

be seen using integer
onstants;

� in position 3, this distan
e is equal to 1:4 2 (1; 2) in �

1

and is equal to

1:9 2 (1; 2) in �

2

. Again even if the distan
es are di�erent, it
annot

be seen using integer
onstants;

� after position 3, the distan
e to the following p position is always, in

both �

1

; �

2

, equal to 1:4 2 (1; 2).

A same reasoning applies for the history
lo
k x

p

. So every event
lo
k

automaton A a

epts �

1

if and only if it a

epts �

2

. On the other hand the

re
ursive rEventClo
kTL-formula =⊲
�4

�p is true in the initial position

of �

2

but false in the initial position of �

1

. And thus rEventClo
kTL
an

di�erentiate between the two models. �

>From lemma 10 and lemma 11, we obtain the following theorem:

Theorem 14 The expressive power of rEventClo
kTL and EventClo
kTA are

in
omparable.

This surprising theorem
an be explained as follows: when moving from

EventClo
kTA to rEventClo
kTL, we have automati
ally added re
ursion, or

uniform substitution in logi
ian parlan
e: any formula
an repla
e a propo-

sition symbol. If we remove this possibility, we obtain the expe
ted result

from
orollary 2:

35

Corollary 6 The models of a non-re
ursive formula is the language of an

EventClo
kTA: EventClo
kTL � EventClo
kTA

We
an also obtain an in
lusion by introdu
ing re
ursion

5

in Event-

Clo
kTA, as des
ribed in [HRS98℄.

7 Con
lusion

In this paper, we have presented a new real-time logi

alled rEventClo
kTL.

This logi
 extends LTL with real-time operators ⊲
�

� read \the next � is

at a distan
e d that respe
ts d �
", and symmetri
ally ⊳
�

� expressing

that \� was last true at a distan
e d su
h that d �
". These two modal

operators introdu
e the
lean and powerful
on
ept of event
lo
k, from

timed automata [AFH94℄, in the domain of real-time logi
s. The natural

expressive power of those two operators has been illustrated by showing that

most important real-time requirements [Koy92℄
an be straightforwardly and

naturally expressed in rEventClo
kTL.

We have shown that the problems of satis�ability, validity and model-

he
king are de
idable for this logi
, more pre
isely Pspa
e-
omplete, as

for LTL. We provided a simple de
ision pro
edure based on EventClo
kTA, a

determinizable
lass of timed automata. Our de
ision pro
edure is far less

ompli
ated than the de
ision pro
edure of [AFH96℄ forMetri
IntervalTL, the

only real-time logi
 that was previously known to be de
idable. Our de
ision

pro
edure is obtained by extending the de
ision pro
edure for LTL in a nat-

ural way: we use the
lose
onne
tion that exists between the two real-time

operators of rEventClo
kTL and the prophe
y and history
lo
ks of Event-

Clo
kTA. This naturalness helps in axiomatizing this logi
, see [RSH98℄.

Corresponding monadi
 logi
s are built in [HRS98℄.

Referen
es

[ACD90℄ R. Alur, C. Cour
oubetis, and D. Dill. Model-
he
king for real-

time systems. In Pro
eedings of the 5th Symposium on Logi
 in

Computer S
ien
e, pages 414{425, Philadelphia, June 1990.

[AD94℄ R. Alur and D.L. Dill. A theory of timed automata. Theoreti-

al Computer S
ien
e, 126:183{235, 1994. Preliminary version

appears in Pro
. 17th ICALP, 1990, LNCS 443.

[AFH94℄ R. Alur, L. Fix, and T.A. Henzinger. A determinizable
lass

of timed automata. In Pro
eedings of the Sixth Conferen
e on

5

Simple generalizations as the asso
iation of boolean formulas with
lo
ks is not suÆ-

ient

36

Computer-Aided Veri�
ation, Le
ture Notes in Computer S
i-

en
e 818, pages 1{13. Springer-Verlag, 1994.

[AFH96℄ R. Alur, T. Feder, and T.A. Henzinger. The bene�ts of relaxing

pun
tuality. Journal of the ACM, 43(1):116{146, 1996.

[AH92a℄ R. Alur and T.A. Henzinger. Ba
k to the future: towards a

theory of timed regular languages. In Pro
eedings of the 33rd

Annual Symposium on Foundations of Computer S
ien
e, pages

177{186. IEEE Computer So
iety Press, 1992.

