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1 Introdu
tion

It is now widely re
ognized that the use of formal methods is useful and of-

ten ne
essary for developing 
orre
t 
on
urrent and rea
tive systems. This

observation is even 
learer when dealing with real-time [AH92b℄ and hybrid

systems [Hen96℄. Among the favorite formalisms to spe
ify and verify 
on-


urrent systems are temporal logi
s. Temporal logi
s [Eme90, MP92℄ are

modal logi
s that enable the expression of properties about the ordering

of events in exe
utions of 
on
urrent programs [Pnu77℄. For example, the

linear temporal logi
 (LTL) formula �(p! ♦q) expresses the property that

every p-event is always followed by some q-event. In that 
ontext, rea
tive

systems are usually modeled by a produ
t of �nite state ma
hines and prop-

erties of these systems are spe
i�ed by temporal logi
 formulas. In the linear

time framework

1

, the veri�
ation problem, also 
alled the model-
he
king

problem, 
an be stated as follows: \Are all the possible exe
utions of the re-

a
tive system modeled by the produ
t of �nite state ma
hines, models of the

temporal logi
 formula that spe
i�es the property to verify?" or equivalently

\is the !-regular language de�ned by the produ
t of automata in
luded in

the !-regular language de�ned by the temporal formula?". Beside their

ni
e expressive power (most important properties of rea
tive systems 
an be

naturally expressed in temporal logi
), the propositional fragments of those

logi
s are de
idable and are used in tools where the veri�
ation problem is

automated [GPVW95, BCM

+

90℄.

The properties that 
an be expressed in propositional temporal logi
s are

qualitative 
onstraints about the ordering of events along a tra
e (in�nite

sequen
e of events that models an exe
ution of a rea
tive system); quantita-

tive timing 
onstraints 
annot be expressed. Logi
s that are able to express

quantitative timing requirements are 
alled real-time logi
s [AH94, AH93℄.

Real-time logi
s have re
eived a lot of attention from the resear
h 
ommu-

nity [Koy92, AH93, AH94, ACD90, AH92b℄. The results about de
idability

of the real-time logi
s depends 
ru
ially on how the time is added to the

tra
es that model rea
tive systems.

Semanti
ally, there are two radi
ally di�erent ways to model time:

1. The �rst is to 
onsider a dis
rete time domain, the natural numbers

for example.

2. The other possibility is to use a dense time domain, as the real numbers

or the rational numbers, for time stamps. Both are equivalent for our

purpose. Choosing a dense time domain is more natural and presents

advantages, 
ompositionality for example; the interested reader is in-

vited to 
onsult [AH92b, HMP92, RS97a, BKP86℄ for a study and

1

A framework where time is modeled by a bran
hing stru
ture 
an also be 
onsid-

ered, see [BCM

+

90℄ for example and [Sti87℄ for a systemati
 
omparison between the two

approa
hes.
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omparison of the two approa
hes. Unfortunately, when modeling time

with a dense time domain, a lot of problems related to real-time logi
s

be
ome unde
idable.

Having 
hosen the time domain, there are still two 
ommon ways to intro-

du
e real-time information into tra
es:

1. The pointwise way, that we adopt for the main part of the paper,


onsists in asso
iating a time stamp (from the 
hosen time domain)

with ea
h observation of the tra
e. The intuitive meaning is that the

observation of an event o

urred at the time indi
ated by the time

stamp. Those tra
es are 
alled timed tra
es.

2. The 
ontinuous way 
onsists in asso
iating an interval with ea
h ob-

servation of the tra
e. Intuitively, this interval indi
ates the interval

of time during whi
h the system is in the state des
ribed by the ob-

servation. Those tra
es are 
alled timed state sequen
es.

Synta
ti
ally, there are two natural ways of extending temporal logi
s

with timing 
onstraints. The Metri
 Temporal Logi
 Metri
TL (also 
alled

MTL [AH93℄) adds time bounds to temporal operators; for example, the

Metri
TL formula �(p! ♦
=1

q) spe
i�es that every p event is followed by a

q event su
h that the di�eren
e between the two time stamps is exa
tly 1.

The Clo
k Temporal Logi
 Clo
kTL (also 
alled TPTL [AH94℄) adds 
lo
k

variables to LTL; for example, the time-bounded response requirement from

above 
an be spe
i�ed by the Clo
kTL formula �(p! (x := 0)♦(q ^ x = 1)),

where x is a variable representing a 
lo
k that is started by the quanti�er

(x := 0). Interestingly, over natural-numbered time, both ways of expressing

timing 
onstraints are equally expressive. Furthermore, the satis�ability

problems of the two logi
s are de
idable.

If time stamps are real instead of natural numbers, then the situation

seems mu
h less satisfa
tory. In fa
t, the logi
 Metri
TL asso
iated with a

dense time domain allows the en
oding of Turing ma
hines 
omputations

and the halting problem of Turing ma
hines 
an be redu
ed to the satis�-

ability of a Metri
TL formula. The ex
essive expressive power of Metri
TL


omes from formulas su
h as �(p ! ♦
=1

q) that allow us to relate two ar-

bitrary events that are separated by exa
tly one time unit. This ability


oupled with the density of the time domain, permits us to relate 
onse
-

utive 
ontents of the memory of a Turing ma
hine, 
ontents that 
an be

en
oded using an interval of one time unit. The problem is the same with

the logi
 Clo
kTL, as the formula �(p ! (x := 0)♦(x = 1 ^ q)) expresses

the same property. Hen
e the sear
h for de
idable subsets of Metri
TL and

Clo
kTL is an interesting and important issue.

A �rst restri
tion to obtain a de
idable logi
 
on
erns the style of spe
ify-

ing timing 
onstraints using time-bounded temporal operators. The Metri
-

Interval Logi
 Metri
IntervalTL (also 
alled MITL [AFH96℄) is obtained from

2



Metri
TL by restri
ting the time bounds on temporal operators to nonsingu-

lar intervals. For example, the Metri
IntervalTL formula �(p ! ♦
[0:9;1:1℄

q)

spe
i�es that every p event is followed by a q event su
h that the di�eren
e

between the two time stamps is at least 0.9 and at most 1.1. The restri
tion

to non-singularity prevents spe
ifying exa
t real time di�eren
es between

events.

In this paper, we propose an alternative restri
tion, quite di�erent in


avour, that 
on
erns the style of spe
ifying timing 
onstraints using 
lo
k

variables. The Event-Clo
k Logi
 rEventClo
kTL (also 
alled SCL [RS97b℄)

is obtained from Clo
kTL by restri
ting the use of 
lo
ks to refer to the

times of previous and next o

urren
es of events only. For example, if y

q

is

a 
lo
k that always refers to the time di�eren
e between now and the next q

event, then the rEventClo
kTL formula �(p! y

q

= 1) spe
i�es that every p

event is followed by a q event su
h that the di�eren
e between time stamps

of the p event and the �rst subsequent q event is exa
tly 1. A 
lo
k su
h

as y

q

, whi
h is permanently linked to the next q event, does not need to

be started expli
itly, and is 
alled an event 
lo
k. The restri
tion to event


lo
ks prevents the spe
i�
ation of time di�eren
es between a p event and

any subsequent (rather than the �rst subsequent) q event.

The idea to asso
iate 
lo
ks with events has �rst been introdu
ed in the


ontext of timed automata in [AFH94℄ where they propose a determinizable


lass of timed automata 
alled Event Clo
k Automata (EventClo
kTA). As

we will see later, in those automata, ea
h 
lo
k is asso
iated with an atomi


event (a proposition for example). The main 
ontribution of this paper is

to show how this 
on
ept of event 
lo
ks 
an be generalized: we show that


lo
ks 
an not only be asso
iated with atomi
 propositions but re
ursively

with temporal formulas. By de�ning rEventClo
kTL, we introdu
e the ni
e


on
ept of event 
lo
k in the domain of real-time logi
s. Furthermore, we

show that the logi
 of event 
lo
ks is quite expressive, in fa
t, most important

real-time properties have a ni
e and dire
t formulation in rEventClo
kTL. Fi-

nally we show that the satis�ability problem for rEventClo
kTL is de
idable,

we 
hara
terize its 
omplexity and present a de
ision pro
edure. This pro
e-

dure 
an also be used to solve the real-time model 
he
king problem: \Is the

timed !-regular language de�ned by a produ
t of timed automata 
ontained

in the timed !-regular language de�ned by an rEventClo
kTL formula?".

The rest of this paper is organized as follows. Real-time models are

formally de�ned in se
tion 2. In se
tion 3 we re
all EventClo
kTA. The

logi
 rEventClo
kTL is de�ned in se
tion 4 and its expressive power is il-

lustrated by showing how to spe
ify most important real-time requirements

with rEventClo
kTL formulas. Se
tion 5 proposes a de
ision pro
edure for

the satis�ability problem of rEventClo
kTL formulas and proves its 
orre
t-

ness. The de
ision pro
edure relies on the 
onstru
tion, for ea
h formula of

rEventClo
kTL, of a suitable EventClo
kTA whose language is empty if and

only if the asso
iated formula is not satis�able. This EventClo
kTA needs

3



auxiliary symbols when the formula is re
ursive. The 
omplexity of the sat-

is�ability problem is also studied there. Se
tion 6 deals with expressiveness:

rEventClo
kTL as expressive as Metri
IntervalTL

0;1

, but less expressive than

Metri
IntervalTLin dense pointwise models. This 
ontrasts with 
ontinuous

models, where Metri
IntervalTL is as expressive as Metri
IntervalTL

0;1

as

shown in [HRS98, RSH98℄. The same property holds for the future frag-

ments, whi
h are ea
h less expressive than their logi
s with past. We also


ompare the expressive power of rEventClo
kTL and EventClo
kTA. They

turn out to be in
omparable, sin
e rEventClo
kTL allows re
ursion, while

EventClo
kTA allow 
ounting.

2 Real-Time Models

The exe
ution of a rea
tive system 
an be modeled by an in�nite sequen
e of

observations �� = �

0

�

1

: : : �

n

: : : , where ea
h �

i

� P (a subset of propositions

that des
ribes the observed state of the system). Su
h a sequen
e is 
alled

a tra
e. When 
onsidering exe
utions of real-time rea
tive systems, timing

information about the o

urren
e of the observations must be added to

tra
es. As mentioned in the introdu
tion, we 
onsider a dense time domain:

the nonnegative real numbers. We present the details in the 
ontext of

timed tra
es sin
e it will slightly fa
ilitate the presentation of the region


onstru
tion in se
tion 5. For the interested reader, we give in annex the

de�nition of the logi
 rEventClo
kTL in the 
ontext of timed state sequen
es.

There, we re
all the de
idability and 
omplexity results for the logi
 that

are the same for the two models.

De�nition 1 A timed tra
e is a pair � = (��; �� ) where �� is a tra
e and �� =

�

1

�

2

: : : �

n

: : : is an in�nite sequen
e of positive real numbers, 
alled a timing,

representing the time at whi
h ea
h observation o

urred. Furthermore the

timing �� = �

0

�

1

: : : �

n

: : : respe
ts (i) monotoni
ity: for all i � 0, �

i

< �

i+1

,

(ii) divergen
e: for all t 2 R
+

, there exists i su
h that �

i

> t.

3 Event Clo
k Automata

Timed automata [AD94℄ are �nite state ma
hines extended with 
lo
ks.

Clo
k 
an be reset and 
ompared to integer 
onstants. Unfortunately, the

formalism of timed automata is not 
losed under 
omplement. This is due to

the fa
t that, in timed automata, 
lo
ks 
an be reset nondeterministi
ally.

This feature allows the spe
i�er to de�ne the timed language of the negation

of the formula that allows the en
oding of Turing ma
hine 
omputations in

Metri
TL, see [AD94℄ for details and examples.

In [AFH94℄, Alur et al. present a determinizable 
lass of timed automata


alled event 
lo
k automata. This 
lass of automata is 
losed under union,
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interse
tion and 
omplement. Consequently the language in
lusion problem

is de
idable for this 
lass of automata. For event 
lo
k automata, the 
om-

plement 
losure property is obtained by restri
ting the use of 
lo
ks: the


lo
ks have a prede�ned asso
iation with symbols of the input alphabet.

Clo
ks are reset impli
itly whenever their event o

urs. This resetting is

thus determined by the timed tra
e the automaton is reading, whi
h is key

to their determinization. The event-history 
lo
k of the input symbol a 2 �,

denoted x

a

, is a history variable whose value is the time elapsed sin
e the

last o

urren
e of a relative to the 
urrent time. Symmetri
ally, the event-

prophe
y 
lo
k of a 2 �, denoted y

a

is a prophe
y variable whose value is

the time to wait for the next o

urren
e of a relative to the 
urrent time.

