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Abstrat

The ontribution of this paper is three-fold:

1) We analyze expressiveness of the simply typed lambda alulus (STLC)

over a single base type, and show how k-DEXPTIME omputations an

be simulated in the order k + 6 STLC. This gives a double order improve-

ment over the lower bound of (Hillebrand & Kanellakis 1996), reduing k-

DEXPTIME to the order 2k + 3 STLC.

2) We show that k-DEXPTIME is linearly reduible to the higher-order

mathing problem (in STLC) of order k + 7. Thus, order k + 7 mathing

requires (lower bound) k-level exponential time. This re�nes over the best

previously known lower bound 2

2

�

�

�

2

)

n= log(n)

from (Vorobyov 1997), whih

holds in assumption that orders of types are unbounded, but does not imply

any nontrivial lower bounds when the order of variables is �xed.

3) These results are based on the new simpli�ed and streamlined proof

of Statman's famous theorem. Previous proofs in (Statman 1979, Mairson

1992, Vorobyov 1997) were based on a two-step redution: proving a non-

elementary lower bound for Henkin's higher-order theory 
 of propositional

types and then enoding it in the STLC. We give a diret generi redution

from k-DEXPTIME to the STLC, whih is oneptually muh simpler, and

gives stronger and more informative lower bounds for the �xed-order STLC,

in ontrast with the previous proofs.

Keywords

Typed lambda alulus, lower omplexity bounds, non-elementary reursive

problems.
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1 Introdution

The simply typed lambda alulus (STLC) invented by Churh is a fun-

damental formalism underlying di�erent aspets of programming languages

semantis. Being one of the oldest, best investigated and understood, it

enjoys many prominent and easily stated properties. Still several old and

important problems remain open. Here we address two suh problems: lower

bounds for expressiveness and higher-order mathing.

1.1 Lower Bounds for Expressiveness

A famous result due to (Statman 1979) that the problem of deiding whether

two simply typed terms redue to the same normal form is not elementary

reursive is well known. Less known is the fat that both most well-known

existing proofs (Statman 1979, Mairson 1992) imply only a very poor (al-

though non-elementary) lower bound 2

2

�

�

�

2

)

 log(log(log(n)))

for the problem,

where  > 0 is an (undetermined) onstant and n is the length of input;

see (Vorobyov 1997). Suh a non-elementary lower bound may be ignored

as immaterial, beause log(log(log(n))) is a very slowly growing funtion,

and the undetermined onstant  may be very small, say 1=100, in whih

ase the value of the stak of twos above does not exeed 2 for all n less

than astronomial 2

2

2

100

. Although the above lower bound was reently im-

proved (Vorobyov 1997) to more signi�ant 2

2

�

�

�

2

)

 log(n)

for expliitly and

2

2

�

�

�

2

)

n

for impliitly typed STLC (thus Statman's result does matter!),

the situation is still not ompletely satisfatory. In fat, none of the proofs

(Statman 1979, Mairson 1992, Vorobyov 1997) implies any lower bounds

for the fragments of STLC of bounded order. Say that the order of the

term is the maximal order of type assigned to its subterm. What is the

lower bound on the equality in STLC

�k

of terms of order up to a �xed

k? (Statman 1979, Mairson 1992, Vorobyov 1997) do not give the answer

and in fat essentially use unboundedly inreasing orders to prove the non-

elementary lower bound.

Muh stronger lower bounds for STLC

�k

of bounded orders are given

by (Hillebrand, Kanellakis & Mairson 1993, Hillebrand & Kanellakis 1994,

Hillebrand & Kanellakis 1996): PTIME for STLC

�4

, PSPACE for STLC

�5

,

k-DEXPTIME for STLC

�2k+3

, and k-EXPSPACE for STLC

�2k+4

. Still,

these results are not ompletely satisfatory beause to jump one level higher

in time (spae) exponential hierarhy one pays two orders. We make an

2



improvement by proving the following:

k-DEXPTIME is reduible to STLC

�k+6

via length order n. More

expliitly: for any problem P 2 k-DEXPTIME and any x one

an onstrut a term t

x

of STLC

�k+6

of size linear in jxj suh

that t

x

onverts to a �xed fourth-order normal form s if and only

if x 2 P . Consequently, STLC

�k+6

is k-DEXPTIME hard and

requires k-iterated exponential time to deide.

This result improves over (Statman 1979, Mairson 1992, Hillebrand &

Kanellakis 1996, Vorobyov 1997) and is `optimal', when ompared with the

upper bounds on the STLC reduibility, modulo possible improvements of the

additive onstant 7; see (Fortune, Leivant & O'Donnell 1983, Shwihtenberg

1991).

1.2 Lower Bounds for Higher-Order Mathing

Huet (1976) raised the following, today still open, deidability problem for

the STLC, alled the higher-order mathing problem and referred to as the

range question by Statman (1982):

Given a term t of type �

1

! : : :! �

n

! � and a term u of type

� (both losed and in normal forms), do there exist terms s

i

of

types �

i

(for 1 � i � n) suh that ts

1

: : : s

n

=

��

u ?