[AH92b℄ R. Alur and T.A. Henzinger. Logi
s and models of real time: a

survey. In J.W. de Bakker, K. Huizing, W.-P. de Roever, and

G. Rozenberg, editors, Real Time: Theory in Pra
ti
e, Le
ture

Notes in Computer S
ien
e 600, pages 74{106. Springer-Verlag,

1992.

[AH93℄ R. Alur and T.A. Henzinger. Real-time logi
s:
omplexity and

expressiveness. Information and Computation, 104(1):35{77,

1993. Preliminary version appears in the Pro
. of 5th LICS,

1990.

[AH94℄ R. Alur and T.A. Henzinger. A really temporal logi
. Journal

of the ACM, 41(1):181{204, 1994. Preliminary version appears

in Pro
. 30th FOCS, 1989.

[BCM

+

90℄ J.R. Bur
h, E.M. Clarke, K.L. M
Millan, D.L. Dill, and L.J.

Hwang. Symboli
 model
he
king: 10

20

states and beyond. In

Pro
eedings of the 5th Symposium on Logi
 in Computer S
i-

en
e, pages 428{439, Philadelphia, June 1990.

[BKP86℄ H. Barringer, R. Kuiper, and A. Pnueli. A really abstra
t
on-

urrent model and its temporal logi
. In Pro
eedings of the 13th

Annual Symposium on Prin
iples of Programming Languages,

pages 173{183. ACM Press, 1986.

[CES86℄ E.M. Clarke, E.A. Emerson, and A.P. Sistla. Automati
 veri-

�
ation of �nite-state
on
urrent systems using temporal logi

spe
i�
ations. ACM Transa
tions on Programming Languages

and Systems, 8(2):244{263, January 1986.

[Eme90℄ E.A. Emerson. Handbook in Theoreti
al Computer S
ien
e, For-

mal Models and Semanti
s,
hapter Temporal and Modal Logi
,

pages 995{1072. Elsevier, 1990.

[GPSS80℄ Dov Gabbay, Amir Pnueli, Saharon Shelah, and J. Stavi. On the

temporal analysis of fairness. In Pro
eedings of the Seventh ACM

37

Symposium on Prin
iples of Programming Languages, pages

163{173. ACM, 1980.

[GPVW95℄ R. Gerth, D. Peled, M. Y. Vardi, and P. Wolper. Simple on-the-

y automati
 veri�
ation of linear temporal logi
. In Pro
. 15th

Work. Proto
ol Spe
i�
ation, Testing, and Veri�
ation, Warsaw,

June 1995. North-Holland.

[Hen96℄ T.A. Henzinger. The theory of hybrid automata. In Pro
eedings

of the 11th Annual Symposium on Logi
 in Computer S
ien
e,

pages 278{292. IEEE Computer So
iety Press, 1996.

[HMP92℄ T.A. Henzinger, Z. Manna, and A. Pnueli. What good are dig-

ital
lo
ks? In W. Kui
h, editor, ICALP 92: Automata, Lan-

guages, and Programming, Le
ture Notes in Computer S
ien
e

623, pages 545{558. Springer-Verlag, 1992.

[HRS98℄ T.A. Henzinger, J.-F. Raskin, and P.-Y. S
hobbens. The reg-

ular real-time languages. In K.G. Larsen, S. Skyum, and

G. Winskel, editors, ICALP'98: Automata, Languages, and

Programming, Le
ture Notes in Computer S
ien
e 1443, pages

580{591. Springer-Verlag, 1998.

[Koy92℄ Ron Koymans. Spe
ifying message passing and time-
riti
al sys-

tems with temporal logi
. LNCS 651, Springer-Verlag, 1992.

[MP92℄ Z. Manna and A. Pnueli. The Temporal Logi
 of Rea
tive

and Con
urrent Systems: Spe
i�
ation. Springer-Verlag, Berlin,

January 1992.

[MP95℄ Z. Manna and A. Pnueli. Temporal Veri�
ation of Rea
tive

Systems : Safety. Springer-Verlag, Berlin, January 1995.

[Pnu77℄ A. Pnueli. The temporal logi
 of programs. In Pro
. 18th IEEE

Symposium on Foundation of Computer S
ien
e, pages 46{57,

1977.

[RS97a℄ J.-F. Raskin and P.-Y. S
hobbens. Real-time logi
s: Fi
titious

lo
k as an abstra
tion of dense time. In Pro
. Third Interna-

tional Workshop on Tools and Algorithms for the Constru
tion

and Analysis of Systems (TACAS97), volume 1217 of Le
ture

Notes in Computer S
ien
e (LNCS), pages 165{182. Springer-

Verlag, 1997.