Example 1 Let us 
onsider the automaton of �gure 1. This event-
lo
k

automaton 
ontains 3 lo
ations, l

0

is the start lo
ation. The 
onstraint

x

a

= 5 de
orating the edge starting from l

1

with the 
hara
ter b imposes

that a previous a 
hara
ter must have been read exa
tly 5 time units before

the edge is 
rossed. On the other hand the 
onstraint y

a

< 2 de
orating

the edge from l

1

to l

2

requires that ea
h time this edge is 
rossed, the next

a-edge must be 
rossed within 2 time units.

��

��

-

��

��

��

��

- -

I

?

��

��


a

y

a

< 2

b

b

l

0

l

1

l

2

?

b

x

a

= 5

Figure 1: Event-Clo
k automaton A

1

.

Let us 
onsider the exe
ution of the automaton on the timed tra
e

(��; �� ) = (a; 1); (b; 6); (
; 7); (b; 7:3); (b; 7:5); (a; 8); (
; 11); : : : . The automa-

ton starts at lo
ation l

0

. At time t = 1, the automaton reads a and goes to

l

2

. At time t = 6 it reads b and 
he
ks that the previous a in �� is distant of

exa
tly 5 time units, and so on. Thus (��; ��) is a possible pre�x of a timed

tra
e a

epted by the automaton.

As we 
an see in example 1, the values of the 
lo
ks are solely determined

by the input word, not by the automaton. Thanks to this important feature

EventClo
kTA are determinizable and 
an be 
omplemented.

De�nition 2 (Event Clo
ks) Given a set of proposition P, the set of

event 
lo
ks asso
iated to P is the set C = H [ P where H = fx

p

j p 2 Pg

is the set of history 
lo
ks, i.e. an history 
lo
k x

p

is asso
iated to ea
h

proposition p 2 P, and where P = fy

p

j p 2 Pg is the set of prophe
y 
lo
ks,

i.e. a prophe
y 
lo
k is asso
iated to ea
h proposition of P. In what follows,

5



we note x 2 H any history 
lo
k of C, y any prophe
y 
lo
k of C, z
p

the

history 
lo
k or the prophe
y 
lo
k asso
iated to p and z any 
lo
k of C. �

We now de�ne formally the value of history and prophe
y 
lo
ks along

a timed tra
e. We use R
+

[ f?g to denote the nonnegative real numbers

together with the spe
ial value ? (unde�ned).

De�nition 3 The value of the history 
lo
k x

p

2 H asso
iated with the

proposition p at position i of the timed tra
e (��; �� ), denoted Val

x

p

(��; �� ; i),

is de�ned as follows:

Val

x

p

(��; �� ; i) =

8

<

:

�

i

� �

j

if there exists j su
h that 0 � j < i, p 2 �

j

and for all k su
h that j < k < i, p 62 �

k

? if for all j, 0 � j < i, p 62 �

j

The value of the prophe
y 
lo
k y

p

2 P asso
iated with the proposition p

at position i of the timed tra
e (��; �� ), denoted Val

y

p

(��; �� ; i), is de�ned as

follows:

Val

y

p

(��; �� ; i) =

8

<

:

�

j

� �

i

if there exists j su
h that i < j, p 2 �

j

and for all k su
h that i < k < j, p 62 �

k

? if for all j, i < j, p 62 �

j

Constraints about the value of 
lo
ks are used to express real-time re-

quirements on the o

urren
es of events.

De�nition 4 A 
lo
k 
onstraint is a boolean 
ombination of formulas of the

form z � 
 where z 2 C is a history or a prophe
y 
lo
k, �2 f<;�;=;�; >g

and 
 is an integer 
onstant.

Clo
k 
onstraints are evaluated in positions of timed tra
es. Here are

the rules of evaluation:

De�nition 5 A timed tra
e � satis�es a 
lo
k 
onstraint  at a position i

a

ording to the following usual rules:

� (�; i) j= z � 
 i� Val

z

(��; �� ; i) � 
;

� (�; i) j= : i� not (�; i) j=  ;

� (�; i) j=  

1

_  

2

i� (�; i) j=  

1

or (�; i) j=  

2

.

where � are evaluated as usual in nonnegative real numbers and ? � 


always evaluates to false.

De�nition 6 An EventClo
kTA is 6-tuple A = (L;L

0

;P;C; E;F) where:

� L is a �nite set of lo
ations;

6



� L

0

� L is the subset of start lo
ations;

� P is a �nite set of propositions;

� C is a set of 
lo
ks partitioned into a set H of history 
lo
ks and a set

P of prophe
y 
lo
ks;

� E is a �nite set of edges; ea
h edge is a quadruple (l

1

; l

2

; s;  ) where

l

1

2 L is the sour
e lo
ation, l

2

2 L is the target lo
ation, s � P is a

state des
ription and  is a 
lo
k 
onstraint;

� F = fF

1

; : : : ; F

n

g with ea
h F

i

� L, is a set of sets of a

epting

lo
ations. (generalized B�u
hi a

eptan
e 
ondition).

As �nite state automata de�ne set of tra
es, that are 
alled languages,

EventClo
kTA de�ne set of timed tra
es, that are 
alled timed languages.

To de�ne formally the timed language de�ned by an EventClo
kTA, we �rst

introdu
e the notion of 
omputation of an EventClo
kTA:

De�nition 7 An a

epted 
omputation of an EventClo
kTA A on a timed

tra
e � is an in�nite sequen
e


 = l

0

e

0

�! l

1

e

1

�! � � � l

n

e

n

�! � � �

where ea
h l

i

2 L, and:

(C1) l

0

2 L

0

(initiality);

(C2) e

i

= (l

i

; l

i+1

; s

i

;  

i

) 2 E (
onse
ution), and:

(C3) (��; �� ; i) j=  

i

(timing);

(C4) s

i

= �

i

(adequa
y);

(C5) for every F

i

2 F , there exists in�nitely many positions j su
h that

l

j

2 F

i

(generalized B�u
hi a

eptan
e).

De�nition 8 The timed language of an EventClo
kTA A, denoted L(A), is

the set of timed tra
es for whi
h A has an a

epted 
omputation.

The formalism of EventClo
kTA is 
losed under all boolean operations:

Theorem 1 [AFH94℄ For every EventClo
kTA A

1

and A

2

, we 
an 
on-

stru
t an EventClo
kTA A

1

+ A

2

that a

epts the union of the languages

of A

1

and A

2

, i.e. L(A

1

+ A

2

) = L(A

1

) [ L(A

2

), an EventClo
kTA

A

1

� A

2

that a

epts the interse
tion of the languages of A

1

and A

2

, i.e.

L(A

1

�A

2

) = L(A

1

) \ L(A

2

), for every EventClo
kTA A, we 
an 
onstru
t

an an EventClo
kTA

�

A that a

epts the 
omplement of the language of A,

i.e. L(

�

A) = L(A).

7



4 The Event Clo
k Logi


In this se
tion, we introdu
e event 
lo
ks in temporal logi
 
all this rEvent-

Clo
kTL. This logi
 is a real-time extension of the usual temporal logi
. We

extend LTL (with past operators) by two indexed modal operators ⊲ and ⊳

whi
h express real-time 
onstraints. The semanti
s of those two operators

is 
losely related to the notions of prophe
y and history 
lo
k variables. The

formula ⊲
�


� expresses that the delay before the next observation of �

satis�es 
onstraint � 
; symmetri
ally, the formula ⊳
�


� 
onstrains the

previous observation of �. The modal operators ⊲ and ⊳ generalize the

semanti
s of history/prophe
y variables of [AFH94℄: They are more general

in that they allow re
ursion, i.e. the operators 
an 
onstrain any formula

� rather than proposition symbols. As we show later, all interesting prop-

erties of EventClo
kTA are preserved in our logi
, even though it is more

expressive. We now present formally the rEventClo
kTL logi
. Examples of

spe
i�
ations written in rEventClo
kTL are given at the end of this se
tion.

De�nition 9 A formula of rEventClo
kTL is 
omposed of proposition sym-

bols p; p

1

; p

2

; ::; q; :::, usual boolean 
onne
tives _ and :, qualitative tempo-

ral operators: Until (U) and Sin
e (S), real-time operators: prophe
y op-

erator (⊲), history operator (⊳). A well-formed formula of rEventClo
kTL

satis�es the following synta
ti
al rule:

� ::= p j �

1

_ �

2

j :� j

e

� j ⊖ � j �

1

U�

2

j �

1

S�

2

j ⊲
�


� j ⊳
�


�

where �2 f<;�;=;�; >g, p 2 P and �; �

1

; �

2

are well formed formulas

and 
 is an integer 
onstant

We use the usual pre
eden
e of operators: modal operators are more binding

than boolean ones, and their s
ope is as small as possible. A formula is non-

re
ursive if the real-time operators only 
ontain proposition symbols: the


lauses ⊲
�


p j ⊳
�


p repla
e ⊲
�


� j ⊳
�


� in the syntax.

De�nition 10 A timed tra
e � = (��; ��) satis�es at position i an rEvent-

Clo
kTL formula � when:

(�; i) j= p i� p 2 �

i

;

(�; i) j= :� i� not (�; i) j= �;

(�; i) j= �

1

_ �

2

i� (�; i) j= �

1

or (�; i) j= �

2

;

(�; i) j=

e

� i� (�; i+ 1) j= �;

(�; i) j= ⊖� i� i > 0 and (�; i� 1) j= �;

(�; i) j= �

1

U�

2

i� there exists j � i su
h that (�; j) j= �

2

and for

all k, i � k < j, (�; k) j= �

1

;

(�; i) j= �

1

S�

2

i� there exists j, 0 � j � i su
h that (�; j) j= �

2

and for all k, j < k � i, (�; k) j= �

1

;

(�; i) j=⊲
�


� i� there exists j > i, su
h that (�; j) j= �, for all

k, i < k < j, (�; k) 6j= � and �

j

� �

i

� 
;
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(�; i) j=⊳
�


� i� there exists j, 0 � j < i, su
h that (�; j) j= �,

for all k, j < k < i, (�; k) 6j= � and �

i

� �

j

� 
.

As usual, we 
an de�ne other boolean and temporal operators as synta
ti
al

abbreviations:

� boolean: > � :�

1

_�

1

, ? � :>, �

1

^�

2

� :(:�

1

_:�

2

), �

1

! �

2

�

:�

1

_ �

2

, �

1

$ �

2

� �

1

! �

2

^ �

2

! �

1

;

� for the future:

{ ♦�
1

� >U�

1

, meaning \eventually in the present or future";

{ ��
1

� :♦:�
1

\always in the present and future";

{ ⊲
[l;u℄

� �⊲
�l

�^ ⊲
�u

, \next � o

urs between l and u from

now";

{ similarly, ⊲
I

� �⊲
�l

�^ ⊲
�u

, \next � o

urs within I from

now", where I is an interval with bounds l; u and � is the ade-

quate 
onstraint;

{ �

1

U

�


�

2

� �

1

U�

2

^ (⊲
�


�

2

_ �

2

), with �2 f<;�g, meaning

\Until within 
 next";

2

{ �
�


�

1

� : ⊲
�


:�

1

, with �2 f<;�g, meaning \always for the

following 
 time units";

� for the past:

{ ♦��
1

� >S�

1

, meaning \eventually in the past or present";

{ ⊟�
1

� :♦�:�
1

, meaning \always in the past and present";

{ ⊳
[l;u℄

� �⊳
�l

�^ ⊳
�u

, \last � o

urred between l and u ago";

{ similarly, ⊳
I

� �⊳
�l

�^ ⊳
�u

, \last � o

urred within I ago",

where I is an interval with bounds l; u and � is the adequate


onstraint;

{ �

1

S

�


�

2

� �

1

S�

2

^ (⊳
�


�

2

_ �

2

), with �2 f<;�g, meaning

\sin
e within 
";

{ ⊟
�


�

1

� : ⊳
�


:�

1

, with �2 f<;�g, meaning \always in the

past and present within 
";

De�nition 11 A rEventClo
kTL formula � de�nes a timed language L(�):

the set of timed tra
es � su
h that (�; 0) j= �.

2

If this de�nition is used with >;� or =, it has a di�erent meaning than the until of

Metri
IntervalTL.
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Example 2 Here are some examples of rEventClo
kTL formulas with their

verbal meaning. These examples 
over all typi
al real-time requirements


lassi�ed in [Koy92℄. In these examples, we mainly use atomi
 events p, q,

... for readability but they 
an be repla
ed by more 
ompli
ated rEvent-

Clo
kTL formulas. The verbal interpretation 
hara
terizes intuitively the

in�nite timed tra
es � that the formula � de�nes.

� �q: q is always true. Su
h a formula asserts invarian
e properties of

a system.

� �(p !⊲
�5

q): a p position is always followed by a q position within

5 time units. Su
h a formula spe
i�es a maximal distan
e between a

request p and its response q. Su
h a property is 
alled a bounded time

response. Here, it assumes that only one request 
an be outstanding.

