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Abstra
t

The 
ontribution of this paper is three-fold:

1) We analyze expressiveness of the simply typed lambda 
al
ulus (STLC)

over a single base type, and show how k-DEXPTIME 
omputations 
an

be simulated in the order k + 6 STLC. This gives a double order improve-

ment over the lower bound of (Hillebrand & Kanellakis 1996), redu
ing k-

DEXPTIME to the order 2k + 3 STLC.

2) We show that k-DEXPTIME is linearly redu
ible to the higher-order

mat
hing problem (in STLC) of order k + 7. Thus, order k + 7 mat
hing

requires (lower bound) k-level exponential time. This re�nes over the best

previously known lower bound 2

2

�

�

�

2

)


n= log(n)

from (Vorobyov 1997), whi
h

holds in assumption that orders of types are unbounded, but does not imply

any nontrivial lower bounds when the order of variables is �xed.

3) These results are based on the new simpli�ed and streamlined proof

of Statman's famous theorem. Previous proofs in (Statman 1979, Mairson

1992, Vorobyov 1997) were based on a two-step redu
tion: proving a non-

elementary lower bound for Henkin's higher-order theory 
 of propositional

types and then en
oding it in the STLC. We give a dire
t generi
 redu
tion

from k-DEXPTIME to the STLC, whi
h is 
on
eptually mu
h simpler, and

gives stronger and more informative lower bounds for the �xed-order STLC,

in 
ontrast with the previous proofs.

Keywords

Typed lambda 
al
ulus, lower 
omplexity bounds, non-elementary re
ursive

problems.
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1 Introdu
tion

The simply typed lambda 
al
ulus (STLC) invented by Chur
h is a fun-

damental formalism underlying di�erent aspe
ts of programming languages

semanti
s. Being one of the oldest, best investigated and understood, it

enjoys many prominent and easily stated properties. Still several old and

important problems remain open. Here we address two su
h problems: lower

bounds for expressiveness and higher-order mat
hing.

1.1 Lower Bounds for Expressiveness

A famous result due to (Statman 1979) that the problem of de
iding whether

two simply typed terms redu
e to the same normal form is not elementary

re
ursive is well known. Less known is the fa
t that both most well-known

existing proofs (Statman 1979, Mairson 1992) imply only a very poor (al-

though non-elementary) lower bound 2

2

�

�

�

2

)


 log(log(log(n)))

for the problem,

where 
 > 0 is an (undetermined) 
onstant and n is the length of input;

see (Vorobyov 1997). Su
h a non-elementary lower bound may be ignored

as immaterial, be
ause log(log(log(n))) is a very slowly growing fun
tion,

and the undetermined 
onstant 
 may be very small, say 1=100, in whi
h


ase the value of the sta
k of twos above does not ex
eed 2 for all n less

than astronomi
al 2

2

2

100

. Although the above lower bound was re
ently im-

proved (Vorobyov 1997) to more signi�
ant 2

2

�

�

�

2

)


 log(n)

for expli
itly and

2

2

�

�

�

2

)


n

for impli
itly typed STLC (thus Statman's result does matter!),

the situation is still not 
ompletely satisfa
tory. In fa
t, none of the proofs

(Statman 1979, Mairson 1992, Vorobyov 1997) implies any lower bounds

for the fragments of STLC of bounded order. Say that the order of the

term is the maximal order of type assigned to its subterm. What is the

lower bound on the equality in STLC

�k

of terms of order up to a �xed

k? (Statman 1979, Mairson 1992, Vorobyov 1997) do not give the answer

and in fa
t essentially use unboundedly in
reasing orders to prove the non-

elementary lower bound.

Mu
h stronger lower bounds for STLC

�k

of bounded orders are given

by (Hillebrand, Kanellakis & Mairson 1993, Hillebrand & Kanellakis 1994,

Hillebrand & Kanellakis 1996): PTIME for STLC

�4

, PSPACE for STLC

�5

,

k-DEXPTIME for STLC

�2k+3

, and k-EXPSPACE for STLC

�2k+4

. Still,

these results are not 
ompletely satisfa
tory be
ause to jump one level higher

in time (spa
e) exponential hierar
hy one pays two orders. We make an

2



improvement by proving the following:

k-DEXPTIME is redu
ible to STLC

�k+6

via length order n. More

expli
itly: for any problem P 2 k-DEXPTIME and any x one


an 
onstru
t a term t

x

of STLC

�k+6

of size linear in jxj su
h

that t

x


onverts to a �xed fourth-order normal form s if and only

if x 2 P . Consequently, STLC

�k+6

is k-DEXPTIME hard and

requires k-iterated exponential time to de
ide.

This result improves over (Statman 1979, Mairson 1992, Hillebrand &

Kanellakis 1996, Vorobyov 1997) and is `optimal', when 
ompared with the

upper bounds on the STLC redu
ibility, modulo possible improvements of the

additive 
onstant 7; see (Fortune, Leivant & O'Donnell 1983, S
hwi
htenberg

1991).

1.2 Lower Bounds for Higher-Order Mat
hing

Huet (1976) raised the following, today still open, de
idability problem for

the STLC, 
alled the higher-order mat
hing problem and referred to as the

range question by Statman (1982):

Given a term t of type �

1

! : : :! �

n

! � and a term u of type

� (both 
losed and in normal forms), do there exist terms s

i

of

types �

i

(for 1 � i � n) su
h that ts

1

: : : s

n

=

��

u ?

