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1 Introduction

It is now widely recognized that the use of formal methods is useful and of-
ten necessary for developing correct concurrent and reactive systems. This
observation is even clearer when dealing with real-time [AH92b] and hybrid
systems [Hen96]. Among the favorite formalisms to specify and verify con-
current systems are temporal logics. Temporal logics [Eme90, MP92] are
modal logics that enable the expression of properties about the ordering
of events in executions of concurrent programs [Pnu77]. For example, the
linear temporal logic (LTL) formula O(p — Oq) expresses the property that
every p-event is always followed by some g-event. In that context, reactive
systems are usually modeled by a product of finite state machines and prop-
erties of these systems are specified by temporal logic formulas. In the linear
time framework', the verification problem, also called the model-checking
problem, can be stated as follows: “Are all the possible executions of the re-
active system modeled by the product of finite state machines, models of the
temporal logic formula that specifies the property to verify?” or equivalently
“is the w-regular language defined by the product of automata included in
the w-regular language defined by the temporal formula?”. Beside their
nice expressive power (most important properties of reactive systems can be
naturally expressed in temporal logic), the propositional fragments of those
logics are decidable and are used in tools where the verification problem is
automated [GPVW95, BCM190)].

The properties that can be expressed in propositional temporal logics are
qualitative constraints about the ordering of events along a trace (infinite
sequence of events that models an execution of a reactive system); quantita-
tive timing constraints cannot be expressed. Logics that are able to express
quantitative timing requirements are called real-time logics [AH94, AH93].
Real-time logics have received a lot of attention from the research commu-
nity [Koy92, AH93, AH94, ACD90, AH92b]. The results about decidability
of the real-time logics depends crucially on how the time is added to the
traces that model reactive systems.

Semantically, there are two radically different ways to model time:

1. The first is to consider a discrete time domain, the natural numbers
for example.

2. The other possibility is to use a dense time domain, as the real numbers
or the rational numbers, for time stamps. Both are equivalent for our
purpose. Choosing a dense time domain is more natural and presents
advantages, compositionality for example; the interested reader is in-
vited to consult [AH92b, HMP92, RS97a, BKP86] for a study and

!A framework where time is modeled by a branching structure can also be consid-
ered, see [BCM™90] for example and [Sti87] for a systematic comparison between the two
approaches.



comparison of the two approaches. Unfortunately, when modeling time
with a dense time domain, a lot of problems related to real-time logics
become undecidable.

Having chosen the time domain, there are still two common ways to intro-
duce real-time information into traces:

1. The pointwise way, that we adopt for the main part of the paper,
consists in associating a time stamp (from the chosen time domain)
with each observation of the trace. The intuitive meaning is that the
observation of an event occurred at the time indicated by the time
stamp. Those traces are called timed traces.

2. The continuous way consists in associating an interval with each ob-
servation of the trace. Intuitively, this interval indicates the interval
of time during which the system is in the state described by the ob-
servation. Those traces are called timed state sequences.

Syntactically, there are two natural ways of extending temporal logics
with timing constraints. The Metric Temporal Logic MetricTL (also called
MTL [AH93]) adds time bounds to temporal operators; for example, the
MetricTL formula C(p — Q-1 q) specifies that every p event is followed by a
q event such that the difference between the two time stamps is exactly 1.
The Clock Temporal Logic ClockTL (also called TPTL [AH94]) adds clock
variables to LTL; for example, the time-bounded response requirement from
above can be specified by the ClockTL formula O(p — (z := 0)0(¢ Az = 1)),
where z is a variable representing a clock that is started by the quantifier
(z := 0). Interestingly, over natural-numbered time, both ways of expressing
timing constraints are equally expressive. Furthermore, the satisfiability
problems of the two logics are decidable.

If time stamps are real instead of natural numbers, then the situation
seems much less satisfactory. In fact, the logic MetricTL associated with a
dense time domain allows the encoding of Turing machines computations
and the halting problem of Turing machines can be reduced to the satisfi-
ability of a MetricTL formula. The excessive expressive power of MetricTL
comes from formulas such as O(p — (Q—1¢q) that allow us to relate two ar-
bitrary events that are separated by exactly one time unit. This ability
coupled with the density of the time domain, permits us to relate consec-
utive contents of the memory of a Turing machine, contents that can be
encoded using an interval of one time unit. The problem is the same with
the logic ClockTL, as the formula O(p — (z := 0)0(z = 1 A q)) expresses
the same property. Hence the search for decidable subsets of MetricTL and
ClockTL is an interesting and important issue.

A first restriction to obtain a decidable logic concerns the style of specify-
ing timing constraints using time-bounded temporal operators. The Metric-
Interval Logic Metriclnterval TL (also called MITL [AFH96]) is obtained from



MetricTL by restricting the time bounds on temporal operators to nonsingu-
lar intervals. For example, the MetricIntervalTL formula O(p — $p0.9,1.119)
specifies that every p event is followed by a ¢ event such that the difference
between the two time stamps is at least 0.9 and at most 1.1. The restriction
to non-singularity prevents specifying exact real time differences between
events.

In this paper, we propose an alternative restriction, quite different in
flavour, that concerns the style of specifying timing constraints using clock
variables. The Event-Clock Logic rEventClockTL (also called SCL [RS97h])
is obtained from ClockTL by restricting the use of clocks to refer to the
times of previous and next occurrences of events only. For example, if y, is
a clock that always refers to the time difference between now and the next ¢
event, then the rEventClockTL formula C(p — y, = 1) specifies that every p
event is followed by a ¢ event such that the difference between time stamps
of the p event and the first subsequent ¢ event is exactly 1. A clock such
as 1q, which is permanently linked to the next g event, does not need to
be started explicitly, and is called an event clock. The restriction to event
clocks prevents the specification of time differences between a p event and
any subsequent (rather than the first subsequent) ¢ event.

The idea to associate clocks with events has first been introduced in the
context of timed automata in [AFH94] where they propose a determinizable
class of timed automata called Event Clock Automata (EventClockTA). As
we will see later, in those automata, each clock is associated with an atomic
event (a proposition for example). The main contribution of this paper is
to show how this concept of event clocks can be generalized: we show that
clocks can not only be associated with atomic propositions but recursively
with temporal formulas. By defining rEventClockTL, we introduce the nice
concept of event clock in the domain of real-time logics. Furthermore, we
show that the logic of event clocks is quite expressive, in fact, most important
real-time properties have a nice and direct formulation in rEventClockTL. Fi-
nally we show that the satisfiability problem for rEventClockTL is decidable,
we characterize its complexity and present a decision procedure. This proce-
dure can also be used to solve the real-time model checking problem: “Is the
timed w-regular language defined by a product of timed automata contained
in the timed w-regular language defined by an rEventClockTL formula?”.

The rest of this paper is organized as follows. Real-time models are
formally defined in section 2. In section 3 we recall EventClockTA. The
logic rEventClockTL is defined in section 4 and its expressive power is il-
lustrated by showing how to specify most important real-time requirements
with rEventClockTL formulas. Section 5 proposes a decision procedure for
the satisfiability problem of rEventClockTL formulas and proves its correct-
ness. The decision procedure relies on the construction, for each formula of
rEventClockTL, of a suitable EventClockTA whose language is empty if and
only if the associated formula is not satisfiable. This EventClockTA needs



auxiliary symbols when the formula is recursive. The complexity of the sat-
isfiability problem is also studied there. Section 6 deals with expressiveness:
rEventClockTL as expressive as MetricIntervalTLg o, but less expressive than
Metriclnterval TLin dense pointwise models. This contrasts with continuous
models, where MetricInterval TL is as expressive as MetriclntervalTLg o, as
shown in [HRS98, RSH98]. The same property holds for the future frag-
ments, which are each less expressive than their logics with past. We also
compare the expressive power of rEventClockTL and EventClockTA. They
turn out to be incomparable, since rEventClockTL allows recursion, while
EventClockTA allow counting.

2 Real-Time Models

The execution of a reactive system can be modeled by an infinite sequence of
observations & = 0¢oq ...0y ..., where each o; C P (a subset of propositions
that describes the observed state of the system). Such a sequence is called
a trace. When considering executions of real-time reactive systems, timing
information about the occurrence of the observations must be added to
traces. As mentioned in the introduction, we consider a dense time domain:
the nonnegative real numbers. We present the details in the context of
timed traces since it will slightly facilitate the presentation of the region
construction in section 5. For the interested reader, we give in annex the
definition of the logic rEventClockTL in the context of timed state sequences.
There, we recall the decidability and complexity results for the logic that
are the same for the two models.

Definition 1 A t¢imed trace is a pair § = (G,7) where G is a trace and 7 =

TiTo...Tp ... 18 an infinite sequence of positive real numbers, called a timing,
representing the time at which each observation occurred. Furthermore the
timing 7 = 797y ... T, ... respects (i) monotonicity: for all i > 0, 7; < Tj41,

(i1) divergence: for all t € RT, there exists 7 such that 7; > t.

3 Event Clock Automata

Timed automata [AD94] are finite state machines extended with clocks.
Clock can be reset and compared to integer constants. Unfortunately, the
formalism of timed automata is not closed under complement. This is due to
the fact that, in timed automata, clocks can be reset nondeterministically.
This feature allows the specifier to define the timed language of the negation
of the formula that allows the encoding of Turing machine computations in
MetricTL, see [AD94] for details and examples.

In [AFH94], Alur et al. present a determinizable class of timed automata
called event clock automata. This class of automata is closed under union,



intersection and complement. Consequently the language inclusion problem
is decidable for this class of automata. For event clock automata, the com-
plement closure property is obtained by restricting the use of clocks: the
clocks have a predefined association with symbols of the input alphabet.
Clocks are reset implicitly whenever their event occurs. This resetting is
thus determined by the timed trace the automaton is reading, which is key
to their determinization. The event-history clock of the input symbol a € X3,
denoted z,, is a history variable whose value is the time elapsed since the
last occurrence of a relative to the current time. Symmetrically, the event-
prophecy clock of a € 3, denoted y, is a prophecy variable whose value is
the time to wait for the next occurrence of a relative to the current time.