Huet's onjeture is that the problem is deidable, but the proof is prob-

ably hard. Dowek (1994) showed that the third-order mathing is deidable.

Statman (1982) redued the higher-order mathing to the so-alled de�n-

ability problem: given an element of a �nitely generated type hierarhy, does

there exist a losed simply typed �-term denoting this element? The posi-

tive answer was long known as Plotkin-Statman's onjeture. Loader (1993)

settled it in the negative, thus leaving the higher-order problem open.

We ontributed to the settlement of the higher-order mathing problem

by proving the following strong lower bound (it is a valid approah to settle

strong lower bounds for the open deidability problems; see (Compton &

Henson 1990)):

Theorem 1.1 (Lower Bound for Higher-Order Mathing, Vorobyov

(1997)). Any algorithm for the higher-order mathing in the STLC should

neessarily make a number of steps exeeding

exp

1

(n= log(n)) = 2

2

�

�

�

2

)

n= log(n)

for some onstant  > 0 and in�nitely many inputs of size n. 2
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It follows immediately that the problem is not elementary reursive and

one an ask whether there is any di�erene, from the pratial viewpoint,

between an undeidable problem and a problem requiring as muh as

exp

1

(n= log(n)) time to deide.

The proof of Theorem 1.1 in (Vorobyov 1997) does not imply, however,

any nontrivial lower bounds for the higher-order mathing of bounded order.

The order of an instane of the mathing problem is the maximal order of

types �

i

's of sought terms s

i

's in the instane (see de�nition above). For �xed

bounded orders the lower bounds on mathing are only known for order

3, NP , (Wolfram 1993), and NEXPTIME for order 4 (Wierzbiki 1999).

No lower bounds are known for higher orders. In this paper we settle the

following generi lower bound for the k-order mathing:

k-DEXPTIME is linearly reduible to the higher-order mathing

problem (in STLC) of order k + 7. Thus, order k + 7 mathing

requires (lower bound) k-level exponential time.

Although this does not over the NEXPTIME lower bound for mathing

of order 4 by Wierzbiki (1999) obtained by speialized tehniques (whih

do not seem to generalize for the higher levels of exponential hierarhy),

our larger additive onstant is explained by the generiity of redution and

uniform representation of inputs by terms of order 4.

1.3 Diret Proof of Statman's Theorem

As a tehnial ontribution of our paper we o�er a new diret proof of Stat-

man's theorem. Previous proofs in (Statman 1979, Mairson 1992, Vorobyov

1997) were based on a two-step redution: proving a non-elementary lower

bound for Henkin's higher-order theory 
 of propositional types and then

enoding it in the STLC. We give a diret redution from k-DEXPTIME

to the STLC, whih is oneptually muh simpler, and gives stronger and

more informative lower bounds for the �xed-order STLC, in ontrast with

the previous proofs.
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2 Preliminaries

We assume the reader is familiar with the basis of the STLC. Our de�nitions

and notation are onsistent with Statman (1979), Statman (1982), Shwiht-

enberg (1982), Fortune et al. (1983), Barendregt (1984), Hindley & Seldin

(1986), Shwihtenberg (1991), Mairson (1992), (Wolfram 1993), Troelstra &

Shwihtenberg (1996). In partiular, (simple) types are de�ned indutively:

� is a single base type; if � and � are types, then � ! � is a type; these are

all types. In writing types we omit parentheses assuming that ! assoiates

to the right. The order of the type is de�ned by: ord(�) = 1 for the base

type and ord(� ! �) = maxf1 + ord(�); ord(�)g. Simply typed terms are

represented in Churh style, with expliit type annotations in �-abstrations.

Appliations assoiate to the left. The order of an expliitly typed term is

the largest order of the type of its subterms. STLC

�k

is a fragment of STLC

restrited to terms of orders up to k.

3 Re�nement of Statman's Theorem

Tehnially, the main part of the paper is devoted to the onstrution of

the generi redution from k-DEXPTIME to STLC

�k+6

. This onstitutes,

in familiar terms, the straightforward proof of Statman's theorem. More

preisely, we prove the following:

Theorem 3.1 Given a (desription of a) deterministi Turing mahine M

working in time bounded by the k times iterated exponential funtion and an

input �s of size n one an onstrut in time polynomial in n a term t of size

O(n) and order k+6 suh that t onverts to some �xed normal form s if and

only if M aepts �s. It follows that deiding equality in STLC

�k+6

requires

the k-iterated exponential time (lower bound). 2

In the sequel we develop the enoding of the generi Turing mahine

omputation within low-order STLC.
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3.1 Types

We start by de�ning the types essential for our onstrution.