[RS97b℄ J.-F. Raskin and P.-Y. S
hobbens. State
lo
k logi
: a de
id-

able real-time logi
. In Pro
. Hart'97 : Hybrid and Real-Time

Systems, LNCSs 1201, pages 15{30, Grenoble, Fran
e, 1997.

Springer.

38

[RSH98℄ J.-F. Raskin, P.-Y. S
hobbens, and T. Henzinger. Axioms for

real-time logi
s. In D. Sangiorgi and R. de Simone, editors,

Pro
eedings of CONCUR'98: 9th International Conferen
e on

Con
urren
y Theory, volume 1466 of Le
ture Notes in Computer

S
ien
e (LNCS). Springer, 1998.

[Sti87℄ C. Stirling. Comparing linear and bran
hing time temporal log-

i
s. In B. Banieqbal, H. Barringer, and A. Pnueli, editors, Tem-

poral Logi
 in Spe
i�
ation, volume 398, pages 1{20. Le
ture

Notes in Computer S
ien
e, Springer-Verlag, 1987.

[SVW85℄ A.P. Sistla, M.Y. Vardi, and P. Wolper. The
omplementa-

tion problem for B�u
hi automata with appli
ations to temporal

logi
. In Pro
. 10th Int. Colloquium on Automata, Languages

and Programming, volume 194, pages 465{474, Nafplion, July

1985. LNCS, Springer-Verlag.

[Wol85℄ P. Wolper. The tableau method for temporal logi
: An overview.

Logique et Analyse, (110{111):119{136, 1985.

39

A Continuous Interpretation

An interval I � R
+

is a
onvex nonempty subset of the nonnegative reals.

Given t 2 R
+

, we freely use notation su
h as t+ I for the interval ft

0

j exists

t

00

2 I with t

0

= t+ t

00

g, and t > I for the
onstraint \t > t

0

for all t

0

2 I."

Two intervals I and J are adja
ent if the right endpoint of I is equal to

the left endpoint of J , and either I is right-open and J is left-
losed or I is

right-
losed and J is left-open. An interval sequen
e

�

I = I

0

; I

1

; : : : is a �nite

or in�nite sequen
e of bounded intervals so that for all i � 0, the intervals

I

i

and I

i+1

are adja
ent. We say that the interval sequen
e

�

I
overs the

interval

S

i�0

I

i

. If

�

I
overs [0;1), then

�

I partitions the nonnegative real

line so that every bounded subset of R
+

is
ontained within a �nite union

of elements from the partition.

Let P be a �nite set of proposition symbols. A state s � P is a set of

propositions. A timed state sequen
e � = (�s;

�

I) is a pair that
onsists of an

in�nite sequen
e �s of states and an in�nite interval sequen
e

�

I that
overs

[0;1). Equivalently, the timed state sequen
e �
an be viewed as a fun
tion

from R
+

to 2

P

, indi
ating for ea
h time t 2 R
+

a state �(t) � P.

The formulas of rEventClo
kTL [RS97b℄ are built from propositional sym-

bols, boolean
onne
tives, the temporal \until" and \sin
e" operators, and

two real-time operators: at any time t, the history operator ⊳
I

� asserts

that � was true last time in the interval t � I, and the prophe
y operator

⊲
I

� asserts that � will be true next time in the interval t+I. The formulas

of rEventClo
kTL are generated by the following grammar:

� ::= p j �

1

^ �

2

j :� j �

1

U�

2

j �

1

S�

2

j⊳
I

� j⊲
I

�

where p is a proposition and I is an interval whose �nite endpoints are

nonnegative integers. Let � be an rEventClo
kTL formula and let � be

a timed state sequen
e whose proposition symbols
ontain all proposition

symbols that o

ur in �. The formula � holds at time t 2 R
+

of �, denoted

(�; t) j= �, a

ording to the following de�nition:

(�; t) j= p i� p 2 �(t)

