New Lower Bounds for the
Expressiveness and the
Higher-Order Matching

Problem in the Simply Typed
Lambda Calculus

Sergei Vorobyov

MPI-I1-1999-3-001 July 1999

Author’s Address

Sergei Vorobyov: Max-Planck Institut fiir Informatik, Im Stadt-
wald, D-66123, Saarbriicken, Germany, sv@mpi-sb.mpg.de,
http://www.mpi-sb.mpg.de/ sv.

Publication Notes
Submitted.

(Publication date of this report: July 27, 1999.)

Acknowledgements

Thanks to everybody in the list of cited papers. Thanks to Harald Ganzinger
who was, as usual, my first reader and critic, for a series of important cor-
rections and remarks.

Abstract

The contribution of this paper is three-fold:

1) We analyze expressiveness of the simply typed lambda calculus (STLC)
over a single base type, and show how k-DEXPTIME computations can
be simulated in the order £ + 6 STLC. This gives a double order improve-
ment over the lower bound of (Hillebrand & Kanellakis 1996), reducing k-
DEXPTIME to the order 2k 4+ 3 STLC.

2) We show that k-DEXPTIME is linearly reducible to the higher-order
matching problem (in STLC) of order k 4+ 7. Thus, order k + 7 matching

requires (lower bound) k-level exponential time. This refines over the best
2

27 ten/log(n)
previously known lower bound 2 } from (Vorobyov 1997), which

holds in assumption that orders of types are unbounded, but does not imply
any nontrivial lower bounds when the order of variables is fized.

3) These results are based on the new simplified and streamlined proof
of Statman’s famous theorem. Previous proofs in (Statman 1979, Mairson
1992, Vorobyov 1997) were based on a two-step reduction: proving a non-
elementary lower bound for Henkin’s higher-order theory €2 of propositional
types and then encoding it in the STLC. We give a direct generic reduction
from k-DEXPTIME to the STLC, which is conceptually much simpler, and
gives stronger and more informative lower bounds for the fixed-order STLC,
in contrast with the previous proofs.

Keywords

Typed lambda calculus, lower complexity bounds, non-elementary recursive
problems.

Contents

1

Introduction 2
1.1 Lower Bounds for Expressiveness 2
1.2 Lower Bounds for Higher-Order Matching 3
1.3 Direct Proof of Statman’s Theorem 4
Preliminaries 5
Refinement of Statman’s Theorem 5
3.1 Types 6

3.1.1 Type of Projections 6

3.1.2 Lists and List Iteration 6

3.1.3 Type of Lists of Projections 6
3.2 Turing Machines L. 7

3.2.1 Representing Turing Machine Configurations 7

3.2.2 Representing Turing Machine Moves 8

3.2.3 Encoding Tape and State Symbols 9
3.3 Comparing Projections, Booleans, Conditionals 9
3.4 Computing Symbols Pairing 10
3.5 Computing the Encoding of the First Four Symbols in a List . 11
3.6 Computing the List of Quadruples. 11
3.7 Computing a Turing Machine Step 12
3.8 TIterating Turing Machine Steps 13

Complexity of the Bounded-Order Higher-Order Matching 16

Conclusions 18

1 Introduction

The simply typed lambda calculus (STLC) invented by Church is a fun-
damental formalism underlying different aspects of programming languages
semantics. Being one of the oldest, best investigated and understood, it
enjoys many prominent and easily stated properties. Still several old and
important problems remain open. Here we address two such problems: lower
bounds for expressiveness and higher-order matching.

1.1 Lower Bounds for Expressiveness

A famous result due to (Statman 1979) that the problem of deciding whether
two simply typed terms reduce to the same normal form is not elementary
recursive is well known. Less known is the fact that both most well-known
existing proofs (Statman 1979, Mairson 1992) imply only a very poor (al-
2
2" telog(log(log(n)))
though non-elementary) lower bound 2 for the problem,
where ¢ > 0 is an (undetermined) constant and n is the length of input;
see (Vorobyov 1997). Such a non-elementary lower bound may be ignored
as immaterial, because log(log(log(n))) is a very slowly growing function,
and the undetermined constant ¢ may be very small, say 1/100, in which
case the value of the stack of twos above does not exceed 2 for all n less
than astronomical 22° . Although the above lovx;er bound was recently im-

2" }clog(n)

proved (Vorobyov 1997) to more significant 2 for explicitly and
2

2 cn

2 for implicitly typed STLC (thus Statman’s result does matter!),
the situation is still not completely satisfactory. In fact, none of the proofs
(Statman 1979, Mairson 1992, Vorobyov 1997) implies any lower bounds
for the fragments of STLC of bounded order. Say that the order of the
term is the maximal order of type assigned to its subterm. What is the
lower bound on the equality in STLCSF of terms of order up to a fixed
k? (Statman 1979, Mairson 1992, Vorobyov 1997) do not give the answer
and in fact essentially use unboundedly increasing orders to prove the non-
elementary lower bound.

Much stronger lower bounds for STLC=F of bounded orders are given
by (Hillebrand, Kanellakis & Mairson 1993, Hillebrand & Kanellakis 1994,
Hillebrand & Kanellakis 1996): PTIME for STLC=* PSPACE for STLC=?,
k-DEXPTIME for STLC<?**3_ and k-EXPSPACE for STLCS<%*+4, Still,
these results are not completely satisfactory because to jump one level higher
in time (space) exponential hierarchy one pays two orders. We make an

improvement by proving the following:

k-DEXPTIME is reducible to STLC<**5 via length order n. More
explicitly: for any problem P € k-DEXPTIME and any x one
can construct a term t, of STLCS*C of size linear in |x| such
that t, converts to a fixed fourth-order normal form s if and only
if z € P. Consequently, STLCS**6 is k-DEXPTIME hard and
requires k-iterated exponential time to decide.