3.1.1 Type of Projetions

For m 2 ! de�ne the seond-order type:

�

m

� �! : : :! �

| {z }

m

! � (1)

Type �

m

is inhabited by m projetion funtions (for 1 � 1 � m):

p

i

� �x

1

: � : : : �x

m

: � : x

i

(2)

We will use projetions of type �

m

(with m to be determined and �xed in

the sequel) to enode Turing mahine's tape symbols and states.

3.1.2 Lists and List Iteration

For a thorough explanation of lists, list iteration, and numerous highly non-

trivial examples the reader is referred to (Mairson 1992, Hillebrand et al.

1993, Hillebrand & Kanellakis 1994, Hillebrand & Kanellakis 1996). We only

provide basi explanations for the reader's onveniene.

Given a set ft

1

; t

2

; t

3

; : : : ; t

k

g of simply typed terms of the same type �,

onsider the term

L � � : �! � ! � : �n : � :  t

1

( t

2

( t

3

: : : ( t

k�1

( t

k

n)))) (3)

of type

(�! � ! �)! � ! � (4)

for an arbitrary but a priori �xed simple type � . The term L represents a

list of terms [t

1

; t

2

; t

3

; : : : ; t

k

℄ of type �, the variables  and n abstrat over

the list onstrutors ons and nil. Lists are useful to implement primitive

reursion. The above ited papers give numerous elaborate examples. We

also extensively use list iteration and will provide many examples below.

3.1.3 Type of Lists of Projetions

De�ne the fourth-order type of lists of projetions (by �xing � and � in (4)

to be �

m

):

�

�

m

� (�

m

! �

m

! �

m

)! �

m

! �

m

(5)
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Given p terms t

1

; : : : ; t

p

, all of type �

m

, de�ne the list [t

1

; : : : ; t

p

℄ of type �

�

m

as follows:

� : �

m

! �

m

! �

m

: �n : �

m

:  t

1

( t

2

( t

3

(: : : ( t

p�1

( t

p

n)) : : : ))) (6)

Suh lists will be used to enode Turing mahine tape on�gurations.

3.2 Turing Mahines

For k 2 ! let k-DEXPTIME (n) denote the lass of sets (problems) reogniz-

able by one-tape deterministi Turing mahines (DTM) in time bounded by

the k times iterated exponential funtion 2

2

�

�

�

2

n

9

=

;

k+1

, where  > 0 is a on-

stant and n 2 ! is the length of input. For example, 1-DEXPTIME (n) =

DTIME (2

n

), 2-DEXPTIME (n) = DTIME (2

2

n

), et.

Given a problem P 2 k-DEXPTIME (n), letM denote the orresponding

DTM reognizing P . Suppose that � and Q are M 's tape alphabet (ontain-

ing the end marker $) and the set of states, and denote by N the ardinality

of � [Q. Without loss of generality we may suppose that:

1. M given an input s

1

: : : s

n

2 �

�

of length n starts in the initial on�g-

uration $q

0

s

1

: : : s

n

$, where q

0

2 Q is the initial state;

2. M stops either with the on�guration $q

att���tt

$ (aepts) or $q

rtt���tt

$

(rejets), where q

a

, q

r

2 Q are two distinguished states, after erasing

the tape ontents;

3. M extends the tape (by adding blanks) only on the right end of the

tape (replaing $ with

t

$), and never extends it on the left end;

4. in every omputation M writes at least 2 symbols on its tape.

These tehnial onventions greatly simplify the subsequent presentation.

3.2.1 Representing Turing Mahine Con�gurations

Let us desribe the representation of a DTM on�gurations or instantaneous

desriptions (ID for short). Suh an ID keeps the ontents of the mahine

tape together with the position and state of the read/write head. It is on-

venient for our purposes to represent an ID as a list of type �

�

m

, see (5), for

an appropriate m 2 ! to be spei�ed later. For example, the initial ID in

whih the mahine observes the leftmost symbol of the input word abba will

be represented, aording to our onventions, as the term

7



� : �

m

! �

m

! �

m

: �n : �

m

:

 d$e( dq

0

e( dae( dbe(: : : ( dbe( dae ( d$en))) : : : ))))

or as a short-hand [d$e; dq

0

e; dae; dbe; dbe; dae; d$e℄, where d$e, dq

0

e, dae, dbe

are representations of the tape and state symbols by projetions of the type

�

m

, to be disussed below in detail.

Remark. Thus the DTM input data is always represented uniformly by

losed lambda terms of order four; see the language uniform typed inputs

onvention of (Hillebrand & Kanellakis 1996).