Example 1 Let us consider the automaton of figure 1. This event-clock
automaton contains 3 locations, [y is the start location. The constraint
z, = 5 decorating the edge starting from [y with the character b imposes
that a previous a character must have been read exactly 5 time units before
the edge is crossed. On the other hand the constraint y, < 2 decorating
the edge from [y to [y requires that each time this edge is crossed, the next
a-edge must be crossed within 2 time units.

~.
~—
e — "

Figure 1: Event-Clock automaton A;.

Let us consider the execution of the automaton on the timed trace
(e,7) = (a,1),(b,6),(c,7),(b,7.3),(b,7.5),(a,8),(c,11),.... The automa-
ton starts at location [y. At time ¢t = 1, the automaton reads a and goes to
lo. At time ¢t = 6 it reads b and checks that the previous @ in & is distant of
exactly 5 time units, and so on. Thus (7,7) is a possible prefix of a timed
trace accepted by the automaton.

As we can see in example 1, the values of the clocks are solely determined
by the input word, not by the automaton. Thanks to this important feature
EventClockTA are determinizable and can be complemented.

Definition 2 (Event Clocks) Given a set of proposition P, the set of
event clocks associated to P is the set C = HUP where H = {z, | p € P}
is the set of history clocks, i.e. an history clock z, is associated to each
proposition p € P, and where P = {y, | p € P} is the set of prophecy clocks,
i.e. a prophecy clock is associated to each proposition of P. In what follows,



we note z € H any history clock of C, y any prophecy clock of C, z, the
history clock or the prophecy clock associated to p and z any clock of C. [J

We now define formally the value of history and prophecy clocks along
a timed trace. We use RT U {L} to denote the nonnegative real numbers
together with the special value 1 (undefined).

Definition 3 The value of the history clock z, € H associated with the
proposition p at position i of the timed trace (o,7), denoted Val,, (7, 7,1),
is defined as follows:

1; — 7; if there exists j such that 0 < j <4, p € 0
Valg,(0,7,4) = and for all k£ such that j <k <1, p & oy
1 ifforall j,0< 75 <1, pé¢o;j

The value of the prophecy clock y, € P associated with the proposition p
at position ¢ of the timed trace (o,7), denoted Valy, (a,7,i), is defined as
follows:

7; — 7; if there exists j such that i < j, p € o}
Valy, (7,7,i) = and for all k such that i < k < 7, p & oy
L if forall 4,4 < j,p¢&oj

Constraints about the value of clocks are used to express real-time re-
quirements on the occurrences of events.

Definition 4 A clock constraint is a boolean combination of formulas of the
form z ~ ¢ where z € C is a history or a prophecy clock, ~€ {<,<,=,>,>}
and c is an integer constant.

Clock constraints are evaluated in positions of timed traces. Here are
the rules of evaluation:

Definition 5 A timed trace 0 satisfies a clock constraint 1 at a position ¢
according to the following usual rules:

o (0,i) =2z ~ciff Val,(7,7,i) ~ ¢
b (072) |: _'1/) iff not (072) ): 1/);
o (0,i) =141 Vapy iff (0,9) = 41 or (0,7) = 4ho.

where ~ are evaluated as usual in nonnegative real numbers and 1 ~ ¢
always evaluates to false.

Definition 6 An EventClockTA is 6-tuple A = (L, Lo, P,C, E,F) where:

e [ is a finite set of locations;



Ly C L is the subset of start locations;

P is a finite set of propositions;

C is a set of clocks partitioned into a set H of history clocks and a set
P of prophecy clocks;

E is a finite set of edges; each edge is a quadruple (I1,1ls, s,1)) where
l1 € L is the source location, Iy € L is the target location, s C P is a
state description and 1) is a clock constraint;

F = {Fi,...,F,} with each F; C L, is a set of sets of accepting
locations. (generalized Biichi acceptance condition).

As finite state automata define set of traces, that are called languages,
EventClockTA define set of timed traces, that are called timed languages.
To define formally the timed language defined by an EventClockTA, we first
introduce the notion of computation of an EventClockTA:

Definition 7 An accepted computation of an EventClockTA A on a timed
trace @ is an infinite sequence

En

7210&11 Ly, 2
where each [; € L, and:
(C1) Iy € Lo (initiality);

(C2) e; = (lj,liy1, 8i,%;) € E (consecution), and:

(C3) (7,7,1) = ¢; (timing);
(C4) s; = o; (adequacy);

(C5) for every F; € F, there exists infinitely many positions j such that
l; € F; (generalized Biichi acceptance).

Definition 8 The timed language of an EventClockTA A, denoted L(A), is
the set of timed traces for which A has an accepted computation.

The formalism of EventClockTA is closed under all boolean operations:

Theorem 1 [AFHY)] For every EventClockTA Ay and Ay, we can con-
struct an EventClockTA Ay + As that accepts the union of the languages
of A1 and Az, ie. L(A; + As) = L(A;) U L(Az), an EventClockTA
Ay X As that accepts the intersection of the languages of A1 and As, i.e.
L(A; x Ag) = L(A1) N L(As), for every EventClockTA A, we can construct
an an EventClockTA A that accepts the complement of the language of A,

i.e. L(A) = L(A).




4 The Event Clock Logic

In this section, we introduce event clocks in temporal logic call this rEvent-
ClockTL. This logic is a real-time extension of the usual temporal logic. We
extend LTL (with past operators) by two indexed modal operators > and <
which express real-time constraints. The semantics of those two operators
is closely related to the notions of prophecy and history clock variables. The
formula >.. ¢ expresses that the delay before the next observation of ¢
satisfies constraint ~ ¢; symmetrically, the formula <. ¢ constrains the
previous observation of ¢. The modal operators > and < generalize the
semantics of history/prophecy variables of [AFH94]: They are more general
in that they allow recursion, i.e. the operators can constrain any formula
¢ rather than proposition symbols. As we show later, all interesting prop-
erties of EventClockTA are preserved in our logic, even though it is more
expressive. We now present formally the rEventClockTL logic. Examples of
specifications written in rEventClockTL are given at the end of this section.

Definition 9 A formula of rEventClockTL is composed of proposition sym-
bols p, p1, p2, .., q, ..., usual boolean connectives V and —, qualitative tempo-
ral operators: Until (U) and Since (S), real-time operators: prophecy op-
erator (>>), history operator (<1). A well-formed formula of rEventClockTL
satisfies the following syntactical rule:

pu=p|dVea|=d| Od | ©¢ | qiUdo | h1Sd2 [Brcd | <nc
where ~€ {<,<,=,>,>}, p € P and ¢, ¢1, ¢p2 are well formed formulas
and c is an integer constant

We use the usual precedence of operators: modal operators are more binding
than boolean ones, and their scope is as small as possible. A formula is non-
recursive if the real-time operators only contain proposition symbols: the
clauses >.. p | <~ p replace > ¢ | <~ ¢ in the syntax.

Definition 10 A timed trace 6 = (G,7) satisfies at position 7 an rEvent-
ClockTL formula ¢ when:

(0,7) Fp iff p € oy;

(0,i) E —¢ iff not (6,1) = &;

(0,1) = V b 1 (0,) |= b1 or (0,1) = o

(0,7) Fo¢iff i >0 and (0,i — 1) = ¢;

(0,1) = p1U o iff there exists j > i such that (0,7) = ¢2 and for

(0,3) = ¢p1 S iff there exists j, 0 < j < i such that (0,7) = ¢
and for all k, j < k < i, (6,k) = b1

(0,3) =r>~c ¢ iff there exists j > i, such that (0,7) = ¢, for all
ki <k<j,(0,k)E¢and 75 —7; ~ ¢



(0,7) =<~c ¢ iff there exists j, 0 < j < i, such that (6,75) = ¢,
forall k, j <k <14, (0,k) Fpand 7; — 7 ~c.

As usual, we can define other boolean and temporal operators as syntactical
abbreviations:

e boolean: T = —¢1 V1, L =T, 1 Ao = —=(=p1 V—ha), 1 — Po =
—p1 Vo, h1 > P2 = P1 — P2 Ao — Py

e for the future:

— O¢1 = TU ¢, meaning “eventually in the present or future”;
— ¢ = ~0—¢ “always in the present and future”;

= D @ =>1 PN B<y, “next ¢ occurs between [ and u from
now”;

— similarly, >1r ¢ =>.; A >y, “next ¢ occurs within I from
now”, where I is an interval with bounds [, and ~ is the ade-
quate constraint;

= P1Unctpr = p1Ud2 A (e P2 V ¢2), with ~€ {<, <}, meaning
“Until within ¢ next”;?

— et = = e 191, with ~€ {<, <}, meaning “always for the
following ¢ time units”;

e for the past:

— &¢1 = T S¢1, meaning “eventually in the past or present”;
— B¢ = ~6—¢1, meaning “always in the past and present”;
— ] ¢ =<>1 A <<y, “last ¢ occurred between | and u ago”;

— similarly, <7 ¢ =< PA <oy, “last ¢ occurred within I ago”,
where I is an interval with bounds [,u and ~ is the adequate
constraint;

— P1Schs = P1Sh2 A (e P2 V o), with ~€ {<, <}, meaning
“since within ¢”;

— Hectr = - <o 1, with ~€ {<, <}, meaning “always in the
past and present within c¢”;

Definition 11 A rEventClockTL formula ¢ defines a timed language L(¢):
the set of timed traces € such that (6,0) = ¢.

2If this definition is used with >, > or =, it has a different meaning than the until of
MetricInterval TL.



Example 2 Here are some examples of rEventClockTL formulas with their
verbal meaning. These examples cover all typical real-time requirements
classified in [Koy92]. In these examples, we mainly use atomic events p, g,

for readability but they can be replaced by more complicated rEvent-
ClockTL formulas. The verbal interpretation characterizes intuitively the
infinite timed traces € that the formula ¢ defines.

Llg: q is always true. Such a formula asserts invariance properties of
a system.

O(p —><5 q): a p position is always followed by a ¢ position within
5 time units. Such a formula specifies a maximal distance between a
request p and its response g. Such a property is called a bounded time
response. Here, it assumes that only one request can be outstanding.

O(p —>—3 q): when a p position is encountered, the first following ¢
position is at exactly 3 time units. Such a formula allows the assertion
of ezact response time (assuming no intervening request p).

p ADO(p —>=1 p): this formula asserts that p is true every integer
time unit. Such a formula allows the specifier to define periodicity of
events. Here p can model the tick of an ideal clock, that ticks every
time unit.