� �(p !⊲
=3

q): when a p position is en
ountered, the �rst following q

position is at exa
tly 3 time units. Su
h a formula allows the assertion

of exa
t response time (assuming no intervening request p).

� p ^ �(p !⊲
=1

p): this formula asserts that p is true every integer

time unit. Su
h a formula allows the spe
i�er to de�ne periodi
ity of

events. Here p 
an model the ti
k of an ideal 
lo
k, that ti
ks every

time unit.

� �(p! (⊲
>5

p)_ (

e�:p)): every p event is either followed by another

p event distant of more than 5 time units or never followed by another

p event. This formula expresses a minimal distan
e between events, for

example the rate of input from the environment.

� ♦�q: q will eventually hold permanently.

� �((⊳
=3

q) ! p). This formula asserts that if the last q position is

exa
tly distant of 3 time units then p must be true now. It is a typi
al

time-out requirement.

� �(q ! (pS

�3

r)). When a q position is en
ountered then the last r po-

sition is distant at most of 3 time units and all intermediary positions

were p positions.

� �((⊟
<3

:p)! q). If p is 
onstantly false during the last 3 time units

then q is true now. This is a typi
al example of the spe
i�
ation of an

alarm q if a monitored event p does not o

ur within a �xed delay.

As we 
an see, the rEventClo
kTL logi
 is quite expressive. Most of the

properties that are en
ountered when dealing with real-time systems, e.g.

bounded response time, bounded invarian
e, time-out,..., 
an be easily and

elegantly spe
i�ed. In pra
ti
e, the use of the Metri
TL operator ♦
�



an
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often be repla
ed by the stronger but less expressive operator ⊲
�


. The

presen
e of the past operators is also a fa
ility for the spe
i�er. However,

there are properties that 
annot be expressed using rEventClo
kTL logi
:

Example 3 Every p state is followed by a q state exa
tly 1 time unit later.

Su
h a property 
an be expressed in Metri
TL [AH93℄ as follows:

�(p! ♦
=1

q)

This property is not expressed by the rEventClo
kTL formula:

�(p!⊲
=1

q)

whi
h is stronger sin
e it requires that the �rst q is at exa
tly 1 time unit.

In fa
t, as already mentioned in the introdu
tion, if rEventClo
kTL 
ould

express this Metri
TL property, the logi
 would be unde
idable. In the next

se
tion, we show that it is not the 
ase by de�ning a de
ision pro
edure for

the satis�ability problem of rEventClo
kTL. The expressive power of rEvent-

Clo
kTL is 
onsidered in se
tion 6.

5 A De
ision Pro
edure for rEventClo
kTL

The prin
iple of the de
ision pro
edure for LTL is to 
onstru
t a B�u
hi

automaton that a

epts exa
tly the tra
es that are models of the formula

and then to test the automaton for emptiness, see [Wol85, MP95℄ for details.

Here we propose a similar approa
h: for every rEventClo
kTL formula

�, we 
onstru
t an EventClo
kTA A

�

whose timed language is empty if and

only if the formula � is not satis�able. The pro
edure that we propose relies

on a 
onstru
tion that uses the subformulas of �.

De�nition 12 The 
losure set of an rEventClo
kTL formula �, denoted

Cl(�), is de�ned with the help of the re
ursive fun
tion Cl:

� Cl(p) = fpg;

� Cl(�

1

_ �

2

) = f�

1

_ �

2

g [ Cl(�

1

) [ Cl(�

2

);

� Cl(:�

1

) = Cl(�

1

);

� Cl(

e

�

1

) = f

e

�

1

g [ Cl(�

1

);

� Cl(⊖�
1

) = f⊖�
1

g [ Cl(�

1

);

� Cl(�

1

U�

2

) = f�

1

U�

2

g [ f

e

(�

1

U�

2

)g [ Cl(�

1

) [ Cl(�

2

);

� Cl(�

1

S�

2

) = f�

1

S�

2

g [ f⊖(�

1

S�

2

)g [ Cl(�

1

) [ Cl(�

2

);
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� Cl(⊲
�


�

1

) = f⊲
�


�

1

g [ Cl(�

1

);

� Cl(⊳
�


�

1

) = f⊳
�


�

1

g [ Cl(�

1

);

To obtain Cl(�), we 
lose Cl(�) by negation and identify ::�

1

with �

1

in

any 
ontext to keep Cl(�) �nite. The set of atomi
 propositions appearing

in � is denoted P

�

. Note that P

�

� Cl(�).

In our 
ase, the EventClo
kTA A

�

does not a

ept the models of the

formula � but its timed Hintikka sequen
es. EventClo
kTA as de�ned

in [AFH94℄ and re
alled in se
tion 3 are not expressive enough to de�ne all

rEventClo
kTL-timed languages, as shown in se
tion 6. Nevertheless Event-

Clo
kTA 
an be used to de�ne a de
ision pro
edure for rEventClo
kTL as we

show in this se
tion.

De�nition 13 The timed Hintikka sequen
es of � are the timed tra
es �

de�ned on the set of propositions fp

�

j� 2 Cl(�)g (i.e. a proposition is asso-


iated with ea
h formula of Cl(�)) that satisfy the following requirements,

for all i � 0:

(H1) p

�

2 �

0

;

(H2) p

�

2 �

i

i� p

:�

62 �

i

;

(H3) p

�

1

_�

2

2 �

i

i� p

�

1

2 �

i

or p

�

2

2 �

i

;

(H4) p

e

�

2 �

i

i� p

�

2 �

i+1

;

(H5) p

��

2 �

i

i� i > 0 and p

�

2 �

i�1

;

(H6) p

�

1

U�

2

2 �

i

i� there exists j � i su
h that p

�

2

2 �

j

and for all k,

i � k < j, p

�

1

2 �

k

;

(H7) p

�

1

S�

2

2 �

i

i� there exists j, 0 � j � i, su
h that p

�

2

2 �

j

and for all

k, j < k � i, p

�

1

2 �

k

;

(H8) p

B

�


�

2 �

i

i� there exists j > i su
h that p

�

2 �

j

, for all k, i < k < j,

p

�

62 �

k

and �

j

� �

i

� 
;

(H9) p

C

�


�

2 �

i

i� there exists j, 0 � j < i su
h that p

�

2 �

j

, for all k,

j < k < i, p

�

62 �

k

and �

i

� �

j

� 
;

Requirements H2 and H3 ensure propositional 
onsisten
y of timed Hin-

tikka sequen
es, H4, H5, H6 and H7 ensure 
onsisten
y with the semanti
s of

temporal operators, and, H8 and H9 ensure 
onsisten
y with the semanti
s

of real-time operators. H1 is related to the following theorem:

Proposition 1 A rEventClo
kTL formula � is satis�able i� it has a timed

Hintikka sequen
e.
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Proof. Let us prove that given an Hintikka sequen
e (��; �� ) for �, the timed

tra
e (��

0

; �� ), where �

0

i

= fqjp

q

2 �

i

^q 2 P

�

g, has the Hintikka property: for

all formula � 2 Cl(�), (��

0

; �� ; i) j= � i� p

�

2 �

i

. We reason by indu
tion on

the stru
ture of formulas. Base 
ase. � = q, a proposition. By de�nition of

(��

0

; ��), q 2 �

0

i

i� p

q

2 �

i

. Thus by the de�nition of j=, we have (��

0

; �� ; i) j= q

i� p

q

2 �

i

. Indu
tion 
ase. We treat two 
ases: � = �

1

U�

2

and � =⊲
�


�

1

,

the other 
ases are treated similarly and left to the 
areful reader. By

indu
tion hypothesis, we know that: for all i � 0, (��

0

; �� ; i) j= �

j

i� p

�

j

2 �

i

,

for j 2 f1; 2g. We now treat the two 
ases:

� � = �

1

U�

2

. (��

0

; �� ; i) j= �

1

U�

2

is de�ned as \there exists j � i su
h

that (��

0

; �� ; i) j= �

2

and for all k, i � k < j, (��

0

; �� ; i) j= �

1

". By

indu
tion hypothesis, there exists j � i su
h that p

�

2

2 �

j

and for

all k, i � k < j, p

�

1

2 �

k

. By rule (H6) of the de�nition of timed

Hintikka sequen
es, this is equivalent to p

�

1

U�

2

2 �

i

.

� � =⊲
�


�

1

. (��

0

; �� ; i) j=⊲
�


�

1

is de�ned as \there exists j > i su
h

that (��

0

; �� ; j) j= �

2

, �

j

��

i

� 
 and for all k, i < k < j, (��

0

; �� ; j) j= �

1

".

By indu
tion hypothesis, this is also: \there exists j > i su
h that

p

�

2

2 �

j

, �

j

� �

i

� 
 and for all k, i < k < j, p

�

1

2 �

k

". By rule (H8),

this is the same as p

B

�


�

1

2 �

i

.

As we have that for all �

1

2 Cl(�) and for all i � 0, (��

0

; �� ; i) j= �

1

i�

p

�

1

2 �

i

, by rule (H1), we have that p

�

2 �

0

and thus (��

0

; �� ; 0) j= �. As a


onsequen
e, (��

0

; �� ) is a model of �.

Now, let us 
onsider the other dire
tion. If (��; ��) is a model of � we

prove that the timed tra
e (��

0

; �� ), with �

0

i

= fp

�

j� 2 Cl(�) ^ (��; �� ; i) j= �g,

has the timed Hintikka property for �. Again, the proof is by indu
tion on

the stru
ture of formulas. The proof is easy sin
e the Hintikka properties

(H1-H8) express the semanti
s of the operators. �

Constru
tion of A

�

The lo
ations of the EventClo
kTA A

�

will be subsets of Cl(�). If a formula �

belongs to a lo
ation l of A

�

, the intuitive meaning is that when the automa-

ton A

�

is in lo
ation l then all the a

epted timed tra
es passing through

l are timed Hintikka sequen
es underlying the models of �. Obviously, all

possible subsets of the 
losure set are not 
andidate for representing a posi-

tion in a model. For example, a subset of Cl(�) whi
h 
ontains both � and

:� 
annot be a 
andidate for a position in a model as the 
onjun
tion of

this set of formulas is not satis�able. To make the notion of 
andidate for a

model position 
learer, we de�ne the notion of atom.

De�nition 14 An atom over � is a subset � � Cl(�) satisfying the following

requirements:
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� � is propositionally 
onsistent and 
omplete. More formally:

(A1) For every �

1

2 Cl(�), �

1

2 � i� :�

1

62 �;

(A2) For every �

1

_ �

2

2 Cl(�), �

1

_ �

2

2 � i� �

1

2 � or �

2

2 �.

� � respe
ts lo
al 
onstraints of the U and the S operators:

(A3) For every �

1

U�

2

2 Cl(�), �

1

U�

2

2 � i� either:

� �

2

2 �;

� �

1

;

e

(�

1

U�

2

) 2 �.

(A4) For every �

1

S�

2

2 Cl(�), �

1

S�

2

2 � i� either:

� �

2

2 �;

� �

1

;⊖(�

1

S�

2

) 2 �.

We build the 
omponents of A

�

:

Propositions: It will a

ept timed tra
es de�ned on the set P = fp

�

j � 2

Cl(�)g.

Clo
ks: It uses the 
lo
ks C = fx

p

�

j⊳
�


� 2 Cl(�)g [ fy

p

�

j⊲
�


� 2

Cl(�)g.

Lo
ations: The lo
ations L of A

�

are the atoms of Cl(�), requirement

denoted (L) in what follows.

Start lo
ations: The start lo
ations L

0

are the atoms � su
h that: (S1)

� 2 � and (S2) for all formula ⊖� 2 Cl(�), :⊖ � 2 �.

Let us now see how to de�ne the edges of the automaton A

�

. First we

examine when two lo
ations must be linked by an edge. After we 
onsider

the labels that de
orate edges. The formulas

e

� and ⊖� of Cl(�) are used to

formulate the 
onne
tion requirement of the automaton A

�

.

e

� 2 l

1

means

that from the lo
ation l

1

all suÆxes respe
t p

�

in their se
ond observation, or

equivalently that from all lo
ations l

2

that are 
onne
ted to l

1

, the a

epted

suÆxes are suÆxes where p

�

is true at the �rst observation. Symmetri
ally

for ⊖-formulas. As the suÆxes starting from a lo
ation l

1

must satisfy the

propositions asso
iated with the set of formulas that belong to atom l

1

then

the propositional labels are simply the propositions that are related to the

formulas of l

1

. To ensure the semanti
s of real-time formula, we simply use

the history and prophe
y 
lo
ks. If ⊲
�


� 2 l then all edges that start from

l are labelled by the 
onstraint y

p

�

� 
 that ensures the real-time rule (H8)

of timed Hintikka sequen
es. The situation is similar for history formulas.