This result improves over (Statman 1979, Mairson 1992, Hillebrand &
Kanellakis 1996, Vorobyov 1997) and is ‘optimal’, when compared with the
upper bounds on the STLC reducibility, modulo possible improvements of the
additive constant 7; see (Fortune, Leivant & O’Donnell 1983, Schwichtenberg
1991).

1.2 Lower Bounds for Higher-Order Matching

Huet (1976) raised the following, today still open, decidability problem for
the STLC, called the higher-order matching problem and referred to as the
range question by Statman (1982):

Given a term t of type 0y — ... — 0, — T and a term u of type
T (both closed and in normal forms), do there exist terms s; of
types o; (for 1 <i <mn) such that tsy...s, =g, u ?

Huet’s conjecture is that the problem is decidable, but the proof is prob-
ably hard. Dowek (1994) showed that the third-order matching is decidable.
Statman (1982) reduced the higher-order matching to the so-called defin-
ability problem: given an element of a finitely generated type hierarchy, does
there exist a closed simply typed \-term denoting this element? The posi-
tive answer was long known as Plotkin-Statman’s conjecture. Loader (1993)
settled it in the negative, thus leaving the higher-order problem open.

We contributed to the settlement of the higher-order matching problem
by proving the following strong lower bound (it is a valid approach to settle
strong lower bounds for the open decidability problems; see (Compton &
Henson 1990)):

Theorem 1.1 (Lower Bound for Higher-Order Matching, Vorobyov
(1997)). Any algorithm for the higher-order matching in the STLC should
necessarily make a number of steps exceeding

2" } cn/ log(n)
expou(en/ log(n)) = 2

for some constant ¢ > 0 and infinitely many inputs of size n. O

3

It follows immediately that the problem is not elementary recursive and
one can ask whether there is any difference, from the practical viewpoint,
between an undecidable problem and a problem requiring as much as
exp,,(en/log(n)) time to decide.

The proof of Theorem 1.1 in (Vorobyov 1997) does not imply, however,
any nontrivial lower bounds for the higher-order matching of bounded order.
The order of an instance of the matching problem is the maximal order of
types o;’s of sought terms s;’s in the instance (see definition above). For fixed
bounded orders the lower bounds on matching are only known for order
3, NP, (Wolfram 1993), and NEXPTIME for order 4 (Wierzbicki 1999).
No lower bounds are known for higher orders. In this paper we settle the
following generic lower bound for the k-order matching:

k-DEXPTIME is linearly reducible to the higher-order matching
problem (in STLC) of order k + 7. Thus, order k + 7 matching
requires (lower bound) k-level exponential time.

Although this does not cover the NEXPTIME lower bound for matching
of order 4 by Wierzbicki (1999) obtained by specialized techniques (which
do not seem to generalize for the higher levels of exponential hierarchy),
our larger additive constant is explained by the genericity of reduction and
uniform representation of inputs by terms of order 4.

1.3 Direct Proof of Statman’s Theorem

As a technical contribution of our paper we offer a new direct proof of Stat-
man’s theorem. Previous proofs in (Statman 1979, Mairson 1992, Vorobyov
1997) were based on a two-step reduction: proving a non-elementary lower
bound for Henkin’s higher-order theory {2 of propositional types and then
encoding it in the STLC. We give a direct reduction from k-DEXPTIME
to the STLC, which is conceptually much simpler, and gives stronger and
more informative lower bounds for the fixed-order STLC, in contrast with
the previous proofs.

2 Preliminaries

We assume the reader is familiar with the basics of the STLC. Our definitions
and notation are consistent with Statman (1979), Statman (1982), Schwicht-
enberg (1982), Fortune et al. (1983), Barendregt (1984), Hindley & Seldin
(1986), Schwichtenberg (1991), Mairson (1992), (Wolfram 1993), Troelstra &
Schwichtenberg (1996). In particular, (simple) types are defined inductively:
L is a single base type; if o and 7 are types, then ¢ — 7 is a type; these are
all types. In writing types we omit parentheses assuming that — associates
to the right. The order of the type is defined by: ord(:) = 1 for the base
type and ord(c — 7) = max{l + ord(c),ord(r)}. Simply typed terms are
represented in Church style, with explicit type annotations in A-abstractions.
Applications associate to the left. The order of an explicitly typed term is
the largest order of the type of its subterms. STLC=* is a fragment of STLC
restricted to terms of orders up to k.

3 Refinement of Statman’s Theorem

Technically, the main part of the paper is devoted to the construction of
the generic reduction from k-DEXPTIME to STLCS*+6. This constitutes,
in familiar terms, the straightforward proof of Statman’s theorem. More
precisely, we prove the following:

Theorem 3.1 Given a (description of a) deterministic Turing machine M
working in time bounded by the k times iterated exponential function and an
input 5 of size n one can construct in time polynomial in n a term t of size
O(n) and order k+6 such that t converts to some fized normal form s if and
only if M accepts 5. It follows that deciding equality in STLC<F*S requires
the k-iterated exponential time (lower bound). O

In the sequel we develop the encoding of the generic Turing machine
computation within low-order STLC.

3.1 Types

We start by defining the types essential for our construction.

3.1.1 Type of Projections

For m € w define the second-order type:

Tn =L = oo =2 L— L (1)
—

Type 7, is inhabited by m projection functions (for 1 <1 < m):

Pi = AT1: L. ATi L. T (2)
We will use projections of type m,, (with m to be determined and fixed in
the sequel) to encode Turing machine’s tape symbols and states.
3.1.2 Lists and List Iteration

For a thorough explanation of lists, list iteration, and numerous highly non-
trivial examples the reader is referred to (Mairson 1992, Hillebrand et al.
1993, Hillebrand & Kanellakis 1994, Hillebrand & Kanellakis 1996). We only
provide basic explanations for the reader’s convenience.