O(p — (>s5 p) V (0O—p)): every p event is either followed by another
p event distant of more than 5 time units or never followed by another
p event. This formula expresses a minimal distance between events, for
example the rate of input from the environment.

OOq: ¢ will eventually hold permanently.

O((<=3 q) — p). This formula asserts that if the last ¢ position is
exactly distant of 3 time units then p must be true now. It is a typical
time-out requirement.

O(g — (pS<3r)). When a ¢ position is encountered then the last r po-
sition is distant at most of 3 time units and all intermediary positions
were p positions.

O((B<3z—p) — q). If p is constantly false during the last 3 time units
then ¢ is true now. This is a typical example of the specification of an
alarm q if a monitored event p does not occur within a fixed delay.

As we can see, the rEventClockTL logic is quite expressive. Most of the
properties that are encountered when dealing with real-time systems, e.g.
bounded response time, bounded invariance, time-out,..., can be easily and
elegantly specified. In practice, the use of the MetricTL operator (.. can

10



often be replaced by the stronger but less expressive operator >... The
presence of the past operators is also a facility for the specifier. However,
there are properties that cannot be expressed using rEventClockTL logic:

Example 3 Every p state is followed by a ¢ state exactly 1 time unit later.
Such a property can be expressed in MetricTL [AH93] as follows:

O — 0=19)
This property is not expressed by the rEventClockTL formula:
O(p —>=19)
which is stronger since it requires that the first ¢ is at exactly 1 time unit.

In fact, as already mentioned in the introduction, if rEventClockTL could
express this MetricTL property, the logic would be undecidable. In the next
section, we show that it is not the case by defining a decision procedure for
the satisfiability problem of rEventClockTL. The expressive power of rEvent-
ClockTL is considered in section 6.

5 A Decision Procedure for rEventClockTL

The principle of the decision procedure for LTL is to construct a Buchi
automaton that accepts exactly the traces that are models of the formula
and then to test the automaton for emptiness, see [Wol85, MP95] for details.

Here we propose a similar approach: for every rEventClockTL formula
¢, we construct an EventClockTA Ay whose timed language is empty if and
only if the formula ¢ is not satisfiable. The procedure that we propose relies
on a construction that uses the subformulas of ¢.

Definition 12 The closure set of an rEventClockTL formula ¢, denoted
Cl(¢), is defined with the help of the recursive function ClI:

Cl(p) = {r};
Cl(¢1 V ¢2) = {¢1 V g2} U Cl(¢h1) U Cl(h2);
Cl(=¢1) = Cl(¢);
o Cl(©¢1) = {01} U Cl(¢1);
Ci(
Ci(
CI(

O¢1) = {O¢1} U Cl(¢);
$1U¢2) = {$1Uga} U {O(p1Uh2)} U Cl(¢1) U Cl(2);
$1S¢p2) = {Pp1Sp2} U{O(h15¢2)} U Cl(¢1) U Cl(h2);

11



o Cl(>nc d1) = {>nc d1} UCH1);
o Cl(Que d1) = {<ne d1} U Cl(¢1);

To obtain Cl(¢), we close Cl(¢) by negation and identify ~—¢; with ¢; in
any context to keep Cl(¢) finite. The set of atomic propositions appearing
in ¢ is denoted Py4. Note that P, C Cl(¢).

In our case, the EventClockTA Ay does not accept the models of the
formula ¢ but its timed Hintikka sequences. EventClockTA as defined
in [AFH94] and recalled in section 3 are not expressive enough to define all
rEventClockTL-timed languages, as shown in section 6. Nevertheless Event-
ClockTA can be used to define a decision procedure for rEventClockTL as we
show in this section.

Definition 13 The timed Hintikka sequences of ¢ are the timed traces 6
defined on the set of propositions {p,|p € Cl(¢)} (i.e. a proposition is asso-
ciated with each formula of Cl(¢)) that satisfy the following requirements,
for all 7 > O:

H1

H2) p, € 0; iff p, & 033

o

3) Ppivps € 0 iff py, € 0; o1 Py, € 03

H4) po, € 0; iff p, € 0i41;

H5) peop € 05 iff © > 0 and p, € 0;_1;

(H1)
(H2)
(H3)
(H4)
(H5)
(H6)

H6) pp,vp, € o; iff there exists j > ¢ such that p,, € o; and for all &,
ZSk<] pﬂl EO'k,

(H7) pp,sp, € oj iff there exists j, 0 < j <14, such that p,, € o; and for all
k7j<kg7'7pp1 € Ok;

(H8) ps..p € oy iff there exists j > ¢ such that p, € g, for all k, i < k < j,
pp & o) and T — T; ~ ¢

(H9) pg..p € o; iff there exists j, 0 < j < 4 such that p, € o, for all k,
j<k<i,p,&orand T —T1; ~c

Requirements H2 and H3 ensure propositional consistency of timed Hin-
tikka sequences, H4, H5, H6 and H7 ensure consistency with the semantics of
temporal operators, and, H8 and H9 ensure consistency with the semantics
of real-time operators. H1 is related to the following theorem:

Proposition 1 A rEventClockTL formula ¢ is satisfiable iff it has a timed
Hintikka sequence.

12



Proof. Let us prove that given an Hintikka sequence (7, 7) for ¢, the timed
trace (0',7), where o] = {q|p; € 0; Aq € Py}, has the Hintikka property: for
all formula p € Cl(¢), (5',7,i) = p iff p, € ;. We reason by induction on
the structure of formulas. Base case. ¢ = q, a proposition. By definition of
(6',7), q € o} iff p; € 0;. Thus by the definition of |=, we have (', 7,7) = ¢
iff p, € 05. Induction case. We treat two cases: ¢ = p1U¢po and ¢ = ¢1,
the other cases are treated similarly and left to the careful reader. By
induction hypothesis, we know that: for all i > 0, (¢',7,1) = ¢; iff pg, € o3,
for j € {1,2}. We now treat the two cases:

o o = pUgy. (6',7,1) E ¢p1Udo is defined as “there exists 7 > 4 such
that (6',7,i) = ¢2 and for all k, 4 < k < j, (6/,7,i) E ¢”. By
induction hypothesis, there exists 5 > ¢ such that py, € o; and for
all k, i <k < j, pg, € op. By rule (H6) of the definition of timed
Hintikka sequences, this is equivalent to py, 74, € 0.

o ¢ =>.c p1. (6/,7,1) E>c ¢1 is defined as “there exists j > 4 such
that (0, 7,j) = ¢o, j—7; ~cand forall k, i < k < j, (6',7,7) = ¢1”.
By induction hypothesis, this is also: “there exists 5 > ¢ such that
Pgy € 04, Tj —T; ~cand for all k, i < k < j, py, € 03,”. By rule (H8),
this is the same as py__¢, € 0;.

As we have that for all ¢; € Cl(¢) and for all i > 0, (6/,7,i) = ¢ iff
Py, € 0y, by rule (H1), we have that py € o and thus (6',7,0) = ¢. As a
consequence, (', 7) is a model of ¢.

Now, let us consider the other direction. If (5,7) is a model of ¢ we
prove that the timed trace (¢’,7), with o} = {p,|p € Cl(¢) A (5, 7,i) E p},
has the timed Hintikka property for ¢. Again, the proof is by induction on
the structure of formulas. The proof is easy since the Hintikka properties
(H1-HS8) express the semantics of the operators. [

Construction of A,

The locations of the EventClockTA A, will be subsets of CI(¢). If a formula p
belongs to a location [ of Ay, the intuitive meaning is that when the automa-
ton Ay is in location [ then all the accepted timed traces passing through
[ are timed Hintikka sequences underlying the models of p. Obviously, all
possible subsets of the closure set are not candidate for representing a posi-
tion in a model. For example, a subset of Cl(¢) which contains both p and
—p cannot be a candidate for a position in a model as the conjunction of
this set of formulas is not satisfiable. To make the notion of candidate for a
model position clearer, we define the notion of atom.

Definition 14 An atom over ¢ is a subset © C Cl(¢) satisfying the following
requirements:

13



e O is propositionally consistent and complete. More formally:

(A1) For every p; € Cl(¢), p1 € O iff —p; & O;
(A2) For every p; V pg € Cl(¢), p1 V p2 € O iff p; € O or py € O.

e O respects local constraints of the U and the S operators:

(A3) For every piUpy € Cl(¢), p1Ups € O iff either:
* p2 € 6;
x p1,0(pUp2) € O.

(A4) For every p1Sps € Cl(¢), p1Sp2 € O iff either:
* p2 € O;
* p1,0(p15p2) € O.

We build the components of Ag:

Propositions: It will accept timed traces defined on the set P = {p, | p €
T4)).

Clocks: It uses the clocks C = {zp, |<due p € Cl(P)} U{yp, |>ac p €
ag)).

Locations: The locations L of A, are the atoms of Cl(¢), requirement
denoted (L) in what follows.

Start locations: The start locations Ly are the atoms © such that: (S1)
¢ € © and (S2) for all formula ©p € Cl(¢), ~© p € O.

Let us now see how to define the edges of the automaton Ag. First we
examine when two locations must be linked by an edge. After we consider
the labels that decorate edges. The formulas Op and Op of Cl(¢) are used to
formulate the connection requirement of the automaton A,. Op € Iy means
that from the location [y all suffixes respect p, in their second observation, or
equivalently that from all locations l5 that are connected to Iy, the accepted
suffixes are suffixes where p, is true at the first observation. Symmetrically
for ©-formulas. As the suffixes starting from a location [; must satisfy the
propositions associated with the set of formulas that belong to atom [; then
the propositional labels are simply the propositions that are related to the
formulas of /1. To ensure the semantics of real-time formula, we simply use
the history and prophecy clocks. If .. p € [ then all edges that start from
I are labelled by the constraint y,, ~ c that ensures the real-time rule (HS8)
of timed Hintikka sequences. The situation is similar for history formulas.
We can now formulate more rigorously the edges of the automaton.
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Edges: in Ay, the location I; € L is connected by an edge to the location
lo € L, ie. (I1,lz,s,1) € E iff the following requirements are satisfied:

(E1) For every Op € Cl(¢): Op €1y iff p € lo;

)
(E2) For every Op € Cl(¢): p €1y iff Op € Io;
(E3) s ={p, | p € li} (propositional edge labelling function);
(B4) ¢ = Moy, ~ ¢ Qe p € L} Nyp, ~ ¢ >rc p € L} Nz, ~
o)|=(<ee p) € i} A{=(yp, ~ )| (>~c p) € I1} (real-time edge la-
belling function).