(�; t) j= �

1

^ �

2

i� (�; t) j= �

1

and (�; t) j= �

2

(�; t) j= :� i� not (�; t) j= �

(�; t) j= �

1

U�

2

i� exists a real t

0

> t with (�; t

0

) j= �

2

, and for

all reals t

00

2 (t; t

0

), we have (�; t

00

) j= �

1

_ �

2

(�; t) j= �

1

S�

2

i� exists a real t

0

< t with (�; t

0

) j= �

2

, and for

all reals t

00

2 (t

0

; t), we have (�; t

00

) j= �

1

_ �

2

(�; t) j=⊳
I

� i� exists a real t

0

< t with t

0

2 (t�I) and (�; t

0

) j= �,

and for all reals t

00

< t with t

00

> (t� I), not (�; t

00

) j= �

(�; t) j=⊲
I

� i� exists a real t

0

> t with t

0

2 (t+I) and (�; t

0

) j= �,

and for all reals t

00

> t with t

00

< (t+ I), not (�; t

00

) j= �

40

Note that the temporal and real-time operators are de�ned in a stri
t man-

ner; that is, they do not
onstrain the
urrent state. Non-stri
t operators

are easily de�ned from their stri
t
ounterparts.

Theorem 15 [RS97b℄ The satis�ability and validity problems for rEvent-

Clo
kTL in timed state sequen
es (
ontinuous interpretation) are de
idable

in Pspa
e.

41

���

�

��

k

I N F O R M A T I K

Below you �nd a list of the most re
ent te
hni
al reports of the resear
h group Logi
 of Programming

at the Max-Plan
k-Institut f�ur Informatik. They are available by anonymous ftp from our ftp server

ftp.mpi-sb.mpg.de under the dire
tory pub/papers/reports. Most of the reports are also a

essible via

WWW using the URL http://www.mpi-sb.mpg.de. If you have any questions
on
erning ftp or WWW

a

ess, please
onta
t reports�mpi-sb.mpg.de. Paper
opies (whi
h are not ne
essarily free of
harge)

an be ordered either by regular mail or by e-mail at the address below.

Max-Plan
k-Institut f�ur Informatik

Library

attn. Birgit Hofmann

Im Stadtwald

D-66123 Saarbr�u
ken

GERMANY

e-mail: library�mpi-sb.mpg.de

MPI-I-98-2-011 A. Degtyarev, A. Voronkov Equality Reasoning in Sequent-Based Cal
uli

MPI-I-98-2-010 S. Ramangalahy Strategies for Conforman
e Testing

MPI-I-98-2-009 S. Vorobyov The Unde
idability of the First-Order Theories of

One Step Rewriting in Linear Canoni
al Systems

MPI-I-98-2-008 S. Vorobyov AE-Equational theory of
ontext uni�
ation is

Co-RE-Hard

MPI-I-98-2-007 S. Vorobyov The Most Nonelementary Theory (A Dire
t Lower

Bound Proof)

MPI-I-98-2-006 P. Bla
kburn, M. Tzakova Hybrid Languages and Temporal Logi

MPI-I-98-2-005 M. Veanes The Relation Between Se
ond-Order Uni�
ation

and Simultaneous Rigid E-Uni�
ation

MPI-I-98-2-004 S. Vorobyov Satis�ability of Fun
tional+Re
ord Subtype

Constraints is NP-Hard

MPI-I-98-2-003 R.A. S
hmidt E-Uni�
ation for Subsystems of S4

MPI-I-97-2-012 L. Ba
hmair, H. Ganzinger,

A. Voronkov

Elimination of Equality via Transformation with

Ordering Constraints

MPI-I-97-2-011 L. Ba
hmair, H. Ganzinger Stri
t Basi
 Superposition and Chaining

MPI-I-97-2-010 S. Vorobyov, A. Voronkov Complexity of Nonre
ursive Logi
 Programs with

Complex Values

MPI-I-97-2-009 A. Bo
kmayr, F. Eisenbrand On the Chv�atal Rank of Polytopes in the 0/1 Cube

MPI-I-97-2-008 A. Bo
kmayr, T. Kasper A Unifying Framework for Integer and Finite

Domain Constraint Programming

MPI-I-97-2-007 P. Bla
kburn, M. Tzakova Two Hybrid Logi
s

MPI-I-97-2-006 S. Vorobyov Third-order mat
hing in �!-Curry is unde
idable

MPI-I-97-2-005 L. Ba
hmair, H. Ganzinger A Theory of Resolution

MPI-I-97-2-004 W. Charatonik, A. Podelski Solving set
onstraints for greatest models

MPI-I-97-2-003 U. Hustadt, R.A. S
hmidt On evaluating de
ision pro
edures for modal logi

MPI-I-97-2-002 R.A. S
hmidt Resolution is a de
ision pro
edure for many

propositional modal logi
s