Huet's 
onje
ture is that the problem is de
idable, but the proof is prob-

ably hard. Dowek (1994) showed that the third-order mat
hing is de
idable.

Statman (1982) redu
ed the higher-order mat
hing to the so-
alled de�n-

ability problem: given an element of a �nitely generated type hierar
hy, does

there exist a 
losed simply typed �-term denoting this element? The posi-

tive answer was long known as Plotkin-Statman's 
onje
ture. Loader (1993)

settled it in the negative, thus leaving the higher-order problem open.

We 
ontributed to the settlement of the higher-order mat
hing problem

by proving the following strong lower bound (it is a valid approa
h to settle

strong lower bounds for the open de
idability problems; see (Compton &

Henson 1990)):

Theorem 1.1 (Lower Bound for Higher-Order Mat
hing, Vorobyov

(1997)). Any algorithm for the higher-order mat
hing in the STLC should

ne
essarily make a number of steps ex
eeding

exp

1

(
n= log(n)) = 2

2

�

�

�

2

)


n= log(n)

for some 
onstant 
 > 0 and in�nitely many inputs of size n. 2

3



It follows immediately that the problem is not elementary re
ursive and

one 
an ask whether there is any di�eren
e, from the pra
ti
al viewpoint,

between an unde
idable problem and a problem requiring as mu
h as

exp

1

(
n= log(n)) time to de
ide.

The proof of Theorem 1.1 in (Vorobyov 1997) does not imply, however,

any nontrivial lower bounds for the higher-order mat
hing of bounded order.

The order of an instan
e of the mat
hing problem is the maximal order of

types �

i

's of sought terms s

i

's in the instan
e (see de�nition above). For �xed

bounded orders the lower bounds on mat
hing are only known for order

3, NP , (Wolfram 1993), and NEXPTIME for order 4 (Wierzbi
ki 1999).

No lower bounds are known for higher orders. In this paper we settle the

following generi
 lower bound for the k-order mat
hing:

k-DEXPTIME is linearly redu
ible to the higher-order mat
hing

problem (in STLC) of order k + 7. Thus, order k + 7 mat
hing

requires (lower bound) k-level exponential time.

Although this does not 
over the NEXPTIME lower bound for mat
hing

of order 4 by Wierzbi
ki (1999) obtained by spe
ialized te
hniques (whi
h

do not seem to generalize for the higher levels of exponential hierar
hy),

our larger additive 
onstant is explained by the generi
ity of redu
tion and

uniform representation of inputs by terms of order 4.

1.3 Dire
t Proof of Statman's Theorem

As a te
hni
al 
ontribution of our paper we o�er a new dire
t proof of Stat-

man's theorem. Previous proofs in (Statman 1979, Mairson 1992, Vorobyov

1997) were based on a two-step redu
tion: proving a non-elementary lower

bound for Henkin's higher-order theory 
 of propositional types and then

en
oding it in the STLC. We give a dire
t redu
tion from k-DEXPTIME

to the STLC, whi
h is 
on
eptually mu
h simpler, and gives stronger and

more informative lower bounds for the �xed-order STLC, in 
ontrast with

the previous proofs.

4



2 Preliminaries

We assume the reader is familiar with the basi
s of the STLC. Our de�nitions

and notation are 
onsistent with Statman (1979), Statman (1982), S
hwi
ht-

enberg (1982), Fortune et al. (1983), Barendregt (1984), Hindley & Seldin

(1986), S
hwi
htenberg (1991), Mairson (1992), (Wolfram 1993), Troelstra &

S
hwi
htenberg (1996). In parti
ular, (simple) types are de�ned indu
tively:

� is a single base type; if � and � are types, then � ! � is a type; these are

all types. In writing types we omit parentheses assuming that ! asso
iates

to the right. The order of the type is de�ned by: ord(�) = 1 for the base

type and ord(� ! �) = maxf1 + ord(�); ord(�)g. Simply typed terms are

represented in Chur
h style, with expli
it type annotations in �-abstra
tions.

Appli
ations asso
iate to the left. The order of an expli
itly typed term is

the largest order of the type of its subterms. STLC

�k

is a fragment of STLC

restri
ted to terms of orders up to k.

3 Re�nement of Statman's Theorem

Te
hni
ally, the main part of the paper is devoted to the 
onstru
tion of

the generi
 redu
tion from k-DEXPTIME to STLC

�k+6

. This 
onstitutes,

in familiar terms, the straightforward proof of Statman's theorem. More

pre
isely, we prove the following:

Theorem 3.1 Given a (des
ription of a) deterministi
 Turing ma
hine M

working in time bounded by the k times iterated exponential fun
tion and an

input �s of size n one 
an 
onstru
t in time polynomial in n a term t of size

O(n) and order k+6 su
h that t 
onverts to some �xed normal form s if and

only if M a

epts �s. It follows that de
iding equality in STLC

�k+6

requires

the k-iterated exponential time (lower bound). 2

In the sequel we develop the en
oding of the generi
 Turing ma
hine


omputation within low-order STLC.
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3.1 Types

We start by de�ning the types essential for our 
onstru
tion.