At this stage we have only defined necessary conditions for the formula
automaton Ay to accept timed traces that are timed Hintikka sequences ¢.
We still have to ensure the fulfillment of fatalities. Let us examine how to
cope with the fulfillment of fatalities induced by a formula of the form p U ps.
The semantics of the formula p; U ps expresses that the formula p; must stay
true until a po state is eventually reached. In our case, p,, is a fatality
in the sense that in all timed Hintikka sequences, a p,,r,, observation is
always followed by some p,, observation. The fulfillment of fatalities can be
ensured by the mechanism of acceptance of Biichi automata and relies on
the following lemma adapted from [MP95]:

Lemma 1 Let 0 be a timed Hintikka sequence of the EventClockTA formula
¢ and p, vy, a proposition promising p,,. Then, 60 contains infinitely many
positions 7 > 0 such that:

D—(p1Ups) € Tj OT Pp, € T

Proof. Let us first make the hypothesis that 6 contains infinitely many
Pp.Upy-poOsitions. By requirement (H6) of timed Hintikka sequences, each of
those positions is followed by a p,,-position and thus there also exists an
infinite number of p,,-positions.

If we make the hypothesis that € contains only finitely many p,, .-
positions then by requirement (H2) there are infinitely many positions j
S.6. Po(p,Upy) € 04 and thus the theorem is verified. UJ

We say that a computation of A, fulfills the fatalities of a formula ¢ iff for
every formula p € Cl(¢) promising a formula po, the computation contains
infinitely many —p locations or ps locations. To restrict the accepted com-
putation of Ay to computations that fulfill the fatalities of ¢, we use the
mechanism of accepting sets.

Accepting sets: F = {{l|=(p1Upz2) €l or ps €1} |p1Upa € Cl(¢)}. The
accepting sets are chosen to ensure the fatalities.
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This definition completes the procedure for constructing the automaton Ag.

Now,

let us prove that our construction is correct:

Theorem 2 The set of timed traces accepted by the EventClockTA Ay is
exactly the set of timed Hintikka sequences of formula ¢.

Proof. First, let us show that if 8 is a timed Hintikka sequence of the
rEventClockTL formula ¢ then § € L(A,). Let us construct a computation
y=1lp %1 = ... of Ay on 0. Take l; = {p|p, € o;} for each i > 0. Let
us first note that by requirement (H2) and (H3) of the definition of timed
Hintikka sequences, each [; is propositionally consistent and complete. Thus
each [; is an atom and by (L) a location of Ag;

(C1)

(C2)

v respects the initiality requirement of computation: by requirement
(H1) of the definition of timed Hintikka sequence, py € o¢ and thus
¢ € lg, further, by (H5), we know that for all ©p € Cl(¢), po, & 0o
and thus = © p € lp. Thus the conditions (S1) and (S2) are verified
and [y € L;

7y respects the consecution requirement: by points (H4) and (H5) of the
definition of timed Hintikka sequences, we know that po, € o; iff p, €
0i+1 which transposes to v as Op € [; iff p € [;11. A similar reasoning
can be applied to the past (©-operators) and thus the consecution
requirement is respected;

7 tespects the timing requirement: if the constraint y,, ~ c ap-
pears in the conjunction ; at position ¢ of v, we must show that
Valy, (5,7,1) ~ c. If yp, ~ c appears on ¢; then >.. p € l; and by
definition of the labelling function, we have py ., € 0;. By (H8), we
have that there exists a position 7 > 4 in ¢ such that p, € 0, 7j—7; ~ ¢
and for all k, 2 < k < j, p, € op. This is exactly what we wanted. A
similar reasoning apply to other cases.

v is adequate: direct consequence of the definition of the labelling
function (E3);

v respects the acceptance condition: by (H4), every observation o; s.t.
PpiUps € 0, is followed by an observation o; (j > i) s.t. pp, € 0.
By construction of v and the edge labelling function, we have that
every location [; s.t. p1Ups € [; is followed by a location [; (j > i) s.t.
p2 € lj. Thus for every formula pUpy € Cl(¢), v contains infinitely
many locations that either contain py (if there are infinitely many
locations that contain p;Ups) or there are infinitely many locations
that do not contain p;Upo and thus the generalized Biichi condition
is verified by ~.
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Second, we show that if § € L(A,) then 6 is a timed Hintikka sequence

of ¢.

To prove that direction, we show that for all positions ¢ in 6 every

condition of the definition of timed Hintikka sequences is verified. We assume
v =1y LN N of Ay on 6 as above.

(H1)

As vy is a computation of A, y respects the initiality requirement (C1),
ie. lyp € Ly, and thus by (S1), ¢ € ly. The propositional labelling
function of Ay is adequate (C4), so that py € 0g and thus requirement
(H1) is verified.

Let us first show that if p, € 0; where p = —py, then p,, & 0;. By the
definition of the edge labelling function (E3), adequacy requirement
of computation (C4), we know that —p; € l;. By requirement (A1)
of atoms, p; & I; which implies by definition of the propositional edge
labelling function of Ay (E3) and by the adequacy requirement of
computation (C4) that p, & o;. If p, € o; where p = p;, then
p-p, & 0; is established by a similar reasoning. Requirement (H2) is
thus verified.

Let p, € o; where p = p; V pa. By construction of v, this means
p1 V p2 € l;. By requirement (A2) of atoms, this means either p; € [;
or py € l;. By definition of the propositional labelling function (E3),
this means either p,, € s; or p,, € s; where s; is the propositional
labelling of edge e;. Thus p,, € o; or p,, € 0;.

We have to show that po,, € oy iff p,, € 0iy1. Po,, € 04, by (E3) and
(C4), means that Op; € [;. By the consecution requirement (C2) and
(E1), thisis p1 € l;41. Finally, by (E3) and (C4), we obtain p,, € o;41.
The other direction is similar.

This case is similar to the previous one and is left to the reader.

We first show that if p, € o; where p = p;Up> then there exists a
position j, 7 > 4 s.t. p,, € o; and for all positions k, ¢ < k < j,
Pp, € 0. First, we show that j exists. By contradiction, consider the
hypothesis that there does not exists a first I; s.t. ps € [; with ¢ < j.
But in that case, we have —py € I for all i < k. As ;qUpy € 1;, a
inductive reasoning similar to the next one allows us to conclude that
p1Upg € Iy for all 1+ < k. Thus, v would not be accepting, contradicting
the definition of 7. So we can take the first such j. By definition of
v, (E3) and (C4), p1Ups € I;. We note [; with j > i, the first location
after [; in  such that po € I;. Since we have taken the first j, for all
k,i <k <j,ps &lg. Let us show that p; € [y and piUps € [y for
each of those k. We reason by induction:

— Base case: k=1 < j, as p1Ups € [; and po & [;, the requirement
(A3) of atoms allow us to conclude that p; € [; and p1Ups € [; 4.
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(H9)

O

— Induction case: by inductive hypothesis we have p; € [; and
p1Ups € ljyq, for all [ s.t. ¢ <1 < k < j, let us show that we
have that p; € [, and p1Ups € lg 1. As p1Upy € I, and py & oy,
as k < 7, the connection requirement (E1) and the requirement
(A3) of atoms allow us to conclude p; € Iy and p1Ups € lj11.

So we have shown that p; € [j, for all £ s.t. © < k < j and by hypothesis
p2 € lj. By the definition of the propositional edge labelling function
(E3) and adequacy (C4), p,, € oy forall k s.t. i <k < j and p,, € 0.

We consider now the other direction: let us make the hypothesis that
there exists 7 <4 s.t. p,, € 0; and for all k, ¢ <k < j, p,, € o}, then
we must establish that p, r7,, € ;. Again, we can use the first such
j- From that, let us show that for all k, ¢+ < k < j, p,,vp, € 0. We
reason by induction.

— Base case: k = j. As py € lj, we have, by (E3), (C4) and
requirement (A3) of atoms, we have piUp, € [; and thus p,,7,, €
gj-

— Induction case: by induction hypothesis, we have that for all m,
i <k <m <7, ppup, €0om. Let us show that p, v, € op_1.
We know that p, p, € ok, pp, € ok—1 and p,, & 0. By (E3)
and (C4), we have O(p1Upz2), p1 € lp—1. By requirement (A3) of
atoms, we obtain pUpy € I and thus p,, ), € 0,1 by (E3)
and (C4).

This case is similar to the previous one and is left to the reader.

First let us prove that if p, € o; where p =>.. p1 then there exists
a position j such that j > ¢ and p,, € oj, 7 — 7; ~ ¢ and for all
k,i <k <j,pp & ok By definition of v and (E3), we know that
>.c p1 € l;. By definition of the real-time edge labelling function,
we know that ; is of the form y,, ~ ¢ A} and thus by the timing
requirement of computation (C3): (6,i) E yp, ~ c¢ which implies
exactly what we had to prove.

Now let us show that if there exists a position j such that j > i
and p,, € 0j, ; —7; ~ cand for all k, i < k < j, p,, & o} then
P>oepy € 0j. Let us make the hypothesis that py_., & o;. Then
>~c p1 € l; and thus, by atom propositional completeness (A1), = >
p1 € l;. By the real-time labelling function, 1; = ;A=(yp,, ~ c) which
by the semantics of prophecy clock constraint contradicts that v is a
computation of Ag. Thus py ., € 0;.

This case is similar to the previous one and is left to the reader.
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Corollary 1 The rEventClockTL formula ¢ is satisfiable iff the language
accepted by the EventClockTA Ay is not empty.

Proof. Direct consequence of proposition 1 and theorem 2. [

The usual next step is to show that we can restrict the symbols on edges
of Ay to propositions. However, for EventClockTA, this works only for non-
recursive formulas. Let Ay, NP be as Ay, but with edges labelled with
proposition symbols only: s = {p;|r € I A7 € P}.