Given a set {t1,t2,t3,...,t} of simply typed terms of the same type «,
consider the term

L=X:a—T17—=7.dn:7T.cty (cty(ctz ... (ctpgq1(ctyn)))) (3)
of type
(a—=T—=T)—=>T—>7T (4)

for an arbitrary but a priori fived simple type 7. The term L represents a
list of terms [t1,ts,13,...,tx] of type «, the variables ¢ and n abstract over
the list constructors cons and nil. Lists are useful to implement primitive
recursion. The above cited papers give numerous elaborate examples. We
also extensively use list iteration and will provide many examples below.

3.1.3 Type of Lists of Projections

Define the fourth-order type of lists of projections (by fixing o and 7 in (4)
to be m,,):

T = (T = T = M) = T, — T (5)

Given p terms tq,...,1t,, all of type m,,, define the list [t1,...,1,] of type 7,
as follows:

AC: Ty, = Ty, = Ty . AR Ty .ty (cta(cts(. .. (ctpr(ctyn))...))) (6)

Such lists will be used to encode Turing machine tape configurations.

3.2 Turing Machines

For k € w let k-DEXPTIME (cn) denote the class of sets (problems) recogniz-
able by one-tape deterministic Turing machines (DTM) in time bounded by

2 k+1

the k times iterated exponential function 2 } , where ¢ > 0 is a con-
stant and n € w is the length of input. For example, 1-DEXPTIME (cn) =
DTIME (2", 2-DEXPTIME (cn) = DTIME (2*"), etc.

Given a problem P € k-DEXPTIME (cn), let M denote the corresponding
DTM recognizing P. Suppose that I" and @) are M’s tape alphabet (contain-
ing the end marker $) and the set of states, and denote by N the cardinality
of T'U Q. Without loss of generality we may suppose that:

1. M given an input s;...s, € I'* of length n starts in the initial config-
uration $qgs; . ..s,$, where ¢o € @ is the initial state;

2. M stops either with the configuration $qq,....,$ (accepts) or $q, y..,$
(rejects), where q,, ¢ € @ are two distinguished states, after erasing
the tape contents;

3. M extends the tape (by adding blanks) only on the right end of the
tape (replacing $ with ;$), and never extends it on the left end;

4. in every computation M writes at least 2 symbols on its tape.

These technical conventions greatly simplify the subsequent presentation.

3.2.1 Representing Turing Machine Configurations

Let us describe the representation of a DTM configurations or instantaneous
descriptions (ID for short). Such an ID keeps the contents of the machine
tape together with the position and state of the read/write head. It is con-
venient for our purposes to represent an ID as a list of type 7, see (5), for
an appropriate m € w to be specified later. For example, the initial ID in
which the machine observes the leftmost symbol of the input word abba will

be represented, according to our conventions, as the term

7

AC: Ty —> T, = My« ATVE T
c[$](clal(clal(c[b](...(c[bl(cla] (c[§]n)))...))))

or as a short-hand [[$], [q], [a], [b], [0], [a], [$]], where [$], [q0], [a], [0]
are representations of the tape and state symbols by projections of the type
Tm, to be discussed below in detail.

Remark. Thus the DTM input data is always represented uniformly by
closed lambda terms of order four; see the language uniform typed inputs
convention of (Hillebrand & Kanellakis 1996).

3.2.2 Representing Turing Machine Moves

In one move (step) a DTM M transforms its current ID into the next ID
according to the transition rules of M. Therefore, given an M we need to
represent this transformation as a closed A-term (of order 5)

. * *
Movey = 7, — 7,

The implementation of the term Mowe,, is quite tricky and we split the
construction into several stages. The key idea is to perform a move in two
main stages, as explained by the following diagram:

c [s1] (c [s2] (c [s3] o (e [8i])
¢ [s1s283s4] (c [s2s3sass| (¢ [s3sassse] ... (¢ [siSit1Sit2sits] ...)))
c sl (e sl (e syl . (e [$i41])

The first stage replaces the encoding of each symbol s; in the list with the
encoding of the quadruple s;s;118;128;13 (i.e., of s; together with its three
successors in the list; we agree that for the last three symbols s,_1, s, and $
in an ID the corresponding quadruples are [s,_15,$$], [5,$$$] and [$$$$]
respectively).

The second stage implements a well known trick; see, e.g., (Stockmeyer
1974, pp. 38-39). It is easy to see that the contents of the i + 1-th tape cell
in the next ID is uniquely determined (for a given DTM) by the contents of
the i-th, ¢+ + 1-st, ¢ + 2-nd, and ¢ + 3-rd cells in the current ID. Indeed, if
all s;, 5i41, Si+2 are symbols from ¥, then s; ; equals s;;;. And if one of s;,
Si+1, Sit2 is a state symbol from @, then s;., is uniquely determined from
Siy Sit1, Sit2, Sit3, as the reader can readily check. For example, if s; = a,
Siv1 = b, Siyo =q, Sir3 = a and M has rule ¢,a — b, ¢, left, then s;,1 = ¢'.

Therefore, the ‘global’ move from the current to the succeeding ID is per-
formed as a series of ‘local’ transformations based on observations of quadru-
ples of adjacent symbols. This is one of the basic encoding tricks underlying
our construction.

3.2.3 Encoding Tape and State Symbols

We now explain the encoding of tape and state symbols from the alphabet
' U @. The cardinality of this alphabet depends on a DTM M chosen, but
becomes a constant, once M is fized'. From the constant cardinality of the
alphabet we must determine and fix the parameter m in the projection type
Tm. This will allow us to statically type all the lists and the list transforma-
tion terms in the sequel. Indeed, as we explained previously, we need to have
enough projections to encode not only the symbols from I' U), but also all
possible quadruples of such symbols. Therefore, it suffices to choose m equal
to [’ UQ|* We stress that this is a constant, once the machine M is fixed a
priori. Fixing m will allow us to write a fixed A\-term defining a DTM step,
independent of the input and its length.

Let us agree that the symbols from I'U @ are encoded by the first |T'UQ)|
projection functions, and that the remaining projections are used appropri-
ately to encode tuples, triples, and quadruples of symbols from I' U (). We
will denote such encoding projections by using appropriate subscripts, e.g.,
Dapb.eq 10 encode abeq, pyass for ga$$. Not all projections are actually used,
some of them, like p, 4,44, do not make sense.