3.1.1 Type of Proje
tions

For m 2 ! de�ne the se
ond-order type:

�

m

� �! : : :! �

| {z }

m

! � (1)

Type �

m

is inhabited by m proje
tion fun
tions (for 1 � 1 � m):

p

i

� �x

1

: � : : : �x

m

: � : x

i

(2)

We will use proje
tions of type �

m

(with m to be determined and �xed in

the sequel) to en
ode Turing ma
hine's tape symbols and states.

3.1.2 Lists and List Iteration

For a thorough explanation of lists, list iteration, and numerous highly non-

trivial examples the reader is referred to (Mairson 1992, Hillebrand et al.

1993, Hillebrand & Kanellakis 1994, Hillebrand & Kanellakis 1996). We only

provide basi
 explanations for the reader's 
onvenien
e.

Given a set ft

1

; t

2

; t

3

; : : : ; t

k

g of simply typed terms of the same type �,


onsider the term

L � �
 : �! � ! � : �n : � : 
 t

1

(
 t

2

(
 t

3

: : : (
 t

k�1

(
 t

k

n)))) (3)

of type

(�! � ! �)! � ! � (4)

for an arbitrary but a priori �xed simple type � . The term L represents a

list of terms [t

1

; t

2

; t

3

; : : : ; t

k

℄ of type �, the variables 
 and n abstra
t over

the list 
onstru
tors 
ons and nil. Lists are useful to implement primitive

re
ursion. The above 
ited papers give numerous elaborate examples. We

also extensively use list iteration and will provide many examples below.

3.1.3 Type of Lists of Proje
tions

De�ne the fourth-order type of lists of proje
tions (by �xing � and � in (4)

to be �

m

):

�

�

m

� (�

m

! �

m

! �

m

)! �

m

! �

m

(5)
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Given p terms t

1

; : : : ; t

p

, all of type �

m

, de�ne the list [t

1

; : : : ; t

p

℄ of type �

�

m

as follows:

�
 : �

m

! �

m

! �

m

: �n : �

m

: 
 t

1

(
 t

2

(
 t

3

(: : : (
 t

p�1

(
 t

p

n)) : : : ))) (6)

Su
h lists will be used to en
ode Turing ma
hine tape 
on�gurations.

3.2 Turing Ma
hines

For k 2 ! let k-DEXPTIME (
n) denote the 
lass of sets (problems) re
ogniz-

able by one-tape deterministi
 Turing ma
hines (DTM) in time bounded by

the k times iterated exponential fun
tion 2

2

�

�

�

2


n

9

=

;

k+1

, where 
 > 0 is a 
on-

stant and n 2 ! is the length of input. For example, 1-DEXPTIME (
n) =

DTIME (2


n

), 2-DEXPTIME (
n) = DTIME (2

2


n

), et
.

Given a problem P 2 k-DEXPTIME (
n), letM denote the 
orresponding

DTM re
ognizing P . Suppose that � and Q are M 's tape alphabet (
ontain-

ing the end marker $) and the set of states, and denote by N the 
ardinality

of � [Q. Without loss of generality we may suppose that:

1. M given an input s

1

: : : s

n

2 �

�

of length n starts in the initial 
on�g-

uration $q

0

s

1

: : : s

n

$, where q

0

2 Q is the initial state;

2. M stops either with the 
on�guration $q

att���tt

$ (a

epts) or $q

rtt���tt

$

(reje
ts), where q

a

, q

r

2 Q are two distinguished states, after erasing

the tape 
ontents;

3. M extends the tape (by adding blanks) only on the right end of the

tape (repla
ing $ with

t

$), and never extends it on the left end;

4. in every 
omputation M writes at least 2 symbols on its tape.

These te
hni
al 
onventions greatly simplify the subsequent presentation.

3.2.1 Representing Turing Ma
hine Con�gurations

Let us des
ribe the representation of a DTM 
on�gurations or instantaneous

des
riptions (ID for short). Su
h an ID keeps the 
ontents of the ma
hine

tape together with the position and state of the read/write head. It is 
on-

venient for our purposes to represent an ID as a list of type �

�

m

, see (5), for

an appropriate m 2 ! to be spe
i�ed later. For example, the initial ID in

whi
h the ma
hine observes the leftmost symbol of the input word abba will

be represented, a

ording to our 
onventions, as the term

7



�
 : �

m

! �

m

! �

m

: �n : �

m

:


 d$e(
 dq

0

e(
 dae(
 dbe(: : : (
 dbe(
 dae (
 d$en))) : : : ))))

or as a short-hand [d$e; dq

0

e; dae; dbe; dbe; dae; d$e℄, where d$e, dq

0

e, dae, dbe

are representations of the tape and state symbols by proje
tions of the type

�

m

, to be dis
ussed below in detail.

Remark. Thus the DTM input data is always represented uniformly by


losed lambda terms of order four; see the language uniform typed inputs


onvention of (Hillebrand & Kanellakis 1996).