Corollary 2 The models of a non-recursive rEventClockTL formula ¢ form
the language accepted by the EventClockTA Ay NP.

To have a decision procedure for our rEventClockTL logic, it remains us to
show how the emptiness of EventClockTA can be decided. The principles of
the region construction [AD94] which transforms a timed automaton into an
untimed finite state machine can be applied to EventClockTA automata. The
idea is to construct a finite state machine that accepts Untimed(L(Ay)), i.e.
{|(6,7) € L(Ag)}. The results presented here are adapted from [AD94,
AFH94] and are recalled to allow the reader, not familiar with real-time
automata, to fully understand the decision procedure.

Definition 15 An eztended state of an EventClockTA A =
(L,Ly,P,C,E,F) is a pair (l,n) where | € L is a location and
n: C — RTU({L}, is a clock valuation which associates a value of
R U{L} to each clock z € C of the automaton.

The following definition formalizes the effect of time passing on valua-
tions of clocks:

Definition 16 (7 +¢) The clock valuation 7' obtained from the clock val-
uation n by letting time elapse during ¢, denoted 1 + ¢, is defined as follows:

e For all prophecy clocks y € P: (n +)(y) = n(y) —t if n(y) —t > 0;
otherwise n + t is not defined.

e For all history clocks z € H : (n+¢)(x) = n(z) + ¢

with the addition + and subtraction — interpreted as usual in the real
numbers and as follows for the special value 1: 1 +¢t= 1,1 —¢t= 1.

The number of extended states is uncountable, as we model time by
the nonnegative real numbers (RT). But to evaluate real-time constraints
labelling edges of EventClockTA, only the integer value of clocks and whether
their fractional part is zero is needed. Also, to know which clocks will
first change their integer value, we only need to know the order between
the fractional parts of the clock values. Next we recall the definition of
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an equivalence relation between valuations based on those two remarks.
This equivalence relation partitions the valuations into a finite number of
equivalence classes called regions. Two states in the same region will behave
similarly.

Definition 17 [AD94, AFH94] Two clock valuations n;, 7y are in the same
region, denoted 1y ~ 19, for an automaton A = (L, Ly, P,C, E,F) iff the
following conditions are respected:

e 71 and 72 agree on which clocks have the undefined value L. Those
clocks are called undefined. The set of clocks undefined in valuation 7
is denoted Undefined(n). The other clocks are called active. The set
of clocks active in valuation 7 is denoted Active(n).

e 71 and 7o agree on the integral part of all active clocks that are at
most ¢, where c is the biggest constant appearing in the the real-time
constraints decorating the edges of A:

— Vz € Active(n:), if n1(2) < c or na(2) < ¢ then [n1(2)] = [n2(2)]

e 11 and 79 agree on the ordering of the fractional part of all active
clocks that are at most c:

— for a prophecy clock y, let (n1(y)) be n1(y) — [71(y)] and for a
history variable z let (n1(z)) be [ni1(z)] — n1(x). For all 21,25 €
Active(n;) with n1(21) < ¢ and m(zQ) <c:

x (n1(21)) = 0 iff (n2(z1)) =0
* (m(21)) < (m(22)) iff (n2(21)) < (n2(22))

A clock region is an equivalence class of ~. Two extended states
(I1,m), (I2,m2) are region-equivalent if [; = [y and 71 = 72. Note that =~
is of finite index.

Let us now define when a clock region « is the time successor of another
clock region «;.

Definition 18 A clock region as is a time successor of a clock region «q,
denoted ay € TS(avy), iff ¥y € aq, It € RT such that n; +t € ao.

Next, we define a Biichi automaton with e-moves, called the region au-
tomaton of A, denoted R(A) that accepts exactly Untimed(L(A)). The
e-moves will be used to model time passing, i.e. transitions between clock
regions.

Definition 19 The region automaton of A = (L, Ly, P,C,E,F) is the
Biichi automaton R(A) = (L", Ly, X", E", F") where:

20



e L is the set of regions, i.e. 3-tuple (I, a, §) with [ € L, o an equivalence
class of clock interpretations and ¢ € {t,d}. With &, locations are
partitioned?;

e Lj is the subset of locations (I, «,&) € L wherel € Ly, Vo € H, a(z) =
1, & = t. Initially all history clocks are undefined.

o X =27 U {e};
e E" is the set of triples ((I1, a1,&1), (I2, a2, &2), s) such that

—if s € 2P, ¢, =t and & = d meaning that the last transition
of the automaton was a time transition and now the automaton
takes a discrete transition, and there is an edge (l1,l3,s,1) in
automaton A and a clock region a3 such that:

* o = aslyp == 0|p € s] (a1 agrees with a3 on all clocks except
prophecy clocks associated with propositions that appear in
s; those clocks have the value 0 in «a1);

* a9 = ag[zy = 0|p € s] (a2 agrees with a3 on all clocks except
history clocks associated with propositions that appear in s;
those clocks have the value 0 in as);

x Vn € as,n |= 1: the value of clocks when crossing the edge
are consistent with the real-time constraint .

—if s =€, & = d and & = t meaning that the last transition of
the automaton was a discrete transition, and now the move is a
time move: ay € TS(a) (the region s is a time successor of the
region aq) and Iy = lo;

o F={F|,....F} U{Fy, | <ec p € C(§)} U{Fy, | e p € Cl(9)};

where:

— for all 4, F] = {(I,a,&)|l € F;}. So each F] is a set of regions
composed of an accepting location for F; of A and a clock region
Q;

— By, = {(l,,OIn(zp,) = 0V nlzy,) > cVn(zy,) = L,Vn € a}
is the set of regions where the history clock z,, is greater than
the maximal constant ¢, equal to zero or undefined. This ensures
that either z;, is reset infinitely often, always undefined or its
value goes beyond any bounds. This is imposed by the progress
of time requirement of timed traces and the semantics of history
clocks.

3This partition of the locations allows us to force the region automaton to take infinitely
many discrete jumps corresponding to the infinitely many observations of a trace.
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= Fy,, = {(l,a,YIn(yp,) = 0V nlyy,) = L,¥n € a} is the set
of regions where the prophecy clock y,, has the value 0 or is
undefined. These sets are necessary to ensure the progress of
time. In fact, if a prophecy clock is not undefined, as time always
progresses, the clock must inevitably attain the value 0.

The language of R(A) is the set of infinite traces corresponding to accepted
runs of R(A). The following theorem states the correctness of the region
automaton.

Theorem 3 [AFHY}] The language of R(A) is Untimed(L(A)).

Corollary 3 The timed language of A is empty iff the language of R(A) is
empty.

The theorem 2 and corollary 3 give us the possibility to decide the model-
checking as well as the satisfiability /validity problems for rEventClockTL.

Theorem 4 The satisfiability and validity problems for rEventClockTL are
decidable.

Proof. The satisfiability of an rEventClockTL formula ¢ can be decided by
constructing Ay, the automaton for ¢ and testing if L(Ay) # 0. Similarly
the validity of an an rEventClockTL formula ¢ can be decided by constructing
A4, the automaton for the negation of ¢ and testing if L(A.4) = 0. O

The model-checking problem for real-time reactive systems consists in veri-
fying that the timed traces defined by a product of timed automata respect
a property expressed in a real-time logic, i.e. L(A; x --- x A4,) C L(¢).
Note that L(A; x --- x Ap) C L(¢) iff L(Ay x --- x Ay) N L(=¢) = 0 iff
L(A; x -+ x Ay, x Ay) = 0. This gives us a decision procedure for the
model-checking problem: compute A_g4, the automaton for the negation of
¢, test if the product of this automaton with the timed automata has a
empty timed language. This gives the following theorem.

Theorem 5 The real-time model checking problem for rEventClockTL is de-
cidable.

The procedure that we propose for deciding rEventClockTL constructs
first an EventClockTA which is transformed into an untimed automaton, the
region automaton, for checking emptiness. The following lemma and the-
orem characterize the size of the constructed automata for a given rEvent-

ClockTL formula ¢:

Theorem 6 [AFH9/] The region equivalence = defined on the extended
states of an EventClockTA A is of finite index. The number of locations in
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region automaton of an EventClockTA A is O(l - 2™1°8¢™) “where | is the
number of locations in A, m is the number of clocks in A and c is the largest
constant appearing in A.

The emptiness of the region automaton can be tested without construct-
ing it completely:

Lemma 2 [SVW85] The nonemptiness problem for Bichi automata is
NLOGSPACE-COMPLETE.

From theorem 6 and lemma 2 we obtain:

Lemma 3 (PSpAcE-Easiness) The satisfiability and validity problem for
rEventClockTL in pointwise semantics are PSPACE-Fasy.

Proof. First, the size for each formula ¢ € rEventClockTL is defined by the
three following elements:

1. the number of subformulas in ¢ (bounded by |¢|);

2. the maximal integer constant K used in a real-time operator within ¢
(bounded by 2/%l);

3. the number of real-time subformulas in ¢ (bounded by |¢|).

By observing how Ay is constructed, it is direct to show that its size is as
follows:

e the number of locations in Ay is exponential in the number of subfor-
mulas in ¢;

e the maximal integer constant used by A in clock constraints is equal
to the maximal integer constant K used by ¢ within real-time opera-
tors;

e the number of clocks used by Ay is bounded by the number of real-time
subformulas in ¢.

By lemma, 6, we can construct the region automaton R“4¢ which is a Biichi
automaton with a number of locations:

e linear in the number of locations of Ay, and thus singly exponential in
the number of subformulas of ¢;

e singly exponential in the number of clocks used by A4 and thus singly
exponential in the number of real-time operators of ¢;

e singly exponential in the maximal constant used by Ay and thus singly
exponential in the maximal constant K used in ¢.
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Using a nondeterministic version for the emptiness of R4¢, this exponential
automaton needs not be constructed explicitly and we obtain a PSPACE
procedure for the satisfiability and validity problems of rEventClockTL. [

Lemma 4 (PSpAce-Hardness) The satisfiability and wvalidity problems
for rEventClockTL in pointwise semantics are PSPACE-Hard.

Proof. The hardness follows directly from the fact that the logic LTL is
contained in rEventClockTL and has been shown PsPACE-hard in [CESS86].
O

As a consequence, the complexity of the satisfiability problem and the
validity problem of rEventClockTL are in PSPACE.