3.2.2 Representing Turing Mahine Moves

In one move (step) a DTM M transforms its urrent ID into the next ID

aording to the transition rules of M . Therefore, given an M we need to

represent this transformation as a losed �-term (of order 5)

Move

M

: �

�

m

! �

�

m

The implementation of the term Move

M

is quite triky and we split the

onstrution into several stages. The key idea is to perform a move in two

main stages, as explained by the following diagram:

 ds

1

e ( ds

2

e ( ds

3

e : : : ( ds

i

e : : : )))

 ds

1

s

2

s

3

s

4

e ( ds

2

s

3

s

4

s

5

e ( ds

3

s

4

s

5

s

6

e : : : ( ds

i

s

i+1

s

i+2

s

i+3

e : : : )))

 ds

0

2

e ( ds

0

3

e ( ds

0

4

e : : : ( ds

0

i+1

e : : : )))

The �rst stage replaes the enoding of eah symbol s

i

in the list with the

enoding of the quadruple s

i

s

i+1

s

i+2

s

i+3

(i.e., of s

i

together with its three

suessors in the list; we agree that for the last three symbols s

n�1

, s

n

and $

in an ID the orresponding quadruples are ds

n�1

s

n

$$e, ds

n

$$$e and d$$$$e

respetively).

The seond stage implements a well known trik; see, e.g., (Stokmeyer

1974, pp. 38{39). It is easy to see that the ontents of the i+ 1-th tape ell

in the next ID is uniquely determined (for a given DTM) by the ontents of

the i-th, i + 1-st, i + 2-nd, and i + 3-rd ells in the urrent ID. Indeed, if

all s

i

, s

i+1

, s

i+2

are symbols from �, then s

0

i+1

equals s

i+1

. And if one of s

i

,

s

i+1

, s

i+2

is a state symbol from Q, then s

0

i+1

is uniquely determined from

s

i

, s

i+1

, s

i+2

, s

i+3

, as the reader an readily hek. For example, if s

i

= a,

s

i+1

= b, s

i+2

= q, s

i+3

= a and M has rule q; a! b; q

0

; left , then s

i+1

= q

0

.

Therefore, the `global' move from the urrent to the sueeding ID is per-

formed as a series of `loal' transformations based on observations of quadru-

ples of adjaent symbols. This is one of the basi enoding triks underlying

our onstrution.

8



3.2.3 Enoding Tape and State Symbols

We now explain the enoding of tape and state symbols from the alphabet

� [ Q. The ardinality of this alphabet depends on a DTM M hosen, but

beomes a onstant, one M is �xed

1

. From the onstant ardinality of the

alphabet we must determine and �x the parameter m in the projetion type

�

m

. This will allow us to statially type all the lists and the list transforma-

tion terms in the sequel. Indeed, as we explained previously, we need to have

enough projetions to enode not only the symbols from � [Q, but also all

possible quadruples of suh symbols. Therefore, it suÆes to hoose m equal

to j� [Qj

4

. We stress that this is a onstant, one the mahine M is �xed a

priori. Fixing m will allow us to write a �xed �-term de�ning a DTM step,

independent of the input and its length.

Let us agree that the symbols from �[Q are enoded by the �rst j�[Qj

projetion funtions, and that the remaining projetions are used appropri-

ately to enode tuples, triples, and quadruples of symbols from � [ Q. We

will denote suh enoding projetions by using appropriate subsripts, e.g.,

p

a;b;;q

to enode abq, p

q;a;$;$

for qa$$. Not all projetions are atually used,

some of them, like p

q;q;a;a

, do not make sense.

3.3 Comparing Projetions, Booleans, Conditionals

We use the standard enodings for the seond-order type Bool � �! �! �,

boolean onstants true : Bool � �x : � : �y : � : x, false : Bool � �x : � : �y : � : y,

operations

and : Bool ! Bool ! Bool � �u : Bool : �v : Bool : �x : � : �y : � : u(vxy)y;

or : Bool ! Bool ! Bool � �u : Bool : �v : Bool : �x : � : �y : � : ux(vxy);

not : Bool ! Bool � �u : Bool : �x : � : �y : � : uyx:

We de�ne the equality prediate on projetions following (Hillebrand &

Kanellakis 1996) as

eq : �

m

! �

m

! Bool �

�p : �

m

: �q : �

m

: �x : � : �y : � : (7)

p(qx y : : : y

| {z }

m�1

)(qyx y : : : y

| {z }

m�2

) : : : (q y : : : y

| {z }

m�2

xy)(q y : : : y

| {z }

m�1

x)

eq applied to two projetions p

i

; p

j

: �

m

, onverts to true or false depending

on whether i = j or i 6= j.

1

Note that we �rst selet a DTM and immediately �x it, so the size of the alphabet is

always onsidered a onstant.
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3.4 Computing Symbols Pairing

As a preparation step for omputing enodings of the quadruples of tape

symbols, we �rst de�ne pairing :

pair : �

m

! �

m

! �

m

The intention of this funtion is to ombine enodings in the following

way, for any s; s

1

; s

2

; s

3

; s

4

2 � [Q:

dse+ ds

1

s

2

s

3

s

4

e = ds s

1

s

2

s

3

e;

i.e, the last element in the enoding of the seond argument is forgotten,

the remaining symbols are shifted right, and the �rst argument beomes the

�rst in the enoding. We do not need to de�ne pairing of, say, ds

1

s

2

s

3

s

4

e +

ds

0

1

s

0

2

s

0

3

s

0

4

e, when the �rst operand is not a single symbol, we let it be de�ned

arbitrarily.