We 
an now formulate more rigorously the edges of the automaton.
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Edges: in A

�

, the lo
ation l

1

2 L is 
onne
ted by an edge to the lo
ation

l

2

2 L, i.e. (l

1

; l

2

; s;  ) 2 E i� the following requirements are satis�ed:

(E1) For every

e

� 2 Cl(�):

e

� 2 l

1

i� � 2 l

2

;

(E2) For every ⊖� 2 Cl(�): � 2 l

1

i� ⊖� 2 l
2

;

(E3) s = fp

�

j � 2 l

1

g (propositional edge labelling fun
tion);

(E4)  =

V

fx

p

�

� 
j ⊳
�


� 2 l

1

g

V

fy

p

�

� 
j ⊲
�


� 2 l

1

g

V

f:(x

p

�

�


)j:(⊳
�


�) 2 l

1

g

V

f:(y

p

�

� 
)j:(⊲
�


�) 2 l

1

g (real-time edge la-

belling fun
tion).

At this stage we have only de�ned ne
essary 
onditions for the formula

automaton A

�

to a

ept timed tra
es that are timed Hintikka sequen
es �.

We still have to ensure the ful�llment of fatalities. Let us examine how to


ope with the ful�llment of fatalities indu
ed by a formula of the form �

1

U�

2

.

The semanti
s of the formula �

1

U�

2

expresses that the formula �

1

must stay

true until a �

2

state is eventually rea
hed. In our 
ase, p

�

2

is a fatality

in the sense that in all timed Hintikka sequen
es, a p

�

1

U�

2

observation is

always followed by some p

�

2

observation. The ful�llment of fatalities 
an be

ensured by the me
hanism of a

eptan
e of B�u
hi automata and relies on

the following lemma adapted from [MP95℄:

Lemma 1 Let � be a timed Hintikka sequen
e of the EventClo
kTA formula

� and p

�

1

U�

2

a proposition promising p

�

2

. Then, � 
ontains in�nitely many

positions j � 0 su
h that:

p

:(�

1

U�

2

)

2 �

j

or p

�

2

2 �

j

Proof. Let us �rst make the hypothesis that � 
ontains in�nitely many

p

�

1

U�

2

-positions. By requirement (H6) of timed Hintikka sequen
es, ea
h of

those positions is followed by a p

�

2

-position and thus there also exists an

in�nite number of p

�

2

-positions.

If we make the hypothesis that � 
ontains only �nitely many p

�

1

U�

2

-

positions then by requirement (H2) there are in�nitely many positions j

s.t. p

:(�

1

U�

2

)

2 �

j

and thus the theorem is veri�ed. �

We say that a 
omputation of A

�

ful�lls the fatalities of a formula � i� for

every formula � 2 Cl(�) promising a formula �

2

, the 
omputation 
ontains

in�nitely many :� lo
ations or �

2

lo
ations. To restri
t the a

epted 
om-

putation of A

�

to 
omputations that ful�ll the fatalities of �, we use the

me
hanism of a

epting sets.

A

epting sets: F = fflj:(�

1

U�

2

) 2 l or �

2

2 lg j�

1

U�

2

2 Cl(�)g. The

a

epting sets are 
hosen to ensure the fatalities.
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This de�nition 
ompletes the pro
edure for 
onstru
ting the automaton A

�

.

Now, let us prove that our 
onstru
tion is 
orre
t:

Theorem 2 The set of timed tra
es a

epted by the EventClo
kTA A

�

is

exa
tly the set of timed Hintikka sequen
es of formula �.

Proof. First, let us show that if � is a timed Hintikka sequen
e of the

rEventClo
kTL formula � then � 2 L(A

�

). Let us 
onstru
t a 
omputation


 = l

0

e

0

�! l

1

e

1

�! : : : of A

�

on �. Take l

i

= f�jp

�

2 �

i

g for ea
h i � 0. Let

us �rst note that by requirement (H2) and (H3) of the de�nition of timed

Hintikka sequen
es, ea
h l

i

is propositionally 
onsistent and 
omplete. Thus

ea
h l

i

is an atom and by (L) a lo
ation of A

�

;

(C1) 
 respe
ts the initiality requirement of 
omputation: by requirement

(H1) of the de�nition of timed Hintikka sequen
e, p

�

2 �

0

and thus

� 2 l

0

, further, by (H5), we know that for all ⊖� 2 Cl(�), p

��

62 �

0

and thus : ⊖ � 2 l

0

. Thus the 
onditions (S1) and (S2) are veri�ed

and l

0

2 L

0

;

(C2) 
 respe
ts the 
onse
ution requirement: by points (H4) and (H5) of the

de�nition of timed Hintikka sequen
es, we know that p

e

�

2 �

i

i� p

�

2

�

i+1

whi
h transposes to 
 as

e

� 2 l

i

i� � 2 l

i+1

. A similar reasoning


an be applied to the past (⊖-operators) and thus the 
onse
ution

requirement is respe
ted;

(C3) 
 respe
ts the timing requirement: if the 
onstraint y

p

�

� 
 ap-

pears in the 
onjun
tion  

i

at position i of 
, we must show that

Val

y

p

�

(��; �� ; i) � 
. If y

p

�

� 
 appears on  

i

then ⊲
�


� 2 l

i

and by

de�nition of the labelling fun
tion, we have p

B

�


�

2 �

i

. By (H8), we

have that there exists a position j > i in �� su
h that p

�

2 �

j

, �

j

��

i

� 


and for all k, i < k < j, p

�

62 �

k

. This is exa
tly what we wanted. A

similar reasoning apply to other 
ases.

(C4) 
 is adequate: dire
t 
onsequen
e of the de�nition of the labelling

fun
tion (E3);

(C5) 
 respe
ts the a

eptan
e 
ondition: by (H4), every observation �

i

s.t.

p

�

1

U�

2

2 �

i

, is followed by an observation �

j

(j � i) s.t. p

�

2

2 �

j

.

By 
onstru
tion of 
 and the edge labelling fun
tion, we have that

every lo
ation l

i

s.t. �

1

U�

2

2 l

i

is followed by a lo
ation l

j

(j � i) s.t.

�

2

2 l

j

. Thus for every formula �

1

U�

2

2 Cl(�), 
 
ontains in�nitely

many lo
ations that either 
ontain �

2

(if there are in�nitely many

lo
ations that 
ontain �

1

U�

2

) or there are in�nitely many lo
ations

that do not 
ontain �

1

U�

2

and thus the generalized B�u
hi 
ondition

is veri�ed by 
.

16



Se
ond, we show that if � 2 L(A

�

) then � is a timed Hintikka sequen
e

of �. To prove that dire
tion, we show that for all positions i in � every


ondition of the de�nition of timed Hintikka sequen
es is veri�ed. We assume


 = l

0

e

0

�! l

1

e

1

�! : : : of A

�

on � as above.

(H1) As 
 is a 
omputation of A

�

, 
 respe
ts the initiality requirement (C1),

i.e. l

0

2 L

0

, and thus by (S1), � 2 l

0

. The propositional labelling

fun
tion of A

�

is adequate (C4), so that p

�

2 �

0

and thus requirement

(H1) is veri�ed.

(H2) Let us �rst show that if p

�

2 �

i

where � = :�

1

, then p

�

1

62 �

i

. By the

de�nition of the edge labelling fun
tion (E3), adequa
y requirement

of 
omputation (C4), we know that :�

1

2 l

i

. By requirement (A1)

of atoms, �

1

62 l

i

whi
h implies by de�nition of the propositional edge

labelling fun
tion of A

�

(E3) and by the adequa
y requirement of


omputation (C4) that p

�

1

62 �

i

. If p

�

2 �

i

where � = �

1

, then

p

:�

1

62 �

i

is established by a similar reasoning. Requirement (H2) is

thus veri�ed.

(H3) Let p

�

2 �

i

where � = �

1

_ �

2

. By 
onstru
tion of 
, this means

�

1

_ �

2

2 l

i

. By requirement (A2) of atoms, this means either �

1

2 l

i

or �

2

2 l

i

. By de�nition of the propositional labelling fun
tion (E3),

this means either p

�

1

2 s

i

or p

�

2

2 s

i

where s

i

is the propositional

labelling of edge e

i

. Thus p

�

1

2 �

i

or p

�

2

2 �

i

.

(H4) We have to show that p

e

�

1

2 �

i

i� p

�

1

2 �

i+1

. p

e

�

1

2 �

i

, by (E3) and

(C4), means that

e

�

1

2 l

i

. By the 
onse
ution requirement (C2) and

(E1), this is �

1

2 l

i+1

. Finally, by (E3) and (C4), we obtain p

�

1

2 �

i+1

.

The other dire
tion is similar.

(H5) This 
ase is similar to the previous one and is left to the reader.

(H6) We �rst show that if p

�

2 �

i

where � = �

1

U�

2

then there exists a

position j, j � i s.t. p

�

2

2 �

j

and for all positions k, i � k < j,

p

�

1

2 �

k

. First, we show that j exists. By 
ontradi
tion, 
onsider the

hypothesis that there does not exists a �rst l

j

s.t. �

2

2 l

j

with i � j.

But in that 
ase, we have :�

2

2 l

k

for all i � k. As �

1

U�

2

2 l

i

, a

indu
tive reasoning similar to the next one allows us to 
on
lude that

�

1

U�

2

2 l

k

for all i � k. Thus, 
 would not be a

epting, 
ontradi
ting

the de�nition of 
. So we 
an take the �rst su
h j. By de�nition of


, (E3) and (C4), �

1

U�

2

2 l

i

. We note l

j

with j � i, the �rst lo
ation

after l

i

in 
 su
h that �

2

2 l

j

. Sin
e we have taken the �rst j, for all

k, i � k < j, �

2

62 l

k

. Let us show that �

1

2 l

k

and �

1

U�

2

2 l

k+1

for

ea
h of those k. We reason by indu
tion:

{ Base 
ase: k = i < j, as �

1

U�

2

2 l

i

and �

2

62 l

i

, the requirement

(A3) of atoms allow us to 
on
lude that �

1

2 l

i

and �

1

U�

2

2 l

i+1

.
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{ Indu
tion 
ase: by indu
tive hypothesis we have �

1

2 l

l

and

�

1

U�

2

2 l

l+1

, for all l s.t. i � l < k < j, let us show that we

have that �

1

2 l

k

and �

1

U�

2

2 l

k+1

. As �

1

U�

2

2 l

k

and �

2

62 �

k

as k < j, the 
onne
tion requirement (E1) and the requirement

(A3) of atoms allow us to 
on
lude �

1

2 l

k

and �

1

U�

2

2 l

k+1

.

So we have shown that �

1

2 l

k

for all k s.t. i � k < j and by hypothesis

�

2

2 l

j

. By the de�nition of the propositional edge labelling fun
tion

(E3) and adequa
y (C4), p

�

1

2 �

k

for all k s.t. i � k < j and p

�

2

2 �

j

.

We 
onsider now the other dire
tion: let us make the hypothesis that

there exists j � i s.t. p

�

2

2 �

j

and for all k, i � k < j, p

�

1

2 �

k

then

we must establish that p

�

1

U�

2

2 �

i

. Again, we 
an use the �rst su
h

j. From that, let us show that for all k, i � k � j, p

�

1

U�

2

2 �

k

. We

reason by indu
tion.

{ Base 
ase: k = j. As �

2

2 l

j

, we have, by (E3), (C4) and

requirement (A3) of atoms, we have �

1

U�

2

2 l

j

and thus p

�

1

U�

2

2

�

j

.

{ Indu
tion 
ase: by indu
tion hypothesis, we have that for all m,

i < k � m � j, p

�

1

U�

2

2 �

m

. Let us show that p

�

1

U�

2

2 �

k�1

.

We know that p

�

1

U�

2

2 �

k

, p

�

1

2 �

k�1

and p

�

2

62 �

k

. By (E3)

and (C4), we have

e

(�

1

U�

2

); �

1

2 l

k�1

. By requirement (A3) of

atoms, we obtain �

1

U�

2

2 l

k�1

and thus p

�

1

U�

2

2 �

k�1

by (E3)

and (C4).

(H7) This 
ase is similar to the previous one and is left to the reader.

(H8) First let us prove that if p

�

2 �

i

where � =⊲
�


�

1

then there exists

a position j su
h that j > i and p

�

1

2 �

j

, �

j

� �

i

� 
 and for all

k, i < k < j, p

�

1

62 �

k

. By de�nition of 
 and (E3), we know that

⊲
�


�

1

2 l

i

. By de�nition of the real-time edge labelling fun
tion,

we know that  

i

is of the form y

p

�

1

� 
 ^  

0

i

and thus by the timing

requirement of 
omputation (C3): (�; i) j= y

p

�

1

� 
 whi
h implies

exa
tly what we had to prove.