Theorem 7 The satisfiability and validity problems for rEventClockTL are
PSPACE-complete.

6 Expressiveness

In this section, we study the expressive power of rEventClockTL in pointwise
timed traces. The results differ when the logic is evaluated in continuous
timed traces (i.e. timed state sequences), see Appendix. First, we compare
its expressive power with respect to MetricIntervalTL; then, with respect to
EventClockTA.

6.1 rEventClockTL vs Metriclnterval TL

In this subsection, we compare the expressiveness of the logic rEventClockTL
with the expressiveness of the logic Metriclnterval TL. We first recall the def-
inition of the syntax and the semantics of the logic MetriclntervalTL.

Definition 20 (Metriclnterval TL-syntax) A formula of MetriclntervalTL is
built from proposition symbols, boolean connectives, and time-bounded “un-
til” and “since” operators:

¢ u=pldiAde| b | b1Urds | b1ST o

where p is a proposition and [ is a nonsingular interval whose finite end-
points are nonnegative integers, and that does not contain 0. [J

In the sequel, we will be interested in fragments of Metriclnterval TL:

Definition 21 (MetricIntervalTL o-fragment) The formulas of the frag-
ment MetriclntervalTLg o, are defined as above, except that the interval I
must either have the left endpoint 0, or be unbounded; in these cases I
can be replaced by an expression of the form ~ ¢, for a nonnegative integer
constant ¢ and ~ € {<, <, >, >}. O

24



Definition 22 (Metriclnterval TLY -fragment) The formulas of the frag-
ment Metricnterval TLY" are defined as for MetricInterval TL, except that U;
is the only real-time operator.

We now define the semantics of those logics.

Definition 23 The MetriclntervalTL formula ¢ holds in position i € N of
the timed trace § = (5,7), denoted (#,i) |= ¢, according to the following
definition:

(0,i) = p iff p € o33
(0,0) |E ¢1 A b2 iff (0,7) = ¢1 and (0,1) = ¢o;
(0,7) = $1Urgy iff there exists j > i such that (0,7) = ¢,

)
7;—7; € I and for all k with ¢+ < k < j, we have (0,k) = ¢ 4;
(0,7) = ¢1S1¢o iff there exists j, 0 < j < 4, such that (0, 7) = ¢o,
7; —7; € I and for all k& with j < k < i, we have (0,k) |= ¢1;

L

The Metriclnterval TL formula ¢ defines the timed w-language
tains all timed state sequences 6 with (0,0) = ¢.

(¢) that con-

We also use the following classical abbreviations:

e When the real-time constraint is omitted, it is the most permissive:

U =1V ¢U (0.00);

e We can use constraints instead of intervals:
dU wct) =1V ¢U 1), where I = {r e Rjr > 0Ar ~ c};

e We can extend intervals to include 0, by making U reflexive:

¢ﬁ{0}u1¢ =V ¢U r¢;
) 9= Tﬁ,-qb, meaning “eventually within I”;
o 0= -9 1—¢, meaning “always during I”;
e and their past counterparts: @Hb = T§]¢, §|1¢ = —@I‘@;

e Inlemma 7 we will see that all rEventClockTL operators can be defined
as abbreviations.

We now compare the expressive power of the two logics. We will show
that they differ on the infinite set of timed traces O:

Definition 24 The (infinite) set of timed traces © =
{0>=,0',62,...,0",...} contains the following traces defined on the
set of propositions P = {p}:

4Note that the operator [71 is irreflexive.
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1. each 0¥ € © contains the same qualitative information: 0¥ = (&, 7%)
is such that for all position i € N, o; = {p}; that is, p is true in every
position of every timed trace of O.

2. the timed traces of ® have the following timing information:

(a) for °°, the timing information 7°° = 7{°7{°...7.°... is 77° =

1 x 1.5; that is, an observation each 1.5 time units;

(b) for 6%, with k& € {1,2,...,n,...}, the timing information 7% =

R L T

k[ ix15 if i £k
T ix15-01 ifi=k

that is, in 6%, there is an irregular k& observation which is sepa-
rated from the k — 1** by 1.4 time units and from the k + 1** by
1.6 time units.

Let us note that for every position i € N, in a timed trace § = (5,7) €
O, 1iv1 — 7 € (1,2). That is, the time difference between two consec-
utive observations is between 1 and 2 time units, in fact it is either
equal to 1.4, 1.5 or 1.6.

O

Example 4 Here are two examples of prefixes of traces from the set O:

e a prefix of 9°°:

({r},0){r}, 1.5)({p}, 3)({r}, 4.5){p}, 6)({p},7.5) ...

e a prefix of 62

({r}, 0){r}, 1.5)({p}, 3)({r}, 4.4){p}, 6)({p},7.5) ...

so the observation number 3 is at 4.4 instead of 4.5 as it is in 6°°.

In the next lemma, we show that the future fragment of MetricInterval TL
can distinguish > from the other timed traces of ©. The idea is that the
position ¢ is always separated for the position 7 4+ 2 by 3 time units in 0
while it is not the case in #¥, where the k' position is separated by 3.1 time
units from the position &+ 2. We now show that a simple MetricInterval TLY
formula can detect this fact.

Lemma 5 ¢y = ﬁ(o’oo)(p — 6[2,3];0) € Metriclnterval TLY is such that
(0>°,0) =4 and for all k > 1, (6%,0) B~ .
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Proof. Every position ¢ in 8 is separated by exactly 3 time units from the
position ¢ + 2. As p is true everywhere, p — 6[2’3};0 holds in every position
of 6> and thus by the semantics of the ﬁ(o,oo)—operator, (0%°,0) = 1. On
the other hand, the k™ position of #* is not followed by any position in
7F +[2,3] as the (k + 1) position is at time 7F + 1.6 and the (k + 2)%
position is at time T,lf +3.1. Thus p — 6[2’3}]) is false in position k of ©F and
thus (6%,0) (£ . O

We now show that the future fragment of rEventClockTL cannot distin-
guish between timed traces of ©. This is a consequence of the following
stronger lemma:

Lemma 6 For every formula ¢ € rEventClockTLY, for every two timed
traces 01,05 € ©, for every two positions i,j such that 0 <i < j: (01,1) = ¢
iff (62,3) = & iff (01,5) = ¢ iff (02,4) = &. That is, every formula of

rEventClockTL is either constantly true in all timed traces of © or constantly
false in all timed traces of ©.

Proof. The proof is by induction on the structure of formula.

e ¢ = p: as p is true in every position of every timed trace of ©, the
base case is verified.

e ¢ =D, ¢1: By induction hypothesis, we know that either:

1. ¢1 is true in all positions of all timed traces of ©: Thus for every
position iz, the first following ¢ is in ¢ + 1 and by definition of
O, Tiy1 — 7 € (1,2) in the two timed traces. Thus >.. ¢ is
constantly true if (1,2) C {v € R" | v ~ ¢}, and constantly false
otherwise.

2. ¢ is false in all positions of all timed traces of ©: So there does
not exists a (first) following ¢y position, and >.. ¢; is constantly
false.

e The other cases are left to the reader.
O

A direct consequence of the lemma 6 is that rEventClockTLY cannot
distinguish #°° from other models of ©:

Corollary 4 For every formula 1 € rEventClockTLY, for every k > 1,
6> € L() iff 0% € L(v).

And rEventClockTL is less expressive than Metriclnterval TLY":

Theorem 8 Metriclnterval TL" ¢ rEventClockTLY.
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Proof. By corollary 4, we know that for every formula ¢ € rEventClockTLY,
L(¢) contains © or has an empty intersection with ©®. On the other hand,
the formula ¢ = ﬁ(p — 5[2,3}p) of MetricInterval TLT is satisfied by 8 but
by none of the timed traces ¥ € ©. It means that L()) N © # § but
© Z L(1)). Thus rEventClockTL cannot express the property expressed by

¥. O

Let us now take a look at the other direction of the inclusion: “is every
rEventClock TL -expressible property also expressible in MetricInterval TL¥'?”
To answer this question, we provide a translation ¢!, defined by induction:

o p=p: " =p.

o =1V ¢T =¢T Vel

o ¢=pr: ¢T =47

o p=0¢1: ¢ = LU (g00)T-

o p=0d¢: ¢ = LSOOO)¢ .

o = hUpo: ¢ = g5V ($T N ($TTU(0,00)8%))-

o ¢ =¢1S¢y: Symmetrically, ¢7 = ¢ V (¢T A (75 (0,00)8%))-

o p=7 1 ¢T = TU ¢ A~(TU14T), where | I is the real interval
{t>0]3t' €l:t<t}and < I is the real interval {t >0 | Vt' € I :
t <t}

o ¢ =<1 ¢1: Symmetrically, ¢’ = Tguqb{ A —'(T§<I¢1T)-

Lemma 7 For every formula ¢ of rEventClockTL, ¢” € MetriclntervalTLg o
has the same meaning: for every timed trace 0, for every position i: (0,1) |=
¢ iff (0,i) = 7. Furthermore, this translation respects future fragments: if
¢ € rEventClockTL", ¢ € MetricIntervalTL{ .

As a consequence we have the following theorem:

Theorem 9 The logic MetriclntervalTLg o is at least as expressive
as rEventClockTL, rEventClockTL C  MetriclntervalTLy o and thus
rEventClockTL C Metriclnterval TL.

In the theorem 8, we have shown that the inclusion rEventClockTLY ¢
Metriclnterval TLY" is strict. Is this inclusion also strict for the full
rEventClockTL logic? Before answering this question, let us first note that
adding past operators to rEventClockTLY adds expressive power. In fact,
let us consider the timed trace #*, with k even (so that k x 1.5 is a natural
number), and the rEventClockTL formula
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Q,Dk =0...0<dkx15 70T

k
where = © T is only true at the initial position of #¥ and thus ¥ expresses,
in this initial position, that “the k** position of #* has the timing k x 1.5”.
Which is false by definition of #¥. On the other hand, this property is true in
the initial position of #° and thus the formula ¥ can distinguish between
0% and . Thus, adding past operators to rEventClockTLY increases the
expressive power of the logic:

Theorem 10 The logic rEventClockTL is strictly more expressive than its
future fragment rEventClockTLY : rEventClock TLY C rEventClockTL.