By using the enodings of the booleans and equality desribed previously,

one an easily write down the �-de�nition of pair as a straightforward tedious

enumeration of ases (tabulation):

pair : �

m

! �

m

! �

m

�

�p : �

m

: �q : �

m

: �x

1

: � : : : : : �x

m

: � :

if eq p p

s

1

then if eq q p

s

1

s

1

s

1

s

1

then x

s

1

s

1

s

1

s

1

else if eq q p

s

1

s

1

s

1

s

2

then x

s

1

s

1

s

1

s

1

: : :

else if eq q p

s

i

s

j

s

l

s

n

then x

s

1

s

i

s

j

s

l

: : :

else if eq q p

s

m

s

m

s

m

s

m

then x

s

1

s

m

s

m

s

m

else x

s

1

s

m

s

m

s

m

else if eq p p

s

2

then if eq q p

s

1

s

1

s

1

s

1

then x

s

2

s

1

s

1

s

1

else if eq q p

s

1

s

1

s

1

s

2

then x

s

2

s

1

s

1

s

1

: : :

else if eq q p

s

i

s

j

s

l

s

n

then x

s

2

s

i

s

j

s

l

10



: : :

else if eq q p

s

m

s

m

s

m

s

m

then x

s

2

s

m

s

m

s

m

else x

s

2

s

m

s

m

s

m

: : :

where �b : Bool : �x : � : �y : � : if b then x else y � ((b)(x)(y))

3.5 Computing the Enoding of the First Four Sym-

bols in a List

Our �rst appliation of the list iteration onsists in �-de�ning a term, whih

being applied to a list of symbols (enoded as projetions) onverts to the

enoding of the �rst four symbols of the list as follows. Applied to

� : �n :  ds

1

e ( ds

2

e ( ds

3

e ( ds

4

e : : : ( ds

i

e : : : ( d$e n))))) (8)

it yields ds

1

s

2

s

3

s

4

e, where d e is an appropriate enoding of symbols and

quadruples of symbols by projetions. The de�nition of this term of order

�ve is as follows:

First-Four : ((�

m

! �

m

! �

m

)! �

m

! �

m

)! �

m

�

�L : (�

m

! �

m

! �

m

)! �

m

! �

m

: L pair p

$$$$

It is easy to see that when First-Four applies to the list (8), it produes the

body of the list, where  is replaed with pair and n replaed with p

$$$$

, i.e.,

pair ds

1

e (pair ds

2

e (pair ds

3

e (pair ds

4

e : : : (pair ds

i

e : : : (pair d$e p

$$$$

)))))

Immediate redutions with pair afterwards produe the desired result ds

1

s

2

s

3

s

4

e.

3.6 Computing the List of Quadruples

Our next aim is to de�ne the losed �-term List-of -Quadruples : �

�

m

! �

�

m

(see (5)) of order �ve, whih is intended to onvert to the seond list, when

being applied to the �rst one, as shown below:

 ds

1

e ( ds

2

e ( ds

3

e : : : ( ds

i

e : : : )))

 ds

1

s

2

s

3

s

4

e ( ds

2

s

3

s

4

s

5

e ( ds

3

s

4

s

5

s

6

e : : : ( ds

i

s

i+1

s

i+2

s

i+3

e : : : )))

Let us de�ne this term as follows:
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List-of -Quadruples : ((�

m

! �

m

! �

m

)! �

m

! �

m

)!

((�

m

! �

m

! �

m

)! �

m

! �

m

) �

�R : (�

m

! �

m

! �

m

)! �

m

! �

m

:

� : �

m

! �

m

! �

m

: �n : �

m

:

R

�

�r : �

m

: �T : �

m

:

 (pair r ((� : �

m

! �

m

! �

m

: �n : �

m

: T ) pair p

m

) T

�

n

� When List-of -Quadruples is applied to a list R, all onstrutors 

in appliations  ds

i

etail

i

in its body are replaed with the fution

�r : �

m

: �T : �

m

: : : : .

� The body of this funtion then reates the �rst element of the resulting

list ds

i

s

i+1

s

i+2

s

i+3

e by using the �rst element s

i

bound to r and the

tail

i

bound to t and using the First-Four desribed above, and iterates

the same transformation along the list.

3.7 Computing a Turing Mahine Step

Our next aim onsists in �-de�ning the �fth-order term

Step

M

: ((�

m

! �

m

! �

m

)! �

m

! �

m

)! ((�

m

! �

m

! �

m

)! �

m

! �

m

)

whih implements the seond part of the ID transformation by a given de-

terministi Turing mahine, i.e.,

 ds

1

s

2

s

3

s

4

e ( ds

2

s

3

s

4

s

5

e ( ds

3

s

4

s

5

s

6

e : : : ( ds

i

s

i+1

s

i+2

s

i+3

e : : : )))

 ds

0

2

e ( ds

0

3

e ( ds

0

4

e : : : ( ds

0

i+1

e : : : )))

where s

0

i

in the next ID are uniquely determined by adjaent quadruples

of adjaent symbols s

i�1

s

i

s

i+1

s

i+2

; see Setion 3.2.2. Although the very

�rst symbol s

0

1

in the next ID remains undetermined, by our onvention in

Setion 3.2, the leftmost tape symbol $ remains always unhanged, therefore

we an subsequently add it in the head of the list expliitly.