3.2.2 Representing Turing Ma
hine Moves

In one move (step) a DTM M transforms its 
urrent ID into the next ID

a

ording to the transition rules of M . Therefore, given an M we need to

represent this transformation as a 
losed �-term (of order 5)

Move

M

: �

�

m

! �

�

m

The implementation of the term Move

M

is quite tri
ky and we split the


onstru
tion into several stages. The key idea is to perform a move in two

main stages, as explained by the following diagram:


 ds

1

e (
 ds

2

e (
 ds

3

e : : : (
 ds

i

e : : : )))


 ds

1

s

2

s

3

s

4

e (
 ds

2

s

3

s

4

s

5

e (
 ds

3

s

4

s

5

s

6

e : : : (
 ds

i

s

i+1

s

i+2

s

i+3

e : : : )))


 ds

0

2

e (
 ds

0

3

e (
 ds

0

4

e : : : (
 ds

0

i+1

e : : : )))

The �rst stage repla
es the en
oding of ea
h symbol s

i

in the list with the

en
oding of the quadruple s

i

s

i+1

s

i+2

s

i+3

(i.e., of s

i

together with its three

su

essors in the list; we agree that for the last three symbols s

n�1

, s

n

and $

in an ID the 
orresponding quadruples are ds

n�1

s

n

$$e, ds

n

$$$e and d$$$$e

respe
tively).

The se
ond stage implements a well known tri
k; see, e.g., (Sto
kmeyer

1974, pp. 38{39). It is easy to see that the 
ontents of the i+ 1-th tape 
ell

in the next ID is uniquely determined (for a given DTM) by the 
ontents of

the i-th, i + 1-st, i + 2-nd, and i + 3-rd 
ells in the 
urrent ID. Indeed, if

all s

i

, s

i+1

, s

i+2

are symbols from �, then s

0

i+1

equals s

i+1

. And if one of s

i

,

s

i+1

, s

i+2

is a state symbol from Q, then s

0

i+1

is uniquely determined from

s

i

, s

i+1

, s

i+2

, s

i+3

, as the reader 
an readily 
he
k. For example, if s

i

= a,

s

i+1

= b, s

i+2

= q, s

i+3

= a and M has rule q; a! b; q

0

; left , then s

i+1

= q

0

.

Therefore, the `global' move from the 
urrent to the su

eeding ID is per-

formed as a series of `lo
al' transformations based on observations of quadru-

ples of adja
ent symbols. This is one of the basi
 en
oding tri
ks underlying

our 
onstru
tion.

8



3.2.3 En
oding Tape and State Symbols

We now explain the en
oding of tape and state symbols from the alphabet

� [ Q. The 
ardinality of this alphabet depends on a DTM M 
hosen, but

be
omes a 
onstant, on
e M is �xed

1

. From the 
onstant 
ardinality of the

alphabet we must determine and �x the parameter m in the proje
tion type

�

m

. This will allow us to stati
ally type all the lists and the list transforma-

tion terms in the sequel. Indeed, as we explained previously, we need to have

enough proje
tions to en
ode not only the symbols from � [Q, but also all

possible quadruples of su
h symbols. Therefore, it suÆ
es to 
hoose m equal

to j� [Qj

4

. We stress that this is a 
onstant, on
e the ma
hine M is �xed a

priori. Fixing m will allow us to write a �xed �-term de�ning a DTM step,

independent of the input and its length.

Let us agree that the symbols from �[Q are en
oded by the �rst j�[Qj

proje
tion fun
tions, and that the remaining proje
tions are used appropri-

ately to en
ode tuples, triples, and quadruples of symbols from � [ Q. We

will denote su
h en
oding proje
tions by using appropriate subs
ripts, e.g.,

p

a;b;
;q

to en
ode ab
q, p

q;a;$;$

for qa$$. Not all proje
tions are a
tually used,

some of them, like p

q;q;a;a

, do not make sense.

3.3 Comparing Proje
tions, Booleans, Conditionals

We use the standard en
odings for the se
ond-order type Bool � �! �! �,

boolean 
onstants true : Bool � �x : � : �y : � : x, false : Bool � �x : � : �y : � : y,

operations

and : Bool ! Bool ! Bool � �u : Bool : �v : Bool : �x : � : �y : � : u(vxy)y;

or : Bool ! Bool ! Bool � �u : Bool : �v : Bool : �x : � : �y : � : ux(vxy);

not : Bool ! Bool � �u : Bool : �x : � : �y : � : uyx:

We de�ne the equality predi
ate on proje
tions following (Hillebrand &

Kanellakis 1996) as

eq : �

m

! �

m

! Bool �

�p : �

m

: �q : �

m

: �x : � : �y : � : (7)

p(qx y : : : y

| {z }

m�1

)(qyx y : : : y

| {z }

m�2

) : : : (q y : : : y

| {z }

m�2

xy)(q y : : : y

| {z }

m�1

x)

eq applied to two proje
tions p

i

; p

j

: �

m

, 
onverts to true or false depending

on whether i = j or i 6= j.

1

Note that we �rst sele
t a DTM and immediately �x it, so the size of the alphabet is

always 
onsidered a 
onstant.

9



3.4 Computing Symbols Pairing

As a preparation step for 
omputing en
odings of the quadruples of tape

symbols, we �rst de�ne pairing :

pair : �

m

! �

m

! �

m

The intention of this fun
tion is to 
ombine en
odings in the following

way, for any s; s

1

; s

2

; s

3

; s

4

2 � [Q:

dse+ ds

1

s

2

s

3

s

4

e = ds s

1

s

2

s

3

e;

i.e, the last element in the en
oding of the se
ond argument is forgotten,

the remaining symbols are shifted right, and the �rst argument be
omes the

�rst in the en
oding. We do not need to de�ne pairing of, say, ds

1

s

2

s

3

s

4

e +

ds

0

1

s

0

2

s

0

3

s

0

4

e, when the �rst operand is not a single symbol, we let it be de�ned

arbitrarily.