Now let us show that if there exists a position j su
h that j > i

and p

�

1

2 �

j

, �

j

� �

i

� 
 and for all k, i < k < j, p

�

1

62 �

k

then

p

B

�


�

1

2 �

i

. Let us make the hypothesis that p

B

�


�

1

62 �

i

. Then

⊲
�


�

1

62 l

i

and thus, by atom propositional 
ompleteness (A1), : ⊲
�


�

1

2 l

i

. By the real-time labelling fun
tion,  

i

=  

0

i

^:(y

p

�

1

� 
) whi
h

by the semanti
s of prophe
y 
lo
k 
onstraint 
ontradi
ts that 
 is a


omputation of A

�

. Thus p

B

�


�

1

2 �

i

.

(H9) This 
ase is similar to the previous one and is left to the reader.

�
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Corollary 1 The rEventClo
kTL formula � is satis�able i� the language

a

epted by the EventClo
kTA A

�

is not empty.

Proof. Dire
t 
onsequen
e of proposition 1 and theorem 2. �

The usual next step is to show that we 
an restri
t the symbols on edges

of A

�

to propositions. However, for EventClo
kTA, this works only for non-

re
ursive formulas. Let A

�

\ P be as A

�

, but with edges labelled with

proposition symbols only: s = fp

�

j� 2 l

1

^ � 2 Pg.

Corollary 2 The models of a non-re
ursive rEventClo
kTL formula � form

the language a

epted by the EventClo
kTA A

�

\ P.

To have a de
ision pro
edure for our rEventClo
kTL logi
, it remains us to

show how the emptiness of EventClo
kTA 
an be de
ided. The prin
iples of

the region 
onstru
tion [AD94℄ whi
h transforms a timed automaton into an

untimed �nite state ma
hine 
an be applied to EventClo
kTA automata. The

idea is to 
onstru
t a �nite state ma
hine that a

epts Untimed(L(A

�

)), i.e.

f��j(��; �� ) 2 L(A

�

)g. The results presented here are adapted from [AD94,

AFH94℄ and are re
alled to allow the reader, not familiar with real-time

automata, to fully understand the de
ision pro
edure.

De�nition 15 An extended state of an EventClo
kTA A =

(L;L

0

;P;C; E;F) is a pair (l; �) where l 2 L is a lo
ation and

� : C ! R
+

[ f?g, is a 
lo
k valuation whi
h asso
iates a value of

R
+

[ f?g to ea
h 
lo
k z 2 C of the automaton.

The following de�nition formalizes the e�e
t of time passing on valua-

tions of 
lo
ks:

De�nition 16 (� + t) The 
lo
k valuation �

0

obtained from the 
lo
k val-

uation � by letting time elapse during t, denoted �+ t, is de�ned as follows:

� For all prophe
y 
lo
ks y 2 P: (� + t)(y) = �(y) � t if �(y) � t � 0;

otherwise � + t is not de�ned.

� For all history 
lo
ks x 2 H : (� + t)(x) = �(x) + t

with the addition + and subtra
tion � interpreted as usual in the real

numbers and as follows for the spe
ial value ?: ?+ t = ?,?� t = ?.

The number of extended states is un
ountable, as we model time by

the nonnegative real numbers (R
+

). But to evaluate real-time 
onstraints

labelling edges of EventClo
kTA, only the integer value of 
lo
ks and whether

their fra
tional part is zero is needed. Also, to know whi
h 
lo
ks will

�rst 
hange their integer value, we only need to know the order between

the fra
tional parts of the 
lo
k values. Next we re
all the de�nition of
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an equivalen
e relation between valuations based on those two remarks.

This equivalen
e relation partitions the valuations into a �nite number of

equivalen
e 
lasses 
alled regions. Two states in the same region will behave

similarly.

De�nition 17 [AD94, AFH94℄ Two 
lo
k valuations �

1

; �

2

are in the same

region, denoted �

1

� �

2

, for an automaton A = (L;L

0

;P;C; E;F) i� the

following 
onditions are respe
ted:

� �

1

and �

2

agree on whi
h 
lo
ks have the unde�ned value ?. Those


lo
ks are 
alled unde�ned. The set of 
lo
ks unde�ned in valuation �

is denoted Unde�ned(�). The other 
lo
ks are 
alled a
tive. The set

of 
lo
ks a
tive in valuation � is denoted A
tive(�).

� �

1

and �

2

agree on the integral part of all a
tive 
lo
ks that are at

most 
, where 
 is the biggest 
onstant appearing in the the real-time


onstraints de
orating the edges of A:

{ 8z 2 A
tive(�

1

), if �

1

(z) � 
 or �

2

(z) � 
 then b�

1

(z)
 = b�

2

(z)


� �

1

and �

2

agree on the ordering of the fra
tional part of all a
tive


lo
ks that are at most 
:

{ for a prophe
y 
lo
k y, let h�

1

(y)i be �

1

(y) � b�

1

(y)
 and for a

history variable x let h�

1

(x)i be d�

1

(x)e � �

1

(x). For all z

1

; z

2

2

A
tive(�

1

) with �

1

(z

1

) � 
 and �

1

(z

2

) � 
 :

� h�

1

(z

1

)i = 0 i� h�

2

(z

1

)i = 0

� h�

1

(z

1

)i � h�

1

(z

2

)i i� h�

2

(z

1

)i � h�

2

(z

2

)i

A 
lo
k region is an equivalen
e 
lass of �. Two extended states

(l

1

; �

1

); (l

2

; �

2

) are region-equivalent if l

1

= l

2

and �

1

� �

2

. Note that �

is of �nite index.

Let us now de�ne when a 
lo
k region �

2

is the time su

essor of another


lo
k region �

1

.

De�nition 18 A 
lo
k region �

2

is a time su

essor of a 
lo
k region �

1

,

denoted �

2

2 TS(�

1

), i� 8�

1

2 �

1

, 9t 2 R
+

su
h that �

1

+ t 2 �

2

.

Next, we de�ne a B�u
hi automaton with �-moves, 
alled the region au-

tomaton of A, denoted R(A) that a

epts exa
tly Untimed(L(A)). The

�-moves will be used to model time passing, i.e. transitions between 
lo
k

regions.

De�nition 19 The region automaton of A = (L;L

0

;P;C; E;F) is the

B�u
hi automaton R(A) = (L

r

; L

r

0

;�

r

; E

r

;F

r

) where:
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� L

r

is the set of regions, i.e. 3-tuple (l; �; �) with l 2 L, � an equivalen
e


lass of 
lo
k interpretations and � 2 ft; dg. With �, lo
ations are

partitioned

3

;

� L

r

0

is the subset of lo
ations (l; �; �) 2 L where l 2 L

0

, 8x 2 H; �(x) =

?, � = t. Initially all history 
lo
ks are unde�ned.

� �

r

= 2

P

[ f�g;

� E

r

is the set of triples ((l

1

; �

1

; �

1

); (l

2

; �

2

; �

2

); s) su
h that

{ if s 2 2

P

, �

1

= t and �

2

= d meaning that the last transition

of the automaton was a time transition and now the automaton

takes a dis
rete transition, and there is an edge (l

1

; l

2

; s;  ) in

automaton A and a 
lo
k region �

3

su
h that:

� �

1

= �

3

[y

p

:= 0jp 2 s℄ (�

1

agrees with �

3

on all 
lo
ks ex
ept

prophe
y 
lo
ks asso
iated with propositions that appear in

s; those 
lo
ks have the value 0 in �

1

);

� �

2

= �

3

[x

p

:= 0jp 2 s℄ (�

2

agrees with �

3

on all 
lo
ks ex
ept

history 
lo
ks asso
iated with propositions that appear in s;

those 
lo
ks have the value 0 in �

2

);

� 8� 2 �

3

; � j=  : the value of 
lo
ks when 
rossing the edge

are 
onsistent with the real-time 
onstraint  .

{ if s = �, �

1

= d and �

2

= t meaning that the last transition of

the automaton was a dis
rete transition, and now the move is a

time move: �

2

2 TS(�

1

) (the region �

2

is a time su

essor of the

region �

1

) and l

1

= l

2

;

� F

r

= fF

0

1

; : : : ; F

0

n

g [ fF

x

p

�

j ⊳
�


� 2 Cl(�)g [ fF

y

p

�

j ⊲
�


� 2 Cl(�)g;

where:

{ for all i, F

0

i

= f(l; �; �)jl 2 F

i

g. So ea
h F

0

i

is a set of regions


omposed of an a

epting lo
ation for F

i

of A and a 
lo
k region

�;

{ F

x

p

�

= f(l; �; �)j�(x

p

�

) = 0 _ �(x

p

�

) > 
 _ �(x

p

�

) = ?;8� 2 �g

is the set of regions where the history 
lo
k x

p

�

is greater than

the maximal 
onstant 
, equal to zero or unde�ned. This ensures

that either x

p

�

is reset in�nitely often, always unde�ned or its

value goes beyond any bounds. This is imposed by the progress

of time requirement of timed tra
es and the semanti
s of history


lo
ks.

3

This partition of the lo
ations allows us to for
e the region automaton to take in�nitely

many dis
rete jumps 
orresponding to the in�nitely many observations of a tra
e.
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{ F

y

p

�

= f(l; �; �)j�(y

p

�

) = 0 _ �(y

p

�

) = ?;8� 2 �g is the set

of regions where the prophe
y 
lo
k y

p

�

has the value 0 or is

unde�ned. These sets are ne
essary to ensure the progress of

time. In fa
t, if a prophe
y 
lo
k is not unde�ned, as time always

progresses, the 
lo
k must inevitably attain the value 0.

The language of R(A) is the set of in�nite tra
es 
orresponding to a

epted

runs of R(A). The following theorem states the 
orre
tness of the region

automaton.

Theorem 3 [AFH94℄ The language of R(A) is Untimed(L(A)).

Corollary 3 The timed language of A is empty i� the language of R(A) is

empty.

The theorem 2 and 
orollary 3 give us the possibility to de
ide the model-


he
king as well as the satis�ability/validity problems for rEventClo
kTL.

Theorem 4 The satis�ability and validity problems for rEventClo
kTL are

de
idable.

Proof. The satis�ability of an rEventClo
kTL formula � 
an be de
ided by


onstru
ting A

�

, the automaton for � and testing if L(A

�

) 6= ;. Similarly

the validity of an an rEventClo
kTL formula � 
an be de
ided by 
onstru
ting

A

:�

, the automaton for the negation of � and testing if L(A

:�

) = ;. �

The model-
he
king problem for real-time rea
tive systems 
onsists in veri-

fying that the timed tra
es de�ned by a produ
t of timed automata respe
t

a property expressed in a real-time logi
, i.e. L(A

1

� � � � � A

n

) � L(�).

Note that L(A

1

� � � � � A

n

) � L(�) i� L(A

1

� � � � � A

n

) \ L(:�) = ; i�

L(A

1

� � � � � A

n

� A

:�

) = ;. This gives us a de
ision pro
edure for the

model-
he
king problem: 
ompute A

:�

, the automaton for the negation of

�, test if the produ
t of this automaton with the timed automata has a

empty timed language. This gives the following theorem.

Theorem 5 The real-time model 
he
king problem for rEventClo
kTL is de-


idable.

The pro
edure that we propose for de
iding rEventClo
kTL 
onstru
ts

�rst an EventClo
kTA whi
h is transformed into an untimed automaton, the

region automaton, for 
he
king emptiness. The following lemma and the-

orem 
hara
terize the size of the 
onstru
ted automata for a given rEvent-

Clo
kTL formula �:

Theorem 6 [AFH94℄ The region equivalen
e � de�ned on the extended

states of an EventClo
kTA A is of �nite index. The number of lo
ations in
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region automaton of an EventClo
kTA A is O(l � 2

m�log 
�m

), where l is the

number of lo
ations in A, m is the number of 
lo
ks in A and 
 is the largest


onstant appearing in A.

The emptiness of the region automaton 
an be tested without 
onstru
t-

ing it 
ompletely:

Lemma 2 [SVW85℄ The nonemptiness problem for B�u
hi automata is

NLogSpa
e-Complete.

>From theorem 6 and lemma 2 we obtain:

Lemma 3 (PSpa
e-Easiness) The satis�ability and validity problem for

rEventClo
kTL in pointwise semanti
s are PSpa
e-Easy.

Proof. First, the size for ea
h formula � 2 rEventClo
kTL is de�ned by the

three following elements:

1. the number of subformulas in � (bounded by j�j);

2. the maximal integer 
onstant K used in a real-time operator within �

(bounded by 2

j�j

);

3. the number of real-time subformulas in � (bounded by j�j).