The de�nition of Step

M

one again uses the list iteration:

Step

M

: ((�

m

! �

m

! �

m

)! �

m

! �

m

)!

((�

m

! �

m

! �

m

)! �

m

! �

m

) �

�L : (�

m

! �

m

! �

m

)! �

m

! �

m

:

� : �

m

! �

m

! �

m

: �n : �

m

:

L

�

�r : �

m

: �t : �

m

:  (trans

M

r) t

�

n

12



When applied to a list of quadruples of symbols, Step

M

walks down the list

and transforms every quadruple enoding ds

i�1

s

i

s

i+1

s

i+2

e bounded to r into

the enoding of ds

i

e

0

, by using the funtion trans

M

, whih desribes, for a

given DTM M the desired uniquely determined transformation.

For any given DTMM this funtion trans

M

is easy to de�ne by tabulation

(�nite tedious ase analysis). For example, if M has ommand q; a! b; q

0

; L

(in state q seeing a write b and move left), the �-de�nition of trans

M

will

ontain:

trans

M

: �

m

! �

m

�

�s : � : �x

1

: � : : : �x

m

: � :

: : :

if eq s p

baqa

then p

q

0

x

1

x

2

: : : x

m

: : :

Indeed if we know that in the preeding ID s

i�1

s

i

s

i+1

s

i+2

= baqa, then in

the next ID s

0

i

is uniquely determined as q

0

, enoded by the projetion p

q

0

aording to our onvention.

Finally, the desired �fth-order term Move

M

desribing the full one-step

ID transformation is de�ned by

Move

M

: ((�

m

! �

m

! �

m

)! �

m

! �

m

)!

((�

m

! �

m

! �

m

)! �

m

! �

m

) �

�L : (�

m

! �

m

! �

m

)! �

m

! �

m

:

� : �

m

! �

m

! �

m

: �n : �

m

:

 d$e ((Step

M

(List-of -Quadruples L))  n)

Reall from Setion 3.2.2 that List-of -Quadruples �rst transforms L into a

list of (enodings of) quadruples of adjaent tape symbols, then Step

M

per-

forms the global ID transformation by `loal' transformations of quadruples.

Finally, we add the �st unhanged end marker $ on the left of the tape.

This �nishes the de�nition of a single ID transformation step by a DTM

within the STLC

�5

. Indeed, all terms de�ned are of order at most �ve.

3.8 Iterating Turing Mahine Steps

Now we need to iterate the one-step ID transformations implemented by

Move

M

the desired k-exponential number of times in order to be able to

model any k-exponential time bounded omputations. This is ahieved by

using the iterated exponentiation arithmeti on Churh numerals over vary-

ing domains; see (Fortune et al. 1983).
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Let B

0

be an initial type to be spei�ed later, and de�ne the types B

i+1

�

B

i

! B

i

. The type of representation of natural numbers over B

i

is

I

i

� (B

i

! B

i

)! (B

i

! B

i

)

A Churh numeral �n for n 2 ! over B

i

is represented by

�n � �f : B

i

! B

i

: �x : B

i

: f(f(: : : f

| {z }

n

(x) : : : ))

When B

i

is �xed, the only funtions of types I

i

! : : :! I

i

are generalized

polynomials generated by 0, suessor, addition, multipliation, onditional

`if zero ... then ... else ...'; exponentiation and subtration are not �-de�nable

(due to Shwihtenberg-Statman). However, when the domain and range of

funtions are allowed to vary, exponentiation and subtration beome repre-

sentable. In partiular, de�ne

E

i

� �m : I

i+1

: �n : I

i

: (m n)

Then E

i

�m �n redues to the representation of n

m

over domain B

i

, given

that �m is represented over domain B

i+1

and �n is represented over domain B

i

.

Iterating this onstrution we get the term of type I

0

(where we super-

sript ourrenes of numerals for n and 2 by their types)

k-EXP(n) � (: : : ((n

I

k

2

I

k�1

) 2

I

k�2

) : : : 2

I

1

) 2

I

0

: I

0

(9)

whih onverts to the representation of the numeral 2

2

�

�

�

2

n

9

=

;

k+1

over domain

B

0

.

For a �xed k 2 ! the size of the (non-normalized) term in (9) is O(n)

(but type annotations in lambda-abstrations are exponential in k, whih

is however onsidered a onstant; reall that we onsider slies of the term

equality problem in STLC

�k

for �xed k).