By using the en
odings of the booleans and equality des
ribed previously,

one 
an easily write down the �-de�nition of pair as a straightforward tedious

enumeration of 
ases (tabulation):

pair : �

m

! �

m

! �

m

�

�p : �

m

: �q : �

m

: �x

1

: � : : : : : �x

m

: � :

if eq p p

s

1

then if eq q p

s

1

s

1

s

1

s

1

then x

s

1

s

1

s

1

s

1

else if eq q p

s

1

s

1

s

1

s

2

then x

s

1

s

1

s

1

s

1

: : :

else if eq q p

s

i

s

j

s

l

s

n

then x

s

1

s

i

s

j

s

l

: : :

else if eq q p

s

m

s

m

s

m

s

m

then x

s

1

s

m

s

m

s

m

else x

s

1

s

m

s

m

s

m

else if eq p p

s

2

then if eq q p

s

1

s

1

s

1

s

1

then x

s

2

s

1

s

1

s

1

else if eq q p

s

1

s

1

s

1

s

2

then x

s

2

s

1

s

1

s

1

: : :

else if eq q p

s

i

s

j

s

l

s

n

then x

s

2

s

i

s

j

s

l

10



: : :

else if eq q p

s

m

s

m

s

m

s

m

then x

s

2

s

m

s

m

s

m

else x

s

2

s

m

s

m

s

m

: : :

where �b : Bool : �x : � : �y : � : if b then x else y � ((b)(x)(y))

3.5 Computing the En
oding of the First Four Sym-

bols in a List

Our �rst appli
ation of the list iteration 
onsists in �-de�ning a term, whi
h

being applied to a list of symbols (en
oded as proje
tions) 
onverts to the

en
oding of the �rst four symbols of the list as follows. Applied to

�
 : �n : 
 ds

1

e (
 ds

2

e (
 ds

3

e (
 ds

4

e : : : (
 ds

i

e : : : (
 d$e n))))) (8)

it yields ds

1

s

2

s

3

s

4

e, where d e is an appropriate en
oding of symbols and

quadruples of symbols by proje
tions. The de�nition of this term of order

�ve is as follows:

First-Four : ((�

m

! �

m

! �

m

)! �

m

! �

m

)! �

m

�

�L : (�

m

! �

m

! �

m

)! �

m

! �

m

: L pair p

$$$$

It is easy to see that when First-Four applies to the list (8), it produ
es the

body of the list, where 
 is repla
ed with pair and n repla
ed with p

$$$$

, i.e.,

pair ds

1

e (pair ds

2

e (pair ds

3

e (pair ds

4

e : : : (pair ds

i

e : : : (pair d$e p

$$$$

)))))

Immediate redu
tions with pair afterwards produ
e the desired result ds

1

s

2

s

3

s

4

e.

3.6 Computing the List of Quadruples

Our next aim is to de�ne the 
losed �-term List-of -Quadruples : �

�

m

! �

�

m

(see (5)) of order �ve, whi
h is intended to 
onvert to the se
ond list, when

being applied to the �rst one, as shown below:


 ds

1

e (
 ds

2

e (
 ds

3

e : : : (
 ds

i

e : : : )))


 ds

1

s

2

s

3

s

4

e (
 ds

2

s

3

s

4

s

5

e (
 ds

3

s

4

s

5

s

6

e : : : (
 ds

i

s

i+1

s

i+2

s

i+3

e : : : )))

Let us de�ne this term as follows:
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List-of -Quadruples : ((�

m

! �

m

! �

m

)! �

m

! �

m

)!

((�

m

! �

m

! �

m

)! �

m

! �

m

) �

�R : (�

m

! �

m

! �

m

)! �

m

! �

m

:

�
 : �

m

! �

m

! �

m

: �n : �

m

:

R

�

�r : �

m

: �T : �

m

:


 (pair r ((�
 : �

m

! �

m

! �

m

: �n : �

m

: T ) pair p

m

) T

�

n

� When List-of -Quadruples is applied to a list R, all 
onstru
tors 


in appli
ations 
 ds

i

etail

i

in its body are repla
ed with the fu
tion

�r : �

m

: �T : �

m

: : : : .

� The body of this fun
tion then 
reates the �rst element of the resulting

list ds

i

s

i+1

s

i+2

s

i+3

e by using the �rst element s

i

bound to r and the

tail

i

bound to t and using the First-Four des
ribed above, and iterates

the same transformation along the list.

3.7 Computing a Turing Ma
hine Step

Our next aim 
onsists in �-de�ning the �fth-order term

Step

M

: ((�

m

! �

m

! �

m

)! �

m

! �

m

)! ((�

m

! �

m

! �

m

)! �

m

! �

m

)

whi
h implements the se
ond part of the ID transformation by a given de-

terministi
 Turing ma
hine, i.e.,


 ds

1

s

2

s

3

s

4

e (
 ds

2

s

3

s

4

s

5

e (
 ds

3

s

4

s

5

s

6

e : : : (
 ds

i

s

i+1

s

i+2

s

i+3

e : : : )))


 ds

0

2

e (
 ds

0

3

e (
 ds

0

4

e : : : (
 ds

0

i+1

e : : : )))

where s

0

i

in the next ID are uniquely determined by adja
ent quadruples

of adja
ent symbols s

i�1

s

i

s

i+1

s

i+2

; see Se
tion 3.2.2. Although the very

�rst symbol s

0

1

in the next ID remains undetermined, by our 
onvention in

Se
tion 3.2, the leftmost tape symbol $ remains always un
hanged, therefore

we 
an subsequently add it in the head of the list expli
itly.