3.3 Comparing Projections, Booleans, Conditionals

We use the standard encodings for the second-order type Bool =t — 1t — ¢,
boolean constants true: Bool = Ax : ¢. Ay: ¢.x, false: Bool= Az : 1. \y: .y,
operations

and : Bool — Bool — Bool = Au: Bool.\v: Bool.Az: ¢t.\y: ¢.u(vzy)y,
or : Bool = Bool = Bool = Au: Bool.\v: Bool.\z: ¢.Ay: ¢.uz(vzy),
not : Bool — Bool = Au:Bool. \z: . \y: . uyx.

We define the equality predicate on projections following (Hillebrand &
Kanellakis 1996) as

eq: Ty, — Ty, — Bool =

AD: T - AQ: T AT LAY L. (7)
plazy...y)(eyzy...y) ... (ay...yzy)(qy...y)
-1 -2 -2 -1

eq applied to two projections p;, p; : m,,, converts to true or false depending
on whether i = j or i # j.

INote that we first select a DTM and immediately fix it, so the size of the alphabet is
always considered a constant.

3.4 Computing Symbols Pairing

As a preparation step for computing encodings of the quadruples of tape
symbols, we first define pairing:

PAIT: My — T — T

The intention of this function is to combine encodings in the following
way, for any s, s1, S2,583,84 € ' U Q:

[s] + [s1828384] = [$ 51 82 83],

i.e, the last element in the encoding of the second argument is forgotten,
the remaining symbols are shifted right, and the first argument becomes the
first in the encoding. We do not need to define pairing of, say, [s1525384] +
[s]s5s5sy], when the first operand is not a single symbol, we let it be defined
arbitrarily.

By using the encodings of the booleans and equality described previously,
one can easily write down the A\-definition of pair as a straightforward tedious
enumeration of cases (tabulation):

PAIT: Ty —> Ty, —> Ty, =

AP Ty AQ: Ty AT L oo ATyt L.
if eq p ps,
then if €d ¢ Psisis1s1

then Z5 55,5

else if eq q Psysys:s0
then g 55,5

else if €q q Ps;s;s5,
then Tsy8:858;

else if eq q Ds,,s,smsm
then xslsmsmsm

else xSlsmsmSm
else if eqp ps,
then if €q g Psy1s1s151

then Zg,55.5

else if eq q Dsys,sys0
then Lsys15181

else if €4 q Ps;s;s5,
then Tsnsisi8;

10

else if eq q Ds,,smsmsm
then Zg,s s s,
e|Se xSQSmSmSm

where Ab: Bool . A\z: ¢. Ay: ¢.if bthen z else y = ((b)(x)(y))

3.5 Computing the Encoding of the First Four Sym-
bols in a List

Our first application of the list iteration consists in A-defining a term, which
being applied to a list of symbols (encoded as projections) converts to the
encoding of the first four symbols of the list as follows. Applied to

Ae.dn.c[s1] (c[s2] (c[s3] (c[sq] --- (c[si] --- (c[$]1n))))) (8)

it yields [s1828384], where [| is an appropriate encoding of symbols and
quadruples of symbols by projections. The definition of this term of order
five is as follows:

First-Four: ((Tpm — Tm — Tm) — Tm — Tm) — T =
AL: (T = Ty = Tm) — T —> Ty - L pair pgsss

It is easy to see that when First-Four applies to the list (8), it produces the
body of the list, where c is replaced with pair and n replaced with pggss, i-e.,

pair [s1] (pair [s2] (pair [s3] (pair [s4] ... (pair [s;] ... (pair [$] pssss)))))

Immediate reductions with pair afterwards produce the desired result | s1525354].

3.6 Computing the List of Quadruples

Our next aim is to define the closed A-term List-of - Quadruples: n), — m,
(see (5)) of order five, which is intended to convert to the second list, when
being applied to the first one, as shown below:

c [s1] (c [s2] (c [s3] (e [si])

c [sis2s3sa] (¢ [s2s3sass5| (¢ [s3sassse] ... (¢ [sisiy1S8i428i+3] -..)))

Let us define this term as follows:

11

List-of - Quadruples: (T, = Ty = M) = T — Tpn) —
(T, = Ty = M) = Ty —> T) =
AR: (T = T = Tm) = T —> T, -
AC: Ty —> T —> T« ARVE T

R ()\7‘: T . AT Ty .

¢ (pair r (Ac: Ty — T = T - AN T . T') paIr pr,) T) n

e When List-of-Quadruples is applied to a list R, all constructors c
in applications ¢ [s;]tail; in its body are replaced with the fuction
AT T, AT T,

e The body of this function then creates the first element of the resulting
list [s;8i118i128i13]| by using the first element s; bound to r and the
tail; bound to t and using the First-Four described above, and iterates
the same transformation along the list.

3.7 Computing a Turing Machine Step

Our next aim consists in A-defining the fifth-order term
Steprr: (T = Ty = M) = T = T) — (T = Ton = Ton) = Ty = T

which implements the second part of the ID transformation by a given de-
terministic Turing machine, i.e.,

¢ [si1s283s4] (c [s2s3sass| (c [s3sassse] ... (¢ [siSit1Si+2Si+3] ...)))

c sl (e szl (e sl (e [i41])

where s; in the next ID are uniquely determined by adjacent quadruples
of adjacent symbols s; 15;8;118;12; see Section 3.2.2. Although the very
first symbol s| in the next ID remains undetermined, by our convention in
Section 3.2, the leftmost tape symbol $ remains always unchanged, therefore
we can subsequently add it in the head of the list explicitly.