Note that this phenomenon is not observed in the temporal logic LTL:
adding past operators to LTL only adds convenience but no real expres-
sive power [GPSS80]. For real-time logics, in contrast, past operators add
expressive power, for instance [AH92a] proved that MetricIntervalTLY C
MetricInterval TL, noted there MITL ¢ MITLY.

The formula % above explains why our simple proof that
Metriclnterval TLY is more expressive than rEventClockTLF will not work to
show that MetricInterval TL is more expressive than rEventClockTL. But this
formula does not distinguish 8> from @' with [ > k. For such a [, intuitively,
we need a bigger rEventClockTL formula, such as ¢!. In the next lemma, we
prove that for any given formula ¢ of rEventClockTL, there exists a bound
size(¢) such that the formula ¢ cannot distinguish between > and 6% for
k > size(¢). This size, intuitively, measures how far ¢ can look into the past
of °°. Formally:

Definition 25 (Size of an rEventClockTL-formula) The size of a for-
mula ¢ € rEventClockTL, denoted size(¢), is defined recursively as follows:

* size(p) =

o size(—¢)) = size(¢y);
o size(d1 V da) = max(size(¢r), size(h2));
o size(O¢1) = size(¢y);

o size(O¢1) = 1+ size(¢);

o size(p1Uz) = max(size(¢1), size(¢2));
o size(¢15¢2) = max(size(¢1), size(¢2));
o > P1 = size(¢y);

o due b1 = [15] + size(dr);
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For the real-time operator <1, we use the constant ¢ and divide it by
1.5, because our notion of size is designed for the timed traces of ©, where
observations are separated by 1.5.

For example size(O— © T) =1, size(>—¢ p) = 0 and size(<d=;4y O T) =
(447 4 1 = 11, size(© © Op) = 3.

Lemma 8 For every formula ¢ € rEventClockTL, for every model 0¥ € ©
with k > size(¢p) then:

o Pi(¢,0F) = Viy,is - 0 < size(¢p) < iy < iz: (0%,41) = ¢ iff (0%,i2) = ¢

o Py(¢,0%) = Vi-0 < i <size(¢): (0%,0) = ¢ iff (0°°,4) = ¢;

Py(¢p,0%) expresses that: for every position iy,iy after size(¢), the formula ¢
is either constantly true in 0 and 6% or constantly false. Py(¢, 0F) expresses
that: for every position i before size(¢p), the formula ¢ is evaluated similarly
in O and 0 (but its truth value may change from position to position). We
note Py(¢,0F) the formula Vi > 0, (6%,4) = ¢ iff (°,i) = ¢. Note that
Ps(¢,0%) is a consequence of the conjunction of P, and P;.

Proof. The proof is by induction on the structure of formulas.

e ¢ = p: as p is constantly true in all timed traces of ©, then P; and P»
are verified for the base case.

e The boolean cases are trivial.

e ¢ = O¢1. Note that size(¢p) = size(¢1). By induction hypothesis, for
all k > size(¢), Pi(¢p1,0%) and Py(¢y,0%) holds and thus Ps(¢1, 6%).

1. As, by semantics of the O-operator, the truth value of O¢; in
position ¢ only depends on the truth value of ¢; in 7 + 1 and
Py (¢1,6%) holds, we know that O¢; is constantly either true (if
¢1 is constantly true, by P; and induction hypothesis) in positions
i > size(¢) or constantly false (if ¢y is constantly false by P; and
induction hypothesis) in positions i > size(¢), in both #* and >
and thus P (¢, 0%) is verified.

2. Let us now try to establish Py(¢,60%). Again, we know that
Ps3(¢1,0%) is a consequence of the induction hypothesis. That is,
¢1 evaluates in the same way in every position of the two timed
traces #* and 6. By the semantics of the O-operator Ps(¢, 8%)
holds and thus P (¢, 6%).

e The U and S operators are treated in the same way.

e ¢ = O¢p1. Note that size(¢) = 1 + size(¢1).
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1. Let us first establish Pj(¢,0%) for k > size(¢). By induction
hypothesis, we know that P;(¢1,0%) holds. As a consequence, for
all positions i > size(¢) — 1, ¢; has the same constant value in
6% and #>°. Thus in all positions i > size(¢), O¢; has the same
constant value in % and §°. And thus P; (¢, %) is established.

2. Let us now turn to Py(¢, 6%). By induction hypothesis P3(¢q, 6%)
holds. That is, ¢; has the same truth value in 6% and 6, for
every position 7. As the truth value of ©¢; in all positions 7 > 1

only depends on the truth value of ¢ and a ©-formula is always
false in i = 0, P3(¢, #*) holds and thus P (¢, 6*) holds.

e =D, p1. We know that size(¢p) = size(¢1).

1. We first establish P; (¢, 6%) for k > size(¢). By induction hypoth-
esis, we know that either:

(a) for all position i > size(¢) that (8%,i) = ¢ and (0°,4) =
¢1: In this case, for all i > size(¢), the following ¢, is at a
distance of d € (1,2) and thus >.. ¢ is constantly true if
(1,2) C {v|v ~ ¢} and constantly false otherwise, in both
timed traces 6% and 0>,

(b) for all position i > size(¢) that (8%,7) = ¢1 and (6°,4) [~ ¢1:
In that case, for all 7 > size(¢), there is no following ¢
position and thus >.. ¢; is constantly false in both timed
traces O and 6°°.

This establishes P (¢, 8%).

2. Let us now turn to Py(¢,0%). First we know that for all positions
0<1i<Ek, Tik = 7°, that is, the timing of the two timed traces
agree. We also now that ¢; has the same constant value in the
two traces after position i = size(¢) < k. Let us consider any
position [ such that 0 <[ < size(¢) < k, the following ¢; must
be true in a location m, | < m < size(¢) or it will be false for
ever. In the last case >.. ¢ is false in the two timed traces. In
the case that ¢ is true in a position m, | < m < size(¢) < k,
the formula >, ¢; evaluates similarly in the two timed traces as
their timing information is the same for all positions i, 0 < i < k.
And thus property Ps(¢,#*) holds.

e $ =<, ¢1. First, note that if ¢ = 0 then <. ¢ is equivalent to false
as the <1 operator is irreflexive and time is strictly monotone. Let us
consider the case where ¢ > 0. Let d = [{%]. Note that d > 1. We
know that size(¢) = d + size(¢y).

1. We first establish P;. By induction hypothesis, we know that
either:
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(a) Vi : size(¢) —d < i: (0%,4) |= ¢ and (0°,i) = ¢1. For
every position j such that size(¢) < j, the last ¢; position is
j — 1 at a distance d, € (1,2). As a consequence, for all j
such that size(¢) < j, (6%,7) E> . ¢1 iff (0°,5) ED> e ¢y iff
(1,2) C {v|v ~ c}; and thus ¢ is either true in all j > size(¢)
in both #¥ and > or it is false in all j > size(¢) in both #*
and 6.

(b) Vi :size(¢) —d < i: (0%,i) £ ¢y and (0°°,4) [~ ¢1. For every
position j such that j > size(¢), the last ¢ observation is,
if it exists, in a position 7 with 0 < i < size(¢) — d. Thus at
a distance dp > d x 1.5 > ¢ and thus <., ¢ is verified in
all positions j > size(¢), both in #¥ and 9> if “~” = “>” or
“>” and the ¢1-position exists. In all other cases, <l~. ¢ is
false in all positions j > size(¢), both in #¥ and 6.

And thus Py (¢, 6) holds.

2. Let us now turn to the property P». So, we want to establish
that Vi -0 < i < size(¢): (6%,i) |= ¢ iff (6°,i) |= ¢. Let us first
note that the value of <. ¢1 in the positions 7, 0 < i < size(¢),
only depends on the truth value of ¢ in 0 < i < size(¢) and the
timing information for #¥ and #°°. The value of ¢; is similar in
those positions for the two models by induction hypothesis. Also
the timing information in that interval of positions is identical as
k > size(¢) and thus the value of <. ¢; is exactly the same for
each position i, 0 < i < size(¢) < k, in both #¥ and #>°. And
thus Py(¢, 8%) holds.

O

Theorem 11 Metricinterval TL is strictly more expressive than rEvent-
ClockTL: MetricInterval TL D rEventClockTL.

Proof. By lemma 8, we know that for every formula ¢ € rEventClockTL,
there exists a bound I such that for all #* with k& > I, ¥ € L(¢) iff
0°° € L(¢p). On the other hand, the formula ¢ = El([],oo) (p — 5[2’3}p) of
Metriclnterval TL is satisfied by 8> but by none of the timed traces 8% € ©.
Thus rEventClockTL cannot express the property expressed by . [

Let us now show that every MetriclntervalTLg «-property can be ex-
pressed by an rEventClockTL-formula. This is a consequence of the following
stronger lemma:

Lemma 9 For every formula ¢ € MetriclntervalTLg o, there exists a for-
mula ¢" € rEventClockTL such that, for every timed trace 6, for every posi-

tion i: (0,7) = ¢ iff (0,9) = ¢
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Proof. We reason by induction on the structure of formulas. The boolean
cases are trivial. We only treat the Uy: the similar S is left to the reader.
First note that the following rewritings within MetriclntervalTLg o, are valid:

o p1U<cthr = (¢lﬁ(0,m)¢2) A O<etbo;
o ¢1ﬁ§c¢2 = (¢1[7(0,oo)¢2) A 6§c¢2;

Now it is easy to show that: O e =>.. ¢! and <><c¢ =><. ¢7. By
definition of the ﬁ—operator, we also have: D<C¢ = = D ¢l and
Ocep = - e —¢T. Also, we have that ¢1U (g2 = O($TU¢L) and
thus every U< <¢ formula can be expressed in rEventClockTL. Let us now
turn to the U> > cases. Here are the translations (we use D< < in rEvent-

ClockTL formulas, since we have shown just above that it can be translated
“plain” rEventClockTL):

o $1Uscpr = Oce(d] NO(STUS)) NO(¢TUSS);
o p1Usch2 = Oec(¢] AO(GTUGL)) AO(6] UY);

We justify the right to left implication for [7>c. Thus we must show that
if (0,3) b Dold] AOBTUGE)) AO(STUGE) then (6,) = $10scd. Let
J = {jlm < 1; < 7; + ¢}, that is, J is the set of positions after position i
that are at a time distance less or equal to ¢ from 7. We consider two disjoint
situations:

e (a) J = (. There is no position J > 7 such that 7; < 7; + ¢ then
verifying (6,1) = O(¢] U¢?) is sufficient because the first ¢o-position
will be at a distance d > ¢ from i and between this ¢s position and
after ¢, ¢ is verified;

e (b) J # (). There is some position in the interval (7;, 7;+¢|, the formula
ﬁgc(gb{ AO(¢TU@L)) imposes that ¢; is constantly true in the interval
(1i, 5 + ¢] and also that in the last position of that interval, let say k,
that O(¢T U¢lL) is true and thus ¢7 U¢ is true in position & + 1 and
ensures that ¢; will stay true until a ¢o position is encountered at a
distance d > ¢ from position 3.