By observing how A

�

is 
onstru
ted, it is dire
t to show that its size is as

follows:

� the number of lo
ations in A

�

is exponential in the number of subfor-

mulas in �;

� the maximal integer 
onstant used by A

�

in 
lo
k 
onstraints is equal

to the maximal integer 
onstant K used by � within real-time opera-

tors;

� the number of 
lo
ks used by A

�

is bounded by the number of real-time

subformulas in �.

By lemma 6, we 
an 
onstru
t the region automaton R

A

�

whi
h is a B�u
hi

automaton with a number of lo
ations:

� linear in the number of lo
ations of A

�

, and thus singly exponential in

the number of subformulas of �;

� singly exponential in the number of 
lo
ks used by A

�

and thus singly

exponential in the number of real-time operators of �;

� singly exponential in the maximal 
onstant used by A

�

and thus singly

exponential in the maximal 
onstant K used in �.
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Using a nondeterministi
 version for the emptiness of R

A

�

, this exponential

automaton needs not be 
onstru
ted expli
itly and we obtain a PSpa
e

pro
edure for the satis�ability and validity problems of rEventClo
kTL. �

Lemma 4 (PSpa
e-Hardness) The satis�ability and validity problems

for rEventClo
kTL in pointwise semanti
s are PSpa
e-Hard.

Proof. The hardness follows dire
tly from the fa
t that the logi
 LTL is


ontained in rEventClo
kTL and has been shown Pspa
e-hard in [CES86℄.

�

As a 
onsequen
e, the 
omplexity of the satis�ability problem and the

validity problem of rEventClo
kTL are in Pspa
e.

Theorem 7 The satis�ability and validity problems for rEventClo
kTL are

Pspa
e-
omplete.

6 Expressiveness

In this se
tion, we study the expressive power of rEventClo
kTL in pointwise

timed tra
es. The results di�er when the logi
 is evaluated in 
ontinuous

timed tra
es (i.e. timed state sequen
es), see Appendix. First, we 
ompare

its expressive power with respe
t to Metri
IntervalTL; then, with respe
t to

EventClo
kTA.

6.1 rEventClo
kTL vs Metri
IntervalTL

In this subse
tion, we 
ompare the expressiveness of the logi
 rEventClo
kTL

with the expressiveness of the logi
 Metri
IntervalTL. We �rst re
all the def-

inition of the syntax and the semanti
s of the logi
 Metri
IntervalTL.

De�nition 20 (Metri
IntervalTL-syntax) A formula of Metri
IntervalTL is

built from proposition symbols, boolean 
onne
tives, and time-bounded \un-

til" and \sin
e" operators:

� ::= p j �

1

^ �

2

j :� j �

1

b

U

I

�

2

j �

1

b

S

I

�

2

where p is a proposition and I is a nonsingular interval whose �nite end-

points are nonnegative integers, and that does not 
ontain 0. �

In the sequel, we will be interested in fragments of Metri
IntervalTL:

De�nition 21 (Metri
IntervalTL

0;1

-fragment) The formulas of the frag-

ment Metri
IntervalTL

0;1

are de�ned as above, ex
ept that the interval I

must either have the left endpoint 0, or be unbounded; in these 
ases I


an be repla
ed by an expression of the form � 
, for a nonnegative integer


onstant 
 and �2 f<;�;�; >g. �
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De�nition 22 (Metri
IntervalTL

F

-fragment) The formulas of the frag-

ment Metri
IntervalTL

F

are de�ned as for Metri
IntervalTL, ex
ept that

b

U

I

is the only real-time operator.

We now de�ne the semanti
s of those logi
s.

De�nition 23 The Metri
IntervalTL formula � holds in position i 2 N of

the timed tra
e � = (��; �� ), denoted (�; i) j= �, a

ording to the following

de�nition:

(�; i) j= p i� p 2 �

i

;

(�; i) j= :� i� (�; i) 6j= �;

(�; i) j= �

1

^ �

2

i� (�; i) j= �

1

and (�; i) j= �

2

;

(�; i) j= �

1

b

U

I

�

2

i� there exists j > i su
h that (�; j) j= �

2

,

�

j

��

i

2 I and for all k with i < k < j, we have (�; k) j= �

1

4

;

(�; i) j= �

1

b

S

I

�

2

i� there exists j, 0 � j < i, su
h that (�; j) j= �

2

,

�

j

� �

i

2 I and for all k with j < k < i, we have (�; k) j= �

1

;

TheMetri
IntervalTL formula � de�nes the timed !-language L(�) that 
on-

tains all timed state sequen
es � with (�; 0) j= �.

We also use the following 
lassi
al abbreviations:

� When the real-time 
onstraint is omitted, it is the most permissive:

�

b

U �  _ �

b

U

(0;1)

 ;

� We 
an use 
onstraints instead of intervals:

�

b

U

�


 �  _ �

b

U

I

 , where I = fr 2 Rjr > 0 ^ r � 
g;

� We 
an extend intervals to in
lude 0, by making

b

U re
exive:

�

b

U

f0g[I

 �  _ �

b

U

I

 ;

�

b♦
I

� � >

b

U

I

�, meaning \eventually within I";

�

b�
I

� � :

b♦
I

:�, meaning \always during I";

� and their past 
ounterparts:

b♦�
I

� � >

b

S

I

�,

b⊟
I

� � :

b♦�
I

:�;

� In lemma 7 we will see that all rEventClo
kTL operators 
an be de�ned

as abbreviations.

We now 
ompare the expressive power of the two logi
s. We will show

that they di�er on the in�nite set of timed tra
es �:

De�nition 24 The (in�nite) set of timed tra
es � =

f�

1

; �

1

; �

2

; : : : ; �

n

; : : : g 
ontains the following tra
es de�ned on the

set of propositions P = fpg:

4

Note that the operator

b

U

I

is irre
exive.
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1. ea
h �

k

2 � 
ontains the same qualitative information: �

k

= (��; ��

k

)

is su
h that for all position i 2 N, �
i

= fpg; that is, p is true in every

position of every timed tra
e of �.

2. the timed tra
es of � have the following timing information:

(a) for �

1

, the timing information ��

1

= �

1

0

�

1

1

: : : �

1

n

: : : is �

1

i

=

i� 1:5; that is, an observation ea
h 1:5 time units;

(b) for �

k

, with k 2 f1; 2; : : : ; n; : : : g, the timing information ��

k

=

�

k

0

�

k

1

: : : �

k

n

: : : is

�

k

i

=

�

i� 1:5 if i 6= k

i� 1:5� 0:1 if i = k

that is, in �

k

, there is an irregular k

th

observation whi
h is sepa-

rated from the k � 1

th

by 1.4 time units and from the k + 1

th

by

1.6 time units.

Let us note that for every position i 2 N, in a timed tra
e � = (��; ��) 2

�, �

i+1

� �

i

2 (1; 2). That is, the time di�eren
e between two 
onse
-

utive observations is between 1 and 2 time units, in fa
t it is either

equal to 1.4, 1.5 or 1.6.

�

Example 4 Here are two examples of pre�xes of tra
es from the set �:

� a pre�x of �

1

:

(fpg; 0)(fpg; 1:5)(fpg; 3)(fpg; 4:5)(fpg; 6)(fpg; 7:5) : : :

� a pre�x of �

3

:

(fpg; 0)(fpg; 1:5)(fpg; 3)(fpg; 4:4)(fpg; 6)(fpg; 7:5) : : :

so the observation number 3 is at 4.4 instead of 4.5 as it is in �

1

.

In the next lemma, we show that the future fragment of Metri
IntervalTL


an distinguish �

1

from the other timed tra
es of �. The idea is that the

position i is always separated for the position i + 2 by 3 time units in �

1

while it is not the 
ase in �

k

, where the k

th

position is separated by 3.1 time

units from the position k+2. We now show that a simple Metri
IntervalTL

F

formula 
an dete
t this fa
t.

Lemma 5  �

b�
(0;1)

(p !

b♦
[2;3℄

p) 2 Metri
IntervalTL

F

is su
h that

(�

1

; 0) j=  and for all k � 1, (�

k

; 0) 6j=  .
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Proof. Every position i in �

1

is separated by exa
tly 3 time units from the

position i + 2. As p is true everywhere, p !

b♦
[2;3℄

p holds in every position

of �

1

and thus by the semanti
s of the

b�
(0;1)

-operator, (�

1

; 0) j=  . On

the other hand, the k

th

position of �

k

is not followed by any position in

�

k

k

+ [2; 3℄ as the (k + 1)

th

position is at time �

k

k

+ 1:6 and the (k + 2)

th

position is at time �

k

k

+3:1. Thus p!

b♦
[2;3℄

p is false in position k of �

k

and

thus (�

k

; 0) 6j=  . �

We now show that the future fragment of rEventClo
kTL 
annot distin-

guish between timed tra
es of �. This is a 
onsequen
e of the following

stronger lemma:

Lemma 6 For every formula � 2 rEventClo
kTL

F

, for every two timed

tra
es �

1

; �

2

2 �, for every two positions i; j su
h that 0 � i < j: (�

1

; i) j= �

i� (�

2

; i) j= � i� (�

1

; j) j= � i� (�

2

; j) j= �. That is, every formula of

rEventClo
kTL is either 
onstantly true in all timed tra
es of � or 
onstantly

false in all timed tra
es of �.

Proof. The proof is by indu
tion on the stru
ture of formula.

� � = p: as p is true in every position of every timed tra
e of �, the

base 
ase is veri�ed.

� � =⊲
�


�

1

: By indu
tion hypothesis, we know that either:

1. �

1

is true in all positions of all timed tra
es of �: Thus for every

position i, the �rst following �

1

is in i + 1 and by de�nition of

�, �

i+1

� �

i

2 (1; 2) in the two timed tra
es. Thus ⊲
�


�

1

is


onstantly true if (1; 2) � fv 2 R
+

j v � 
g, and 
onstantly false

otherwise.

2. �

1

is false in all positions of all timed tra
es of �: So there does

not exists a (�rst) following �

1

position, and ⊲
�


�

1

is 
onstantly

false.

� The other 
ases are left to the reader.

�

A dire
t 
onsequen
e of the lemma 6 is that rEventClo
kTL

F


annot

distinguish �

1

from other models of �:

Corollary 4 For every formula  2 rEventClo
kTL

F

, for every k � 1,

�

1

2 L( ) i� �

k

2 L( ).

And rEventClo
kTL

F

is less expressive than Metri
IntervalTL

F

:

Theorem 8 Metri
IntervalTL

F

6� rEventClo
kTL

F

.
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Proof. By 
orollary 4, we know that for every formula � 2 rEventClo
kTL

F

,

L(�) 
ontains � or has an empty interse
tion with �. On the other hand,

the formula  �

b�(p ! b♦
[2;3℄

p) of Metri
IntervalTL

F

is satis�ed by �

1

but

by none of the timed tra
es �

k

2 �. It means that L( ) \ � 6= ; but

� 6� L( ). Thus rEventClo
kTL

F


annot express the property expressed by

 . �

Let us now take a look at the other dire
tion of the in
lusion: \is every

rEventClo
kTL

F

-expressible property also expressible inMetri
IntervalTL

F

?"

To answer this question, we provide a translation �

T

, de�ned by indu
tion:

� � = p: �

T

= p.

� � = �

1

_ �

2

: �

T

= �

T

1

_ �

T

2

.

� � = :�

1

: �

T

= :�

T

1

.

� � =

e

�

1

: �

T

= ?

b

U

(0;1)

�

T

1

.

� � = ⊖�
1

: �

T

= ?

b

S

(0;1)

�

T

1

.

� � = �

1

U�

2

: �

T

= �

T

2

_ (�

T

1

^ (�

T

1

b

U

(0;1)

�

T

2

)).

� � = �

1

S�

2

: Symmetri
ally, �

T

= �

T

2

_ (�

T

1

^ (�

T

1

b

S

(0;1)

�

T

2

)).

� � =⊲
I

�

1

: �

T

= >

b

U

# I

�

T

1

^:(>

b

U

<I

�

T

1

), where # I is the real interval

ft > 0 j 9t

0

2 I : t � t

0

g and < I is the real interval ft > 0 j 8t

0

2 I :

t < t

0

g.

� � =⊳
I

�

1

: Symmetri
ally, �

T

= >

b

S

# I

�

T

1

^ :(>

b

S

<I

�

T

1

).

Lemma 7 For every formula � of rEventClo
kTL, �

T

2 Metri
IntervalTL

0;1

has the same meaning: for every timed tra
e �, for every position i: (�; i) j=

� i� (�; i) j= �

T

. Furthermore, this translation respe
ts future fragments: if

� 2 rEventClo
kTL

F

; �

T

2 Metri
IntervalTL

F

0;1

.

As a 
onsequen
e we have the following theorem:

Theorem 9 The logi
 Metri
IntervalTL

0;1

is at least as expressive

as rEventClo
kTL, rEventClo
kTL � Metri
IntervalTL

0;1

and thus

rEventClo
kTL � Metri
IntervalTL.