The definition of Step,, once again uses the list iteration:

Stepyr: (T = T, =) = Ty — T) —
(T, = T = Tm) — T, —> Tm) =
AL: (T = T = W) = T, — T, -
AC: T —> T, = T« ANVE T

L ()\r: Tm - Ab2 T . € (transy r) t) n

12

When applied to a list of quadruples of symbols, Step,, walks down the list
and transforms every quadruple encoding [s;_15;S;118;12| bounded to r into
the encoding of [s;|’, by using the function trans,;, which describes, for a
given DTM M the desired uniquely determined transformation.

For any given DTM M this function trans), is easy to define by tabulation
(finite tedious case analysis). For example, if M has command ¢,a — b,q’, L
(in state g seeing a write b and move left), the A-definition of trans,, will
contain:

transyr: Ty — T =
AS: T AT Lo AZpy i L.

if €4 S Pbaga
then DPg T1 ZT2...Tm

Indeed if we know that in the preceding ID s; 1s;8;118;12 = baqa, then in
the next ID s is uniquely determined as ¢', encoded by the projection p,
according to our convention.

Finally, the desired fifth-order term Move); describing the full one-step
ID transformation is defined by

Movey: (T = Ty = T) = Ty — Tn) —
(T, = Ty = Tm) — T, — Tm) =
AL: (T = Ty = Tm) — T —> Ty
AC: T, = T, — T - AL Ty

c [$] ((Step,, (List-of - Quadruples L)) ¢ n)

Recall from Section 3.2.2 that List-of-Quadruples first transforms L into a
list of (encodings of) quadruples of adjacent tape symbols, then Step,, per-
forms the global ID transformation by ‘local’ transformations of quadruples.
Finally, we add the fist unchanged end marker $ on the left of the tape.
This finishes the definition of a single ID transformation step by a DTM
within the STLCS5. Indeed, all terms defined are of order at most five.

3.8 Iterating Turing Machine Steps

Now we need to iterate the one-step ID transformations implemented by
Mowey; the desired k-exponential number of times in order to be able to
model any k-exponential time bounded computations. This is achieved by
using the iterated exponentiation arithmetic on Church numerals over vary-
ing domains; see (Fortune et al. 1983).

13

Let By be an initial type to be specified later, and define the types B;;1 =
B; — B;. The type of representation of natural numbers over B; is

A Church numeral n for n € w over B; is represented by

A=Af:B;— B;.\x: Bi. f(f(... f(z)...))
—_——

When B, is fixed, the only functions of types I; — ... — I; are generalized
polynomials generated by 0, successor, addition, multiplication, conditional
‘if zero ... then ... else ...”; exponentiation and subtraction are not A-definable
(due to Schwichtenberg-Statman). However, when the domain and range of
functions are allowed to vary, exponentiation and subtraction become repre-
sentable. In particular, define

Ei = \m: Ii+1 AN L(m n)

Then E; m n reduces to the representation of n™ over domain B;, given
that m is represented over domain B;,; and n is represented over domain B;.

[terating this construction we get the term of type I (where we super-
script occurrences of numerals for n and 2 by their types)

E-EXP(n) = (... ((n' 2%-1) 25-2) 2f1y 2l . [(9)

2 : }k+1
which converts to the representation of the numeral 2 over domain
By.

For a fixed k € w the size of the (non-normalized) term in (9) is O(n)
(but type annotations in lambda-abstractions are exponential in k, which
is however considered a constant; recall that we consider slices of the term
equality problem in STLC=* for fized k).

Now let By = (7, — T — Tm) — T — T, of order five, let M be

pdn
2 k+1
a DTM working in time 2 (for some d € w) recognizing a prob-
lem complete for U..q k-DEXPTIME(cn) under polynomial time linearly
bounded reductions (such problems and machines are known to exist), and
let s182...8, 1S, be an input to M. Write a term

Result(k-EXP(add n(add n(...(add nn)...)))

d—1

Moven [[8], [s1], [s2], .- [sn—1l, [snl, [$]]) (10)

where:

14

. add: I, — I, — I is A-definable addition on Church numerals over
By,

L T8T, Ts1T, [s21y - - [snetls [sal, [8]] gﬂ'm—>7rm—>7rm)—>7rm—>7r@

-~

Bo
is the list encoding of the initial machine’s tape of size O(n);

. Moveyr: (T = T — Tm) = T —> Tm) —

Bo

(T, = T = Tm) = T, —)

~

-~

By
is the lambda term described above implementing a single step of M;
. k-EXP(add n(add n(...(add n n)...))): (By — By) — (By — By)

d—1
is a Church numeral, which converts to the normal form representing

gk+1
2" }dn
2 over domain By;

. therefore, the term (10) iterates the moves of the DTM the required
k-exponential number of times;

. the order of the term (10) is therefore k + 6; indeed, the order of By
is 4, the order of Iy = (By — By) — (Bx — Bg) is ord(By) + 2, and
ord(Bi;1) = ord(B;) + 1; therefore, the order of I} (maximal type in
(10)) is k + 6.

. Result: ((m,, = T — Tm) — Ty — Tp) is the lambda term extracting
the result, either

(a) Ac: T = T = T - AN T . € [8] (¢ [qa] (¢ [$] n)) (accept) or
(b) Ac: Ty = Ty = T - AN T . ¢ [$] (¢ [q] (¢ [$] n)) (reject)

from the lists remaining after DTM’s computations (respectively)

(a) [[$—|7 [q(z—lv[l_l—|7 [u—lv"'a [u]a [$—|] or
(b) [[$—|> [QT—I’[LI—I’ [u]a"'a [u—la [$—|]7

where the last two lists may have varying length (recall that by con-
vention DTMs are standardized and in the end of the work replace all
occupied tape cells with blanks, move to the leftmost tape position,
and enter accepting/rejecting state).

The function Result is A\-defined immediately:

15

Result: (7, = T — Tm) — T — T) — Bool =
AL: (ﬂ—m — Ty — ﬂ—m) — T — T - €] Psq,u (L pair p$$$$)a

(recall that we assume (wlog) that M uses at least two tape cells in
any computation).