The de�nition of Step

M

on
e again uses the list iteration:

Step

M

: ((�

m

! �

m

! �

m

)! �

m

! �

m

)!

((�

m

! �

m

! �

m

)! �

m

! �

m

) �

�L : (�

m

! �

m

! �

m

)! �

m

! �

m

:

�
 : �

m

! �

m

! �

m

: �n : �

m

:

L

�

�r : �

m

: �t : �

m

: 
 (trans

M

r) t

�

n

12



When applied to a list of quadruples of symbols, Step

M

walks down the list

and transforms every quadruple en
oding ds

i�1

s

i

s

i+1

s

i+2

e bounded to r into

the en
oding of ds

i

e

0

, by using the fun
tion trans

M

, whi
h des
ribes, for a

given DTM M the desired uniquely determined transformation.

For any given DTMM this fun
tion trans

M

is easy to de�ne by tabulation

(�nite tedious 
ase analysis). For example, if M has 
ommand q; a! b; q

0

; L

(in state q seeing a write b and move left), the �-de�nition of trans

M

will


ontain:

trans

M

: �

m

! �

m

�

�s : � : �x

1

: � : : : �x

m

: � :

: : :

if eq s p

baqa

then p

q

0

x

1

x

2

: : : x

m

: : :

Indeed if we know that in the pre
eding ID s

i�1

s

i

s

i+1

s

i+2

= baqa, then in

the next ID s

0

i

is uniquely determined as q

0

, en
oded by the proje
tion p

q

0

a

ording to our 
onvention.

Finally, the desired �fth-order term Move

M

des
ribing the full one-step

ID transformation is de�ned by

Move

M

: ((�

m

! �

m

! �

m

)! �

m

! �

m

)!

((�

m

! �

m

! �

m

)! �

m

! �

m

) �

�L : (�

m

! �

m

! �

m

)! �

m

! �

m

:

�
 : �

m

! �

m

! �

m

: �n : �

m

:


 d$e ((Step

M

(List-of -Quadruples L)) 
 n)

Re
all from Se
tion 3.2.2 that List-of -Quadruples �rst transforms L into a

list of (en
odings of) quadruples of adja
ent tape symbols, then Step

M

per-

forms the global ID transformation by `lo
al' transformations of quadruples.

Finally, we add the �st un
hanged end marker $ on the left of the tape.

This �nishes the de�nition of a single ID transformation step by a DTM

within the STLC

�5

. Indeed, all terms de�ned are of order at most �ve.

3.8 Iterating Turing Ma
hine Steps

Now we need to iterate the one-step ID transformations implemented by

Move

M

the desired k-exponential number of times in order to be able to

model any k-exponential time bounded 
omputations. This is a
hieved by

using the iterated exponentiation arithmeti
 on Chur
h numerals over vary-

ing domains; see (Fortune et al. 1983).
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Let B

0

be an initial type to be spe
i�ed later, and de�ne the types B

i+1

�

B

i

! B

i

. The type of representation of natural numbers over B

i

is

I

i

� (B

i

! B

i

)! (B

i

! B

i

)

A Chur
h numeral �n for n 2 ! over B

i

is represented by

�n � �f : B

i

! B

i

: �x : B

i

: f(f(: : : f

| {z }

n

(x) : : : ))

When B

i

is �xed, the only fun
tions of types I

i

! : : :! I

i

are generalized

polynomials generated by 0, su

essor, addition, multipli
ation, 
onditional

`if zero ... then ... else ...'; exponentiation and subtra
tion are not �-de�nable

(due to S
hwi
htenberg-Statman). However, when the domain and range of

fun
tions are allowed to vary, exponentiation and subtra
tion be
ome repre-

sentable. In parti
ular, de�ne

E

i

� �m : I

i+1

: �n : I

i

: (m n)

Then E

i

�m �n redu
es to the representation of n

m

over domain B

i

, given

that �m is represented over domain B

i+1

and �n is represented over domain B

i

.

Iterating this 
onstru
tion we get the term of type I

0

(where we super-

s
ript o

urren
es of numerals for n and 2 by their types)

k-EXP(n) � (: : : ((n

I

k

2

I

k�1

) 2

I

k�2

) : : : 2

I

1

) 2

I

0

: I

0

(9)

whi
h 
onverts to the representation of the numeral 2

2

�

�

�

2

n

9

=

;

k+1

over domain

B

0

.

For a �xed k 2 ! the size of the (non-normalized) term in (9) is O(n)

(but type annotations in lambda-abstra
tions are exponential in k, whi
h

is however 
onsidered a 
onstant; re
all that we 
onsider sli
es of the term

equality problem in STLC

�k

for �xed k).