In the theorem 8, we have shown that the in
lusion rEventClo
kTL

F

�

Metri
IntervalTL

F

is stri
t. Is this in
lusion also stri
t for the full

rEventClo
kTL logi
? Before answering this question, let us �rst note that

adding past operators to rEventClo
kTL

F

adds expressive power. In fa
t,

let us 
onsider the timed tra
e �

k

, with k even (so that k � 1:5 is a natural

number), and the rEventClo
kTL formula
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k

�

e

: : :

e

| {z }

k

⊳
=k�1:5

:⊖>

where :⊖> is only true at the initial position of �

k

and thus  

k

expresses,

in this initial position, that \the k

th

position of �

k

has the timing k � 1:5".

Whi
h is false by de�nition of �

k

. On the other hand, this property is true in

the initial position of �

1

and thus the formula  

k


an distinguish between

�

k

and �

1

. Thus, adding past operators to rEventClo
kTL

F

in
reases the

expressive power of the logi
:

Theorem 10 The logi
 rEventClo
kTL is stri
tly more expressive than its

future fragment rEventClo
kTL

F

: rEventClo
kTL

F

� rEventClo
kTL.

Note that this phenomenon is not observed in the temporal logi
 LTL:

adding past operators to LTL only adds 
onvenien
e but no real expres-

sive power [GPSS80℄. For real-time logi
s, in 
ontrast, past operators add

expressive power, for instan
e [AH92a℄ proved that Metri
IntervalTL

F

�

Metri
IntervalTL, noted there MITL �MITL

P

.

The formula  

k

above explains why our simple proof that

Metri
IntervalTL

F

is more expressive than rEventClo
kTL

F

will not work to

show that Metri
IntervalTL is more expressive than rEventClo
kTL. But this

formula does not distinguish �

1

from �

l

with l > k. For su
h a l, intuitively,

we need a bigger rEventClo
kTL formula, su
h as  

l

. In the next lemma, we

prove that for any given formula � of rEventClo
kTL, there exists a bound

size(�) su
h that the formula � 
annot distinguish between �

1

and �

k

for

k > size(�). This size, intuitively, measures how far � 
an look into the past

of �

1

. Formally:

De�nition 25 (Size of an rEventClo
kTL-formula) The size of a for-

mula � 2 rEventClo
kTL, denoted size(�), is de�ned re
ursively as follows:

� size(p) = 0;

� size(:�

1

) = size(�

1

);

� size(�

1

_ �

2

) = max(size(�

1

); size(�

2

));

� size(

e

�

1

) = size(�

1

);

� size(⊖�
1

) = 1 + size(�

1

);

� size(�

1

U�

2

) = max(size(�

1

); size(�

2

));

� size(�

1

S�

2

) = max(size(�

1

); size(�

2

));

� ⊲
�


�

1

= size(�

1

);

� ⊳
�


�

1

= d




1:5

e+ size(�

1

);
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For the real-time operator ⊳, we use the 
onstant 
 and divide it by

1:5, be
ause our notion of size is designed for the timed tra
es of �, where

observations are separated by 1:5.

For example size(

e

:⊖>) = 1, size(⊲
=6

p) = 0 and size(⊳
=14

:⊖>) =

d

14

1:5

e+ 1 = 11, size(⊖ ⊖ ⊖p) = 3.

Lemma 8 For every formula � 2 rEventClo
kTL, for every model �

k

2 �

with k > size(�) then:

� P

1

(�; �

k

) = 8i

1

; i

2

� 0 � size(�) � i

1

< i

2

: (�

k

; i

1

) j= � i� (�

k

; i

2

) j= �

i� (�

1

; i

1

) j= � i� (�

1

; i

2

) j= �;

� P

2

(�; �

k

) = 8i � 0 � i < size(�): (�

k

; i) j= � i� (�

1

; i) j= �;

P

1

(�; �

k

) expresses that: for every position i

1

; i

2

after size(�), the formula �

is either 
onstantly true in �

k

and �

1

or 
onstantly false. P

2

(�; �

k

) expresses

that: for every position i before size(�), the formula � is evaluated similarly

in �

k

and �

1

(but its truth value may 
hange from position to position). We

note P

3

(�; �

k

) the formula 8i � 0, (�

k

; i) j= � i� (�

1

; i) j= �. Note that

P

3

(�; �

k

) is a 
onsequen
e of the 
onjun
tion of P

1

and P

2

.

Proof. The proof is by indu
tion on the stru
ture of formulas.

� � = p: as p is 
onstantly true in all timed tra
es of �, then P

1

and P

2

are veri�ed for the base 
ase.

� The boolean 
ases are trivial.

� � =

e

�

1

. Note that size(�) = size(�

1

). By indu
tion hypothesis, for

all k > size(�), P

1

(�

1

; �

k

) and P

2

(�

1

; �

k

) holds and thus P

3

(�

1

; �

k

).

1. As, by semanti
s of the

e

-operator, the truth value of

e

�

1

in

position i only depends on the truth value of �

1

in i + 1 and

P

1

(�

1

; �

k

) holds, we know that

e

�

1

is 
onstantly either true (if

�

1

is 
onstantly true, by P

1

and indu
tion hypothesis) in positions

i � size(�) or 
onstantly false (if �

1

is 
onstantly false by P

1

and

indu
tion hypothesis) in positions i � size(�), in both �

k

and �

1

and thus P

1

(�; �

k

) is veri�ed.

2. Let us now try to establish P

2

(�; �

k

). Again, we know that

P

3

(�

1

; �

k

) is a 
onsequen
e of the indu
tion hypothesis. That is,

�

1

evaluates in the same way in every position of the two timed

tra
es �

k

and �

1

. By the semanti
s of the

e

-operator P

3

(�; �

k

)

holds and thus P

2

(�; �

k

).

� The U and S operators are treated in the same way.

� � = ⊖�
1

. Note that size(�) = 1 + size(�

1

).
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1. Let us �rst establish P

1

(�; �

k

) for k > size(�). By indu
tion

hypothesis, we know that P

1

(�

1

; �

k

) holds. As a 
onsequen
e, for

all positions i � size(�) � 1, �

1

has the same 
onstant value in

�

k

and �

1

. Thus in all positions i � size(�), ⊖�
1

has the same


onstant value in �

k

and �

1

. And thus P

1

(�; �

k

) is established.

2. Let us now turn to P

2

(�; �

k

). By indu
tion hypothesis P

3

(�

1

; �

k

)

holds. That is, �

1

has the same truth value in �

k

and �

1

, for

every position i. As the truth value of ⊖�
1

in all positions i � 1

only depends on the truth value of �

1

and a ⊖-formula is always

false in i = 0, P

3

(�; �

k

) holds and thus P

2

(�; �

k

) holds.

� � =⊲
�


�

1

. We know that size(�) = size(�

1

).

1. We �rst establish P

1

(�; �

k

) for k > size(�). By indu
tion hypoth-

esis, we know that either:

(a) for all position i � size(�) that (�

k

; i) j= �

1

and (�

1

; i) j=

�

1

: In this 
ase, for all i � size(�), the following �

1

is at a

distan
e of d 2 (1; 2) and thus ⊲
�


�

1

is 
onstantly true if

(1; 2) � fvjv � 
g and 
onstantly false otherwise, in both

timed tra
es �

k

and �

1

.

(b) for all position i � size(�) that (�

k

; i) 6j= �

1

and (�

1

; i) 6j= �

1

:

In that 
ase, for all i � size(�), there is no following �

1

position and thus ⊲
�


�

1

is 
onstantly false in both timed

tra
es �

k

and �

1

.

This establishes P

1

(�; �

k

).

2. Let us now turn to P

2

(�; �

k

). First we know that for all positions

0 � i < k, �

k

i

= �

1

i

, that is, the timing of the two timed tra
es

agree. We also now that �

1

has the same 
onstant value in the

two tra
es after position i = size(�) < k. Let us 
onsider any

position l su
h that 0 � l < size(�) < k, the following �

1

must

be true in a lo
ation m, l < m � size(�) or it will be false for

ever. In the last 
ase ⊲
�


�

1

is false in the two timed tra
es. In

the 
ase that �

1

is true in a position m, l < m � size(�) < k,

the formula ⊲
�


�

1

evaluates similarly in the two timed tra
es as

their timing information is the same for all positions i, 0 � i < k.

And thus property P

2

(�; �

k

) holds.

� � =⊳
�


�

1

. First, note that if 
 = 0 then ⊳
�


� is equivalent to false

as the ⊳ operator is irre
exive and time is stri
tly monotone. Let us


onsider the 
ase where 
 > 0. Let d = d




1:5

e. Note that d � 1. We

know that size(�) = d+ size(�

1

).

1. We �rst establish P

1

. By indu
tion hypothesis, we know that

either:
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(a) 8i : size(�) � d � i: (�

k

; i) j= �

1

and (�

1

; i) j= �

1

. For

every position j su
h that size(�) � j, the last �

1

position is

j � 1 at a distan
e d

a

2 (1; 2). As a 
onsequen
e, for all j

su
h that size(�) � j, (�

k

; j) j=⊲
�


�

1

i� (�

1

; j) j=⊲
�


�

1

i�

(1; 2) � fvjv � 
g; and thus � is either true in all j � size(�)

in both �

k

and �

1

or it is false in all j � size(�) in both �

k

and �

1

.

(b) 8i : size(�) � d � i: (�

k

; i) 6j= �

1

and (�

1

; i) 6j= �

1

. For every

position j su
h that j � size(�), the last �

1

observation is,

if it exists, in a position i with 0 � i < size(�) � d. Thus at

a distan
e d

b

> d � 1:5 � 
 and thus ⊳
�


�

1

is veri�ed in

all positions j � size(�), both in �

k

and �

1

if \�" = \>" or

\�" and the �

1

-position exists. In all other 
ases, ⊳
�


�

1

is

false in all positions j � size(�), both in �

k

and �

1

.

And thus P

1

(�; �

k

) holds.

2. Let us now turn to the property P

2

. So, we want to establish

that 8i � 0 � i < size(�): (�

k

; i) j= � i� (�

1

; i) j= �. Let us �rst

note that the value of ⊳
�


�

1

in the positions i, 0 � i < size(�),

only depends on the truth value of �

1

in 0 � i < size(�) and the

timing information for �

k

and �

1

. The value of �

1

is similar in

those positions for the two models by indu
tion hypothesis. Also

the timing information in that interval of positions is identi
al as

k > size(�) and thus the value of ⊳
�


�

1

is exa
tly the same for

ea
h position i, 0 � i < size(�) < k, in both �

k

and �

1

. And

thus P

2

(�; �

k

) holds.

�

Theorem 11 Metri
IntervalTL is stri
tly more expressive than rEvent-

Clo
kTL: Metri
IntervalTL � rEventClo
kTL.

Proof. By lemma 8, we know that for every formula � 2 rEventClo
kTL,

there exists a bound l su
h that for all �

k

with k > l, �

k

2 L(�) i�

�

1

2 L(�). On the other hand, the formula  �

b�
(0;1)

(p !

b♦
[2;3℄

p) of

Metri
IntervalTL is satis�ed by �

1

but by none of the timed tra
es �

k

2 �.

Thus rEventClo
kTL 
annot express the property expressed by  . �

Let us now show that every Metri
IntervalTL

0;1

-property 
an be ex-

pressed by an rEventClo
kTL-formula. This is a 
onsequen
e of the following

stronger lemma:

Lemma 9 For every formula � 2 Metri
IntervalTL

0;1

, there exists a for-

mula �

T

2 rEventClo
kTL su
h that, for every timed tra
e �, for every posi-

tion i: (�; i) j= � i� (�; i) j= �

T

.
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Proof. We reason by indu
tion on the stru
ture of formulas. The boolean


ases are trivial. We only treat the

b

U

I

: the similar

b

S

I

is left to the reader.