The lemma 9 and theorem 9 together give:

Theorem 12 The logics MetriclntervalTLg o, and rEventClockTL are equally
expressive, i.e. MetricIntervalTLg o, = rEventClockTL.

Note that the translation between formulas of one logic to the other does
not change the size of the maximal constant used, generates only a linear
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number of subformulas and thus the number of real-time operators stays also
linear. Note also that the last theorem also apply for the future fragment of
the two logics as future formulas of one logic are always translated by future
formula of the other logic.

Theorem 13 The two logics MetriclntervaITngOO and rEventClockTLY are
equally expressive, i.e. MetriclntervaITLfiC>o = rEventClockTLF".

Corollary 5 MetricIntervalTL is more expressive than MetricIntervalTLg o -
MetricInterval TL D Metriclnterval TLg .

Remark. In [HRS98], it is proved that the expressive powers of Metriclnter-
valTL and rEventClockTL agree when evaluated continuously, i.e. on timed
state sequences, see appendix for the definition of rEventClockTL in contin-
uous models. We refer the interested reader to [HRS98] for details about
this interesting phenomenon.

6.2 rEventClockTL vs EventClockTA

It is well known that LTL cannot express some counting properties that are
expressible by Biichi automata. For example, there does not exist any LTL
formula that expresses the even — p property: “p is true in all even positions
of the trace”, while this property is easily expressed by an automaton. Sim-
ilarly, rEventClockTL cannot express counting properties. As EventClockTA
are an extension of Biichi automata, and thus more expressive, we have the
following theorem:

Lemma 10 There exist EventClockTA-properties that are not expressible
into rEventClockTL, i.e. EventClockTA & rEventClockTL.

Let us take a look at the other direction. Without real-time, we know
that every LTL property is expressible by Biichi automaton. Similarly, is ev-
ery rEventClockTL-property expressible by an event clock automaton? Sur-
prisingly, the answer is negative:

Lemma 11 There exist rEventClockTL-properties that are not expressible
into EventClockTA, i.e. rEventClockTL Z EventClockTA.

Proof. To show that not all rEventClockTL-properties are expressible with
EventClockTA, we consider the two timed traces ' = (5, 7') and 6? = (7, 72?)
on the set of propositions P = {p}. #' and 6? share the same qualita-
tive information ¢ = {}{pH Hp}{p}.--{p}... that is, p is true everywhere
except in position 0 and 2. The timing information 7! of @' is as fol-

lows: 7! = i x 1.4, i.e. all positions are separated by 1.4 time units:

2

71 =0,14,28,4.2,5.6,7,.... On the other hand the timing information
72 of 62 is defined by:
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7_.2_{z'><1.4 ifi #3

t 1x14—-03 ifi=3

Thus, 72 = 0,1.4,2.8,3.9,5.6,7,.... It is easy to show that for every position
i > 0, for every constraint z, ~ ¢, (01,i) | z, ~ c iff (6%,i) E z, ~ c
Similarly, it is easy to show that for every position ¢ > 0, for every constraint
yp ~ ¢, (01,1) E yp ~ c iff (0,i) | yp ~ c. That is, the constraints about
history and prophecy clocks associated with p evaluate similarly in both
models, in all positions. This is because clock constraints can only use
integer constants and, for the prophecy clock ,:

e in position 0, the distance to the following p-position, and thus the
value of y,, is, in the two models, equal to 1.4 € (1,2);

e in position 1, this distance is equal to 2.8 € (2,3) in ' and to 2.5 €
(2,3) in 62. Even if the distances are different, it cannot be seen using
integer constants;

e in position 2, this distance is equal to 1.4 € (1,2) in #! and is equal to
1.1 € (1,2) in #2. Again even if the distances are different, it cannot
be seen using integer constants;

e in position 3, this distance is equal to 1.4 € (1,2) in #' and is equal to
1.9 € (1,2) in #%. Again even if the distances are different, it cannot
be seen using integer constants;

e after position 3, the distance to the following p position is always, in
both 0!, 62, equal to 1.4 € (1,2).

A same reasoning applies for the history clock z,. So every event clock
automaton A accepts ! if and only if it accepts 2. On the other hand the
recursive rEventClockTL-formula ) =><4 Up is true in the initial position
of 92 but false in the initial position of 8'. And thus rEventClockTL can
differentiate between the two models. [

JFrom lemma 10 and lemma 11, we obtain the following theorem:

Theorem 14 The expressive power of rEventClockTL and EventClockTA are
incomparable.

This surprising theorem can be explained as follows: when moving from
EventClockTA to rEventClockTL, we have automatically added recursion, or
uniform substitution in logician parlance: any formula can replace a propo-
sition symbol. If we remove this possibility, we obtain the expected result
from corollary 2:

35



Corollary 6 The models of a non-recursive formula is the language of an
EventClockTA: EventClockTL C EventClockTA

5

We can also obtain an inclusion by introducing recursion ° in Event-

ClockTA, as described in [HRS98].

7 Conclusion

In this paper, we have presented a new real-time logic called rEventClockTL.
This logic extends LTL with real-time operators >.. p read “the next p is
at a distance d that respects d ~ ¢”, and symmetrically <1.. p expressing
that “p was last true at a distance d such that d ~ ¢”. These two modal
operators introduce the clean and powerful concept of event clock, from
timed automata [AFH94], in the domain of real-time logics. The natural
expressive power of those two operators has been illustrated by showing that
most important real-time requirements [Koy92] can be straightforwardly and
naturally expressed in rEventClockTL.

We have shown that the problems of satisfiability, validity and model-
checking are decidable for this logic, more precisely PSPACE-complete, as
for LTL. We provided a simple decision procedure based on EventClockTA, a,
determinizable class of timed automata. Our decision procedure is far less
complicated than the decision procedure of [AFH96] for Metriclnterval TL, the
only real-time logic that was previously known to be decidable. Our decision
procedure is obtained by extending the decision procedure for LTL in a nat-
ural way: we use the close connection that exists between the two real-time
operators of rEventClockTL and the prophecy and history clocks of Event-
ClockTA. This naturalness helps in axiomatizing this logic, see [RSH98|.
Corresponding monadic logics are built in [HRS98].
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A Continuous Interpretation

An interval I C RT is a convex nonempty subset of the nonnegative reals.
Given t € RT, we freely use notation such as ¢+ I for the interval {t’ | exists
t" € I witht' =t+t"}, and t > I for the constraint “¢ > ¢’ for all t' € 1.”
Two intervals I and J are adjacent if the right endpoint of I is equal to
the left endpoint of J, and either I is right-open and J is left-closed or I is
right-closed and J is left-open. An interval sequence I = Iy, I, ... is a finite
or infinite sequence of bounded intervals so that for all ¢ > 0, the intervals
I; and I;;; are adjacent. We say that the interval sequence I covers the
interval | J,5o ;. If I covers [0,00), then I partitions the nonnegative real
line so that every bounded subset of R is contained within a finite union
of elements from the partition.

Let P be a finite set of proposition symbols. A state s C P is a set of
propositions. A timed state sequence k = (5,1) is a pair that consists of an
infinite sequence 5 of states and an infinite interval sequence I that covers
[0,00). Equivalently, the timed state sequence k can be viewed as a function
from RT to 27, indicating for each time ¢ € R a state x(t) C P.

The formulas of rEventClockTL [RS97b] are built from propositional sym-
bols, boolean connectives, the temporal “until” and “since” operators, and
two real-time operators: at any time ¢, the history operator <\t ¢ asserts
that ¢ was true last time in the interval ¢t — I, and the prophecy operator
> ¢ asserts that ¢ will be true next time in the interval t+ 1. The formulas
of rEventClockTL are generated by the following grammar:

¢ = p|p1 Ao | ~p| iU | 1S |<r ¢ |>1 ¢

where p is a proposition and I is an interval whose finite endpoints are
nonnegative integers. Let ¢ be an rEventClockTL formula and let s be
a timed state sequence whose proposition symbols contain all proposition
symbols that occur in ¢. The formula ¢ holds at time ¢t € RT of , denoted
(k,t) = ¢, according to the following definition:

(5.1) = p it p € (1)

(K,1) = 1 Ao M (5,1) = ¢1 and (k,1) |= b2

(k,t) ): —¢ iff not (k, 1) |: ¢

(k,t) E ¢1Uds iff exists a real ¢ > t with (k,t') |E ¢2, and for
all reals ¢ € (,1'), we have (k,t") = ¢1 V ¢

(k,t) |E ¢1S¢po iff exists a real t' < ¢ with (k,t') = ¢2, and for
all reals ¢t € (t',t), we have (k,t") = ¢1 V ¢

(k,t) E<y ¢iffexistsareal t’ < ¢t witht' € (t—1) and (k,t") = ¢,
and for all reals ¢ < ¢ with ¢ > (¢t — I), not (x,t") = ¢

(k,t) B>y ¢iff existsareal t’ > ¢t with ¢’ € (t4+71) and (k,t') = ¢,
and for all reals ¢ > ¢ with ¢ < (¢t + I), not (x,t") = ¢
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Note that the temporal and real-time operators are defined in a strict man-
ner; that is, they do not constrain the current state. Non-strict operators
are easily defined from their strict counterparts.

Theorem 15 [RS97b] The satisfiability and validity problems for rEvent-
ClockTL in timed state sequences (continuous interpretation) are decidable
in PSPACE.
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