Now let B

0

� (�

m

! �

m

! �

m

) ! �

m

! �

m

of order �ve, let M be

a DTM working in time 2

2

�

�

�

2

dn

9

=

;

k+1

(for some d 2 !) re
ognizing a prob-

lem 
omplete for [


>0

k-DEXPTIME (
n) under polynomial time linearly

bounded redu
tions (su
h problems and ma
hines are known to exist), and

let s

1

s

2

: : : s

n�1

s

n

be an input to M . Write a term

Result

�

k-EXP(add n(add n(: : : (add

| {z }

d�1

n n) : : : )))

Move

M

[ d$e; ds

1

e; ds

2

e; : : : ds

n�1

e; ds

n

e; d$e ℄

�

; (10)

where:
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1. add : I

k

! I

k

! I

k

is �-de�nable addition on Chur
h numerals over

B

k

.

2. [ d$e; ds

1

e; ds

2

e; : : : ds

n�1

e; ds

n

e; d$e ℄ : (�

m

! �

m

! �

m

)! �

m

! �

m

| {z }

B

0

is the list en
oding of the initial ma
hine's tape of size O(n);

3. Move

M

: ((�

m

! �

m

! �

m

)! �

m

! �

m

)

| {z }

B

0

!

((�

m

! �

m

! �

m

)! �

m

! �

m

)

| {z }

B

0

is the lambda term des
ribed above implementing a single step of M ;

4. k-EXP(add n(add n(: : : (add

| {z }

d�1

n n) : : : ))) : (B

0

! B

0

) ! (B

0

! B

0

)

is a Chur
h numeral, whi
h 
onverts to the normal form representing

2

2

�

�

�

2

k+1

9

=

;

dn

over domain B

0

;

5. therefore, the term (10) iterates the moves of the DTM the required

k-exponential number of times;

6. the order of the term (10) is therefore k + 6; indeed, the order of B

0

is 4, the order of I

k

= (B

k

! B

k

) ! (B

k

! B

k

) is ord(B

k

) + 2, and

ord(B

i+1

) = ord(B

i

) + 1; therefore, the order of I

k

(maximal type in

(10)) is k + 6.

7. Result : ((�

m

! �

m

! �

m

)! �

m

! �

m

) is the lambda term extra
ting

the result, either

(a) �
 : �

m

! �

m

! �

m

: �n : �

m

: 
 d$e (
 dq

a

e (
 d$e n)) (a

ept) or

(b) �
 : �

m

! �

m

! �

m

: �n : �

m

: 
 d$e (
 dq

r

e (
 d$e n)) (reje
t)

from the lists remaining after DTM's 
omputations (respe
tively)

(a) [ d$e; dq

a

e; d

t

e; d

t

e; : : : ; d

t

e; d$e ℄ or

(b) [ d$e; dq

r

e; d

t

e; d

t

e; : : : ; d

t

e; d$e ℄,

where the last two lists may have varying length (re
all that by 
on-

vention DTMs are standardized and in the end of the work repla
e all

o

upied tape 
ells with blanks, move to the leftmost tape position,

and enter a

epting/reje
ting state).

The fun
tion Result is �-de�ned immediately:
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Result : ((�

m

! �

m

! �

m

)! �

m

! �

m

)! Bool �

�L : (�

m

! �

m

! �

m

)! �

m

! �

m

: eq p

$q

a

tt

(L pair p

$$$$

),

(re
all that we assume (wlog) that M uses at least two tape 
ells in

any 
omputation).

This �nishes the linearly bounded redu
tion from k-DEXPTIME to de-


iding equality in STLC

�k+6

between two terms one of whi
h may be �xed

to the fourth-order term

�
 : �

m

! �

m

! �

m

: �n : �

m

: 
 d$e (
 dq

a

e (
 d$e n)) (DTM a

epts)

(11)

Therefore, de
iding equality in STLC

�k+6

requires k-times iterated expo-

nential time, or is k-DEXPTIME -hard. This 
ompletes the proof of Theo-

rem 3.1.

4 Complexity of the Bounded-Order Higher-

Order Mat
hing

As an appli
ation of the pre
eding results we now turn to improving lower

bounds for the higher-order mat
hing problem of �xed bounded order. Re
all

that the problem 
onsists, given 
losed normalized terms t of type �

1

! : : :!

�

n

! � and u of type � to determine whether there exist terms x

i

of types

�

i

(for 1 � i � n) su
h that tx

1

: : : x

n

=

��

u. The order of the instan
e

tx

1

: : : x

n

?

= u of the problem is de�ned as maxford(�

1

); : : : ; ord(�

n

)g, i.e.,

the maximal order of type of a free variable on the left. Note that in an

instan
e of the mat
hing problem the instantiable variables are only allowed

on the left (in 
ontrast to uni�
ation, where variables are allowed on both

sides and whi
h is unde
idable for order three without 
onstants and for

order two with 
onstants, due to Huet-Goldfarb).

While the de
idability status of the higher-order mat
hing problem re-

mains open, it makes sense to provide 
ompelling eviden
e of the inherent

diÆ
ulty of the problem by proving non-trivial lower bounds (Compton &

Henson 1990, Problem 10.11, p. 75). As we mentioned in the Introdu
tion

(Theorem 1.1), if one does not impose the bound on the orders of vari-

ables in instan
es, then the higher-order mat
hing problem has a strong non-

elementary lower bound, but this result does not imply any lower bounds for

the k-order bounded mat
hing (k 2 !). Now we have enough ma
hinery to

settle this problem.
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Note that we spent additional e�ort (e.g., in Se
tion 3.8 and in the whole


onstru
tion) to guarantee that the term appearing on the right of equalities

in the redu
tion 
lass is �xed and does not depend neither on input, nor on

the ma
hine des
ription, whi
h is important for our 
urrent development.