Now let B

0

� (�

m

! �

m

! �

m

) ! �

m

! �

m

of order �ve, let M be

a DTM working in time 2

2

�

�

�

2

dn

9

=

;

k+1

(for some d 2 !) reognizing a prob-

lem omplete for [

>0

k-DEXPTIME (n) under polynomial time linearly

bounded redutions (suh problems and mahines are known to exist), and

let s

1

s

2

: : : s

n�1

s

n

be an input to M . Write a term

Result

�

k-EXP(add n(add n(: : : (add

| {z }

d�1

n n) : : : )))

Move

M

[ d$e; ds

1

e; ds

2

e; : : : ds

n�1

e; ds

n

e; d$e ℄

�

; (10)

where:
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1. add : I

k

! I

k

! I

k

is �-de�nable addition on Churh numerals over

B

k

.

2. [ d$e; ds

1

e; ds

2

e; : : : ds

n�1

e; ds

n

e; d$e ℄ : (�

m

! �

m

! �

m

)! �

m

! �

m

| {z }

B

0

is the list enoding of the initial mahine's tape of size O(n);

3. Move

M

: ((�

m

! �

m

! �

m

)! �

m

! �

m

)

| {z }

B

0

!

((�

m

! �

m

! �

m

)! �

m

! �

m

)

| {z }

B

0

is the lambda term desribed above implementing a single step of M ;

4. k-EXP(add n(add n(: : : (add

| {z }

d�1

n n) : : : ))) : (B

0

! B

0

) ! (B

0

! B

0

)

is a Churh numeral, whih onverts to the normal form representing

2

2

�

�

�

2

k+1

9

=

;

dn

over domain B

0

;

5. therefore, the term (10) iterates the moves of the DTM the required

k-exponential number of times;

6. the order of the term (10) is therefore k + 6; indeed, the order of B

0

is 4, the order of I

k

= (B

k

! B

k

) ! (B

k

! B

k

) is ord(B

k

) + 2, and

ord(B

i+1

) = ord(B

i

) + 1; therefore, the order of I

k

(maximal type in

(10)) is k + 6.

7. Result : ((�

m

! �

m

! �

m

)! �

m

! �

m

) is the lambda term extrating

the result, either

(a) � : �

m

! �

m

! �

m

: �n : �

m

:  d$e ( dq

a

e ( d$e n)) (aept) or

(b) � : �

m

! �

m

! �

m

: �n : �

m

:  d$e ( dq

r

e ( d$e n)) (rejet)

from the lists remaining after DTM's omputations (respetively)

(a) [ d$e; dq

a

e; d

t

e; d

t

e; : : : ; d

t

e; d$e ℄ or

(b) [ d$e; dq

r

e; d

t

e; d

t

e; : : : ; d

t

e; d$e ℄,

where the last two lists may have varying length (reall that by on-

vention DTMs are standardized and in the end of the work replae all

oupied tape ells with blanks, move to the leftmost tape position,

and enter aepting/rejeting state).

The funtion Result is �-de�ned immediately:
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Result : ((�

m

! �

m

! �

m

)! �

m

! �

m

)! Bool �

�L : (�

m

! �

m

! �

m

)! �

m

! �

m

: eq p

$q

a

tt

(L pair p

$$$$

),

(reall that we assume (wlog) that M uses at least two tape ells in

any omputation).

This �nishes the linearly bounded redution from k-DEXPTIME to de-

iding equality in STLC

�k+6

between two terms one of whih may be �xed

to the fourth-order term

� : �

m

! �

m

! �

m

: �n : �

m

:  d$e ( dq

a

e ( d$e n)) (DTM aepts)

(11)

Therefore, deiding equality in STLC

�k+6

requires k-times iterated expo-

nential time, or is k-DEXPTIME -hard. This ompletes the proof of Theo-

rem 3.1.

4 Complexity of the Bounded-Order Higher-

Order Mathing

As an appliation of the preeding results we now turn to improving lower

bounds for the higher-order mathing problem of �xed bounded order. Reall

that the problem onsists, given losed normalized terms t of type �

1

! : : :!

�

n

! � and u of type � to determine whether there exist terms x

i

of types

�

i

(for 1 � i � n) suh that tx

1

: : : x

n

=

��

u. The order of the instane

tx

1

: : : x

n

?

= u of the problem is de�ned as maxford(�

1

); : : : ; ord(�

n

)g, i.e.,

the maximal order of type of a free variable on the left. Note that in an

instane of the mathing problem the instantiable variables are only allowed

on the left (in ontrast to uni�ation, where variables are allowed on both

sides and whih is undeidable for order three without onstants and for

order two with onstants, due to Huet-Goldfarb).

While the deidability status of the higher-order mathing problem re-

mains open, it makes sense to provide ompelling evidene of the inherent

diÆulty of the problem by proving non-trivial lower bounds (Compton &

Henson 1990, Problem 10.11, p. 75). As we mentioned in the Introdution

(Theorem 1.1), if one does not impose the bound on the orders of vari-

ables in instanes, then the higher-order mathing problem has a strong non-

elementary lower bound, but this result does not imply any lower bounds for

the k-order bounded mathing (k 2 !). Now we have enough mahinery to

settle this problem.
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Note that we spent additional e�ort (e.g., in Setion 3.8 and in the whole

onstrution) to guarantee that the term appearing on the right of equalities

in the redution lass is �xed and does not depend neither on input, nor on

the mahine desription, whih is important for our urrent development.