This finishes the linearly bounded reduction from k-DEXPTIME to de-
ciding equality in STLC=F*6 between two terms one of which may be fixed
to the fourth-order term

AC: Ty = Ty, = T . AN Ty o€ [$] (¢ [qa] (¢ [$] n)) (DTM accepts)
(11)

Therefore, deciding equality in STL requires k-times iterated expo-
nential time, or is k-DEXPTIME-hard. This completes the proof of Theo-
rem 3.1.

(<k+6

4 Complexity of the Bounded-Order Higher-
Order Matching

As an application of the preceding results we now turn to improving lower
bounds for the higher-order matching problem of fixed bounded order. Recall
that the problem consists, given closed normalized terms ¢t of type oy — ... —
o, — 7 and u of type 7 to determine whether there exist terms z; of types
o; (for 1 < i < n) such that tz;...x, =g, u. The order of the instance

tx1 ...z, = u of the problem is defined as max{ord(oy),...,ord(o,)}, ie.,
the maximal order of type of a free variable on the left. Note that in an
instance of the matching problem the instantiable variables are only allowed
on the left (in contrast to unification, where variables are allowed on both
sides and which is undecidable for order three without constants and for
order two with constants, due to Huet-Goldfarb).

While the decidability status of the higher-order matching problem re-
mains open, it makes sense to provide compelling evidence of the inherent
difficulty of the problem by proving non-trivial lower bounds (Compton &
Henson 1990, Problem 10.11, p. 75). As we mentioned in the Introduction
(Theorem 1.1), if one does not impose the bound on the orders of vari-
ables in instances, then the higher-order matching problem has a strong non-
elementary lower bound, but this result does not imply any lower bounds for
the k-order bounded matching (k € w). Now we have enough machinery to
settle this problem.

16

Note that we spent additional effort (e.g., in Section 3.8 and in the whole
construction) to guarantee that the term appearing on the right of equalities
in the reduction class is fized and does not depend neither on input, nor on
the machine description, which is important for our current development.

For a fixed k € w consider the instances, for varying input strings s; ... Sy,
of closed equations

?

(10) (11) (12)

where the term (11) on the right is normalized. We now turn in linear time the
equation instance (12) into an instance of the higher-order matching problem.
The key obstacle is that the term (10) on the left of the instance (12) is not
normalized. The trick we already used in (Vorobyov 1997) is as follows. Let
us work with finite systems of instances of the matching problem rather than
with single instances. Start with the system S containing a single input
equation (12). Replace every f-redex (Az: o.M)?7" N7 in (12) with the
(non-redex) term ((f=7=>" (A\z: o.M)°>7) N°), where f: (0 — 7) —
o — 7 is a fresh free variable, and add equation f = Ag: 0 — 7. A2: 0.9z
to system S. The variable f plays the role of apply: it takes two arguments
and applies the first one to the second one.

Similarly, replace every n-redex Az: o.M?7" z° (z not free in M) in
(12) with the (non-redex) term Az: o. f777(M?~7 x7), where f: 0 — o0 is
a fresh free variable, and add equation f = A\u: o.u to S.

The resulting system S contains free variables only on the left-hand sides
and all terms on the left and right-hand sides are normalized. It remains to
reduce the system of equations S to just one equation by tupling: A, M; =
N; & Mf.fMy...My = Mf.fNy...Ng. Note that the resulting equation
does not contain variables on the right, so we translated the initial equation
(12) to the instance of the higher-order matching problem with normalized
terms. Note that the right-hand side of (12) reduces to the right-hand side
of (12) if and only if the obtained instance of the matching problem has a
solution. It remains to notice that the order of the matching problem is by
one greater than the maximal order of subterm in (10). This is because the
maximal order subterm (redex) (nf* 2%-1) (see (10), (9)) introduces, while
eliminating the [-redex, the free variable f: I, — I 1 — I ; Thus the
maximal order of a variable in the resulting matching instance is by one
larger the largest order of subterm in (10). Summarizing, we obtain the
promised

Theorem 4.1 k-DEXPTIME 1is linearly reducible to the higher-order match-
ing problem (in STLC) of order k + 7. Thus, order k + 7 matching requires
(lower bound) k-level exponential time.

17

More precisely, given a description of a problem P and input x of size
n one can construct in polynomial time an instance S of the higher-order
matching problem of order k 4+ 7 such that x € P if and only if S has a
solution. O

This gives an improvement (lower bounds for the fixed order matching)
over the result of (Vorobyov 1997), which does not imply any lower bounds
for the bounded order matching.

5 Conclusions

In this paper we settled the optimal (up to an additive constant 6) lower
bound for the equality in the order bounded fragments STLC<* (for fixed k)
of the simply typed lambda calculus STLC. It is now known that checking
whether a given term of order k£ + 6 normalizes to a fixed normal form is
as hard as deciding a k-DEXPTIME-complete problem. Thus comparing
Bn-equality of terms of STLCS*+6 requires the k-times iterative exponential
time.

This result improves upon previous results (Statman 1979, Mairson 1992,
Vorobyov 1997), which did not imply any nontrivial lower bounds for fixed
orders (however the strong lower bound of (Vorobyov 1997) for unbounded
orders persists and is not superceded by the present result), and over the
result of (Hillebrand & Kanellakis 1996), reducing k-DEXPTIME to the
order 2k + 3 STLC (we thus get a double increase, in terms of heights of
exponentiation towers, of lower complexity bounds).

As an application, we obtained new strong lower bound for the fixed-order
higher-order matching, still an open problem. It turns out that for every
k € w deciding matchability of order k+7 is at least as difficult as deciding an
arbitrary (complete) problem in k-DEXPTIME. Thus k + 7-order matching
requires the k-times iterative exponential time. Earlier results either gave
nontrivial lower bounds for unbounded order matching (Vorobyov 1997), or
for the specific orders up to four only (Wierzbicki 1999).

Methodologically, we obtained our results as consequences of the stream-
lined and immediate proof of Statman’s theorem by a single step generic
reduction. This gives a conceptually simpler proof yielding stronger lower
bounds and bound for fixed orders, in contrast with the previous two-step
reduction proofs of (Statman 1979, Mairson 1992, Vorobyov 1997).