For a �xed k 2 ! 
onsider the instan
es, for varying input strings s

1

: : : s

n

,

of 
losed equations

(10)

?

= (11) (12)

where the term (11) on the right is normalized. We now turn in linear time the

equation instan
e (12) into an instan
e of the higher-order mat
hing problem.

The key obsta
le is that the term (10) on the left of the instan
e (12) is not

normalized. The tri
k we already used in (Vorobyov 1997) is as follows. Let

us work with �nite systems of instan
es of the mat
hing problem rather than

with single instan
es. Start with the system S 
ontaining a single input

equation (12). Repla
e every �-redex (�x : � :M)

�!�

N

�

in (12) with the

(non-redex) term ((f

(�!�)!�!�

(�x : � :M)

�!�

) N

�

), where f : (� ! �) !

� ! � is a fresh free variable, and add equation f = �g : � ! � : �z : � : gz

to system S. The variable f plays the role of apply : it takes two arguments

and applies the �rst one to the se
ond one.

Similarly, repla
e every �-redex �x : � :M

�!�

x

�

(x not free in M) in

(12) with the (non-redex) term �x : � : f

�!�

(M

�!�

x

�

), where f : � ! � is

a fresh free variable, and add equation f = �u : � : u to S.

The resulting system S 
ontains free variables only on the left-hand sides

and all terms on the left and right-hand sides are normalized. It remains to

redu
e the system of equations S to just one equation by tupling:

V

n

i=1

M

i

=

N

i

, �f:fM

1

: : :M

k

= �f:fN

1

: : : N

k

. Note that the resulting equation

does not 
ontain variables on the right, so we translated the initial equation

(12) to the instan
e of the higher-order mat
hing problem with normalized

terms. Note that the right-hand side of (12) redu
es to the right-hand side

of (12) if and only if the obtained instan
e of the mat
hing problem has a

solution. It remains to noti
e that the order of the mat
hing problem is by

one greater than the maximal order of subterm in (10). This is be
ause the

maximal order subterm (redex) (n

I

k

2

I

k�1

) (see (10), (9)) introdu
es, while

eliminating the �-redex, the free variable f : I

k

! I

k�1

! I

k�1

Thus the

maximal order of a variable in the resulting mat
hing instan
e is by one

larger the largest order of subterm in (10). Summarizing, we obtain the

promised

Theorem 4.1 k-DEXPTIME is linearly redu
ible to the higher-order mat
h-

ing problem (in STLC) of order k + 7. Thus, order k + 7 mat
hing requires

(lower bound) k-level exponential time.
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More pre
isely, given a des
ription of a problem P and input x of size

n one 
an 
onstru
t in polynomial time an instan
e S of the higher-order

mat
hing problem of order k + 7 su
h that x 2 P if and only if S has a

solution. 2

This gives an improvement (lower bounds for the �xed order mat
hing)

over the result of (Vorobyov 1997), whi
h does not imply any lower bounds

for the bounded order mat
hing.

5 Con
lusions

In this paper we settled the optimal (up to an additive 
onstant 6) lower

bound for the equality in the order bounded fragments STLC

�k

(for �xed k)

of the simply typed lambda 
al
ulus STLC. It is now known that 
he
king

whether a given term of order k + 6 normalizes to a �xed normal form is

as hard as de
iding a k-DEXPTIME -
omplete problem. Thus 
omparing

��-equality of terms of STLC

�k+6

requires the k-times iterative exponential

time.

This result improves upon previous results (Statman 1979, Mairson 1992,

Vorobyov 1997), whi
h did not imply any nontrivial lower bounds for �xed

orders (however the strong lower bound of (Vorobyov 1997) for unbounded

orders persists and is not super
eded by the present result), and over the

result of (Hillebrand & Kanellakis 1996), redu
ing k-DEXPTIME to the

order 2k + 3 STLC (we thus get a double in
rease, in terms of heights of

exponentiation towers, of lower 
omplexity bounds).

As an appli
ation, we obtained new strong lower bound for the �xed-order

higher-order mat
hing, still an open problem. It turns out that for every

k 2 ! de
iding mat
hability of order k+7 is at least as diÆ
ult as de
iding an

arbitrary (
omplete) problem in k-DEXPTIME . Thus k+ 7-order mat
hing

requires the k-times iterative exponential time. Earlier results either gave

nontrivial lower bounds for unbounded order mat
hing (Vorobyov 1997), or

for the spe
i�
 orders up to four only (Wierzbi
ki 1999).

Methodologi
ally, we obtained our results as 
onsequen
es of the stream-

lined and immediate proof of Statman's theorem by a single step generi


redu
tion. This gives a 
on
eptually simpler proof yielding stronger lower

bounds and bound for �xed orders, in 
ontrast with the previous two-step

redu
tion proofs of (Statman 1979, Mairson 1992, Vorobyov 1997).

It remains open whether the additive 
onstants 6 and 7 in our lower

bounds 
ould be diminished to give stronger results.
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