For a �xed k 2 ! onsider the instanes, for varying input strings s

1

: : : s

n

,

of losed equations

(10)

?

= (11) (12)

where the term (11) on the right is normalized. We now turn in linear time the

equation instane (12) into an instane of the higher-order mathing problem.

The key obstale is that the term (10) on the left of the instane (12) is not

normalized. The trik we already used in (Vorobyov 1997) is as follows. Let

us work with �nite systems of instanes of the mathing problem rather than

with single instanes. Start with the system S ontaining a single input

equation (12). Replae every �-redex (�x : � :M)

�!�

N

�

in (12) with the

(non-redex) term ((f

(�!�)!�!�

(�x : � :M)

�!�

) N

�

), where f : (� ! �) !

� ! � is a fresh free variable, and add equation f = �g : � ! � : �z : � : gz

to system S. The variable f plays the role of apply : it takes two arguments

and applies the �rst one to the seond one.

Similarly, replae every �-redex �x : � :M

�!�

x

�

(x not free in M) in

(12) with the (non-redex) term �x : � : f

�!�

(M

�!�

x

�

), where f : � ! � is

a fresh free variable, and add equation f = �u : � : u to S.

The resulting system S ontains free variables only on the left-hand sides

and all terms on the left and right-hand sides are normalized. It remains to

redue the system of equations S to just one equation by tupling:

V

n

i=1

M

i

=

N

i

, �f:fM

1

: : :M

k

= �f:fN

1

: : : N

k

. Note that the resulting equation

does not ontain variables on the right, so we translated the initial equation

(12) to the instane of the higher-order mathing problem with normalized

terms. Note that the right-hand side of (12) redues to the right-hand side

of (12) if and only if the obtained instane of the mathing problem has a

solution. It remains to notie that the order of the mathing problem is by

one greater than the maximal order of subterm in (10). This is beause the

maximal order subterm (redex) (n

I

k

2

I

k�1

) (see (10), (9)) introdues, while

eliminating the �-redex, the free variable f : I

k

! I

k�1

! I

k�1

Thus the

maximal order of a variable in the resulting mathing instane is by one

larger the largest order of subterm in (10). Summarizing, we obtain the

promised

Theorem 4.1 k-DEXPTIME is linearly reduible to the higher-order math-

ing problem (in STLC) of order k + 7. Thus, order k + 7 mathing requires

(lower bound) k-level exponential time.
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More preisely, given a desription of a problem P and input x of size

n one an onstrut in polynomial time an instane S of the higher-order

mathing problem of order k + 7 suh that x 2 P if and only if S has a

solution. 2

This gives an improvement (lower bounds for the �xed order mathing)

over the result of (Vorobyov 1997), whih does not imply any lower bounds

for the bounded order mathing.

5 Conlusions

In this paper we settled the optimal (up to an additive onstant 6) lower

bound for the equality in the order bounded fragments STLC

�k

(for �xed k)

of the simply typed lambda alulus STLC. It is now known that heking

whether a given term of order k + 6 normalizes to a �xed normal form is

as hard as deiding a k-DEXPTIME -omplete problem. Thus omparing

��-equality of terms of STLC

�k+6

requires the k-times iterative exponential

time.

This result improves upon previous results (Statman 1979, Mairson 1992,

Vorobyov 1997), whih did not imply any nontrivial lower bounds for �xed

orders (however the strong lower bound of (Vorobyov 1997) for unbounded

orders persists and is not supereded by the present result), and over the

result of (Hillebrand & Kanellakis 1996), reduing k-DEXPTIME to the

order 2k + 3 STLC (we thus get a double inrease, in terms of heights of

exponentiation towers, of lower omplexity bounds).

As an appliation, we obtained new strong lower bound for the �xed-order

higher-order mathing, still an open problem. It turns out that for every

k 2 ! deiding mathability of order k+7 is at least as diÆult as deiding an

arbitrary (omplete) problem in k-DEXPTIME . Thus k+ 7-order mathing

requires the k-times iterative exponential time. Earlier results either gave

nontrivial lower bounds for unbounded order mathing (Vorobyov 1997), or

for the spei� orders up to four only (Wierzbiki 1999).

Methodologially, we obtained our results as onsequenes of the stream-

lined and immediate proof of Statman's theorem by a single step generi

redution. This gives a oneptually simpler proof yielding stronger lower

bounds and bound for �xed orders, in ontrast with the previous two-step

redution proofs of (Statman 1979, Mairson 1992, Vorobyov 1997).

It remains open whether the additive onstants 6 and 7 in our lower

bounds ould be diminished to give stronger results.
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