It remains open whether the additive constants 6 and 7 in our lower
bounds could be diminished to give stronger results.

18

References

Barendregt, H. (1984), The Lambda Calculus. Its Syntaz and Semantics,
North-Holland.

Compton, K. J. & Henson, C. W. (1990), ‘A uniform method for proving
lower bounds on the computational complexity of logical theories’, An-
nals Pure Appl. Logic 48, 1-79.

Dowek, G. (1994), ‘Third order matching is decidable’, Annals Pure Appl.
Logic 69, 135-155. Preliminary version in LICS’92.

Fortune, S., Leivant, D. & O’Donnell, M. (1983), ‘The expressiveness of
simple and second-order type structures’, J. ACM 30(1), 151-185.

Hillebrand, G. & Kanellakis, P. (1994), Functional database query languages
as typed lambda calculi of fixed order, in ‘13th ACM Symp. on Principles
of Programming Languages (PODS’94)’, pp. 222-231.

Hillebrand, G. & Kanellakis, P. (1996), On the expressive power of simply
typed and let-polymorphic lambda calculi, in ‘11th Annual IEEE Symp.
on Logic in Computer Science (LICS’96)’, pp. 253-263.

Hillebrand, G., Kanellakis, P. & Mairson, H. (1993), Database query lan-
guages embedded in the typed lambda calculus, in ‘8th Annual IEEE
Symp. on Logic in Computer Science (LICS’93)’, pp. 332-343.

Hindley, J. & Seldin, J. (1986), Introduction to Combinators and Lambda
Calculus, Cambridge Univ. Press.

Huet, G. (1976), Résolution diE/'quatz'ons dans les Langages d’Ordre 1, 2, ... ,
w, These de Doctorat d’Etat, Université de Paris VII.

Loader, R. (1993), The undecidability of A-definability. “Types” electronic
forum, to appear in Church’s Festschrift.

Mairson, H. (1992), ‘A simple proof of a theorem of Statman’, Theor. Com-
put. Sci. 103, 387-394.

Schwichtenberg, H. (1982), Complexity of normalization in the pure typed
A-calculus, in A. S. Troelstra & D. van Dalen, eds, ‘L. E. J. Brouwer
Centenary Symposium’, North-Holland, pp. 453-458.

Schwichtenberg, H. (1991), ‘An upper bound for reduction sequences in the
typed A-calculus’, Archive of Mathematical Logic 30, 405—408.

19

Statman, R. (1979), ‘The typed A-calculus is not elementary recursive’,
Theor. Comput. Sci. 9, 73-81.

Statman, R. (1982), ‘Completeness, invariance, and A-definability’, J. Symb.
Logic 47(1), 17-26.

Stockmeyer, L. J. (1974), The complexity of decision problems in automata
theory and logic, PhD thesis, MIT Lab for Computer Science. (Also
/MIT/LCS Tech Rep 133).

Troelstra, A. S. & Schwichtenberg, H. (1996), Basic Proof Theory, Vol. 43 of
Cambridge Tracts in Theoretical Computer Science, Cambridge Univ.
Press.

Vorobyov, S. (1997), The “hardest” natural decidable theory, in G. Winskel,
ed., ‘12th Annual IEEE Symp. on Logic in Computer Science (LICS’97)’,
IEEE, pp. 294-305. Available from http://www.mpi-sb.mpg.de/~sv.

Wierzbicki, T. (1999), Complexity of the higher-order matching, in
H. Ganzinger, ed., ‘16th International Conference on Automated De-
duction (CADE’99)’, Vol. 1632 of Lect. Notes Comput. Sci., pp. 82-96.

Wolfram, D. A. (1993), The Clausal Theory of Types, Vol. 21 of Cambridge
Tracts in Theoretical Computer Science Series, Cambridge Univ. Press.

20

ol

INFORMATIK

Below you find a list of the most recent technical reports of the Max-Planck-Institut fiir Informatik. They
are available by anonymous ftp from ftp.mpi-sb.mpg.de under the directory pub/papers/reports. Most
of the reports are also accessible via WWW using the URL http://www.mpi-sb.mpg.de. If you have any
questions concerning ftp or WWW access, please contact reports@mpi-sb.mpg.de. Paper copies (which
are not necessarily free of charge) can be ordered either by regular mail or by e-mail at the address below.

Max-Planck-Institut fir Informatik
Library

attn. Birgit Hofmann

Im Stadtwald

D-66123 Saarbriicken

GERMANY

e-mail: library@mpi-sb.mpg.de

MPI-I-1999-2-005 J. Wu Symmetries in Logic Programs
MPI-1-1999-2-004 V. Cortier, H. Ganzinger, F. Jacquemard, Decidable fragments of simultaneous rigid reachability
M. Veanes

MPI-I-1999-2-003 U. Waldmann Cancellative Superposition Decides the Theory of
Divisible Torsion-Free Abelian Groups

MPI-1-1999-2-001 ~ W. Charatonik Automata on DAG Representations of Finite Trees

MPI-1-1999-1-002 N.P. Boghossian, O. Kohlbacher, BALL: Biochemical Algorithms Library

H.-. Lenhof

MPI-1-1999-1-001 A. Crauser, P. Ferragina A Theoretical and Experimental Study on the
Construction of Suffix Arrays in External Memory

MPI-I1-98-2-018 F. Eisenbrand A Note on the Membership Problem for the First
Elementary Closure of a Polyhedron

MPI-1-98-2-017 M. Tzakova, P. Blackburn Hybridizing Concept Languages

MPI-1-98-2-014 Y. Gurevich, M. Veanes Partisan Corroboration, and Shifted Pairing

MPI-1-98-2-013 H. Ganzinger, F. Jacquemard, M. Veanes Rigid Reachability

MPI-1-98-2-012 G. Delzanno, A. Podelski Model Checking Infinite-state Systems in CLP