First note that the following rewritings withinMetri
IntervalTL

0;1

are valid:

� �

1

b

U

<


�

2

= (�

1

b

U

(0;1)

�

2

) ^

b♦
<


�

2

;

� �

1

b

U

�


�

2

= (�

1

b

U

(0;1)

�

2

) ^

b♦
�


�

2

;

Now it is easy to show that:

b♦
<


� =⊲
<


�

T

and

b♦
�


� =⊲
�


�

T

. By

de�nition of the

b�-operator, we also have:

b�
<


� = : ⊲
<


:�

T

and

b�
�


� = : ⊲
�


:�

T

. Also, we have that �

1

b

U

(0;1)

�

2

=

e

(�

T

1

U�

T

2

) and

thus every

b

U

<;�


formula 
an be expressed in rEventClo
kTL. Let us now

turn to the

b

U

>;�


ases. Here are the translations (we use

b�
<;�

in rEvent-

Clo
kTL formulas, sin
e we have shown just above that it 
an be translated

in \plain" rEventClo
kTL):

� �

1

b

U

>


�

2

=

b�
�


(�

T

1

^

e

(�

T

1

U�

T

2

)) ^

e

(�

T

1

U�

T

2

);

� �

1

b

U

�


�

2

=

b�
<


(�

T

1

^

e

(�

T

1

U�

T

2

)) ^

e

(�

T

1

U�

T

2

);

We justify the right to left impli
ation for

b

U

>


. Thus we must show that

if (�; i) j=

b�
�


(�

T

1

^

e

(�

T

1

U�

T

2

)) ^

e

(�

T

1

U�

T

2

) then (�; i) j= �

1

b

U

>


�

2

. Let

J = fjj�

i

< �

j

� �

i

+ 
g, that is, J is the set of positions after position i

that are at a time distan
e less or equal to 
 from i. We 
onsider two disjoint

situations:

� (a) J = ;. There is no position J > i su
h that �

j

� �

i

+ 
 then

verifying (�; i) j=

e

(�

T

1

U�

T

2

) is suÆ
ient be
ause the �rst �

2

-position

will be at a distan
e d > 
 from i and between this �

2

position and

after i, �

1

is veri�ed;

� (b) J 6= ;. There is some position in the interval (�

i

; �

i

+
℄, the formula

b�
�


(�

T

1

^

e

(�

T

1

U�

T

2

)) imposes that �

1

is 
onstantly true in the interval

(�

i

; �

i

+ 
℄ and also that in the last position of that interval, let say k,

that

e

(�

T

1

U�

T

2

) is true and thus �

T

1

U�

T

2

is true in position k + 1 and

ensures that �

1

will stay true until a �

2

position is en
ountered at a

distan
e d > 
 from position i.

�

The lemma 9 and theorem 9 together give:

Theorem 12 The logi
s Metri
IntervalTL

0;1

and rEventClo
kTL are equally

expressive, i.e. Metri
IntervalTL

0;1

= rEventClo
kTL.

Note that the translation between formulas of one logi
 to the other does

not 
hange the size of the maximal 
onstant used, generates only a linear
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number of subformulas and thus the number of real-time operators stays also

linear. Note also that the last theorem also apply for the future fragment of

the two logi
s as future formulas of one logi
 are always translated by future

formula of the other logi
.

Theorem 13 The two logi
s Metri
IntervalTL

F

0;1

and rEventClo
kTL

F

are

equally expressive, i.e. Metri
IntervalTL

F

0;1

= rEventClo
kTL

F

.

Corollary 5 Metri
IntervalTL is more expressive than Metri
IntervalTL

0;1

:

Metri
IntervalTL � Metri
IntervalTL

0;1

.

Remark. In [HRS98℄, it is proved that the expressive powers of Metri
Inter-

valTL and rEventClo
kTL agree when evaluated 
ontinuously, i.e. on timed

state sequen
es, see appendix for the de�nition of rEventClo
kTL in 
ontin-

uous models. We refer the interested reader to [HRS98℄ for details about

this interesting phenomenon.

6.2 rEventClo
kTL vs EventClo
kTA

It is well known that LTL 
annot express some 
ounting properties that are

expressible by B�u
hi automata. For example, there does not exist any LTL

formula that expresses the even�p property: \p is true in all even positions

of the tra
e", while this property is easily expressed by an automaton. Sim-

ilarly, rEventClo
kTL 
annot express 
ounting properties. As EventClo
kTA

are an extension of B�u
hi automata, and thus more expressive, we have the

following theorem:

Lemma 10 There exist EventClo
kTA-properties that are not expressible

into rEventClo
kTL, i.e. EventClo
kTA 6� rEventClo
kTL.

Let us take a look at the other dire
tion. Without real-time, we know

that every LTL property is expressible by B�u
hi automaton. Similarly, is ev-

ery rEventClo
kTL-property expressible by an event 
lo
k automaton? Sur-

prisingly, the answer is negative:

Lemma 11 There exist rEventClo
kTL-properties that are not expressible

into EventClo
kTA, i.e. rEventClo
kTL 6� EventClo
kTA.

Proof. To show that not all rEventClo
kTL-properties are expressible with

EventClo
kTA, we 
onsider the two timed tra
es �

1

= (��; ��

1

) and �

2

= (��; ��

2

)

on the set of propositions P = fpg. �

1

and �

2

share the same qualita-

tive information �� = fgfpgfgfpgfpg:::fpg::: that is, p is true everywhere

ex
ept in position 0 and 2. The timing information ��

1

of �

1

is as fol-

lows: �

1

i

= i � 1:4, i.e. all positions are separated by 1:4 time units:

��

1

= 0; 1:4; 2:8; 4:2; 5:6; 7; : : : . On the other hand the timing information

��

2

of �

2

is de�ned by:
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�

2

i

=

�

i� 1:4 if i 6= 3

i� 1:4� 0:3 if i = 3

Thus, ��

2

= 0; 1:4; 2:8; 3:9; 5:6; 7; : : : . It is easy to show that for every position

i � 0, for every 
onstraint x

p

� 
, (�

1

; i) j= x

p

� 
 i� (�

2

; i) j= x

p

� 
.

Similarly, it is easy to show that for every position i � 0, for every 
onstraint

y

p

� 
, (�

1

; i) j= y

p

� 
 i� (�

2

; i) j= y

p

� 
. That is, the 
onstraints about

history and prophe
y 
lo
ks asso
iated with p evaluate similarly in both

models, in all positions. This is be
ause 
lo
k 
onstraints 
an only use

integer 
onstants and, for the prophe
y 
lo
k y

p

:

� in position 0, the distan
e to the following p-position, and thus the

value of y

p

, is, in the two models, equal to 1:4 2 (1; 2);

� in position 1, this distan
e is equal to 2:8 2 (2; 3) in �

1

and to 2:5 2

(2; 3) in �

2

. Even if the distan
es are di�erent, it 
annot be seen using

integer 
onstants;

� in position 2, this distan
e is equal to 1:4 2 (1; 2) in �

1

and is equal to

1:1 2 (1; 2) in �

2

. Again even if the distan
es are di�erent, it 
annot

be seen using integer 
onstants;

� in position 3, this distan
e is equal to 1:4 2 (1; 2) in �

1

and is equal to

1:9 2 (1; 2) in �

2

. Again even if the distan
es are di�erent, it 
annot

be seen using integer 
onstants;

� after position 3, the distan
e to the following p position is always, in

both �

1

; �

2

, equal to 1:4 2 (1; 2).

A same reasoning applies for the history 
lo
k x

p

. So every event 
lo
k

automaton A a

epts �

1

if and only if it a

epts �

2

. On the other hand the

re
ursive rEventClo
kTL-formula  =⊲
�4

�p is true in the initial position

of �

2

but false in the initial position of �

1

. And thus rEventClo
kTL 
an

di�erentiate between the two models. �

>From lemma 10 and lemma 11, we obtain the following theorem:

Theorem 14 The expressive power of rEventClo
kTL and EventClo
kTA are

in
omparable.

This surprising theorem 
an be explained as follows: when moving from

EventClo
kTA to rEventClo
kTL, we have automati
ally added re
ursion, or

uniform substitution in logi
ian parlan
e: any formula 
an repla
e a propo-

sition symbol. If we remove this possibility, we obtain the expe
ted result

from 
orollary 2:
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Corollary 6 The models of a non-re
ursive formula is the language of an

EventClo
kTA: EventClo
kTL � EventClo
kTA

We 
an also obtain an in
lusion by introdu
ing re
ursion

5

in Event-

Clo
kTA, as des
ribed in [HRS98℄.

7 Con
lusion

In this paper, we have presented a new real-time logi
 
alled rEventClo
kTL.

This logi
 extends LTL with real-time operators ⊲
�


� read \the next � is

at a distan
e d that respe
ts d � 
", and symmetri
ally ⊳
�


� expressing

that \� was last true at a distan
e d su
h that d � 
". These two modal

operators introdu
e the 
lean and powerful 
on
ept of event 
lo
k, from

timed automata [AFH94℄, in the domain of real-time logi
s. The natural

expressive power of those two operators has been illustrated by showing that

most important real-time requirements [Koy92℄ 
an be straightforwardly and

naturally expressed in rEventClo
kTL.

We have shown that the problems of satis�ability, validity and model-


he
king are de
idable for this logi
, more pre
isely Pspa
e-
omplete, as

for LTL. We provided a simple de
ision pro
edure based on EventClo
kTA, a

determinizable 
lass of timed automata. Our de
ision pro
edure is far less


ompli
ated than the de
ision pro
edure of [AFH96℄ forMetri
IntervalTL, the

only real-time logi
 that was previously known to be de
idable. Our de
ision

pro
edure is obtained by extending the de
ision pro
edure for LTL in a nat-

ural way: we use the 
lose 
onne
tion that exists between the two real-time

operators of rEventClo
kTL and the prophe
y and history 
lo
ks of Event-

Clo
kTA. This naturalness helps in axiomatizing this logi
, see [RSH98℄.

Corresponding monadi
 logi
s are built in [HRS98℄.
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A Continuous Interpretation

An interval I � R
+

is a 
onvex nonempty subset of the nonnegative reals.

Given t 2 R
+

, we freely use notation su
h as t+ I for the interval ft

0

j exists

t

00

2 I with t

0

= t+ t

00

g, and t > I for the 
onstraint \t > t

0

for all t

0

2 I."

Two intervals I and J are adja
ent if the right endpoint of I is equal to

the left endpoint of J , and either I is right-open and J is left-
losed or I is

right-
losed and J is left-open. An interval sequen
e

�

I = I

0

; I

1

; : : : is a �nite

or in�nite sequen
e of bounded intervals so that for all i � 0, the intervals

I

i

and I

i+1

are adja
ent. We say that the interval sequen
e

�

I 
overs the

interval

S

i�0

I

i

. If

�

I 
overs [0;1), then

�

I partitions the nonnegative real

line so that every bounded subset of R
+

is 
ontained within a �nite union

of elements from the partition.

Let P be a �nite set of proposition symbols. A state s � P is a set of

propositions. A timed state sequen
e � = (�s;

�

I) is a pair that 
onsists of an

in�nite sequen
e �s of states and an in�nite interval sequen
e

�

I that 
overs

[0;1). Equivalently, the timed state sequen
e � 
an be viewed as a fun
tion

from R
+

to 2

P

, indi
ating for ea
h time t 2 R
+

a state �(t) � P.

The formulas of rEventClo
kTL [RS97b℄ are built from propositional sym-

bols, boolean 
onne
tives, the temporal \until" and \sin
e" operators, and

two real-time operators: at any time t, the history operator ⊳
I

� asserts

that � was true last time in the interval t � I, and the prophe
y operator

⊲
I

� asserts that � will be true next time in the interval t+I. The formulas

of rEventClo
kTL are generated by the following grammar:

� ::= p j �

1

^ �

2

j :� j �

1

U�

2

j �

1

S�

2

j⊳
I

� j⊲
I

�

where p is a proposition and I is an interval whose �nite endpoints are

nonnegative integers. Let � be an rEventClo
kTL formula and let � be

a timed state sequen
e whose proposition symbols 
ontain all proposition

symbols that o

ur in �. The formula � holds at time t 2 R
+

of �, denoted

(�; t) j= �, a

ording to the following de�nition:

(�; t) j= p i� p 2 �(t)

(�; t) j= �

1

^ �

2

i� (�; t) j= �

1

and (�; t) j= �

2

(�; t) j= :� i� not (�; t) j= �

(�; t) j= �

1

U�

2

i� exists a real t

0

> t with (�; t

0

) j= �

2

, and for

all reals t

00

2 (t; t

0

), we have (�; t

00

) j= �

1

_ �

2

(�; t) j= �

1

S�

2

i� exists a real t

0

< t with (�; t

0

) j= �

2

, and for

all reals t

00

2 (t

0

; t), we have (�; t

00

) j= �

1

_ �

2

(�; t) j=⊳
I

� i� exists a real t

0

< t with t

0

2 (t�I) and (�; t

0

) j= �,

and for all reals t

00

< t with t

00

> (t� I), not (�; t

00

) j= �

(�; t) j=⊲
I

� i� exists a real t

0

> t with t

0

2 (t+I) and (�; t

0

) j= �,

and for all reals t

00

> t with t

00

< (t+ I), not (�; t

00

) j= �
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Note that the temporal and real-time operators are de�ned in a stri
t man-

ner; that is, they do not 
onstrain the 
urrent state. Non-stri
t operators

are easily de�ned from their stri
t 
ounterparts.

Theorem 15 [RS97b℄ The satis�ability and validity problems for rEvent-

Clo
kTL in timed state sequen
es (
ontinuous interpretation) are de
idable

in Pspa
e.
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