MPI-1-98-2-011 A. Degtyarev, A. Voronkov Equality Reasoning in Sequent-Based Calculi

MPI-1-98-2-010 S. Ramangalahy Strategies for Conformance Testing

MPI-1-98-2-009 S. Vorobyov The Undecidability of the First-Order Theories of One
Step Rewriting in Linear Canonical Systems

MPI-1-98-2-008 S. Vorobyov AE-Equational theory of context unification is
Co-RE-Hard

MPI-1-98-2-007 S. Vorobyov The Most Nonelementary Theory (A Direct Lower
Bound Proof)

MPI-1-98-2-006 P. Blackburn, M. Tzakova Hybrid Languages and Temporal Logic

MPI-1-98-2-005 M. Veanes The Relation Between Second-Order Unification and
Simultaneous Rigid E-Unification

MPI-1-98-2-004 S. Vorobyov Satisfiability of Functional4+Record Subtype
Constraints is NP-Hard

MPI-I1-98-2-003 R.A. Schmidt E-Unification for Subsystems of S4

MPI-1-98-2-002 F. Jacquemard, C. Meyer, C. Weidenbach Unification in Extensions of Shallow Equational
Theories

MPI-1-98-1-031 G.W. Klau, P. Mutzel Optimal Compaction of Orthogonal Grid Drawings

MPI-1-98-1-030 H. Brénniman, L. Kettner, S. Schirra, Applications of the Generic Programming Paradigm in

R. Veltkamp the Design of CGAL

MPI-I-98-1-029

MPI-I-98-1-028

MPI-1-98-1-027
MPI-I-98-1-026

MPI-I1-98-1-025

MPI-1-98-1-024

MPI-I-98-1-023
MPI-1-98-1-022
MPI-1-98-1-021
MPI-I-98-1-020

MPI-I1-98-1-019

MPI-1-98-1-018
MPI-I-98-1-017

MPI-I-98-1-016

MPI-I-98-1-015

MPI-1-98-1-014
MPI-I-98-1-013
MPI-1-98-1-012

MPI-I-98-1-011
MPI-I-98-1-010

MPI-I-98-1-009

MPI-1-98-1-008

MPI-I-98-1-007

MPI-I-98-1-006

MPI-I-98-1-005

MPI-I1-98-1-004

MPI-1-98-1-003

MPI-I-98-1-002

MPI-1-98-1-001
MPI-1-97-2-012

MPI-I1-97-2-011
MPI-1-97-2-010

P. Mutzel, R. Weiskircher

A. Crauser, K. Mehlhorn, E. Althaus,
K. Brengel, T. Buchheit, J. Keller,
H. Krone, O. Lambert, R. Schulte,

S. Thiel, M. Westphal, R. Wirth

C. Burnikel
K. Jansen, L. Porkolab

K. Jansen, L. Porkolab

S. Burkhardt, A. Crauser, P. Ferragina,
H. Lenhof, E. Rivals, M. Vingron

C. Burnikel

C. Burnikel, J. Ziegler
S. Albers, G. Schmidt
C. Rib

D. Dubhashi, D. Ranjan

A. Crauser, P. Ferragina, K. Mehlhorn,
U. Meyer, E. Ramos

P. Krysta, K. Lory$

M.R. Henzinger, S. Leonardi

U. Meyer, J.F. Sibeyn
G.W. Klau, P. Mutzel

S. Mahajan, E.A. Ramos,
K.V. Subrahmanyam

G.N. Frederickson, R. Solis-Oba
R. Solis-Oba

D. Frigioni, A. Marchetti-Spaccamela,
U. Nanni

M. Jinger, S. Leipert, P. Mutzel

A. Fabri, G. Giezeman, L. Kettner,
S. Schirra, S. Schonherr

K. Jansen

K. Jansen

S. Schirra

S. Schirra

G.S. Brodal, M.C. Pinotti
T. Hagerup

L. Bachmair, H. Ganzinger, A. Voronkov

L. Bachmair, H. Ganzinger

S. Vorobyov, A. Voronkov

Optimizing Over All Combinatorial Embeddings of a
Planar Graph

On the performance of LEDA-SM

Delaunay Graphs by Divide and Conquer

Improved Approximation Schemes for Scheduling
Unrelated Parallel Machines

Linear-time Approximation Schemes for Scheduling
Malleable Parallel Tasks

g-gram Based Database Searching Using a Suffix Array
(QUASAR)

Rational Points on Circles
Fast Recursive Division
Scheduling with Unexpected Machine Breakdowns

On Wallace’s Method for the Generation of Normal
Variates

2nd Workshop on Algorithm Engineering WAE ’98 -
Proceedings

On Positive Influence and Negative Dependence

Randomized External-Memory Algorithms for Some
Geometric Problems

New Approximation Algorithms for the Achromatic
Number

Scheduling Multicasts on Unit-Capacity Trees and
Meshes

Time-Independent Gossiping on Full-Port Tori
Quasi-Orthogonal Drawing of Planar Graphs

Solving some discrepancy problems in NC*

Robustness analysis in combinatorial optimization

2-Approximation algorithm for finding a spanning tree
with maximum number of leaves

Fully dynamic shortest paths and negative cycle
detection on diagraphs with Arbitrary Arc Weights

A Note on Computing a Maximal Planar Subgraph
using PQ-Trees

On the Design of CGAL, the Computational Geometry
Algorithms Library

A new characterization for parity graphs and a coloring
problem with costs

The mutual exclusion scheduling problem for
permutation and comparability graphs

Robustness and Precision Issues in Geometric
Computation

Parameterized Implementations of Classical Planar
Convex Hull Algorithms and Extreme Point
Compuations

Comparator Networks for Binary Heap Construction
Simpler and Faster Static ACY Dictionaries

Elimination of Equality via Transformation with
Ordering Constraints

Strict Basic Superposition and Chaining

Complexity of Nonrecursive Logic Programs with
Complex Values

